1
|
Arai K, Ono Y, Hirai N, Sugiura Y, Kaneko K, Matsuda S, Iio K, Kajino K, Saitoh T, Wei FY, Katagiri H, Inoue A. Chemogenetic activation of hepatic G 12 signaling ameliorates hepatic steatosis and obesity. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167566. [PMID: 39542224 DOI: 10.1016/j.bbadis.2024.167566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/20/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE Hepatic steatosis, the early stage of nonalcoholic fatty liver disease (NAFLD), currently lacks targeted pharmacological treatments. G protein-coupled receptors (GPCRs) in hepatocytes differentially regulate lipid metabolism depending on their coupling profile of G protein subtypes. Unlike Gs, Gi, and Gq signaling, the role of G12 signaling in hepatic steatosis remains elusive. The objective of this study was to investigate the effect of G12 signaling on hepatic steatosis and obesity and its mechanisms. METHODS We generated mice expressing a G12-coupled designer GPCR in a liver-specific manner. We performed phenotypic analysis in the mice under the condition of fasting (acute hepatic steatosis model) or high-fat diet feeding (chronic hepatic steatosis model). RESULTS In acute and chronic hepatic steatosis models, chemogenetic activation of hepatic G12 signaling suppressed the progression of hepatic steatosis. The treatment led to an increased triglyceride secretion with little effect on mitochondrial respiratory activity, fatty acid oxidation, de novo lipogenesis, and fatty acid uptake. Furthermore, in a high-fat-diet-induced obesity model, activation of the G12-coupled designer GPCR exerted anti-obesity effects with increased whole-body energy expenditure and fat oxidation. Anti-FGF21 antibody treatment showed that the anti-obesity effects of the hepatic G12D activation relied in part on the hepatokine FGF21. CONCLUSIONS Our findings indicate that the activation of G12 signaling in the liver has the potential to prevent hepatic steatosis and obesity. This discovery provides a strong rationale for the development of drugs targeting G12-coupled GPCRs expressed in the liver.
Collapse
Affiliation(s)
- Kaito Arai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Yuki Ono
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Natsumi Hirai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Yuki Sugiura
- Center for Cancer Immunotherapy and Immunobiology (CCII), Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Keizo Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Shigeru Matsuda
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Keita Iio
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Keita Kajino
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
2
|
Queathem ED, Moazzami Z, Stagg DB, Nelson AB, Fulghum K, Hayir A, Seay A, Gillingham JR, d’Avignon DA, Han X, Ruan HB, Crawford PA, Puchalska P. Ketogenesis supports hepatic polyunsaturated fatty acid homeostasis via fatty acid elongation. SCIENCE ADVANCES 2025; 11:eads0535. [PMID: 39879309 PMCID: PMC11777252 DOI: 10.1126/sciadv.ads0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Ketogenesis is a dynamic metabolic conduit supporting hepatic fat oxidation particularly when carbohydrates are in short supply. Ketone bodies may be recycled into anabolic substrates, but a physiological role for this process has not been identified. Here, we use mass spectrometry-based 13C-isotope tracing and shotgun lipidomics to establish a link between hepatic ketogenesis and lipid anabolism. Unexpectedly, mouse liver and primary hepatocytes consumed ketone bodies to support fatty acid biosynthesis via both de novo lipogenesis (DNL) and polyunsaturated fatty acid (PUFA) elongation. While an acetoacetate intermediate was not absolutely required for ketone bodies to source DNL, PUFA elongation required activation of acetoacetate by cytosolic acetoacetyl-coenzyme A synthetase (AACS). Moreover, AACS deficiency diminished free and esterified PUFAs in hepatocytes, while ketogenic insufficiency depleted PUFAs and increased liver triacylglycerols. These findings suggest that hepatic ketogenesis influences PUFA metabolism, representing a molecular mechanism through which ketone bodies could influence systemic physiology and chronic diseases.
Collapse
Affiliation(s)
- Eric D. Queathem
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Zahra Moazzami
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - David B. Stagg
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alisa B. Nelson
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Kyle Fulghum
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Abdirahman Hayir
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alisha Seay
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jacob R. Gillingham
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - D. André d’Avignon
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Xianlin Han
- Department of Medicine-Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Peter A. Crawford
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
3
|
Yang W, Yan X, Chen R, Xin X, Ge S, Zhao Y, Yan X, Zhang J. Smad4 deficiency in hepatocytes attenuates NAFLD progression via inhibition of lipogenesis and macrophage polarization. Cell Death Dis 2025; 16:58. [PMID: 39890803 DOI: 10.1038/s41419-025-07376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/22/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a major cause of chronic liver disorders, has become a serious public health issue. Although the Smad4 signaling pathway has been implicated in the progression of NAFLD, the specific role of Smad4 in hepatocytes in NAFLD pathogenesis remains unclear. Hepatocyte-specific knockout Smad4 mice (AlbSmad4-/-) were first constructed using the Cre-Loxp recombinant system to establish a high-fat diet induced NAFLD model. The role of Smad4 in the occurrence and development of NAFLD was determined by monitoring the body weight of mice, detecting triglycerides and free fatty acids in serum and liver tissue homogenates, staining the tissue sections to observe the accumulation of liver fat, and RT-qPCR detecting the expression of genes related to lipogenesis, fatty acid intake, and fatty acid β oxidation. The molecular mechanism of Smad4 in hepatocytes affecting NAFLD was therefore investigated through combining in vitro and in vivo experiments. Smad4 deficiency in hepatocytes mitigated NAFLD progression and decreased inflammatory cell infiltration. Moreover, Smad4 deficiency inhibited CXCL1 secretion by suppressing the activation of the ASK1/P38/JNK signaling pathway. Furthermore, targeting CXCL1 using CXCR2 inhibitors diminished hepatocyte lipogenesis and inhibited the polarization of M1-type macrophages. Collectively, these results suggested that Smad4 plays a vital role in exacerbating NAFLD and may be a promising candidate for anti-NAFLD therapy.
Collapse
Affiliation(s)
- Wei Yang
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targetubg Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Xuanxuan Yan
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Rui Chen
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xin Xin
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Shuang Ge
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targetubg Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targetubg Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Xinlong Yan
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China.
| | - Jinhua Zhang
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China.
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targetubg Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, China.
| |
Collapse
|
4
|
Przanowska RK, Chen Y, Uchida TO, Shibata E, Hao X, Rueda IS, Jensen K, Przanowski P, Trimboli A, Shibata Y, Leone G, Dutta A. DNA replication in primary hepatocytes without the six-subunit ORC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.04.588006. [PMID: 38617300 PMCID: PMC11014565 DOI: 10.1101/2024.04.04.588006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The six subunit ORC is essential for initiation of DNA replication in eukaryotes. Cancer cell-lines in culture can survive and replicate DNA replication after genetic inactivation of individual ORC subunits, ORC1, ORC2 or ORC5. In primary cells, ORC1 was dispensable in the mouse liver for endo-reduplication, but this could be explained by the ORC1 homolog, CDC6, substituting for ORC1 to restore functional ORC. Here, we have created mice with a conditional deletion of ORC2, which does not have a homolog. Although mouse embryo fibroblasts require ORC2 for proliferation, mouse hepatocytes synthesize DNA in cell culture and endo-reduplicate in vivo without ORC2. Mouse livers endo-reduplicate after simultaneous deletion of ORC1 and ORC2 both during normal development and after partial hepatectomy. Since endo-reduplication initiates DNA synthesis like normal S phase replication these results unequivocally indicate that primary cells, like cancer cell lines, can load MCM2-7 and initiate replication without ORC.
Collapse
|
5
|
Yin W, Xu H, Bai Z, Wu Y, Zhang Y, Liu R, Wang Z, Zhang B, Shen J, Zhang H, Chen X, Ma D, Shi X, Yan L, Zhang C, Jiang H, Chen K, Guo D, Niu W, Yin H, Zhang WJ, Luo C, Xie X. Inhibited peroxidase activity of peroxiredoxin 1 by palmitic acid exacerbates nonalcoholic steatohepatitis in male mice. Nat Commun 2025; 16:598. [PMID: 39799115 PMCID: PMC11724923 DOI: 10.1038/s41467-025-55939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
Reactive oxygen species exacerbate nonalcoholic steatohepatitis (NASH) by oxidizing macromolecules; yet how they promote NASH remains poorly understood. Here, we show that peroxidase activity of global hepatic peroxiredoxin (PRDX) is significantly decreased in NASH, and palmitic acid (PA) binds to PRDX1 and inhibits its peroxidase activity. Using three genetic models, we demonstrate that hepatic PRDX1 protects against NASH in male mice. Mechanistically, PRDX1 suppresses STAT signaling and protects mitochondrial function by scavenging hydrogen peroxide, and mitigating the oxidation of protein tyrosine phosphatases and lipid peroxidation. We further identify rosmarinic acid (RA) as a potent agonist of PRDX1. As revealed by the complex crystal structure, RA binds to PRDX1 and stabilizes its peroxidatic cysteine. RA alleviates NASH through specifically activating PRDX1's peroxidase activity. Thus, beyond revealing the molecular mechanism underlying PA promoting oxidative stress and NASH, our study suggests that boosting PRDX1's peroxidase activity is a promising intervention for treating NASH.
Collapse
Affiliation(s)
- Wen Yin
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Heng Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhonghao Bai
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, 300070, China
| | - Yue Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yan Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Rui Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Zhangzhao Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Bei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Jing Shen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Hao Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Danting Ma
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaofeng Shi
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Lihui Yan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Chang Zhang
- Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kaixian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dean Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenyan Niu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, 300070, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Weiping J Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Cheng Luo
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiangyang Xie
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
6
|
Pradella D, Zhang M, Gao R, Yao MA, Gluchowska KM, Cendon-Florez Y, Mishra T, La Rocca G, Weigl M, Jiao Z, Nguyen HHM, Lisi M, Ozimek MM, Mastroleo C, Chen K, Grimm F, Luebeck J, Zhang S, Zolli AA, Sun EG, Dameracharla B, Zhao Z, Pritykin Y, Sigel C, Chang HY, Mischel PS, Bafna V, Antonescu CR, Ventura A. Engineered extrachromosomal oncogene amplifications promote tumorigenesis. Nature 2025; 637:955-964. [PMID: 39695225 PMCID: PMC11754114 DOI: 10.1038/s41586-024-08318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/31/2024] [Indexed: 12/20/2024]
Abstract
Focal gene amplifications are among the most common cancer-associated mutations1 but have proven challenging to engineer in primary cells and model organisms. Here we describe a general strategy to engineer large (more than 1 Mbp) focal amplifications mediated by extrachromosomal DNAs (ecDNAs)2 in a spatiotemporally controlled manner in cells and in mice. By coupling ecDNA formation with expression of selectable markers, we track the dynamics of ecDNA-containing cells under physiological conditions and in the presence of specific selective pressures. We also apply this approach to generate mice harbouring Cre-inducible Myc- and Mdm2-containing ecDNAs analogous to those occurring in human cancers. We show that the engineered ecDNAs spontaneously accumulate in primary cells derived from these animals, promoting their proliferation, immortalization and transformation. Finally, we demonstrate the ability of Mdm2-containing ecDNAs to promote tumour formation in an autochthonous mouse model of hepatocellular carcinoma. These findings offer insights into the role of ecDNA-mediated gene amplifications in tumorigenesis. We anticipate that this approach will be valuable for investigating further unresolved aspects of ecDNA biology and for developing new preclinical immunocompetent mouse models of human cancers harbouring specific focal gene amplifications.
Collapse
Affiliation(s)
- Davide Pradella
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Minsi Zhang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Gao
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melissa A Yao
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katarzyna M Gluchowska
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ylenia Cendon-Florez
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tanmay Mishra
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- BCMB Allied program, Weill Cornell Medicine Graduate School for Medical Sciences, New York, NY, USA
| | - Gaspare La Rocca
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Moritz Weigl
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ziqi Jiao
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hieu H M Nguyen
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marta Lisi
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mateusz M Ozimek
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chiara Mastroleo
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin Chen
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Felix Grimm
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jens Luebeck
- Computer Science and Engineering, UC San Diego, La Jolla, CA, USA
| | - Shu Zhang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Dermatology and Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Andrea Alice Zolli
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric G Sun
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Zhengqiao Zhao
- Lewis-Sigler Institute for Integrative Genomics and Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Yuri Pritykin
- Lewis-Sigler Institute for Integrative Genomics and Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Carlie Sigel
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Dermatology and Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Vineet Bafna
- Computer Science and Engineering, UC San Diego, La Jolla, CA, USA
- Halicioglu Data Science Institute, UC San Diego, La Jolla, CA, USA
| | - Cristina R Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
Queathem ED, Stagg D, Nelson A, Chaves AB, Crown SB, Fulghum K, D Avignon DA, Ryder JR, Bolan PJ, Hayir A, Gillingham JR, Jannatpour S, Rome FI, Williams AS, Muoio DM, Ikramuddin S, Hughey CC, Puchalska P, Crawford PA. Ketogenesis protects against MASLD-MASH progression through mechanisms that extend beyond overall fat oxidation rate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618895. [PMID: 39464122 PMCID: PMC11507910 DOI: 10.1101/2024.10.17.618895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The progression of metabolic-dysfunction-associated steatotic liver disease (MASLD) to metabolic-dysfunction-associated steatohepatitis (MASH) involves complex alterations in both liver-autonomous and systemic metabolism that influence the liver's balance of fat accretion and disposal. Here, we quantify the relative contribution of hepatic oxidative pathways to liver injury in MASLD-MASH. Using NMR spectroscopy, UHPLC-MS, and GC-MS, we performed stable-isotope tracing and formal flux modeling to quantify hepatic oxidative fluxes in humans across the spectrum of MASLD-MASH, and in mouse models of impaired ketogenesis. We found in humans with MASH, that liver injury correlated positively with ketogenesis and total fat oxidation, but not with turnover of the tricarboxylic acid cycle. The use of loss-of-function mouse models demonstrated that disruption of mitochondrial HMG-CoA synthase (HMGCS2), the rate-limiting step of ketogenesis, impairs overall hepatic fat oxidation and induces a MASLD-MASH-like phenotype. Disruption of mitochondrial β-hydroxybutyrate dehydrogenase (BDH1), the terminal step of ketogenesis, also impaired fat oxidation, but surprisingly did not exacerbate steatotic liver injury. Taken together, these findings suggest that quantifiable variations in overall hepatic fat oxidation may not be a primary determinant of MASLD-to-MASH progression, but rather, that maintenance of hepatic ketogenesis could serve a protective role through additional mechanisms that extend beyond quantified overall rates of fat oxidation.
Collapse
|
8
|
Everett LA, Lin Z, Friedman A, Tang VT, Myers G, Balbin-Cuesta G, King R, Zhu G, McGee B, Khoriaty R. LMAN1 serves as a cargo receptor for thrombopoietin. JCI Insight 2024; 9:e175704. [PMID: 39499573 DOI: 10.1172/jci.insight.175704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/30/2024] [Indexed: 11/07/2024] Open
Abstract
Thrombopoietin (TPO) is a plasma glycoprotein that binds its receptor on megakaryocytes (MKs) and MK progenitors, resulting in enhanced platelet production. The mechanism by which TPO is secreted from hepatocytes remains poorly understood. Lectin mannose-binding 1 (LMAN1) and multiple coagulation factor deficiency 2 (MCFD2) form a complex at the endoplasmic reticulum membrane, recruiting cargo proteins into COPII vesicles for secretion. In this study, we showed that LMAN1-deficient mice (with complete germline LMAN1 deficiency) exhibited mild thrombocytopenia, whereas the platelet count was entirely normal in mice with approximately 7% Lman1 expression. Surprisingly, mice deleted for Mcfd2 did not exhibit thrombocytopenia. Analysis of peripheral blood from LMAN1-deficient mice demonstrated normal platelet size and normal morphology of dense and alpha granules. LMAN1-deficient mice exhibited a trend toward reduced MK and MK progenitors in the bone marrow. We next showed that hepatocyte-specific but not hematopoietic Lman1 deletion results in thrombocytopenia, with plasma TPO level reduced in LMAN1-deficient mice, despite normal Tpo mRNA levels in LMAN1-deficient livers. TPO and LMAN1 interacted by coimmunoprecipitation in a heterologous cell line, and TPO accumulated intracellularly in LMAN1-deleted cells. Together, these studies verified the hepatocyte as the cell of origin for TPO production in vivo and were consistent with LMAN1 as the endoplasmic reticulum cargo receptor that mediates the efficient secretion of TPO. To our knowledge, TPO is the first example of an LMAN1-dependent cargo that is independent of MCFD2.
Collapse
Affiliation(s)
- Lesley A Everett
- Department of Ophthalmology and
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | | | | | - Vi T Tang
- Department of Molecular and Integrative Physiology
| | | | | | | | | | | | - Rami Khoriaty
- Department of Internal Medicine
- Department of Cell and Developmental Biology
- Cellular and Molecular Biology Program
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Monory K, de Azua IR, Lutz B. Genetic Tools in Rodents to Study Cannabinoid Functions. Curr Top Behav Neurosci 2024. [PMID: 39680319 DOI: 10.1007/7854_2024_550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
During the past 30 years, the endocannabinoid system (ECS) has emerged as a major signalling system in the mammalian brain regulating neurotransmission in numerous brain regions and in various cell populations. Endocannabinoids are able to regulate specific physiological functions and thus modify their behavioural manifestations and allostatic alterations of the ECS linked to different pathological conditions. As discussed in detail in other chapters of this book, endocannabinoids are involved in learning and memory, stress, and anxiety, feeding, energy balance, development, and ageing. Likewise, many CNS disorders (e.g. schizophrenia, epilepsy, substance use disorders, and multiple sclerosis) are associated with dysregulation of the ECS. Discerning the physiological functions of the synthetic and degrading enzymes of endocannabinoids and their receptors is a challenging task because of their distinct and complex expression patterns. Techniques of genetic engineering have been able to shed light on a number of complex ECS-related tasks during the past years. In this chapter, first, we take a critical look at the toolbox available to researchers who would like to investigate cannabinoid effects using genetic engineering techniques, then we comprehensively discuss genetically modified rodent models in various neuronal and non-neuronal cell populations, both within and outside the nervous system.
Collapse
Affiliation(s)
- Krisztina Monory
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
- Leibniz Institute for Resilience Research (LIR) gGmbH, Mainz, Germany.
| |
Collapse
|
10
|
Wang H, Nikain C, Fortounas KI, Amengual J, Tufanli O, La Forest M, Yu Y, Wang MC, Watts R, Lehner R, Qiu Y, Cai M, Kurland IJ, Goldberg IJ, Rajan S, Hussain MM, Brodsky JL, Fisher EA. FITM2 deficiency results in ER lipid accumulation, ER stress, and reduced apolipoprotein B lipidation and VLDL triglyceride secretion in vitro and in mouse liver. Mol Metab 2024; 90:102048. [PMID: 39426520 PMCID: PMC11574801 DOI: 10.1016/j.molmet.2024.102048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
OBJECTIVE Triglycerides (TGs) associate with apolipoprotein B100 (apoB100) to form very low density lipoproteins (VLDLs) in the liver. The repertoire of factors that facilitate this association is incompletely understood. FITM2, an integral endoplasmic reticulum (ER) protein, was originally discovered as a factor participating in cytosolic lipid droplet (LD) biogenesis in tissues that do not form VLDL. We hypothesized that in the liver, in addition to promoting cytosolic LD formation, FITM2 would also transfer TG from its site of synthesis in the ER membrane to nascent VLDL particles within the ER lumen. METHODS Experiments were conducted using a rat hepatic cell line (McArdle-RH7777, or McA cells), an established model of mammalian lipoprotein metabolism, and mice. FITM2 expression was reduced using siRNA in cells and by liver specific cre-recombinase mediated deletion of the Fitm2 gene in mice. Effects of FITM2 deficiency on VLDL assembly and secretion in vitro and in vivo were measured by multiple methods, including density gradient ultracentrifugation, chromatography, mass spectrometry, stimulated Raman scattering (SRS) microscopy, sub-cellular fractionation, immunoprecipitation, immunofluorescence, and electron microscopy. MAIN FINDINGS 1) FITM2-deficient hepatic cells in vitro and in vivo secrete TG-depleted VLDL particles, but the number of particles is unchanged compared to controls; 2) FITM2 deficiency in mice on a high fat diet (HFD) results in decreased plasma TG levels. The number of apoB100-containing lipoproteins remains similar, but shift from VLDL to low density lipoprotein (LDL) density; 3) Both in vitro and in vivo, when TG synthesis is stimulated and FITM2 is deficient, TG accumulates in the ER, and despite its availability this pool is unable to fully lipidate apoB100 particles; 4) FITM2 deficiency disrupts ER morphology and results in ER stress. CONCLUSION The results suggest that FITM2 contributes to VLDL lipidation, especially when newly synthesized hepatic TG is in abundance. In addition to its fundamental importance in VLDL assembly, the results also suggest that under dysmetabolic conditions, FITM2 may be an important factor in the partitioning of TG between cytosolic LDs and VLDL particles.
Collapse
Affiliation(s)
- Haizhen Wang
- Department of Medicine (Cardiology), the Cardiovascular Research Center, and the Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NY, USA; College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Cyrus Nikain
- Department of Medicine (Cardiology), the Cardiovascular Research Center, and the Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NY, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center and Weill Graduate School of Medical Sciences, Cornell University, NY, USA
| | - Konstantinos I Fortounas
- Department of Medicine (Cardiology), the Cardiovascular Research Center, and the Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NY, USA
| | - Jaume Amengual
- Department of Medicine (Cardiology), the Cardiovascular Research Center, and the Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NY, USA; Department of Food Sciences and Human Nutrition, University of Illinois, Urbana-Champaign, IL, USA
| | - Ozlem Tufanli
- Department of Medicine (Cardiology), the Cardiovascular Research Center, and the Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NY, USA
| | - Maxwell La Forest
- Department of Medicine (Cardiology), the Cardiovascular Research Center, and the Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NY, USA
| | - Yong Yu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Russell Watts
- Department of Pediatrics and Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Lehner
- Department of Pediatrics and Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Yunping Qiu
- Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, NY, USA
| | - Min Cai
- Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, NY, USA
| | - Irwin J Kurland
- Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, NY, USA
| | - Ira J Goldberg
- Department of Medicine (Endocrinology), NYU Grossman School of Medicine, NY, USA
| | - Sujith Rajan
- Department of Foundations of Medicine and Diabetes and Obesity Research Center, NYU Grossman Long Island School of Medicine, Mineola, NY, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine and Diabetes and Obesity Research Center, NYU Grossman Long Island School of Medicine, Mineola, NY, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences and the Center for Protein Conformational Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edward A Fisher
- Department of Medicine (Cardiology), the Cardiovascular Research Center, and the Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NY, USA.
| |
Collapse
|
11
|
Huang L, Liu P, Du Y, Bazan JF, Pan D, Chen Q, Lee A, Kola VSR, Wolfe SA, Wang YX. A brown fat-enriched adipokine, ASRA, is a leptin receptor antagonist that stimulates appetite. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.557454. [PMID: 37745491 PMCID: PMC10515849 DOI: 10.1101/2023.09.12.557454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The endocrine control of food intake remains incompletely understood, and whether the leptin receptor (LepR)-mediated anorexigenic pathway in the hypothalamus is negatively regulated by a humoral factor is unknown. Here, we identify an appetite-stimulating factor - ASRA - that represents a peripheral signal of energy deficit and orthosterically antagonizes LepR signaling. Asra encodes an 8 kD protein that is abundantly and selectively expressed in adipose tissue and to a lesser extent, in liver. ASRA associates with autophagy vesicles and its secretion is enhanced by energy deficiency. In vivo, fasting and cold stimulate Asra expression and increase its protein concentration in cerebrospinal fluid. Asra overexpression attenuates LepR signaling, leading to elevated blood glucose and development of severe hyperphagic obesity. Conversely, either adipose- or liver-specific Asra knockout mice display increased leptin sensitivity, improved glucose homeostasis, reduced food intake, resistance to high-fat diet-induced obesity, and blunted cold-evoked feeding response. Mechanistically, ASRA acts as a high affinity antagonist of LepR. AlphaFold2-multimer prediction and mutational studies suggest that a core segment of ASRA binds to the immunoglobin-like domain of LepR, similar to the 'site 3' recognition of the A-B loop of leptin. While administration of recombinant wild-type ASRA protein promotes food intake and increases blood glucose in a LepR signaling-dependent manner, point mutation within ASRA that disrupts LepR-binding results in a loss of these effects. Our studies reveal a previously unknown endocrine mechanism in appetite regulation and have important implications for our understanding of leptin resistance.
Collapse
Affiliation(s)
- Lei Huang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- These authors contributed equally to this work: Lei Huang, Pengpeng Liu, and Yong Du
| | - Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
- These authors contributed equally to this work: Lei Huang, Pengpeng Liu, and Yong Du
| | - Yong Du
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- These authors contributed equally to this work: Lei Huang, Pengpeng Liu, and Yong Du
| | - J Fernando Bazan
- Bioconsulting llc, Stillwater, MN, USA
- Unit of Structural Biology, VIB-UGent Center for Inflammation Research, Gent, Belgium
| | - Dongning Pan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Present address: Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Qingbo Chen
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alexandra Lee
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Vijaya Sudhakara Rao Kola
- Department of Medicine and Division of Hematology/Oncology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Yong-Xu Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
12
|
Mehl F, Sánchez-Archidona AR, Meitil I, Gerl M, Cruciani-Guglielmacci C, Wigger L, Le Stunff H, Meneyrol K, Lallement J, Denom J, Klose C, Simons K, Pagni M, Magnan C, Ibberson M, Thorens B. A multiorgan map of metabolic, signaling, and inflammatory pathways that coordinately control fasting glycemia in mice. iScience 2024; 27:111134. [PMID: 39507247 PMCID: PMC11539597 DOI: 10.1016/j.isci.2024.111134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/07/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
To identify the pathways that are coordinately regulated in pancreatic β cells, muscle, liver, and fat to control fasting glycemia we fed C57Bl/6, DBA/2, and Balb/c mice a regular chow or a high fat diet for 5, 13, and 33 days. Physiological, transcriptomic and lipidomic data were used in a data fusion approach to identify organ-specific pathways linked to fasting glycemia across all conditions investigated. In pancreatic islets, constant insulinemia despite higher glycemic levels was associated with reduced expression of hormone and neurotransmitter receptors, OXPHOS, cadherins, integrins, and gap junction mRNAs. Higher glycemia and insulin resistance were associated, in muscle, with decreased insulin signaling, glycolytic, Krebs' cycle, OXPHOS, and endo/exocytosis mRNAs; in hepatocytes, with reduced insulin signaling, branched chain amino acid catabolism and OXPHOS mRNAs; in adipose tissue, with increased innate immunity and lipid catabolism mRNAs. These data provide a resource for further studies of interorgan communication in glucose homeostasis.
Collapse
Affiliation(s)
- Florence Mehl
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
| | - Ana Rodríguez Sánchez-Archidona
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ida Meitil
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
| | | | | | - Leonore Wigger
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
| | - Hervé Le Stunff
- Université de Paris Cité, BFA, UMR 8251, CNRS, 75013 Paris, France
| | - Kelly Meneyrol
- Université de Paris Cité, BFA, UMR 8251, CNRS, 75013 Paris, France
| | | | - Jessica Denom
- Université de Paris Cité, BFA, UMR 8251, CNRS, 75013 Paris, France
| | | | | | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
| | | | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
| | - Bernard Thorens
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Salazar S, Delgadillo-Silva LF, Carapeto P, Dakessian K, Melhem R, Provencher-Girard A, Ostinelli G, Turgeon J, Kaci I, Migneault F, Huising MO, Hébert MJ, Rutter GA. Sex-dependent additive effects of dorzagliatin and incretin on insulin secretion in a novel mouse model of GCK-MODY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.09.622781. [PMID: 39605321 PMCID: PMC11601264 DOI: 10.1101/2024.11.09.622781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Glucokinase (GK) catalyses the key regulatory step in glucose-stimulated insulin secretion. Correspondingly, hetero- and homozygous mutations in human GCK cause maturity-onset diabetes of the young (GCK-MODY) and permanent neonatal diabetes (PNDM), respectively. To explore the possible utility of glucokinase activators (GKA) and of glucagon-like receptor-1 (GLP-1) agonists in these diseases, we have developed a novel hypomorphic Gck allele in mice encoding an aberrantly spliced mRNA deleted for exons 2 and 3. In islets from homozygous knock-in (GckKI/KI) mice, GK immunoreactivity was reduced by >85%, and glucose-stimulated insulin secretion eliminated. Homozygous GckKI/KI mice were smaller than wildtype littermates and displayed frank diabetes (fasting blood glucose >18 mmol/L; HbA1c ~12%), ketosis and nephropathy. Heterozygous GckKI/+ mice were glucose intolerant (HbA1c ~5.5%). Abnormal glucose-stimulated Ca2+ dynamics and beta cell-beta cell connectivity in GckKI/+ islets were completely reversed by the recently-developed GKA, dorzagliatin, which was largely inactive in homozygous GckKI/KI mouse islets. The GLP-1 receptor agonist exendin-4 improved glucose tolerance in male GckKI/+ mice, an action potentiated by dorzagliatin, in male but not female mice. Sex-dependent additive effects of these agents were also observed on insulin secretion in vitro. Combined treatment with GKA and incretin may thus be useful in GCK-MODY or GCK-PNDM.
Collapse
Affiliation(s)
| | | | | | | | - Rana Melhem
- CR-CHUM and University of Montreal, QC, Canada
| | | | | | | | - Imane Kaci
- CR-CHUM and University of Montreal, QC, Canada
| | | | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA
| | - Marie-Josée Hébert
- CR-CHUM and University of Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Guy A Rutter
- CR-CHUM and University of Montreal, QC, Canada
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, W12 ONN London U.K
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Lee Kong Chian School of Medicine, Nanyang Technological College, Singapore
| |
Collapse
|
14
|
Tanaka Y, Farkhondeh A, Yang W, Ueno H, Noda M, Hirokawa N. Kinesin-1 mediates proper ER folding of the Ca V1.2 channel and maintains mouse glucose homeostasis. EMBO Rep 2024; 25:4777-4802. [PMID: 39322740 PMCID: PMC11549326 DOI: 10.1038/s44319-024-00246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/08/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) from pancreatic beta cells is a principal mechanism for systemic glucose homeostasis, of which regulatory mechanisms are still unclear. Here we show that kinesin molecular motor KIF5B is essential for GSIS through maintaining the voltage-gated calcium channel CaV1.2 levels, by facilitating an Hsp70-to-Hsp90 chaperone exchange to pass through the quality control in the endoplasmic reticulum (ER). Phenotypic analyses of KIF5B conditional knockout (cKO) mouse beta cells revealed significant abolishment of glucose-stimulated calcium transients, which altered the behaviors of insulin granules via abnormally stabilized cortical F-actin. KIF5B and Hsp90 colocalize to microdroplets on ER sheets, where CaV1.2 but not Kir6.2 is accumulated. In the absence of KIF5B, CaV1.2 fails to be transferred from Hsp70 to Hsp90 via STIP1, and is likely degraded via the proteasomal pathway. KIF5B and Hsc70 overexpression increased CaV1.2 expression via enhancing its chaperone binding. Thus, ER sheets may serve as the place of KIF5B- and Hsp90-dependent chaperone exchange, which predominantly facilitates CaV1.2 production in beta cells and properly enterprises GSIS against diabetes.
Collapse
Affiliation(s)
- Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Atena Farkhondeh
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Wenxing Yang
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Hitoshi Ueno
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Mitsuhiko Noda
- Department of Diabetes, Metabolism and Endocrinology, Ichikawa Hospital, International University of Health and Welfare, Chiba, 272-0827, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan.
- Department of Advanced Morphological Imaging, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
15
|
Matsui M, Lynch LE, Distefano I, Galante A, Gade AR, Wang HG, Gómez-Banoy N, Towers P, Sinden DS, Wei EQ, Barnett AS, Johnson K, Lima R, Rubio-Navarro A, Li AK, Marx SO, McGraw TE, Thornton PS, Timothy KW, Lo JC, Pitt GS. Multiple beta cell-independent mechanisms drive hypoglycemia in Timothy syndrome. Nat Commun 2024; 15:8980. [PMID: 39420001 PMCID: PMC11487186 DOI: 10.1038/s41467-024-52885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
The canonical G406R mutation that increases Ca2+ influx through the CACNA1C-encoded CaV1.2 Ca2+ channel underlies the multisystem disorder Timothy syndrome (TS), characterized by life-threatening arrhythmias. Severe episodic hypoglycemia is among the poorly characterized non-cardiac TS pathologies. While hypothesized from increased Ca2+ influx in pancreatic beta cells and consequent hyperinsulinism, this hypoglycemia mechanism is undemonstrated because of limited clinical data and lack of animal models. We generated a CaV1.2 G406R knockin mouse model that recapitulates key TS features, including hypoglycemia. Unexpectedly, these mice do not show hyperactive beta cells or hyperinsulinism in the setting of normal intrinsic beta cell function, suggesting dysregulated glucose homeostasis. Patient data confirm the absence of hyperinsulinism. We discover multiple alternative contributors, including perturbed counterregulatory hormone responses with defects in glucagon secretion and abnormal hypothalamic control of glucose homeostasis. These data provide new insights into contributions of CaV1.2 channels and reveal integrated consequences of the mutant channels driving life-threatening events in TS.
Collapse
Affiliation(s)
- Maiko Matsui
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Lauren E Lynch
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Isabella Distefano
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Allison Galante
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Aravind R Gade
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Hong-Gang Wang
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Nicolas Gómez-Banoy
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
- Weill Center for Metabolic Health, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Patrick Towers
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Daniel S Sinden
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Eric Q Wei
- Department of Medicine, MSRB II, 2 Genome Ct, Duke University Medical Center, Durham, NC, 27710, USA
| | - Adam S Barnett
- Department of Medicine, MSRB II, 2 Genome Ct, Duke University Medical Center, Durham, NC, 27710, USA
| | - Kenneth Johnson
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Renan Lima
- Weill Center for Metabolic Health, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Alfonso Rubio-Navarro
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
- Weill Center for Metabolic Health, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Ang K Li
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
- Weill Center for Metabolic Health, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 622 W 168th St, PH-3 Center, New York, NY, USA
- Department of Pharmacology, Vagelos College of Physicians and Surgeons, Columbia University, 622 W 168th St, PH-3 Center, New York, NY, USA
| | - Timothy E McGraw
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, NY, 10065, USA
| | - Paul S Thornton
- Division of Endocrinology and Diabetes, Cook Children's Medical Center, 801 7th Ave, Fort Worth, TX, 76104, USA
| | - Katherine W Timothy
- Children's Hospital Boston, Harvard Medical School, 300 Longwood Ave., Boston, MA, 02115, USA
| | - James C Lo
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
- Weill Center for Metabolic Health, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
- Division of Cardiology, Department of Medicine, Weill Cornell Medicine, 413 E. 69th St, New York, NY, 10021, USA
| | - Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA.
| |
Collapse
|
16
|
Tong X, Yagan M, Hu R, Nevills S, Doss TD, Stein RW, Balamurugan AN, Gu G. Metabolic Stress Levels Influence the Ability of Myelin Transcription Factors to Regulate β-Cell Identity and Survival. Diabetes 2024; 73:1662-1672. [PMID: 39058602 PMCID: PMC11417441 DOI: 10.2337/db23-0528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
A hallmark of type 2 diabetes (T2D) is endocrine islet β-cell failure, which can occur via cell dysfunction, loss of identity, and/or death. How each is induced remains largely unknown. We used mouse β-cells deficient for myelin transcription factors (Myt TFs; including Myt1, -2, and -3) to address this question. We previously reported that inactivating all three Myt genes in pancreatic progenitor cells (MytPancΔ) caused β-cell failure and late-onset diabetes in mice. Their lower expression in human β-cells is correlated with β-cell dysfunction, and single nucleotide polymorphisms in MYT2 and MYT3 are associated with a higher risk of T2D. We now show that these Myt TF-deficient postnatal β-cells also dedifferentiate by reactivating several progenitor markers. Intriguingly, mosaic Myt TF inactivation in only a portion of islet β-cells did not result in overt diabetes, but this created a condition where Myt TF-deficient β-cells remained alive while activating several markers of Ppy-expressing islet cells. By transplanting MytPancΔ islets into the anterior eye chambers of immune-compromised mice, we directly show that glycemic and obesity-related conditions influence cell fate, with euglycemia inducing several Ppy+ cell markers and hyperglycemia and insulin resistance inducing additional cell death. These findings suggest that the observed β-cell defects in T2D depend not only on their inherent genetic/epigenetic defects but also on the metabolic load. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Mahircan Yagan
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Ruiying Hu
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Simone Nevills
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Teri D. Doss
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Roland W. Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Appakalai N. Balamurugan
- Center for Clinical and Translational Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH
| | - Guoqiang Gu
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
17
|
Bu HF, Subramanian S, Chou PM, Liu F, Sun L, Geng H, Wang X, Liao J, Du C, Hu J, Tan SC, Nathan N, Yang GY, Tan XD. A novel mouse model of hepatocyte-specific apoptosis-induced myeloid cell-dominant sterile liver injury and repair response. Am J Physiol Gastrointest Liver Physiol 2024; 327:G499-G512. [PMID: 39104322 PMCID: PMC11482258 DOI: 10.1152/ajpgi.00005.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
Apoptosis, inflammation, and wound healing are critical pathophysiological events associated with various liver diseases. Currently, there is a lack of in vivo approaches to study hepatocyte apoptosis-induced liver injury and repair. To address this critical knowledge gap, we developed a unique genetically modified mouse model, namely, 3-Transgene (Tg) with inducible Hepatocyte-Specific Apoptosis Phenotype (3xTg-iHAP) in this study. The 3xTg-iHAP mice possess three transgenes including Alb-Cre, Rosa26-rtTA, and tetO-Fasl on a B6 background. These mice are phenotypically normal, viable, and fertile. After subcutaneous administration of a single dose of doxycycline (5 mg/kg, Dox) to 3xTg-iHAP mice, we observed a complete histological spectrum of sterile liver wound-healing responses: asymptomatic hepatocyte apoptosis at 8 h, necrotic liver injury and sterile inflammation at 48 h, followed by hepatocyte mitosis and regeneration within 7 days. During the injury phase, the mice exhibited an increase in the biomarkers of alanine aminotransferase (ALT), chemokine (C-X-C motif) ligand 1 (CXCL1), and IL-6 in peripheral blood, as well as α-smooth muscle actin (α-SMA) protein in liver tissues. Conversely, the mice displayed a decrease in these markers in the recovery phase. Remarkably, this model shows that the sterile liver injury following elevated hepatocyte apoptosis is associated with an increase in myeloid cells in the liver. Within 7 days post-Dox administration, the liver of Dox-treated 3xTg-iHAP mice displays a normal histological structure, indicating the completion of wound healing. Together, we established a novel mouse model of injury and regeneration induced by hepatocyte apoptosis. This tool provides a robust in vivo platform for studying the pathophysiology of sterile liver inflammation, regeneration, and new therapeutic interventions for liver diseases.NEW & NOTEWORTHY Bu et al. present a triple-transgenic mouse model, namely, 3xTg-iHAP mice that are engineered to explore hepatocyte apoptosis-triggered sterile liver injury and regeneration. This model demonstrates a full spectrum of liver wound-healing responses from asymptomatic apoptosis to injury, myeloid cell-dominant sterile inflammation, and repair after induction of hepatocyte-specific apoptosis. The robust nature of this model makes it an invaluable in vivo tool for studying sterile liver inflammation, regeneration, and new therapeutic strategies.
Collapse
Affiliation(s)
- Heng-Fu Bu
- Department of Pediatrics, Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States
| | - Saravanan Subramanian
- Department of Pediatrics, Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States
| | - Pauline M Chou
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Fangyi Liu
- Department of Pediatrics, Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Leyu Sun
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Hua Geng
- Department of Pediatrics, Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States
| | - Xiao Wang
- Department of Pediatrics, Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States
| | - Jie Liao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Chao Du
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Joyce Hu
- Department of Pediatrics, Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Stephanie C Tan
- Department of Pediatrics, Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Nirmal Nathan
- Department of Pediatrics, Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Guang-Yu Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Xiao-Di Tan
- Department of Pediatrics, Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States
| |
Collapse
|
18
|
Hatano R, Zhang X, Lee E, Kaneda A, Tanaka T, Miki T. Mosaic ablation of pancreatic β cells induces de-differentiation and repetitive proliferation of residual β cells in adult mice. iScience 2024; 27:110656. [PMID: 39310764 PMCID: PMC11416228 DOI: 10.1016/j.isci.2024.110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/27/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Diabetes mellitus is induced by quantitative and qualitative decline in pancreatic β cells. Although its radical therapy has not yet been established, β cell regeneration is a promising option. We investigate here two mouse models of β cell regeneration induced after ∼80% reduction in β cell number: Cre/loxP-mediated β cell ablation and partial pancreatectomy. Cre/loxP-mediated, mosaic-pattern of β cell ablation by diphtheria toxin (DT) prompted rapid β cell replenishment through repeated proliferation of rare, highly proliferative DT receptor-negative β cells along with increase in Hes1, Neurog3, Ascl1, and Aldh1a3 (immature/dedifferentiated β cell markers) and decrease in Mafa (a mature β cell marker) in the islets. In contrast, pancreatectomy also prompted active proliferation, but with no change in these immature/dedifferentiated or mature β cell markers. Our findings demonstrate that the mode of β cell regeneration differs between Cre/loxP-mediated β cell ablation and surgical β cell reduction, and the former involves β cell dedifferentiation followed by active repetitive cell proliferation of a small population of β cells.
Collapse
Affiliation(s)
- Ryo Hatano
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Xilin Zhang
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Eunyoung Lee
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
- Research Institute of Disaster Medicine (RIDM), Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Tomoaki Tanaka
- Research Institute of Disaster Medicine (RIDM), Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
- Department of Molecular Diagnosis, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Takashi Miki
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
- Research Institute of Disaster Medicine (RIDM), Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| |
Collapse
|
19
|
Heikelä H, Mairinoja L, Ruohonen ST, Rytkönen KT, de Brot S, Laiho A, Koskinen S, Suomi T, Elo LL, Strauss L, Poutanen M. Disruption of HSD17B12 in mouse hepatocytes leads to reduced body weight and defect in the lipid droplet expansion associated with microvesicular steatosis. FASEB J 2024; 38:e70034. [PMID: 39248019 DOI: 10.1096/fj.202400333rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
The function of hydroxysteroid dehydrogenase 12 (HSD17B12) in lipid metabolism is poorly understood. To study this further, we created mice with hepatocyte-specific knockout of HSD17B12 (LiB12cKO). From 2 months on, these mice showed significant fat accumulation in their liver. As they aged, they also had a reduced whole-body fat percentage. Interestingly, the liver fat accumulation did not result in the typical formation of large lipid droplets (LD); instead, small droplets were more prevalent. Thus, LiB12KO liver did not show increased macrovesicular steatosis with the increasing fat content, while microvesicular steatosis was the predominant feature in the liver. This indicates a failure in the LD expansion. This was associated with liver damage, presumably due to lipotoxicity. Notably, the lipidomics data did not support an essential role of HSD17B12 in fatty acid (FA) elongation. However, we did observe a decrease in the quantity of specific lipid species that contain FAs with carbon chain lengths of 18 and 20 atoms, including oleic acid. Of these, phosphatidylcholine and phosphatidylethanolamine have been shown to play a key role in LD formation, and a limited amount of these lipids could be part of the mechanism leading to the dysfunction in LD expansion. The increase in the Cidec expression further supported the deficiency in LD expansion in the LiB12cKO liver. This protein is crucial for the fusion and growth of LDs, along with the downregulation of several members of the major urinary protein family of proteins, which have recently been shown to be altered during endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Hanna Heikelä
- Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Laura Mairinoja
- Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Suvi T Ruohonen
- Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kalle T Rytkönen
- Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Satu Koskinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Leena Strauss
- Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
20
|
Hemnes A, Fortune N, Simon K, Trenary IA, Shay S, Austin E, Young JD, Britain E, West J, Talati M. A multimodal approach identifies lactate as a central feature of right ventricular failure that is detectable in human plasma. Front Med (Lausanne) 2024; 11:1387195. [PMID: 39346939 PMCID: PMC11428650 DOI: 10.3389/fmed.2024.1387195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/23/2024] [Indexed: 10/01/2024] Open
Abstract
Background In PAH metabolic abnormalities in multiple pathways are well-recognized features of right ventricular dysfunction, however, prior work has focused mainly on the use of a single "omic" modality to describe a single deranged pathway. We integrated metabolomic and epigenomic data using transcriptomics in failing and non-failing RVs from a rodent model to provide novel mechanistic insight and translated these findings to accessible human specimens by correlation with plasma from PAH patients. Methods Study was conducted in a doxycycline-inducible BMPR2 mutant mouse model of RV failure. Plasma was collected from controls and PAH patients. Transcriptomic and metabolomic analyses were done on mouse RV tissue and human plasma. For mouse RV, we layered metabolomic and transcriptomic data for multiple metabolic pathways and compared our findings with metabolomic and transcriptomic data obtained for human plasma. We confirmed our key findings in cultured cardiomyocyte cells with BMPR2 mutation. Results In failing mouse RVs, (1) in the glycolysis pathway, glucose is converted to lactate via aerobic glycolysis, but may also be utilized for glycogen, fatty acid, and nucleic acid synthesis, (2) in the fatty acid pathway, FAs are accumulated in the cytoplasm because the transfer of FAs to mitochondria is reduced, however, the ß-oxidation pathway is likely to be functional. (3) the TCA cycle is altered at multiple checkpoints and accumulates citrate, and the glutaminolysis pathway is not activated. In PAH patients, plasma metabolic and transcriptomic data indicated that unlike in the failing BMPR2 mutant RV, expression of genes and metabolites measured for the glycolysis pathway, FA pathway, TCA cycle, and glutaminolysis pathway were increased. Lactate was the only metabolite that was increased both in RV and circulation. We confirmed using a stable isotope of lactate that cultured cardiomyocytes with mutant BMPR2 show a modest increase in endogenous lactate, suggesting a possibility of an increase in lactate production by cardiomyocytes in failing BMPR2 mutant RV. Conclusion In the failing RV with mutant BMPR2, lactate is produced by RV cardiomyocytes and may be secreted out, thereby increasing lactate in circulation. Lactate can potentially serve as a marker of RV dysfunction in PAH, which warrants investigation.
Collapse
Affiliation(s)
- Anna Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Niki Fortune
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Katie Simon
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Irina A Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Sheila Shay
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Eric Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Evan Britain
- Department of Cardiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James West
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Megha Talati
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
21
|
Abu Aqel Y, Alnesf A, Aigha II, Islam Z, Kolatkar PR, Teo A, Abdelalim EM. Glucokinase (GCK) in diabetes: from molecular mechanisms to disease pathogenesis. Cell Mol Biol Lett 2024; 29:120. [PMID: 39245718 PMCID: PMC11382428 DOI: 10.1186/s11658-024-00640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
Glucokinase (GCK), a key enzyme in glucose metabolism, plays a central role in glucose sensing and insulin secretion in pancreatic β-cells, as well as glycogen synthesis in the liver. Mutations in the GCK gene have been associated with various monogenic diabetes (MD) disorders, including permanent neonatal diabetes mellitus (PNDM) and maturity-onset diabetes of the young (MODY), highlighting its importance in maintaining glucose homeostasis. Additionally, GCK gain-of-function mutations lead to a rare congenital form of hyperinsulinism known as hyperinsulinemic hypoglycemia (HH), characterized by increased enzymatic activity and increased glucose sensitivity in pancreatic β-cells. This review offers a comprehensive exploration of the critical role played by the GCK gene in diabetes development, shedding light on its expression patterns, regulatory mechanisms, and diverse forms of associated monogenic disorders. Structural and mechanistic insights into GCK's involvement in glucose metabolism are discussed, emphasizing its significance in insulin secretion and glycogen synthesis. Animal models have provided valuable insights into the physiological consequences of GCK mutations, although challenges remain in accurately recapitulating human disease phenotypes. In addition, the potential of human pluripotent stem cell (hPSC) technology in overcoming current model limitations is discussed, offering a promising avenue for studying GCK-related diseases at the molecular level. Ultimately, a deeper understanding of GCK's multifaceted role in glucose metabolism and its dysregulation in disease states holds implications for developing targeted therapeutic interventions for diabetes and related disorders.
Collapse
Affiliation(s)
- Yasmin Abu Aqel
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Aldana Alnesf
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
| | - Idil I Aigha
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Zeyaul Islam
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Prasanna R Kolatkar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Adrian Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, Singapore
- Department of Biochemistry and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme (PM TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Essam M Abdelalim
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
| |
Collapse
|
22
|
Abdallah F, Bazzi S, Akle C, Bahr GM, Echtay KS. Reduction of hyperglycemia in STZ-induced diabetic mice by prophylactic treatment with heat-killed Mycobacterium aurum: possible effects on glucose utilization, mitochondrial uncoupling, and oxidative stress in liver and skeletal muscle. Front Endocrinol (Lausanne) 2024; 15:1427058. [PMID: 39377070 PMCID: PMC11456689 DOI: 10.3389/fendo.2024.1427058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024] Open
Abstract
Background In addition to conventional treatment and modifications in physical activity and diet, alternative strategies have been investigated to manage, prevent, or delay diabetes in humans. In this regard, one strategy has relied on the immunomodulatory properties of mycobacteria, whereby Bacillus Calmette-Guerin, an attenuated live strain of Mycobacterium bovis, has been shown to improve glycemic control in patients with diabetes and to alleviate hyperglycemia in selected murine models of diabetes. A novel heat-killed (HK) whole-cell preparation of Mycobacterium aurum (M. aurum) is currently under development as a potential food supplement; nevertheless, its potential bioactivity remains largely unknown. Thus, the present study investigated the potential prophylactic anti-diabetic effects of HK M. aurum in streptozotocin (STZ)-induced diabetic mice. Methods Mice were divided into three groups: the STZ-induced diabetic group was injected with a single intraperitoneal high dose of STZ, the HK M. aurum-treated diabetic group was prophylactically treated with three doses of HK M. aurum 6 weeks before STZ injection, and the control non-diabetic group was given three intradermal injections of borate-buffered saline and an intraperitoneal injection of citrate buffer. Liver lactate dehydrogenase (LDH), uncoupling protein 2 (UCP2), and glucose transporter 2 (GLUT2) and skeletal muscle LDH, UCP3, and GLUT4 protein expression levels in different mouse groups were determined by Western blot. Results Our results indicated that HK M. aurum did not cause any significant changes in glycemic levels of normal non-diabetic mice. Prophylactic administration of three doses of HK M. aurum to diabetic mice resulted in a significant reduction in their blood glucose levels when compared to those in control diabetic mice. Prophylactic treatment of diabetic mice with HK M. aurum significantly restored their disturbed protein expression levels of liver UCP2 and LDH as well as of skeletal muscle UCP3. On the other hand, prophylactic treatment of diabetic mice with HK M. aurum had no significant effect on their liver GLUT2 and skeletal muscle GLUT4 and LDH protein expression levels. Conclusions Our findings provide the first evidence that HK M. aurum possesses a hyperglycemia-lowering capacity and might support its future use as a food supplement for the amelioration of diabetes.
Collapse
Affiliation(s)
- Farid Abdallah
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University
of Balamand, Al-Koura, Lebanon
| | - Samer Bazzi
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University
of Balamand, Al-Koura, Lebanon
| | - Charles Akle
- Immune Boost Clinic Limited, Saint Michael, Barbados
| | - Georges M. Bahr
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University
of Balamand, Al-Koura, Lebanon
| | - Karim S. Echtay
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University
of Balamand, Al-Koura, Lebanon
| |
Collapse
|
23
|
Oikawa K, Ohno SI, Ono K, Hirao K, Murakami A, Harada Y, Kumagai K, Sudo K, Takanashi M, Ishikawa A, Mineo S, Fujita K, Umezu T, Watanabe N, Murakami Y, Ogawa S, Schultz KA, Kuroda M. Liver-specific DICER1 syndrome model mice develop cystic liver tumors with defective primary cilia. J Pathol 2024; 264:17-29. [PMID: 38922876 DOI: 10.1002/path.6320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
DICER1 syndrome is a tumor predisposition syndrome caused by familial genetic mutations in DICER1. Pathogenic variants of DICER1 have been discovered in many rare cancers, including cystic liver tumors. However, the molecular mechanisms underlying liver lesions induced by these variants remain unclear. In the present study, we sought to gain a better understanding of the pathogenesis of these variants by generating a mouse model of liver-specific DICER1 syndrome. The mouse model developed bile duct hyperplasia with fibrosis, similar to congenital hepatic fibrosis, as well as cystic liver tumors resembling those in Caroli's syndrome, intrahepatic cholangiocarcinoma, and hepatocellular carcinoma. Interestingly, the mouse model of DICER1 syndrome showed abnormal formation of primary cilia in the bile duct epithelium, which is a known cause of bile duct hyperplasia and cyst formation. These results indicated that DICER1 mutations contribute to cystic liver tumors by inducing defective primary cilia. The mouse model generated in this study will be useful for elucidating the potential mechanisms of tumorigenesis induced by DICER1 variants and for obtaining a comprehensive understanding of DICER1 syndrome. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Keiki Oikawa
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Shin-Ichiro Ohno
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Kana Ono
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Kaito Hirao
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Ayano Murakami
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Yuichirou Harada
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Katsuyoshi Kumagai
- Department of Pre-clinical Research Center, Tokyo Medical University, Tokyo, Japan
| | - Katsuko Sudo
- Department of Pre-clinical Research Center, Tokyo Medical University, Tokyo, Japan
| | | | - Akio Ishikawa
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Shouichirou Mineo
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Koji Fujita
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Tomohiro Umezu
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Noriko Watanabe
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Yoshiki Murakami
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Shinichiro Ogawa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Kris Ann Schultz
- Cancer and Blood Disorders, Children's Minnesota, Minneapolis, MN, USA
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
24
|
Miao B, Ge L, He C, Wang X, Wu J, Li X, Chen K, Wan J, Xing S, Ren L, Shi Z, Liu S, Hu Y, Chen J, Yu Y, Feng L, Flores NM, Liang Z, Xu X, Wang R, Zhou J, Fan J, Xiang B, Li E, Mao Y, Cheng J, Zhao K, Mazur PK, Cai J, Lan F. SMYD5 is a ribosomal methyltransferase that catalyzes RPL40 lysine methylation to enhance translation output and promote hepatocellular carcinoma. Cell Res 2024; 34:648-660. [PMID: 39103523 PMCID: PMC11369092 DOI: 10.1038/s41422-024-01013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
While lysine methylation is well-known for regulating gene expression transcriptionally, its implications in translation have been largely uncharted. Trimethylation at lysine 22 (K22me3) on RPL40, a core ribosomal protein located in the GTPase activation center, was first reported 27 years ago. Yet, its methyltransferase and role in translation remain unexplored. Here, we report that SMYD5 has robust in vitro activity toward RPL40 K22 and primarily catalyzes RPL40 K22me3 in cells. The loss of SMYD5 and RPL40 K22me3 leads to reduced translation output and disturbed elongation as evidenced by increased ribosome collisions. SMYD5 and RPL40 K22me3 are upregulated in hepatocellular carcinoma (HCC) and negatively correlated with patient prognosis. Depleting SMYD5 renders HCC cells hypersensitive to mTOR inhibition in both 2D and 3D cultures. Additionally, the loss of SMYD5 markedly inhibits HCC development and growth in both genetically engineered mouse and patient-derived xenograft (PDX) models, with the inhibitory effect in the PDX model further enhanced by concurrent mTOR suppression. Our findings reveal a novel role of the SMYD5 and RPL40 K22me3 axis in translation elongation and highlight the therapeutic potential of targeting SMYD5 in HCC, particularly with concurrent mTOR inhibition. This work also conceptually broadens the understanding of lysine methylation, extending its significance from transcriptional regulation to translational control.
Collapse
Affiliation(s)
- Bisi Miao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ling Ge
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenxi He
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinghao Wang
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Jibo Wu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiang Li
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Kun Chen
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinkai Wan
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shenghui Xing
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingnan Ren
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhennan Shi
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shengnan Liu
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Yajun Hu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiajia Chen
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanyan Yu
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Lijian Feng
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Natasha M Flores
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhihui Liang
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyi Xu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruoxin Wang
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Fan
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Xiang
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - En Li
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Yuanhui Mao
- Department of Neurology of The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingdong Cheng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Kehao Zhao
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Pawel K Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jiabin Cai
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Ruiz-Blázquez P, Fernández-Fernández M, Pistorio V, Martinez-Sanchez C, Costanzo M, Iruzubieta P, Zhuravleva E, Cacho-Pujol J, Ariño S, Del Castillo-Cruz A, Núñez S, Andersen JB, Ruoppolo M, Crespo J, García-Ruiz C, Pavone LM, Reinheckel T, Sancho-Bru P, Coll M, Fernández-Checa JC, Moles A. Cathepsin D is essential for the degradomic shift of macrophages required to resolve liver fibrosis. Mol Metab 2024; 87:101989. [PMID: 39019115 PMCID: PMC11327474 DOI: 10.1016/j.molmet.2024.101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Fibrosis contributes to 45% of deaths in industrialized nations and is characterized by an abnormal accumulation of extracellular matrix (ECM). There are no specific anti-fibrotic treatments for liver fibrosis, and previous unsuccessful attempts at drug development have focused on preventing ECM deposition. Because liver fibrosis is largely acknowledged to be reversible, regulating fibrosis resolution could offer novel therapeutical options. However, little is known about the mechanisms controlling ECM remodeling during resolution. Changes in proteolytic activity are essential for ECM homeostasis and macrophages are an important source of proteases. Herein, in this study we evaluate the role of macrophage-derived cathepsin D (CtsD) during liver fibrosis. METHODS CtsD expression and associated pathways were characterized in single-cell RNA sequencing and transcriptomic datasets in human cirrhosis. Liver fibrosis progression, reversion and functional characterization were assessed in novel myeloid-CtsD and hepatocyte-CtsD knock-out mice. RESULTS Analysis of single-cell RNA sequencing datasets demonstrated CtsD was expressed in macrophages and hepatocytes in human cirrhosis. Liver fibrosis progression, reversion and functional characterization were assessed in novel myeloid-CtsD (CtsDΔMyel) and hepatocyte-CtsD knock-out mice. CtsD deletion in macrophages, but not in hepatocytes, resulted in enhanced liver fibrosis. Both inflammatory and matrisome proteomic signatures were enriched in fibrotic CtsDΔMyel livers. Besides, CtsDΔMyel liver macrophages displayed functional, phenotypical and secretomic changes, which resulted in a degradomic phenotypical shift, responsible for the defective proteolytic processing of collagen I in vitro and impaired collagen remodeling during fibrosis resolution in vivo. Finally, CtsD-expressing mononuclear phagocytes of cirrhotic human livers were enriched in lysosomal and ECM degradative signaling pathways. CONCLUSIONS Our work describes for the first-time CtsD-driven lysosomal activity as a central hub for restorative macrophage function during fibrosis resolution and opens new avenues to explore their degradome landscape to inform drug development.
Collapse
Affiliation(s)
- Paloma Ruiz-Blázquez
- Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain; CiberEHD, Spain; University of Barcelona, Barcelona, Spain; IDIBAPS, Barcelona, Spain
| | - María Fernández-Fernández
- Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain; CiberEHD, Spain; University of Barcelona, Barcelona, Spain; IDIBAPS, Barcelona, Spain
| | - Valeria Pistorio
- Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | | | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.ar.l., Naples, Italy
| | - Paula Iruzubieta
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Research Institute Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Ekaterina Zhuravleva
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; LEO Foundation Skin Immunology Research Center (SIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Júlia Cacho-Pujol
- Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain; University of Barcelona, Barcelona, Spain; IDIBAPS, Barcelona, Spain
| | - Silvia Ariño
- CiberEHD, Spain; University of Barcelona, Barcelona, Spain; IDIBAPS, Barcelona, Spain
| | | | | | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.ar.l., Naples, Italy
| | - Javier Crespo
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Research Institute Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Carmen García-Ruiz
- Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain; CiberEHD, Spain; IDIBAPS, Barcelona, Spain; USC Research Center for ALPD, Los Angeles, United States; Associated Unit IIBB-IMIM, Barcelona, Spain
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany; German Cancer Consortium (DKTK), DKFZ Partner Site Freiburg, Germany; Center for Biological Signaling Studies BIOSS, University of Freiburg, Germany
| | - Pau Sancho-Bru
- CiberEHD, Spain; University of Barcelona, Barcelona, Spain; IDIBAPS, Barcelona, Spain
| | - Mar Coll
- CiberEHD, Spain; University of Barcelona, Barcelona, Spain; IDIBAPS, Barcelona, Spain; Medicine Department, Faculty of Medicine, University of Barcelona, Spain
| | - José C Fernández-Checa
- Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain; CiberEHD, Spain; IDIBAPS, Barcelona, Spain; USC Research Center for ALPD, Los Angeles, United States; Associated Unit IIBB-IMIM, Barcelona, Spain
| | - Anna Moles
- Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain; CiberEHD, Spain; IDIBAPS, Barcelona, Spain; Associated Unit IIBB-IMIM, Barcelona, Spain.
| |
Collapse
|
26
|
Borrelli C, Roberts M, Eletto D, Hussherr MD, Fazilaty H, Valenta T, Lafzi A, Kretz JA, Guido Vinzoni E, Karakatsani A, Adivarahan S, Mannhart A, Kimura S, Meijs A, Baccouche Mhamedi F, Acar IE, Handler K, Ficht X, Platt RJ, Piscuoglio S, Moor AE. In vivo interaction screening reveals liver-derived constraints to metastasis. Nature 2024; 632:411-418. [PMID: 39048831 PMCID: PMC11306111 DOI: 10.1038/s41586-024-07715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
It is estimated that only 0.02% of disseminated tumour cells are able to seed overt metastases1. While this suggests the presence of environmental constraints to metastatic seeding, the landscape of host factors controlling this process remains largely unclear. Here, combining transposon technology2 and fluorescence niche labelling3, we developed an in vivo CRISPR activation screen to systematically investigate the interactions between hepatocytes and metastatic cells. We identify plexin B2 as a critical host-derived regulator of liver colonization in colorectal and pancreatic cancer and melanoma syngeneic mouse models. We dissect a mechanism through which plexin B2 interacts with class IV semaphorins on tumour cells, leading to KLF4 upregulation and thereby promoting the acquisition of epithelial traits. Our results highlight the essential role of signals from the liver parenchyma for the seeding of disseminated tumour cells before the establishment of a growth-promoting niche. Our findings further suggest that epithelialization is required for the adaptation of CRC metastases to their new tissue environment. Blocking the plexin-B2-semaphorin axis abolishes metastatic colonization of the liver and therefore represents a therapeutic strategy for the prevention of hepatic metastases. Finally, our screening approach, which evaluates host-derived extrinsic signals rather than tumour-intrinsic factors for their ability to promote metastatic seeding, is broadly applicable and lays a framework for the screening of environmental constraints to metastasis in other organs and cancer types.
Collapse
Affiliation(s)
- Costanza Borrelli
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Morgan Roberts
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Davide Eletto
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Atefeh Lafzi
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jonas A Kretz
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Elena Guido Vinzoni
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | | | - Ardian Mannhart
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Shoichiro Kimura
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ab Meijs
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Ilhan E Acar
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kristina Handler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Xenia Ficht
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Salvatore Piscuoglio
- IRCCS Humanitas Research Hospital, Milan, Italy
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
27
|
Queathem ED, Moazzami Z, Stagg DB, Nelson AB, Fulghum K, Hayir A, Seay A, Gillingham JR, d'Avignon DA, Han X, Ruan HB, Crawford PA, Puchalska P. Ketogenesis supports hepatic polyunsaturated fatty acid homeostasis via fatty acid elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602593. [PMID: 39026753 PMCID: PMC11257565 DOI: 10.1101/2024.07.09.602593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Therapeutic interventions targeting hepatic lipid metabolism in metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (MASH) remain elusive. Using mass spectrometry-based stable isotope tracing and shotgun lipidomics, we established a novel link between ketogenesis and MASLD pathophysiology. Our findings show that mouse liver and primary hepatocytes consume ketone bodies to support fatty acid (FA) biosynthesis via both de novo lipogenesis (DNL) and FA elongation. Analysis of 13 C-labeled FAs in hepatocytes lacking mitochondrial D-β-hydroxybutyrate dehydrogenase (BDH1) revealed a partial reliance on mitochondrial conversion of D-βOHB to acetoacetate (AcAc) for cytoplasmic DNL contribution, whereas FA elongation from ketone bodies was fully dependent on cytosolic acetoacetyl-CoA synthetase (AACS). Ketone bodies were essential for polyunsaturated FA (PUFA) homeostasis in hepatocytes, as loss of AACS diminished both free and esterified PUFAs. Ketogenic insufficiency depleted liver PUFAs and increased triacylglycerols, mimicking human MASLD, suggesting that ketogenesis supports PUFA homeostasis, and may mitigate MASLD-MASH progression in humans.
Collapse
|
28
|
Mahmoodi M, Mirzarazi Dahagi E, Nabavi M, Penalva YCM, Gosaine A, Murshed M, Couldwell S, Munter LM, Kaartinen MT. Circulating plasma fibronectin affects tissue insulin sensitivity, adipocyte differentiation, and transcriptional landscape of adipose tissue in mice. Physiol Rep 2024; 12:e16152. [PMID: 39054559 PMCID: PMC11272447 DOI: 10.14814/phy2.16152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Plasma fibronectin (pFN) is a hepatocyte-derived circulating extracellular matrix protein that affects cell morphology, adipogenesis, and insulin signaling of adipocytes in vitro. In this study, we show pFN accrual to adipose tissue and its contribution to tissue homeostasis in mice. Hepatocyte-specific conditional Fn1 knockout mice (Fn1-/-ALB) show a decrease in adipose tissue FN levels and enhanced insulin sensitivity of subcutaneous (inguinal), visceral (epididymal) adipose tissue on a normal diet. Diet-induced obesity model of the Fn1-/-ALB mouse showed normal weight gain and whole-body fat mass, and normal adipose tissue depot volumes and unaltered circulating leptin and adiponectin levels. However, Fn1-/-ALB adipose depots showed significant alterations in adipocyte size and gene expression profiles. The inguinal adipose tissue on a normal diet, which had alterations in fatty acid metabolism and thermogenesis suggesting browning. The presence of increased beige adipocyte markers Ucp1 and Prdm16 supported this. In the inguinal fat, the obesogenic diet resulted in downregulation of the browning markers and changes in gene expression reflecting development, morphogenesis, and mesenchymal stem cell maintenance. Epididymal adipose tissue showed alterations in developmental and stem cell gene expression on both diets. The data suggests a role for pFN in adipose tissue insulin sensitivity and cell profiles.
Collapse
Affiliation(s)
- Mahdokht Mahmoodi
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
| | - Elahe Mirzarazi Dahagi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Mir‐Hamed Nabavi
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
| | - Ylauna C. M. Penalva
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Centre de Recherche en Biologie Structurale (CRBS)McGill UniversityMontrealQuebecCanada
| | - Amrita Gosaine
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Monzur Murshed
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
- Shriners Hospital for ChildrenMontrealQuebecCanada
| | - Sandrine Couldwell
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
| | - Lisa M. Munter
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Centre de Recherche en Biologie Structurale (CRBS)McGill UniversityMontrealQuebecCanada
| | - Mari T. Kaartinen
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Department of Medicine (Division of Experimental Medicine), Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
29
|
Berggren KA, Sinha S, Lin AE, Schwoerer MP, Maya S, Biswas A, Cafiero TR, Liu Y, Gertje HP, Suzuki S, Berneshawi AR, Carver S, Heller B, Hassan N, Ali Q, Beard D, Wang D, Cullen JM, Kleiner RE, Crossland NA, Schwartz RE, Ploss A. Liver-specific Mettl14 deletion induces nuclear heterotypia and dysregulates RNA export machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599413. [PMID: 38948765 PMCID: PMC11212911 DOI: 10.1101/2024.06.17.599413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Modification of RNA with N6-methyladenosine (m6A) has gained attention in recent years as a general mechanism of gene regulation. In the liver, m6A, along with its associated machinery, has been studied as a potential biomarker of disease and cancer, with impacts on metabolism, cell cycle regulation, and pro-cancer state signaling. However these observational data have yet to be causally examined in vivo. For example, neither perturbation of the key m6A writers Mettl3 and Mettl14, nor the m6A readers Ythdf1 and Ythdf2 have been thoroughly mechanistically characterized in vivo as they have been in vitro. To understand the functions of these machineries, we developed mouse models and found that deleting Mettl14 led to progressive liver injury characterized by nuclear heterotypia, with changes in mRNA splicing, processing and export leading to increases in mRNA surveillance and recycling.
Collapse
Affiliation(s)
- Keith A Berggren
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Saloni Sinha
- Department of Medicine, Weill Cornell Medicine, NY, USA
| | - Aaron E Lin
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Stephanie Maya
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Abhishek Biswas
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Research Computing, Office of Information Technology, Princeton University, Princeton, NJ, 08544, USA
| | - Thomas R Cafiero
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yongzhen Liu
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Hans P Gertje
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
| | - Saori Suzuki
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Sebastian Carver
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Brigitte Heller
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Nora Hassan
- Department of Medicine, Weill Cornell Medicine, NY, USA
| | - Qazi Ali
- Department of Medicine, Weill Cornell Medicine, NY, USA
| | - Daniel Beard
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Danyang Wang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - John M Cullen
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Nicholas A Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Robert E Schwartz
- Department of Medicine, Weill Cornell Medicine, NY, USA
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, NY, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
30
|
Miyazaki N, Takami S, Uemura M, Oiki H, Takahashi M, Kawashima H, Kanamori Y, Yoshioka T, Kasahara M, Nakazawa A, Higashi M, Yanagida A, Hiramatsu R, Kanai-Azuma M, Fujishiro J, Kanai Y. Impact of gallbladder hypoplasia on hilar hepatic ducts in biliary atresia. COMMUNICATIONS MEDICINE 2024; 4:111. [PMID: 38862768 PMCID: PMC11166647 DOI: 10.1038/s43856-024-00544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Biliary atresia (BA) is an intractable disease of unknown cause that develops in the neonatal period. It causes jaundice and liver damage due to the destruction of extrahepatic biliary tracts,. We have found that heterozygous knockout mice of the SRY related HMG-box 17 (Sox17) gene, a master regulator of stem/progenitor cells in the gallbladder wall, exhibit a condition like BA. However, the precise contribution of hypoplastic gallbladder wall to the pathogenesis of hepatobiliary disease in Sox17 heterozygous embryos and human BA remains unclear. METHODS We employed cholangiography and histological analyses in the mouse BA model. Furthermore, we conducted a retrospective analysis of human BA. RESULTS We show that gallbladder wall hypoplasia causes abnormal multiple connections between the hilar hepatic bile ducts and the gallbladder-cystic duct in Sox17 heterozygous embryos. These multiple hilar extrahepatic ducts fuse with the developing intrahepatic duct walls and pull them out of the liver parenchyma, resulting in abnormal intrahepatic duct network and severe cholestasis. In human BA with gallbladder wall hypoplasia (i.e., abnormally reduced expression of SOX17), we also identify a strong association between reduced gallbladder width (a morphometric parameter indicating gallbladder wall hypoplasia) and severe liver injury at the time of the Kasai surgery, like the Sox17-mutant mouse model. CONCLUSIONS Together with the close correlation between gallbladder wall hypoplasia and liver damage in both mouse and human cases, these findings provide an insight into the critical role of SOX17-positive gallbladder walls in establishing functional bile duct networks in the hepatic hilus of neonates.
Collapse
Affiliation(s)
- Nanae Miyazaki
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shohei Takami
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Pediatric Surgery, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mami Uemura
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Center for Experimental Animals, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hironobu Oiki
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Pediatric Surgery, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Surgery, Saitama Children's Medical Center, Saitama, Saitama, Japan
| | - Masataka Takahashi
- Division of Surgery, Department of Surgical Specialties, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Hiroshi Kawashima
- Department of Surgery, Saitama Children's Medical Center, Saitama, Saitama, Japan
| | - Yutaka Kanamori
- Division of Surgery, Department of Surgical Specialties, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Atsuko Nakazawa
- Department of Clinical Research, Saitama Children's Medical Center, Saitama, Saitama, Japan
| | - Mayumi Higashi
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto Kamikyo-ku, Kyoto, Japan
| | - Ayaka Yanagida
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryuji Hiramatsu
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masami Kanai-Azuma
- Center for Experimental Animals, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Jun Fujishiro
- Department of Pediatric Surgery, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
31
|
Šestan M, Mikašinović S, Benić A, Wueest S, Dimitropoulos C, Mladenić K, Krapić M, Hiršl L, Glantzspiegel Y, Rasteiro A, Aliseychik M, Cekinović Grbeša Đ, Turk Wensveen T, Babić M, Gat-Viks I, Veiga-Fernandes H, Konrad D, Wensveen FM, Polić B. An IFNγ-dependent immune-endocrine circuit lowers blood glucose to potentiate the innate antiviral immune response. Nat Immunol 2024; 25:981-993. [PMID: 38811816 DOI: 10.1038/s41590-024-01848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Viral infection makes us feel sick as the immune system alters systemic metabolism to better fight the pathogen. The extent of these changes is relative to the severity of disease. Whether blood glucose is subject to infection-induced modulation is mostly unknown. Here we show that strong, nonlethal infection restricts systemic glucose availability, which promotes the antiviral type I interferon (IFN-I) response. Following viral infection, we find that IFNγ produced by γδ T cells stimulates pancreatic β cells to increase glucose-induced insulin release. Subsequently, hyperinsulinemia lessens hepatic glucose output. Glucose restriction enhances IFN-I production by curtailing lactate-mediated inhibition of IRF3 and NF-κB signaling. Induced hyperglycemia constrained IFN-I production and increased mortality upon infection. Our findings identify glucose restriction as a physiological mechanism to bring the body into a heightened state of responsiveness to viral pathogens. This immune-endocrine circuit is disrupted in hyperglycemia, possibly explaining why patients with diabetes are more susceptible to viral infection.
Collapse
Affiliation(s)
- Marko Šestan
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Sanja Mikašinović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ante Benić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology and Children's Research Centre, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | | | - Karlo Mladenić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Mia Krapić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Lea Hiršl
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Yossef Glantzspiegel
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ana Rasteiro
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Maria Aliseychik
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Tamara Turk Wensveen
- Center for Diabetes, Endocrinology and Cardiometabolism, Thallassotherapia, Opatija, Croatia
- Department of Internal Medicine, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marina Babić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Innate Immunity, German Rheumatism Research Centre, Leibniz Institute, Berlin, Germany
| | - Irit Gat-Viks
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology and Children's Research Centre, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
32
|
Alexander WB, Wang W, Hill MA, O'Dell MR, Ruffolo LI, Guo B, Jackson KM, Ullman N, Friedland SC, McCall MN, Patel A, Figueroa-Guilliani N, Georger M, Belt BA, Whitney-Miller CL, Linehan DC, Murphy PJ, Hezel AF. Smad4 restricts injury-provoked biliary proliferation and carcinogenesis. Dis Model Mech 2024; 17:dmm050358. [PMID: 38415925 PMCID: PMC10924230 DOI: 10.1242/dmm.050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 02/29/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a deadly and heterogeneous type of cancer characterized by a spectrum of epidemiologic associations as well as genetic and epigenetic alterations. We seek to understand how these features inter-relate in the earliest phase of cancer development and through the course of disease progression. For this, we studied murine models of liver injury integrating the most commonly occurring gene mutations of CCA - including Kras, Tp53, Arid1a and Smad4 - as well as murine hepatobiliary cancer models and derived primary cell lines based on these mutations. Among commonly mutated genes in CCA, we found that Smad4 functions uniquely to restrict reactive cholangiocyte expansion to liver injury through restraint of the proliferative response. Inactivation of Smad4 accelerates carcinogenesis, provoking pre-neoplastic biliary lesions and CCA development in an injury setting. Expression analyses of Smad4-perturbed reactive cholangiocytes and CCA lines demonstrated shared enriched pathways, including cell-cycle regulation, MYC signaling and oxidative phosphorylation, suggesting that Smad4 may act via these mechanisms to regulate cholangiocyte proliferation and progression to CCA. Overall, we showed that TGFβ/SMAD4 signaling serves as a critical barrier restraining cholangiocyte expansion and malignant transformation in states of biliary injury.
Collapse
Affiliation(s)
- William B. Alexander
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wenjia Wang
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Margaret A. Hill
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael R. O'Dell
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Luis I. Ruffolo
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Bing Guo
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Katherine M. Jackson
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nicholas Ullman
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Scott C. Friedland
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Matthew N. McCall
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ankit Patel
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | - Mary Georger
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Brian A. Belt
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Christa L. Whitney-Miller
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David C. Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Patrick J. Murphy
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Aram F. Hezel
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
33
|
Yao S, Prates K, Freydenzon A, Assante G, McRae AF, Morris MJ, Youngson NA. Liver-specific deletion of de novo DNA methyltransferases protects against glucose intolerance in high-fat diet-fed male mice. FASEB J 2024; 38:e23690. [PMID: 38795327 DOI: 10.1096/fj.202301546rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/27/2024]
Abstract
Alterations to gene transcription and DNA methylation are a feature of many liver diseases including fatty liver disease and liver cancer. However, it is unclear whether the DNA methylation changes are a cause or a consequence of the transcriptional changes. It is even possible that the methylation changes are not required for the transcriptional changes. If DNA methylation is just a minor player in, or a consequence of liver transcriptional change, then future studies in this area should focus on other systems such as histone tail modifications. To interrogate the importance of de novo DNA methylation, we generated mice that are homozygous mutants for both Dnmt3a and Dnmt3b in post-natal liver. These mice are viable and fertile with normal sized livers. Males, but not females, showed increased adipose depots, yet paradoxically, improved glucose tolerance on both control diet and high-fat diets (HFD). Comparison of the transcriptome and methylome with RNA sequencing and whole-genome bisulfite sequencing in adult hepatocytes revealed that widespread loss of methylation in CpG-rich regions in the mutant did not induce loss of homeostatic transcriptional regulation. Similarly, extensive transcriptional changes induced by HFD did not require de novo DNA methylation. The improved metabolic phenotype of the Dnmt3a/3b mutant mice may be mediated through the dysregulation of a subset of glucose and fat metabolism genes which increase both glucose uptake and lipid export by the liver. However, further work is needed to confirm this.
Collapse
Affiliation(s)
- S Yao
- Department of Pharmacology, School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - K Prates
- Department of Pharmacology, School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, Brazil
| | - A Freydenzon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - G Assante
- Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - A F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - M J Morris
- Department of Pharmacology, School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - N A Youngson
- Department of Pharmacology, School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
- Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
34
|
Ren G, Ku WL, Ge G, Hoffman JA, Kang JY, Tang Q, Cui K, He Y, Guan Y, Gao B, Liu C, Archer TK, Zhao K. Acute depletion of BRG1 reveals its primary function as an activator of transcription. Nat Commun 2024; 15:4561. [PMID: 38811575 PMCID: PMC11137027 DOI: 10.1038/s41467-024-48911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
The mammalian SWI/SNF-like BAF complexes play critical roles during animal development and pathological conditions. Previous gene deletion studies and characterization of human gene mutations implicate that the complexes both repress and activate a large number of genes. However, the direct function of the complexes in cells remains largely unclear due to the relatively long-term nature of gene deletion or natural mutation. Here we generate a mouse line by knocking in the auxin-inducible degron tag (AID) to the Smarca4 gene, which encodes BRG1, the essential ATPase subunit of the BAF complexes. We show that the tagged BRG1 can be efficiently depleted by osTIR1 expression and auxin treatment for 6 to 10 h in CD4 + T cells, hepatocytes, and fibroblasts isolated from the knock-in mice. The acute depletion of BRG1 leads to decreases in nascent RNAs and RNA polymerase II binding at a large number of genes, which are positively correlated with the loss of BRG1. Further, these changes are correlated with diminished accessibility at DNase I Hypersensitive Sites (DHSs) and p300 binding. The acute BRG1 depletion results in three major patterns of nucleosome shifts leading to narrower nucleosome spacing surrounding transcription factor motifs and at enhancers and transcription start sites (TSSs), which are correlated with loss of BRG1, decreased chromatin accessibility and decreased nascent RNAs. Acute depletion of BRG1 severely compromises the Trichostatin A (TSA) -induced histone acetylation, suggesting a substantial interplay between the chromatin remodeling activity of BRG1 and histone acetylation. Our data suggest BRG1 mainly plays a direct positive role in chromatin accessibility, RNAPII binding, and nascent RNA production by regulating nucleosome positioning and facilitating transcription factor binding to their target sites.
Collapse
Affiliation(s)
- Gang Ren
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
- College of Animal Science and Technology, Northwest Agriculture and Forest University, Yangling, Xianyang, Shaanxi, China
| | - Wai Lim Ku
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Guangzhe Ge
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Jackson A Hoffman
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, North Carolina, USA
| | - Jee Youn Kang
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Qingsong Tang
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Kairong Cui
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Trevor K Archer
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, North Carolina, USA
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
35
|
Smith DM, Liu BY, Wolfgang MJ. Rab30 facilitates lipid homeostasis during fasting. Nat Commun 2024; 15:4469. [PMID: 38796472 PMCID: PMC11127972 DOI: 10.1038/s41467-024-48959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
To facilitate inter-tissue communication and the exchange of proteins, lipoproteins, and metabolites with the circulation, hepatocytes have an intricate and efficient intracellular trafficking system regulated by small Rab GTPases. Here, we show that Rab30 is induced in the mouse liver by fasting, which is amplified in liver-specific carnitine palmitoyltransferase 2 knockout mice (Cpt2L-/-) lacking the ability to oxidize fatty acids, in a Pparα-dependent manner. Live-cell super-resolution imaging and in vivo proximity labeling demonstrates that Rab30-marked vesicles are highly dynamic and interact with proteins throughout the secretory pathway. Rab30 whole-body, liver-specific, and Rab30; Cpt2 liver-specific double knockout (DKO) mice are viable with intact Golgi ultrastructure, although Rab30 deficiency in DKO mice suppresses the serum dyslipidemia observed in Cpt2L-/- mice. Corresponding with decreased serum triglyceride and cholesterol levels, DKO mice exhibit decreased circulating but not hepatic ApoA4 protein, indicative of a trafficking defect. Together, these data suggest a role for Rab30 in the selective sorting of lipoproteins to influence hepatocyte and circulating triglyceride levels, particularly during times of excessive lipid burden.
Collapse
Affiliation(s)
- Danielle M Smith
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Brian Y Liu
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michael J Wolfgang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
36
|
Miura S, Horisawa K, Iwamori T, Tsujino S, Inoue K, Karasawa S, Yamamoto J, Ohkawa Y, Sekiya S, Suzuki A. Hepatocytes differentiate into intestinal epithelial cells through a hybrid epithelial/mesenchymal cell state in culture. Nat Commun 2024; 15:3940. [PMID: 38750036 PMCID: PMC11096382 DOI: 10.1038/s41467-024-47869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/14/2024] [Indexed: 05/18/2024] Open
Abstract
Hepatocytes play important roles in the liver, but in culture, they immediately lose function and dedifferentiate into progenitor-like cells. Although this unique feature is well-known, the dynamics and mechanisms of hepatocyte dedifferentiation and the differentiation potential of dedifferentiated hepatocytes (dediHeps) require further investigation. Here, we employ a culture system specifically established for hepatic progenitor cells to study hepatocyte dedifferentiation. We found that hepatocytes dedifferentiate with a hybrid epithelial/mesenchymal phenotype, which is required for the induction and maintenance of dediHeps, and exhibit Vimentin-dependent propagation, upon inhibition of the Hippo signaling pathway. The dediHeps re-differentiate into mature hepatocytes by forming aggregates, enabling reconstitution of hepatic tissues in vivo. Moreover, dediHeps have an unexpected differentiation potential into intestinal epithelial cells that can form organoids in three-dimensional culture and reconstitute colonic epithelia after transplantation. This remarkable plasticity will be useful in the study and treatment of intestinal metaplasia and related diseases in the liver.
Collapse
Affiliation(s)
- Shizuka Miura
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kenichi Horisawa
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tokuko Iwamori
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Satoshi Tsujino
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kazuya Inoue
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Satsuki Karasawa
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Junpei Yamamoto
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Sayaka Sekiya
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
37
|
Zhu X, Yang Y, Feng D, Wang O, Chen J, Wang J, Wang B, Liu Y, Edenfield BH, Haddock AN, Wang Y, Patel T, Bi Y, Ji B. Albumin promoter-driven FlpO expression induces efficient genetic recombination in mouse liver. Am J Physiol Gastrointest Liver Physiol 2024; 326:G495-G503. [PMID: 38469630 PMCID: PMC11376971 DOI: 10.1152/ajpgi.00263.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
Tissue-specific gene manipulations are widely used in genetically engineered mouse models. A single recombinase system, such as the one using Alb-Cre, has been commonly used for liver-specific genetic manipulations. However, most diseases are complex, involving multiple genetic changes and various cell types. A dual recombinase system is required for conditionally modifying different genes sequentially in the same cell or inducing genetic changes in different cell types within the same organism. A FlpO cDNA was inserted between the last exon and 3'-UTR of the mouse albumin gene in a bacterial artificial chromosome (BAC-Alb-FlpO). The founders were crossed with various reporter mice to examine the efficiency of recombination. Liver cancer tumorigenesis was investigated by crossing the FlpO mice with FSF-KrasG12D mice and p53frt mice (KPF mice). BAC-Alb-FlpO mice exhibited highly efficient recombination capability in both hepatocytes and intrahepatic cholangiocytes. No recombination was observed in the duodenum and pancreatic cells. BAC-Alb-FlpO-mediated liver-specific expression of mutant KrasG12D and conditional deletion of p53 gene caused the development of liver cancer. Remarkably, liver cancer in these KPF mice manifested a distinctive mixed hepatocellular carcinoma and cholangiocarcinoma phenotype. A highly efficient and liver-specific BAC-Alb-FlpO mouse model was developed. In combination with other Cre lines, different genes can be manipulated sequentially in the same cell, or distinct genetic changes can be induced in different cell types of the same organism.NEW & NOTEWORTHY A liver-specific Alb-FlpO mouse line was generated. By coupling it with other existing CreERT or Cre lines, the dual recombinase approach can enable sequential gene modifications within the same cell or across various cell types in an organism for liver research through temporal and spatial gene manipulations.
Collapse
Affiliation(s)
- Xiaohui Zhu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Yan Yang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Dongfeng Feng
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Oliver Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Jiaxiang Chen
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Jiale Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Bin Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Yang Liu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Brandy H Edenfield
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Ashley N Haddock
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Ying Wang
- Departments of Cardiovascular Diseases and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, United States
| | - Yan Bi
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, United States
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| |
Collapse
|
38
|
Maruyama T, Matsui S, Kobayashi R, Horii T, Oguri Y, Tsuzuki S, Horie T, Ono K, Hatada I, Sasaki T. Medium-chain triglyceride-specific appetite is regulated by the β-oxidation of medium-chain fatty acids in the liver. Am J Physiol Endocrinol Metab 2024; 326:E735-E746. [PMID: 38597830 DOI: 10.1152/ajpendo.00031.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/11/2024]
Abstract
Most studies on fat appetite have focused on long-chain triglycerides (LCTs) due to their obesogenic properties. Medium-chain triglycerides (MCTs), conversely, exhibit antiobesogenic effects; however, the regulation of MCT intake remains elusive. Here, we demonstrate that mice can distinguish between MCTs and LCTs, and the specific appetite for MCTs is governed by hepatic β-oxidation. We generated liver-specific medium-chain acyl-CoA dehydrogenase (MCAD)-deficient (MCADL-/-) mice and analyzed their preference for MCT and LCT solutions using glyceryl trioctanoate (C8-TG), glyceryl tridecanoate (C10-TG), corn oil, and lard oil in two-bottle choice tests conducted over 8 days. In addition, we used lick microstructure analyses to evaluate the palatability and appetite for MCT and LCT solutions. Finally, we measured the expression levels of genes associated with fat ingestion (Galanin, Qrfp, and Nmu) in the hypothalamus 2 h after oral gavage of fat. Compared with control mice, MCADL-/- mice exhibited a significantly reduced preference for MCT solutions, with no alteration in the preference for LCTs. Lick analysis revealed that MCADL-/- mice displayed a significantly decreased appetite for MCT solutions only while the palatability of both MCT and LCT solutions remained unaffected. Hypothalamic Galanin expression in control mice was elevated by oral gavage of C8-TG but not by LCTs, and this response was abrogated in MCADL-/- mice. In summary, our data suggest that hepatic β-oxidation is required for MCT-specific appetite but not for LCT-specific appetite. The induction of hypothalamic galanin upon MCT ingestion, dependent on hepatic β-oxidation, could be involved in the regulation of MCT-specific appetite.NEW & NOTEWORTHY Whether and how medium-chain triglyceride (MCT) intake is regulated remains unknown. Here, we showed that mice can discriminate between MCTs and LCTs. Hepatic β-oxidation participates in MCT-specific appetite, and hypothalamic galanin may be one of the factors that regulate MCT intake. Because of the antiobesity effects of MCTs, studying MCT-specific appetite may help combat obesity by promoting the intake of MCTs instead of LCTs.
Collapse
Affiliation(s)
- Tsugunori Maruyama
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Sho Matsui
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryosuke Kobayashi
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yasuo Oguri
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Satoshi Tsuzuki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takahiro Horie
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research, Maebashi, Japan
| | - Tsutomu Sasaki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
39
|
Wakabayashi N, Yagishita Y, Joshi T, Kensler TW. Dual Deletion of Keap1 and Rbpjκ Genes in Liver Leads to Hepatomegaly and Hypercholesterolemia. Int J Mol Sci 2024; 25:4712. [PMID: 38731931 PMCID: PMC11083431 DOI: 10.3390/ijms25094712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The hepatic deletion of Rbpjκ (RbpjF/F::AlbCre) in the mouse leads to exhibition of the Alagille syndrome phenotype during early postnatal liver development with hyperlipidemia and cholestasis due to attenuated disruption of NOTCH signaling. Given the roles of NRF2 signaling in the regulation of lipid metabolism and bile ductal formation, it was anticipated that these symptoms could be alleviated by enhancing NRF2 signaling in the RbpjF/F::AlbCre mouse by hepatic deletion of Keap1 in compound Keap1F/F::RbpjF/F::AlbCre mice. Unexpectedly, these mice developed higher hepatic and plasma cholesterol levels with more severe cholestatic liver damage during the pre-weaning period than in the RbpjF/F::AlbCre mice. In addition, hypercholesterolemia and hepatic damage were sustained throughout the growth period unlike in the RbpjF/F::AlbCre mouse. These enhanced abnormalities in lipid metabolism appear to be due to NRF2-dependent changes in gene expression related to cholesterol synthetic and subsequent bile acid production pathways. Notably, the hepatic expression of Cyp1A7 and Abcb11 genes involved in bile acid homeostasis was significantly reduced in Keap1F/F::RbpjF/F::AlbCre compared to RbpjF/F::AlbCre mice. The accumulation of liver cholesterol and the weakened capacity for bile excretion during the 3 pre-weaning weeks in the Keap1F/F::RbpjF/F::AlbCre mice may aggravate hepatocellular damage level caused by both excessive cholesterol and residual bile acid toxicity in hepatocytes. These results indicate that a tuned balance of NOTCH and NRF2 signaling is of biological importance for early liver development after birth.
Collapse
Affiliation(s)
- Nobunao Wakabayashi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (N.W.); (T.J.)
| | - Yoko Yagishita
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (N.W.); (T.J.)
- Division of Endocrinology, Columbia University, New York, NY 10032, USA
| | - Tanvi Joshi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (N.W.); (T.J.)
| | - Thomas W. Kensler
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (N.W.); (T.J.)
| |
Collapse
|
40
|
Huang S, Li Y, Wang B, Zhou Z, Li Y, Shen L, Cong J, Han L, Xiang X, Xia J, He D, Zhao Z, Zhou Y, Li Q, Dai G, Shen H, Lin T, Wu A, Jia J, Xiao D, Li J, Zhao W, Lin X. Hepatocyte-specific METTL3 ablation by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), resulted in acute liver failure (ALF) and postnatal lethality. Aging (Albany NY) 2024; 16:7217-7248. [PMID: 38656880 PMCID: PMC11087113 DOI: 10.18632/aging.205753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/20/2024] [Indexed: 04/26/2024]
Abstract
AIM In 2019, to examine the functions of METTL3 in liver and underlying mechanisms, we generated mice with hepatocyte-specific METTL3 homozygous knockout (METTL3Δhep) by simultaneously crossing METTL3fl/fl mice with Alb-iCre mice (GPT) or Alb-Cre mice (JAX), respectively. In this study, we explored the potential reasons why hepatocyte-specific METTL3 homozygous disruption by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), resulted in acute liver failure (ALF) and then postnatal lethality. MAIN METHODS Mice with hepatocyte-specific METTL3 knockout were generated by simultaneously crossing METTL3fl/fl mice with Alb-iCre mice (GPT; Strain No. T003814) purchased from the GemPharmatech Co., Ltd., (Nanjing, China) or with Alb-Cre mice (JAX; Strain No. 003574) obtained from The Jackson Laboratory, followed by combined-phenotype analysis. The publicly available RNA-sequencing data deposited in the NCBI Gene Expression Omnibus (GEO) database under the accession No.: GSE198512 (postnatal lethality), GSE197800 (postnatal survival) and GSE176113 (postnatal survival) were mined to explore the potential reasons why hepatocyte-specific METTL3 homozygous deletion by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), leads to ALF and then postnatal lethality. KEY FINDINGS Firstly, we observed that hepatocyte-specific METTL3 homozygous deficiency by Alb-iCre mice (GPT) or by Alb-Cre mice (JAX) caused liver injury, abnormal lipid accumulation and apoptosis. Secondly, we are surprised to find that hepatocyte-specific METTL3 homozygous deletion by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), led to ALF and then postnatal lethality. Our findings clearly demonstrated that METTL3Δhep mice (GPT), which are about to die, exhibited the severe destruction of liver histological structure, suggesting that METTL3Δhep mice (GPT) nearly lose normal liver function, which subsequently contributes to ALF, followed by postnatal lethality. Finally, we unexpectedly found that as the compensatory growth responses of hepatocytes to liver injury induced by METTL3Δhep (GPT), the proliferation of METTL3Δhep hepatocytes (GPT), unlike METTL3Δhep hepatocytes (JAX), was not evidenced by the significant increase of Ki67-positive hepatocytes, not accompanied by upregulation of cell-cycle-related genes. Moreover, GO analysis revealed that upregulated genes in METTL3Δhep livers (GPT), unlike METTL3Δhep livers (JAX), are not functionally enriched in terms associated with cell cycle, cell division, mitosis, microtubule cytoskeleton organization, spindle organization, chromatin segregation and organization, and nuclear division, consistent with the loss of compensatory proliferation of METTL3Δhep hepatocytes (GPT) observed in vivo. Thus, obviously, the loss of the compensatory growth capacity of METTL3Δhep hepatocytes (GPT) in response to liver injury might contribute to, at least partially, ALF and subsequently postnatal lethality of METTL3Δhep mice (GPT). SIGNIFICANCE These findings from this study and other labs provide strong evidence that these phenotypes (i.e., ALF and postnatal lethality) of METTL3Δhep mice (GPT) might be not the real functions of METTL3, and closely related with Alb-iCre mice (GPT), suggesting that we should remind researchers to use Alb-iCre mice (GPT) with caution to knockout gene in hepatocytes in vivo.
Collapse
Affiliation(s)
- Shihao Huang
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yingchun Li
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510315, China
| | - Bingjie Wang
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhihao Zhou
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yonglong Li
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Lingjun Shen
- Department of Tuberculosis, Yunnan Clinical Medical Center for Infectious Diseases, The Third People's Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Jinge Cong
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Liuxin Han
- Yunnan Clinical Medical Center for Infectious Diseases, The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Xudong Xiang
- Department of Thoracic Surgery, Peking University Cancer Hospital Yunnan (Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University), Kunming 650118, China
| | - Jiawei Xia
- Yunnan Clinical Medical Center for Infectious Diseases, The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Danhua He
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhanlin Zhao
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital Yunnan (Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University), Kunming 650118, China
| | - Ying Zhou
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiwen Li
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guanqi Dai
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanzhang Shen
- Yunnan Clinical Medical Center for Infectious Diseases, The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Taoyan Lin
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Aibing Wu
- Central People’s Hospital of Zhanjiang, Zhanjiang 524000, China
| | - Junshuang Jia
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dong Xiao
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Radiotherapy Center, the First People’s Hospital of Chenzhou, Xiangnan University, Chenzhou 423000, China
| | - Wentao Zhao
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital Yunnan (Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University), Kunming 650118, China
| | - Xiaolin Lin
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510315, China
| |
Collapse
|
41
|
Varadharajan V, Ramachandiran I, Massey WJ, Jain R, Banerjee R, Horak AJ, McMullen MR, Huang E, Bellar A, Lorkowski SW, Gulshan K, Helsley RN, James I, Pathak V, Dasarathy J, Welch N, Dasarathy S, Streem D, Reizes O, Allende DS, Smith JD, Simcox J, Nagy LE, Brown JM. Membrane-bound O-acyltransferase 7 (MBOAT7) shapes lysosomal lipid homeostasis and function to control alcohol-associated liver injury. eLife 2024; 12:RP92243. [PMID: 38648183 PMCID: PMC11034944 DOI: 10.7554/elife.92243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Recent genome-wide association studies (GWAS) have identified a link between single-nucleotide polymorphisms (SNPs) near the MBOAT7 gene and advanced liver diseases. Specifically, the common MBOAT7 variant (rs641738) associated with reduced MBOAT7 expression is implicated in non-alcoholic fatty liver disease (NAFLD), alcohol-associated liver disease (ALD), and liver fibrosis. However, the precise mechanism underlying MBOAT7-driven liver disease progression remains elusive. Previously, we identified MBOAT7-driven acylation of lysophosphatidylinositol lipids as key mechanism suppressing the progression of NAFLD (Gwag et al., 2019). Here, we show that MBOAT7 loss of function promotes ALD via reorganization of lysosomal lipid homeostasis. Circulating levels of MBOAT7 metabolic products are significantly reduced in heavy drinkers compared to healthy controls. Hepatocyte- (Mboat7-HSKO), but not myeloid-specific (Mboat7-MSKO), deletion of Mboat7 exacerbates ethanol-induced liver injury. Lipidomic profiling reveals a reorganization of the hepatic lipidome in Mboat7-HSKO mice, characterized by increased endosomal/lysosomal lipids. Ethanol-exposed Mboat7-HSKO mice exhibit dysregulated autophagic flux and lysosomal biogenesis, associated with impaired transcription factor EB-mediated lysosomal biogenesis and autophagosome accumulation. This study provides mechanistic insights into how MBOAT7 influences ALD progression through dysregulation of lysosomal biogenesis and autophagic flux, highlighting hepatocyte-specific MBOAT7 loss as a key driver of ethanol-induced liver injury.
Collapse
Affiliation(s)
- Venkateshwari Varadharajan
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Iyappan Ramachandiran
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - William J Massey
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Rakhee Banerjee
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Anthony J Horak
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Megan R McMullen
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Emily Huang
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Annette Bellar
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Shuhui W Lorkowski
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
| | - Kailash Gulshan
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State UniversityClevelandUnited States
| | - Robert N Helsley
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Department of Pharmacology & Nutritional Sciences, Saha Cardiovascular Research Center, University of Kentucky College of MedicineLexingtonUnited States
| | - Isabella James
- Department of Biochemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Vai Pathak
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Jaividhya Dasarathy
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Family Medicine, Metro Health Medical Center, Case Western Reserve UniversityClevelandUnited States
| | - Nicole Welch
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Srinivasan Dasarathy
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - David Streem
- Lutheran Hospital, Cleveland ClinicClevelandUnited States
| | - Ofer Reizes
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Daniela S Allende
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Anatomical Pathology, Cleveland ClinicClevelandUnited States
| | - Jonathan D Smith
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Laura E Nagy
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - J Mark Brown
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| |
Collapse
|
42
|
Breitenecker K, Heiden D, Demmer T, Weber G, Primorac AM, Hedrich V, Ortmayr G, Gruenberger T, Starlinger P, Herndler-Brandstetter D, Barozzi I, Mikulits W. Tumor-Extrinsic Axl Expression Shapes an Inflammatory Microenvironment Independent of Tumor Cell Promoting Axl Signaling in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:4202. [PMID: 38673795 PMCID: PMC11050718 DOI: 10.3390/ijms25084202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The activation of the receptor tyrosine kinase Axl by Gas6 is a major driver of tumorigenesis. Despite recent insights, tumor cell-intrinsic and -extrinsic Axl functions are poorly understood in hepatocellular carcinoma (HCC). Thus, we analyzed the cell-specific aspects of Axl in liver cancer cells and in the tumor microenvironment. We show that tumor-intrinsic Axl expression decreased the survival of mice and elevated the number of pulmonary metastases in a model of resection-based tumor recurrence. Axl expression increased the invasion of hepatospheres by the activation of Akt signaling and a partial epithelial-to-mesenchymal transition (EMT). However, the liver tumor burden of Axl+/+ mice induced by diethylnitrosamine plus carbon tetrachloride was reduced compared to systemic Axl-/- mice. Tumors of Axl+/+ mice were highly infiltrated with cytotoxic cells, suggesting a key immune-modulatory role of Axl. Interestingly, hepatocyte-specific Axl deficiency did not alter T cell infiltration, indicating that these changes are independent of tumor cell-intrinsic Axl. In this context, we observed an upregulation of multiple chemokines in Axl+/+ compared to Axl-/- tumors, correlating with HCC patient data. In line with this, Axl is associated with a cytotoxic immune signature in HCC patients. Together these data show that tumor-intrinsic Axl expression fosters progression, while tumor-extrinsic Axl expression shapes an inflammatory microenvironment.
Collapse
Affiliation(s)
- Kristina Breitenecker
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Denise Heiden
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Tobias Demmer
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Gerhard Weber
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Ana-Maria Primorac
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Viola Hedrich
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Gregor Ortmayr
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Thomas Gruenberger
- Department of Surgery, HPB Center, Viennese Health Network, Clinic Favoriten and Sigmund Freud Private University, 1100 Vienna, Austria
| | - Patrick Starlinger
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Centre of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dietmar Herndler-Brandstetter
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Iros Barozzi
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Wolfgang Mikulits
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| |
Collapse
|
43
|
Wakasa K, Tamura R, Osaka S, Takei H, Asai A, Nittono H, Kusuhara H, Hayashi H. Rapid in vivo evaluation system for cholestasis-related genes in mice with humanized bile acid profiles. Hepatol Commun 2024; 8:e0382. [PMID: 38517206 PMCID: PMC10962888 DOI: 10.1097/hc9.0000000000000382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/05/2023] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Pediatric cholestatic liver diseases (Ped-CLD) comprise many ultrarare disorders with a genetic basis. Pharmacologic therapy for severe cases of Ped-CLD has not been established. Species differences in bile acid (BA) metabolism between humans and rodents contribute to the lack of phenocopy of patients with Ped-CLD in rodents and hinder the development of therapeutic strategies. We aimed to establish an efficient in vivo system to understand BA-related pathogenesis, such as Ped-CLD. METHODS We generated mice that express spCas9 specifically in the liver (L-Cas9Tg/Tg [liver-specific Cas9Tg/Tg] mice) and designed recombinant adeno-associated virus serotype 8 encoding small-guide RNA (AAV8 sgRNA) targeting Abcc2, Abcb11, and Cyp2c70. In humans, ABCC2 and ABCB11 deficiencies cause constitutional hyperbilirubinemia and most severe Ped-CLD, respectively. Cyp2c70 encodes an enzyme responsible for the rodent-specific BA profile. Six-week-old L-Cas9Tg/Tg mice were injected with this AAV8 sgRNA and subjected to biochemical and histological analysis. RESULTS Fourteen days after the injection with AAV8 sgRNA targeting Abcc2, L-Cas9Tg/Tg mice exhibited jaundice and phenocopied patients with ABCC2 deficiency. L-Cas9Tg/Tg mice injected with AAV8 sgRNA targeting Abcb11 showed hepatomegaly and cholestasis without histological evidence of liver injury. Compared to Abcb11 alone, simultaneous injection of AAV8 sgRNA for Abcb11 and Cyp2c70 humanized the BA profile and caused higher transaminase levels and parenchymal necrosis, resembling phenotypes with ABCB11 deficiency. CONCLUSIONS This study provides proof of concept for efficient in vivo assessment of cholestasis-related genes in humanized bile acid profiles. Our platform offers a more time- and cost-effective alternative to conventional genetically engineered mice, increasing our understanding of BA-related pathogenesis such as Ped-CLD and expanding the potential for translational research.
Collapse
Affiliation(s)
- Kihiro Wakasa
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Ryutaro Tamura
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Shuhei Osaka
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Tokyo, Japan
| | - Akihiro Asai
- Department of Gastroenterology, and Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Hisamitsu Hayashi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Plata-Gómez AB, de Prado-Rivas L, Sanz A, Deleyto-Seldas N, García F, de la Calle Arregui C, Silva C, Caleiras E, Graña-Castro O, Piñeiro-Yáñez E, Krebs J, Leiva-Vega L, Muñoz J, Jain A, Sabio G, Efeyan A. Hepatic nutrient and hormone signaling to mTORC1 instructs the postnatal metabolic zonation of the liver. Nat Commun 2024; 15:1878. [PMID: 38499523 PMCID: PMC10948770 DOI: 10.1038/s41467-024-46032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/09/2024] [Indexed: 03/20/2024] Open
Abstract
The metabolic functions of the liver are spatially organized in a phenomenon called zonation, linked to the differential exposure of portal and central hepatocytes to nutrient-rich blood. The mTORC1 signaling pathway controls cellular metabolism in response to nutrients and insulin fluctuations. Here we show that simultaneous genetic activation of nutrient and hormone signaling to mTORC1 in hepatocytes results in impaired establishment of postnatal metabolic and zonal identity of hepatocytes. Mutant hepatocytes fail to upregulate postnatally the expression of Frizzled receptors 1 and 8, and show reduced Wnt/β-catenin activation. This defect, alongside diminished paracrine Wnt2 ligand expression by endothelial cells, underlies impaired postnatal maturation. Impaired zonation is recapitulated in a model of constant supply of nutrients by parenteral nutrition to piglets. Our work shows the role of hepatocyte sensing of fluctuations in nutrients and hormones for triggering a latent metabolic zonation program.
Collapse
Affiliation(s)
- Ana Belén Plata-Gómez
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, Madrid, 28029, Spain
| | - Lucía de Prado-Rivas
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, Madrid, 28029, Spain
| | - Alba Sanz
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, Madrid, 28029, Spain
| | - Nerea Deleyto-Seldas
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, Madrid, 28029, Spain
| | - Fernando García
- Proteomics Unit. Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Celia de la Calle Arregui
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, Madrid, 28029, Spain
| | - Camila Silva
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, Madrid, 28029, Spain
| | - Eduardo Caleiras
- Histopathology Unit. Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit. Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Department of Basic Medical Sciences, Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), School of Medicine, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Elena Piñeiro-Yáñez
- Bioinformatics Unit. Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Joseph Krebs
- Department of Pediatrics, Saint Louis University, Saint Louis, MO, USA
| | - Luis Leiva-Vega
- Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Javier Muñoz
- Proteomics Unit. Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Cell Signalling and Clinical Proteomics Group, Biocruces Bizkaia Health Research Institute & Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Ajay Jain
- Department of Pediatrics, Saint Louis University, Saint Louis, MO, USA
| | - Guadalupe Sabio
- Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, Madrid, 28029, Spain.
| |
Collapse
|
45
|
Zhang M, Shi X, Tang M, Yin W, Luo C, Xie X. PRDX2 deficiency increases MCD-induced nonalcoholic steatohepatitis in female mice. Biochem Biophys Res Commun 2024; 701:149589. [PMID: 38309152 DOI: 10.1016/j.bbrc.2024.149589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
OBJECTIVE To evaluate the role of PRDX2 in nonalcoholic steatohepatitis (NASH). METHODS NASH was induced in wild-type (WT) mice and liver-specific PRDX2 knockout (PRDX2 LKO) mice that were fed a methionine-choline deficient diet (MCD) for 5 weeks. Assessments of PRDX2 LKO's impact on the pathogenesis of NASH include histological analyses, quantitative PCR (q-PCR), western blotting (WB), and RNA sequencing (RNA-Seq). RESULTS PRDX2 LKO mice exhibited a significant increase in hepatic lipid accumulation and inflammation compared to WT mice after MCD feeding. PRDX2 KO markedly elevated circulating levels of aspartate aminotransferase (AST) and the pro-inflammatory signaling pathways within the liver. There was a notable increase in the activities of signal transducer and activator of transcription 1 (STAT1) and nuclear factor kappa B (NF-кB). We also found that PRDX2 KO significantly increased the extent of lipid peroxidation in the liver, most likely owing to the impaired peroxidase activity of PRDX2. Of interest, these findings were observed only in MCD-fed female mice, suggesting the sexual dimorphism of PRDX2 KO in MCD-induced NASH. CONCLUSION PRDX2 deficiency increases MCD-induced NASH in female mice, suggesting a protective role for PRDX2.
Collapse
Affiliation(s)
- Mengqi Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaofeng Shi
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Minglei Tang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Wen Yin
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Cheng Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528437, China
| | - Xiangyang Xie
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
46
|
Wang T, Liu L, Fang J, Jin H, Natarajan S, Sheppard H, Lu M, Turner G, Confer T, Johnson M, Steinberg J, Ha L, Yadak N, Jain R, Picketts DJ, Ma X, Murphy A, Davidoff AM, Glazer ES, Easton J, Chen X, Wang R, Yang J. Conditional c-MYC activation in catecholaminergic cells drives distinct neuroendocrine tumors: neuroblastoma vs somatostatinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584622. [PMID: 38559042 PMCID: PMC10980015 DOI: 10.1101/2024.03.12.584622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The MYC proto-oncogenes (c-MYC, MYCN , MYCL ) are among the most deregulated oncogenic drivers in human malignancies including high-risk neuroblastoma, 50% of which are MYCN -amplified. Genetically engineered mouse models (GEMMs) based on the MYCN transgene have greatly expanded the understanding of neuroblastoma biology and are powerful tools for testing new therapies. However, a lack of c-MYC-driven GEMMs has hampered the ability to better understand mechanisms of neuroblastoma oncogenesis and therapy development given that c-MYC is also an important driver of many high-risk neuroblastomas. In this study, we report two transgenic murine neuroendocrine models driven by conditional c-MYC induction in tyrosine hydroxylase (Th) and dopamine β-hydroxylase (Dbh)-expressing cells. c-MYC induction in Th-expressing cells leads to a preponderance of Pdx1 + somatostatinomas, a type of pancreatic neuroendocrine tumor (PNET), resembling human somatostatinoma with highly expressed gene signatures of δ cells and potassium channels. In contrast, c-MYC induction in Dbh-expressing cells leads to onset of neuroblastomas, showing a better transforming capacity than MYCN in a comparable C57BL/6 genetic background. The c-MYC murine neuroblastoma tumors recapitulate the pathologic and genetic features of human neuroblastoma, express GD2, and respond to anti-GD2 immunotherapy. This model also responds to DFMO, an FDA-approved inhibitor targeting ODC1, which is a known MYC transcriptional target. Thus, establishing c-MYC-overexpressing GEMMs resulted in different but related tumor types depending on the targeted cell and provide useful tools for testing immunotherapies and targeted therapies for these diseases.
Collapse
|
47
|
Matrenec R, Oropeza CE, Dekoven E, Tarnow G, Maienschein-Cline M, Chau CS, Green SJ, McLachlan A. Ten-eleven translocation (Tet) methylcytosine dioxygenase-dependent viral DNA demethylation mediates in vivo hepatitis B virus (HBV) biosynthesis. J Virol 2024; 98:e0172123. [PMID: 38179947 PMCID: PMC10878274 DOI: 10.1128/jvi.01721-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Liver-specific ten-eleven translocation (Tet) methylcytosine dioxygenases 2 and 3 (Tet2 plus Tet3)-deficient hepatitis B virus (HBV) transgenic mice fail to support viral biosynthesis. The levels of viral transcription and replication intermediates are dramatically reduced. Hepatitis B core antigen is only observed in a very limited number of pericentral hepatocytes in a pattern that is similar to glutamate-ammonia ligase (Glul), a β-catenin target gene. HBV transcript abundance in adult Tet-deficient mice resembles that observed in wild-type neonatal mice. Furthermore, the RNA levels of several β-catenin target genes including Glul, Lhpp, Notun, Oat, Slc1a2, and Tbx3 in Tet-deficient mice were also similar to that observed in wild-type neonatal mice. As HBV transcription is regulated by β-catenin, these findings support the suggestion that neonatal Tet deficiency might limit β-catenin target gene expression, limiting viral biosynthesis. Additionally, HBV transgene DNA displays increased 5-methylcytosine (5mC) frequency at CpG sequences consistent with neonatal Tet deficiency being responsible for decreased developmental viral DNA demethylation mediated by 5mC oxidation to 5-hydroxymethylcytosine, a process that might be responsible for the reduction in cellular β-catenin target gene expression and viral transcription and replication.IMPORTANCEChronic hepatitis B virus (HBV) infection causes significant worldwide morbidity and mortality. There are no curative therapies available to resolve chronic HBV infections, and the small viral genome limits molecular targets for drug development. An alternative approach to drug development is to target cellular genes essential for HBV biosynthesis. In the liver, ten-eleven translocation (Tet) genes encode cellular enzymes that are not essential for postnatal mouse development but represent essential activities for viral DNA demethylation and transcription. Consequently, Tet inhibitors may potentially be developed into therapeutic agents capable of inducing and/or maintaining HBV covalently closed circular DNA methylation, resulting in transcriptional silencing and the resolution of chronic viral infection.
Collapse
Affiliation(s)
- Rachel Matrenec
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Claudia E. Oropeza
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Eddie Dekoven
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Grant Tarnow
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois, Chicago, Illinois, USA
| | - Cecilia S. Chau
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois, USA
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois, USA
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
48
|
Chen G, Zhou G, Zhai L, Bao X, Tiwari N, Li J, Mottillo E, Wang J. SHMT2 reduces fatty liver but is necessary for liver inflammation and fibrosis in mice. Commun Biol 2024; 7:173. [PMID: 38347107 PMCID: PMC10861579 DOI: 10.1038/s42003-024-05861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
Non-alcoholic fatty liver disease is associated with an irregular serine metabolism. Serine hydroxymethyltransferase 2 (SHMT2) is a liver enzyme that breaks down serine into glycine and one-carbon (1C) units critical for liver methylation reactions and overall health. However, the contribution of SHMT2 to hepatic 1C homeostasis and biological functions has yet to be defined in genetically modified animal models. We created a mouse strain with targeted SHMT2 knockout in hepatocytes to investigate this. The absence of SHMT2 increased serine and glycine levels in circulation, decreased liver methylation potential, and increased susceptibility to fatty liver disease. Interestingly, SHMT2-deficient mice developed simultaneous fatty liver, but when fed a diet high in fat, fructose, and cholesterol, they had significantly less inflammation and fibrosis. This study highlights the critical role of SHMT2 in maintaining hepatic 1C homeostasis and its stage-specific functions in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Guohua Chen
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Guoli Zhou
- Biomedical Research Informatics Core, Clinical and Translational Sciences Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Lidong Zhai
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xun Bao
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Nivedita Tiwari
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Jing Li
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Emilio Mottillo
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, 48202, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Jian Wang
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48202, USA.
| |
Collapse
|
49
|
Lu Y, Xu J, Li Y, Wang R, Dai C, Zhang B, Zhang X, Xu L, Tao Y, Han M, Guo R, Wu Q, Wu L, Meng Z, Tan M, Li J. DRAK2 suppresses autophagy by phosphorylating ULK1 at Ser 56 to diminish pancreatic β cell function upon overnutrition. Sci Transl Med 2024; 16:eade8647. [PMID: 38324636 DOI: 10.1126/scitranslmed.ade8647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Impeded autophagy can impair pancreatic β cell function by causing apoptosis, of which DAP-related apoptosis-inducing kinase-2 (DRAK2) is a critical regulator. Here, we identified a marked up-regulation of DRAK2 in pancreatic tissue across humans, macaques, and mice with type 2 diabetes (T2D). Further studies in mice showed that conditional knockout (cKO) of DRAK2 in pancreatic β cells protected β cell function against high-fat diet feeding along with sustained autophagy and mitochondrial function. Phosphoproteome analysis in isolated mouse primary islets revealed that DRAK2 directly phosphorylated unc-51-like autophagy activating kinase 1 (ULK1) at Ser56, which was subsequently found to induce ULK1 ubiquitylation and suppress autophagy. ULK1-S56A mutation or pharmacological inhibition of DRAK2 preserved mitochondrial function and insulin secretion against lipotoxicity in mouse primary islets, Min6 cells, or INS-1E cells. In conclusion, these findings together indicate an indispensable role of the DRAK2-ULK1 axis in pancreatic β cells upon metabolic challenge, which offers a potential target to protect β cell function in T2D.
Collapse
Affiliation(s)
- Yuting Lu
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Junyu Xu
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, P. R. China
| | - Yufeng Li
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Ruoran Wang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Chengqiu Dai
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bingqian Zhang
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinwen Zhang
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Lei Xu
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, P. R. China
| | - Yunhua Tao
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Ming Han
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Ren Guo
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Qingqian Wu
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P. R. China
| | - Linshi Wu
- Shanghai Jiaotong University, School of Medicine, Renji Hospital, Shanghai, 201112, P. R. China
| | - Zhuoxian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P. R. China
| | - Minjia Tan
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jingya Li
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
50
|
Wu X, Nagy LE, Gautheron J. Mediators of necroptosis: from cell death to metabolic regulation. EMBO Mol Med 2024; 16:219-237. [PMID: 38195700 PMCID: PMC10897313 DOI: 10.1038/s44321-023-00011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
Necroptosis, a programmed cell death mechanism distinct from apoptosis, has garnered attention for its role in various pathological conditions. While initially recognized for its involvement in cell death, recent research has revealed that key necroptotic mediators, including receptor-interacting protein kinases (RIPKs) and mixed lineage kinase domain-like protein (MLKL), possess additional functions that go beyond inducing cell demise. These functions encompass influencing critical aspects of metabolic regulation, such as energy metabolism, glucose homeostasis, and lipid metabolism. Dysregulated necroptosis has been implicated in metabolic diseases, including obesity, diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-associated liver disease (ALD), contributing to chronic inflammation and tissue damage. This review provides insight into the multifaceted role of necroptosis, encompassing both cell death and these extra-necroptotic functions, in the context of metabolic diseases. Understanding this intricate interplay is crucial for developing targeted therapeutic strategies in diseases that currently lack effective treatments.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Laura E Nagy
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jérémie Gautheron
- Sorbonne Université, Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, 75012, France.
| |
Collapse
|