1
|
Yoo YM, Joo SS. Serotonin Influences Insulin Secretion in Rat Insulinoma INS-1E Cells. Int J Mol Sci 2024; 25:6828. [PMID: 38999937 PMCID: PMC11241493 DOI: 10.3390/ijms25136828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) is a monoamine that plays a critical role in insulin secretion, energy metabolism, and mitochondrial biogenesis. However, the action of serotonin in insulin production and secretion by pancreatic β cells has not yet been elucidated. Here, we investigated how exogenous nanomolar serotonin concentrations regulate insulin synthesis and secretion in rat insulinoma INS-1E cells. Nanomolar serotonin concentrations (10 and 50 nM) significantly increased insulin protein expression above the constant levels in untreated control cells and decreased insulin protein levels in the media. The reductions in insulin protein levels in the media may be associated with ubiquitin-mediated protein degradation. The levels of membrane vesicle trafficking-related proteins including Rab5, Rab3A, syntaxin6, clathrin, and EEA1 proteins were significantly decreased by serotonin treatment compared to the untreated control cells, whereas the expressions of Rab27A, GOPC, and p-caveolin-1 proteins were significantly reduced by serotonin treatment. In this condition, serotonin receptors, Gαq-coupled 5-HT2b receptor (Htr2b), and ligand-gated ion channel receptor Htr3a were significantly decreased by serotonin treatment. To confirm the serotonylation of Rab3A and Rab27A during insulin secretion, we investigated the protein levels of Rab3A and Rab27A, in which transglutaminase 2 (TGase2) serotonylated Rab3A but not Rab27A. The increases in ERK phosphorylation levels were consistent with increases in the expression of p-Akt. Also, the expression level of the Bcl-2 protein was significantly increased by 50 and 100 nM serotonin treatment compared to the untreated control cells, whereas the levels of Cu/Zn-SOD and Mn-SOD proteins decreased. These results indicate that nanomolar serotonin treatment regulates the insulin protein level but decreases this level in media through membrane vesicle trafficking-related proteins (Rab5, Rab3A, syntaxin6, clathrin, and EEA1), the Akt/ERK pathway, and Htr2b/Htr3a in INS-1E cells.
Collapse
Affiliation(s)
- Yeong-Min Yoo
- East Coast Life Sciences Institute, College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
- Department of Marine Bioscience, College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Seong Soo Joo
- Department of Marine Bioscience, College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| |
Collapse
|
2
|
Pan Z, Huang L, Gan Y, Xia Y, Yu W. The Molecular Mechanisms of Cuproptosis and Small-Molecule Drug Design in Diabetes Mellitus. Molecules 2024; 29:2852. [PMID: 38930917 PMCID: PMC11206814 DOI: 10.3390/molecules29122852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
In the field of human health research, the homeostasis of copper (Cu) is receiving increased attention due to its connection to pathological conditions, including diabetes mellitus (DM). Recent studies have demonstrated that proteins associated with Cu homeostasis, such as ATOX1, FDX1, ATP7A, ATPB, SLC31A1, p53, and UPS, also contribute to DM. Cuproptosis, characterized by Cu homeostasis dysregulation and Cu overload, has been found to cause the oligomerization of lipoylated proteins in mitochondria, loss of iron-sulfur protein, depletion of glutathione, production of reactive oxygen species, and cell death. Further research into how cuproptosis affects DM is essential to uncover its mechanism of action and identify effective interventions. In this article, we review the molecular mechanism of Cu homeostasis and the role of cuproptosis in the pathogenesis of DM. The study of small-molecule drugs that affect these proteins offers the possibility of moving from symptomatic treatment to treating the underlying causes of DM.
Collapse
Affiliation(s)
- Zhaowen Pan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Z.P.); (Y.G.)
| | - Lan Huang
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China;
| | - Yuanyuan Gan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Z.P.); (Y.G.)
| | - Yan Xia
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China;
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Z.P.); (Y.G.)
| |
Collapse
|
3
|
Vemana HP, Dukhande VV. The effect of hormones insulin and glucagon on ubiquitin modifications elucidated by proteomics in liver cells. Life Sci 2023; 329:121935. [PMID: 37442415 PMCID: PMC10528490 DOI: 10.1016/j.lfs.2023.121935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
AIMS Insulin action is intertwined with changing levels of glucose and counter-regulatory hormone glucagon. While insulin lowers blood sugar level, glucagon raises it by promoting the breakdown of the stored glycogen in liver and releases glucose into the bloodstream. The hormones insulin and glucagon are key in the pathogenesis of type 2 diabetes (T2D). Insulin resistance is a primary predisposing factor for diabetes. Phosphorylation of insulin signaling molecules is altered in the insulin-resistant state. However, ubiquitin (Ub) modifications in insulin-resistant state are relatively understudied. To dissect the underlying mechanisms, we performed a proteomics study on hepatoma cells to study the regulation of ubiquitination by insulin and glucagon. MATERIALS AND METHODS We performed western blotting, immunoprecipitations, and affinity pull down using tandem Ub binding entities (TUBE) reagents on hepatoma cells treated with insulin or glucagon. Next, we performed MS/MS analysis on Ub-linkage specific affinity pull down samples. Gene ontology analysis and protein-protein interaction network analysis was performed using DAVID GO and STRING db, respectively. KEY FINDINGS The ubiquitination pattern of total Ub, K48-linked Ub, and K63-linked Ub was altered with the treatment of hormones insulin and glucagon. Ubiquitination in immunoprecipitated samples showed enrichment with total Ub and K48-linked Ub but not with K63-linked Ub. Ubiquitination by treatment with hormones mainly enriched key signaling pathways MAPK, Akt, oxidative stress etc. SIGNIFICANCE: Our study identified key altered proteins and signal transduction pathways which aids in understanding the mechanisms of hormonal action on ubiquitination and identify new therapeutic targets for T2D.
Collapse
Affiliation(s)
- Hari Priya Vemana
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vikas V Dukhande
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
4
|
Mingjie Y, Yair A, Tali G. The RIDD activity of C. elegans IRE1 modifies neuroendocrine signaling in anticipation of environment stress to ensure survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552841. [PMID: 37609168 PMCID: PMC10441387 DOI: 10.1101/2023.08.10.552841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Xbp1 splicing and regulated IRE1-dependent RNA decay (RIDD) are two RNase activities of the ER stress sensor IRE1. While Xbp1 splicing has important roles in stress responses and animal physiology, the physiological role(s) of RIDD remain enigmatic. Genetic evidence in C. elegans connects XBP1-independent IRE1 activity to organismal stress adaptation, but whether this is via RIDD, and what are the targets is yet unknown. We show that cytosolic kinase/RNase domain of C. elegans IRE1 is indeed capable of RIDD in human cells, and that sensory neurons use RIDD to signal environmental stress, by degrading mRNA of TGFβ-like growth factor DAF-7. daf-7 was degraded in human cells by both human and worm IRE1 RNAse activity with same efficiency and specificity as Blos1, confirming daf-7 as RIDD substrate. Surprisingly, daf-7 degradation in vivo was triggered by concentrations of ER stressor tunicamycin too low for xbp-1 splicing. Decrease in DAF-7 normally signals food limitation and harsh environment, triggering adaptive changes to promote population survival. Because C. elegans is a bacteriovore, and tunicamycin, like other common ER stressors, is an antibiotic secreted by Streptomyces spp., we asked whether daf-7 degradation by RIDD could signal pending food deprivation. Indeed, pre-emptive tunicamycin exposure increased survival of C. elegans populations under food limiting/high temperature stress, and this protection was abrogated by overexpression of DAF-7. Thus, C. elegans uses stress-inducing metabolites in its environment as danger signals, and employs IRE1's RIDD activity to modulate the neuroendocrine signaling for survival of upcoming environmental challenge.
Collapse
Affiliation(s)
- Ying Mingjie
- Department of Biology, Drexel University, Philadelphia, PA
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Argon Yair
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
5
|
Biomedical importance of the ubiquitin-proteasome system in diabetes and metabolic transdifferentiation of pancreatic duct epithelial cells into β-cells. Gene 2023; 858:147191. [PMID: 36632913 DOI: 10.1016/j.gene.2023.147191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a major pathway for cellular protein degradation. The molecular function of the UPS is the removal of damaged proteins, and this function is applied in many biological processes, including inflammation, proliferation, and apoptosis. Accumulating evidence also suggests that the UPS also has a key role in pancreatic β-cell transdifferentiation in diabetes and can be targeted for treatment of diabetic diseases. In this review, we summarized the mechanistic roles of the UPS in the biochemical activities of pancreatic β-cells, including the role of the UPS in insulin synthesis and secretion, as well as β-cell degradation. Also, we discuss how the UPS mediates the transdifferentiation of pancreatic duct epithelial cells into β-cells as the experimental basis for the development of new strategies for the treatment of diabetes in regenerative medicine.
Collapse
|
6
|
Xu X, Arunagiri A, Haataja L, Alam M, Ji S, Qi L, Tsai B, Liu M, Arvan P. Proteasomal degradation of wild-type proinsulin in pancreatic beta cells. J Biol Chem 2022; 298:102406. [PMID: 35988641 PMCID: PMC9486123 DOI: 10.1016/j.jbc.2022.102406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
Preproinsulin entry into the endoplasmic reticulum yields proinsulin, and its subsequent delivery to the distal secretory pathway leads to processing, storage, and secretion of mature insulin. Multiple groups have reported that treatment of pancreatic beta cell lines, rodent pancreatic islets, or human islets with proteasome inhibitors leads to diminished proinsulin and insulin protein levels, diminished glucose-stimulated insulin secretion, and changes in beta-cell gene expression that ultimately lead to beta-cell death. However, these studies have mostly examined treatment times far beyond that needed to achieve acute proteasomal inhibition. Here, we report that although proteasomal inhibition immediately downregulates new proinsulin biosynthesis, it nevertheless acutely increases beta-cell proinsulin levels in pancreatic beta cell lines, rodent pancreatic islets, and human islets, indicating rescue of a pool of recently synthesized WT INS gene product that would otherwise be routed to proteasomal disposal. Our pharmacological evidence suggests that this disposal most likely reflects ongoing endoplasmic reticulum–associated protein degradation. However, we found that within 60 min after proteasomal inhibition, intracellular proinsulin levels begin to fall in conjunction with increased phosphorylation of eukaryotic initiation factor 2 alpha, which can be inhibited by blocking the general control nonderepressible 2 kinase. Together, these data demonstrate that a meaningful subfraction of newly synthesized INS gene product undergoes rapid proteasomal disposal. We propose that free amino acids derived from proteasomal proteolysis may potentially participate in suppressing general control nonderepressible 2 kinase activity to maintain ongoing proinsulin biosynthesis.
Collapse
Affiliation(s)
- Xiaoxi Xu
- The Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI 48105; Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052
| | - Anoop Arunagiri
- The Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI 48105
| | - Leena Haataja
- The Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI 48105
| | - Maroof Alam
- The Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI 48105
| | - Shuhui Ji
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052
| | - Ling Qi
- Departments of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Billy Tsai
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052.
| | - Peter Arvan
- The Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI 48105.
| |
Collapse
|
7
|
Miyake M, Sobajima M, Kurahashi K, Shigenaga A, Denda M, Otaka A, Saio T, Sakane N, Kosako H, Oyadomari S. Identification of an endoplasmic reticulum proteostasis modulator that enhances insulin production in pancreatic β cells. Cell Chem Biol 2022; 29:996-1009.e9. [PMID: 35143772 DOI: 10.1016/j.chembiol.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/11/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
Perturbation of endoplasmic reticulum (ER) proteostasis is associated with impairment of cellular function in diverse diseases, especially the function of pancreatic β cells in type 2 diabetes. Restoration of ER proteostasis by small molecules shows therapeutic promise for type 2 diabetes. Here, using cell-based screening, we report identification of a chemical chaperone-like small molecule, KM04794, that alleviates ER stress. KM04794 prevented protein aggregation and cell death caused by ER stressors and a mutant insulin protein. We also found that this compound increased intracellular and secreted insulin levels in pancreatic β cells. Chemical biology and biochemical approaches revealed that the compound accumulated in the ER and interacted directly with the ER molecular chaperone BiP. Our data show that this corrector of ER proteostasis can enhance insulin storage and pancreatic β cell function.
Collapse
Affiliation(s)
- Masato Miyake
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan; Department of Molecular Research, Diabetes Therapeutics and Research Center, Tokushima University, Tokushima, Japan; Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan.
| | - Mitsuaki Sobajima
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan; Department of Molecular Research, Diabetes Therapeutics and Research Center, Tokushima University, Tokushima, Japan
| | - Kiyoe Kurahashi
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan; Department of Molecular Research, Diabetes Therapeutics and Research Center, Tokushima University, Tokushima, Japan; Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Akira Shigenaga
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan; Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Hiroshima, Japan
| | - Masaya Denda
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Tomohide Saio
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naoki Sakane
- Pharmaceutical Frontier Research Laboratories, JT Inc., Yokohama, Japan
| | - Hidetaka Kosako
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Seiichi Oyadomari
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan; Department of Molecular Research, Diabetes Therapeutics and Research Center, Tokushima University, Tokushima, Japan; Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan.
| |
Collapse
|
8
|
Khilji MS, Bresson SE, Verstappen D, Pihl C, Andersen PAK, Agergaard JB, Dahlby T, Bryde TH, Klindt K, Nielsen CK, Walentinsson A, Zivkovic D, Bousquet MP, Tyrberg B, Richardson SJ, Morgan NG, Mandrup-Poulsen T, Marzec MT. The inducible β5i proteasome subunit contributes to proinsulin degradation in GRP94-deficient β-cells and is overexpressed in type 2 diabetes pancreatic islets. Am J Physiol Endocrinol Metab 2020; 318:E892-E900. [PMID: 32255680 DOI: 10.1152/ajpendo.00372.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proinsulin is a misfolding-prone protein, and its efficient breakdown is critical when β-cells are confronted with high-insulin biosynthetic demands, to prevent endoplasmic reticulum stress, a key trigger of secretory dysfunction and, if uncompensated, apoptosis. Proinsulin degradation is thought to be performed by the constitutively expressed standard proteasome, while the roles of other proteasomes are unknown. We recently demonstrated that deficiency of the proinsulin chaperone glucose-regulated protein 94 (GRP94) causes impaired proinsulin handling and defective insulin secretion associated with a compensated endoplasmic reticulum stress response. Taking advantage of this model of restricted folding capacity, we investigated the role of different proteasomes in proinsulin degradation, reasoning that insulin secretory dynamics require an inducible protein degradation system. We show that the expression of only one enzymatically active proteasome subunit, namely, the inducible β5i-subunit, was increased in GRP94 CRISPR/Cas9 knockout (KO) cells. Additionally, the level of β5i-containing intermediate proteasomes was significantly increased in these cells, as was β5i-related chymotrypsin-like activity. Moreover, proinsulin levels were restored in GRP94 KO upon β5i small interfering RNA-mediated knockdown. Finally, the fraction of β-cells expressing the β5i-subunit is increased in human islets from type 2 diabetes patients. We conclude that β5i is an inducible proteasome subunit dedicated to the degradation of mishandled proinsulin.
Collapse
Affiliation(s)
- Muhammad Saad Khilji
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Emilie Bresson
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Danielle Verstappen
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Radboud Universiteit, Nijmegen, The Netherlands
| | - Celina Pihl
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Phillip Alexander Keller Andersen
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jette Bach Agergaard
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Dahlby
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tenna Holgersen Bryde
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Klindt
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Kronborg Nielsen
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Walentinsson
- Translational Science and Experimental Medicine, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Dusan Zivkovic
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Björn Tyrberg
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Noel G Morgan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Thomas Mandrup-Poulsen
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michal Tomasz Marzec
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Hamazaki J, Murata S. ER-Resident Transcription Factor Nrf1 Regulates Proteasome Expression and Beyond. Int J Mol Sci 2020; 21:ijms21103683. [PMID: 32456207 PMCID: PMC7279161 DOI: 10.3390/ijms21103683] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Protein folding is a substantively error prone process, especially when it occurs in the endoplasmic reticulum (ER). The highly exquisite machinery in the ER controls secretory protein folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol; these misfolded proteins are then degraded by the ubiquitin–proteasome system termed as the ER-associated degradation (ERAD). The 26S proteasome is a multisubunit protease complex that recognizes and degrades ubiquitinated proteins in an ATP-dependent manner. The complex structure of the 26S proteasome requires exquisite regulation at the transcription, translation, and molecular assembly levels. Nuclear factor erythroid-derived 2-related factor 1 (Nrf1; NFE2L1), an ER-resident transcription factor, has recently been shown to be responsible for the coordinated expression of all the proteasome subunit genes upon proteasome impairment in mammalian cells. In this review, we summarize the current knowledge regarding the transcriptional regulation of the proteasome, as well as recent findings concerning the regulation of Nrf1 transcription activity in ER homeostasis and metabolic processes.
Collapse
|
10
|
Homma T, Fujii J. Emerging connections between oxidative stress, defective proteolysis, and metabolic diseases. Free Radic Res 2020; 54:931-946. [PMID: 32308060 DOI: 10.1080/10715762.2020.1734588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
11
|
Khilji MS, Verstappen D, Dahlby T, Burstein Prause MC, Pihl C, Bresson SE, Bryde TH, Keller Andersen PA, Klindt K, Zivkovic D, Bousquet-Dubouch MP, Tyrberg B, Mandrup-Poulsen T, Marzec MT. The intermediate proteasome is constitutively expressed in pancreatic beta cells and upregulated by stimulatory, low concentrations of interleukin 1 β. PLoS One 2020; 15:e0222432. [PMID: 32053590 PMCID: PMC7018053 DOI: 10.1371/journal.pone.0222432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
A central and still open question regarding the pathogenesis of autoimmune diseases, such as type 1 diabetes, concerns the processes that underlie the generation of MHC-presented autoantigenic epitopes that become targets of autoimmune attack. Proteasomal degradation is a key step in processing of proteins for MHC class I presentation. Different types of proteasomes can be expressed in cells dictating the repertoire of peptides presented by the MHC class I complex. Of particular interest for type 1 diabetes is the proteasomal configuration of pancreatic β cells, as this might facilitate autoantigen presentation by β cells and thereby their T-cell mediated destruction. Here we investigated whether so-called inducible subunits of the proteasome are constitutively expressed in β cells, regulated by inflammatory signals and participate in the formation of active intermediate or immuno-proteasomes. We show that inducible proteasomal subunits are constitutively expressed in human and rodent islets and an insulin-secreting cell-line. Moreover, the β5i subunit is incorporated into active intermediate proteasomes that are bound to 19S or 11S regulatory particles. Finally, inducible subunit expression along with increase in total proteasome activities are further upregulated by low concentrations of IL-1β stimulating proinsulin biosynthesis. These findings suggest that the β cell proteasomal repertoire is more diverse than assumed previously and may be highly responsive to a local inflammatory islet environment.
Collapse
Affiliation(s)
- Muhammad Saad Khilji
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Danielle Verstappen
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Radboud Universiteit, Nijmegen, Netherlands
| | - Tina Dahlby
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Celina Pihl
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Emilie Bresson
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tenna Holgersen Bryde
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Phillip Alexander Keller Andersen
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Klindt
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dusan Zivkovic
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Marie-Pierre Bousquet-Dubouch
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Björn Tyrberg
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Mandrup-Poulsen
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michal Tomasz Marzec
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
12
|
Ebstein F, Poli Harlowe MC, Studencka-Turski M, Krüger E. Contribution of the Unfolded Protein Response (UPR) to the Pathogenesis of Proteasome-Associated Autoinflammatory Syndromes (PRAAS). Front Immunol 2019; 10:2756. [PMID: 31827472 PMCID: PMC6890838 DOI: 10.3389/fimmu.2019.02756] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Type I interferonopathies cover a phenotypically heterogeneous group of rare genetic diseases including the recently described proteasome-associated autoinflammatory syndromes (PRAAS). By definition, PRAAS are caused by inherited and/or de novo loss-of-function mutations in genes encoding proteasome subunits such as PSMB8, PSMB9, PSMB7, PSMA3, or proteasome assembly factors including POMP and PSMG2, respectively. Disruption of any of these subunits results in perturbed intracellular protein homeostasis including accumulation of ubiquitinated proteins which is accompanied by a type I interferon (IFN) signature. The observation that, similarly to pathogens, proteasome dysfunctions are potent type I IFN inducers is quite unexpected and, up to now, the underlying molecular mechanisms of this process remain largely unknown. One promising candidate for triggering type I IFN under sterile conditions is the unfolded protein response (UPR) which is typically initiated in response to an accumulation of unfolded and/or misfolded proteins in the endoplasmic reticulum (ER) (also referred to as ER stress). The recent observation that the UPR is engaged in subjects carrying POMP mutations strongly suggests its possible implication in the cause-and-effect relationship between proteasome impairment and interferonopathy onset. The purpose of this present review is therefore to discuss the possible role of the UPR in the pathogenesis of PRAAS. We will particularly focus on pathways initiated by the four ER-membrane proteins ATF6, PERK, IRE1-α, and TCF11/Nrf1 which undergo activation under proteasome inhibition. An overview of the current understanding of the mechanisms and potential cross-talk between the UPR and inflammatory signaling casacades is provided to convey a more integrated picture of the pathophysiology of PRAAS and shed light on potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - María Cecilia Poli Harlowe
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Maja Studencka-Turski
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
13
|
Sternisha SM, Miller BG. Molecular and cellular regulation of human glucokinase. Arch Biochem Biophys 2019; 663:199-213. [PMID: 30641049 DOI: 10.1016/j.abb.2019.01.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/23/2023]
Abstract
Glucose metabolism in humans is tightly controlled by the activity of glucokinase (GCK). GCK is predominantly produced in the pancreas, where it catalyzes the rate-limiting step of insulin secretion, and in the liver, where it participates in glycogen synthesis. A multitude of disease-causing mutations within the gck gene have been identified. Activating mutations manifest themselves in the clinic as congenital hyperinsulinism, while loss-of-function mutations produce several diabetic conditions. Indeed, pharmaceutical companies have shown great interest in developing GCK-associated treatments for diabetic patients. Due to its essential role in maintaining whole-body glucose homeostasis, GCK activity is extensively regulated at multiple levels. GCK possesses a unique ability to self-regulate its own activity via slow conformational dynamics, which allows for a cooperative response to glucose. GCK is also subject to a number of protein-protein interactions and post-translational modification events that produce a broad range of physiological consequences. While significant advances in our understanding of these individual regulatory mechanisms have been recently achieved, how these strategies are integrated and coordinated within the cell is less clear. This review serves to synthesize the relevant findings and offer insights into the connections between molecular and cellular control of GCK.
Collapse
Affiliation(s)
- Shawn M Sternisha
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Brian G Miller
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
14
|
Chatterjee Bhowmick D, Jeremic A. Functional proteasome complex is required for turnover of islet amyloid polypeptide in pancreatic β-cells. J Biol Chem 2018; 293:14210-14223. [PMID: 30012886 DOI: 10.1074/jbc.ra118.002414] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/02/2018] [Indexed: 12/16/2022] Open
Abstract
Human islet amyloid polypeptide (hIAPP) is the principal constituent of amyloid deposits and toxic oligomers in the pancreatic islets. Together with hyperglycemia, hIAPP-derived oligomers and aggregates are important culprits in type 2 diabetes mellitus (T2DM). Here, we explored the role of the cell's main proteolytic complex, the proteasome, in hIAPP turnover in normal and stressed β-cells evoked by chronic hyperglycemia. Moderate inhibition (10-35%) of proteasome activity/function in cultured human islets by the proteasome inhibitor lactacystin enhanced intracellular accumulation of hIAPP. Unexpectedly, prolonged (>1 h) and marked (>50%) impairment of proteasome activity/function had a strong inhibitory effect on hIAPP transcription and secretion from normal and stressed β-cells. This negative compensatory feedback mechanism for controlling IAPP turnover was also observed in the lactacystin-treated rat insulinoma β-cell line (INS 832/13), demonstrating the presence of an evolutionarily conserved mechanism for IAPP production. In line with these in situ studies, our current ex vivo data showed that proteasome activity and hIAPP expression are also down-regulated in islets isolated from T2DM subjects. Gene expression and promoter activity studies demonstrated that the functional proteasome complex is required for efficient activation of the hIAPP promoter and for full expression of IAPP's essential transcription factor, FOXA2. ChIP studies revealed that promoter occupancy of FoxA2 at the rat IAPP promoter region is an important and limiting factor for amylin expression in proteasome-impaired murine cells. This study suggests a novel regulatory pathway in β-cells involving proteasome, FOXA2, and IAPP, which can be possibly targeted to regulate hIAPP levels and islet amyloidosis in T2DM.
Collapse
Affiliation(s)
- Diti Chatterjee Bhowmick
- From the Departments of Biological Sciences and Biomedical Sciences, George Washington University, Washington, D. C. 20052
| | - Aleksandar Jeremic
- From the Departments of Biological Sciences and Biomedical Sciences, George Washington University, Washington, D. C. 20052
| |
Collapse
|
15
|
Lundh M, Bugliani M, Dahlby T, Chou DHC, Wagner B, Ghiasi SM, De Tata V, Chen Z, Lund MN, Davies MJ, Marchetti P, Mandrup-Poulsen T. The immunoproteasome is induced by cytokines and regulates apoptosis in human islets. J Endocrinol 2017; 233:369-379. [PMID: 28438776 PMCID: PMC5501413 DOI: 10.1530/joe-17-0110] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
Abstract
In addition to degrading misfolded and damaged proteins, the proteasome regulates the fate of cells in response to stress. The role of the proteasome in pro-inflammatory cytokine-induced human beta-cell apoptosis is unknown. Using INS-1, INS-1E and human islets exposed to combinations of IFNγ, IL-1β and TNFα with or without addition of small molecules, we assessed the role of the immunoproteasome in pancreatic beta-cell demise. Here, we show that cytokines induce the expression and activity of the immuno-proteasome in INS-1E cells and human islets. Cytokine-induced expression of immuno-proteasome subunits, but not activity, depended upon histone deacetylase 3 activation. Inhibition of JAK1/STAT1 signaling did not affect proteasomal activity. Inhibition of the immuno-proteasome subunit PSMB8 aggravated cytokine-induced human beta-cell apoptosis while reducing intracellular levels of oxidized proteins in INS-1 cells. While cytokines increased total cellular NFκB subunit P50 and P52 levels and reduced the cytosolic NFκB subunit P65 and IκB levels, these effects were unaffected by PSMB8 inhibition. We conclude that beta cells upregulate immuno-proteasome expression and activity in response to IFNγ, likely as a protective response to confine inflammatory signaling.
Collapse
Affiliation(s)
- Morten Lundh
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
- Chemical Biology and Therapeutics ProgramBroad Institute of Harvard and MIT, Boston, Massachusetts, USA
| | - Marco Bugliani
- Department of Clinical and Experimental MedicineUniversity of Pisa, Pisa, Italy
| | - Tina Dahlby
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| | - Danny Hung-Chieh Chou
- Chemical Biology and Therapeutics ProgramBroad Institute of Harvard and MIT, Boston, Massachusetts, USA
| | - Bridget Wagner
- Chemical Biology and Therapeutics ProgramBroad Institute of Harvard and MIT, Boston, Massachusetts, USA
| | | | - Vincenzo De Tata
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| | - Zhifei Chen
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| | - Marianne Nissan Lund
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
- Department of Food ScienceUniversity of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| | - Piero Marchetti
- Department of Clinical and Experimental MedicineUniversity of Pisa, Pisa, Italy
| | | |
Collapse
|
16
|
Shirriff CS, Heikkila JJ. Characterization of cadmium chloride-induced BiP accumulation in Xenopus laevis A6 kidney epithelial cells. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:117-128. [PMID: 27746171 DOI: 10.1016/j.cbpc.2016.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 12/22/2022]
Abstract
Endoplasmic reticulum (ER) stress can result in the accumulation of unfolded/misfolded protein in the ER lumen, which can trigger the unfolded protein response (UPR) resulting in the activation of various genes including immunoglobulin-binding protein (BiP; also known as glucose-regulated protein 78 or HSPA5). BiP, an ER heat shock protein 70 (HSP70) family member, binds to unfolded protein, inhibits their aggregation and re-folds them in an ATP-dependent manner. While cadmium, an environmental contaminant, was shown to induce the accumulation of HSP70 in vertebrate cells, less information is available regarding the effect of this metal on BiP accumulation or function. In this study, cadmium chloride treatment of Xenopus laevis A6 kidney epithelial cells induced a dose- and time-dependent increase in BiP, HSP70 and heme oxygenase-1 (HO-1) accumulation. Exposure of cells to a relatively low cadmium concentration at a mild heat shock temperature of 30°C greatly enhanced BiP and HSP70 accumulation compared to cadmium at 22°C. Treatment of cells with the glutathione synthesis inhibitor, buthionine sulfoximine, enhanced cadmium-induced BiP and HSP70 accumulation. Immunocytochemistry revealed that cadmium-induced BiP accumulation occurred in a punctate pattern in the perinuclear region. In some cells treated with cadmium chloride or the proteasomal inhibitor, MG132, large BiP complexes were observed that co-localized with aggregated protein or aggresome-like structures. These BiP/aggresome-like structures were also observed in cells treated simultaneously with cadmium at 30°C or in the presence of buthionine sulfoximine. In amphibians, the association of BiP with unfolded protein and its possible role in aggresome function may be vital in the maintenance of cellular proteostasis.
Collapse
Affiliation(s)
- Cody S Shirriff
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - John J Heikkila
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
17
|
Proteasome inhibitors, including curcumin, improve pancreatic β-cell function and insulin sensitivity in diabetic mice. Nutr Diabetes 2016; 6:e205. [PMID: 27110686 PMCID: PMC4855258 DOI: 10.1038/nutd.2016.13] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/05/2016] [Accepted: 03/09/2016] [Indexed: 12/22/2022] Open
Abstract
Background: Type 2 diabetes stems from obesity-associated insulin resistance, and in the genetically susceptible, concomitant pancreatic β-cell failure can occur, which further exacerbates hyperglycemia. Recent work by our group and others has shown that the natural polyphenol curcumin attenuates the development of insulin resistance and hyperglycemia in mouse models of hyperinsulinemic or compensated type 2 diabetes. Although several potential downstream molecular targets of curcumin exist, it is now recognized to be a direct inhibitor of proteasome activity. We now show that curcumin also prevents β-cell failure in a mouse model of uncompensated obesity-related insulin resistance (Leprdb/db on the Kaliss background). Results: In this instance, dietary supplementation with curcumin prevented hyperglycemia, increased insulin production and lean body mass, and prolonged lifespan. In addition, we show that short-term in vivo treatment with low dosages of two molecularly distinct proteasome inhibitors celastrol and epoxomicin reverse hyperglycemia in mice with β-cell failure by increasing insulin production and insulin sensitivity. Conclusions: These studies suggest that proteasome inhibitors may prove useful for patients with diabetes by improving both β-cell function and relieving insulin resistance.
Collapse
|
18
|
Akhmedov AT, Rybin V, Marín-García J. Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Fail Rev 2015; 20:227-49. [PMID: 25192828 DOI: 10.1007/s10741-014-9457-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite significant progress in cardiovascular medicine, myocardial ischemia and infarction, progressing eventually to the final end point heart failure (HF), remain the leading cause of morbidity and mortality in the USA. HF is a complex syndrome that results from any structural or functional impairment in ventricular filling or blood ejection. Ultimately, the heart's inability to supply the body's tissues with enough blood may lead to death. Mechanistically, the hallmarks of the failing heart include abnormal energy metabolism, increased production of reactive oxygen species (ROS) and defects in excitation-contraction coupling. HF is a highly dynamic pathological process, and observed alterations in cardiac metabolism and function depend on the disease progression. In the early stages, cardiac remodeling characterized by normal or slightly increased fatty acid (FA) oxidation plays a compensatory, cardioprotective role. However, upon progression of HF, FA oxidation and mitochondrial oxidative activity are decreased, resulting in a significant drop in cardiac ATP levels. In HF, as a compensatory response to decreased oxidative metabolism, glucose uptake and glycolysis are upregulated, but this upregulation is not sufficient to compensate for a drop in ATP production. Elevated mitochondrial ROS generation and ROS-mediated damage, when they overwhelm the cellular antioxidant defense system, induce heart injury and contribute to the progression of HF. Mitochondrial uncoupling proteins (UCPs), which promote proton leak across the inner mitochondrial membrane, have emerged as essential regulators of mitochondrial membrane potential, respiratory activity and ROS generation. Although the physiological role of UCP2 and UCP3, expressed in the heart, has not been clearly established, increasing evidence suggests that these proteins by promoting mild uncoupling could reduce mitochondrial ROS generation and cardiomyocyte apoptosis and ameliorate thereby myocardial function. Further investigation on the alterations in cardiac UCP activity and regulation will advance our understanding of their physiological roles in the healthy and diseased heart and also may facilitate the development of novel and more efficient therapies.
Collapse
Affiliation(s)
- Alexander T Akhmedov
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ, 08904, USA
| | | | | |
Collapse
|
19
|
Sjakste T, Paramonova N, Osina K, Dokane K, Sokolovska J, Sjakste N. Genetic variations in the PSMA3, PSMA6 and PSMC6 genes are associated with type 1 diabetes in Latvians and with expression level of number of UPS-related and T1DM-susceptible genes in HapMap individuals. Mol Genet Genomics 2015; 291:891-903. [PMID: 26661414 DOI: 10.1007/s00438-015-1153-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/28/2015] [Indexed: 01/04/2023]
Abstract
The ubiquitin-proteasome system (UPS), a key player of proteostasis network in the body, was implicated in type 1 diabetes mellitus (T1DM) pathogenesis. Polymorphisms in genes encoding proteasome subunits may potentially affect system efficiency. However, data in this field are still limited. To fulfil this gap, single nucleotide polymorphisms in the PSMB5 (rs11543947), PSMA6 (rs2277460, rs1048990), PSMC6 (rs2295826, rs2295827) and PSMA3 (rs2348071) genes were genotyped on susceptibility to T1DM in Latvians. The rs11543947 was found to be neutral and other loci manifested disease susceptibility, with rs1048990 and rs2348071 being the most significantly associated (P < 0.001; OR 2.042 [1.376-3.032] and OR 2.096 [1.415-3.107], respectively). Risk effect was associated with female phenotype for rs2277460 and family history for rs2277460, rs2295826 and rs2295827. Five-locus genotypes being at risk simultaneously at any two or more loci showed strong (P < 0.0001) T1DM association. The T1DM protective effects (P < 0.001) were shown for five-locus genotype and haplotype homozygous on common alleles and composed of common alleles, respectively. Using SNPexp data set, correlations have been revealed between the rs1048990, rs2295826, rs2295827 and rs2348071 T1DM risk genotypes and expression levels of 14 genes related to the UPS and 42 T1DM-susceptible genes encoding proteins involved in innate and adaptive immunity, antiviral response, insulin signalling, glucose-energy metabolism and other pathways implicated in T1DM pathogenesis. Genotype-phenotype and genotype-genotype clusterings support genotyping results. Our results provide evidence on new T1DM-susceptible loci in the PSMA3, PSMA6 and PSMC6 proteasome genes and give a new insight into the T1DM pathogenesis.
Collapse
Affiliation(s)
- Tatjana Sjakste
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, Salaspils, Latvia.
| | - Natalia Paramonova
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, Salaspils, Latvia
| | - Kristine Osina
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, Salaspils, Latvia
| | - Kristine Dokane
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, Salaspils, Latvia
| | | | | |
Collapse
|
20
|
Wang SH, Lee WC, Chou HC. Retinal proteins associated with redox regulation and protein folding play central roles in response to high glucose conditions. Electrophoresis 2015; 36:902-9. [DOI: 10.1002/elps.201400591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/11/2014] [Accepted: 12/17/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Ssu-Han Wang
- Department of Applied Science; National Hsinchu University of Education; Hsinchu Taiwan
| | - Wen-Chi Lee
- Department of Applied Science; National Hsinchu University of Education; Hsinchu Taiwan
| | - Hsiu-Chuan Chou
- Department of Applied Science; National Hsinchu University of Education; Hsinchu Taiwan
| |
Collapse
|
21
|
Bhatnagar S, Soni MS, Wrighton LS, Hebert AS, Zhou AS, Paul PK, Gregg T, Rabaglia ME, Keller MP, Coon JJ, Attie AD. Phosphorylation and degradation of tomosyn-2 de-represses insulin secretion. J Biol Chem 2014; 289:25276-86. [PMID: 25002582 DOI: 10.1074/jbc.m114.575985] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The abundance and functional activity of proteins involved in the formation of the SNARE complex are tightly regulated for efficient exocytosis. Tomosyn proteins are negative regulators of exocytosis. Tomosyn causes an attenuation of insulin secretion by limiting the formation of the SNARE complex. We hypothesized that glucose-dependent stimulation of insulin secretion from β-cells must involve reversing the inhibitory action of tomosyn. Here, we show that glucose increases tomosyn protein turnover. Within 1 h of exposure to 15 mM glucose, ~50% of tomosyn was degraded. The degradation of tomosyn in response to high glucose was blocked by inhibitors of the proteasomal pathway. Using (32)P labeling and mass spectrometry, we showed that tomosyn-2 is phosphorylated in response to high glucose, phorbol esters, and analogs of cAMP, all key insulin secretagogues. We identified 11 phosphorylation sites in tomosyn-2. Site-directed mutagenesis was used to generate phosphomimetic (Ser → Asp) and loss-of-function (Ser → Ala) mutants. The Ser → Asp mutant had enhanced protein turnover compared with the Ser → Ala mutant and wild type tomosyn-2. Additionally, the Ser → Asp tomosyn-2 mutant was ineffective at inhibiting insulin secretion. Using a proteomic screen for tomosyn-2-binding proteins, we identified Hrd-1, an E3-ubiquitin ligase. We showed that tomosyn-2 ubiquitination is increased by Hrd-1, and knockdown of Hrd-1 by short hairpin RNA resulted in increased abundance in tomosyn-2 protein levels. Taken together, our results reveal a mechanism by which enhanced phosphorylation of a negative regulator of secretion, tomosyn-2, in response to insulin secretagogues targets it to degradation by the Hrd-1 E3-ubiquitin ligase.
Collapse
Affiliation(s)
| | | | | | - Alexander S Hebert
- Chemistry and Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | | | | | | | | | | | - Joshua J Coon
- Chemistry and Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | | |
Collapse
|
22
|
Hsu HT, Janßen L, Lawand M, Kim J, Perez-Arroyo A, Culina S, Gdoura A, Burgevin A, Cumenal D, Fourneau Y, Moser A, Kratzer R, Wong FS, Springer S, van Endert P. Endoplasmic reticulum targeting alters regulation of expression and antigen presentation of proinsulin. THE JOURNAL OF IMMUNOLOGY 2014; 192:4957-66. [PMID: 24778449 DOI: 10.4049/jimmunol.1300631] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peptide ligands presented by MHC class I (MHC-I) molecules are produced by degradation of cytosolic and nuclear, but also endoplasmic reticulum (ER)-resident, proteins by the proteasome. However, Ag processing of ER proteins remains little characterized. Studying processing and presentation of proinsulin, which plays a pivotal role in autoimmune diabetes, we found that targeting to the ER has profound effects not only on how proinsulin is degraded, but also on regulation of its cellular levels. While proteasome inhibition inhibited degradation and presentation of cytosolic proinsulin, as expected, it reduced the abundance of ER-targeted proinsulin. This targeting and protein modifications modifying protein half-life also had profound effects on MHC-I presentation and proteolytic processing of proinsulin. Thus, presentation of stable luminal forms was inefficient but enhanced by proteasome inhibition, whereas that of unstable luminal forms and of a cytosolic form were more efficient and compromised by proteasome inhibitors. Distinct stability of peptide MHC complexes produced from cytosolic and luminal proinsulin suggests that different proteolytic activities process the two Ag forms. Thus, both structural features and subcellular targeting of Ags can have strong effects on the processing pathways engaged by MHC-I-restricted Ags, and on the efficiency and regulation of their presentation.
Collapse
Affiliation(s)
- Hsiang-Ting Hsu
- INSERM, Unité 1151, 75015 Paris, France; Centre National de la Recherche Scientifique, Unité 8253, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Linda Janßen
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany; and
| | - Myriam Lawand
- INSERM, Unité 1151, 75015 Paris, France; Centre National de la Recherche Scientifique, Unité 8253, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Jessica Kim
- INSERM, Unité 1151, 75015 Paris, France; Centre National de la Recherche Scientifique, Unité 8253, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Alicia Perez-Arroyo
- INSERM, Unité 1151, 75015 Paris, France; Centre National de la Recherche Scientifique, Unité 8253, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Slobodan Culina
- INSERM, Unité 1151, 75015 Paris, France; Centre National de la Recherche Scientifique, Unité 8253, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Abdel Gdoura
- INSERM, Unité 1151, 75015 Paris, France; Centre National de la Recherche Scientifique, Unité 8253, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Anne Burgevin
- INSERM, Unité 1151, 75015 Paris, France; Centre National de la Recherche Scientifique, Unité 8253, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Delphine Cumenal
- INSERM, Unité 1151, 75015 Paris, France; Centre National de la Recherche Scientifique, Unité 8253, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Yousra Fourneau
- INSERM, Unité 1151, 75015 Paris, France; Centre National de la Recherche Scientifique, Unité 8253, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Anna Moser
- INSERM, Unité 1151, 75015 Paris, France; Centre National de la Recherche Scientifique, Unité 8253, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Roland Kratzer
- INSERM, Unité 1151, 75015 Paris, France; Centre National de la Recherche Scientifique, Unité 8253, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - F Susan Wong
- Centre for Endocrine and Diabetes Science, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Sebastian Springer
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany; and
| | - Peter van Endert
- INSERM, Unité 1151, 75015 Paris, France; Centre National de la Recherche Scientifique, Unité 8253, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France;
| |
Collapse
|
23
|
Broca C, Varin E, Armanet M, Tourrel-Cuzin C, Bosco D, Dalle S, Wojtusciszyn A. Proteasome dysfunction mediates high glucose-induced apoptosis in rodent beta cells and human islets. PLoS One 2014; 9:e92066. [PMID: 24642635 PMCID: PMC3958412 DOI: 10.1371/journal.pone.0092066] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/17/2014] [Indexed: 01/23/2023] Open
Abstract
The ubiquitin/proteasome system (UPS), a major cellular protein degradation machinery, plays key roles in the regulation of many cell functions. Glucotoxicity mediated by chronic hyperglycaemia is detrimental to the function and survival of pancreatic beta cells. The aim of our study was to determine whether proteasome dysfunction could be involved in beta cell apoptosis in glucotoxic conditions, and to evaluate whether such a dysfunction might be pharmacologically corrected. Therefore, UPS activity was measured in GK rats islets, INS-1E beta cells or human islets after high glucose and/or UPS inhibitor exposure. Immunoblotting was used to quantify polyubiquitinated proteins, endoplasmic reticulum (ER) stress through CHOP expression, and apoptosis through the cleavage of PARP and caspase-3, whereas total cell death was detected through histone-associated DNA fragments measurement. In vitro, we found that chronic exposure of INS-1E cells to high glucose concentrations significantly decreases the three proteasome activities by 20% and leads to caspase-3-dependent apoptosis. We showed that pharmacological blockade of UPS activity by 20% leads to apoptosis in a same way. Indeed, ER stress was involved in both conditions. These results were confirmed in human islets, and proteasome activities were also decreased in hyperglycemic GK rats islets. Moreover, we observed that a high glucose treatment hypersensitized beta cells to the apoptotic effect of proteasome inhibitors. Noteworthily, the decreased proteasome activity can be corrected with Exendin-4, which also protected against glucotoxicity-induced apoptosis. Taken together, our findings reveal an important role of proteasome activity in high glucose-induced beta cell apoptosis, potentially linking ER stress and glucotoxicity. These proteasome dysfunctions can be reversed by a GLP-1 analog. Thus, UPS may be a potent target to treat deleterious metabolic conditions leading to type 2 diabetes.
Collapse
Affiliation(s)
- Christophe Broca
- CNRS UMR 5203, INSERM U661, and Montpellier 1 & 2 University, Institute of Functional Genomics, Montpellier, France
- Laboratory for Diabetes Cell Therapy, Institute for Research in Biotherapy, University Hospital St-Eloi, Montpellier, France
| | - Elodie Varin
- CNRS UMR 5203, INSERM U661, and Montpellier 1 & 2 University, Institute of Functional Genomics, Montpellier, France
- Laboratory for Diabetes Cell Therapy, Institute for Research in Biotherapy, University Hospital St-Eloi, Montpellier, France
| | - Mathieu Armanet
- Laboratory for Diabetes Cell Therapy, Institute for Research in Biotherapy, University Hospital St-Eloi, Montpellier, France
| | - Cécile Tourrel-Cuzin
- B2PE Laboratory (Biology & Pathology of Endocrine Pancreas), BFA Unit, Univ. Paris-Diderot, CNRS EAC4413, Paris, France
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Stéphane Dalle
- CNRS UMR 5203, INSERM U661, and Montpellier 1 & 2 University, Institute of Functional Genomics, Montpellier, France
- Laboratory for Diabetes Cell Therapy, Institute for Research in Biotherapy, University Hospital St-Eloi, Montpellier, France
| | - Anne Wojtusciszyn
- CNRS UMR 5203, INSERM U661, and Montpellier 1 & 2 University, Institute of Functional Genomics, Montpellier, France
- Laboratory for Diabetes Cell Therapy, Institute for Research in Biotherapy, University Hospital St-Eloi, Montpellier, France
- Department of Endocrinology-Diabetes-Nutrition, University Hospital Lapeyronie, Montpellier, France
| |
Collapse
|
24
|
The ubiquitin-proteasome system regulates the stability and activity of the glucose sensor glucokinase in pancreatic β-cells. Biochem J 2014; 456:173-84. [PMID: 24028089 DOI: 10.1042/bj20130262] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ubiquitin-proteasome system is important to maintain pancreatic β-cell function. Inhibition of the proteasome significantly reduced glucose-induced insulin secretion. Key regulators of the stimulus/secretion cascade seem to be affected by protein misfolding if the proteasome is down-regulated as recently reported in humans with Type 2 diabetes. It remains unknown, however, whether the glucose sensor enzyme glucokinase is involved in this process. A direct interaction between glucokinase and ubiquitin could be shown in vivo by FRET, suggesting regulation of glucokinase by the proteasome. After proteasome inhibition glucokinase activity was significantly reduced in MIN6 cells, whereas the protein content was increased, indicating protein misfolding. Enhancing the availability of chaperones by cyclohexamide could induce refolding and restored glucokinase activity. Glucokinase aggregation due to proteasome blocking with MG132, bortezomib, epoxomicin or lactacystin could be detected in MIN6 cells, primary β-cells and hepatocytes using fluorescence-based assays. Glucokinase aggresome formation proceeded microtubule-assisted and was avoided by cyclohexamide. Thus the results of the present study provide support for glucokinase misfolding and aggregation in case of a diminished capacity of the ubiquitin-proteasome system in pancreatic β-cells. In the Type 2 diabetic situation this could contribute to reduced glucose-induced insulin secretion.
Collapse
|
25
|
Chen JY, Chou HC, Chen YH, Chan HL. High glucose-induced proteome alterations in hepatocytes and its possible relevance to diabetic liver disease. J Nutr Biochem 2013; 24:1889-910. [DOI: 10.1016/j.jnutbio.2013.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/16/2013] [Accepted: 05/24/2013] [Indexed: 12/11/2022]
|
26
|
Kim JY, Cheong HS, Park BL, Baik SH, Park S, Kim S, Shin HD, Kim SH. Putative association between UBE2E2 polymorphisms and the risk of gestational diabetes mellitus. Gynecol Endocrinol 2013; 29:904-8. [PMID: 23862583 DOI: 10.3109/09513590.2013.813465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We hypothesized that ubiquitin-conjugating enzyme E2 E2 (UBE2E2) may be associated with gestational diabetes mellitus (GDM) and conducted association analyses. A total of 2071 subjects were recruited for the study, with 1104 cases and 967 controls. Two UBE2E2 single-nucleotide polymorphisms rs6780569 and rs7612463, and their haplotypes were analyzed for the study. As a result, rs7612463 showed a significant association with GDM in the recessive model. In addition, the regression analyses for the phenotypes showed that rs6780569. rs7612463 and ht2 showed significant associations with fasting plasma glucose (FPG) in recessive models, while ht1 showed an association in the dominant model. Our results show that the genetic variants of UBE2E2 are associated with GDM and FPG, which could be an important preliminary result for future studies.
Collapse
Affiliation(s)
- Jason Y Kim
- Department of Life Science, Sogang University , Mapo-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Bugliani M, Liechti R, Cheon H, Suleiman M, Marselli L, Kirkpatrick C, Filipponi F, Boggi U, Xenarios I, Syed F, Ladriere L, Wollheim C, Lee MS, Marchetti P. Microarray analysis of isolated human islet transcriptome in type 2 diabetes and the role of the ubiquitin-proteasome system in pancreatic beta cell dysfunction. Mol Cell Endocrinol 2013; 367:1-10. [PMID: 23246353 DOI: 10.1016/j.mce.2012.12.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 12/14/2022]
Abstract
To shed light on islet cell molecular phenotype in human type 2 diabetes (T2D), we studied the transcriptome of non-diabetic (ND) and T2D islets to then focus on the ubiquitin-proteasome system (UPS), the major protein degradation pathway. We assessed gene expression, amount of ubiquitinated proteins, proteasome activity, and the effects of proteasome inhibition and prolonged exposure to palmitate. Microarray analysis identified more than one thousand genes differently expressed in T2D islets, involved in many structures and functions, with consistent alterations of the UPS. Quantitative RT-PCR demonstrated downregulation of selected UPS genes in T2D islets and beta cell fractions, with greater ubiquitin accumulation and reduced proteasome activity. Chemically induced reduction of proteasome activity was associated with lower glucose-stimulated insulin secretion, which was partly reproduced by palmitate exposure. These results show the presence of many changes in islet transcriptome in T2D islets and underline the importance of the association between UPS alterations and beta cell dysfunction in human T2D.
Collapse
Affiliation(s)
- Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa 56124, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Because type 2 diabetes (T2D) is highly familial, there has been a concentrated effort to uncover the genetic basis of T2D worldwide over the last decade. In East Asians, T2D is experiencing a rapidly rising prevalence that is characterized by a relatively lower body mass index, as compared with that in Europeans. To date, at least 15 convincing T2D loci have been identified from large-scale genome-wide association studies and meta-analyses in East Asians. Many of these are likely responsible for pancreatic β cell function, as indicated in studies from Europeans. Many T2D loci have been replicated across the ethnic groups. There are, however, substantial interethnic differences in frequency and effect size of these risk alleles. Despite accumulating genetic information on T2D, there are still limitations in our ability to explain the rapidly rising prevalence and lean phenotype of disease observed in East Asians, suggesting that more extensive work using diverse research strategies is needed in the future.
Collapse
Affiliation(s)
- Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Gangwon-do, Chuncheon, 200-702, Republic of Korea.
| | | | | | | |
Collapse
|
29
|
Khan S, Rammeloo AW, Heikkila JJ. Withaferin A induces proteasome inhibition, endoplasmic reticulum stress, the heat shock response and acquisition of thermotolerance. PLoS One 2012; 7:e50547. [PMID: 23226310 PMCID: PMC3511540 DOI: 10.1371/journal.pone.0050547] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/25/2012] [Indexed: 01/05/2023] Open
Abstract
In the present study, withaferin A (WA), a steroidal lactone with anti-inflammatory and anti-tumor properties, inhibited proteasome activity and induced endoplasmic reticulum (ER) and cytoplasmic HSP accumulation in Xenopus laevis A6 kidney epithelial cells. Proteasomal inhibition by WA was indicated by an accumulation of ubiquitinated protein and a decrease in chymotrypsin-like activity. Additionally, immunoblot analysis revealed that treatment of cells with WA induced the accumulation of HSPs including ER chaperones, BiP and GRP94, as well as cytoplasmic/nuclear HSPs, HSP70 and HSP30. Furthermore, WA-induced an increase in the relative levels of the protein kinase, Akt, while the levels of actin were unchanged compared to control. Northern blot experiments determined that WA induced an accumulation in bip, hsp70 and hsp30 mRNA but not eIF-1α mRNA. Interestingly, WA acted synergistically with mild heat shock to enhance HSP70 and HSP30 accumulation to a greater extent than the sum of both stressors individually. This latter phenomenon was not observed with BiP or GRP94. Immunocytochemical analysis indicated that WA-induced BiP accumulation occurred mainly in the perinuclear region in a punctate pattern, while HSP30 accumulation occurred primarily in a granular pattern in the cytoplasm with some staining in the nucleus. Prolonged exposure to WA resulted in disorganization of the F-actin cytoskeleton as well as the production of relatively large HSP30 staining structures that co-localized with F-actin. Finally, prior exposure of cells to WA treatment, which induced the accumulation of HSPs conferred a state of thermal protection since it protected the F-actin cytoskeleton against a subsequent cytotoxic thermal challenge.
Collapse
Affiliation(s)
- Saad Khan
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Ashley W. Rammeloo
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - John J. Heikkila
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| |
Collapse
|
30
|
Chen YH, Chen JY, Chen YW, Lin ST, Chan HL. High glucose-induced proteome alterations in retinal pigmented epithelium cells and its possible relevance to diabetic retinopathy. MOLECULAR BIOSYSTEMS 2012; 8:3107-24. [PMID: 23051786 DOI: 10.1039/c2mb25331c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Diabetic retinopathy can cause poor vision and blindness. Previous research has shown that high blood glucose weakens retinal capillaries and induces glycoxidation. However, the detailed molecular mechanisms underlying the effects of high blood glucose on development of diabetic retinopathy have yet to be elucidated. In this study, we cultured a retinal pigmented epithelium cell line (ARPE-19) in mannitol-balanced 5.5 mM, 25 mM, and 100 mM d-glucose media, and evaluated protein expression and redox-regulation. We identified 56 proteins that showed significant changes in protein expression, and 33 proteins showing significant changes in thiol reactivity, in response to high glucose concentration. Several proteins that are involved in signal transduction, gene regulation, and transport showed significant changes in expression, whereas proteins involved in metabolism, transport, and cell survival displayed changes in thiol reactivity. Further analyses of clinical plasma specimens confirmed that the proteins lamin B2, PUMA, WTAP, ASGR1, and prohibitin 2 showed type 2 diabetic retinopathy-dependent alterations. In summary, in this study, we used a comprehensive retinal cell-based proteomic approach for the identification of changes in protein expression and redox-associated retinal markers induced by high glucose concentration. Some of the identified proteins have been validated with clinical samples and provide potential targets for the prognosis and diagnosis of diabetic retinopathy.
Collapse
Affiliation(s)
- You-Hsuan Chen
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | | | | | | | | |
Collapse
|
31
|
Substrate-favored lysosomal and proteasomal pathways participate in the normal balance control of insulin precursor maturation and disposal in β-cells. PLoS One 2011; 6:e27647. [PMID: 22102916 PMCID: PMC3213186 DOI: 10.1371/journal.pone.0027647] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 10/21/2011] [Indexed: 11/19/2022] Open
Abstract
Our recent studies have uncovered that aggregation-prone proinsulin preserves a low relative folding rate and maintains a homeostatic balance of natively and non-natively folded states (i.e., proinsulin homeostasis, PIHO) in β-cells as a result of the integration of maturation and disposal processes. Control of precursor maturation and disposal is thus an early regulative mechanism in the insulin production of β-cells. Herein, we show pathways involved in the disposal of endogenous proinsulin at the early secretory pathway. We conducted metabolic-labeling, immunoblotting, and immunohistochemistry studies to examine the effects of selective proteasome and lysosome or autophagy inhibitors on the kinetics of proinsulin and control proteins in various post-translational courses. Our metabolic-labeling studies found that the main lysosomal and ancillary proteasomal pathways participate in the heavy clearance of insulin precursor in mouse islets/β-cells cultured at the mimic physiological glucose concentrations. Further immunoblotting and immunohistochemistry studies in cloned β-cells validated that among secretory proteins, insulin precursor is heavily and preferentially removed. The rapid disposal of a large amount of insulin precursor after translation is achieved mainly through lysosomal autophagy and the subsequent basal disposals are carried out by both lysosomal and proteasomal pathways within a 30 to 60-minute post-translational process. The findings provide the first clear demonstration that lysosomal and proteasomal pathways both play roles in the normal maintenance of PIHO for insulin production, and defined the physiological participation of lysosomal autophagy in the protein quality control at the early secretory pathway of pancreatic β-cells.
Collapse
|
32
|
Maris M, Ferreira GB, D’Hertog W, Cnop M, Waelkens E, Overbergh L, Mathieu C. High Glucose Induces Dysfunction in Insulin Secretory Cells by Different Pathways: A Proteomic Approach. J Proteome Res 2010; 9:6274-87. [DOI: 10.1021/pr100557w] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Michael Maris
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Herestraat 49, Catholic University of Leuven, Leuven, Belgium, Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Brussels, Belgium, Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles (ULB), Route de Lennik, 1070 Brussels, Belgium, Laboratory of Protein Phosphorylation and Proteomics, Catholic University of Leuven, Leuven, Belgium, and ProMeta, Catholic University of
| | - Gabriela B. Ferreira
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Herestraat 49, Catholic University of Leuven, Leuven, Belgium, Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Brussels, Belgium, Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles (ULB), Route de Lennik, 1070 Brussels, Belgium, Laboratory of Protein Phosphorylation and Proteomics, Catholic University of Leuven, Leuven, Belgium, and ProMeta, Catholic University of
| | - Wannes D’Hertog
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Herestraat 49, Catholic University of Leuven, Leuven, Belgium, Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Brussels, Belgium, Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles (ULB), Route de Lennik, 1070 Brussels, Belgium, Laboratory of Protein Phosphorylation and Proteomics, Catholic University of Leuven, Leuven, Belgium, and ProMeta, Catholic University of
| | - Miriam Cnop
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Herestraat 49, Catholic University of Leuven, Leuven, Belgium, Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Brussels, Belgium, Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles (ULB), Route de Lennik, 1070 Brussels, Belgium, Laboratory of Protein Phosphorylation and Proteomics, Catholic University of Leuven, Leuven, Belgium, and ProMeta, Catholic University of
| | - Etienne Waelkens
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Herestraat 49, Catholic University of Leuven, Leuven, Belgium, Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Brussels, Belgium, Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles (ULB), Route de Lennik, 1070 Brussels, Belgium, Laboratory of Protein Phosphorylation and Proteomics, Catholic University of Leuven, Leuven, Belgium, and ProMeta, Catholic University of
| | - Lut Overbergh
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Herestraat 49, Catholic University of Leuven, Leuven, Belgium, Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Brussels, Belgium, Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles (ULB), Route de Lennik, 1070 Brussels, Belgium, Laboratory of Protein Phosphorylation and Proteomics, Catholic University of Leuven, Leuven, Belgium, and ProMeta, Catholic University of
| | - Chantal Mathieu
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Herestraat 49, Catholic University of Leuven, Leuven, Belgium, Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Brussels, Belgium, Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles (ULB), Route de Lennik, 1070 Brussels, Belgium, Laboratory of Protein Phosphorylation and Proteomics, Catholic University of Leuven, Leuven, Belgium, and ProMeta, Catholic University of
| |
Collapse
|
33
|
Brand MD, Parker N, Affourtit C, Mookerjee SA, Azzu V. Mitochondrial uncoupling protein 2 in pancreatic β-cells. Diabetes Obes Metab 2010; 12 Suppl 2:134-40. [PMID: 21029310 DOI: 10.1111/j.1463-1326.2010.01264.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pancreatic β-cells have remarkable bioenergetics in which increased glucose supply upregulates the cytosolic ATP/ADP ratio and increases insulin secretion. This arrangement allows glucose-stimulated insulin secretion (GSIS) to be regulated by the coupling efficiency of oxidative phosphorylation. Uncoupling protein 2 (UCP2) modulates coupling efficiency and may regulate GSIS. Initial measurements of GSIS and glucose tolerance in Ucp2(-/-) mice supported this model, but recent studies show confounding effects of genetic background. Importantly, however, the enhancement of GSIS is robustly recapitulated with acute UCP2 knockdown in INS-1E insulinoma cells. UCP2 protein level in these cells is dynamically regulated, over at least a fourfold concentration range, by rapid proteolysis (half-life less than 1 h) opposing regulated gene transcription and mRNA translation. Degradation is catalysed by the cytosolic proteasome in an unprecedented pathway that is currently known to act only on UCP2 and UCP3. Evidence for proteasomal turnover of UCP2 includes sensitivity of degradation to classic proteasome inhibitors in cells, and reconstitution of degradation in vitro in mitochondria incubated with ubiquitin and the cytosolic 26S proteasome. These dynamic changes in UCP2 content may provide a fine level of control over GSIS in β-cells.
Collapse
Affiliation(s)
- M D Brand
- Buck Institute for Age Research, Novato, CA 94945, USA.
| | | | | | | | | |
Collapse
|
34
|
Yamauchi T, Hara K, Maeda S, Yasuda K, Takahashi A, Horikoshi M, Nakamura M, Fujita H, Grarup N, Cauchi S, Ng DPK, Ma RCW, Tsunoda T, Kubo M, Watada H, Maegawa H, Okada-Iwabu M, Iwabu M, Shojima N, Shin HD, Andersen G, Witte DR, Jørgensen T, Lauritzen T, Sandbæk A, Hansen T, Ohshige T, Omori S, Saito I, Kaku K, Hirose H, So WY, Beury D, Chan JCN, Park KS, Tai ES, Ito C, Tanaka Y, Kashiwagi A, Kawamori R, Kasuga M, Froguel P, Pedersen O, Kamatani N, Nakamura Y, Kadowaki T. A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat Genet 2010; 42:864-8. [PMID: 20818381 DOI: 10.1038/ng.660] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 08/11/2010] [Indexed: 12/19/2022]
Abstract
We conducted a genome-wide association study of type 2 diabetes (T2D) using 459,359 SNPs in a Japanese population with a three-stage study design (stage 1, 4,470 cases and 3,071 controls; stage 2, 2,886 cases and 3,087 controls; stage 3, 3,622 cases and 2,356 controls). We identified new associations in UBE2E2 on chromosome 3 and in C2CD4A-C2CD4B on chromosome 15 at genome-wide significant levels (rs7612463 in UBE2E2, combined P = 2.27 × 10⁻⁹; rs7172432 in C2CD4A-C2CD4B, combined P = 3.66 × 10⁻⁹). The association of these two loci with T2D was replicated in other east Asian populations. In the European populations, the C2CD4A-C2CD4B locus was significantly associated with T2D, and a combined analysis of all populations gave P = 8.78 × 10⁻¹⁴, whereas the UBE2E2 locus did not show association to T2D. In conclusion, we identified two new loci at UBE2E2 and C2CD4A-C2CD4B associated with susceptibility to T2D.
Collapse
Affiliation(s)
- Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
OBJECTIVE Loss-of-function mutations in Perk (EIF2AK3) result in permanent neonatal diabetes in humans (Wolcott-Rallison Syndrome) and mice. Previously, we found that diabetes associated with Perk deficiency resulted from insufficient proliferation of beta-cells and from defects in insulin secretion. A substantial fraction of PERK-deficient beta-cells display a highly abnormal cellular phenotype characterized by grossly distended endoplasmic reticulum (ER) and retention of proinsulin. We investigated over synthesis, lack of ER-associated degradation (ERAD), and defects in ER to Golgi trafficking as possible causes. RESEARCH DESIGN AND METHODS ER functions of PERK were investigated in cell culture and mice in which Perk was impaired or gene dosage modulated. The Ins2(+/Akita) mutant mice were used as a model system to test the role of PERK in ERAD. RESULTS We report that loss of Perk function does not lead to uncontrolled protein synthesis but impaired ER-to-Golgi anterograde trafficking, retrotranslocation from the ER to the cytoplasm, and proteasomal degradation. PERK was also shown to be required to maintain the integrity of the ER and Golgi and processing of ATF6. Moreover, decreasing Perk dosage surprisingly ameliorates the progression of the Akita mutants toward diabetes. CONCLUSIONS PERK is a positive regulator of ERAD and proteasomal activity. Reducing PERK activity ameliorates the progression of diabetes in the Akita mouse, whereas increasing PERK dosage hastens its progression. We speculate that PERK acts as a metabolic sensor in the insulin-secreting beta-cells to modulate the trafficking and quality control of proinsulin in the ER relative to the physiological demands for circulating insulin.
Collapse
Affiliation(s)
- Sounak Gupta
- From the Department of Biology, The Huck Institutes of the Life Sciences, Penn State Institute for Diabetes and Obesity, Pennsylvania State University, University Park, Pennsylvania
| | - Barbara McGrath
- From the Department of Biology, The Huck Institutes of the Life Sciences, Penn State Institute for Diabetes and Obesity, Pennsylvania State University, University Park, Pennsylvania
| | - Douglas R. Cavener
- From the Department of Biology, The Huck Institutes of the Life Sciences, Penn State Institute for Diabetes and Obesity, Pennsylvania State University, University Park, Pennsylvania
- Corresponding author: Douglas R. Cavener,
| |
Collapse
|
36
|
Azzu V, Jastroch M, Divakaruni AS, Brand MD. The regulation and turnover of mitochondrial uncoupling proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:785-91. [PMID: 20211596 DOI: 10.1016/j.bbabio.2010.02.035] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 02/23/2010] [Accepted: 02/25/2010] [Indexed: 12/15/2022]
Abstract
Uncoupling proteins (UCP1, UCP2 and UCP3) are important in regulating cellular fuel metabolism and as attenuators of reactive oxygen species production through strong or mild uncoupling. The generic function and broad tissue distribution of the uncoupling protein family means that they are increasingly implicated in a range of pathophysiological processes including obesity, insulin resistance and diabetes mellitus, neurodegeneration, cardiovascular disease, immunity and cancer. The significant recent progress describing the turnover of novel uncoupling proteins, as well as current views on the physiological roles and regulation of UCPs, is outlined.
Collapse
Affiliation(s)
- Vian Azzu
- Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK.
| | | | | | | |
Collapse
|
37
|
Azzu V, Brand MD. Degradation of an intramitochondrial protein by the cytosolic proteasome. J Cell Sci 2010; 123:578-85. [PMID: 20103532 DOI: 10.1242/jcs.060004] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial uncoupling protein 2 (UCP2) is implicated in a wide range of pathophysiological processes, including immunity and diabetes mellitus, but its rapid degradation remains uncharacterized. Using pharmacological proteasome inhibitors, immunoprecipitation, dominant negative ubiquitin mutants, [corrected] cellular fractionation and siRNA techniques, we demonstrate the involvement of the ubiquitin-proteasome system in the rapid degradation of UCP2. Importantly, we resolve the issue of whether intramitochondrial proteins can be degraded by the cytosolic proteasome by reconstituting a cell-free system that shows rapid proteasome-inhibitor-sensitive UCP2 degradation in isolated, energised mitochondria presented with an ATP regenerating system, ubiquitin and 26S proteasome fractions. These observations provide the first demonstration that a mitochondrial inner membrane protein is degraded by the cytosolic ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Vian Azzu
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| | | |
Collapse
|
38
|
Todorcević M, Skugor S, Krasnov A, Ruyter B. Gene expression profiles in Atlantic salmon adipose-derived stromo-vascular fraction during differentiation into adipocytes. BMC Genomics 2010; 11:39. [PMID: 20078893 PMCID: PMC2824722 DOI: 10.1186/1471-2164-11-39] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 01/17/2010] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Excessive fat deposition is one of the largest problems faced by salmon aquaculture industries, leading to production losses due to high volume of adipose tissue offal. In addition, increased lipid accumulation may impose considerable stress on adipocytes leading to adipocyte activation and production and secretion of inflammatory mediators, as observed in mammals. RESULTS Microarray and qPCR analyses were performed to follow transcriptome changes during adipogenesis in the primary culture of adipose stromo-vascular fraction (aSVF) of Atlantic salmon. Cellular heterogeneity decreased by confluence as evidenced by the down-regulation of markers of osteo/chondrogenic, myogenic, immune and vasculature lineages. Transgelin (TAGLN), a marker of the multipotent pericyte, was prominently expressed around confluence while adipogenic PPARgamma was up-regulated already in subconfluent cells. Proliferative activity and subsequent cell cycle arrest were reflected in the fluctuations of pro- and anti-mitotic regulators. Marked regulation of genes involved in lipid and glucose metabolism and pathways producing NADPH and glycerol-3-phosphate (G3P) was seen during the terminal differentiation, also characterised by diverse stress responses. Activation of the glutathione and thioredoxin antioxidant systems and changes in the iron metabolism suggested the need for protection against oxidative stress. Signs of endoplasmic reticulum (ER) stress and unfolded protein response (UPR) occured in parallel with the increased lipid droplet (LD) formation and production of secretory proteins (adipsin, visfatin). The UPR markers XBP1 and ATF6 were induced together with genes involved in ubiquitin-proteasome and lysosomal proteolysis. Concurrently, translation was suppressed as evidenced by the down-regulation of genes encoding elongation factors and components of the ribosomal machinery. Notably, expression changes of a panel of genes that belong to different immune pathways were seen throughout adipogenesis. The induction of AP1 (Jun, Fos), which is a master regulator of stress responses, culminated by the end of adipogenesis, concurrent with the maximal observed lipid deposition. CONCLUSIONS Our data point to an intimate relationship between metabolic regulation and immune responses in white adipocytes of a cold-blooded vertebrate. Stress imposed on adipocytes by LD formation and expansion is prominently reflected in the ER compartment and the activated UPR response could have an important role at visceral obesity in fish.
Collapse
Affiliation(s)
- Marijana Todorcević
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, As NO-1430, Norway.
| | | | | | | |
Collapse
|
39
|
Hodish I, Liu M, Rajpal G, Larkin D, Holz RW, Adams A, Liu L, Arvan P. Misfolded proinsulin affects bystander proinsulin in neonatal diabetes. J Biol Chem 2009; 285:685-94. [PMID: 19880509 DOI: 10.1074/jbc.m109.038042] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
It has previously been shown that misfolded mutant Akita proinsulin in the endoplasmic reticulum engages directly in protein complexes either with nonmutant proinsulin or with "hProCpepGFP" (human proinsulin bearing emerald-GFP within the C-peptide), impairing the trafficking of these "bystander" proinsulin molecules (Liu, M., Hodish, I., Rhodes, C. J., and Arvan, P. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 15841-15846). Herein, we generated transgenic mice, which, in addition to expressing endogenous proinsulin, exhibit beta-cell-specific expression of hProCpepGFP via the Ins1 promoter. In these mice, hProCpepGFP protein levels are physiologically regulated, and hProCpepGFP is packaged and processed to CpepGFP that is co-stored in beta-secretory granules. Visualization of CpepGFP fluorescence provides a quantifiable measure of pancreatic islet insulin content that can be followed in live animals in states of health and disease. We examined loss of pancreatic insulin in hProCpepGFP transgenic mice mated to Akita mice that develop neonatal diabetes because of the expression of misfolded proinsulin. Loss of bystander insulin in Akita animals is detected initially as a block in CpepGFP/insulin production with intracellular accumulation of the precursor, followed ultimately by loss of pancreatic beta-cells. The data support that misfolded proinsulin perturbs bystander proinsulin in the endoplasmic reticulum, leading to beta-cell failure.
Collapse
Affiliation(s)
- Israel Hodish
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0678, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang L, Ebenezer PJ, Dasuri K, Bruce-Keller AJ, Fernandez-Kim SO, Liu Y, Keller JN. Activation of PERK kinase in neural cells by proteasome inhibitor treatment. J Neurochem 2009; 112:238-45. [PMID: 19860852 DOI: 10.1111/j.1471-4159.2009.06448.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inhibition of the proteasome proteolytic pathway occurs as the result of normal aging, as well as in a variety of neurodegenerative conditions, and is believed to promote cellular toxicity in each of these conditions through diverse mechanisms. In the present study, we examined whether proteasome inhibition alters the protein kinase receptor-like endoplasmic reticulum kinase (PERK). Our studies demonstrate that proteasome inhibitors induce the transient activation of PERK in both primary rat neurons as well as the N2a neural cell line. Experiments with siRNA to PERK demonstrated that the modulation of PERK was not significant involved in regulating toxicity, ubiquitinated protein levels, or ribosome perturbations in response to proteasome inhibitor treatment. Surprisingly, PERK was observed to be involved in the up-regulation of p38 kinase following proteasome inhibitor treatment. Taken together, these data demonstrate the ability of proteasome inhibition to activate PERK and demonstrate evidence for novel cross-talk between PERK and the activation of p38 kinase in neural cells following proteasome inhibition. Taken together, these data have implications for understanding the basis by which proteasome inhibition alters neural homeostasis, and the basis by which cell signaling cascades are regulated by proteasome inhibition.
Collapse
Affiliation(s)
- Le Zhang
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, Louisiana, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Ho AK, Terriff DL, Price DM, Chik CL. Opposite Effects of Proteasome Inhibitors in the Adrenergic Induction of ArylalkylamineN‐acetyltransferase in Rat Pinealocytes. Chronobiol Int 2009; 23:361-7. [PMID: 16687309 DOI: 10.1080/07420520500464536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the rat pineal gland, the steady-state level of arylalkylamine N-acetyltransferase (AANAT) protein is controlled by transcriptional and translational mechanisms as well as by proteasome-mediated degradation. Studies with proteasome inhibitors, MG132 and clasto-lactacystin beta-lactone (c-lact), show two opposite effects of proteasomal inhibition on norepinephrine (NE)-induction of Aanat. Addition of MG132 or c-lact following NE stimulation causes an increase in AANAT protein level and enzyme activity without affecting the level of Aanat mRNA. In contrast, addition of inhibitors prior to NE stimulation reduces the NE-stimulated Aanat mRNA, AANAT protein, and enzyme activity. The inhibitory effect of proteasomal inhibition on adrenergic-induced Aanat transcription appears specific for Aanat because it has no effect on the adrenergic induction of mitogen-activated protein kinase phosphatase-1 (mkp-1). The effects of the proteasome inhibitors on NE-stimulated Aanat induction appear to be mediated by accumulation of a protein repressor.
Collapse
Affiliation(s)
- A K Ho
- Department of Physiology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | |
Collapse
|
42
|
Costes S, Vandewalle B, Tourrel-Cuzin C, Broca C, Linck N, Bertrand G, Kerr-Conte J, Portha B, Pattou F, Bockaert J, Dalle S. Degradation of cAMP-responsive element-binding protein by the ubiquitin-proteasome pathway contributes to glucotoxicity in beta-cells and human pancreatic islets. Diabetes 2009; 58:1105-15. [PMID: 19223597 PMCID: PMC2671045 DOI: 10.2337/db08-0926] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 02/10/2009] [Indexed: 01/09/2023]
Abstract
OBJECTIVE In type 2 diabetes, chronic hyperglycemia is detrimental to beta-cells, causing apoptosis and impaired insulin secretion. The transcription factor cAMP-responsive element-binding protein (CREB) is crucial for beta-cell survival and function. We investigated whether prolonged exposure of beta-cells to high glucose affects the functional integrity of CREB. RESEARCH DESIGN AND METHODS INS-1E cells and rat and human islets were used. Gene expression was analyzed by RT-PCR and Western blotting. Apoptosis was detected by cleaved caspase-3 emergence, DNA fragmentation, and electron microscopy. RESULTS Chronic exposure of INS-1E cells and rat and human islets to high glucose resulted in decreased CREB protein expression, phosphorylation, and transcriptional activity associated with apoptosis and impaired beta-cell function. High-glucose treatment increased CREB polyubiquitination, while treatment of INS-1E cells with the proteasome inhibitor MG-132 prevented the decrease in CREB content. The emergence of apoptosis in INS-1E cells with decreased CREB protein expression knocked down by small interfering RNA suggested that loss of CREB protein content induced by high glucose contributes to beta-cell apoptosis. Loading INS-1E cells or human islets with a cell-permeable peptide mimicking the proteasomal targeting sequence of CREB blocked CREB degradation and protected INS-1E cells and human islets from apoptosis induced by high glucose. The insulin secretion in response to glucose and the insulin content were preserved in human islets exposed to high glucose and loaded with the peptide. CONCLUSIONS These studies demonstrate that the CREB degradation by the ubiquitin-proteasome pathway contributes to beta-cell dysfunction and death upon glucotoxicity and provide new insight into the cellular mechanisms of glucotoxicity.
Collapse
Affiliation(s)
- Safia Costes
- Institut National de la Santé et de la Recherche Médicale (INSERM), U661, Equipe Avenir, Institut de Génomique Fonctionnelle, Montpellier, France
- Centre National de la Recherche Scientifique (CNRS), UMR5203, Université Montpellier (IFR3), Montpellier, France
| | | | | | - Christophe Broca
- Institut National de la Santé et de la Recherche Médicale (INSERM), U661, Equipe Avenir, Institut de Génomique Fonctionnelle, Montpellier, France
- Centre National de la Recherche Scientifique (CNRS), UMR5203, Université Montpellier (IFR3), Montpellier, France
| | - Nathalie Linck
- Institut National de la Santé et de la Recherche Médicale (INSERM), U661, Equipe Avenir, Institut de Génomique Fonctionnelle, Montpellier, France
- Centre National de la Recherche Scientifique (CNRS), UMR5203, Université Montpellier (IFR3), Montpellier, France
| | - Gyslaine Bertrand
- Institut National de la Santé et de la Recherche Médicale (INSERM), U661, Equipe Avenir, Institut de Génomique Fonctionnelle, Montpellier, France
- Centre National de la Recherche Scientifique (CNRS), UMR5203, Université Montpellier (IFR3), Montpellier, France
| | | | | | | | - Joel Bockaert
- Institut National de la Santé et de la Recherche Médicale (INSERM), U661, Equipe Avenir, Institut de Génomique Fonctionnelle, Montpellier, France
- Centre National de la Recherche Scientifique (CNRS), UMR5203, Université Montpellier (IFR3), Montpellier, France
| | - Stéphane Dalle
- Institut National de la Santé et de la Recherche Médicale (INSERM), U661, Equipe Avenir, Institut de Génomique Fonctionnelle, Montpellier, France
- Centre National de la Recherche Scientifique (CNRS), UMR5203, Université Montpellier (IFR3), Montpellier, France
| |
Collapse
|
43
|
Hartley T, Brumell J, Volchuk A. Emerging roles for the ubiquitin-proteasome system and autophagy in pancreatic beta-cells. Am J Physiol Endocrinol Metab 2009; 296:E1-10. [PMID: 18812463 DOI: 10.1152/ajpendo.90538.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein degradation in eukaryotic cells is mediated primarily by the ubiquitin-proteasome system and autophagy. Turnover of protein aggregates and other cytoplasmic components, including organelles, is another function attributed to autophagy. The ubiquitin-proteasome system and autophagy are essential for normal cell function but under certain pathological conditions can be overwhelmed, which can lead to adverse effects in cells. In this review we will focus primarily on the insulin-producing pancreatic beta-cell. Pancreatic beta-cells respond to glucose levels by both producing and secreting insulin. The inability of beta-cells to secrete sufficient insulin is a major contributory factor in the development of type 2 diabetes. The aim of this review is to examine some of the crucial roles of the ubiquitin-proteasome system and autophagy in normal pancreatic beta-cell function and how these pathways may become dysfunctional under pathological conditions associated with metabolic syndromes.
Collapse
Affiliation(s)
- Taila Hartley
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 1L7 Canada
| | | | | |
Collapse
|
44
|
Salehi A, Meidute Abaraviciene S, Jimenez-Feltstrom J, Ostenson CG, Efendic S, Lundquist I. Excessive islet NO generation in type 2 diabetic GK rats coincides with abnormal hormone secretion and is counteracted by GLP-1. PLoS One 2008; 3:e2165. [PMID: 18478125 PMCID: PMC2367446 DOI: 10.1371/journal.pone.0002165] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 03/25/2008] [Indexed: 11/22/2022] Open
Abstract
Background A distinctive feature of type 2 diabetes is inability of insulin-secreting β-cells to properly respond to elevated glucose eventually leading to β-cell failure. We have hypothesized that an abnormally increased NO production in the pancreatic islets might be an important factor in the pathogenesis of β-cell dysfunction. Principal Findings We show now that islets of type 2 spontaneous diabetes in GK rats display excessive NO generation associated with abnormal iNOS expression in insulin and glucagon cells, increased ncNOS activity, impaired glucose-stimulated insulin release, glucagon hypersecretion, and impaired glucose-induced glucagon suppression. Pharmacological blockade of islet NO production by the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) greatly improved hormone secretion from GK islets suggesting islet NOS activity being an important target to inactivate for amelioration of islet cell function. The incretin hormone GLP-1, which is used in clinical practice suppressed iNOS and ncNOS expression and activity with almost full restoration of insulin release and partial restoration of glucagon release. GLP-1 suppression of iNOS expression was reversed by PKA inhibition but unaffected by the proteasome inhibitor MG132. Injection of glucose plus GLP-1 in the diabetic rats showed that GLP-1 amplified the insulin response but induced a transient increase and then a poor depression of glucagon. Conclusion The results suggest that abnormally increased NO production within islet cells is a significant player in the pathogenesis of type 2 diabetes being counteracted by GLP-1 through PKA-dependent, nonproteasomal mechanisms.
Collapse
Affiliation(s)
- Albert Salehi
- Department of Clinical Science, Universitetssjukhuset Malmö Allmäna Sjukhus, Division of Endocrine Pharmacology, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
45
|
Shafqat J, Ishrat M, Jägerbrink T, Sillard R, Mäeorg U, Efendic S, Berggren PO, Zaitsev SV, Jörnvall H. Proteins in the insulin-secreting cell line MIN6 bind the imidazoline compound BL11282. FEBS Lett 2008; 582:1613-7. [DOI: 10.1016/j.febslet.2008.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Accepted: 04/07/2008] [Indexed: 11/16/2022]
|
46
|
Klein AF, Ebihara M, Alexander C, Dicaire MJ, Sasseville AMJ, Langelier Y, Rouleau GA, Brais B. PABPN1 polyalanine tract deletion and long expansions modify its aggregation pattern and expression. Exp Cell Res 2008; 314:1652-66. [PMID: 18367172 DOI: 10.1016/j.yexcr.2008.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 02/07/2008] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
Abstract
Expansions of a (GCN)10/polyalanine tract in the Poly(A) Binding Protein Nuclear 1 (PABPN1) cause autosomal dominant oculopharyngeal muscular dystrophy (OPMD). In OPMD muscles, as in models, PABPN1 accumulates in intranuclear inclusions (INIs) whereas in other diseases caused by similar polyalanine expansions, the mutated proteins have been shown to abnormally accumulate in the cytoplasm. This study presents the impact on the subcellular localization of PABPN1 produced by large expansions or deletion of its polyalanine tract. Large tracts of more than 24 alanines result in the nuclear accumulation of PABPN1 in SFRS2-positive functional speckles and a significant decline in cell survival. These large expansions do not cause INIs formation nor do they lead to cytoplasmic accumulation. Deletion of the polyalanine tract induces the formation of aggregates that are located on either side and cross the nuclear membrane, highlighting the possible role of the N-terminal polyalanine tract in PABPN1 nucleo-cytoplasmic transport. We also show that even though five other proteins with polyalanine tracts tend to aggregate when over-expressed they do not co-aggregate with PABPN1 INIs. This study presents the first experimental evidence that there may be a relative loss of function in OPMD by decreasing the availability of PABPN1 through an INI-independent mechanism.
Collapse
Affiliation(s)
- Arnaud F Klein
- Laboratory of neurogenetics of motion, Centre d'excellence en neuromique de l'Université de Montréal, CRCHUM, Université de Montréal, Montréal, Canada
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Bjørkhaug L, Molnes J, Søvik O, Njølstad PR, Flatmark T. Allosteric Activation of Human Glucokinase by Free Polyubiquitin Chains and Its Ubiquitin-dependent Cotranslational Proteasomal Degradation. J Biol Chem 2007; 282:22757-64. [PMID: 17561510 DOI: 10.1074/jbc.m700517200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human glucokinase (hGK) is a monomeric enzyme highly regulated in pancreatic beta-cells (isoform 1) and hepatocytes (isoforms 2 and 3). Although certain cellular proteins are known to either stimulate or inhibit its activity, little is known about post-translational modifications of this enzyme and their possible regulatory functions. In this study, we have identified isoforms 1 and 2 of hGK as novel substrates for the ubiquitin-conjugating enzyme system of the rabbit reticulocyte lysate. Both isoforms were polyubiquitinated on at least two lysine residues, and mutation analysis indicated that multiple lysine residues functioned as redundant acceptor sites. Deletion of its C-terminal alpha-helix, as part of a ubiquitin-interacting motif, affected the polyubiquitination at one of the sites and resulted in a completely inactive enzyme. Evidence is presented that poly/multiubiquitination of hGK in vitro serves as a signal for proteasomal degradation of the newly synthesized protein. Moreover, the recombinant hGK was found to interact with and to be allosterically activated up to approximately 1.4-fold by purified free pentaubiquitin chains at approximately 100 nm (with an apparent EC(50) of 93 nm), and possibly also by unidentified polyubiquitinated proteins assigned to their equilibrium binding to the ubiquitin-interacting motif site. The affinity of pentaubiquitin binding to hGK is regulated by the ligand (d-glucose)-dependent conformational state of the site. Both ubiquitination of hGK and its activation by polyubiquitin chains potentially represent physiological regulatory mechanisms for glucokinase-dependent insulin secretion in pancreatic beta-cells.
Collapse
Affiliation(s)
- Lise Bjørkhaug
- Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
| | | | | | | | | |
Collapse
|
48
|
Kitiphongspattana K, Khan TA, Ishii-Schrade K, Roe MW, Philipson LH, Gaskins HR. Protective role for nitric oxide during the endoplasmic reticulum stress response in pancreatic beta-cells. Am J Physiol Endocrinol Metab 2007; 292:E1543-54. [PMID: 17264231 DOI: 10.1152/ajpendo.00620.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Higher requirements for disulfide bond formation in professional secretory cells may affect intracellular redox homeostasis, particularly during an endoplasmic reticulum (ER) stress response. To assess this hypothesis, we investigated the effects of the ER stress response on the major redox couple (GSH/GSSG), endogenous ROS production, expression of genes involved in ER oxidative protein folding, general antioxidant defense, and thiol metabolism by use of the well-validated MIN6 beta-cell as a model and mouse islets. The data revealed that glucose concentration-dependent decreases in the GSH/GSSG ratio were further decreased significantly by ER-derived oxidative stress induced by inhibiting ER-associated degradation with the specific proteasome inhibitor lactacystin (10 microM) in mouse islets. Notably, minimal cell death was observed during 12-h treatments. This was likely attributed to the upregulation of genes encoding the rate limiting enzyme for glutathione synthesis (gamma-glutamylcysteine ligase), as well as genes involved in antioxidant defense (glutathione peroxidase, peroxiredoxin-1) and ER protein folding (Grp78/BiP, PDI, Ero1). Gene expression and reporter assays with a NO synthase inhibitor (Nomega-nitro-L-arginine methyl ester, 1-10 mM) indicated that endogenous NO production was essential for the upregulation of several ER stress-responsive genes. Specifically, gel shift analyses demonstrate NO-independent binding of the transcription factor NF-E2-related factor to the antioxidant response element Gclc-ARE4 in MIN6 cells. However, endogenous NO production was necessary for activation of Gclc-ARE4-driven reporter gene expression. Together, these data reveal a distinct protective role for NO during the ER stress response, which helps to dissipate ROS and promote beta-cell survival.
Collapse
|
49
|
Qader SS, Jimenez-Feltström J, Ekelund M, Lundquist I, Salehi A. Expression of islet inducible nitric oxide synthase and inhibition of glucose-stimulated insulin release after long-term lipid infusion in the rat is counteracted by PACAP27. Am J Physiol Endocrinol Metab 2007; 292:E1447-55. [PMID: 17264229 DOI: 10.1152/ajpendo.00172.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic exposure of pancreatic islets to elevated plasma lipids (lipotoxicity) can lead to beta-cell dysfunction, with overtime becoming irreversible. We examined, by confocal microscopy and biochemistry, whether the expression of islet inducible nitric oxide synthase (iNOS) and the concomitant inhibition of glucose-stimulated insulin release seen after lipid infusion in rats was modulated by the islet neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP)27. Lipid infusion for 8 days induced a strong expression of islet iNOS, which was mainly confined to beta-cells and was still evident after incubating islets at 8.3 mmol/l glucose. This was accompanied by a high iNOS-derived NO generation, a decreased insulin release, and increased cyclic GMP accumulation. No iNOS expression was found in control islets. Addition of PACAP27 to incubated islets from lipid-infused rats resulted in loss of iNOS protein expression, increased cyclic AMP, decreased cyclic GMP, and suppression of the activities of neuronal constitutive (nc)NOS and iNOS and increased glucose-stimulated insulin response. These effects were reversed by the PKA inhibitor H-89. The suppression of islet iNOS expression induced by PACAP27 was not affected by the proteasome inhibitor MG-132, which by itself induced the loss of iNOS protein, making a direct proteasomal involvement less likely. Our results suggest that PACAP27 through its cyclic AMP- and PKA-stimulating capacity strongly suppresses not only ncNOS but, importantly, also the lipid-induced stimulation of iNOS expression, possibly by a nonproteasomal mechanism. Thus PACAP27 restores the impairment of glucose-stimulated insulin release and additionally might induce cytoprotection against deleterious actions of iNOS-derived NO in beta-cells.
Collapse
|
50
|
Zhang L, Chang M, Li H, Hou S, Zhang Y, Hu Y, Han W, Hu L. Proteomic changes of PC12 cells treated with proteasomal inhibitor PSI. Brain Res 2007; 1153:196-203. [PMID: 17490626 DOI: 10.1016/j.brainres.2007.03.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 03/01/2007] [Accepted: 03/06/2007] [Indexed: 01/06/2023]
Abstract
Growing evidences suggest that the ubiquitin-proteasome system dysfunction may play an important role in the pathogenesis of Parkinson's disease (PD). In order to investigate the protein changes caused by ubiquitin-proteasome dysfunction in PD, we used a proteomic approach to determine the different protein levels in PC12 cells following proteasomal inhibitor PSI treatment. Twenty-four hour treatment of PC12 cells with PSI induced cell apoptosis and the appearance of cytoplasmic Lewy body-like eosinophilic inclusions, thus recapitulating two primary features of PD. Six protein spots whose contents were changed in response to PSI administration were unambiguously identified as: 94 kDa glucose-regulated protein (GRP94), heat shock 70 kDa protein 5 (GRP78), heat shock 27 kDa protein 1 (Hsp27), aldehyde reductase 1 (aldose reductase), p47 protein and beta-galactoside-binding lectin (galectin-1). They are mainly related with endoplasmic reticulum stress, cellular metabolism and defensive response against toxicity with the last two whose function is unknown in this model. Out of these proteins, some were described for the first time in relation to proteasomal inhibition and PD. These results may provide a valuable clue to the further exploration of the pathogenetic mechanism of PD.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurology, The First Hospital, Jilin University, Changchun 130021, China
| | | | | | | | | | | | | | | |
Collapse
|