1
|
Naatz A, Bohl KS, Jones Lipinski RA, Nord JA, Gehant AL, Hansen PA, Smith BC, Corbett JA. Role of SIRT3 in the regulation of Gadd45α expression and DNA repair in β-cells. J Biol Chem 2025:108451. [PMID: 40147772 DOI: 10.1016/j.jbc.2025.108451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/09/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025] Open
Abstract
In previous studies, we have shown that growth arrest and DNA damage (Gadd) 45α is required for the repair of nitric oxide-mediated DNA damage in β-cells. Gadd45α expression is stimulated by nitric oxide and requires forkhead box protein (Fox) O1 and NAD+-dependent deacetylase activity. Based on inhibitor studies, we attributed this activity to Sirtuin (SIRT)1; however, the inhibitors used in this previous study also attenuate the deacetylase activity of SIRT2, 3, and 6. We now provide experimental evidence that SIRT1 is dispensable for β-cell expression of Gadd45α and that the mitochondrial localized isoform SIRT3, is required for DNA repair in β-cells. We show that siRNA knockdown of Sirt3 attenuates nitric oxide-stimulated Gadd45α mRNA accumulation in both wildtype and Sirt1-/- INS 832/13 cells as well as isolated rat islets, and that SIRT3 inhibition increases FoxO1 acetylation and attenuates DNA repair in response to nitric oxide. While SIRT3 is predominantly localized to mitochondria, a small fraction is localized in the nucleus of insulin-containing cells and functions to participate in the regulation of FoxO1-dependent, nitric oxide-stimulated DNA repair.
Collapse
Affiliation(s)
- Aaron Naatz
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226
| | - Kelsey S Bohl
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226
| | - Rachel A Jones Lipinski
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226
| | - Joshua A Nord
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226
| | - Alyssa L Gehant
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226
| | - Polly A Hansen
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226
| | - Brian C Smith
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226
| | - John A Corbett
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226.
| |
Collapse
|
2
|
Kielbowski K, Bratborska AW, Bakinowska E, Pawlik A. Sirtuins as therapeutic targets in diabetes. Expert Opin Ther Targets 2025; 29:117-135. [PMID: 40116767 DOI: 10.1080/14728222.2025.2482563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/01/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
INTRODUCTION Sirtuins (SIRTs) are NAD+-dependent deacetylases that mediate post-translational modifications of proteins. Seven members of the SIRT family have been identified in mammals. Importantly, SIRTs interact with numerous metabolic and inflammatory pathways. Thus, researchers have investigated their role in metabolic and inflammatory disorders. AREAS COVERED In this review, we comprehensively discuss the involvement of SIRTs in the processes of pancreatic β-cell dysfunction, glucose tolerance, insulin secretion, lipid metabolism, and adipocyte functions. In addition, we describe the current evidence regarding modulation of the expression and activity of SIRTs in diabetes, diabetic complications, and obesity. EXPERT OPINION The development of specific SIRT activators and inhibitors that exhibit high selectivity toward specific SIRT isoforms remains a major challenge. This involves the need to elucidate the physiological pathways involving SIRTs, as well as their important role in the development of metabolic disorders. Molecular modeling techniques will be helpful to develop new compounds that modulate the activity of SIRTs, which may contribute to the preparation of new drugs that selectively target specific SIRTs. SIRTs hold promise as potential targets in metabolic disease, but there is much to learn about specific modulators and the final answers will await clinical trials.
Collapse
Affiliation(s)
- Kajetan Kielbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
3
|
Gupta S, Afzal M, Agrawal N, Almalki WH, Rana M, Gangola S, Chinni SV, Kumar K B, Ali H, Singh SK, Jha SK, Gupta G. Harnessing the FOXO-SIRT1 axis: insights into cellular stress, metabolism, and aging. Biogerontology 2025; 26:65. [PMID: 40011269 DOI: 10.1007/s10522-025-10207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/15/2025] [Indexed: 02/28/2025]
Abstract
Aging and metabolic disorders share intricate molecular pathways, with the Forkhead box O (FOXO)- Sirtuin 1 (SIRT1) axis emerging as a pivotal regulator of cellular stress adaptation, metabolic homeostasis, and longevity. This axis integrates nutrient signaling with oxidative stress defence, modulating glucose and lipid metabolism, mitochondrial function, and autophagy to maintain cellular stability. FOXO transcription factors, regulated by SIRT1 deacetylation, enhance antioxidant defence mechanisms, activating genes such as superoxide dismutase (SOD) and catalase, thereby counteracting oxidative stress and metabolic dysregulation. Recent evidence highlights the dynamic role of reactive oxygen species (ROS) as secondary messengers in redox signaling, influencing FOXO-SIRT1 activity in metabolic adaptation. Additionally, key redox-sensitive regulators such as nuclear factor erythroid 2-related factor 2 (Nrf2) and Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) interact with this pathway, orchestrating mitochondrial biogenesis and adaptive stress responses. Pharmacological interventions, including alpha-lipoic acid (ALA), resveratrol, curcumin and NAD+ precursors, exhibit therapeutic potential by enhancing insulin sensitivity, reducing oxidative burden, and restoring metabolic balance. This review synthesizes current advancements in FOXO-SIRT1 regulation, its emerging role in redox homeostasis, and its therapeutic relevance, offering insights into future strategies for combating metabolic dysfunction and aging-related diseases.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Pharmacology, Chameli Devi Institute of Pharmacy, Khandwa Road, Village Umrikheda, Near Tollbooth, Indore, Madhya Pradesh, 452020, India
| | - Muhammad Afzal
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gangola
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun, 248002, India
| | - Suresh V Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, 42610, Jenjarom, Selangor, Malaysia
| | - Benod Kumar K
- Department of General Surgery, Consultant Head and Neck Surgical Oncology, Dr.D.Y.Patil Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, New Delhi, India
- Centre for Himalayan Studies, University of Delhi, Delhi, 110007, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
4
|
Zhou R, Barnes K, Gibson S, Fillmore N. Dual-edged role of SIRT1 in energy metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 2024; 327:H1162-H1173. [PMID: 39269450 DOI: 10.1152/ajpheart.00001.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 08/13/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Regulation of energy metabolism is pivotal in the development of cardiovascular diseases. Dysregulation in mitochondrial fatty acid oxidation has been linked to cardiac lipid accumulation and diabetic cardiomyopathy. Sirtuin 1 (SIRT1) is a deacetylase that regulates the acetylation of various proteins involved in mitochondrial energy metabolism. SIRT1 mediates energy metabolism by directly and indirectly affecting multiple aspects of mitochondrial processes, such as mitochondrial biogenesis. SIRT1 interacts with essential mitochondrial energy regulators such as peroxisome proliferator-activated receptor-α (PPARα), PPARγ coactivator-1α, estrogen-related receptor-α, and their downstream targets. Apart from that, SIRT1 regulates additional proteins, including forkhead box protein O1 and AMP-activated protein kinase in cardiac disease. Interestingly, studies have also shown that the expression of SIRT1 plays a dual-edged role in energy metabolism. Depending on the physiological state, SIRT1 expression can be detrimental or protective. This review focuses on the molecular pathways through which SIRT1 regulates energy metabolism in cardiovascular diseases. We will review SIRT1 and discuss its role in cardiac energy metabolism and its benefits and detrimental effects in heart disease.
Collapse
Affiliation(s)
- Redemptor Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Kaleb Barnes
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Savannah Gibson
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Natasha Fillmore
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota, United States
| |
Collapse
|
5
|
Kumar KK, Aburawi EH, Ljubisavljevic M, Leow MKS, Feng X, Ansari SA, Emerald BS. Exploring histone deacetylases in type 2 diabetes mellitus: pathophysiological insights and therapeutic avenues. Clin Epigenetics 2024; 16:78. [PMID: 38862980 PMCID: PMC11167878 DOI: 10.1186/s13148-024-01692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Diabetes mellitus is a chronic disease that impairs metabolism, and its prevalence has reached an epidemic proportion globally. Most people affected are with type 2 diabetes mellitus (T2DM), which is caused by a decline in the numbers or functioning of pancreatic endocrine islet cells, specifically the β-cells that release insulin in sufficient quantity to overcome any insulin resistance of the metabolic tissues. Genetic and epigenetic factors have been implicated as the main contributors to the T2DM. Epigenetic modifiers, histone deacetylases (HDACs), are enzymes that remove acetyl groups from histones and play an important role in a variety of molecular processes, including pancreatic cell destiny, insulin release, insulin production, insulin signalling, and glucose metabolism. HDACs also govern other regulatory processes related to diabetes, such as oxidative stress, inflammation, apoptosis, and fibrosis, revealed by network and functional analysis. This review explains the current understanding of the function of HDACs in diabetic pathophysiology, the inhibitory role of various HDAC inhibitors (HDACi), and their functional importance as biomarkers and possible therapeutic targets for T2DM. While their role in T2DM is still emerging, a better understanding of the role of HDACi may be relevant in improving insulin sensitivity, protecting β-cells and reducing T2DM-associated complications, among others.
Collapse
Affiliation(s)
- Kukkala Kiran Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Elhadi Husein Aburawi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Program, Singapore, Singapore
| | - Melvin Khee Shing Leow
- LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
- Dept of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Program, Singapore, Singapore
| | - Xu Feng
- Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- ASPIRE Precision Medicine Research Institute, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
6
|
Naatz A, Yeo CT, Hogg N, Corbett JA. β-Cell-selective regulation of gene expression by nitric oxide. Am J Physiol Regul Integr Comp Physiol 2024; 326:R552-R566. [PMID: 38586887 PMCID: PMC11381020 DOI: 10.1152/ajpregu.00240.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Nitric oxide is produced at low micromolar levels following the induction of inducible nitric oxide synthase (iNOS) and is responsible for mediating the inhibitory actions of cytokines on glucose-stimulated insulin secretion by islets of Langerhans. It is through the inhibition of mitochondrial oxidative metabolism, specifically aconitase and complex 4 of the electron transport chain, that nitric oxide inhibits insulin secretion. Nitric oxide also attenuates protein synthesis, induces DNA damage, activates DNA repair pathways, and stimulates stress responses (unfolded protein and heat shock) in β-cells. In this report, the time- and concentration-dependent effects of nitric oxide on the expression of six genes known to participate in the response of β-cells to this free radical were examined. The genes included Gadd45α (DNA repair), Puma (apoptosis), Hmox1 (antioxidant defense), Hsp70 (heat shock), Chop (UPR), and Ppargc1α (mitochondrial biogenesis). We show that nitric oxide stimulates β-cell gene expression in a narrow concentration range of ∼0.5-1 µM or levels corresponding to iNOS-derived nitric oxide. At concentrations greater than 1 µM, nitric oxide fails to stimulate gene expression in β-cells, and this is associated with the inhibition of mitochondrial oxidative metabolism. This narrow concentration range of responses is β-cell selective, as the actions of nitric oxide in non-β-cells (α-cells, mouse embryonic fibroblasts, and macrophages) are concentration dependent. Our findings suggest that β-cells respond to a narrow concentration range of nitric oxide that is consistent with the levels produced following iNOS induction, and that these concentration-dependent actions are selective for insulin-containing cells.
Collapse
Affiliation(s)
- Aaron Naatz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Chay Teng Yeo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Neil Hogg
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
7
|
Kabaliei A, Palchyk V, Izmailova O, Shynkevych V, Shlykova O, Kaidashev I. Long-Term Administration of Omeprazole-Induced Hypergastrinemia and Changed Glucose Homeostasis and Expression of Metabolism-Related Genes. BIOMED RESEARCH INTERNATIONAL 2024; 2024:7747599. [PMID: 38884019 PMCID: PMC11178409 DOI: 10.1155/2024/7747599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024]
Abstract
Introduction PPIs, or proton pump inhibitors, are the most widely prescribed drugs. There is a debate regarding the relationship between long-term PPI use and the risk of type 2 diabetes mellitus (T2DM). A potential connection between T2DM and PPIs could be an elevated gastrin concentration. This study is aimed at investigating the long-term effects of PPI omeprazole (OZ) on glucose homeostasis and pancreatic gene expression profile in mice. Methods Healthy adult male BALB/c mice were randomly divided into three equal groups (n = 10 in each one): (1) experimental mice that received OZ 20 mg/kg; (2) control mice that received 30 μl saline per os; (3) intact mice without any interventions. Mice were treated for 30 weeks. Glucose homeostasis was investigated by fasting blood glucose level, oral glucose tolerance test (GTT), insulin tolerance test (ITT), and basal insulin resistance (HOMA-IR). Serum gastrin and insulin concentration were determined by ELISA. Expressions of Sirt1, Pparg, Nfκb1 (p105), Nfe2l2, Cxcl5, Smad3, H2a.z, and H3f3b were measured by RT-PCR. Result The ROC analysis revealed an increase in fasting blood glucose levels in OZ-treated mice in comparison with control and intact groups during the 30-week experiment. A slight but statistically significant increase in glucose tolerance and insulin sensitivity was observed in OZ-treated mice within 30 weeks of the experiment. The mice treated with OZ exhibited significant increases in serum insulin and gastrin levels, accompanied by a rise in the HOMA-IR level. These animals had a statistically significant increase in Sirt1, Pparg, and Cxcl5 mRNA expression. There were no differences in β-cell numbers between groups. Conclusion Long-term OZ treatment induced hypergastrin- and hyperinsulinemia and increased expression of Sirt1, Pparg, and Cxcl5 in mouse pancreatic tissues accompanied by specific changes in glucose metabolism. The mechanism of omeprazole-induced Cxcl5 mRNA expression and its association with pancreatic cancer risk should be investigated.
Collapse
|
8
|
Bursch KL, Goetz CJ, Smith BC. Current Trends in Sirtuin Activator and Inhibitor Development. Molecules 2024; 29:1185. [PMID: 38474697 DOI: 10.3390/molecules29051185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Sirtuins are NAD+-dependent protein deacylases and key metabolic regulators, coupling the cellular energy state with selective lysine deacylation to regulate many downstream cellular processes. Humans encode seven sirtuin isoforms (Sirt1-7) with diverse subcellular localization and deacylase targets. Sirtuins are considered protective anti-aging proteins since increased sirtuin activity is canonically associated with lifespan extension and decreased activity with developing aging-related diseases. However, sirtuins can also assume detrimental cellular roles where increased activity contributes to pathophysiology. Modulation of sirtuin activity by activators and inhibitors thus holds substantial potential for defining the cellular roles of sirtuins in health and disease and developing therapeutics. Instead of being comprehensive, this review discusses the well-characterized sirtuin activators and inhibitors available to date, particularly those with demonstrated selectivity, potency, and cellular activity. This review also provides recommendations regarding the best-in-class sirtuin activators and inhibitors for practical research as sirtuin modulator discovery and refinement evolve.
Collapse
Affiliation(s)
- Karina L Bursch
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christopher J Goetz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
9
|
Bettiol A, Urban ML, Emmi G, Galora S, Argento FR, Fini E, Borghi S, Bagni G, Mattioli I, Prisco D, Fiorillo C, Becatti M. SIRT1 and thrombosis. Front Mol Biosci 2024; 10:1325002. [PMID: 38304233 PMCID: PMC10833004 DOI: 10.3389/fmolb.2023.1325002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
Thrombosis is a major cause of morbidity and mortality worldwide, with a complex and multifactorial pathogenesis. Recent studies have shown that SIRT1, a member of the sirtuin family of NAD + -dependent deacetylases, plays a crucial role in regulating thrombosis, modulating key pathways including endothelial activation, platelet aggregation, and coagulation. Furthermore, SIRT1 displays anti-inflammatory activity both in vitro, in vivo and in clinical studies, particularly via the reduction of oxidative stress. On these bases, several studies have investigated the therapeutic potential of targeting SIRT1 for the prevention of thrombosis. This review provides a comprehensive and critical overview of the main preclinical and clinical studies and of the current understanding of the role of SIRT1 in thrombosis.
Collapse
Affiliation(s)
- Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Maria Letizia Urban
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Silvia Galora
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Giacomo Bagni
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Irene Mattioli
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| |
Collapse
|
10
|
Yeo CT, Kropp EM, Hansen PA, Pereckas M, Oleson BJ, Naatz A, Stancill JS, Ross KA, Gundry RL, Corbett JA. β-cell-selective inhibition of DNA damage response signaling by nitric oxide is associated with an attenuation in glucose uptake. J Biol Chem 2023; 299:102994. [PMID: 36773802 PMCID: PMC10023961 DOI: 10.1016/j.jbc.2023.102994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Nitric oxide (NO) plays a dual role in regulating DNA damage response (DDR) signaling in pancreatic β-cells. As a genotoxic agent, NO activates two types of DDR signaling; however, when produced at micromolar levels by the inducible isoform of NO synthase, NO inhibits DDR signaling and DDR-induced apoptosis in a β-cell-selective manner. DDR signaling inhibition by NO correlates with mitochondrial oxidative metabolism inhibition and decreases in ATP and NAD+. Unlike most cell types, β-cells do not compensate for impaired mitochondrial oxidation by increasing glycolytic flux, and this metabolic inflexibility leads to a decrease in ATP and NAD+. Here, we used multiple analytical approaches to determine changes in intermediary metabolites in β-cells and non-β-cells treated with NO or complex I inhibitor rotenone. In addition to ATP and NAD+, glycolytic and tricarboxylic acid cycle intermediates as well as NADPH are significantly decreased in β-cells treated with NO or rotenone. Consistent with glucose-6-phosphate residing at the metabolic branchpoint for glycolysis and the pentose phosphate pathway (NADPH), we show that mitochondrial oxidation inhibitors limit glucose uptake in a β-cell-selective manner. Our findings indicate that the β-cell-selective inhibition of DDR signaling by NO is associated with a decrease in ATP to levels that fall significantly below the KM for ATP of glucokinase (glucose uptake) and suggest that this action places the β-cell in a state of suspended animation where it is metabolically inert until NO is removed, and metabolic function can be restored.
Collapse
Affiliation(s)
- Chay Teng Yeo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Erin M Kropp
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Polly A Hansen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael Pereckas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Bryndon J Oleson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Aaron Naatz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jennifer S Stancill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kyle A Ross
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Rebekah L Gundry
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
11
|
Wang Q, Li Y, Tan H, Wang Y. Sevoflurane-Induced Apoptosis in the Mouse Cerebral Cortex Follows Similar Characteristics of Physiological Apoptosis. Front Mol Neurosci 2022; 15:873658. [PMID: 35465098 PMCID: PMC9024292 DOI: 10.3389/fnmol.2022.873658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
General anesthetics are capable of inducing neuronal apoptosis during the rapid synaptogenesis of immature mammalian brains. In this vulnerable time window, physiological apoptosis also occurs to eliminate excess and inappropriately integrated neurons. We previously showed that physiological and ketamine-induced apoptosis in mouse primary somatosensory cortex (S1) followed similar developmental patterns. However, since sevoflurane is more widely used in pediatric anesthesia, and targets mainly on different receptors, as compared with ketamine, it is important to determine whether sevoflurane-induced apoptosis also follows similar developmental patterns as physiological apoptosis or not. Mice at postnatal days 5 (P5) and P9 were anesthetized with 1.5% sevoflurane for 4 h, and the apoptotic neurons in S1 were quantitated by immunohistochemistry. The results showed that sevoflurane raised the levels of apoptosis in S1 without interfering with the developmental patterns of physiological apoptosis. The cells more vulnerable to both physiological and sevoflurane-induced apoptosis shifted from layer V pyramidal neurons at P5 to layers II–IV GABAergic neurons by P9. The magnitude of both sevoflurane-induced and physiological apoptosis was more attenuated at P9 than P5. To determine whether the Akt-FoxO1-PUMA pathway contributes to the developmental decrease in magnitude of both physiological and sevoflurane-induced apoptosis, Western blot was used to measure the levels of related proteins in S1 of P5 and P9 mice. We observed higher levels of antiapoptotic phosphorylated Akt (p-Akt) and phosphorylated FoxO1 (p-FoxO1), and lower levels of the downstream proapoptotic factor PUMA in control and anesthetized mice at P9 than P5. In addition, the Akt-FoxO1-PUMA pathway may also be responsible for sevoflurane-induced apoptosis. Together, these results suggest that magnitude, lamination pattern and cell-type specificity to sevoflurane-induced apoptosis are age-dependent and follow physiological apoptosis pattern. Moreover, The Akt-FoxO1-PUMA pathway may mediate the developmental decreases in magnitude of both physiological and sevoflurane-induced apoptosis in neonatal mouse S1.
Collapse
|
12
|
Curcumin ameliorates HO-induced injury through SIRT1-PERK-CHOP pathway in pancreatic beta cells. Acta Biochim Biophys Sin (Shanghai) 2022; 54:370-377. [PMID: 35538036 PMCID: PMC9827983 DOI: 10.3724/abbs.2022004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Oxidative stress and endoplasmic reticulum (ER) stress play crucial roles in pancreatic β cell destruction, leading to the development and progression of type 1 diabetes mellitus (T1DM). Curcumin, extracted from plant turmeric, possesses multiple bioactivities such as antioxidant, anti-inflammatory and anti-apoptosis properties and . However, it remains unknown whether curcumin improves ER stress to prevent β cells from apoptosis. In this study, we aim to investigate the role and mechanism of curcumin in ameliorating HO-induced injury in MIN6 (a mouse insulinoma cell line) cells. Cell viability is examined by CCK8 assay. Hoechst 33258 staining, TUNEL and flow cytometric assay are performed to detect cell apoptosis. The relative amounts of reactive oxygen species (ROS) are measured by DCFH-DA. WST-8 is used to determine the total superoxide dismutase (SOD) activity. Protein expressions are determined by western blot analysis and immunofluorescence staining. Pretreatment with curcumin prevents MIN6 cells from HO-induced cell apoptosis. Curcumin decreases ROS generation and inhibits protein kinase like ER kinase (PERK)-C/EBP homologous protein (CHOP) signaling axis, one of the critical branches of ER stress pathway. Moreover, incubation with curcumin activates silent information regulator 1 (SIRT1) expression and subsequently decreases the expression of CHOP. Additionally, EX527, a specific inhibitor of SIRT1, blocks the protective effect of curcumin on MIN6 cells exposed to HO. In sum, curcumin inhibits the PERK-CHOP pathway of ER stress mediated by SIRT1 and thus ameliorates HO-induced MIN6 cell apoptosis, suggesting that curcumin and SIRT1 may provide a potential therapeutic approach for T1DM.
Collapse
|
13
|
Pandita TK, Hunt CR, Singh V, Adhikary S, Pandita S, Roy S, Ramos K, Das C. Role of the Histone Acetyl Transferase MOF and the Histone Deacetylase Sirtuins in Regulation of H4K16ac During DNA Damage Repair and Metabolic Programming: Implications in Cancer and Aging. Subcell Biochem 2022; 100:115-141. [PMID: 36301493 DOI: 10.1007/978-3-031-07634-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The accurate repair of genomic damage mediated by ionizing radiation (IR), chemo- or radiomimetic drugs, or other exogenous agents, is necessary for maintenance of genome integrity, preservation of cellular viability and prevention of oncogenic transformation. Eukaryotes have conserved mechanisms designed to perceive and repair the damaged DNA quite efficiently. Among the different types of DNA damage, double strand breaks (DSB) are the most detrimental. The cellular DNA DSB response is a hierarchical signaling network that integrates damage sensing and repair with chromatin structural changes that involve a range of pre-existing and induced covalent modifications. Recent studies have revealed that pre-existing histone modifications are important contributors within this signaling/repair network. This chapter discusses the role of a critical histone acetyl transferase (HAT) known as MOF (males absent on the first) and the histone deacetylases (HDACs) Sirtuins on histone H4K16 acetylation (H4K16ac) and DNA damage repair. We also discuss the role of this important histone modification in light of metabolic rewiring and its role in regulating human pathophysiologic states.
Collapse
Affiliation(s)
- Tej K Pandita
- The Houston Methodist Research Institute, Houston, TX, USA.
- Department of Cellular and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, USA.
| | - Clayton R Hunt
- The Houston Methodist Research Institute, Houston, TX, USA
| | - Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Shruti Pandita
- Department of Internal Medicine, Division of Hematology, Oncology and Cellular Therapy, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Siddhartha Roy
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Kenneth Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, USA
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
14
|
Kalous KS, Wynia-Smith SL, Smith BC. Sirtuin Oxidative Post-translational Modifications. Front Physiol 2021; 12:763417. [PMID: 34899389 PMCID: PMC8652059 DOI: 10.3389/fphys.2021.763417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Increased sirtuin deacylase activity is correlated with increased lifespan and healthspan in eukaryotes. Conversely, decreased sirtuin deacylase activity is correlated with increased susceptibility to aging-related diseases. However, the mechanisms leading to decreased sirtuin activity during aging are poorly understood. Recent work has shown that oxidative post-translational modification by reactive oxygen (ROS) or nitrogen (RNS) species results in inhibition of sirtuin deacylase activity through cysteine nitrosation, glutathionylation, sulfenylation, and sulfhydration as well as tyrosine nitration. The prevalence of ROS/RNS (e.g., nitric oxide, S-nitrosoglutathione, hydrogen peroxide, oxidized glutathione, and peroxynitrite) is increased during inflammation and as a result of electron transport chain dysfunction. With age, cellular production of ROS/RNS increases; thus, cellular oxidants may serve as a causal link between loss of sirtuin activity and aging-related disease development. Therefore, the prevention of inhibitory oxidative modification may represent a novel means to increase sirtuin activity during aging. In this review, we explore the role of cellular oxidants in inhibiting individual sirtuin human isoform deacylase activity and clarify the relevance of ROS/RNS as regulatory molecules of sirtuin deacylase activity in the context of health and disease.
Collapse
Affiliation(s)
- Kelsey S Kalous
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
15
|
Stancill JS, Kasmani MY, Khatun A, Cui W, Corbett JA. Single-cell RNA sequencing of mouse islets exposed to proinflammatory cytokines. Life Sci Alliance 2021; 4:e202000949. [PMID: 33883217 PMCID: PMC8091599 DOI: 10.26508/lsa.202000949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Exposure to proinflammatory cytokines is believed to contribute to pancreatic β-cell damage during diabetes development. Although some cytokine-mediated changes in islet gene expression are known, the heterogeneity of the response is not well-understood. After 6-h treatment with IL-1β and IFN-γ alone or together, mouse islets were subjected to single-cell RNA sequencing. Treatment with both cytokines together led to expression of inducible nitric oxide synthase mRNA (Nos2) and antiviral and immune-associated genes in a subset of β-cells. Interestingly, IL-1β alone activated antiviral genes. Subsets of δ- and α-cells expressed Nos2 and exhibited similar gene expression changes as β-cells, including increased expression of antiviral genes and repression of identity genes. Finally, cytokine responsiveness was inversely correlated with expression of genes encoding heat shock proteins. Our findings show that all islet endocrine cell types respond to cytokines, IL-1β induces the expression of protective genes, and cellular stress gene expression is associated with inhibition of cytokine signaling.
Collapse
Affiliation(s)
- Jennifer S Stancill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Moujtaba Y Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
16
|
Qiu X, Tan G, Wen H, Lian L, Xiao S. Forkhead box O1 targeting replication factor C subunit 2 expression promotes glioma temozolomide resistance and survival. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:692. [PMID: 33987390 PMCID: PMC8105996 DOI: 10.21037/atm-21-1523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Additional mechanisms of temozolomide (TMZ) resistance in gliomas remain uncertain. The aim of this study was to identify another DNA repair mechanism involving forkhead box O1 (FoxO1) and replicator C2 (RFC2) in gliomas. Methods We established glioma cells against TMZ, U87R, by exposure to TMZ. Proliferation rate Cell counting kit-8 (CCK8) was used, and epithelial-mesenchymal transition (EMT)-related markers were detected by western blot. The association between FoxO1 and RFC2 was analyzed by heat maps and scatter plot, and Real-time reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were used to detect the effect of FoxO1 on the expression of RFC2. The regulation effect of FoxO1 on RFC2 expression was analyzed by luciferase reporter gene assay. Knockdown of FoxO1/RFC2 was achieved via short hairpin RNA (shRNA), the effect of knockdown on the proliferation was determined by CCK8 assay and colony formation assay, and apoptosis was examined by flow cytometry and immunoblotting. Results The TMZ-resistant glioma cell line, U87R, was established. The FoxO1 and RFC2 proteins increased significantly in U87R. The expression of FoxO1 and RFC2 were positively related in glioma tissues. We found that FoxO1 contributes to TMZ resistance and cell survival via regulating the expression of RFC2. Moreover, FoxO1 functions as a transcriptional activator to RFC2 by binding to the promoter of RFC2. Furthermore, knockdown of FoxO1/RFC2 suppressed cell proliferation, TMZ resistance, and induced apoptosis in U87R. Conclusions The FoxO1/RFC2 signaling pathway promotes glioma cell proliferation and TMZ resistance, suggesting that the FoxO1/RFC2 pathway may be a potential target for TMZ-resistant glioma therapy.
Collapse
Affiliation(s)
- Xingsheng Qiu
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guifeng Tan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Wen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lian Lian
- Department of Oncology, Suzhou Xiangcheng People's Hospital, Suzhou, China
| | - Songhua Xiao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Maissan P, Mooij EJ, Barberis M. Sirtuins-Mediated System-Level Regulation of Mammalian Tissues at the Interface between Metabolism and Cell Cycle: A Systematic Review. BIOLOGY 2021; 10:194. [PMID: 33806509 PMCID: PMC7999230 DOI: 10.3390/biology10030194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Sirtuins are a family of highly conserved NAD+-dependent proteins and this dependency links Sirtuins directly to metabolism. Sirtuins' activity has been shown to extend the lifespan of several organisms and mainly through the post-translational modification of their many target proteins, with deacetylation being the most common modification. The seven mammalian Sirtuins, SIRT1 through SIRT7, have been implicated in regulating physiological responses to metabolism and stress by acting as nutrient sensors, linking environmental and nutrient signals to mammalian metabolic homeostasis. Furthermore, mammalian Sirtuins have been implicated in playing major roles in mammalian pathophysiological conditions such as inflammation, obesity and cancer. Mammalian Sirtuins are expressed heterogeneously among different organs and tissues, and the same holds true for their substrates. Thus, the function of mammalian Sirtuins together with their substrates is expected to vary among tissues. Any therapy depending on Sirtuins could therefore have different local as well as systemic effects. Here, an introduction to processes relevant for the actions of Sirtuins, such as metabolism and cell cycle, will be followed by reasoning on the system-level function of Sirtuins and their substrates in different mammalian tissues. Their involvement in the healthy metabolism and metabolic disorders will be reviewed and critically discussed.
Collapse
Affiliation(s)
- Parcival Maissan
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Eva J. Mooij
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| |
Collapse
|
18
|
Yeo CT, Stancill JS, Oleson BJ, Schnuck JK, Stafford JD, Naatz A, Hansen PA, Corbett JA. Regulation of ATR-dependent DNA damage response by nitric oxide. J Biol Chem 2021; 296:100388. [PMID: 33567339 PMCID: PMC7967039 DOI: 10.1016/j.jbc.2021.100388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 02/01/2023] Open
Abstract
We have shown that nitric oxide limits ataxia-telangiectasia mutated signaling by inhibiting mitochondrial oxidative metabolism in a β-cell selective manner. In this study, we examined the actions of nitric oxide on a second DNA damage response transducer kinase, ataxia-telangiectasia and Rad3-related protein (ATR). In β-cells and non-β-cells, nitric oxide activates ATR signaling by inhibiting ribonucleotide reductase; however, when produced at inducible nitric oxide synthase-derived (low micromolar) levels, nitric oxide impairs ATR signaling in a β-cell selective manner. The inhibitory actions of nitric oxide are associated with impaired mitochondrial oxidative metabolism and lack of glycolytic compensation that result in a decrease in β-cell ATP. Like nitric oxide, inhibitors of mitochondrial respiration reduce ATP levels and limit ATR signaling in a β-cell selective manner. When non-β-cells are forced to utilize mitochondrial oxidative metabolism for ATP generation, their response is more like β-cells, as nitric oxide and inhibitors of mitochondrial respiration attenuate ATR signaling. These studies support a dual role for nitric oxide in regulating ATR signaling. Nitric oxide activates ATR in all cell types examined by inhibiting ribonucleotide reductase, and in a β-cell selective manner, inducible nitric oxide synthase-derived levels of nitric oxide limit ATR signaling by attenuating mitochondrial oxidative metabolism and depleting ATP.
Collapse
|
19
|
Good Cop, Bad Cop: The Opposing Effects of Macrophage Activation State on Maintaining or Damaging Functional β-Cell Mass. Metabolites 2020; 10:metabo10120485. [PMID: 33256225 PMCID: PMC7761161 DOI: 10.3390/metabo10120485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Loss of functional β-cell mass is a hallmark of Type 1 and Type 2 Diabetes. Macrophages play an integral role in the maintenance or destruction of pancreatic β-cells. The effect of the macrophage β-cell interaction is dependent on the activation state of the macrophage. Macrophages can be activated across a spectrum, from pro-inflammatory to anti-inflammatory and tissue remodeling. The factors secreted by these differentially activated macrophages and their effect on β-cells define the effect on functional β-cell mass. In this review, the spectrum of macrophage activation is discussed, as are the positive and negative effects on β-cell survival, expansion, and function as well as the defined factors released from macrophages that impinge on functional β-cell mass.
Collapse
|
20
|
Polouliakh N, Ludwig V, Meguro A, Kawagoe T, Heeb O, Mizuki N. Alpha-Arbutin Promotes Wound Healing by Lowering ROS and Upregulating Insulin/IGF-1 Pathway in Human Dermal Fibroblast. Front Physiol 2020; 11:586843. [PMID: 33250779 PMCID: PMC7672191 DOI: 10.3389/fphys.2020.586843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
Alpha-arbutin (4-hydroxyphenyl alpha-glucopyranoside) is a known inhibitor of tyrosinase in keratinocytes; however, its effect on other genes and pathways in other skin cells has not been thoroughly investigated. In this study, we investigate the mechanism of alpha-arbutin activity in human dermal fibroblast cultures for 48 h. Results showed that the oxidative stress pathway was activated as alpha-arbutin reduced reactive oxygen species. In addition, we found a high possibility of wound healing and the upregulation of the insulin-like growth factor 1 receptor (IFG1R) pathway. We also investigated the role of the NRF2 gene in mediating the alpha-arbutin response. In silico comparative genomics analysis conducted using our original tool, SHOE, suggested transcription factors with a role in tumor suppression and toxicity response as candidates for regulating the alpha-arbutin-mediated pathway.
Collapse
Affiliation(s)
- Natalia Polouliakh
- Department of Ophthalmology and Visual Sciences, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Sony Computer Science Laboratories Inc., Tokyo, Japan
| | | | - Akira Meguro
- Department of Ophthalmology and Visual Sciences, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tatsukata Kawagoe
- Department of Ophthalmology and Visual Sciences, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Oliver Heeb
- Department of MAVT, ETH Zürich, Zurich, Switzerland
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Sciences, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
21
|
Du Q, Luo J, Yang MQ, Liu Q, Heres C, Yan YH, Stolz D, Geller DA. iNOS/NO is required for IRF1 activation in response to liver ischemia-reperfusion in mice. Mol Med 2020; 26:56. [PMID: 32517688 PMCID: PMC7285570 DOI: 10.1186/s10020-020-00182-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Background Ischemia and reperfusion (I/R) induces cytokines, and up-regulates inducible nitric oxide synthase (iNOS), interferon regulatory factor-1(IRF1) and p53 up-regulated modulator of apoptosis (PUMA), which contribute to cell death and tissue injury. However, the mechanisms that I/R induces IRF1-PUMA through iNOS/NO is still unknown. Methods Ischemia was induced by occluding structures in the portal triad (hepatic artery, portal vein, and bile duct) to the left and median liver lobes for 60 min, and reperfusion was initiated by removal of the clamp. Induction of iNOS, IRF1 and PUMA in response to I/R were analyzed. I/R induced IRF1 and PUMA expression were compared between iNOS wild-type and iNOS knockout (KO) mice. Human iNOS gene transfected-cells were used to determine iNOS/NO signals targeting IRF1. To test whether HDAC2 was involved in the mediation of iNOS/NO-induced IRF1 transcriptional activities and its target gene (PUMA and p21) expression, NO donors were used in vitro and in vivo. Results IRF1 nuclear translocation and PUMA transcription elevation were markedly induced following I/R in the liver of iNOS wild-type mice compared with that in knock-out mice. Furthermore, I/R induced hepatic HDAC2 expression and activation, and decreased H3AcK9 expression in iNOS wild-type mice, but not in the knock-out mice. Mechanistically, over-expression of human iNOS gene increased IRF1 transcriptional activity and PUMA expression, while iNOS inhibitor L-NIL reversed these effects. Cytokine-induced PUMA through IRF1 was p53 dependent. IRF1 and p53 synergistically up-regulated PUMA expression. iNOS/NO-induced HDAC2 mediated histone H3 deacetylation and promoted IRF1 transcriptional activity. Moreover, treating the cells with romidepsin, an HDAC1/2 inhibitor decreased NO-induced IRF1 and PUMA expression. Conclusions This study demonstrates a novel mechanism that iNOS/NO is required for IRF1/PUMA signaling through a positive-feedback loop between iNOS and IRF1, in which HDAC2-mediated histone modification is involved to up-regulate IRF1 in response to I/R in mice.
Collapse
Affiliation(s)
- Qiang Du
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA
| | - Jing Luo
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA.,Department of Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, Hunan, People's Republic of China, 410011
| | - Mu-Qing Yang
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA.,Department of Surgery, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Quan Liu
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA.,Southern University of Science and Technology, School of Medicine, 1088 Xueyuan Blvd. , Nanshan District, Shenzhen, Guangdong, People's Republic of China, 518055
| | - Caroline Heres
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA
| | - Yi-He Yan
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA
| | - Donna Stolz
- Department of Cellular Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - David A Geller
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
22
|
NLRP3 Inflammasome is Activated in Rat Pancreatic Islets by Transplantation and Hypoxia. Sci Rep 2020; 10:7011. [PMID: 32332867 PMCID: PMC7181690 DOI: 10.1038/s41598-020-64054-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/10/2020] [Indexed: 01/14/2023] Open
Abstract
Hypoxia, IL-1β production and oxidative stress are involved in islet graft dysfunction and destruction. However, the link between these events has not yet been determined in transplanted islets. The goal of this study was to determine whether NLRP3 inflammasome is responsible for IL-1β production and if it is activated by hypoxia-induced oxidative stress in transplanted islets. Rat islets were transplanted under the kidney capsule of immunodeficient mice. At different times post-transplantation, blood samples were collected and islet grafts harvested. Rat islets were also incubated in vitro either under normoxia or hypoxia for 24 h, in the absence or presence of inhibitors of NLRP3 inflammasome (CASP1 inhibitor) or oxidative stress (NAC). NLRP3, CASP1, IL1B, BBC3 pro-apoptotic and BCL2 anti-apoptotic genes in transplanted and in vitro incubated islets were then studied using real time PCR. IL-1β released in the blood and in the supernatant was quantified by ELISA. Cell death was analysed by propidium iodide and Annexin-V staining. NLRP3, CASP1 and BBC3 in transplanted rat islets and IL-1β in blood transiently increased during the first days after transplantation. In islets incubated under hypoxia, NRLP3, IL1B and CASP1 and IL-1β released in supernatant increased compared to islets incubated under normoxia. These effects were prevented by the inhibition of NLRP3 inflammasome by CASP1 or oxidative stress by NAC. However, these inhibitors did not prevent hypoxia-induced rat islet death. These data show that NLRP3 inflammasome in rat islets is transiently activated after their transplantation and induced through oxidative stress in vitro. However, NRLP3 inflammasome inhibition does not protect islet cells against hypoxia.
Collapse
|
23
|
Protection from β-cell apoptosis by inhibition of TGF-β/Smad3 signaling. Cell Death Dis 2020; 11:184. [PMID: 32170115 PMCID: PMC7070087 DOI: 10.1038/s41419-020-2365-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
Abstract
Prevailing insulin resistance and the resultant hyperglycemia elicits a compensatory response from pancreatic islet beta cells (β-cells) that involves increases in β-cell function and β-cell mass. However, the sustained metabolic stress eventually leads to β-cell failure characterized by severe β-cell dysfunction and progressive loss of β-cell mass. Whereas, β-cell dysfunction is relatively well understood at the mechanistic level, the avenues leading to loss of β-cell mass are less clear with reduced proliferation, dedifferentiation, and apoptosis all potential mechanisms. Butler and colleagues documented increased β-cell apoptosis in pancreas from lean and obese human Type 2 diabetes (T2D) subjects, with no changes in rates of β-cell replication or neogenesis, strongly suggesting a role for apoptosis in β-cell failure. Here, we describe a permissive role for TGF-β/Smad3 in β-cell apoptosis. Human islets undergoing β-cell apoptosis release increased levels of TGF-β1 ligand and phosphorylation levels of TGF-β's chief transcription factor, Smad3, are increased in human T2D islets suggestive of an autocrine role for TGF-β/Smad3 signaling in β-cell apoptosis. Smad3 phosphorylation is similarly increased in diabetic mouse islets undergoing β-cell apoptosis. In mice, β-cell-specific activation of Smad3 promotes apoptosis and loss of β-cell mass in association with β-cell dysfunction, glucose intolerance, and diabetes. In contrast, inactive Smad3 protects from apoptosis and preserves β-cell mass while improving β-cell function and glucose tolerance. At the molecular level, Smad3 associates with Foxo1 to propagate TGF-β-dependent β-cell apoptosis. Indeed, genetic or pharmacologic inhibition of TGF-β/Smad3 signals or knocking down Foxo1 protects from β-cell apoptosis. These findings reveal the importance of TGF-β/Smad3 in promoting β-cell apoptosis and demonstrate the therapeutic potential of TGF-β/Smad3 antagonism to restore β-cell mass lost in diabetes.
Collapse
|
24
|
Oleson BJ, Corbett JA. Can insulin secreting pancreatic β-cells provide novel insights into the metabolic regulation of the DNA damage response? Biochem Pharmacol 2020; 176:113907. [PMID: 32171728 DOI: 10.1016/j.bcp.2020.113907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022]
Abstract
Insulin, produced by pancreatic β-cells, is responsible for the control of whole-body glucose metabolism. Insulin is secreted by pancreatic β-cells in a tightly regulated process that is controlled by the serum level of glucose, glucose sensing and glucose oxidative metabolism. The regulation of intermediary metabolism in β-cells is unique as these cells oxidize glucose to CO2 on substrate supply while mitochondrial oxidative metabolism occurs on demand, for the production of intermediates or energy production, in most cell types. This review discusses recent findings that the regulation of intermediary metabolism by nitric oxide attenuates the DNA damage response (DDR) and DNA damage-dependent apoptosis in a β-cell selective manner. Specific focus is placed on the mechanisms by which iNOS derived nitric oxide (low micromolar levels) regulates DDR activation via the inhibition of intermediary metabolism. The physiological significance of the association of metabolism, nitric oxide and DDR signaling for cancer biology and diabetes is discussed.
Collapse
Affiliation(s)
- Bryndon J Oleson
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John A Corbett
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
25
|
Meta-analysis on big data of bioactive compounds from mangrove ecosystem to treat neurodegenerative disease. Scientometrics 2020. [DOI: 10.1007/s11192-020-03355-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Oleson BJ, Broniowska KA, Yeo CT, Flancher M, Naatz A, Hogg N, Tarakanova VL, Corbett JA. The Role of Metabolic Flexibility in the Regulation of the DNA Damage Response by Nitric Oxide. Mol Cell Biol 2019; 39:e00153-19. [PMID: 31235477 PMCID: PMC6712938 DOI: 10.1128/mcb.00153-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/07/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022] Open
Abstract
In this report, we show that nitric oxide suppresses DNA damage response (DDR) signaling in the pancreatic β-cell line INS 832/13 and rat islets by inhibiting intermediary metabolism. Nitric oxide is known to inhibit complex IV of the electron transport chain and aconitase of the Krebs cycle. Non-β cells compensate by increasing glycolytic metabolism to maintain ATP levels; however, β cells lack this metabolic flexibility, resulting in a nitric oxide-dependent decrease in ATP and NAD+ Like nitric oxide, mitochondrial toxins inhibit DDR signaling in β cells by a mechanism that is associated with a decrease in ATP. Non-β cells compensate for the effects of mitochondrial toxins with an adaptive shift to glycolytic ATP generation that allows for DDR signaling. Forcing non-β cells to derive ATP via mitochondrial respiration (replacing glucose with galactose in the medium) and glucose deprivation sensitizes these cells to nitric oxide-mediated inhibition of DDR signaling. These findings indicate that metabolic flexibility is necessary to maintain DDR signaling under conditions in which mitochondrial oxidative metabolism is inhibited and support the inhibition of oxidative metabolism (decreased ATP) as one protective mechanism by which nitric oxide attenuates DDR-dependent β-cell apoptosis.
Collapse
Affiliation(s)
- Bryndon J Oleson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Chay Teng Yeo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael Flancher
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Aaron Naatz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Neil Hogg
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
27
|
Alves-Fernandes DK, Jasiulionis MG. The Role of SIRT1 on DNA Damage Response and Epigenetic Alterations in Cancer. Int J Mol Sci 2019; 20:E3153. [PMID: 31261609 PMCID: PMC6651129 DOI: 10.3390/ijms20133153] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
Sirtuin-1 (SIRT1) is a class-III histone deacetylase (HDAC), an NAD+-dependent enzyme deeply involved in gene regulation, genome stability maintenance, apoptosis, autophagy, senescence, proliferation, aging, and tumorigenesis. It also has a key role in the epigenetic regulation of tissue homeostasis and many diseases by deacetylating both histone and non-histone targets. Different studies have shown ambiguous implications of SIRT1 as both a tumor suppressor and tumor promoter. However, this contradictory role seems to be determined by the cell type and SIRT1 localization. SIRT1 upregulation has already been demonstrated in some cancer cells, such as acute myeloid leukemia (AML) and primary colon, prostate, melanoma, and non-melanoma skin cancers, while SIRT1 downregulation was described in breast cancer and hepatic cell carcinomas. Even though new functions of SIRT1 have been characterized, the underlying mechanisms that define its precise role on DNA damage and repair and their contribution to cancer development remains underexplored. Here, we discuss the recent findings on the interplay among SIRT1, oxidative stress, and DNA repair machinery and its impact on normal and cancer cells.
Collapse
Affiliation(s)
| | - Miriam Galvonas Jasiulionis
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil.
| |
Collapse
|
28
|
Oleic acid increases the transcriptional activity of FoxO1 by promoting its nuclear translocation and β-catenin binding in pancreatic β-cells. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2753-2764. [PMID: 31255704 DOI: 10.1016/j.bbadis.2019.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/31/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023]
Abstract
In the setting of metabolic overload, chronic elevations of free fatty acids in blood and tissues are associated with pancreatic β-cell lipotoxicity and failure. Ultimately, obesity combined with insulin resistance increases the dysfunctional demand of β-cells and contributes to the development of type 2 diabetes. Forkhead box O1 (FoxO1) is a potent transcriptional regulator of pancreatic β-cell function and tolerance to lipid stress. The present study examined the effects of stearoyl-CoA desaturase 1 (SCD1)-metabolized precursors and products, notably oleic acid, on the compensatory capacity of β-cells and their relationship with regulation of the FoxO1 and Wnt pathways. The trioleate-induced compromise of insulin sensitivity blunted the compensatory response of pancreatic β-cells in primary rat islets. These events were associated with increases in the nuclear accumulation and transcriptional activity of FoxO1. Such effects were also observed in INS-1E cells that were subjected to oleate treatment. The overexpression of human SCD1 that was accompanied by endogenously generated oleic acid also led to an increase in the nuclear abundance of FoxO1. The mechanism of the oleate-mediated subcellular localization of FoxO1 was independent of the fatty acid receptor GPR40. Instead, the mechanism involved diversion of the active β-catenin pool from an interaction with transcription factor 7-like 2 toward FoxO1-mediated transcription in β-cells. Our findings identify a unique role for oleic acid in the compensatory response of pancreatic β-cells and emphasize the importance of FoxO1 in β-cell failure in obesity-induced insulin resistance.
Collapse
|
29
|
Oleson BJ, Corbett JA. Dual Role of Nitric Oxide in Regulating the Response of β Cells to DNA Damage. Antioxid Redox Signal 2018; 29:1432-1445. [PMID: 28978225 PMCID: PMC6166691 DOI: 10.1089/ars.2017.7351] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/09/2017] [Indexed: 01/09/2023]
Abstract
SIGNIFICANCE Cytokines released in and around pancreatic islets during islet inflammation are believed to contribute to impaired β cell function and β cell death during the development of diabetes. Nitric oxide, produced by β cells in response to cytokine exposure, controls many of the responses of β cells during islet inflammation. Recent Advances: Although nitric oxide has been shown to inhibit insulin secretion and oxidative metabolism and induce DNA damage in β cells, it also activates protective pathways that promote recovery of insulin secretion and oxidative metabolism and repair of damaged DNA. Recent studies have identified a novel role for nitric oxide in selectively regulating the DNA damage response in β cells. CRITICAL ISSUES Does nitric oxide mediate cytokine-induced β cell damage, or is nitric oxide produced by β cells in response to cytokines to protect β cells from damage? FUTURE DIRECTIONS β cells appear to be the only islet endocrine cell type capable of responding to proinflammatory cytokines with the production of nitric oxide, and these terminally differentiated cells have a limited capacity to regenerate. It is likely that there is a physiological purpose for this response, and understanding this could open new areas of study regarding the loss of functional β cell mass during diabetes development.
Collapse
Affiliation(s)
- Bryndon J. Oleson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John A. Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
30
|
Oleson BJ, Naatz A, Proudfoot SC, Yeo CT, Corbett JA. Role of Protein Phosphatase 1 and Inhibitor of Protein Phosphatase 1 in Nitric Oxide-Dependent Inhibition of the DNA Damage Response in Pancreatic β-Cells. Diabetes 2018; 67:898-910. [PMID: 29444892 PMCID: PMC5909998 DOI: 10.2337/db17-1062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/02/2018] [Indexed: 11/13/2022]
Abstract
Nitric oxide is produced at micromolar levels by pancreatic β-cells during exposure to proinflammatory cytokines. While classically viewed as damaging, nitric oxide also activates pathways that promote β-cell survival. We have shown that nitric oxide, in a cell type-selective manner, inhibits the DNA damage response (DDR) and, in doing so, protects β-cells from DNA damage-induced apoptosis. This study explores potential mechanisms by which nitric oxide inhibits DDR signaling. We show that inhibition of DDR signaling (measured by γH2AX formation and the phosphorylation of KAP1) is selective for nitric oxide, as other forms of reactive oxygen/nitrogen species do not impair DDR signaling. The kinetics and broad range of DDR substrates that are inhibited suggest that protein phosphatase activation may be one mechanism by which nitric oxide attenuates DDR signaling in β-cells. While protein phosphatase 1 (PP1) is a primary regulator of DDR signaling and an inhibitor of PP1 (IPP1) is selectively expressed only in β-cells, disruption of either IPP1 or PP1 does not modify the inhibitory actions of nitric oxide on DDR signaling in β-cells. These findings support a PP1-independent mechanism by which nitric oxide selectively impairs DDR signaling and protects β-cells from DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Bryndon J Oleson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Aaron Naatz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Sarah C Proudfoot
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Chay Teng Yeo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
31
|
Ma J, Matkar S, He X, Hua X. FOXO family in regulating cancer and metabolism. Semin Cancer Biol 2018; 50:32-41. [PMID: 29410116 DOI: 10.1016/j.semcancer.2018.01.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/28/2018] [Accepted: 01/31/2018] [Indexed: 01/07/2023]
Abstract
FOXO proteins are a sub-group of a superfamily of forkhead box (FOX)-containing transcription factors (TFs). FOXOs play an important role in regulating a plethora of biological activities ranging from development, cell signaling, and tumorigenesis to cell metabolism. Here we mainly focus on reviewing the role of FOXOs in regulating tumor and metabolism. Moreover, how crosstalk among various pathways influences the function of FOXOs will be reviewed. Further, the paradoxical role for FOXOs in controlling the fate of cancer and especially resistance/sensitivity of cancer to the class of drugs that target PI3K/AKT will also be reviewed. Finally, how FOXOs regulate crosstalk between common cancer pathways and cell metabolism pathways, and how these crosstalks affect the fate of the cancer will be discussed.
Collapse
Affiliation(s)
- Jian Ma
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, Heilongjiang 150069, China; College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin, Heilongjiang 150040, China.
| | - Smita Matkar
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| | - Xin He
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| | - Xianxin Hua
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
Tong Z, Xie Y, He M, Ma W, Zhou Y, Lai S, Meng Y, Liao Z. VDAC1 deacetylation is involved in the protective effects of resveratrol against mitochondria-mediated apoptosis in cardiomyocytes subjected to anoxia/reoxygenation injury. Biomed Pharmacother 2017; 95:77-83. [PMID: 28826100 DOI: 10.1016/j.biopha.2017.08.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 07/31/2017] [Accepted: 08/08/2017] [Indexed: 01/07/2023] Open
Abstract
We have recently demonstrated that Voltage-dependent anion channel 1 (VDAC1), a protein located in the mitochondrial outer membrane, is involved in the effects of resveratrol on the mitochondrial permeability transition pore (mPTP). However, the underlying mechanism of action remains to be elucidated. In the present study, we demonstrated that resveratrol promoted VDAC1 deacetylation in cardiomyocytes in response to anoxia/reoxygenation (A/R) injury. Moreover, silent information regulator of transcription 1 (SIRT1), a NAD+-dependent class III histone deacetylase, was up-regulated after pretreatment with resveratrol. Cells that were treated with Ex527, a specific inhibitor of SIRT1, showed a reduction in both SIRT1 expression and VDAC1 deacetylation, indicating that the deacetylation effect of resveratrol on VDAC1 is mediated by SIRT1. Furthermore, the ability deacetylated VDAC1 to bind to Bax was decreased after pretreatment with resveratrol, whereas Bcl-2 expression changed in the opposite direction. As a result, opening of the mPTP was restrained, the mitochondrial membrane potential was reserved, and cytochrome c release was inhibited, which subsequently decreased cardiomyocyte apoptosis. However, the cardioprotective effects observed after treatment of resveratrol could be abrogated by Ex527. In conclusion, resveratrol induces deacetylation of VDAC1 by SIRT1, thereby preventing mitochondria-mediated apoptosis in cardiomyocytes upon A/R injury.
Collapse
Affiliation(s)
- Zhihong Tong
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Yongyan Xie
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Ming He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Wen Ma
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Yue Zhou
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Songqing Lai
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Yan Meng
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Zhangping Liao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
33
|
Mechanisms of islet damage mediated by pancreas cold ischemia/rewarming. Cryobiology 2016; 73:126-34. [DOI: 10.1016/j.cryobiol.2016.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/25/2016] [Accepted: 08/23/2016] [Indexed: 01/08/2023]
|
34
|
Oleson BJ, Broniowska KA, Naatz A, Hogg N, Tarakanova VL, Corbett JA. Nitric Oxide Suppresses β-Cell Apoptosis by Inhibiting the DNA Damage Response. Mol Cell Biol 2016; 36:2067-77. [PMID: 27185882 PMCID: PMC4946431 DOI: 10.1128/mcb.00262-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/12/2016] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide, produced in pancreatic β cells in response to proinflammatory cytokines, plays a dual role in the regulation of β-cell fate. While nitric oxide induces cellular damage and impairs β-cell function, it also promotes β-cell survival through activation of protective pathways that promote β-cell recovery. In this study, we identify a novel mechanism in which nitric oxide prevents β-cell apoptosis by attenuating the DNA damage response (DDR). Nitric oxide suppresses activation of the DDR (as measured by γH2AX formation and the phosphorylation of KAP1 and p53) in response to multiple genotoxic agents, including camptothecin, H2O2, and nitric oxide itself, despite the presence of DNA damage. While camptothecin and H2O2 both induce DDR activation, nitric oxide suppresses only camptothecin-induced apoptosis and not H2O2-induced necrosis. The ability of nitric oxide to suppress the DDR appears to be selective for pancreatic β cells, as nitric oxide fails to inhibit DDR signaling in macrophages, hepatocytes, and fibroblasts, three additional cell types examined. While originally described as the damaging agent responsible for cytokine-induced β-cell death, these studies identify a novel role for nitric oxide as a protective molecule that promotes β-cell survival by suppressing DDR signaling and attenuating DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Bryndon J Oleson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Aaron Naatz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Neil Hogg
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vera L Tarakanova
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
35
|
Omori K, Kobayashi E, Komatsu H, Rawson J, Agrawal G, Parimi M, Oancea AR, Valiente L, Ferreri K, Al-Abdullah IH, Kandeel F, Takahashi M, Mullen Y. Involvement of a proapoptotic gene (BBC3) in islet injury mediated by cold preservation and rewarming. Am J Physiol Endocrinol Metab 2016; 310:E1016-26. [PMID: 27117005 PMCID: PMC4935146 DOI: 10.1152/ajpendo.00441.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/31/2016] [Indexed: 12/23/2022]
Abstract
Long-term pancreatic cold ischemia contributes to decreased islet number and viability after isolation and culture, leading to poor islet transplantation outcome in patients with type 1 diabetes. In this study, we examined mechanisms of pancreatic cold preservation and rewarming-induced injury by interrogating the proapoptotic gene BBC3/Bbc3, also known as Puma (p53 upregulated modulator of apoptosis), using three experimental models: 1) bioluminescence imaging of isolated luciferase-transgenic ("Firefly") Lewis rat islets, 2) cold preservation of en bloc-harvested pancreata from Bbc3-knockout (KO) mice, and 3) cold preservation and rewarming of human pancreata and isolated islets. Cold preservation-mediated islet injury occurred during rewarming in "Firefly" islets. Silencing Bbc3 by transfecting Bbc3 siRNA into islets in vitro prior to cold preservation improved postpreservation mitochondrial viability. Cold preservation resulted in decreased postisolation islet yield in both wild-type and Bbc3 KO pancreata. However, after culture, the islet viability was significantly higher in Bbc3-KO islets, suggesting that different mechanisms are involved in islet damage/loss during isolation and culture. Furthermore, Bbc3-KO islets from cold-preserved pancreata showed reduced HMGB1 (high-mobility group box 1 protein) expression and decreased levels of 4-hydroxynonenal (4-HNE) protein adducts, which was indicative of reduced oxidative stress. During human islet isolation, BBC3 protein was upregulated in digested tissue from cold-preserved pancreata. Hypoxia in cold preservation increased BBC3 mRNA and protein in isolated human islets after rewarming in culture and reduced islet viability. These results demonstrated the involvement of BBC3/Bbc3 in cold preservation/rewarming-mediated islet injury, possibly through modulating HMGB1- and oxidative stress-mediated injury to islets.
Collapse
Affiliation(s)
- Keiko Omori
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of the City of Hope, Duarte, California;
| | - Eiji Kobayashi
- Center for Development of Advanced Medical Technology and Department of Organ Fabrication, Keio University School of Medicine, Tokyo, Japan
| | - Hirotake Komatsu
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of the City of Hope, Duarte, California
| | - Jeffrey Rawson
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of the City of Hope, Duarte, California
| | - Garima Agrawal
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of the City of Hope, Duarte, California
| | - Mounika Parimi
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of the City of Hope, Duarte, California
| | - Alina R Oancea
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of the City of Hope, Duarte, California
| | - Luis Valiente
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of the City of Hope, Duarte, California
| | - Kevin Ferreri
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of the City of Hope, Duarte, California
| | - Ismail H Al-Abdullah
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of the City of Hope, Duarte, California
| | - Fouad Kandeel
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of the City of Hope, Duarte, California
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan; and
| | - Yoko Mullen
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of the City of Hope, Duarte, California
| |
Collapse
|
36
|
Kurylowicz A. In Search of New Therapeutic Targets in Obesity Treatment: Sirtuins. Int J Mol Sci 2016; 17:ijms17040572. [PMID: 27104517 PMCID: PMC4849028 DOI: 10.3390/ijms17040572] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 03/29/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022] Open
Abstract
Most of the available non-invasive medical therapies for obesity are non-efficient in a long-term evaluation; therefore there is a constant need for new methods of treatment. Research on calorie restriction has led to the discovery of sirtuins (silent information regulators, SIRTs), enzymes regulating different cellular pathways that may constitute potential targets in the treatment of obesity. This review paper presents the role of SIRTs in the regulation of glucose and lipid metabolism as well as in the differentiation of adipocytes. How disturbances of SIRTs’ expression and activity may lead to the development of obesity and related complications is discussed. A special emphasis is placed on polymorphisms in genes encoding SIRTs and their possible association with susceptibility to obesity and metabolic complications, as well as on data regarding altered expression of SIRTs in human obesity. Finally, the therapeutic potential of SIRTs-targeted strategies in the treatment of obesity and related disorders is discussed.
Collapse
Affiliation(s)
- Alina Kurylowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland.
| |
Collapse
|
37
|
Furuhashi T, Matsunaga M, Asahara Y, Sakamoto K. L-arginine, an active component of salmon milt nucleoprotein, promotes thermotolerance via Sirtuin in Caenorhabditis elegans. Biochem Biophys Res Commun 2016; 472:287-91. [PMID: 26934207 DOI: 10.1016/j.bbrc.2016.02.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/27/2016] [Indexed: 01/06/2023]
Abstract
We previously showed that salmon milt nucleoprotein (NP) promotes thermotolerance in Caenorhabditis elegans; however, the active component and physiological mechanism of this effect has remained unclear. l-arginine (AR) is a major component of protamine and thus it has been proposed as the possible active component of NP. In this study, the viability of C. elegans treated with AR under heat stress was assessed and AR was shown to extend the survival term of the heat-stressed organisms. Additionally, AR was shown to restore the thrashing movement of the worms that is suppressed by heat stress. Treatment with AR was furthermore shown to promote thermotolerance in a DAF-16- and SIR-2.1-dependent manner, where DAF-16 and SIR-2.1 are homologs of FoxO and SirT1, respectively. Taken together, these data suggest that AR is one of the active components of NP and promotes thermotolerance via the activation of DAF-16 and SIR-2.1.
Collapse
Affiliation(s)
- Tsubasa Furuhashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Masaji Matsunaga
- Gene Trophology Institute Co., 3-1-3 Megumino Kita, Eniwa, Hokkaido 061-1374, Japan
| | - Yuji Asahara
- Nissan Chemical Industries, Co., Ltd., 3-7-1 Kanda-Nishikicho, Chiyoda, Tokyo 101-0054, Japan
| | - Kazuichi Sakamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
38
|
Zhang T, Kim DH, Xiao X, Lee S, Gong Z, Muzumdar R, Calabuig-Navarro V, Yamauchi J, Harashima H, Wang R, Bottino R, Alvarez-Perez JC, Garcia-Ocaña A, Gittes G, Dong HH. FoxO1 Plays an Important Role in Regulating β-Cell Compensation for Insulin Resistance in Male Mice. Endocrinology 2016; 157:1055-70. [PMID: 26727107 PMCID: PMC4769368 DOI: 10.1210/en.2015-1852] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
β-Cell compensation is an essential mechanism by which β-cells increase insulin secretion for overcoming insulin resistance to maintain euglycemia in obesity. Failure of β-cells to compensate for insulin resistance contributes to insulin insufficiency and overt diabetes. To understand the mechanism of β-cell compensation, we characterized the role of forkhead box O1 (FoxO1) in β-cell compensation in mice under physiological and pathological conditions. FoxO1 is a key transcription factor that serves as a nutrient sensor for integrating insulin signaling to cell metabolism, growth, and proliferation. We showed that FoxO1 improved β-cell compensation via 3 distinct mechanisms by increasing β-cell mass, enhancing β-cell glucose sensing, and augmenting β-cell antioxidative function. These effects accounted for increased glucose-stimulated insulin secretion and enhanced glucose tolerance in β-cell-specific FoxO1-transgenic mice. When fed a high-fat diet, β-cell-specific FoxO1-transgenic mice were protected from developing fat-induced glucose disorder. This effect was attributable to increased β-cell mass and function. Furthermore, we showed that FoxO1 activity was up-regulated in islets, correlating with the induction of physiological β-cell compensation in high-fat-induced obese C57BL/6J mice. These data characterize FoxO1 as a pivotal factor for orchestrating physiological adaptation of β-cell mass and function to overnutrition and obesity.
Collapse
Affiliation(s)
- Ting Zhang
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Dae Hyun Kim
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Xiangwei Xiao
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Sojin Lee
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Zhenwei Gong
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Radhika Muzumdar
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Virtu Calabuig-Navarro
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Jun Yamauchi
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Hideyoshi Harashima
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Rennian Wang
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Rita Bottino
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Juan Carlos Alvarez-Perez
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Adolfo Garcia-Ocaña
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - George Gittes
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - H Henry Dong
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| |
Collapse
|
39
|
Gao Y, Liao G, Xiang C, Yang X, Cheng X, Ou Y. Effects of phycocyanin on INS-1 pancreatic β-cell mediated by PI3K/Akt/FoxO1 signaling pathway. Int J Biol Macromol 2015; 83:185-94. [PMID: 26616456 DOI: 10.1016/j.ijbiomac.2015.11.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/22/2015] [Accepted: 11/20/2015] [Indexed: 01/09/2023]
Abstract
The level of methylglyoxal (MG), which is a side-product of metabolic pathways, particularly in glycolysis, is elevated in diabetes. Notably, the accumulation of MG causes a series of pathological changes. Phycocyanin (PC) has been demonstrated to show insulin-sensitizing effect, however, the underlying molecular mechanism remains elusive. The aim of this study was to investigate the protective effects of PC on INS-1 rat insulinoma β-cell against MG-induced cell dysfunction, as well as the underlying mechanisms. PC was preliminarily verified to time-dependently activate PI3-kinase (PI3K) pathway, but the PI3K-specific inhibitor Wortmannin blocked the effect of PC. Glucose-stimulated insulin secretion (GSIS) was impaired in MG-treated INS-1 cells. Furthermore, MG induced dephosphorylation of Akt and FoxO1, resulting in nuclear localization and transactivation of FoxO1. Nevertheless, these effects were all effectively attenuated by PC. The ameliorated insulin secretion was related to the changes of FoxO1 mediated by PC, which demonstrated by RNA interference. And, the dosage used in the above experiments did not affect β-cell viability and apoptosis, although long-term MG induced cell apoptosis and mitochondrial dysfunction. In conclusion, PC was capable to protect INS-1 pancreatic β-cell against MG-induced cell dysfunction through modulating PI3K/Akt pathway and the downstream FoxO1.
Collapse
Affiliation(s)
- Yingnv Gao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Gaoyong Liao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Chenxi Xiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xuegan Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center, Houston, USA.
| | - Yu Ou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
40
|
Park Y, Moon C, Kim SH, Lee P. Induction of HaCaT Cell Apoptosis by Sodium Nitroprusside. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2015. [DOI: 10.15324/kjcls.2015.47.3.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yuri Park
- Department of Natural Medicine Resources, Semyung University, Jecheon 27136, Korea
| | - Cheol Moon
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea
| | - Sa-Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea
| | - Pyeongjae Lee
- Department of Natural Medicine Resources, Semyung University, Jecheon 27136, Korea
| |
Collapse
|
41
|
Expression profiling pre-diabetic mice to uncover drugs with clinical application to type 1 diabetes. Clin Transl Immunology 2015; 4:e41. [PMID: 26366287 PMCID: PMC4558439 DOI: 10.1038/cti.2015.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 07/21/2015] [Accepted: 07/21/2015] [Indexed: 12/29/2022] Open
Abstract
In the NOD mouse model of type 1 diabetes (T1D), genetically identical mice in the same environment develop diabetes at different rates. Similar heterogeneity in the rate of progression to T1D exists in humans, but the underlying mechanisms are unclear. Here, we aimed to discover peripheral blood (PB) genes in NOD mice predicting insulitis severity and rate of progression to diabetes. We then wished to use these genes to mine existing databases to identify drugs effective in diabetes. In a longitudinal study, we analyzed gene expression in PB samples from NOD.CD45.2 mice at 10 weeks of age, then scored pancreatic insulitis at 14 weeks or determined age of diabetes onset. In a multilinear regression model, Tnf and Tgfb mRNA expression in PB predicted insulitis score (R2=0.56, P=0.01). Expression of these genes did not predict age of diabetes onset. However, by expression-profiling PB genes in 10-week-old NOD.CD45.2 mice, we found a signature of upregulated genes that predicted delayed or no diabetes. Major associated pathways included chromatin organization, cellular protein location and regulation of nitrogen compounds and RNA. In a clinical cohort, three of these genes were differentially expressed between first-degree relatives, T1D patients and controls. Bioinformatic analysis of differentially expressed genes in NOD.CD45.2 PB identified drugs that are predicted to delay or prevent diabetes. Of these drugs, 11 overlapped with drugs predicted to induce a human ‘non-progressor' expression profile. These data demonstrate that disease heterogeneity in diabetes-prone mice can be exploited to mine novel clinical T1D biomarkers and drug targets.
Collapse
|
42
|
Affiliation(s)
- Hui Jing
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Hening Lin
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
43
|
Broniowska KA, Oleson BJ, McGraw J, Naatz A, Mathews CE, Corbett JA. How the location of superoxide generation influences the β-cell response to nitric oxide. J Biol Chem 2015; 290:7952-60. [PMID: 25648890 DOI: 10.1074/jbc.m114.627869] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cytokines impair the function and decrease the viability of insulin-producing β-cells by a pathway that requires the expression of inducible nitric oxide synthase (iNOS) and generation of high levels of nitric oxide. In addition to nitric oxide, excessive formation of reactive oxygen species, such as superoxide and hydrogen peroxide, has been shown to cause β-cell damage. Although the reaction of nitric oxide with superoxide results in the formation of peroxynitrite, we have shown that β-cells do not have the capacity to produce this powerful oxidant in response to cytokines. When β-cells are forced to generate peroxynitrite using nitric oxide donors and superoxide-generating redox cycling agents, superoxide scavenges nitric oxide and prevents the inhibitory and destructive actions of nitric oxide on mitochondrial oxidative metabolism and β-cell viability. In this study, we show that the β-cell response to nitric oxide is regulated by the location of superoxide generation. Nitric oxide freely diffuses through cell membranes, and it reacts with superoxide produced within cells and in the extracellular space, generating peroxynitrite. However, only when it is produced within cells does superoxide attenuate nitric oxide-induced mitochondrial dysfunction, gene expression, and toxicity. These findings suggest that the location of radical generation and the site of radical reactions are key determinants in the functional response of β-cells to reactive oxygen species and reactive nitrogen species. Although nitric oxide is freely diffusible, its biological function can be controlled by the local generation of superoxide, such that when this reaction occurs within β-cells, superoxide protects β-cells by scavenging nitric oxide.
Collapse
Affiliation(s)
- Katarzyna A Broniowska
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Bryndon J Oleson
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Jennifer McGraw
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Aaron Naatz
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Clayton E Mathews
- the Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida 32610
| | - John A Corbett
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| |
Collapse
|
44
|
Cheng PW, Ho WY, Su YT, Lu PJ, Chen BZ, Cheng WH, Lu WH, Sun GC, Yeh TC, Hsiao M, Tseng CJ. Resveratrol decreases fructose-induced oxidative stress, mediated by NADPH oxidase via an AMPK-dependent mechanism. Br J Pharmacol 2014; 171:2739-50. [PMID: 24547812 DOI: 10.1111/bph.12648] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Oxidative stress is an important pathogenic factor in the development of hypertension. Resveratrol, the main antioxidant in red wine, improves NO bioavailability and prevents cardiovascular disease. The aim of this study was to examine whether resveratrol decreases the generation of reactive oxygen species (ROS), thereby reducing BP in rats with fructose-induced hypertension. EXPERIMENTAL APPROACH Rats were fed 10% fructose with or without resveratrol (10 mg·kg(-1) ·day(-1) ) for 1 week or for 4 weeks with resveratrol treatment beginning at week 2; systolic BP (SBP) was measured by tail-cuff method. Endogenous in vivo O2 (-) production in the nucleus tractus solitarii (NTS) was determined with dihydroethidium. Real-time PCR and immunoblotting analyses were used to quantify RNA and protein expression levels. KEY RESULTS In fructose-fed rats, ROS levels in the NTS were higher, whereas the NO level was significantly decreased. Also, RNA and protein levels of NADPH oxidase subunits (p67, p22-phox) were elevated, superoxide dismutase 2 (SOD2) reduced and AMP-activated PK (AMPK) T172 phosphorylation levels in the NTS were lower in fructose-fed rats. Treatment with the AMPK activator resveratrol decreased levels of NADPH oxidase subunits and ROS, and increased NO and SOD2 levels in the NTS of fructose-fed rats. Administration of resveratrol, in combination with fructose at week 0 and later at week 2, significantly reduced the SBP of fructose-fed rats. CONCLUSIONS AND IMPLICATIONS Collectively, resveratrol decreased BP through the phosphorylation of AMPK, Akt and neuronal NOS in fructose-fed rats. These novel findings suggest that resveratrol may be a potential pharmacological candidate for the treatment of hypertension.
Collapse
Affiliation(s)
- Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jayaraman P, Alfarano MG, Svider PF, Parikh F, Lu G, Kidwai S, Xiong H, Sikora AG. iNOS expression in CD4+ T cells limits Treg induction by repressing TGFβ1: combined iNOS inhibition and Treg depletion unmask endogenous antitumor immunity. Clin Cancer Res 2014; 20:6439-51. [PMID: 25278453 DOI: 10.1158/1078-0432.ccr-13-3409] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Expression of inducible nitric oxide synthase (iNOS) in different cellular compartments may have divergent effects on immune function. We used a syngeneic tumor model to functionally characterize the role of iNOS in regulation of CD4(+)FOXP3(+) regulatory T cells (Treg), and optimize the beneficial effects of iNOS inhibition on antitumor immunity. EXPERIMENTAL DESIGN Wild-type (WT) or iNOS knockout mice bearing established MT-RET-1 melanoma were treated with the small-molecule iNOS inhibitor L-NIL and/or cyclophosphamide alone or in combination. The effect of iNOS inhibition or knockout on induction of Treg from mouse and human CD4(+) T cells in ex vivo culture was determined in parallel in the presence or absence of TGFβ1-depleting antibodies, and TGFβ1 levels were assessed by ELISA. RESULTS Whereas intratumoral myeloid-derived suppressor cells (MDSC) were suppressed by iNOS inhibition or knockout, systemic and intratumoral FOXP3(+) Treg levels increased in tumor-bearing mice. iNOS inhibition or knockout similarly enhanced induction of Treg from activated cultured mouse splenocytes or purified human or mouse CD4(+) T cells in a TGFβ1-dependent manner. Although either iNOS inhibition or Treg depletion with low-dose cyclophosphamide alone had little effect on growth of established MT-RET1 melanoma, combination treatment potently inhibited MDSC and Treg, boosted tumor-infiltrating CD8(+) T-cell levels, and arrested tumor growth in an immune-dependent fashion. CONCLUSIONS iNOS expression in CD4(+) T cells suppresses Treg induction by inhibiting TGFβ1 production. Our data suggest that iNOS expression has divergent effects on induction of myeloid and lymphoid-derived regulatory populations, and strongly support development of combinatorial treatment approaches that target these populations simultaneously.
Collapse
Affiliation(s)
- Padmini Jayaraman
- Department of Otolaryngology-Head and Neck Surgery, The Icahn School of Medicine at Mount Sinai, New York, New York. Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York. Department of Dermatology, The Icahn School of Medicine at Mount Sinai, New York, New York. Immunology Institute, The Icahn School of Medicine at Mount Sinai, New York, New York. Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York. Head and Neck Cancer Research Program, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Matthew G Alfarano
- Department of Otolaryngology-Head and Neck Surgery, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Peter F Svider
- Department of Otolaryngology-Head and Neck Surgery, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Falguni Parikh
- Department of Otolaryngology-Head and Neck Surgery, The Icahn School of Medicine at Mount Sinai, New York, New York. Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York. Department of Dermatology, The Icahn School of Medicine at Mount Sinai, New York, New York. Immunology Institute, The Icahn School of Medicine at Mount Sinai, New York, New York. Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York. Head and Neck Cancer Research Program, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Geming Lu
- Immunology Institute, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sarah Kidwai
- Department of Otolaryngology-Head and Neck Surgery, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Huabao Xiong
- Immunology Institute, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrew G Sikora
- Department of Otolaryngology-Head and Neck Surgery, The Icahn School of Medicine at Mount Sinai, New York, New York. Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York. Department of Dermatology, The Icahn School of Medicine at Mount Sinai, New York, New York. Immunology Institute, The Icahn School of Medicine at Mount Sinai, New York, New York. Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York. Head and Neck Cancer Research Program, The Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
46
|
Oleson BJ, Broniowska KA, Schreiber KH, Tarakanova VL, Corbett JA. Nitric oxide induces ataxia telangiectasia mutated (ATM) protein-dependent γH2AX protein formation in pancreatic β cells. J Biol Chem 2014; 289:11454-11464. [PMID: 24610783 PMCID: PMC4036281 DOI: 10.1074/jbc.m113.531228] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
In this study, the effects of cytokines on the activation of the DNA double strand break repair factors histone H2AX (H2AX) and ataxia telangiectasia mutated (ATM) were examined in pancreatic β cells. We show that cytokines stimulate H2AX phosphorylation (γH2AX formation) in rat islets and insulinoma cells in a nitric oxide- and ATM-dependent manner. In contrast to the well documented role of ATM in DNA repair, ATM does not appear to participate in the repair of nitric oxide-induced DNA damage. Instead, nitric oxide-induced γH2AX formation correlates temporally with the onset of irreversible DNA damage and the induction of apoptosis. Furthermore, inhibition of ATM attenuates cytokine-induced caspase activation. These findings show that the formation of DNA double strand breaks correlates with ATM activation, irreversible DNA damage, and ATM-dependent induction of apoptosis in cytokine-treated β cells.
Collapse
Affiliation(s)
- Bryndon J Oleson
- Department of Biochemistry and Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | | | - Katherine H Schreiber
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Vera L Tarakanova
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - John A Corbett
- Department of Biochemistry and Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|
47
|
Abstract
Autoimmune diabetes is characterized by the selective destruction of insulin-secreting β-cells that occurs during an inflammatory reaction in and around pancreatic islets of Langerhans. Cytokines such as interleukin-1, released by activated immune cells, have been shown to inhibit insulin secretion from pancreatic β-cells and cause islet destruction. In response to cytokines, β-cells express inducible nitric oxide synthase and produce micromolar levels of the free radical nitric oxide. Nitric oxide inhibits the mitochondrial oxidation of glucose resulting in an impairment of insulin secretion. Nitric oxide is also responsible for cytokine-mediated DNA damage in β-cells. While nitric oxide mediates the inhibitory and toxic effects of cytokines, it also activates protective pathways that allow β-cells to recover from this damage. This review will focus on the dual role of nitric oxide as a mediator of cytokine-induced damage and the activator of repair mechanisms that protect β-cells from cytokine-mediated injury.
Collapse
Affiliation(s)
| | - Bryndon J Oleson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
48
|
Broniowska KA, Mathews CE, Corbett JA. Do β-cells generate peroxynitrite in response to cytokine treatment? J Biol Chem 2013; 288:36567-78. [PMID: 24194521 DOI: 10.1074/jbc.m113.522243] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study was to determine the reactive species that is responsible for cytokine-mediated β-cell death. Inhibitors of inducible nitric oxide synthase prevent this death, and addition of exogenous nitric oxide using donors induces β-cell death. The reaction of nitric oxide with superoxide results in the generation of peroxynitrite, and this powerful oxidant has been suggested to be the mediator of β-cell death in response to cytokine treatment. Recently, coumarin-7-boronate has been developed as a probe for the selective detection of peroxynitrite. Using this reagent, we show that addition of the NADPH oxidase activator phorbol 12-myristate 13-acetate to nitric oxide-producing macrophages results in peroxynitrite generation. Using a similar approach, we demonstrate that cytokines fail to stimulate peroxynitrite generation by rat islets and insulinoma cells, either with or without phorbol 12-myristate 13-acetate treatment. When forced to produce superoxide using redox cyclers, this generation is associated with protection from nitric oxide toxicity. These findings indicate that: (i) nitric oxide is the likely mediator of the toxic effects of cytokines, (ii) β-cells do not produce peroxynitrite in response to cytokines, and (iii) when forced to produce superoxide, the scavenging of nitric oxide by superoxide is associated with protection of β-cells from nitric oxide-mediated toxicity.
Collapse
Affiliation(s)
- Katarzyna A Broniowska
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | | | | |
Collapse
|
49
|
Luu L, Dai FF, Prentice KJ, Huang X, Hardy AB, Hansen JB, Liu Y, Joseph JW, Wheeler MB. The loss of Sirt1 in mouse pancreatic beta cells impairs insulin secretion by disrupting glucose sensing. Diabetologia 2013; 56:2010-20. [PMID: 23783352 DOI: 10.1007/s00125-013-2946-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
AIMS/HYPOTHESIS Sirtuin 1 (SIRT1) has emerged as a key metabolic regulator of glucose homeostasis and insulin secretion. Enhanced SIRT1 activity has been shown to be protective against diabetes, although the mechanisms remain largely unknown. The aim of this study was to determine how SIRT1 regulates insulin secretion in the pancreatic beta cell. METHODS Pancreatic beta cell-specific Sirt1 deletion was induced by tamoxifen injection in 9-week-old Pdx1CreER:floxSirt1 mice (Sirt1BKO). Controls were injected with vehicle. Mice were assessed metabolically via glucose challenge, insulin tolerance tests and physical variables. In parallel, Sirt1 short interfering RNA-treated MIN6 cells (SIRT1KD) and isolated Sirt1BKO islets were used to investigate the effect of SIRT1 inactivation on insulin secretion and gene expression. RESULTS OGTTs showed impaired glucose disposal in Sirt1BKO mice due to insufficient insulin secretion. Isolated Sirt1BKO islets and SIRT1KD MIN6 cells also exhibited impaired glucose-stimulated insulin secretion. Subsequent analyses revealed impaired α-ketoisocaproic acid-induced insulin secretion and attenuated glucose-induced Ca(2+) influx, but normal insulin granule exocytosis in Sirt1BKO beta cells. Microarray studies revealed a large cluster of mitochondria-related genes, the expression of which was dysregulated in SIRT1KD MIN6 cells. Upon further analysis, we demonstrated an explicit defect in mitochondrial function: the inability to couple nutrient metabolism to mitochondrial membrane hyperpolarisation and reduced oxygen consumption rates. CONCLUSIONS/INTERPRETATION Taken together, these findings indicate that in beta cells the deacetylase SIRT1 regulates the expression of specific mitochondria-related genes that control metabolic coupling, and that a decrease in beta cell Sirt1 expression impairs glucose sensing and insulin secretion.
Collapse
Affiliation(s)
- L Luu
- Department of Physiology, University of Toronto, 1 King's College Circle Room 3352, Toronto, ON M5S 1A8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang Y, Tong J, Zou D, Chang B, Wang B, Wang B. Elevated expression of forkhead box protein O1 (FoxO1) in alcohol-induced intestinal barrier dysfunction. Acta Histochem 2013; 115:557-63. [PMID: 23347700 DOI: 10.1016/j.acthis.2012.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/09/2012] [Accepted: 12/11/2012] [Indexed: 12/20/2022]
Abstract
Alcohol-induced intestinal barrier dysfunction is a major contributor to alcoholic liver disease (ALD). Forkhead box protein O1 (FoxO1) is a member of the mammalian forkhead box O class (FoxO) subfamily that regulates a wide array of cellular processes. In the present study, we used both an alcohol-fed mouse model and an alcohol-treated Caco-2 intestinal epithelial cell monolayer in vitro model to investigate whether FoxO1 is involved in alcohol-induced intestinal barrier dysfunction. We found that chronic alcohol exposure to mice significantly increased both mRNA and protein levels of FoxO1 in all the examined intestinal segments with the most remarkable changes in the ileum. Alcohol treatment increased mRNA and protein levels of FoxO1 and promoted nuclear translocation of FoxO1 in Caco-2 cells. Furthermore, alcohol treatment with Caco-2 cells resulted in a significant decrease in the epithelial transepithelial electrical resistance (TEER) value, which was attenuated by knockdown of FoxO1 expression. In conclusion, our data suggest that activation of FoxO1 is likely to be a novel mechanism contributing to the deleterious effects of alcohol on intestinal barrier function.
Collapse
Affiliation(s)
- Ying Wang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | | | | | | | | | | |
Collapse
|