1
|
Kametani Y, Shiota Y. Mechanistic studies of NO x reduction reactions involving copper complexes: encouragement of DFT calculations. Dalton Trans 2024; 53:19081-19087. [PMID: 39530191 DOI: 10.1039/d4dt02420f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The reduction of nitrogen oxides (NOx), which is mainly mediated by metalloenzymes and metal complexes, is a critical process in the nitrogen cycle and environmental remediation. This Frontier article highlights the importance of density functional theory (DFT) calculations to gain mechanistic insights into nitrite (NO2-) and nitric oxide (NO) reduction reactions facilitated by copper complexes by focusing on two key processes: the reduction of NO2- to NO by a monocopper complex, with special emphasis on the concerted proton-electron transfer, and the reduction of NO to N2O by a dicopper complex, which involves N-N bond formation, N2O2 isomerization, and N-O bond cleavage. These findings underscore the utility of DFT calculations in unraveling complicated reaction mechanisms and offer a foundation for future research aimed at improving the reactivity of transition metal complexes in NOx reduction reactions.
Collapse
Affiliation(s)
- Yohei Kametani
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Carlström M, Weitzberg E, Lundberg JO. Nitric Oxide Signaling and Regulation in the Cardiovascular System: Recent Advances. Pharmacol Rev 2024; 76:1038-1062. [PMID: 38866562 DOI: 10.1124/pharmrev.124.001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Nitric oxide (NO) from endothelial NO synthase importantly contributes to vascular homeostasis. Reduced NO production or increased scavenging during disease conditions with oxidative stress contribute to endothelial dysfunction and NO deficiency. In addition to the classical enzymatic NO synthases (NOS) system, NO can also be generated via the nitrate-nitrite-NO pathway. Dietary and pharmacological approaches aimed at increasing NO bioactivity, especially in the cardiovascular system, have been the focus of much research since the discovery of this small gaseous signaling molecule. Despite wide appreciation of the biological role of NOS/NO signaling, questions still remain about the chemical nature of NOS-derived bioactivity. Recent studies show that NO-like bioactivity can be efficiently transduced by mobile NO-ferroheme species, which can transfer between proteins, partition into a hydrophobic phase, and directly activate the soluble guanylyl cyclase-cGMP-protein kinase G pathway without intermediacy of free NO. Moreover, interaction between red blood cells and the endothelium in the regulation of vascular NO homeostasis have gained much attention, especially in conditions with cardiometabolic disease. In this review we discuss both classical and nonclassical pathways for NO generation in the cardiovascular system and how these can be modulated for therapeutic purposes. SIGNIFICANCE STATEMENT: After four decades of intensive research, questions persist about the transduction and control of nitric oxide (NO) synthase bioactivity. Here we discuss NO signaling in cardiovascular health and disease, highlighting new findings, such as the important role of red blood cells in cardiovascular NO homeostasis. Nonclassical signaling modes, like the nitrate-nitrite-NO pathway, and therapeutic opportunities related to the NO system are discussed. Existing and potential pharmacological treatments/strategies, as well as dietary components influencing NO generation and signaling are covered.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| |
Collapse
|
3
|
Struwe MA, Yang J, Kolanji K, Mengell J, Scheidig AJ, Clement B, Kirk ML. Second-Coordination-Sphere Effects Reveal Electronic Structure Differences between the Mitochondrial Amidoxime Reducing Component and Sulfite Oxidase. Inorg Chem 2024; 63:19063-19073. [PMID: 39350518 DOI: 10.1021/acs.inorgchem.4c02157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A combination of X-ray absorption and low-temperature electronic absorption spectroscopies has been used to probe the geometric and electronic structures of the human mitochondrial amidoxime reducing component enzyme (hmARC1) in the oxidized Mo(VI) and reduced Mo(IV) forms. Extended X-ray absorption fine structure analysis revealed that oxidized enzyme possesses a 5-coordinate [MoO2(SCys)(PDT)]- (PDT = pyranopterin dithiolene) active site with a cysteine coordinated to Mo. A 5-coordinate geometry is retained in the reduced state, with the equatorial oxo being protonated. Low-temperature electronic absorption spectroscopy of hmARC1 reveals a spectrum for the oxidized enzyme that is significantly different from what has been reported for sulfite oxidase family enzymes. Time-dependent density functional theory computations on oxidized and reduced hmARC1, and a small molecule analogue for hmARC1ox, have been used to assist us in making detailed band assignments and developing a greater understanding of enzyme electronic structure contributions to reactivity. Our understanding of the hmARCred HOMO and the LUMO of the benzamidoxime substrate reveal a potential π-bonding interaction between these redox orbitals, with two-electron occupation of the substrate LUMO along the reaction coordinate activating the O-N bond for cleavage and promoting oxygen atom transfer to the Mo site.
Collapse
Affiliation(s)
- Michel A Struwe
- Zoologisches Institut Strukturbiologie, Zentrum für Biochemie und Molekularbiologie, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
- Pharmazeutisches Institut, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Jing Yang
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Kubandiran Kolanji
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Joshua Mengell
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Axel J Scheidig
- Zoologisches Institut Strukturbiologie, Zentrum für Biochemie und Molekularbiologie, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Bernd Clement
- Pharmazeutisches Institut, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| |
Collapse
|
4
|
Piknova B, Park JW, Tunau-Spencer KJ, Jenkins A, Hellinga DG, Walter PJ, Cai H, Schechter AN. Skeletal Muscle, Skin, and Bone as Three Major Nitrate Reservoirs in Mammals: Chemiluminescence and 15N-Tracer Studies in Yorkshire Pigs. Nutrients 2024; 16:2674. [PMID: 39203815 PMCID: PMC11357542 DOI: 10.3390/nu16162674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
In mammals, nitric oxide (NO) is generated either by the nitric oxide synthase (NOS) enzymes from arginine or by the reduction of nitrate to nitrite by tissue xanthine oxidoreductase (XOR) and the microbiome and further reducing nitrite to NO by XOR or several heme proteins. Previously, we reported that skeletal muscle acts as a large nitrate reservoir in mammals, and this nitrate reservoir is systemically, as well as locally, used to generate nitrite and NO. Here, we report identifying two additional nitrate storage organs-bone and skin. We used bolus of ingested 15N-labeled nitrate to trace its short-term fluxes and distribution among organs. At baseline conditions, the nitrate concentration in femur bone samples was 96 ± 63 nmol/g, scalp skin 56 ± 22 nmol/g, with gluteus muscle at 57 ± 39 nmol/g. In comparison, plasma and liver contained 34 ± 19 nmol/g and 15 ± 5 nmol/g of nitrate, respectively. Three hours after 15N-nitrate ingestion, its concentration significantly increased in all organs, exceeding the baseline levels in plasma, skin, bone, skeletal muscle, and in liver 5-, 2.4-, 2.4-, 2.1-, and 2-fold, respectively. As expected, nitrate reduction into nitrite was highest in liver but also substantial in skin and skeletal muscle, followed by the distribution of 15N-labeled nitrite. We believe that these results underline the major roles played by skeletal muscle, skin, and bone, the three largest organs in mammals, in maintaining NO homeostasis, especially via the nitrate-nitrite-NO pathway.
Collapse
Affiliation(s)
- Barbora Piknova
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ji Won Park
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Khalid J. Tunau-Spencer
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Audrey Jenkins
- MedStar Health Research Institute, Washington, DC 20010, USA
| | | | - Peter J. Walter
- Clinical Mass Spectrometry Core, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Hongyi Cai
- Clinical Mass Spectrometry Core, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Alan N. Schechter
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Hussain A, Faheem B, Jang HS, Lee DS, Mun BG, Rolly NK, Yun BW. Melatonin-Nitric Oxide Crosstalk in Plants and the Prospects of NOMela as a Nitric Oxide Donor. Int J Mol Sci 2024; 25:8535. [PMID: 39126104 PMCID: PMC11313359 DOI: 10.3390/ijms25158535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Melatonin regulates vital physiological processes in animals, such as the circadian cycle, sleep, locomotion, body temperature, food intake, and sexual and immune responses. In plants, melatonin modulates seed germination, longevity, circadian cycle, photoperiodicity, flowering, leaf senescence, postharvest fruit storage, and resistance against biotic and abiotic stresses. In plants, the effect of melatonin is mediated by various regulatory elements of the redox network, including RNS and ROS. Similarly, the radical gas NO mediates various physiological processes, like seed germination, flowering, leaf senescence, and stress responses. The biosynthesis of both melatonin and NO takes place in mitochondria and chloroplasts. Hence, both melatonin and nitric oxide are key signaling molecules governing their biological pathways independently. However, there are instances when these pathways cross each other and the two molecules interact with each other, resulting in the formation of N-nitrosomelatonin or NOMela, which is a nitrosated form of melatonin, discovered recently and with promising roles in plant development. The interaction between NO and melatonin is highly complex, and, although a handful of studies reporting these interactions have been published, the exact molecular mechanisms governing them and the prospects of NOMela as a NO donor have just started to be unraveled. Here, we review NO and melatonin production as well as RNS-melatonin interaction under normal and stressful conditions. Furthermore, for the first time, we provide highly sensitive, ozone-chemiluminescence-based comparative measurements of the nitric oxide content, as well as NO-release kinetics between NOMela and the commonly used NO donors CySNO and GSNO.
Collapse
Affiliation(s)
- Adil Hussain
- Department of Agriculture, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Brekhna Faheem
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Hyung-Seok Jang
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Da-Sol Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bong-Gyu Mun
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Nkulu Kabange Rolly
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Minguillón S, Fischer-Schrader K, Pérez-Rontomé C, Matamoros MA, Becana M. The enigmatic enzyme 'amidoxime reducing component' of Lotus japonicus. Characterization, expression, activity in plant tissues, and proposed role as a nitric oxide-forming nitrite reductase. PHYSIOLOGIA PLANTARUM 2024; 176:e14438. [PMID: 39054574 DOI: 10.1111/ppl.14438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
Human mitochondria contain a molybdoprotein capable of reducing amidoximes using cytochrome b5/cytochrome b5 reductase (Cb/CbR). This 'amidoxime reducing component' (ARC) also reduces nitrite to nitric oxide (NO). In the plant kingdom, distinct functions have been suggested for ARCs. Thus, the single ARC of Chlamydomonas reinhardtii (crARC) reduces nitrite to NO by taking electrons from nitrate reductase (NR). Therefore, it was proposed that a dual NR/crARC system can generate NO under physiological conditions and the crARC was renamed to 'NO-forming nitrite reductase' (NOFNiR). In contrast to this, the two ARC enzymes from Arabidopsis thaliana were not found to produce NO in vitro at physiological nitrite concentrations, suggesting a different, as yet unknown, function in vascular plants. Here, we have investigated the two ARCs of Lotus japonicus (LjARCs) to shed light on this controversy and to examine, for the first time, the distribution of ARCs in plant tissues. The LjARCs are localized in the cytosol and their activities and catalytic efficiencies, which are much higher than those of A. thaliana, are consistent with a role as NOFNiR. LjARCs are prone to S-nitrosylation in vitro by S-nitrosoglutathione and this post-translational modification drastically inhibits their activities. The enzymes are mainly expressed in flowers, seeds and pods, but are absent in nodules. LjARCs are active with NR and Cb/CbR as electron-transferring systems. However, the LjNR mRNA levels in seeds and pods are negligible, whereas our proteomic analyses show that pods contain the two ARCs, Cb and CbR. We conclude that LjARCs may play a role as NOFNiR by receiving electrons from the Cb/CbR system but do not act in combination with NR.
Collapse
Affiliation(s)
- Samuel Minguillón
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Katrin Fischer-Schrader
- Institute of Biochemistry, Department of Chemistry and Biochemistry, University of Cologne, Germany
| | - Carmen Pérez-Rontomé
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Manuel A Matamoros
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Manuel Becana
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| |
Collapse
|
7
|
Silva-Cunha M, Lacchini R, Tanus-Santos JE. Facilitating Nitrite-Derived S-Nitrosothiol Formation in the Upper Gastrointestinal Tract in the Therapy of Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:691. [PMID: 38929130 PMCID: PMC11200996 DOI: 10.3390/antiox13060691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) are often associated with impaired nitric oxide (NO) bioavailability, a critical pathophysiological alteration in CVDs and an important target for therapeutic interventions. Recent studies have revealed the potential of inorganic nitrite and nitrate as sources of NO, offering promising alternatives for managing various cardiovascular conditions. It is now becoming clear that taking advantage of enzymatic pathways involved in nitrite reduction to NO is very relevant in new therapeutics. However, recent studies have shown that nitrite may be bioactivated in the acidic gastric environment, where nitrite generates NO and a variety of S-nitrosating compounds that result in increased circulating S-nitrosothiol concentrations and S-nitrosation of tissue pharmacological targets. Moreover, transnitrosation reactions may further nitrosate other targets, resulting in improved cardiovascular function in patients with CVDs. In this review, we comprehensively address the mechanisms and relevant effects of nitrate and nitrite-stimulated gastric S-nitrosothiol formation that may promote S-nitrosation of pharmacological targets in various CVDs. Recently identified interfering factors that may inhibit these mechanisms and prevent the beneficial responses to nitrate and nitrite therapy were also taken into consideration.
Collapse
Affiliation(s)
- Mila Silva-Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil;
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto 14040-902, Brazil;
| | - Jose E. Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil;
| |
Collapse
|
8
|
Hou W, Watson C, Cecconie T, Bolaki MN, Brady JJ, Lu Q, Gatto GJ, Day TA. Biochemical and functional characterization of the p.A165T missense variant of mitochondrial amidoxime-reducing component 1. J Biol Chem 2024; 300:107353. [PMID: 38723751 PMCID: PMC11190489 DOI: 10.1016/j.jbc.2024.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Recent genome-wide association studies have identified a missense variant p.A165T in mitochondrial amidoxime-reducing component 1 (mARC1) that is strongly associated with protection from all-cause cirrhosis and improved prognosis in nonalcoholic steatohepatitis. The precise mechanism of this protective effect is unknown. Substitution of alanine 165 with threonine is predicted to affect mARC1 protein stability and to have deleterious effects on its function. To investigate the mechanism, we have generated a knock-in mutant mARC1 A165T and a catalytically dead mutant C273A (as a control) in human hepatoma HepG2 cells, enabling characterization of protein subcellular distribution, stability, and biochemical functions of the mARC1 mutant protein expressed from its endogenous locus. Compared to WT mARC1, we found that the A165T mutant exhibits significant mislocalization outside of its traditional location anchored in the mitochondrial outer membrane and reduces protein stability, resulting in lower basal levels. We evaluated the involvement of the ubiquitin proteasome system in mARC1 A165T degradation and observed increased ubiquitination and faster degradation of the A165T variant. In addition, we have shown that HepG2 cells carrying the MTARC1 p.A165T variant exhibit lower N-reductive activity on exogenously added amidoxime substrates in vitro. The data from these biochemical and functional assays suggest a mechanism by which the MTARC1 p.A165T variant abrogates enzyme function which may contribute to its protective effect in liver disease.
Collapse
Affiliation(s)
- Wangfang Hou
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Christian Watson
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Ted Cecconie
- MEDDesign-NCE-MD SPMB US, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | | | | - Quinn Lu
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Gregory J Gatto
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA.
| | - Tovah A Day
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Guo Y, Gao Z, LaGory EL, Kristin LW, Gupte J, Gong Y, Rardin MJ, Liu T, Nguyen TT, Long J, Hsu YH, Murray JK, Lade J, Jackson S, Zhang J. Liver-specific mitochondrial amidoxime-reducing component 1 (Mtarc1) knockdown protects the liver from diet-induced MASH in multiple mouse models. Hepatol Commun 2024; 8:e0419. [PMID: 38696369 PMCID: PMC11068142 DOI: 10.1097/hc9.0000000000000419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/26/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Human genetic studies have identified several mitochondrial amidoxime-reducing component 1 (MTARC1) variants as protective against metabolic dysfunction-associated steatotic liver disease. The MTARC1 variants are associated with decreased plasma lipids and liver enzymes and reduced liver-related mortality. However, the role of mARC1 in fatty liver disease is still unclear. METHODS Given that mARC1 is mainly expressed in hepatocytes, we developed an N-acetylgalactosamine-conjugated mouse Mtarc1 siRNA, applying it in multiple in vivo models to investigate the role of mARC1 using multiomic techniques. RESULTS In ob/ob mice, knockdown of Mtarc1 in mouse hepatocytes resulted in decreased serum liver enzymes, LDL-cholesterol, and liver triglycerides. Reduction of mARC1 also reduced liver weight, improved lipid profiles, and attenuated liver pathological changes in 2 diet-induced metabolic dysfunction-associated steatohepatitis mouse models. A comprehensive analysis of mARC1-deficient liver from a metabolic dysfunction-associated steatohepatitis mouse model by metabolomics, proteomics, and lipidomics showed that Mtarc1 knockdown partially restored metabolites and lipids altered by diet. CONCLUSIONS Taken together, reducing mARC1 expression in hepatocytes protects against metabolic dysfunction-associated steatohepatitis in multiple murine models, suggesting a potential therapeutic approach for this chronic liver disease.
Collapse
Affiliation(s)
- Yuanjun Guo
- Research Biomarkers, Amgen Research, South San Francisco, California, USA
| | - Zhengyu Gao
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Edward L. LaGory
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California, USA
| | - Lewis Wilson Kristin
- Translational Safety and Bioanalytical Sciences, Amgen Research, South San Francisco, California, USA
| | - Jamila Gupte
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Yan Gong
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Matthew J. Rardin
- Discovery Technology Platforms, Amgen Research, South San Francisco, California, USA
| | - Tongyu Liu
- Center for Research Acceleration by Digital Innovation, Amgen Research, Cambridge, Massachusetts, USA
| | - Thong T. Nguyen
- Center for Research Acceleration by Digital Innovation, Amgen Research, Cambridge, Massachusetts, USA
| | - Jason Long
- RNA Therapeutics, Amgen Research, One Amgen Center Drive, Thousand Oaks, California, USA
| | - Yi-Hsiang Hsu
- Center for Research Acceleration by Digital Innovation, Amgen Research, Cambridge, Massachusetts, USA
| | - Justin K. Murray
- RNA Therapeutics, Amgen Research, One Amgen Center Drive, Thousand Oaks, California, USA
| | - Julie Lade
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California, USA
| | - Simon Jackson
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Jun Zhang
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| |
Collapse
|
10
|
Mukhopadhyay B, Marietta C, Shen PH, Oiseni A, Mirshahi F, Mazzu M, Hodgkinson C, Winkler E, Yuan Q, Miranda D, Kunos G, Sanyal AJ, Goldman D. A patient-based iPSC-derived hepatocyte model of alcohol-associated cirrhosis reveals bioenergetic insights into disease pathogenesis. Nat Commun 2024; 15:2869. [PMID: 38693144 PMCID: PMC11063145 DOI: 10.1038/s41467-024-47085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 03/15/2024] [Indexed: 05/03/2024] Open
Abstract
Only ~20% of heavy drinkers develop alcohol cirrhosis (AC). While differences in metabolism, inflammation, signaling, microbiome signatures and genetic variations have been tied to the pathogenesis of AC, the key underlying mechanisms for this interindividual variability, remain to be fully elucidated. Induced pluripotent stem cell-derived hepatocytes (iHLCs) from patients with AC and healthy controls differ transcriptomically, bioenergetically and histologically. They include a greater number of lipid droplets (LDs) and LD-associated mitochondria compared to control cells. These pre-pathologic indicators are effectively reversed by Aramchol, an inhibitor of stearoyl-CoA desaturase. Bioenergetically, AC iHLCs have lower spare capacity, slower ATP production and their mitochondrial fuel flexibility towards fatty acids and glutamate is weakened. MARC1 and PNPLA3, genes implicated by GWAS in alcohol cirrhosis, show to correlate with lipid droplet-associated and mitochondria-mediated oxidative damage in AC iHLCs. Knockdown of PNPLA3 expression exacerbates mitochondrial deficits and leads to lipid droplets alterations. These findings suggest that differences in mitochondrial bioenergetics and lipid droplet formation are intrinsic to AC hepatocytes and can play a role in its pathogenesis.
Collapse
Affiliation(s)
- Bani Mukhopadhyay
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Cheryl Marietta
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Pei-Hong Shen
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Abdul Oiseni
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Faridoddin Mirshahi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Maria Mazzu
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Colin Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Eli Winkler
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Qiaoping Yuan
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Daniel Miranda
- Aivia Machine Learning Team, Leica Microsystems, Inc, Deerfield, IL, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA.
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Das S, Kumar P. Exploring the carbonic anhydrase-mimetic [(PMDTA) 2ZnII2(OH -) 2] 2+ for nitric oxide monooxygenation. Dalton Trans 2024; 53:6173-6177. [PMID: 38501600 DOI: 10.1039/d4dt00407h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
In biology, nitrite (NO2-) serves as a storage pool of nitric oxide (NO); however, the formation of NO2- from NO is still under investigation. Here, we report the NO monooxygenation (NOM) reaction of a ZnII-hydroxide complex (1), producing a ZnII-nitrito complex {2, (ZnII-NO2-)} + H2.
Collapse
Affiliation(s)
- Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| |
Collapse
|
12
|
Jędrejko M, Jędrejko K, Gómez-Renaud VM, Kała K, Muszyńska B. Exploring the Impact of Alternative Sources of Dietary Nitrate Supplementation on Exercise Performance. Int J Mol Sci 2024; 25:3650. [PMID: 38612462 PMCID: PMC11012081 DOI: 10.3390/ijms25073650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
An increase in the level of nitric oxide (NO) plays a key role in regulating the human cardiovascular system (lowering blood pressure, improving blood flow), glycemic control in type 2 diabetes, and may help enhance exercise capacity in healthy individuals (including athletes). This molecule is formed by endogenous enzymatic synthesis and the intake of inorganic nitrate (NO3-) from dietary sources. Although one of the most well-known natural sources of NO3- in the daily diet is beetroot (Beta vulgaris), this review also explores other plant sources of NO3- with comparable concentrations that could serve as ergogenic aids, supporting exercise performance or recovery in healthy individuals. The results of the analysis demonstrate that red spinach (Amaranthus spp.) and green spinach (Spinacia oleracea) are alternative natural sources rich in dietary NO3-. The outcomes of the collected studies showed that consumption of selected alternative sources of inorganic NO3- could support physical condition. Red spinach and green spinach have been shown to improve exercise performance or accelerate recovery after physical exertion in healthy subjects (including athletes).
Collapse
Affiliation(s)
- Maciej Jędrejko
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Str., 30-688 Kraków, Poland (K.J.); (K.K.)
| | - Karol Jędrejko
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Str., 30-688 Kraków, Poland (K.J.); (K.K.)
| | - Víctor M. Gómez-Renaud
- Human Performance Laboratory, School of Physical Education, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66455, Mexico;
| | - Katarzyna Kała
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Str., 30-688 Kraków, Poland (K.J.); (K.K.)
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Str., 30-688 Kraków, Poland (K.J.); (K.K.)
| |
Collapse
|
13
|
Smagris E, Shihanian LM, Mintah IJ, Bigdelou P, Livson Y, Brown H, Verweij N, Hunt C, Johnson RO, Greer TJ, Hartford SA, Hindy G, Sun L, Nielsen JB, Halasz G, Lotta LA, Murphy AJ, Sleeman MW, Gusarova V. Divergent role of Mitochondrial Amidoxime Reducing Component 1 (MARC1) in human and mouse. PLoS Genet 2024; 20:e1011179. [PMID: 38437227 PMCID: PMC10939284 DOI: 10.1371/journal.pgen.1011179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/14/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
Recent human genome-wide association studies have identified common missense variants in MARC1, p.Ala165Thr and p.Met187Lys, associated with lower hepatic fat, reduction in liver enzymes and protection from most causes of cirrhosis. Using an exome-wide association study we recapitulated earlier MARC1 p.Ala165Thr and p.Met187Lys findings in 540,000 individuals from five ancestry groups. We also discovered novel rare putative loss of function variants in MARC1 with a phenotype similar to MARC1 p.Ala165Thr/p.Met187Lys variants. In vitro studies of recombinant human MARC1 protein revealed Ala165Thr substitution causes protein instability and aberrant localization in hepatic cells, suggesting MARC1 inhibition or deletion may lead to hepatoprotection. Following this hypothesis, we generated Marc1 knockout mice and evaluated the effect of Marc1 deletion on liver phenotype. Unexpectedly, our study found that whole-body Marc1 deficiency in mouse is not protective against hepatic triglyceride accumulation, liver inflammation or fibrosis. In attempts to explain the lack of the observed phenotype, we discovered that Marc1 plays only a minor role in mouse liver while its paralogue Marc2 is the main Marc family enzyme in mice. Our findings highlight the major difference in MARC1 physiological function between human and mouse.
Collapse
Affiliation(s)
- Eriks Smagris
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Lisa M. Shihanian
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Ivory J. Mintah
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Parnian Bigdelou
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Yuliya Livson
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Heather Brown
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Niek Verweij
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Charleen Hunt
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | | | - Tyler J. Greer
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | | | - George Hindy
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Luanluan Sun
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Jonas B. Nielsen
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Gabor Halasz
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Luca A. Lotta
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Andrew J. Murphy
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Mark W. Sleeman
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Viktoria Gusarova
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| |
Collapse
|
14
|
Olas B. The Cardioprotective Role of Nitrate-Rich Vegetables. Foods 2024; 13:691. [PMID: 38472804 DOI: 10.3390/foods13050691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Nitric oxide (NO) is an inorganic radical produced by both the non-enzymatic nitrate (NO3-)-nitrite (NO2-)-NO pathway and enzymatic reactions catalyzed by nitric oxide synthase (NOS). Also, as nitrate and nitrite from dietary and other endogenous sources can be reduced back to nitric oxide in vivo, the endogenous NO level can be increased through the consumption of nitrate-rich vegetables. Ingestion of dietary NO3- has beneficial effects which have been attributed to a subsequent increase in NO: a signaling molecule that may regulate various systems, including the cardiovascular system. A diet rich in NO3- from green leafy and root vegetables has cardioprotective effects, with beetroot products being particularly good sources of NO3-. For example, various studies have demonstrated a significant increase in nitrite levels (regarded as markers of NO) in plasma after the intake of beetroot juice. The present review describes the current literature concerning the role of nitrate-rich vegetables (especially beetroot products) in the prophylaxis and treatment of cardiovascular diseases (CVDs). This review is based on studies identified in electronic databases, including PubMed, ScienceDirect, Web of Knowledge, Sci Finder, Web of Science, and SCOPUS.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
15
|
Christie IN, Theparambil SM, Braga A, Doronin M, Hosford PS, Brazhe A, Mascarenhas A, Nizari S, Hadjihambi A, Wells JA, Hobbs A, Semyanov A, Abramov AY, Angelova PR, Gourine AV. Astrocytes produce nitric oxide via nitrite reduction in mitochondria to regulate cerebral blood flow during brain hypoxia. Cell Rep 2023; 42:113514. [PMID: 38041814 PMCID: PMC7615749 DOI: 10.1016/j.celrep.2023.113514] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 12/04/2023] Open
Abstract
During hypoxia, increases in cerebral blood flow maintain brain oxygen delivery. Here, we describe a mechanism of brain oxygen sensing that mediates the dilation of intraparenchymal cerebral blood vessels in response to reductions in oxygen supply. In vitro and in vivo experiments conducted in rodent models show that during hypoxia, cortical astrocytes produce the potent vasodilator nitric oxide (NO) via nitrite reduction in mitochondria. Inhibition of mitochondrial respiration mimics, but also occludes, the effect of hypoxia on NO production in astrocytes. Astrocytes display high expression of the molybdenum-cofactor-containing mitochondrial enzyme sulfite oxidase, which can catalyze nitrite reduction in hypoxia. Replacement of molybdenum with tungsten or knockdown of sulfite oxidase expression in astrocytes blocks hypoxia-induced NO production by these glial cells and reduces the cerebrovascular response to hypoxia. These data identify astrocyte mitochondria as brain oxygen sensors that regulate cerebral blood flow during hypoxia via release of nitric oxide.
Collapse
Affiliation(s)
- Isabel N Christie
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK.
| | - Alice Braga
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Maxim Doronin
- College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Alexey Brazhe
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry, Moscow 117997, Russian Federation; Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russian Federation
| | - Alexander Mascarenhas
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Shereen Nizari
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK; Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London WC1E 6BT, UK
| | - Anna Hadjihambi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, and Faculty of Life Sciences and Medicine, King's College London, London SE5 9NT, UK
| | - Jack A Wells
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London WC1E 6BT, UK
| | - Adrian Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Alexey Semyanov
- College of Medicine, Jiaxing University, Jiaxing 314001, China; Department of Molecular Neurobiology, Institute of Bioorganic Chemistry, Moscow 117997, Russian Federation
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
16
|
C S AK, Das S, Kulbir, Bhardwaj P, Sk MP, Kumar P. Mechanistic insights into nitric oxide oxygenation (NOO) reactions of {CrNO} 5 and {CoNO} 8. Dalton Trans 2023; 52:16492-16499. [PMID: 37874255 DOI: 10.1039/d3dt03177b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Here, we report the nitric oxide oxygenation (NOO) reactions of two distinct metal nitrosyls {Co-nitrosyl (S = 0) vs. Cr-nitrosyl (S = 1/2)}. In this regard, we synthesized and characterized [(BPMEN)Co(NO)]2+ ({CoNO}8, 1) to compare its NOO reaction with that of [(BPMEN)Cr(NO)(Cl-)]+ ({CrNO}5, 2), having a similar ligand framework. Kinetic measurements showed that {CrNO}5 is thermally more stable than {CoNO}8. Complexes 1 and 2, upon reaction with the superoxide anion (O2˙-), generate [(BPMEN)CoII(NO2-)2] (CoII-NO2-, 3) and [(BPMEN)CrIII(NO2-)Cl-]+ (CrIII-NO2-, 4), respectively, with O2 evolution. Furthermore, analysis of these NOO reactions and tracking of the N-atom using 15N-labeled NO (15NO) revealed that the N-atoms of 3 (CoII-15NO2-) and 4 (CrIII-15NO2-) derive from the nitrosyl (15NO) moieties of 1 and 2, respectively. This work represents a comparative study of oxidation reactions of {CoNO}8vs. {CrNO}5, showing different rates of the NOO reactions due to different thermal stability. To complete the NOM cycle, we reacted 3 and 4 with NO, and surprisingly, only 3 generated {CoNO}8 species, while 4 was unreactive towards NO. Furthermore, the phenol ring nitration test, performed using 2,4-di-tert-butylphenol (2,4-DTBP), suggested the presence of a proposed peroxynitrite (PN) intermediate in the NOO reactions of 1 and 2.
Collapse
Affiliation(s)
- Akshaya Keerthi C S
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Kulbir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Prabhakar Bhardwaj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Md Palashuddin Sk
- Department of Chemistry, Aligarh Muslim University (AMU) Aligarh, Uttar Pradesh 202001, India
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| |
Collapse
|
17
|
Burgmayer SJN, Kirk ML. Advancing Our Understanding of Pyranopterin-Dithiolene Contributions to Moco Enzyme Catalysis. Molecules 2023; 28:7456. [PMID: 38005178 PMCID: PMC10673323 DOI: 10.3390/molecules28227456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The pyranopterin dithiolene ligand is remarkable in terms of its geometric and electronic structure and is uniquely found in mononuclear molybdenum and tungsten enzymes. The pyranopterin dithiolene is found coordinated to the metal ion, deeply buried within the protein, and non-covalently attached to the protein via an extensive hydrogen bonding network that is enzyme-specific. However, the function of pyranopterin dithiolene in enzymatic catalysis has been difficult to determine. This focused account aims to provide an overview of what has been learned from the study of pyranopterin dithiolene model complexes of molybdenum and how these results relate to the enzyme systems. This work begins with a summary of what is known about the pyranopterin dithiolene ligand in the enzymes. We then introduce the development of inorganic small molecule complexes that model aspects of a coordinated pyranopterin dithiolene and discuss the results of detailed physical studies of the models by electronic absorption, resonance Raman, X-ray absorption and NMR spectroscopies, cyclic voltammetry, X-ray crystallography, and chemical reactivity.
Collapse
Affiliation(s)
| | - Martin L. Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
18
|
Struwe MA, Scheidig AJ, Clement B. The mitochondrial amidoxime reducing component-from prodrug-activation mechanism to drug-metabolizing enzyme and onward to drug target. J Biol Chem 2023; 299:105306. [PMID: 37778733 PMCID: PMC10637980 DOI: 10.1016/j.jbc.2023.105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023] Open
Abstract
The mitochondrial amidoxime-reducing component (mARC) is one of five known molybdenum enzymes in eukaryotes. mARC belongs to the MOSC domain superfamily, a large group of so far poorly studied molybdoenzymes. mARC was initially discovered as the enzyme activating N-hydroxylated prodrugs of basic amidines but has since been shown to also reduce a variety of other N-oxygenated compounds, for example, toxic nucleobase analogs. Under certain circumstances, mARC might also be involved in reductive nitric oxide synthesis through reduction of nitrite. Recently, mARC enzymes have received a lot of attention due to their apparent involvement in lipid metabolism and, in particular, because many genome-wide association studies have shown a common variant of human mARC1 to have a protective effect against liver disease. The mechanism linking mARC enzymes with lipid metabolism remains unknown. Here, we give a comprehensive overview of what is currently known about mARC enzymes, their substrates, structure, and apparent involvement in human disease.
Collapse
Affiliation(s)
- Michel A Struwe
- Zoologisches Institut - Strukturbiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany; Pharmazeutisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany.
| | - Axel J Scheidig
- Zoologisches Institut - Strukturbiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Bernd Clement
- Pharmazeutisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany
| |
Collapse
|
19
|
Jia R, Zheng L, Zhang L, Huang X, Ren Q. mARC dependent NO synthesis activates CanA-Relish-AMPs signal pathway in Eriocheir sinensis during nitrite stress. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109076. [PMID: 37726083 DOI: 10.1016/j.fsi.2023.109076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
As a signal molecule, nitric oxide (NO) can induce the production of antimicrobial peptides (AMPs) in invertebrate innate immunity and is produced through NO synthase (NOS) oxidation or nitrite reduction. Although the role of NOS-derived NO has been extensively studied, studies on nitrite-dependent NO are relatively scarce. In this study, we identified a mitochondrial amidoxime reducing component (mARC), a kind of nitrite reductase, in Eriocheir sinensis. Under nitrite stress, the expression level of EsmARC in the intestine of E. sinensis increased, and the production of NO increased. Furthermore, EsmARC knockdown resulted in a remarkable decrease in NO concentration. These findings indicate that nitrite stress induces the expression of mARC, which promotes the production of NO in E. sinensis. In addition, the expression levels of AMPs in the intestine were upregulated under nitrite stress. Moreover, EsmARC knockdown resulted in the downregulated expression of AMPs. EsmARC plays a positive role in the synthesis of AMPs under nitrite stress. Calcineurin subunit A (CanA) is a serine/threonine protein phosphatase involved in the process by which NO regulates the expression of AMPs. EsCanA knockdown significantly inhibited the transcription of EsRelish and the expression of AMPs under nitrite stress, and EsRelish silencing resulted in the downregulated expression levels of AMPs under nitrite stress. These results indicate that nitrite stress activates the CanA-Relish-AMP pathway in E. sinensis. In summary, mARC-dependent NO synthesis activates the CanA-Relish-AMP signal pathway in E. sinensis during nitrite stress. This research provides novel insights into the relationship between nitrite stress and NO-dependent immune signal activation in crustaceans.
Collapse
Affiliation(s)
- Rui Jia
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Liangmin Zheng
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Lihua Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China.
| | - Qian Ren
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu Province, China.
| |
Collapse
|
20
|
Kametani Y, Ikeda K, Yoshizawa K, Shiota Y. Mechanistic Study of Reduction of Nitrite to NO by the Copper(II) Complex: Different Concerted Proton-Electron Transfer Reactivity between Nitrite and Nitro Complexes. Inorg Chem 2023; 62:13765-13774. [PMID: 37590095 DOI: 10.1021/acs.inorgchem.3c01383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The literature contains numerous reports of copper complexes for nitrite (NO2-) reduction. However, details of how protons and electrons arrive and how nitric oxide (NO) is released remain unknown. The influence of the coordination mode of nitrite on reactivity is also under debate. Kundu and co-workers have reported nitrite reduction by a copper(II) complex [J. Am. Chem. Soc. 2020, 142, 1726-1730]. In their report, the copper(II) complex reduced nitrite using a phenol derivative as a reductant, resulting in NO, a hydroxyl copper(II) complex, and the corresponding biphenol. Also, the involvement of proton-coupled electron transfer was proposed by mechanistic studies. Herein, density functional theory calculations were performed to determine a mechanism for reduction of nitrite by a copper(II) complex. As a result of geometry optimization of an initial complex, two possible structures were obtained: Cu-ONO and Cu-NO2. Two possible reaction pathways initiated from Cu-ONO or Cu-NO2 were then considered. The calculation results indicated that the Cu-ONO pathway is energetically favorable. When changes in the electronic structure were considered, both pathways were found to involve concerted proton-electron transfer (CPET). In addition, an intrinsic reaction coordinate analysis revealed that the two pathways were achieved by different types of CPET. Furthermore, an intrinsic bond orbital analysis clearly indicated that, in the Cu-ONO pathway, the chemical events involved proceeded concertedly yet asynchronously.
Collapse
Affiliation(s)
- Yohei Kametani
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kei Ikeda
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
21
|
Maia LB. Bringing Nitric Oxide to the Molybdenum World-A Personal Perspective. Molecules 2023; 28:5819. [PMID: 37570788 PMCID: PMC10420851 DOI: 10.3390/molecules28155819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Molybdenum-containing enzymes of the xanthine oxidase (XO) family are well known to catalyse oxygen atom transfer reactions, with the great majority of the characterised enzymes catalysing the insertion of an oxygen atom into the substrate. Although some family members are known to catalyse the "reverse" reaction, the capability to abstract an oxygen atom from the substrate molecule is not generally recognised for these enzymes. Hence, it was with surprise and scepticism that the "molybdenum community" noticed the reports on the mammalian XO capability to catalyse the oxygen atom abstraction of nitrite to form nitric oxide (NO). The lack of precedent for a molybdenum- (or tungsten) containing nitrite reductase on the nitrogen biogeochemical cycle contributed also to the scepticism. It took several kinetic, spectroscopic and mechanistic studies on enzymes of the XO family and also of sulfite oxidase and DMSO reductase families to finally have wide recognition of the molybdoenzymes' ability to form NO from nitrite. Herein, integrated in a collection of "personal views" edited by Professor Ralf Mendel, is an overview of my personal journey on the XO and aldehyde oxidase-catalysed nitrite reduction to NO. The main research findings and the path followed to establish XO and AO as competent nitrite reductases are reviewed. The evidence suggesting that these enzymes are probable players of the mammalian NO metabolism is also discussed.
Collapse
Affiliation(s)
- Luisa B Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal
| |
Collapse
|
22
|
Foteva V, Fisher JJ, Qiao Y, Smith R. Does the Micronutrient Molybdenum Have a Role in Gestational Complications and Placental Health? Nutrients 2023; 15:3348. [PMID: 37571285 PMCID: PMC10421405 DOI: 10.3390/nu15153348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Molybdenum is an essential trace element for human health and survival, with molybdenum-containing enzymes catalysing multiple reactions in the metabolism of purines, aldehydes, and sulfur-containing amino acids. Recommended daily intakes vary globally, with molybdenum primarily sourced through the diet, and supplementation is not common. Although the benefits of molybdenum as an anti-diabetic and antioxidant inducer have been reported in the literature, there are conflicting data on the benefits of molybdenum for chronic diseases. Overexposure and deficiency can result in adverse health outcomes and mortality, although physiological doses remain largely unexplored in relation to human health. The lack of knowledge surrounding molybdenum intake and the role it plays in physiology is compounded during pregnancy. As pregnancy progresses, micronutrient demand increases, and diet is an established factor in programming gestational outcomes and maternal health. This review summarises the current literature concerning varied recommendations on molybdenum intake, the role of molybdenum and molybdoenzymes in physiology, and the contribution these play in gestational outcomes.
Collapse
Affiliation(s)
- Vladimira Foteva
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Joshua J. Fisher
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Yixue Qiao
- Academy of Pharmacy, Xi’an Jiaotong Liverpool University, Suzhou 215000, China;
| | - Roger Smith
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| |
Collapse
|
23
|
Allagulova CR, Lubyanova AR, Avalbaev AM. Multiple Ways of Nitric Oxide Production in Plants and Its Functional Activity under Abiotic Stress Conditions. Int J Mol Sci 2023; 24:11637. [PMID: 37511393 PMCID: PMC10380521 DOI: 10.3390/ijms241411637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Nitric oxide (NO) is an endogenous signaling molecule that plays an important role in plant ontogenesis and responses to different stresses. The most widespread abiotic stress factors limiting significantly plant growth and crop yield are drought, salinity, hypo-, hyperthermia, and an excess of heavy metal (HM) ions. Data on the accumulation of endogenous NO under stress factors and on the alleviation of their negative effects under exogenous NO treatments indicate the perspectives of its practical application to improve stress resistance and plant productivity. This requires fundamental knowledge of the NO metabolism and the mechanisms of its biological action in plants. NO generation occurs in plants by two main alternative mechanisms: oxidative or reductive, in spontaneous or enzymatic reactions. NO participates in plant development by controlling the processes of seed germination, vegetative growth, morphogenesis, flower transition, fruit ripening, and senescence. Under stressful conditions, NO contributes to antioxidant protection, osmotic adjustment, normalization of water balance, regulation of cellular ion homeostasis, maintenance of photosynthetic reactions, and growth processes of plants. NO can exert regulative action by inducing posttranslational modifications (PTMs) of proteins changing the activity of different enzymes or transcriptional factors, modulating the expression of huge amounts of genes, including those related to stress tolerance. This review summarizes the current data concerning molecular mechanisms of NO production and its activity in plants during regulation of their life cycle and adaptation to drought, salinity, temperature stress, and HM ions.
Collapse
Affiliation(s)
- Chulpan R Allagulova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Alsu R Lubyanova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Azamat M Avalbaev
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| |
Collapse
|
24
|
Tejada-Jimenez M, Leon-Miranda E, Llamas A. Chlamydomonas reinhardtii-A Reference Microorganism for Eukaryotic Molybdenum Metabolism. Microorganisms 2023; 11:1671. [PMID: 37512844 PMCID: PMC10385300 DOI: 10.3390/microorganisms11071671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Molybdenum (Mo) is vital for the activity of a small but essential group of enzymes called molybdoenzymes. So far, specifically five molybdoenzymes have been discovered in eukaryotes: nitrate reductase, sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase, and mARC. In order to become biologically active, Mo must be chelated to a pterin, forming the so-called Mo cofactor (Moco). Deficiency or mutation in any of the genes involved in Moco biosynthesis results in the simultaneous loss of activity of all molybdoenzymes, fully or partially preventing the normal development of the affected organism. To prevent this, the different mechanisms involved in Mo homeostasis must be finely regulated. Chlamydomonas reinhardtii is a unicellular, photosynthetic, eukaryotic microalga that has produced fundamental advances in key steps of Mo homeostasis over the last 30 years, which have been extrapolated to higher organisms, both plants and animals. These advances include the identification of the first two molybdate transporters in eukaryotes (MOT1 and MOT2), the characterization of key genes in Moco biosynthesis, the identification of the first enzyme that protects and transfers Moco (MCP1), the first characterization of mARC in plants, and the discovery of the crucial role of the nitrate reductase-mARC complex in plant nitric oxide production. This review aims to provide a comprehensive summary of the progress achieved in using C. reinhardtii as a model organism in Mo homeostasis and to propose how this microalga can continue improving with the advancements in this field in the future.
Collapse
Affiliation(s)
- Manuel Tejada-Jimenez
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain
| | - Esperanza Leon-Miranda
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain
| | - Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
25
|
Clement B, Struwe MA. The History of mARC. Molecules 2023; 28:4713. [PMID: 37375270 DOI: 10.3390/molecules28124713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
The mitochondrial amidoxime-reducing component (mARC) is the most recently discovered molybdoenzyme in humans after sulfite oxidase, xanthine oxidase and aldehyde oxidase. Here, the timeline of mARC's discovery is briefly described. The story begins with investigations into N-oxidation of pharmaceutical drugs and model compounds. Many compounds are N-oxidized extensively in vitro, but it turned out that a previously unknown enzyme catalyzes the retroreduction of the N-oxygenated products in vivo. After many years, the molybdoenzyme mARC could finally be isolated and identified in 2006. mARC is an important drug-metabolizing enzyme and N-reduction by mARC has been exploited very successfully for prodrug strategies, that allow oral administration of otherwise poorly bioavailable therapeutic drugs. Recently, it was demonstrated that mARC is a key factor in lipid metabolism and likely involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). The exact link between mARC and lipid metabolism is not yet fully understood. Regardless, many now consider mARC a potential drug target for the prevention or treatment of liver diseases. This article focusses on discoveries related to mammalian mARC enzymes. mARC homologues have been studied in algae, plants and bacteria. These will not be discussed extensively here.
Collapse
Affiliation(s)
- Bernd Clement
- Pharmazeutisches Institut, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Michel A Struwe
- Pharmazeutisches Institut, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
- Zoologisches Institut-Strukturbiologie, Zentrum für Biochemie und Molekularbiologie, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
26
|
Dou C, Han X, Xie H, Liao H, Xiao X, Huang Z, Luo G, Zhang X, Yao W. Protective role of nitric oxide donors on endothelium in ischemia-reperfusion injury: a meta-analysis of randomized controlled trials. BMC Anesthesiol 2023; 23:189. [PMID: 37259069 DOI: 10.1186/s12871-023-02117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/29/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Decreased bioavailability of nitric oxide (NO) under hypoxic conditions can lead to endothelial dysfunction. NO supplementation may protect endothelial function in ischemia-reperfusion (IR) injury. Therefore, a meta-analysis of randomized controlled trials (RCTs) was performed to verify the protective effect of NO donors on endothelium in IR injury. METHODS Medline, Embase, Cochrane Library, and Web of Science databases were searched from inception to April 1, 2023. The specific inclusion criteria were as follows: (1) RCTs; (2) trials comparing NO donors with placebo control groups; and (3) trials reporting the effects of these interventions on vascular endothelial functional outcomes in IR injury. Random-effects models were used to assess pooled effect sizes, which were expressed as standardized mean differences (SMD). RESULTS Seven studies satisfied the inclusion criteria and consisted of a total of 149 participants. NO donors were protective of endothelial function in IR injury (SMD: - 1.60; 95% confidence interval [CI]: - 2.33, - 0.88, P < 0.0001; heterogeneity [I2 = 66%, P = 0.001]). Results of the subgroup analysis showed the following: absence of protective effect of NO donor use following ischemia on endothelial function in IR injury - 1.78 (95% CI: - 2.50, - 1.07) and loss of protective effect on endothelial function after prolonged NO donor use - 0.89 (95% CI: - 2.06, 0.28). CONCLUSION The short-period use of NO donors before the onset of ischemia can protect endothelial function in IR injury.
Collapse
Grants
- 81974081,81601724,2021A1515012318, 2019A1515011852,202201010765, 202102010190, National Natural Science Foundation of China ,Guangdong Basic and Applied Basic Research Foundation,Science and Technology Program of Guangzhou, China
- 81974081,81601724,2021A1515012318, 2019A1515011852,202201010765, 202102010190, National Natural Science Foundation of China ,Guangdong Basic and Applied Basic Research Foundation,Science and Technology Program of Guangzhou, China
- 81974081,81601724,2021A1515012318, 2019A1515011852,202201010765, 202102010190, National Natural Science Foundation of China ,Guangdong Basic and Applied Basic Research Foundation,Science and Technology Program of Guangzhou, China
- 81974081,81601724,2021A1515012318, 2019A1515011852,202201010765, 202102010190, National Natural Science Foundation of China ,Guangdong Basic and Applied Basic Research Foundation,Science and Technology Program of Guangzhou, China
- 81974081,81601724,2021A1515012318, 2019A1515011852,202201010765, 202102010190, National Natural Science Foundation of China ,Guangdong Basic and Applied Basic Research Foundation,Science and Technology Program of Guangzhou, China
- 81974081,81601724,2021A1515012318, 2019A1515011852,202201010765, 202102010190, National Natural Science Foundation of China ,Guangdong Basic and Applied Basic Research Foundation,Science and Technology Program of Guangzhou, China
- 81974081,81601724,2021A1515012318, 2019A1515011852,202201010765, 202102010190, National Natural Science Foundation of China ,Guangdong Basic and Applied Basic Research Foundation,Science and Technology Program of Guangzhou, China
- 81974081,81601724,2021A1515012318, 2019A1515011852,202201010765, 202102010190, National Natural Science Foundation of China ,Guangdong Basic and Applied Basic Research Foundation,Science and Technology Program of Guangzhou, China
Collapse
Affiliation(s)
- Chaoxun Dou
- Department of Anesthesiology, The third Affiliated hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xue Han
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Hanbin Xie
- Department of Anesthesiology, The third Affiliated hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Haofeng Liao
- Department of Anesthesiology, The third Affiliated hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xue Xiao
- Department of Anesthesiology, The third Affiliated hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ziyan Huang
- Department of Anesthesiology, The third Affiliated hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Gangjian Luo
- Department of Anesthesiology, The third Affiliated hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xinmin Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Weifeng Yao
- Department of Anesthesiology, The third Affiliated hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
27
|
Martins TDS, Da-Silva CJ, Shimoia EP, Posso DA, Carvalho IR, de Oliveira ACB, do Amarante L. Nitrate supply decreases fermentation and alleviates oxidative and ionic stress in nitrogen-fixing soybean exposed to saline waterlogging. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:416-433. [PMID: 37038091 DOI: 10.1071/fp22145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Nitrate (NO3 - ) nutrition is known to mitigate the damages caused by individual stresses of waterlogging and salinity. Here, we investigated the role of NO3 - in soybean plants exposed to these stresses in combination. Nodulated soybean cultivated under greenhouse conditions and daily fertilised with a nutrient solution without nitrogen were subjected to the following treatments: Water, NO3 - , NaCl, and NaCl+NO3 - . Then, plants were exposed to waterlogging (6days) and drainage (2days). Compared to plants exposed to isolated stress, the saline waterlogging resulted in higher concentrations of H2 O2 , O2 ˙- , and lipid peroxidation at the whole-plant level, mainly during drainage. Furthermore, saline waterlogging increased fermentation and the concentrations of Na+ and K+ in roots and leaves both during waterlogging and drainage. NO3 - supplementation led to augments in NO3 - and NO levels, and stimulated nitrate reductase activity in both organs. In addition, NO3 - nutrition alleviated oxidative stress and fermentation besides increasing the K+ /Na+ ratio in plants exposed to saline waterlogging. In conclusion, NO3 - supplementation is a useful strategy to help soybean plants overcome saline waterlogging stress. These findings are of high relevance for agriculture as soybean is an important commodity and has been cultivated in areas prone to saline waterlogging.
Collapse
Affiliation(s)
| | | | | | - Douglas Antônio Posso
- Departamento de Botânica, Universidade Federal de Pelotas, Capão do Leão 96160-000, Brazil
| | - Ivan Ricardo Carvalho
- Departamento de Estudos Agrários, Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí 98700-000, Brazil
| | | | - Luciano do Amarante
- Departamento de Botânica, Universidade Federal de Pelotas, Capão do Leão 96160-000, Brazil
| |
Collapse
|
28
|
Lewis LC, Chen L, Hameed LS, Kitchen RR, Maroteau C, Nagarajan SR, Norlin J, Daly CE, Szczerbinska I, Hjuler ST, Patel R, Livingstone EJ, Durrant TN, Wondimu E, BasuRay S, Chandran A, Lee WH, Hu S, Gilboa B, Grandi ME, Toledo EM, Erikat AH, Hodson L, Haynes WG, Pursell NW, Coppieters K, Fleckner J, Howson JM, Andersen B, Ruby MA. Hepatocyte mARC1 promotes fatty liver disease. JHEP Rep 2023; 5:100693. [PMID: 37122688 PMCID: PMC10133763 DOI: 10.1016/j.jhepr.2023.100693] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 05/02/2023] Open
Abstract
Background & Aims Non-alcoholic fatty liver disease (NAFLD) has a prevalence of ∼25% worldwide, with significant public health consequences yet few effective treatments. Human genetics can help elucidate novel biology and identify targets for new therapeutics. Genetic variants in mitochondrial amidoxime-reducing component 1 (MTARC1) have been associated with NAFLD and liver-related mortality; however, its pathophysiological role and the cell type(s) mediating these effects remain unclear. We aimed to investigate how MTARC1 exerts its effects on NAFLD by integrating human genetics with in vitro and in vivo studies of mARC1 knockdown. Methods Analyses including multi-trait colocalisation and Mendelian randomisation were used to assess the genetic associations of MTARC1. In addition, we established an in vitro long-term primary human hepatocyte model with metabolic readouts and used the Gubra Amylin NASH (GAN)-diet non-alcoholic steatohepatitis mouse model treated with hepatocyte-specific N-acetylgalactosamine (GalNAc)-siRNA to understand the in vivo impacts of MTARC1. Results We showed that genetic variants within the MTARC1 locus are associated with liver enzymes, liver fat, plasma lipids, and body composition, and these associations are attributable to the same causal variant (p.A165T, rs2642438 G>A), suggesting a shared mechanism. We demonstrated that increased MTARC1 mRNA had an adverse effect on these traits using Mendelian randomisation, implying therapeutic inhibition of mARC1 could be beneficial. In vitro mARC1 knockdown decreased lipid accumulation and increased triglyceride secretion, and in vivo GalNAc-siRNA-mediated knockdown of mARC1 lowered hepatic but increased plasma triglycerides. We found alterations in pathways regulating lipid metabolism and decreased secretion of 3-hydroxybutyrate upon mARC1 knockdown in vitro and in vivo. Conclusions Collectively, our findings from human genetics, and in vitro and in vivo hepatocyte-specific mARC1 knockdown support the potential efficacy of hepatocyte-specific targeting of mARC1 for treatment of NAFLD. Impact and implications We report that genetically predicted increases in MTARC1 mRNA associate with poor liver health. Furthermore, knockdown of mARC1 reduces hepatic steatosis in primary human hepatocytes and a murine NASH model. Together, these findings further underscore the therapeutic potential of targeting hepatocyte MTARC1 for NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | - Shilpa R. Nagarajan
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | | | | | | | | | - Rahul Patel
- Novo Nordisk Research Centre Oxford, Oxford, UK
| | | | | | | | | | | | - Wan-Hung Lee
- Dicerna Pharmaceuticals Inc., Lexington, MA, USA
| | - Sile Hu
- Novo Nordisk Research Centre Oxford, Oxford, UK
| | | | | | | | | | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Yang J, Struwe M, Scheidig A, Mengell J, Clement B, Kirk ML. Active Site Structures of the Escherichia coli N-Hydroxylaminopurine Resistance Molybdoenzyme YcbX. Inorg Chem 2023; 62:5315-5319. [PMID: 36971376 PMCID: PMC10544827 DOI: 10.1021/acs.inorgchem.3c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data have been used to characterize the coordination environment for the catalytic Mo site of Escherichia coli YcbX in two different oxidation states. In the oxidized state, the Mo(VI) ion is coordinated by two terminal oxo ligands, a thiolate S atom from cysteine, and two S donors from the bidentate pyranopterin ene-1,2-dithiolate (pyranopterin dithiolene). Upon reduction, it is the more basic equatorial oxo ligand that is protonated, with a Mo-Oeq bond distance that is best described as either a short Mo4+-OH2 bond or a long Mo4+-OH bond. Mechanistic implications for substrate reduction are discussed in light of these structural details.
Collapse
Affiliation(s)
- Jing Yang
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131-0001
| | - Michel Struwe
- Zoologisches Institut – Strukturbiologie, Zentrum für Biochemie und Molekularbiologie Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
- Pharmazeutisches Institut, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Axel Scheidig
- Zoologisches Institut – Strukturbiologie, Zentrum für Biochemie und Molekularbiologie Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Joshua Mengell
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131-0001
| | - Bernd Clement
- Pharmazeutisches Institut, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Martin L. Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131-0001
| |
Collapse
|
30
|
Association of MARC1, ADCY5, and BCO1 Variants with the Lipid Profile, Suggests an Additive Effect for Hypertriglyceridemia in Mexican Adult Men. Int J Mol Sci 2022; 23:ijms231911815. [PMID: 36233117 PMCID: PMC9569691 DOI: 10.3390/ijms231911815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Epidemiological studies have reported that the Mexican population is highly susceptible to dyslipidemia. The MARC1, ADCY5, and BCO1 genes have recently been involved in lipidic abnormalities. This study aimed to analyze the association of single nucleotide polymorphisms (SNPs) rs2642438, rs56371916, and rs6564851 on MARC1, ADCY5, and BCO1 genes, respectively, with the lipid profile in a cohort of Mexican adults. We included 1900 Mexican adults from the Health Workers Cohort Study. Demographic and clinical data were collected through a structured questionnaire and standardized procedures. Genotyping was performed using a predesigned TaqMan assay. A genetic risk score (GRS) was created on the basis of the three genetic variants. Associations analysis was estimated using linear and logistic regression. Our results showed that rs2642438-A and rs6564851-A alleles had a risk association for hypertriglyceridemia (OR = 1.57, p = 0.013; and OR = 1.33, p = 0.031, respectively), and rs56371916-C allele a trend for low HDL-c (OR = 1.27, p = 0.060) only in men. The GRS revealed a significant association for hypertriglyceridemia (OR = 2.23, p = 0.022). These findings provide evidence of an aggregate effect of the MARC1, ADCY5, and BCO1 variants on the risk of hypertriglyceridemia in Mexican men. This knowledge could represent a tool for identifying at-risk males who might benefit from early interventions and avoid secondary metabolic traits.
Collapse
|
31
|
Allagulova CR, Avalbaev AM, Lubyanova AR, Lastochkina OV, Shakirova FM. Current Concepts of the Mechanisms of Nitric Oxide Formation in Plants. RUSSIAN JOURNAL OF PLANT PHYSIOLOGY 2022; 69:61. [DOI: 10.1134/s1021443722030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 06/23/2023]
|
32
|
Hudert CA, Adams LA, Alisi A, Anstee QM, Crudele A, Draijer LG, Furse S, Hengstler JG, Jenkins B, Karnebeek K, Kelly DA, Koot BG, Koulman A, Meierhofer D, Melton PE, Mori TA, Snowden SG, van Mourik I, Vreugdenhil A, Wiegand S, Mann JP. Variants in mitochondrial amidoxime reducing component 1 and hydroxysteroid 17-beta dehydrogenase 13 reduce severity of nonalcoholic fatty liver disease in children and suppress fibrotic pathways through distinct mechanisms. Hepatol Commun 2022; 6:1934-1948. [PMID: 35411667 PMCID: PMC9315139 DOI: 10.1002/hep4.1955] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/19/2022] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies in adults have identified variants in hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) and mitochondrial amidoxime reducing component 1 (MTARC1) as protective against nonalcoholic fatty liver disease (NAFLD). We aimed to test their association with pediatric NAFLD liver histology and investigate their function using metabolomics. A total of 1450 children (729 with NAFLD, 399 with liver histology) were genotyped for rs72613567T>TA in HSD17B13, rs2642438G>A in MTARC1, and rs738409C>G in patatin-like phospholipase domain-containing protein 3 (PNPLA3). Genotype-histology associations were tested using ordinal regression. Untargeted hepatic proteomics and plasma lipidomics were performed in a subset of children. We found rs72613567T>TA in HSD17B13 to be associated with lower odds of NAFLD diagnosis (odds ratio, 0.7; 95% confidence interval, 0.6-0.9) and a lower grade of portal inflammation (p < 0.001). rs2642438G>A in MTARC1 was associated with a lower grade of hepatic steatosis (p = 0.02). Proteomics found reduced expression of HSD17B13 in carriers of the protective -TA allele. MTARC1 levels were unaffected by genotype. Both variants were associated with down-regulation of fibrogenic pathways. HSD17B13 perturbs plasma phosphatidylcholines and triglycerides. In silico modeling suggested p.Ala165Thr disrupts the stability and metal binding of MTARC1. Conclusion: Both HSD17B13 and MTARC1 variants are associated with less severe pediatric NAFLD. These results provide further evidence for shared genetic mechanisms between pediatric and adult NAFLD.
Collapse
Affiliation(s)
- Christian A Hudert
- Department of Pediatric Gastroenterology, Nephrology and Metabolic DiseasesCharité Universitätsmedizin BerlinBerlinGermany
| | - Leon A Adams
- Medical SchoolUniversity of Western AustraliaPerthAustralia.,Department of HepatologySir Charles Gairdner HospitalPerthAustralia
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex PhenotypesBambino Gesù Children's Hospital-Istituto di Ricovero e Cura a Carattere ScientificoRomeItaly
| | - Quentin M Anstee
- 5994Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK.,Newcastle National Institute for Health Research Biomedical Research CentreNewcastle upon Tyne Hospitals National Health Service Foundation TrustNewcastle upon TyneUK
| | - Annalisa Crudele
- Research Unit of Molecular Genetics of Complex PhenotypesBambino Gesù Children's Hospital-Istituto di Ricovero e Cura a Carattere ScientificoRomeItaly
| | - Laura G Draijer
- Department of Pediatric Gastroenterology and NutritionAmsterdam University Medical CenterEmma Children's HospitalUniversity of AmsterdamAmsterdamthe Netherlands
| | - Samuel Furse
- Core Metabolomics and Lipidomics LaboratoryWellcome Trust-Medical Research Council Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | - Jan G Hengstler
- Systems ToxicologyLeibniz Research Center for Working Environment and Human Factors at the Technical University DortmundDortmundGermany
| | - Benjamin Jenkins
- Core Metabolomics and Lipidomics LaboratoryWellcome Trust-Medical Research Council Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | - Kylie Karnebeek
- Center for Overweight Adolescent and Children's Health CareDepartment of PediatricsMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Deirdre A Kelly
- Liver UnitBirmingham Womens and Children's Hospital TrustBirminghamUK
| | - Bart G Koot
- Department of Pediatric Gastroenterology and NutritionAmsterdam University Medical CenterEmma Children's HospitalUniversity of AmsterdamAmsterdamthe Netherlands
| | - Albert Koulman
- Core Metabolomics and Lipidomics LaboratoryWellcome Trust-Medical Research Council Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | - David Meierhofer
- Max Planck Institute for Molecular GeneticsMass Spectrometry FacilityBerlinGermany
| | - Phillip E Melton
- School of Global Population HealthFaculty of Health and Medical SciencesUniversity of Western AustraliaPerthAustralia.,School of Pharmacy and Biomedical SciencesFaculty of Health SciencesCurtin UniversityPerthAustralia.,Menzies Institute for Medical ResearchCollege of Health and MedicineUniversity of TasmaniaHobartAustralia
| | - Trevor A Mori
- Medical SchoolUniversity of Western AustraliaPerthAustralia
| | - Stuart G Snowden
- Core Metabolomics and Lipidomics LaboratoryWellcome Trust-Medical Research Council Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | - Indra van Mourik
- Liver UnitBirmingham Womens and Children's Hospital TrustBirminghamUK
| | - Anita Vreugdenhil
- Center for Overweight Adolescent and Children's Health CareDepartment of PediatricsMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Susanna Wiegand
- Center for Chronically Sick ChildrenCharité Universitätsmedizin BerlinBerlinGermany
| | - Jake P Mann
- 2152Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
33
|
Peixoto J, Vizzotto C, Ramos A, Alves G, Steindorff A, Krüger R. The role of nitrogen metabolism on polyethylene biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128682. [PMID: 35306413 DOI: 10.1016/j.jhazmat.2022.128682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Polyethylene (PE) is the most widely used plastic and its accumulation on natural environments has reached alarming levels causing severe damage to wildlife and human health. Despite the significance of this global issue, little is known about specific metabolic mechanisms behind PE biodegradation-a promising and sustainable remediation method. Herein, we describe a novel role of nitrogen metabolism in the fragmentation and oxidation of PE mediated by biological production of NOx in three PE-degrading strains of Comamonas, Delftia, and Stenotrophomonas. Resultant nitrated PE fragments are assimilated and then metabolized by these bacteria in a process assisted by nitronate monooxygenases and nitroreductases to support microbial growth. Due to the conservation of nitrogen metabolism genes, we anticipate that this oxidative mechanism is potentially shared by other nitrifier and denitrifier microbes.
Collapse
Affiliation(s)
- Julianna Peixoto
- Laboratory of Enzymology, Department of Cellular Biology, Biological Sciences Institute, University of Brasilia, Brasilia 70910-900, DF, Brazil.
| | - Carla Vizzotto
- Laboratory of Enzymology, Department of Cellular Biology, Biological Sciences Institute, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Alexandre Ramos
- Laboratory of Enzymology, Department of Cellular Biology, Biological Sciences Institute, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Gabriel Alves
- Laboratory of Microbiology, Department of Cellular Biology, Biological Sciences Institute, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Andrei Steindorff
- Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Ricardo Krüger
- Laboratory of Enzymology, Department of Cellular Biology, Biological Sciences Institute, University of Brasilia, Brasilia 70910-900, DF, Brazil.
| |
Collapse
|
34
|
Maiber L, Koprivova A, Bender D, Kopriva S, Fischer-Schrader K. Characterization of the amidoxime reducing components ARC1 and ARC2 from Arabidopsis thaliana. FEBS J 2022; 289:5656-5669. [PMID: 35366369 DOI: 10.1111/febs.16450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/26/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023]
Abstract
Five molybdenum-dependent enzymes are known in eukaryotes. While four of them are under investigation since decades, the most recently discovered, (mitochondrial) amidoxime reducing component ((m)ARC), has only been characterized in mammals and the green algae Chlamydomonas reinhardtii. While mammalian mARCs have been shown to be involved in various signalling pathways, Chlamydomonas ARC was shown to be a nitric oxide (NO)-forming nitrite reductase. Similar to mammals, higher plants possess two ARC proteins. To test whether plant ARCs have a similar function in NO production to the function they have in C. reinhardtii, we analysed the enzymes from the model plant Arabidopsis thaliana. Both ARC1 and ARC2 from Arabidopsis could reduce N-hydroxylated compounds, while nitrite reduction to form NO could only be demonstrated for ARC2. Searching for physiological electron donors, we found that both ARC enzymes accept electrons from NADH via cytochrome b5 reductase and cytochrome b5 , but only ARC2 is able to accept electrons from nitrate reductase at all. Furthermore, arc-deficient mutant plants were similar to wildtype plants regarding growth and also nitrite-dependent NO-formation. Altogether, our results did not confirm the hypothesis that either ARC1 or ARC2 from Arabidopsis are involved in physiologically relevant nitrite-dependent NO-formation. In contrast, our data suggest that ARC1 and ARC2 have distinct, yet unknown physiological roles in higher plants.
Collapse
Affiliation(s)
- Ludmila Maiber
- Department of Chemistry, Institute for Biochemistry, University of Cologne, Germany
| | - Anna Koprivova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Germany
| | - Daniel Bender
- Department of Chemistry, Institute for Biochemistry, University of Cologne, Germany
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Germany
| | | |
Collapse
|
35
|
Smirne C, Croce E, Di Benedetto D, Cantaluppi V, Comi C, Sainaghi PP, Minisini R, Grossini E, Pirisi M. Oxidative Stress in Non-Alcoholic Fatty Liver Disease. LIVERS 2022; 2:30-76. [DOI: 10.3390/livers2010003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a challenging disease caused by multiple factors, which may partly explain why it still remains an orphan of adequate therapies. This review highlights the interaction between oxidative stress (OS) and disturbed lipid metabolism. Several reactive oxygen species generators, including those produced in the gastrointestinal tract, contribute to the lipotoxic hepatic (and extrahepatic) damage by fatty acids and a great variety of their biologically active metabolites in a “multiple parallel-hit model”. This leads to inflammation and fibrogenesis and contributes to NAFLD progression. The alterations of the oxidant/antioxidant balance affect also metabolism-related organelles, leading to lipid peroxidation, mitochondrial dysfunction, and endoplasmic reticulum stress. This OS-induced damage is at least partially counteracted by the physiological antioxidant response. Therefore, modulation of this defense system emerges as an interesting target to prevent NAFLD development and progression. For instance, probiotics, prebiotics, diet, and fecal microbiota transplantation represent new therapeutic approaches targeting the gut microbiota dysbiosis. The OS and its counter-regulation are under the influence of individual genetic and epigenetic factors as well. In the near future, precision medicine taking into consideration genetic or environmental epigenetic risk factors, coupled with new OS biomarkers, will likely assist in noninvasive diagnosis and monitoring of NAFLD progression and in further personalizing treatments.
Collapse
Affiliation(s)
- Carlo Smirne
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Eleonora Croce
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Davide Di Benedetto
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Vincenzo Cantaluppi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Elena Grossini
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
36
|
Sparacino-Watkins CE, Lancaster JR. Direct measurement of nitric oxide (NO) production rates from enzymes using ozone-based gas-phase chemiluminescence (CL). Nitric Oxide 2021; 117:60-71. [PMID: 34653611 DOI: 10.1016/j.niox.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 01/18/2023]
Abstract
Nitric oxide (NO) chemiluminescence detectors (CLDs) are specialized and sensitive spectroscopic instruments capable of directly measuring NO flux rates. NO CLDs have been instrumental in the characterization of mammalian nitrite-dependent NO synthases. However, no detailed description of NO flux analysis using NO CLD is available. Herein, a detailed review of the NO CL methodology is provided with guidelines for measuring NO-production rates from aqueous samples, such as isolated enzymes or protein homogenates. Detailed description of the types of signals one can encounter, data processing, and potential pitfalls related to NO flux measurements will also be covered.
Collapse
Affiliation(s)
- Courtney E Sparacino-Watkins
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Jack R Lancaster
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
37
|
Antioxidant tempol modulates the increases in tissue nitric oxide metabolites concentrations after oral nitrite administration. Chem Biol Interact 2021; 349:109658. [PMID: 34543659 DOI: 10.1016/j.cbi.2021.109658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) metabolites have physiological and pharmacological importance and increasing their tissue concentrations may result in beneficial effects. Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) has antioxidant properties that may improve NO bioavailability. Moreover, tempol increases oral nitrite-derived gastric formation of S-nitrosothiols (RSNO). We hypothesized that pretreatment with tempol may further increase tissue concentrations of NO-related species after oral nitrite administration and therefore we carried out a time-dependent analysis of how tempol affects the concentrations of NO metabolites in different tissues after oral nitrite administration to rats. NO metabolites (nitrate, nitrite and RSNO) were assessed by ozone-based reductive chemiluminescence assays in plasma, stomach, aorta, heart and liver samples obtained from anesthetized rats at baseline conditions and 15 min, 30 min, 2 h or 24 h after oral nitrite (15 mg/kg) was administered to rats pretreated with tempol (18 mg/kg) or vehicle 15 min prior to nitrite administration. Aortic protein nitrosation was assessed by resin-assited capture (SNO-RAC) method. We found that pretreatment with tempol transiently enhanced nitrite-induced increases in nitrite, RSNO and nitrate concentrations in the stomach and in the plasma (all P < 0.05), particularly for 15-30 min, without affecting aortic protein nitrosation. Pretreatment with tempol enhanced nitrite-induced increases in nitrite (but not RSNO or nitrate) concentrations in the heart (P < 0.05). In contrast, tempol attenuated nitrite-induced increases in nitrite, RSNO or nitrate concentrations in the liver. These findings show that pretreatment with tempol affects oral nitrite-induced changes in tissue concentrations of NO metabolites depending on tissue type and does not increase nitrite-induced vascular nitrosation. These results may indicate that oral nitrite therapy aiming at achieving increased nitrosation of cardiovascular targets requires appropriate doses of nitrite and is not optimized by tempol.
Collapse
|
38
|
Piknova B, Schechter AN, Park JW, Vanhatalo A, Jones AM. Skeletal Muscle Nitrate as a Regulator of Systemic Nitric Oxide Homeostasis. Exerc Sport Sci Rev 2021; 50:2-13. [PMID: 34669624 DOI: 10.1249/jes.0000000000000272] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Non-enzymatic nitric oxide (NO) generation via the reduction of nitrate and nitrite ions, along with remarkably high levels of nitrate ions in skeletal muscle, have been recently described. Skeletal muscle nitrate storage may be critical for maintenance of NO homeostasis in healthy ageing and nitrate supplementation may be useful for treatment of specific pathophysiologies as well as enhancing normal functions.
Collapse
Affiliation(s)
- Barbora Piknova
- Molecular Medicine Branch, NIDDK, National Institutes of Health,Bethesda, MD 20892, U.S. Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | | | | | | |
Collapse
|
39
|
Brahma MK, Gilglioni EH, Zhou L, Trépo E, Chen P, Gurzov EN. Oxidative stress in obesity-associated hepatocellular carcinoma: sources, signaling and therapeutic challenges. Oncogene 2021; 40:5155-5167. [PMID: 34290399 PMCID: PMC9277657 DOI: 10.1038/s41388-021-01950-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023]
Abstract
Obesity affects more than 650 million individuals worldwide and is a well-established risk factor for the development of hepatocellular carcinoma (HCC). Oxidative stress can be considered as a bona fide tumor promoter, contributing to the initiation and progression of liver cancer. Indeed, one of the key events involved in HCC progression is excessive levels of reactive oxygen species (ROS) resulting from the fatty acid influx and chronic inflammation. This review provides insights into the different intracellular sources of obesity-induced ROS and molecular mechanisms responsible for hepatic tumorigenesis. In addition, we highlight recent findings pointing to the role of the dysregulated activity of BCL-2 proteins and protein tyrosine phosphatases (PTPs) in the generation of hepatic oxidative stress and ROS-mediated dysfunctional signaling, respectively. Finally, we discuss the potential and challenges of novel nanotechnology strategies to prevent ROS formation in obesity-associated HCC.
Collapse
Affiliation(s)
- Manoja K Brahma
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Eduardo H Gilglioni
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Lang Zhou
- Materials Research and Education Center, Auburn University, Auburn, AL, 36849, United States
| | - Eric Trépo
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, C.U.B. Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université libre de Bruxelles, Brussels, Belgium
| | - Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, AL, 36849, United States
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
40
|
Schneider CV, Schneider KM, Conlon DM, Park J, Vujkovic M, Zandvakili I, Ko YA, Trautwein C, Center R, Carr RM, Strnad P, Thaiss CA, Rader DJ. A genome-first approach to mortality and metabolic phenotypes in MTARC1 p.Ala165Thr (rs2642438) heterozygotes and homozygotes. MED 2021; 2:851-863.e3. [PMID: 34258604 PMCID: PMC8274545 DOI: 10.1016/j.medj.2021.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND A coding variant in MTARC1 (rs2642438; p.Ala165Thr) was recently associated with protection from cirrhosis in European individuals. However, its impact on overall and cause-specific mortality remained elusive. METHODS Using a genome-first approach, we explored a range of metabolic phenotypes and outcomes associated with MTARC1 p.Ala165Thr in the UKBiobank and the Penn-Medicine BioBank. FINDINGS MTARC1 p.Ala165Thr was significantly associated with higher triglycerides, lower total cholesterol, lower LDL-C, lower ApoB, lower HDL-C, lower ApoA-I and higher IGF-1. Per each minor allele, the risk of NAFLD was reduced by ~15%. The ALT-lowering and NAFLD-protective effect of MTARC1 p.Ala165Thr was amplified by obesity, diabetes mellitus and presence of PNPLA3 rs738409:G. In African-American and Black-British individuals, the allele frequency of MTARC1 p.Ala165Thr was lower, but carriers showed the same distinctive lipid phenotype. Importantly, MTARC1 p.Ala165Thr carriers did not show higher cardiovascular disease burden as evidenced by cardiac MRI and carotid ultrasound. In prospective analyses, the homozygous minor allele was associated with up to 39% lower rates of liver-related mortality, while no risk of increased overall or cardiovascular death could be observed. Strikingly, liver-related mortality was more than 50% reduced in diabetic participants or carriers of PNPLA3 rs738409:G. CONCLUSIONS Together these data highlight MTARC1 as an important liver disease modifier that influences plasma lipids in an allele-dose-dependent manner without increasing cardiovascular outcomes. Our results point toward potential mechanisms and reveal a remarkable association with liver-related mortality calling for future studies exploring its therapeutic potential. FUNDING This study was funded by the German Research Foundation (DFG).
Collapse
Affiliation(s)
- Carolin V. Schneider
- Division of Translational Medicine and Human Genetics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kai Markus Schneider
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donna M. Conlon
- Division of Translational Medicine and Human Genetics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph Park
- Division of Translational Medicine and Human Genetics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marijana Vujkovic
- Division of Translational Medicine and Human Genetics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Inuk Zandvakili
- Division of Gastroenterology and Hepatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi-An Ko
- Division of Translational Medicine and Human Genetics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christian Trautwein
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, 52072 Aachen, Germany
| | | | - Rotonya M. Carr
- Division of Gastroenterology and Hepatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, 52072 Aachen, Germany
| | - Christoph A. Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J. Rader
- Division of Translational Medicine and Human Genetics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
41
|
Astier J, Rossi J, Chatelain P, Klinguer A, Besson-Bard A, Rosnoblet C, Jeandroz S, Nicolas-Francès V, Wendehenne D. Nitric oxide production and signalling in algae. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:781-792. [PMID: 32910824 DOI: 10.1093/jxb/eraa421] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/07/2020] [Indexed: 05/27/2023]
Abstract
Nitric oxide (NO) was the first identified gaseous messenger and is now well established as a major ubiquitous signalling molecule. The rapid development of our understanding of NO biology in embryophytes came with the partial characterization of the pathways underlying its production and with the decrypting of signalling networks mediating its effects. Notably, the identification of proteins regulated by NO through nitrosation greatly enhanced our perception of NO functions. In comparison, the role of NO in algae has been less investigated. Yet, studies in Chlamydomonas reinhardtii have produced key insights into NO production through the identification of NO-forming nitrite reductase and of S-nitrosated proteins. More intriguingly, in contrast to embryophytes, a few algal species possess a conserved nitric oxide synthase, the main enzyme catalysing NO synthesis in metazoans. This latter finding paves the way for a deeper characterization of novel members of the NO synthase family. Nevertheless, the typical NO-cyclic GMP signalling module transducing NO effects in metazoans is not conserved in algae, nor in embryophytes, highlighting a divergent acquisition of NO signalling between the green and the animal lineages.
Collapse
Affiliation(s)
- Jeremy Astier
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Jordan Rossi
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Pauline Chatelain
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Agnès Klinguer
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Angélique Besson-Bard
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Claire Rosnoblet
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Sylvain Jeandroz
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | | | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
42
|
Mann JP, Pietzner M, Wittemans LB, Rolfe EDL, Kerrison ND, Imamura F, Forouhi NG, Fauman E, Allison ME, Griffin JL, Koulman A, Wareham NJ, Langenberg C. Insights into genetic variants associated with NASH-fibrosis from metabolite profiling. Hum Mol Genet 2020; 29:3451-3463. [PMID: 32720691 PMCID: PMC7116726 DOI: 10.1093/hmg/ddaa162] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/15/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Several genetic discoveries robustly implicate five single-nucleotide variants in the progression of non-alcoholic fatty liver disease to non-alcoholic steatohepatitis and fibrosis (NASH-fibrosis), including a recently identified variant in MTARC1. To better understand these variants as potential therapeutic targets, we aimed to characterize their impact on metabolism using comprehensive metabolomics data from two population-based studies. A total of 9135 participants from the Fenland study and 9902 participants from the EPIC-Norfolk cohort were included in the study. We identified individuals with risk alleles associated with NASH-fibrosis: rs738409C>G in PNPLA3, rs58542926C>T in TM6SF2, rs641738C>T near MBOAT7, rs72613567TA>T in HSD17B13 and rs2642438A>G in MTARC1. Circulating levels of 1449 metabolites were measured using targeted and untargeted metabolomics. Associations between NASH-fibrosis variants and metabolites were assessed using linear regression. The specificity of variant-metabolite associations were compared to metabolite associations with ultrasound-defined steatosis, gene variants linked to liver fat (in GCKR, PPP1R3B and LYPLAL1) and gene variants linked to cirrhosis (in HFE and SERPINA1). Each NASH-fibrosis variant demonstrated a specific metabolite profile with little overlap (8/97 metabolites) comprising diverse aspects of lipid metabolism. Risk alleles in PNPLA3 and HSD17B13 were both associated with higher 3-methylglutarylcarnitine and three variants were associated with lower lysophosphatidylcholine C14:0. The risk allele in MTARC1 was associated with higher levels of sphingomyelins. There was no overlap with metabolites that associated with HFE or SERPINA1 variants. Our results suggest a link between the NASH-protective variant in MTARC1 to the metabolism of sphingomyelins and identify distinct molecular patterns associated with each of the NASH-fibrosis variants under investigation.
Collapse
Affiliation(s)
- Jake P Mann
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Maik Pietzner
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Laura B Wittemans
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Emmanuela De Lucia Rolfe
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Nicola D Kerrison
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Fumiaki Imamura
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Nita G Forouhi
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Eric Fauman
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA 02142, USA
| | - Michael E Allison
- Liver Unit, Department of Medicine, Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Jules L Griffin
- MRC Human Nutrition Research, University of Cambridge, Cambridge CB1 9NL, UK
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK
| | - Albert Koulman
- MRC Human Nutrition Research, University of Cambridge, Cambridge CB1 9NL, UK
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| |
Collapse
|
43
|
Mayr SJ, Mendel RR, Schwarz G. Molybdenum cofactor biology, evolution and deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118883. [PMID: 33017596 DOI: 10.1016/j.bbamcr.2020.118883] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
Abstract
The molybdenum cofactor (Moco) represents an ancient metal‑sulfur cofactor, which participates as catalyst in carbon, nitrogen and sulfur cycles, both on individual and global scale. Given the diversity of biological processes dependent on Moco and their evolutionary age, Moco is traced back to the last universal common ancestor (LUCA), while Moco biosynthetic genes underwent significant changes through evolution and acquired additional functions. In this review, focused on eukaryotic Moco biology, we elucidate the benefits of gene fusions on Moco biosynthesis and beyond. While originally the gene fusions were driven by biosynthetic advantages such as coordinated expression of functionally related proteins and product/substrate channeling, they also served as origin for the development of novel functions. Today, Moco biosynthetic genes are involved in a multitude of cellular processes and loss of the according gene products result in severe disorders, both related to Moco biosynthesis and secondary enzyme functions.
Collapse
Affiliation(s)
- Simon J Mayr
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine, University of Cologne, Zuelpicher Str. 47, 50674 Koeln, Germany
| | - Ralf-R Mendel
- Institute of Plant Biology, Braunschweig University of Technology, Humboldtstr. 1, 38106 Braunschweig, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine, University of Cologne, Zuelpicher Str. 47, 50674 Koeln, Germany.
| |
Collapse
|
44
|
Hughan KS, Levine A, Helbling N, Anthony S, DeLany JP, Stefanovic-Racic M, Goodpaster BH, Gladwin MT. Effects of Oral Sodium Nitrite on Blood Pressure, Insulin Sensitivity, and Intima-Media Arterial Thickening in Adults With Hypertension and Metabolic Syndrome. Hypertension 2020; 76:866-874. [PMID: 32755471 PMCID: PMC7429358 DOI: 10.1161/hypertensionaha.120.14930] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nitrate-nitrite-NO pathway regulates NO synthase-independent vasodilation and NO signaling. Ingestion of inorganic nitrite has vasodilatory and blood pressure-lowering effects. Preclinical studies in rodent models suggest there may be a benefit of nitrite in lowering serum triglyceride levels and improving the metabolic syndrome. In a phase 2 study, we evaluated the safety and efficacy of chronic oral nitrite therapy in patients with hypertension and the metabolic syndrome. Twenty adult subjects with stage 1 or 2 hypertension and the metabolic syndrome were enrolled in an open-label safety and efficacy study. The primary efficacy end point was blood pressure reduction; secondary end points included insulin-dependent glucose disposal and endothelial function measured by flow-mediated dilation of the brachial artery and intima-media diameter of the carotid artery. Chronic oral nitrite therapy (40 mg/3× daily) was well tolerated. Oral nitrite significantly lowered systolic, diastolic, and mean arterial pressures, but tolerance was observed after 10 to 12 weeks of therapy. There was significant improvement in the intima-media thickness of the carotid artery and trends toward improvements in flow-mediated dilation of the brachial artery and insulin sensitivity. Chronic oral nitrite therapy is safe in patients with hypertension and the metabolic syndrome. Despite an apparent lack of enzymatic tolerance to nitrite, we observed tolerance after 10 weeks of chronic therapy, which requires additional mechanistic studies and possible therapeutic dose titration in clinical trials. Nitrite may be a safe therapy to concominantly improve multiple features of the metabolic syndrome including hypertension, insulin resistance, and endothelial dysfunction. Registration- URL: https://www.clinicaltrials.gov; Unique identifier: NCT01681810.
Collapse
Affiliation(s)
- Kara S Hughan
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, University of Pittsburgh, Pittsburgh, PA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| | - Andrea Levine
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Nicole Helbling
- Department of Medicine, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA
| | - Steven Anthony
- Department of Medicine, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA
| | - James P DeLany
- Department of Medicine, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA
| | - Maja Stefanovic-Racic
- Department of Medicine, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA
| | - Bret H. Goodpaster
- Department of Medicine, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA
| | - Mark T. Gladwin
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Medicine, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
45
|
Luukkonen PK, Juuti A, Sammalkorpi H, Penttilä AK, Orešič M, Hyötyläinen T, Arola J, Orho-Melander M, Yki-Järvinen H. MARC1 variant rs2642438 increases hepatic phosphatidylcholines and decreases severity of non-alcoholic fatty liver disease in humans. J Hepatol 2020; 73:725-726. [PMID: 32471727 DOI: 10.1016/j.jhep.2020.04.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 01/29/2023]
Affiliation(s)
- Panu K Luukkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Internal Medicine, Yale University, New Haven, Connecticut, USA.
| | - Anne Juuti
- Department of Gastrointestinal Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Henna Sammalkorpi
- Department of Gastrointestinal Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne K Penttilä
- Department of Gastrointestinal Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Matej Orešič
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland; School of Medical Sciences, Örebro University, Örebro, Sweden
| | | | - Johanna Arola
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
46
|
Amdahl MB, DeMartino AW, Gladwin MT. Inorganic nitrite bioactivation and role in physiological signaling and therapeutics. Biol Chem 2020; 401:201-211. [PMID: 31747370 DOI: 10.1515/hsz-2019-0349] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/02/2019] [Indexed: 01/23/2023]
Abstract
The bioactivation of inorganic nitrite refers to the conversion of otherwise 'inert' nitrite to the diatomic signaling molecule nitric oxide (NO), which plays important roles in human physiology and disease, notably in the regulation of vascular tone and blood flow. While the most well-known sources of NO are the nitric oxide synthase (NOS) enzymes, another source of NO is the nitrate-nitrite-NO pathway, whereby nitrite (obtained from reduction of dietary nitrate) is further reduced to form NO. The past few decades have seen extensive study of the mechanisms of NO generation through nitrate and nitrite bioactivation, as well as growing appreciation of the contribution of this pathway to NO signaling in vivo. This review, prepared for the volume 400 celebration issue of Biological Chemistry, summarizes some of the key reactions of the nitrate-nitrite-NO pathway such as reduction, disproportionation, dehydration, and oxidative denitrosylation, as well as current evidence for the contribution of the pathway to human cardiovascular physiology. Finally, ongoing efforts to develop novel medical therapies for multifarious conditions, especially those related to pathologic vasoconstriction and ischemia/reperfusion injury, are also explored.
Collapse
Affiliation(s)
- Matthew B Amdahl
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
47
|
Wu D, Wang Y, Yang G, Zhang S, Liu Y, Zhou S, Guo H, Liang S, Cui Y, Zhang B, Ma K, Zhang C, Liu Y, Sun L, Wang J, Liu L. A novel mitochondrial amidoxime reducing component 2 is a favorable indicator of cancer and suppresses the progression of hepatocellular carcinoma by regulating the expression of p27. Oncogene 2020; 39:6099-6112. [PMID: 32811980 PMCID: PMC7498369 DOI: 10.1038/s41388-020-01417-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/23/2020] [Accepted: 08/04/2020] [Indexed: 12/03/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth leading cause of cancer-related mortality in the United States. Exploring the mechanism of HCC and identifying ideal targets is critical. In the present study, we demonstrated metabolism dysfunction might be a key diver for the development of HCC. The mitochondrial amidoxime reducing component 2 (MARC2) as a newly discovered molybdenum enzyme was downregulated in human HCC tissues and HCC cells. Downregulated MARC2 was significantly associated with clinicopathological characteristics of HCC, such as tumor size, AFP levels, and tumor grade and was an independent risk factor of poor prognosis. Both in vitro and in vivo studies suggested that MARC2 suppressed the progression of HCC by regulating the protein expression level of p27. The Hippo signaling pathway and RNF123 were required for this process. Moreover, MARC2 regulated expression of HNF4A via the Hippo signaling pathway. HNF4A was recruited to the promoter of MARC2 forming a feedback loop. MARC2 levels were downregulated by methylation. We demonstrated the prognostic value of MARC2 in HCC and determined the mechanism by which MARC2 suppressed the progression of HCC in this study. These findings may lead to new therapeutic targets for HCC.
Collapse
Affiliation(s)
- Dehai Wu
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yan Wang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150001, Heilongjiang, China
| | - Guangchao Yang
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Shugeng Zhang
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yao Liu
- Division of Life Sciences and Medicine, Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, University of Science and Technology of China, Heifei, 230001, Anhui, China
| | - Shuo Zhou
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Hongrui Guo
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Shuhang Liang
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yifeng Cui
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Bo Zhang
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Kun Ma
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Congyi Zhang
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yufeng Liu
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Linmao Sun
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Jiabei Wang
- Division of Life Sciences and Medicine, Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, University of Science and Technology of China, Heifei, 230001, Anhui, China.
| | - Lianxin Liu
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
48
|
Kapil V, Khambata RS, Jones DA, Rathod K, Primus C, Massimo G, Fukuto JM, Ahluwalia A. The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. Pharmacol Rev 2020; 72:692-766. [PMID: 32576603 DOI: 10.1124/pr.120.019240] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
In contrast to nitric oxide, which has well established and important roles in the regulation of blood flow and thrombosis, neurotransmission, the normal functioning of the genitourinary system, and the inflammation response and host defense, its oxidized metabolites nitrite and nitrate have, until recently, been considered to be relatively inactive. However, this view has been radically revised over the past decade and more. Much evidence has now accumulated demonstrating that nitrite serves as a storage form of nitric oxide, releasing nitric oxide preferentially under acidic and/or hypoxic conditions but also occurring under physiologic conditions: a phenomenon that is catalyzed by a number of distinct mammalian nitrite reductases. Importantly, preclinical studies demonstrate that reduction of nitrite to nitric oxide results in a number of beneficial effects, including vasodilatation of blood vessels and lowering of blood pressure, as well as cytoprotective effects that limit the extent of damage caused by an ischemia/reperfusion insult, with this latter issue having been translated more recently to the clinical setting. In addition, research has demonstrated that the other main metabolite of the oxidation of nitric oxide (i.e., nitrate) can also be sequentially reduced through processing in vivo to nitrite and then nitrite to nitric oxide to exert a range of beneficial effects-most notably lowering of blood pressure, a phenomenon that has also been confirmed recently to be an effective method for blood pressure lowering in patients with hypertension. This review will provide a detailed description of the pathways involved in the bioactivation of both nitrate and nitrite in vivo, their functional effects in preclinical models, and their mechanisms of action, as well as a discussion of translational exploration of this pathway in diverse disease states characterized by deficiencies in bioavailable nitric oxide. SIGNIFICANCE STATEMENT: The past 15 years has seen a major revision in our understanding of the pathways for nitric oxide synthesis in the body with the discovery of the noncanonical pathway for nitric oxide generation known as the nitrate-nitrite-nitric oxide pathway. This review describes the molecular components of this pathway, its role in physiology, potential therapeutics of targeting this pathway, and their impact in experimental models, as well as the clinical translation (past and future) and potential side effects.
Collapse
Affiliation(s)
- V Kapil
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - R S Khambata
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - D A Jones
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - K Rathod
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - C Primus
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - G Massimo
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - J M Fukuto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - A Ahluwalia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| |
Collapse
|
49
|
Indorf P, Kubitza C, Scheidig AJ, Kunze T, Clement B. Drug Metabolism by the Mitochondrial Amidoxime Reducing Component (mARC): Rapid Assay and Identification of New Substrates. J Med Chem 2020; 63:6538-6546. [PMID: 31790578 DOI: 10.1021/acs.jmedchem.9b01483] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For the development of new drugs, the investigation of their metabolism is of central importance. In the past, the focus was mostly on the consideration of established enzymes leading to oxidations such as cytochrome P450. However, reductive metabolism by the mARC enzyme system can play an important role in particular for nitrogen containing functional groups. A rapid test was established to give developers of new drugs in the preclinical stage the opportunity to test the metabolism by mARC. To demonstrate the relevance and validity of the new test system, known and potential substrates were applied to this new assay. All known substrates could be detected by the system. Furthermore, several new substrates were found including long-established drugs such as hydroxyurea and new compounds in development such as epacdadostat.
Collapse
Affiliation(s)
- Patrick Indorf
- Pharmaceutical Institute-Medicinal Chemistry, Christian-Albrechts-University Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Christian Kubitza
- Zoological Institute-Structural Biology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Axel J Scheidig
- Zoological Institute-Structural Biology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Thomas Kunze
- Pharmaceutical Institute-Medicinal Chemistry, Christian-Albrechts-University Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Bernd Clement
- Pharmaceutical Institute-Medicinal Chemistry, Christian-Albrechts-University Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| |
Collapse
|
50
|
Das S, Kulbir, Ghosh S, Chandra Sahoo S, Kumar P. Nitric oxide monooxygenation (NOM) reaction of cobalt-nitrosyl {Co(NO)} 8 to Co II-nitrito {Co II(NO 2 -)}: base induced hydrogen gas (H 2) evolution. Chem Sci 2020; 11:5037-5042. [PMID: 34122960 PMCID: PMC8159239 DOI: 10.1039/d0sc01572e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/24/2020] [Indexed: 12/21/2022] Open
Abstract
Here, we report the nitric oxide monooxygenation (NOM) reactions of a CoIII-nitrosyl complex (1, {Co-NO}8) in the presence of mono-oxygen reactive species, i.e., a base (OH-, tetrabutylammonium hydroxide (TBAOH) or NaOH/15-crown-5), an oxide (O2- or Na2O/15-crown-5) and water (H2O). The reaction of 1 with OH- produces a CoII-nitrito complex {3, (CoII-NO2 -)} and hydrogen gas (H2), via the formation of a putative N-bound Co-nitrous acid intermediate (2, {Co-NOOH}+). The homolytic cleavage of the O-H bond of proposed [Co-NOOH]+ releases H2 via a presumed CoIII-H intermediate. In another reaction, 1 generates CoII-NO2 - when reacted with O2- via an expected CoI-nitro (4) intermediate. However, complex 1 is found to be unreactive towards H2O. Mechanistic investigations using 15N-labeled-15NO and 2H-labeled-NaO2H (NaOD) evidently revealed that the N-atom in CoII-NO2 - and the H-atom in H2 gas are derived from the nitrosyl ligand and OH- moiety, respectively.
Collapse
Affiliation(s)
- Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Kulbir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Somnath Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | | | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| |
Collapse
|