1
|
Wang X, Yang X, Qi X, Fan G, Zhou L, Peng Z, Yang J. Anti-atherosclerotic effect of incretin receptor agonists. Front Endocrinol (Lausanne) 2024; 15:1463547. [PMID: 39493783 PMCID: PMC11527663 DOI: 10.3389/fendo.2024.1463547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Incretin receptor agonists (IRAs), primarily composed of glucagon-like peptide-1 receptor agonists (GLP-1RAs) and glucose-dependent insulinotropic polypeptide receptor agonists (GIPRAs), work by mimicking the actions of the endogenous incretin hormones in the body. GLP-1RAs have been approved for use as monotherapy and in combination with GIPRAs for the management of type 2 diabetes mellitus (T2DM). In addition to their role in glucose regulation, IRAs have demonstrated various benefits such as cardiovascular protection, obesity management, and regulation of bone turnover. Some studies have suggested that IRAs not only aid in glycemic control but also exhibit anti-atherosclerotic effects. These agents have been shown to modulate lipid abnormalities, reduce blood pressure, and preserve the structural and functional integrity of the endothelium. Furthermore, IRAs have the ability to mitigate inflammation by inhibiting macrophage activation and promoting M2 polarization. Research has also indicated that IRAs can decrease macrophage foam cell formation and prevent vascular smooth muscle cell (VSMC) phenotype switching, which are pivotal in atheromatous plaque formation and stability. This review offers a comprehensive overview of the protective effects of IRAs in atherosclerotic disease, with a focus on their impact on atherogenesis.
Collapse
Affiliation(s)
- Xin Wang
- Department of Metabolism and Endocrinology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin Yang
- Department of Metabolism and Endocrinology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaoyan Qi
- Department of Metabolism and Endocrinology, Shenzhen Nanshan People's Hospital; The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Gang Fan
- Department of Urology, Shenzhen Nanshan People's Hospital; The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Lingzhi Zhou
- Department of pediatrics, Shenzhen Nanshan People's Hospital; The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Zhengliang Peng
- Department of Emergency, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jing Yang
- Department of Metabolism and Endocrinology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Metabolism and Endocrinology, Shenzhen Nanshan People's Hospital; The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Gaffey RH, Takyi AK, Shukla A. Investigational and emerging gastric inhibitory polypeptide (GIP) receptor-based therapies for the treatment of obesity. Expert Opin Investig Drugs 2024; 33:757-773. [PMID: 38984950 DOI: 10.1080/13543784.2024.2377319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION One billion people live with obesity. The most promising medications for its treatment are incretin-based therapies, based on enteroendocrine peptides released in response to oral nutrients, specifically glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). The mechanisms by which GLP-1 receptor agonism cause weight reduction are becoming increasingly understood. However, the mechanisms by which GIP receptor-modulating medications cause weight loss remain to be clarified. AREAS COVERED This review describes GLP-1 and GIP physiology and explores the conflicting data regarding GIP and weight management. It details examples of how to reconcile the contradictory findings that both GIP receptor agonism and antagonism cause weight reduction. Specifically, it discusses the concept of 'biased agonism' wherein exogenous peptides cause different post-receptor signaling patterns than native ligands. It discusses how GIP effects in adipose tissue and the central nervous system may cause weight reduction. It describes GIP receptor-modulating compounds and their most current trials regarding weight reduction. EXPERT OPINION Effects of GIP receptor-modulating compounds on different tissues have implications for both weight reduction and other cardiometabolic diseases. Further study is needed to understand the implications of GIP agonism on not just weight reduction, but also cardiovascular disease, liver disease, bone health and fat storage.
Collapse
Affiliation(s)
- Robert H Gaffey
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Afua K Takyi
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alpana Shukla
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Kusminski CM, Perez-Tilve D, Müller TD, DiMarchi RD, Tschöp MH, Scherer PE. Transforming obesity: The advancement of multi-receptor drugs. Cell 2024; 187:3829-3853. [PMID: 39059360 PMCID: PMC11286204 DOI: 10.1016/j.cell.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024]
Abstract
For more than a century, physicians have searched for ways to pharmacologically reduce excess body fat. The tide has finally turned with recent advances in biochemically engineered agonists for the receptor of glucagon-like peptide-1 (GLP-1) and their use in GLP-1-based polyagonists. These polyagonists reduce body weight through complementary pharmacology by incorporating the receptors for glucagon and/or the glucose-dependent insulinotropic polypeptide (GIP). In their most advanced forms, gut-hormone polyagonists achieve an unprecedented weight reduction of up to ∼20%-30%, offering a pharmacological alternative to bariatric surgery. Along with favorable effects on glycemia, fatty liver, and kidney disease, they also offer beneficial effects on the cardiovascular system and adipose tissue. These new interventions, therefore, hold great promise for the future of anti-obesity medications.
Collapse
Affiliation(s)
- Christine M Kusminski
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Diego Perez-Tilve
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Munich, Germany; German Center for Diabetes Research (DZD) and Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | | | - Matthias H Tschöp
- Helmholtz Munich, Munich, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität, Munich, Germany
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Shang R, Rodrigues B. Lipoprotein lipase as a target for obesity/diabetes related cardiovascular disease. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13199. [PMID: 39081272 PMCID: PMC11286490 DOI: 10.3389/jpps.2024.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Worldwide, the prevalence of obesity and diabetes have increased, with heart disease being their leading cause of death. Traditionally, the management of obesity and diabetes has focused mainly on weight reduction and controlling high blood glucose. Unfortunately, despite these efforts, poor medication management predisposes these patients to heart failure. One instigator for the development of heart failure is how cardiac tissue utilizes different sources of fuel for energy. In this regard, the heart switches from using various substrates, to predominantly using fatty acids (FA). This transformation to using FA as an exclusive source of energy is helpful in the initial stages of the disease. However, over the progression of diabetes this has grave end results. This is because toxic by-products are produced by overuse of FA, which weaken heart function (heart disease). Lipoprotein lipase (LPL) is responsible for regulating FA delivery to the heart, and its function during diabetes has not been completely revealed. In this review, the mechanisms by which LPL regulates fuel utilization by the heart in control conditions and following diabetes will be discussed in an attempt to identify new targets for therapeutic intervention. Currently, as treatment options to directly target diabetic heart disease are scarce, research on LPL may assist in drug development that exclusively targets fuel utilization by the heart and lipid accumulation in macrophages to help delay, prevent, or treat cardiac failure, and provide long-term management of this condition during diabetes.
Collapse
Affiliation(s)
- Rui Shang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Regmi A, Aihara E, Christe ME, Varga G, Beyer TP, Ruan X, Beebe E, O'Farrell LS, Bellinger MA, Austin AK, Lin Y, Hu H, Konkol DL, Wojnicki S, Holland AK, Friedrich JL, Brown RA, Estelle AS, Badger HS, Gaidosh GS, Kooijman S, Rensen PCN, Coskun T, Thomas MK, Roell W. Tirzepatide modulates the regulation of adipocyte nutrient metabolism through long-acting activation of the GIP receptor. Cell Metab 2024; 36:1534-1549.e7. [PMID: 38878772 DOI: 10.1016/j.cmet.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Tirzepatide, a glucose-dependent insulinotropic polypeptide/glucagon-like peptide 1 receptor (GIPR/GLP-1R) agonist, has, in clinical trials, demonstrated greater reductions in glucose, body weight, and triglyceride levels compared with selective GLP-1R agonists in people with type 2 diabetes (T2D). However, cellular mechanisms by which GIPR agonism may contribute to these improved efficacy outcomes have not been fully defined. Using human adipocyte and mouse models, we investigated how long-acting GIPR agonists regulate fasted and fed adipocyte functions. In functional assays, GIPR agonism enhanced insulin signaling, augmented glucose uptake, and increased the conversion of glucose to glycerol in a cooperative manner with insulin; however, in the absence of insulin, GIPR agonists increased lipolysis. In diet-induced obese mice treated with a long-acting GIPR agonist, circulating triglyceride levels were reduced during oral lipid challenge, and lipoprotein-derived fatty acid uptake into adipose tissue was increased. Our findings support a model for long-acting GIPR agonists to modulate both fasted and fed adipose tissue function differentially by cooperating with insulin to augment glucose and lipid clearance in the fed state while enhancing lipid release when insulin levels are reduced in the fasted state.
Collapse
Affiliation(s)
- Ajit Regmi
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | - Gabor Varga
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | - Emily Beebe
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | - Yanzhu Lin
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Haitao Hu
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | | | | | | | | | | | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Tamer Coskun
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | |
Collapse
|
6
|
Liskiewicz A, Müller TD. Regulation of energy metabolism through central GIPR signaling. Peptides 2024; 176:171198. [PMID: 38527521 DOI: 10.1016/j.peptides.2024.171198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
In recent years, significant progress has been made to pharmacologically combat the obesity pandemic, particularly with regard to biochemically tailored drugs that simultaneously target the receptors for glucagon-like peptide-1 (GLP-1) and the glucose-dependent insulinotropic polypeptide (GIP). But while the pharmacological benefits of GLP-1 receptor (GLP-1R) agonism are widely acknowledged, the role of the GIP system in regulating systems metabolism remains controversial. When given in adjunct to GLP-1R agonism, both agonism and antagonism of the GIP receptor (GIPR) improves metabolic outcome in preclinical and clinical studies, and despite persistent concerns about its potential obesogenic nature, there is accumulating evidence indicating that GIP has beneficial metabolic effects via central GIPR agonism. Nonetheless, despite growing recognition of the GIP system as a valuable pharmacological target, there remains great uncertainty as to where and how GIP acts in the brain to regulate metabolism, and how GIPR agonism may differ from GIPR antagonism in control of energy metabolism. In this review we highlight current knowledge on the central action of GIP, and discuss open questions related to its multifaceted biology in the brain and the periphery.
Collapse
Affiliation(s)
- Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.
| |
Collapse
|
7
|
Novikoff A, Müller TD. Pharmacological Advances in Incretin-Based Polyagonism: What We Know and What We Don't. Physiology (Bethesda) 2024; 39:142-156. [PMID: 38353610 PMCID: PMC11368522 DOI: 10.1152/physiol.00032.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
The prevalence of obesity continues to rise in both adolescents and adults, in parallel obesity is strongly associated with the increased incidence of type 2 diabetes, heart failure, certain types of cancer, and all-cause mortality. In relation to obesity, many pharmacological approaches of the past have tried and failed to combat the rising obesity epidemic, particularly due to insufficient efficacy or unacceptable side effects. However, while the history of antiobesity medication is plagued by failures and disappointments, we have witnessed over the last 10 years substantial progress, particularly in regard to biochemically optimized agonists at the receptor for glucagon-like peptide-1 (GLP-1R) and unimolecular coagonists at the receptors for GLP-1 and the glucose-dependent insulinotropic polypeptide (GIP). Although the GIP receptor:GLP-1R coagonists are being heralded as premier pharmacological tools for the treatment of obesity and diabetes, uncertainty remains as to why these drugs testify superiority over best-in-class GLP-1R monoagonists. Particularly with regard to GIP, there remains great uncertainty if and how GIP acts on systems metabolism and if the GIP system should be activated or inhibited to improve metabolic outcome in adjunct to GLP-1R agonism. In this review, we summarize recent advances in GLP-1- and GIP-based pharmacology and discuss recent findings and open questions related to how the GIP system affects systemic energy and glucose metabolism.
Collapse
Affiliation(s)
- Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
8
|
Gutgesell RM, Nogueiras R, Tschöp MH, Müller TD. Dual and Triple Incretin-Based Co-agonists: Novel Therapeutics for Obesity and Diabetes. Diabetes Ther 2024; 15:1069-1084. [PMID: 38573467 PMCID: PMC11043266 DOI: 10.1007/s13300-024-01566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
The discovery of long-acting incretin receptor agonists represents a major stride forward in tackling the dual epidemic of obesity and diabetes. Here we outline the evolution of incretin-based pharmacotherapy, from exendin-4 to the discovery of the multi-incretin hormone receptor agonists that look set to be our next step toward curing diabetes and obesity. We discuss the multiagonists currently in clinical trials and the improvement in efficacy each new generation of these drugs bring. The success of these agents in preclinical models and clinical trials suggests a promising future for multiagonists in the treatment of metabolic diseases, with the most recent glucose-dependent insulinotropic peptide receptor:glucagon-like peptide 1 receptor:glucagon receptor (GIPR:GLP-1R:GCGR) triagonists rivaling the efficacy of bariatric surgery. However, further research is needed to fully understand how these therapies exert their effect on body weight and in the last section we cover open questions about the potential mechanisms of multiagonist drugs, and the understanding of how gut-brain communication can be leveraged to achieve sustained body weight loss without adverse effects.
Collapse
Affiliation(s)
- Robert M Gutgesell
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Rubén Nogueiras
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Madrid, Spain
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Matthias H Tschöp
- Helmholtz Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
9
|
Jussila A, Zhang B, Kirti S, Atit R. Tissue fibrosis associated depletion of lipid-filled cells. Exp Dermatol 2024; 33:e15054. [PMID: 38519432 PMCID: PMC10977660 DOI: 10.1111/exd.15054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/24/2024]
Abstract
Fibrosis is primarily described as the deposition of excessive extracellular matrix, but in many tissues it also involves a loss of lipid or lipid-filled cells. Lipid-filled cells are critical to tissue function and integrity in many tissues including the skin and lungs. Thus, loss or depletion of lipid-filled cells during fibrogenesis, has implications for tissue function. In some contexts, lipid-filled cells can impact ECM composition and stability, highlighting their importance in fibrotic transformation. Recent papers in fibrosis address this newly recognized fibrotic lipodystrophy phenomenon. Even in disparate tissues, common mechanisms are emerging to explain fibrotic lipodystrophy. These findings have implications for fibrosis in tissues composed of fibroblast and lipid-filled cell populations such as skin, lung, and liver. In this review, we will discuss the roles of lipid-containing cells, their reduction/loss during fibrotic transformation, and the mechanisms of that loss in the skin and lungs.
Collapse
Affiliation(s)
- Anna Jussila
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brian Zhang
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sakin Kirti
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Radhika Atit
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Zelicha H, Yang J, Henning SM, Huang J, Lee RP, Thames G, Livingston EH, Heber D, Li Z. Effect of cinnamon spice on continuously monitored glycemic response in adults with prediabetes: a 4-week randomized controlled crossover trial. Am J Clin Nutr 2024; 119:649-657. [PMID: 38290699 DOI: 10.1016/j.ajcnut.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Previous clinical studies showing that cinnamon spice lowers blood glucose concentrations had inconsistent results. OBJECTIVES To determine the effect of daily cinnamon spice supplementation in an amount commonly used for seasoning on glucose concentrations in adults with obesity and prediabetes. METHODS Following a 2-wk run-in period of maintaining a low polyphenol/fiber diet, 18 participants with obesity and prediabetes underwent a 10-wk randomized, controlled, double-blind, crossover trial (mean age 51.1 y; mean fasting plasma glucose 102.9 mg/dL). The participants were randomly assigned to take cinnamon (4 g/d) or placebo for 4-wk, followed by a 2-wk washout period, and then crossed over to the other intervention for an additional 4-wk. Glucose changes were measured with continuous glucose monitoring. Oral glucose tolerance testing immediately following ingestion of cinnamon or placebo was performed at 4-time points to assess their acute effects both at the baseline and end of each intervention phase. Digestive symptom logs were obtained daily. RESULTS There were 694 follow-up days with 66,624 glucose observations. When compared with placebo, 24-h glucose concentrations were significantly lower when cinnamon was administered [mixed-models; effect size (ES) = 0.96; 95 % confidence interval (CI): -2.9, -1.5; P < 0.001]. Similarly, the mean net-area-under-the-curve (netAUC) for glucose was significantly lower than for placebo when cinnamon was given (over 24 h; ES = -0.66; 95 % CI: 2501.7, 5412.1, P = 0.01). Cinnamon supplementation resulted in lower glucose peaks compared with placebo (Δpeak 9.56 ± 9.1 mg/dL compared with 11.73 ± 8.0 mg/dL; ES = -0.57; 95 % CI: 0.8, 3.7, P = 0.027). Glucose-dependent-insulinotropic-polypeptide concentrations increased during oral glucose tolerance testing + cinnamon testing (mixed-models; ES = 0.51; 95 % CI: 1.56, 100.1, P = 0.04), whereas triglyceride concentrations decreased (mixed-models; ES = 0.55; 95 % CI: -16.0, -1.6, P = 0.02). Treatment adherence was excellent in both groups (cinnamon: 97.6 ± 3.4 % compared with placebo: 97.9 ± 3.7 %; ES = -0.15; 95 % CI: -1.8, 0.2, P = 0.5). No differences were found in digestive symptoms (abdominal pain, borborygmi, bloating, excess flatus, and stools/day) between cinnamon and placebo groups. CONCLUSIONS Cinnamon, a widely available and low-cost supplement, may contribute to better glucose control when added to the diet in people who have obesity-related prediabetes. This trial was registered at clinicaltrials.gov as NCT04342624.
Collapse
Affiliation(s)
- Hila Zelicha
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jieping Yang
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, United States
| | - Susanne M Henning
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, United States
| | - Jianjun Huang
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, United States
| | - Ru-Po Lee
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, United States
| | - Gail Thames
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, United States
| | - Edward H Livingston
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Heber
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, United States
| | - Zhaoping Li
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, United States.
| |
Collapse
|
11
|
Ramasamy I. Physiological Appetite Regulation and Bariatric Surgery. J Clin Med 2024; 13:1347. [PMID: 38546831 PMCID: PMC10932430 DOI: 10.3390/jcm13051347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Obesity remains a common metabolic disorder and a threat to health as it is associated with numerous complications. Lifestyle modifications and caloric restriction can achieve limited weight loss. Bariatric surgery is an effective way of achieving substantial weight loss as well as glycemic control secondary to weight-related type 2 diabetes mellitus. It has been suggested that an anorexigenic gut hormone response following bariatric surgery contributes to weight loss. Understanding the changes in gut hormones and their contribution to weight loss physiology can lead to new therapeutic treatments for weight loss. Two distinct types of neurons in the arcuate hypothalamic nuclei control food intake: proopiomelanocortin neurons activated by the anorexigenic (satiety) hormones and neurons activated by the orexigenic peptides that release neuropeptide Y and agouti-related peptide (hunger centre). The arcuate nucleus of the hypothalamus integrates hormonal inputs from the gut and adipose tissue (the anorexigenic hormones cholecystokinin, polypeptide YY, glucagon-like peptide-1, oxyntomodulin, leptin, and others) and orexigeneic peptides (ghrelin). Replicating the endocrine response to bariatric surgery through pharmacological mimicry holds promise for medical treatment. Obesity has genetic and environmental factors. New advances in genetic testing have identified both monogenic and polygenic obesity-related genes. Understanding the function of genes contributing to obesity will increase insights into the biology of obesity. This review includes the physiology of appetite control, the influence of genetics on obesity, and the changes that occur following bariatric surgery. This has the potential to lead to the development of more subtle, individualised, treatments for obesity.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Blood Sciences, Conquest Hospital, Hastings TN37 7RD, UK
| |
Collapse
|
12
|
Prajapati S. Advances in the Management of Diabetes and Overweight using Incretin-based Pharmacotherapies. Curr Diabetes Rev 2024; 20:e131123223544. [PMID: 37962047 DOI: 10.2174/0115733998256797231009062744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 11/15/2023]
Abstract
Throughout the previous three decades, the secretion of glucagon-like peptide-1 hormone has attracted much attention to attain possible therapy goals for the treatment of both hypoglycaemic along type II diabetes militates and overweight. The pharmaceutical generation of peptides similar to hypoglycaemia-based medicines is exemplified by agonists of the GLP- 1R (Glucagon-like peptide-1 receptors). Pharmacokinetic profiles are continuously being improved, beginning with the native hormone with a two- to three-minute quarter and progressing through growth every day with once-drug combinations. Due to contradictory data that indicate stimulation or inhibition of the Glucagon-like peptide receptor, the Glucose-dependent insulin tropic peptide receptor offers favorable effects on systemic metabolism. The recent Glp-1R (Glucagon-like peptide-1 receptor-) targeting monomolecular drugs has demonstrated therapeutic effectiveness and has stoked interest in Glucose-dependent insulin tropic polypeptide antagonism as a treatment for overweight and diabetes mellitus. These drugs have been shown to dramatically improve carbohydrates with body weight management in sick people who have obesity and type II diabetes mellitus. In this study, recent breakthroughs in compelling therapeutic interventions are discussed, and the biology and pharmacology of the glucose-like peptide are reviewed.
Collapse
Affiliation(s)
- Shatrudhan Prajapati
- Department of Pharmacy, Golgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
13
|
Kanbay M, Copur S, Siriopol D, Yildiz AB, Gaipov A, van Raalte DH, Tuttle KR. Effect of tirzepatide on blood pressure and lipids: A meta-analysis of randomized controlled trials. Diabetes Obes Metab 2023; 25:3766-3778. [PMID: 37700437 DOI: 10.1111/dom.15272] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
AIM To perform a meta-analysis to quantify the effect of tirzepatide on blood pressure and lipids. METHODS PubMed, Ovid/Medline, Web of Science, Scopus, Cochrane Library and CINAHL databases were screened and the randomized controlled trials evaluating the effects of tirzepatide on either blood pressure or lipid profiles were included. RESULTS Seven randomized controlled trials have investigated the effects of tirzepatide on blood pressure and lipid profiles. Regardless of the dose administered, tirzepatide resulted in significant decreases in systolic blood pressure of median -4.20 (95% confidence interval [CI] -5.17 to -3.23) mmHg for 5 mg, -5.34 (-6.31 to -4.37) mmHg for 10 mg, and -5.77 (-6.73 to -4.81) mmHg for 15 mg. At all three once-weekly doses, tirzepatide treatment resulted in significant decreases in total cholesterol levels: median -3.76% (95% CI -5.20% to -2.31%) for 5 mg; -4.63% (-6.07% to -3.19%) for 10 mg; and -5.93% (-7.36% to -4.49%) for 15 mg. Additionally, tirzepatide treatment led to increased high-density lipoprotein (HDL) cholesterol levels and decreased low-density lipoprotein (LDL) cholesterol and triglyceride levels. CONCLUSIONS Tirzepatide induced clinically meaningful reductions in the levels of systolic and diastolic blood pressure, total cholesterol, LDL cholesterol and triglycerides, along with increases in the level of HDL cholesterol.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Dimitrie Siriopol
- Department of Nephrology, "Saint John the New" County Hospital, Stefan cel Mare University, Suceava, Romania
| | | | - Abduzhappar Gaipov
- Department of Medicine, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Daniel H van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Katherine R Tuttle
- Division of Nephrology, University of Washington, Seattle, Washington, USA
- Providence Medical Research Center, Providence Inland Northwest Health, Spokane, Washington, USA
| |
Collapse
|
14
|
Takahashi Y, Fujita H, Seino Y, Hattori S, Hidaka S, Miyakawa T, Suzuki A, Waki H, Yabe D, Seino Y, Yamada Y. Gastric inhibitory polypeptide receptor antagonism suppresses intramuscular adipose tissue accumulation and ameliorates sarcopenia. J Cachexia Sarcopenia Muscle 2023; 14:2703-2718. [PMID: 37897141 PMCID: PMC10751449 DOI: 10.1002/jcsm.13346] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Intramuscular adipose tissue (IMAT) formation derived from muscle fibro-adipogenic progenitors (FAPs) has been recognized as a pathological feature of sarcopenia. This study aimed to explore whether genetic and pharmacological gastric inhibitory polypeptide (GIP) receptor antagonism suppresses IMAT accumulation and ameliorates sarcopenia in mice. METHODS Whole body composition, grip strength, skeletal muscle weight, tibialis anterior (TA) muscle fibre cross-sectional area (CSA) and TA muscle IMAT area were measured in young and aged male C57BL/6 strain GIP receptor (Gipr)-knockout (Gipr-/- ) and wild-type (Gipr+/+ ) mice. FAPs isolated from lower limb muscles of 12-week-old Gipr+/+ mice were cultured with GIP, and their differentiation into mature adipocytes was examined. Furthermore, TA muscle IMAT area and fibre CSA were measured in untreated Gipr-/- mice and GIP receptor antagonist-treated Gipr+/+ mice after glycerol injection into the TA muscles. RESULTS Body composition analysis revealed that 104-week-old Gipr-/- mice had a greater proportion of lean tissue mass (73.7 ± 1.2% vs. 66.5 ± 2.7%, P < 0.05 vs. 104-week-old Gipr+/+ mice) and less adipose tissue mass (13.1 ± 1.3% vs. 19.4 ± 2.6%, P < 0.05 vs. 104-week-old Gipr+/+ mice). Eighty-four-week-old Gipr-/- mice exhibited increases in grip strength (P < 0.05), weights of TA (P < 0.05), soleus (P < 0.01), gastrocnemius (P < 0.05) and quadriceps femoris (P < 0.01) muscles, and average TA muscle fibre CSA (P < 0.05) along with a reduction in TA muscle IMAT area assessed by the number of perilipin-positive cells (P < 0.0001) compared with 84-week-old Gipr+/+ mice. Oil Red O staining analysis revealed 1.6- and 1.7-fold increased adipogenesis in muscle FAPs cultured with 10 and 100 nM of GIP (P < 0.01 and P < 0.001 vs. 0 nM of GIP, respectively). Furthermore, both untreated Gipr-/- mice and GIP receptor antagonist-treated Gipr+/+ mice for 14 days after glycerol injection into the TA muscles at 12 weeks of age showed reduced TA muscle IMAT area (1.39 ± 0.38% and 2.65 ± 0.36% vs. 6.54 ± 1.30%, P < 0.001 and P < 0.01 vs. untreated Gipr+/+ mice, respectively) and increased average TA muscle fibre CSA (P < 0.01 and P < 0.05 vs. untreated Gipr+/+ mice, respectively). CONCLUSIONS GIP promotes the differentiation of muscle FAPs into adipocytes and its receptor antagonism suppresses IMAT accumulation and promotes muscle regeneration. Pharmacological GIP receptor antagonism may serve as a novel therapeutic approach for sarcopenia.
Collapse
Affiliation(s)
- Yuya Takahashi
- Department of Metabolism and EndocrinologyAkita University Graduate School of MedicineAkitaJapan
| | - Hiroki Fujita
- Department of Metabolism and EndocrinologyAkita University Graduate School of MedicineAkitaJapan
| | - Yusuke Seino
- Department of Endocrinology, Diabetes and MetabolismFujita Health UniversityToyoakeJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
| | - Satoko Hattori
- Division of Systems Medical Science, Center for Medical ScienceFujita Health UniversityToyoakeJapan
| | - Shihomi Hidaka
- Department of Endocrinology, Diabetes and MetabolismFujita Health UniversityToyoakeJapan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical ScienceFujita Health UniversityToyoakeJapan
| | - Atsushi Suzuki
- Department of Endocrinology, Diabetes and MetabolismFujita Health UniversityToyoakeJapan
| | - Hironori Waki
- Department of Metabolism and EndocrinologyAkita University Graduate School of MedicineAkitaJapan
| | - Daisuke Yabe
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
- Department of Diabetes, Endocrinology and Metabolism/Department of Rheumatology and Clinical ImmunologyGifu University Graduate School of MedicineGifuJapan
- Center for One Medicine Innovative Translational ResearchGifu UniversityGifuJapan
| | - Yutaka Seino
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
- Center for Diabetes, Endocrinology and MetabolismKansai Electric Power HospitalOsakaJapan
| | - Yuichiro Yamada
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
- Center for Diabetes, Endocrinology and MetabolismKansai Electric Power HospitalOsakaJapan
| |
Collapse
|
15
|
Lee S, Chung MJ, Ahn M, Park HJ, Wang EK, Guon T, Kee HJ, Ku CR, Na K. Surfactant-like photosensitizer for endoscopic duodenal ablation: Modulating meal-stimulated incretin hormones in obese and type 2 diabetes. Biomaterials 2023; 302:122336. [PMID: 37778055 DOI: 10.1016/j.biomaterials.2023.122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Duodenal ablation improves glycaemic control and weight loss, so it has been applied using hydrothermal catheters in obese and type 2 diabetes patients, indicating similar mechanisms and therapeutic effects as bariatric surgeries. Endoscopic photodynamic therapy is an innovative procedure that easily accessible to endocrine or gastrointestinal organs, so it is critical for the sprayed photosensitizer (PS) to long-term interact with target tissues for enhancing its effects. Surfactant-like PS was more stable in a wide range of pH and 2.8-fold more retained in the duodenum at 1 h than hydrophilic PS due to its amphiphilic property. Endoscopic duodenal ablation using surfactant-like PS was performed in high fat diet induced rat models, demonstrating body weight loss, enhanced insulin sensitivity, and modulation of incretin hormones. Locoregional ablation of duodenum could affect the profiles of overall intestinal cells secreting meal-stimulated hormones and further the systemic glucose and lipid metabolism, regarding gut-brain axis. Our strategy suggests a potential for a treatment of minimally invasive bariatric and metabolic therapy if accompanied by detailed clinical trials.
Collapse
Affiliation(s)
- Sanghee Lee
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
| | - Moon Jae Chung
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Minji Ahn
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Hyun Jin Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eun Kyung Wang
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Taeeun Guon
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun Jung Kee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Cheol Ryong Ku
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Kun Na
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
16
|
Zhou Q, Lei X, Fu S, Liu P, Long C, Wang Y, Li Z, Xie Q, Chen Q. Efficacy and safety of tirzepatide, dual GLP-1/GIP receptor agonists, in the management of type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetol Metab Syndr 2023; 15:222. [PMID: 37904255 PMCID: PMC10614386 DOI: 10.1186/s13098-023-01198-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) and GLP-1 are the main incretin hormones, and be responsible for the insulinotropic incretin effect. The addition of a GIP agonist to a GLP-1agonist has been hypothesized to significantly potentiate the weight-losing and glycemia control effect, which might offer a new therapeutic option in the treatment of type 2 diabetes. The current meta-analysis aims to synthesize evidence of primary efficacy and safety outcomes through clinically randomized controlled trials to evaluate integrated potency and signaling properties. METHOD We conducted comprehensive literature searches in Cochrane Library, Web of Science, Embase and PubMed for relevant literatures investigating the efficacy and/or safety of Tirzepatide published in the English as of May 30, 2023 was retrieved. We synthesized results using standardized mean differences (SMDs) and 95% confidence intervals (95 CIs) for continuous outcomes, and odds ratios (ORs) along with 95 Cis for dichotomous outcomes. All analyses were done using Revman version 5.3, STATA version 15.1 and the statistical package 'meta'. RESULTS Participants treated with weekly Tirzepatide achieved HbA1c and body weight target values significantly lower than any other comparator without clinically significant increase in the incidence of hypoglycemic events, serious and all-cause fatal adverse events. However, gastrointestinal adverse events and decreased appetite events were reported more frequently with Tirzepatide treatment than with placebo/controls. CONCLUSION The Tirzepatide, a dual GIP/GLP-1 receptor co-agonist, for diabetes therapy has opened a new era on personalized glycemia control and weight loss in a safe manner with broad and promising clinical implications.
Collapse
Affiliation(s)
- Qian Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
- , Chengdu, China
| | - Xingxing Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
- , Chengdu, China
| | - Shunlian Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Cong Long
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Yanmei Wang
- Ya'an Polytechnic College Affiliated Hospital, Ya'an, China
| | - Zinan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
- Sichuan Integrative Medicine Hospital, chengdu, China
| | - Qian Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39, Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
17
|
Babirak SP. Tirzepatide Therapy in a Patient with Type 2 Diabetes Mellitus, Chylomicronemia, and Heterozygosity for Lipoprotein Lipase Deficiency. AACE Clin Case Rep 2023; 9:128-130. [PMID: 37520761 PMCID: PMC10382611 DOI: 10.1016/j.aace.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 08/01/2023] Open
Abstract
Background/Objective A patient with well-controlled type 2 diabetes mellitus (T2DM) and a heterozygote for lipoprotein lipase deficiency (HeLPL) presented with chronic chylomicrons (CMs). Some patients with T2DM can develop CMs due to poor glycemic control or genetic defects that result in a decrease in the lipoprotein lipase (LPL) activity. This study aimed to describe a patient with HeLPL with T2DM and persistent CM on maximal standard lipid-lowering therapy who then used tirzepatide as a novel way to treat CM. Case Report A patient with well-controlled T2DM with persistent CM and HeLPL was treated with tirzepatide and titrated to 15 mg/week, resulting in resolution of his CM (triglyceride [TG] level, <850 mg/dL) with a 58% reduction in the serum TG level after 2 months and then an 86% reduction after 5 months of therapy. His A1C level and body weight decreased from 6.9% to 6.3% and by 12 lbs in 2 months and then to 5.6% and by 20 lbs after 5 months, respectively. Discussion The resolution of CM and reduction in the TG level by tirzepatide cannot be solely explained by an improvement in glycemic control or a decrease in body weight but may also be related to other effects of tirzepatide. Conclusion Tirzepatide caused a significant decrease in the TG level in a patient with CM, T2DM, and HeLPL. The mechanism(s) underlying this effect is not completely understood but warrants further study.
Collapse
Affiliation(s)
- Stephan Paul Babirak
- Address correspondence to Dr Stephan Paul Babirak, Metabolic Leader, LLC, PA, 51 US Route One, Suite H, Scarborough, Maine 04074.
| |
Collapse
|
18
|
Ying Z, van Eenige R, Ge X, van Marwijk C, Lambooij JM, Guigas B, Giera M, de Boer JF, Coskun T, Qu H, Wang Y, Boon MR, Rensen PCN, Kooijman S. Combined GIP receptor and GLP1 receptor agonism attenuates NAFLD in male APOE∗3-Leiden.CETP mice. EBioMedicine 2023; 93:104684. [PMID: 37379656 DOI: 10.1016/j.ebiom.2023.104684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Combined glucose-dependent insulinotropic polypeptide receptor (GIPR) and glucagon-like peptide-1 receptor (GLP1R) agonism is superior to single GLP1R agonism with respect to glycemic control and weight loss in obese patients with or without type 2 diabetes. As insulin resistance and obesity are strong risk factors for nonalcoholic fatty liver disease (NAFLD), in the current study we investigated the effects of combined GIPR/GLP1R agonism on NAFLD development. METHODS Male APOE∗3-Leiden.CETP mice, a humanized model for diabetic dyslipidemia and NAFLD when fed a high-fat high-cholesterol diet, received subcutaneous injections with either vehicle, a GIPR agonist, a GLP1R agonist, or both agonists combined every other day. FINDINGS GIPR and GLP1R agonism reduced body weight and additively lowered fasting plasma levels of glucose, triglycerides and total cholesterol. Strikingly, we report an additive reduction in hepatic steatosis as evidenced by lower hepatic lipid content and NAFLD scores. Underlying the lipid-lowering effects were a reduced food intake and intestinal lipid absorption and an increased uptake of glucose and triglyceride-derived fatty acids by energy-combusting brown adipose tissue. Combined GIPR/GLP1R agonism also attenuated hepatic inflammation as evidenced by a decreased number of monocyte-derived Kupffer cells and a reduced expression of inflammatory markers. Together, the reduced hepatic steatosis and inflammation coincided with lowered markers of liver injury. INTERPRETATION We interpretate that GIPR and GLP1R agonism additively attenuate hepatic steatosis, lower hepatic inflammation, ameliorate liver injury, together preventing NAFLD development in humanized APOE∗3-Leiden.CETP mice. We anticipate that combined GIPR/GLP1R agonism is a promising strategy to attenuate NAFLD progression in humans. FUNDING This work was supported by a grant from the Netherlands CardioVascular Research Initiative: the Dutch Heart Foundation, Dutch Federation of University Medical Centers, the Netherlands Organization for Health Research and Development, and the Royal Netherlands Academy of Sciences [CVON-GENIUS-II] to P.C.N.R., a Lilly Research Award Program [LRAP] Award to P.C.N.R. and S.K., a Dutch Heart Foundation [2017T016] grant to S.K., and an NWO-VENI grant [09150161910073] to M.R.B.; J.F.D.B. is supported by the Nutrition and Health initiative of the University of Groningen; Z.Y. is supported by a full-time PhD scholarship from the China Scholarship Council (201806850094 to Z.Y.).
Collapse
Affiliation(s)
- Zhixiong Ying
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Robin van Eenige
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Xiaoke Ge
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Christy van Marwijk
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Joost M Lambooij
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands; Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martin Giera
- The Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Freark de Boer
- Departments of Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tamer Coskun
- Department of Diabetes/Endocrine, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, United States
| | - Hongchang Qu
- Department of Diabetes/Endocrine, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, United States
| | - Yanan Wang
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Med-X Institute, Center for Immunological and Metabolic Diseases and Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Mariëtte R Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
19
|
Várkonyi TT, Pósa A, Pávó N, Pavo I. Perspectives on weight control in diabetes - Tirzepatide. Diabetes Res Clin Pract 2023:110770. [PMID: 37279858 DOI: 10.1016/j.diabres.2023.110770] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
Tirzepatide, a once-weekly glucose-dependent insulinotropic polypeptide (GIP)/glucagon-like peptide-1 (GLP-1) receptor agonist (GIP/GLP-1 RA) improves glycemic control. Besides improvement of glycemic control, tirzepatide treatment is associated with significantly more weight loss as compared to potent selective GLP-1 receptor agonists as well as other beneficial changes in cardio-metabolic parameters, such as reduced fat mass, blood pressure, improved insulin sensitivity, lipoprotein concentrations, and circulating metabolic profile in individuals with type 2 diabetes (T2D). Some of these changes are partially associated with weight reduction. We review here the putative mechanisms of GIP receptor agonism contributing to GLP-1 receptor agonism-induced weight loss and respective findings with GIP/GLP-1 RAs, including tirzepatide in T2D preclinical models and clinical studies. Subsequently, we summarize the clinical data on weight loss and related non-glycemic metabolic changes of tirzepatide in T2D. These findings suggest that the robust weight loss and associated changes are important contributors to the clinical profile of tirzepatide for the treatment of T2D diabetes and serve as the basis for further investigations including clinical outcomes.
Collapse
Affiliation(s)
- Tamas T Várkonyi
- Department of Internal Medicine, University of Szeged, Kálvária sgt. 57, H-6725 Szeged, Hungary.
| | - Anikó Pósa
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Tisza Lajos krt. 64-66, H-6720 Szeged, Hungary.
| | - Noémi Pávó
- Department of Internal Medicine II, Clinical Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Imre Pavo
- Eli Lilly Regional Operations GmbH, Erdberger Lände 26/A, A-1030 Vienna, Austria.
| |
Collapse
|
20
|
Davies I, Tan TMM. Design of novel therapeutics targeting the glucose-dependent insulinotropic polypeptide receptor (GIPR) to aid weight loss. Expert Opin Drug Discov 2023; 18:659-669. [PMID: 37154171 DOI: 10.1080/17460441.2023.2203911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
INTRODUCTION With obesity rates growing globally, there is a paramount need for new obesity pharmacotherapies to tackle this pandemic. AREAS COVERED This review focuses on the design of therapeutics that target the glucose-dependent insulinotropic polypeptide receptor (GIPR) to aid weight loss. The authors highlight the paradoxical observation that both GIPR agonism and antagonism appear to provide metabolic benefits when combined with glucagon-like peptide-1 receptor (GLP-1 R) agonism. The therapeutic potential of compounds that target the GIPR alongside the GLP-1 R and the glucagon receptor are discussed, and the impressive clinical findings of such compounds are reviewed. EXPERT OPINION In this area, the translation of pre-clinical findings to clinical studies appears to be particularly difficult. Well-designed physiological studies in man are required to answer the paradox highlighted above, and to support the safe future development of a combination of GLP-1 R/GIPR targeting therapies.
Collapse
Affiliation(s)
- Iona Davies
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Tricia M M Tan
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| |
Collapse
|
21
|
Cataldi S, Aprile M, Perfetto C, Angot B, Cormont M, Ciccodicola A, Tanti JF, Costa V. GIPR expression is induced by thiazolidinediones in a PPARγ-independent manner and repressed by obesogenic stimuli. Eur J Cell Biol 2023; 102:151320. [PMID: 37130450 DOI: 10.1016/j.ejcb.2023.151320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/04/2023] Open
Abstract
Adipose tissue (AT) dysfunctions are associated with the onset of insulin resistance (IR) and type 2 diabetes mellitus (T2DM). Targeting glucose-dependent insulinotropic peptide receptor (GIPR) is a valid option to increase the efficacy of glucagon-like peptide 1 (GLP-1) receptor agonists in T2DM treatment. Nevertheless, the therapeutic potential of targeting the GIP/GIPR axis and its effect on the AT are controversial. In this work, we explored the expression and regulation of GIPR in precursor cells and mature adipocytes, investigating if and how obesogenic stimuli and thiazolidinediones perturb GIPR expression. Using publicly available gene expression datasets, we assessed that, among white adipose tissue (WAT) cells, adipocytes express lower levels of GIPR compared to cells of mesothelial origin, pericytes, dendritic and NK/T cells. However, we report that GIPR levels markedly increase during the in vitro differentiation of both murine and human adipocytes, from 3T3-L1 and human mesenchymal precursor cells (MSCs), respectively. Notably, we demonstrated that thiazolidinediones - ie. synthetic PPARγ agonists widely used as anti-diabetic drugs and contained in the adipogenic mix - markedly induce GIPR expression. Moreover, using multiple in vitro systems, we assessed that thiazolidinediones induce GIPR in a PPARγ-independent manner. Our results support the hypothesis that PPARγ synthetic agonists may be used to increase GIPR levels in AT, potentially affecting in turn the targeting of GIP system in patients with metabolic dysfunctions. Furthermore, we demonstrate in vitro and in vivo that proinflammatory stimuli, and especially the TNFα, represses GIPR both in human and murine adipocytes, even though discordant results were obtained between human and murine cellular systems for other cytokines. Finally, we demonstrated that GIPR is negatively affected also by the excessive lipid engulfment. Overall, we report that obesogenic stimuli - ie. pro-inflammatory cytokines and the increased lipid accumulation - and PPARγ synthetic ligands oppositely modulate GIPR expression, possibly influencing the effectiveness of GIP agonists.
Collapse
Affiliation(s)
- Simona Cataldi
- Institute of Genetics and Biophysics ''Adriano Buzzati-Traverso'', CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Marianna Aprile
- Institute of Genetics and Biophysics ''Adriano Buzzati-Traverso'', CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Caterina Perfetto
- Institute of Genetics and Biophysics ''Adriano Buzzati-Traverso'', CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Brice Angot
- Université Côte d'Azur, Inserm UMR1065, C3M, Team Cellular and Molecular Pathophysiology of Obesity, 06204 Nice, France
| | - Mireille Cormont
- Université Côte d'Azur, Inserm UMR1065, C3M, Team Cellular and Molecular Pathophysiology of Obesity, 06204 Nice, France
| | - Alfredo Ciccodicola
- Institute of Genetics and Biophysics ''Adriano Buzzati-Traverso'', CNR, Via P. Castellino 111, 80131 Naples, Italy; Department of Science and Technology, University of Naples ''Parthenope'', Naples, Italy
| | - Jean-Francois Tanti
- Université Côte d'Azur, Inserm UMR1065, C3M, Team Cellular and Molecular Pathophysiology of Obesity, 06204 Nice, France.
| | - Valerio Costa
- Institute of Genetics and Biophysics ''Adriano Buzzati-Traverso'', CNR, Via P. Castellino 111, 80131 Naples, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| |
Collapse
|
22
|
van Eenige R, Ying Z, Tramper N, Wiebing V, Siraj Z, de Boer JF, Lambooij JM, Guigas B, Qu H, Coskun T, Boon MR, Rensen PCN, Kooijman S. Combined glucose-dependent insulinotropic polypeptide receptor and glucagon-like peptide-1 receptor agonism attenuates atherosclerosis severity in APOE*3-Leiden.CETP mice. Atherosclerosis 2023; 372:19-31. [PMID: 37015151 DOI: 10.1016/j.atherosclerosis.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND AND AIMS Combined agonism of the glucose-dependent insulinotropic polypeptide receptor (GIPR) and the glucagon-like peptide-1 receptor (GLP1R) is superior to single GLP1R agonism in terms of glycemic control and lowering body weight in individuals with obesity and with or without type 2 diabetes mellitus. As both GIPR and GLP1R signaling have also been implicated in improving inflammatory responses and lipid handling, two crucial players in atherosclerosis development, here we aimed to investigate the effects of combined GIPR/GLP1R agonism in APOE*3-Leiden.CETP mice, a well-established mouse model for human-like lipoprotein metabolism and atherosclerosis development. METHODS Female APOE*3-Leiden.CETP mice were fed a Western-type diet (containing 16% fat and 0.15% cholesterol) to induce dyslipidemia, and received subcutaneous injections with either vehicle, a GIPR agonist (GIPFA-085), a GLP1R agonist (GLP-140) or both agonists. In the aortic root area, atherosclerosis development was assessed. RESULTS Combined GIPR/GLP1R agonism attenuated the development of severe atherosclerotic lesions, while single treatments only showed non-significant improvements. Mechanistically, combined GIPR/GLP1R agonism decreased markers of systemic low-grade inflammation. In addition, combined GIPR/GLP1R agonism markedly lowered plasma triglyceride (TG) levels as explained by reduced hepatic very-low-density lipoprotein (VLDL)-TG production as well as increased TG-derived fatty acid uptake by brown and white adipose tissue which was coupled to enhanced hepatic uptake of core VLDL remnants. CONCLUSIONS Combined GIPR/GLP1R agonism attenuates atherosclerosis severity by diminishing inflammation and increasing VLDL turnover. We anticipate that combined GIPR/GLP1R agonism is a promising strategy to lower cardiometabolic risk in humans.
Collapse
Affiliation(s)
- Robin van Eenige
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Zhixiong Ying
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Naomi Tramper
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Vera Wiebing
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Zohor Siraj
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Freark de Boer
- Departments of Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Joost M Lambooij
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands; Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hongchang Qu
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, United States
| | - Tamer Coskun
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, United States
| | - Mariëtte R Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
23
|
Yang G, Liang X, Jiang Y, Li C, Zhang Y, Zhang X, Chang X, Shen Y, Meng X. Molecular Characterization of Grass Carp GIPR and Effect of Nutrition States, Insulin, and Glucagon on Its Expression. AQUACULTURE NUTRITION 2022; 2022:4330251. [PMID: 36860432 PMCID: PMC9973162 DOI: 10.1155/2022/4330251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/08/2022] [Accepted: 10/25/2022] [Indexed: 06/18/2023]
Abstract
GIP plays an important regulatory role in glucose and lipid metabolism. As the specific receptor, GIPR is involved in this physiological process. To assess the roles of GIPR in teleost, the GIPR gene was cloned from grass carp. The ORF of cloned GIPR gene was 1560 bp, encoding 519 amino acids. The grass carp GIPR was the G-protein-coupled receptor which contains seven predicted transmembrane domains. In addition, two predicted glycosylation sites were contained in the grass carp GIPR. The grass carp GIPR expression is in multiple tissues and is highly expressed in the kidney, brain regions, and visceral fat tissue. In the OGTT experiment, the GIPR expression is markedly decreased in the kidney, visceral fat, and brain by treatment with glucose for 1 and 3 h. In the fast and refeeding experiment, the GIPR expression in the kidney and visceral fat tissue was significantly induced in the fast groups. In addition, the GIPR expression levels were markedly decreased in the refeeding groups. In the present study, the visceral fat accumulation of grass carp was induced by overfed. The GIPR expression was significantly decreased in the brain, kidney, and visceral fat tissue of overfed grass carp. In primary hepatocytes, the GIPR expression was promoted by treatment with oleic acid and insulin. The GIPR mRNA levels were significantly reduced by treatment with glucose and glucagon in the grass carp primary hepatocytes. To our knowledge, this is the first time the biological role of GIPR is unveiled in teleost.
Collapse
Affiliation(s)
- Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Xiaomin Liang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yanle Jiang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Chengquan Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yanmin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Xindang Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Xulu Chang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Yawei Shen
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
24
|
Regulation of feeding and therapeutic application of bioactive peptides. Pharmacol Ther 2022; 239:108187. [DOI: 10.1016/j.pharmthera.2022.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
25
|
Coskun T, Urva S, Roell WC, Qu H, Loghin C, Moyers JS, O'Farrell LS, Briere DA, Sloop KW, Thomas MK, Pirro V, Wainscott DB, Willard FS, Abernathy M, Morford L, Du Y, Benson C, Gimeno RE, Haupt A, Milicevic Z. LY3437943, a novel triple glucagon, GIP, and GLP-1 receptor agonist for glycemic control and weight loss: From discovery to clinical proof of concept. Cell Metab 2022; 34:1234-1247.e9. [PMID: 35985340 DOI: 10.1016/j.cmet.2022.07.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/10/2022] [Accepted: 07/22/2022] [Indexed: 12/22/2022]
Abstract
With an increasing prevalence of obesity, there is a need for new therapies to improve body weight management and metabolic health. Multireceptor agonists in development may provide approaches to fulfill this unmet medical need. LY3437943 is a novel triple agonist peptide at the glucagon receptor (GCGR), glucose-dependent insulinotropic polypeptide receptor (GIPR), and glucagon-like peptide-1 receptor (GLP-1R). In vitro, LY3437943 shows balanced GCGR and GLP-1R activity but more GIPR activity. In obese mice, administration of LY3437943 decreased body weight and improved glycemic control. Body weight loss was augmented by the addition of GCGR-mediated increases in energy expenditure to GIPR- and GLP-1R-driven calorie intake reduction. In a phase 1 single ascending dose study, LY3437943 showed a safety and tolerability profile similar to other incretins. Its pharmacokinetic profile supported once-weekly dosing, and a reduction in body weight persisted up to day 43 after a single dose. These findings warrant further clinical assessment of LY3437943.
Collapse
Affiliation(s)
- Tamer Coskun
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | - Shweta Urva
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - William C Roell
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Hongchang Qu
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Corina Loghin
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Julie S Moyers
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Libbey S O'Farrell
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Daniel A Briere
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Kyle W Sloop
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Melissa K Thomas
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Valentina Pirro
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - David B Wainscott
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Francis S Willard
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Matthew Abernathy
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - LaRonda Morford
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Yu Du
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Charles Benson
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Ruth E Gimeno
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Axel Haupt
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | |
Collapse
|
26
|
Boer GA, Hunt JE, Gabe MBN, Windeløv JA, Sparre-Ulrich AH, Hartmann B, Holst JJ, Rosenkilde MM. GIP receptor antagonist treatment causes a reduction in weight gain in ovariectomised high fat diet-fed mice. Br J Pharmacol 2022; 179:4486-4499. [PMID: 35710141 PMCID: PMC9544171 DOI: 10.1111/bph.15894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 04/04/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background and purpose The incretin hormone, gastric inhibitory peptide/glucose‐dependent insulinotropic polypeptide (GIP), secreted by the enteroendocrine K‐cells in the proximal intestine, may regulate lipid metabolism and adiposity, but its exact role in these processes is unclear. Experimental approach We characterized in vitro and in vivo antagonistic properties of a novel GIP analogue, mGIPAnt‐1. We further assessed the in vivo pharmacokinetic profile of this antagonist, as well as its ability to affect high‐fat diet (HFD)‐induced body weight gain in ovariectomised mice during an 8‐week treatment period. Key results mGIPAnt‐1 showed competitive antagonistic properties to the GIP receptor in vitro as it inhibited GIP‐induced cAMP accumulation in COS‐7 cells. Furthermore, mGIPAnt‐1 was capable of inhibiting GIP‐induced glucoregulatory and insulinotropic effects in vivo and has a favourable pharmacokinetic profile with a half‐life of 7.2 h in C57Bl6 female mice. Finally, sub‐chronic treatment with mGIPAnt‐1 in ovariectomised HFD mice resulted in a reduction of body weight and fat mass. Conclusion and Implications mGIPAnt‐1 successfully inhibited acute GIP‐induced effects in vitro and in vivo and sub‐chronically induces resistance to HFD‐induced weight gain in ovariectomised mice. Our results support the development of GIP antagonists for the therapy of obesity.
Collapse
Affiliation(s)
- Geke Aline Boer
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna Elizabeth Hunt
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Buur Nordskov Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Agerlin Windeløv
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Campbell JE, Beaudry JL, Svendsen B, Baggio LL, Gordon AN, Ussher JR, Wong CK, Gribble FM, D’Alessio DA, Reimann F, Drucker DJ. GIPR Is Predominantly Localized to Nonadipocyte Cell Types Within White Adipose Tissue. Diabetes 2022; 71:1115-1127. [PMID: 35192688 PMCID: PMC7612781 DOI: 10.2337/db21-1166] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/16/2022] [Indexed: 02/02/2023]
Abstract
The incretin hormone glucose-dependent insulinotropic polypeptide (GIP) augments glucose-dependent insulin secretion through its receptor expressed on islet β-cells. GIP also acts on adipose tissue; yet paradoxically, both enhanced and reduced GIP receptor (GIPR) signaling reduce adipose tissue mass and attenuate weight gain in response to nutrient excess. Moreover, the precise cellular localization of GIPR expression within white adipose tissue (WAT) remains uncertain. We used mouse genetics to target Gipr expression within adipocytes. Surprisingly, targeting Cre expression to adipocytes using the adiponectin (Adipoq) promoter did not produce meaningful reduction of WAT Gipr expression in Adipoq-Cre:Giprflx/flx mice. In contrast, adenoviral expression of Cre under the control of the cytomegalovirus promoter, or transgenic expression of Cre using nonadipocyte-selective promoters (Ap2/Fabp4 and Ubc) markedly attenuated WAT Gipr expression. Analysis of single-nucleus RNA-sequencing, adipose tissue data sets localized Gipr/GIPR expression predominantly to pericytes and mesothelial cells rather than to adipocytes. Together, these observations reveal that adipocytes are not the major GIPR+ cell type within WAT-findings with mechanistic implications for understanding how GIP and GIP-based co-agonists control adipose tissue biology.
Collapse
Affiliation(s)
- Jonathan E. Campbell
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
- Corresponding authors: Jonathan E. Campbell, , or Daniel J. Drucker,
| | - Jacqueline L. Beaudry
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Berit Svendsen
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Laurie L. Baggio
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Andrew N. Gordon
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - John R. Ussher
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Chi Kin Wong
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Fiona M. Gribble
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K
| | - David A. D’Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC
| | - Frank Reimann
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K
| | - Daniel J. Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Corresponding authors: Jonathan E. Campbell, , or Daniel J. Drucker,
| |
Collapse
|
28
|
Neurohormonal Changes in the Gut–Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery. Int J Mol Sci 2022; 23:ijms23063339. [PMID: 35328759 PMCID: PMC8954280 DOI: 10.3390/ijms23063339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity is a complex, multifactorial disease that is a major public health issue worldwide. Currently approved anti-obesity medications and lifestyle interventions lack the efficacy and durability needed to combat obesity, especially in individuals with more severe forms or coexisting metabolic disorders, such as poorly controlled type 2 diabetes. Bariatric surgery is considered an effective therapeutic modality with sustained weight loss and metabolic benefits. Numerous genetic and environmental factors have been associated with the pathogenesis of obesity, while cumulative evidence has highlighted the gut–brain axis as a complex bidirectional communication axis that plays a crucial role in energy homeostasis. This has led to increased research on the roles of neuroendocrine signaling pathways and various gastrointestinal peptides as key mediators of the beneficial effects following weight-loss surgery. The accumulate evidence suggests that the development of gut-peptide-based agents can mimic the effects of bariatric surgery and thus is a highly promising treatment strategy that could be explored in future research. This article aims to elucidate the potential underlying neuroendocrine mechanisms of the gut–brain axis and comprehensively review the observed changes of gut hormones associated with bariatric surgery. Moreover, the emerging role of post-bariatric gut microbiota modulation is briefly discussed.
Collapse
|
29
|
Tan Q, Akindehin SE, Orsso CE, Waldner RC, DiMarchi RD, Müller TD, Haqq AM. Recent Advances in Incretin-Based Pharmacotherapies for the Treatment of Obesity and Diabetes. Front Endocrinol (Lausanne) 2022; 13:838410. [PMID: 35299971 PMCID: PMC8921987 DOI: 10.3389/fendo.2022.838410] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 01/01/2023] Open
Abstract
The incretin hormone glucagon-like peptide-1 (GLP-1) has received enormous attention during the past three decades as a therapeutic target for the treatment of obesity and type 2 diabetes. Continuous improvement of the pharmacokinetic profile of GLP-1R agonists, starting from native hormone with a half-life of ~2-3 min to the development of twice daily, daily and even once-weekly drugs highlight the pharmaceutical evolution of GLP-1-based medicines. In contrast to GLP-1, the incretin hormone glucose-dependent insulinotropic polypeptide (GIP) received little attention as a pharmacological target, because of conflicting observations that argue activation or inhibition of the GIP receptor (GIPR) provides beneficial effects on systemic metabolism. Interest in GIPR agonism for the treatment of obesity and diabetes was recently propelled by the clinical success of unimolecular dual-agonists targeting the receptors for GIP and GLP-1, with reported significantly improved body weight and glucose control in patients with obesity and type II diabetes. Here we review the biology and pharmacology of GLP-1 and GIP and discuss recent advances in incretin-based pharmacotherapies.
Collapse
Affiliation(s)
- Qiming Tan
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Seun E. Akindehin
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany and German Center for Diabetes Research (DZD), Munich, Germany
| | - Camila E. Orsso
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | | | - Timo D. Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany and German Center for Diabetes Research (DZD), Munich, Germany
- *Correspondence: Timo D. Müller, ; Andrea M. Haqq,
| | - Andrea M. Haqq
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Timo D. Müller, ; Andrea M. Haqq,
| |
Collapse
|
30
|
Morrow NM, Hanson AA, Mulvihill EE. Distinct Identity of GLP-1R, GLP-2R, and GIPR Expressing Cells and Signaling Circuits Within the Gastrointestinal Tract. Front Cell Dev Biol 2021; 9:703966. [PMID: 34660576 PMCID: PMC8511495 DOI: 10.3389/fcell.2021.703966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
Enteroendocrine cells directly integrate signals of nutrient content within the gut lumen with distant hormonal responses and nutrient disposal via the production and secretion of peptides, including glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP-1) and glucagon-like peptide 2 (GLP-2). Given their direct and indirect control of post-prandial nutrient uptake and demonstrated translational relevance for the treatment of type 2 diabetes, malabsorption and cardiometabolic disease, there is significant interest in the locally engaged circuits mediating these metabolic effects. Although several specific populations of cells in the intestine have been identified to express endocrine receptors, including intraepithelial lymphocytes (IELs) and αβ and γδ T-cells (Glp1r+) and smooth muscle cells (Glp2r+), the definitive cellular localization and co-expression, particularly in regards to the Gipr remain elusive. Here we review the current state of the literature and evaluate the identity of Glp1r, Glp2r, and Gipr expressing cells within preclinical and clinical models. Further elaboration of our understanding of the initiating G-protein coupled receptor (GPCR) circuits engaged locally within the intestine and how they become altered with high-fat diet feeding can offer insight into the dysregulation observed in obesity and diabetes.
Collapse
Affiliation(s)
- Nadya M Morrow
- Energy Substrate Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Antonio A Hanson
- Energy Substrate Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Erin E Mulvihill
- Energy Substrate Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Montreal Diabetes Research Center CRCHUM-Pavillion R, Montreal, QC, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
31
|
Nauck MA, Quast DR, Wefers J, Pfeiffer AFH. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: A pathophysiological update. Diabetes Obes Metab 2021; 23 Suppl 3:5-29. [PMID: 34310013 DOI: 10.1111/dom.14496] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/27/2022]
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) have their main physiological role in augmenting insulin secretion after their nutrient-induced secretion from the gut. A functioning entero-insular (gut-endocrine pancreas) axis is essential for the maintenance of a normal glucose tolerance. This is exemplified by the incretin effect (greater insulin secretory response to oral as compared to "isoglycaemic" intravenous glucose administration due to the secretion and action of incretin hormones). GIP and GLP-1 have additive effects on insulin secretion. Local production of GIP and/or GLP-1 in islet α-cells (instead of enteroendocrine K and L cells) has been observed, and its significance is still unclear. GLP-1 suppresses, and GIP increases glucagon secretion, both in a glucose-dependent manner. GIP plays a greater physiological role as an incretin. In type 2-diabetic patients, the incretin effect is reduced despite more or less normal secretion of GIP and GLP-1. While insulinotropic effects of GLP-1 are only slightly impaired in type 2 diabetes, GIP has lost much of its acute insulinotropic activity in type 2 diabetes, for largely unknown reasons. Besides their role in glucose homoeostasis, the incretin hormones GIP and GLP-1 have additional biological functions: GLP-1 at pharmacological concentrations reduces appetite, food intake, and-in the long run-body weight, and a similar role is evolving for GIP, at least in animal studies. Human studies, however, do not confirm these findings. GIP, but not GLP-1 increases triglyceride storage in white adipose tissue not only through stimulating insulin secretion, but also by interacting with regional blood vessels and GIP receptors. GIP, and to a lesser degree GLP-1, play a role in bone remodelling. GLP-1, but not GIP slows gastric emptying, which reduces post-meal glycaemic increments. For both GIP and GLP-1, beneficial effects on cardiovascular complications and neurodegenerative central nervous system (CNS) disorders have been observed, pointing to therapeutic potential over and above improving diabetes complications. The recent finding that GIP/GLP-1 receptor co-agonists like tirzepatide have superior efficacy compared to selective GLP-1 receptor agonists with respect to glycaemic control as well as body weight has renewed interest in GIP, which previously was thought to be without any therapeutic potential. One focus of this research is into the long-term interaction of GIP and GLP-1 receptor signalling. A GLP-1 receptor antagonist (exendin [9-39]) and, more recently, a GIP receptor agonist (GIP [3-30] NH2 ) and, hopefully, longer-acting GIP receptor agonists for human use will be helpful tools to shed light on the open questions. A detailed knowledge of incretin physiology and pathophysiology will be a prerequisite for designing more effective incretin-based diabetes drugs.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Daniel R Quast
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas F H Pfeiffer
- Charité - Universitätsmedizin Berlin, Klinik für Endokrinologie, Stoffwechsel- und Ernährungsmedizin, Berlin, Germany
| |
Collapse
|
32
|
Zhao F, Zhang C, Zhou Q, Hang K, Zou X, Chen Y, Wu F, Rao Q, Dai A, Yin W, Shen DD, Zhang Y, Xia T, Stevens RC, Xu HE, Yang D, Zhao L, Wang MW. Structural insights into hormone recognition by the human glucose-dependent insulinotropic polypeptide receptor. eLife 2021; 10:e68719. [PMID: 34254582 PMCID: PMC8298097 DOI: 10.7554/elife.68719] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is a peptide hormone that exerts crucial metabolic functions by binding and activating its cognate receptor, GIPR. As an important therapeutic target, GIPR has been subjected to intensive structural studies without success. Here, we report the cryo-EM structure of the human GIPR in complex with GIP and a Gs heterotrimer at a global resolution of 2.9 Å. GIP adopts a single straight helix with its N terminus dipped into the receptor transmembrane domain (TMD), while the C terminus is closely associated with the extracellular domain and extracellular loop 1. GIPR employs conserved residues in the lower half of the TMD pocket to recognize the common segments shared by GIP homologous peptides, while uses non-conserved residues in the upper half of the TMD pocket to interact with residues specific for GIP. These results provide a structural framework of hormone recognition and GIPR activation.
Collapse
Affiliation(s)
- Fenghui Zhao
- School of Pharmacy, Fudan UniversityShanghaiChina
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Chao Zhang
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan UniversityShanghaiChina
| | - Kaini Hang
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - Xinyu Zou
- School of Artificial Intelligence and Automation, Huazhong University of Science and TechnologyWuhanChina
| | - Yan Chen
- School of Pharmacy, Fudan UniversityShanghaiChina
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- Department of Pharmacology, School of Basic Medical Sciences, Fudan UniversityShanghaiChina
| | - Fan Wu
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - Qidi Rao
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Antao Dai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Wanchao Yin
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Tian Xia
- School of Artificial Intelligence and Automation, Huazhong University of Science and TechnologyWuhanChina
| | - Raymond C Stevens
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Lihua Zhao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ming-Wei Wang
- School of Pharmacy, Fudan UniversityShanghaiChina
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Department of Pharmacology, School of Basic Medical Sciences, Fudan UniversityShanghaiChina
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
33
|
Zhang Q, Delessa CT, Augustin R, Bakhti M, Colldén G, Drucker DJ, Feuchtinger A, Caceres CG, Grandl G, Harger A, Herzig S, Hofmann S, Holleman CL, Jastroch M, Keipert S, Kleinert M, Knerr PJ, Kulaj K, Legutko B, Lickert H, Liu X, Luippold G, Lutter D, Malogajski E, Medina MT, Mowery SA, Blutke A, Perez-Tilve D, Salinno C, Sehrer L, DiMarchi RD, Tschöp MH, Stemmer K, Finan B, Wolfrum C, Müller TD. The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling. Cell Metab 2021; 33:833-844.e5. [PMID: 33571454 PMCID: PMC8035082 DOI: 10.1016/j.cmet.2021.01.015] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/04/2020] [Accepted: 01/14/2021] [Indexed: 01/04/2023]
Abstract
Uncertainty exists as to whether the glucose-dependent insulinotropic polypeptide receptor (GIPR) should be activated or inhibited for the treatment of obesity. Gipr was recently demonstrated in hypothalamic feeding centers, but the physiological relevance of CNS Gipr remains unknown. Here we show that HFD-fed CNS-Gipr KO mice and humanized (h)GIPR knockin mice with CNS-hGIPR deletion show decreased body weight and improved glucose metabolism. In DIO mice, acute central and peripheral administration of acyl-GIP increases cFos neuronal activity in hypothalamic feeding centers, and this coincides with decreased body weight and food intake and improved glucose handling. Chronic central and peripheral administration of acyl-GIP lowers body weight and food intake in wild-type mice, but shows blunted/absent efficacy in CNS-Gipr KO mice. Also, the superior metabolic effect of GLP-1/GIP co-agonism relative to GLP-1 is extinguished in CNS-Gipr KO mice. Our data hence establish a key role of CNS Gipr for control of energy metabolism.
Collapse
Affiliation(s)
- Qian Zhang
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Challa Tenagne Delessa
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology (D-HEST), ETH Zürich, Zurich, Switzerland
| | - Robert Augustin
- Cardiometabolic Diseases Research Department, Boehringer Ingelheim Pharma GmbH and Co., KG, Biberach/Riss, Germany
| | - Mostafa Bakhti
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Gustav Colldén
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Cristina Garcia Caceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Alexandra Harger
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Stephan Herzig
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany; Molecular Metabolic Control, Technical University of Munich, Munich, Germany
| | - Susanna Hofmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der LMU, München, Germany
| | - Cassie Lynn Holleman
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | - Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | - Maximilian Kleinert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Patrick J Knerr
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
| | - Konxhe Kulaj
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Beata Legutko
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technische Universität München, School of Medicine, Klinikum Rechts der Isar, 81675 München, Germany
| | - Xue Liu
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Gerd Luippold
- Cardiometabolic Diseases Research Department, Boehringer Ingelheim Pharma GmbH and Co., KG, Biberach/Riss, Germany
| | - Dominik Lutter
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Emilija Malogajski
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Marta Tarquis Medina
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technische Universität München, School of Medicine, Klinikum Rechts der Isar, 81675 München, Germany
| | | | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Diego Perez-Tilve
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ciro Salinno
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technische Universität München, School of Medicine, Klinikum Rechts der Isar, 81675 München, Germany
| | - Laura Sehrer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Helmholtz Zentrum München, Neuherberg, Germany; Technische Universität München, München, Germany
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology (D-HEST), ETH Zürich, Zurich, Switzerland
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, 72076 Tübingen, Germany.
| |
Collapse
|
34
|
Boer GA, Keenan SN, Miotto PM, Holst JJ, Watt MJ. GIP receptor deletion in mice confers resistance to high-fat diet-induced obesity via alterations in energy expenditure and adipose tissue lipid metabolism. Am J Physiol Endocrinol Metab 2021; 320:E835-E845. [PMID: 33645252 DOI: 10.1152/ajpendo.00646.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is best known as an incretin hormone that is secreted from K-cells of the proximal intestine, but evidence also implicates a role for GIP in regulating lipid metabolism and adiposity. It is well-established that GIP receptor knockout (GIPR KO) mice are resistant to diet-induced obesity; however, the factors mediating this effect remain unresolved. Accordingly, we aimed to elucidate the mechanisms leading to adiposity resistance in GIPR KO mice with a focus on whole-body energy balance and lipid metabolism in adipose tissues. Studies were conducted in age-matched male GIPR KO and wild-type (WT) mice fed a high-fat diet for 10 weeks. GIPR KO mice gained less body weight and fat mass compared to WT littermates, and this was associated with increased energy expenditure but no differences in food intake or fecal energy loss. Upon an oral lipid challenge, fatty acid storage in inguinal adipose tissue was significantly increased in GIPR KO compared with WT mice. This was not related to differential expression of lipoprotein lipase in adipose tissue. Adipose tissue lipolysis was increased in GIPR KO compared with WT mice, particularly following β-adrenergic stimulation, and could explain why GIPR KO mice gain less adipose tissue despite increased rates of fatty acid storage in inguinal adipose tissue. Taken together, these results suggest that the GIPR is required for normal maintenance of body weight and adipose tissue mass by regulating energy expenditure and lipolysis.NEW & NOTEWORTHY GIPR KO mice fed a high-fat diet have reduced adiposity despite transporting more ingested lipids into adipose tissue. This can be partly explained by accelerated adipose tissue lipolysis and increased energy expenditure in GIPR KO mice. These new insights rationalize targeting the GIPR as part of a weight management strategy in obesity.
Collapse
Affiliation(s)
- Geke Aline Boer
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stacey N Keenan
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Paula M Miotto
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew J Watt
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
West JA, Tsakmaki A, Ghosh SS, Parkes DG, Grønlund RV, Pedersen PJ, Maggs D, Rajagopalan H, Bewick GA. Chronic peptide-based GIP receptor inhibition exhibits modest glucose metabolic changes in mice when administered either alone or combined with GLP-1 agonism. PLoS One 2021; 16:e0249239. [PMID: 33788878 PMCID: PMC8011784 DOI: 10.1371/journal.pone.0249239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/13/2021] [Indexed: 12/04/2022] Open
Abstract
Combinatorial gut hormone therapy is one of the more promising strategies for identifying improved treatments for metabolic disease. Many approaches combine the established benefits of glucagon-like peptide-1 (GLP-1) agonism with one or more additional molecules with the aim of improving metabolic outcomes. Recent attention has been drawn to the glucose-dependent insulinotropic polypeptide (GIP) system due to compelling pre-clinical evidence describing the metabolic benefits of antagonising the GIP receptor (GIPR). We rationalised that benefit might be accrued from combining GIPR antagonism with GLP-1 agonism. Two GIPR peptide antagonists, GIPA-1 (mouse GIP(3–30)NH2) and GIPA-2 (NαAc-K10[γEγE-C16]-Arg18-hGIP(5–42)), were pharmacologically characterised and both exhibited potent antagonist properties. Acute in vivo administration of GIPA-1 during an oral glucose tolerance test (OGTT) had negligible effects on glucose tolerance and insulin in lean mice. In contrast, GIPA-2 impaired glucose tolerance and attenuated circulating insulin levels. A mouse model of diet-induced obesity (DIO) was used to investigate the potential metabolic benefits of chronic dosing of each antagonist, alone or in combination with liraglutide. Chronic administration studies showed expected effects of liraglutide, lowering food intake, body weight, fasting blood glucose and plasma insulin concentrations while improving glucose sensitivity, whereas delivery of either GIPR antagonist alone had negligible effects on these parameters. Interestingly, chronic dual therapy augmented insulin sensitizing effects and lowered plasma triglycerides and free-fatty acids, with more notable effects observed with GIPA-1 compared to GIPA-2. Thus, the co-administration of both a GIPR antagonist with a GLP1 agonist uncovers interesting beneficial effects on measures of insulin sensitivity, circulating lipids and certain adipose stores that seem influenced by the degree or nature of GIP receptor antagonism.
Collapse
Affiliation(s)
- Jason A. West
- Fractyl Laboratories Inc, Lexington, MA, United States of America
| | - Anastasia Tsakmaki
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, England, United Kingdom
| | | | | | | | | | - David Maggs
- Fractyl Laboratories Inc, Lexington, MA, United States of America
| | | | - Gavin A. Bewick
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, England, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Nakamura T, Tanimoto H, Okamoto M, Takeuchi M, Tsubamoto Y, Noda H. GIP Receptor Antagonist, SKL-14959 Indicated Alteration of the Lipids Metabolism to Catabolism by the Inhibition of Plasma LPL Activity, Resulting in the Suppression of Weight Gain on Diets-Induced Obesity Mice. Diabetes Metab Syndr Obes 2021; 14:1095-1105. [PMID: 33727843 PMCID: PMC7955685 DOI: 10.2147/dmso.s297353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/16/2021] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Glucose-dependent insulinotropic polypeptide (GIP) plays a crucial role in the regulation of lipid metabolism via lipoprotein lipase (LPL). GIP receptor antagonist, SKL-14959, suppressed the weight gain in the diet-induced obesity model. However, the mechanism is not unclear. Therefore, we aimed to give insight into the reason. METHODS Mice were divided into three groups of the low-fat diet, high-fat diets mixture with or without SKL-14959 for 151 days, and were monitored body weight and food consumption through the test. Oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were also performed. After that, blood, liver, muscle and adipose tissue were collected. Blood samples were measured glycosylated hemoglobin A1c (HbA1c), glucose, insulin, GIP level and plasma LPL activity. Triacylglycerol (TG) contents of liver and muscles were also measured. Moreover, a simple correlation analysis was performed. RESULTS SKL-14959 suppressed the body weight gain, decreased body mass index (BMI), HbA1c, and fasting glucose level, and trended to decline adipose tissues weight and TG contents compared with the vehicle, and inhibited plasma LPL activity. OGTT and ITT in the SKL-14959 group were not significantly changed relative to the vehicle. Additionally, upon treatment with SKL-14959 treatment, weight gain had weak correlation with lipase activity. Furthermore, lipase activity was associated with the fat mass and not white but red muscle TG contents and liver TG contents were not associated with lipase activity but HbA1c. IN CONCLUSION SKL-14959 might direct lipids metabolism to catabolism by inhibition of plasma LPL activity, resulting in the suppression of weight gain on diets-induced obesity mice.
Collapse
Affiliation(s)
- Takashi Nakamura
- Biological Research Group Drug Discovery Laboratories, Sanwa Kagaku Kenkyusho, Mie, Japan
| | - Hitomi Tanimoto
- Biological Research Group Drug Discovery Laboratories, Sanwa Kagaku Kenkyusho, Mie, Japan
| | - Masayuki Okamoto
- Biological Research Group Drug Discovery Laboratories, Sanwa Kagaku Kenkyusho, Mie, Japan
| | - Mitsuaki Takeuchi
- Biological Research Group Drug Discovery Laboratories, Sanwa Kagaku Kenkyusho, Mie, Japan
| | - Yoshiharu Tsubamoto
- Biological Research Group Drug Discovery Laboratories, Sanwa Kagaku Kenkyusho, Mie, Japan
| | - Hitoshi Noda
- Biological Research Group Drug Discovery Laboratories, Sanwa Kagaku Kenkyusho, Mie, Japan
| |
Collapse
|
37
|
Min X, Yie J, Wang J, Chung BC, Huang CS, Xu H, Yang J, Deng L, Lin J, Chen Q, Abbott CM, Gundel C, Thibault SA, Meng T, Bates DL, Lloyd DJ, Véniant MM, Wang Z. Molecular mechanism of an antagonistic antibody against glucose-dependent insulinotropic polypeptide receptor. MAbs 2021; 12:1710047. [PMID: 31905038 PMCID: PMC6973313 DOI: 10.1080/19420862.2019.1710047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone involved in regulating glucose and lipid metabolism. GIP receptor (GIPR) antagonism is believed to offer therapeutic potential for various metabolic diseases. Pharmacological intervention of GIPR, however, has limited success due to lack of effective antagonistic reagents. Previously we reported the discovery of two mouse anti-murine GIPR monoclonal antibodies (mAbs) with distinctive properties in rodent models. Here, we report the detailed structural and biochemical characterization of these two antibodies, mAb1 and mAb2. In vitro and in vivo characterizations demonstrated mAb2 is a full GIPR antagonistic antibody and mAb1 is a non-neutralizing GIPR binder. To understand the molecular basis of these two antibodies, we determined the co-crystal structures of GIPR extracellular domain in complex with mAb1 and with mAb2 at resolutions of 2.1 and 2.6 Å, respectively. While the non-neutralizing mAb1 binds to GIPR without competing with the ligand peptide, mAb2 not only partially occludes the ligand peptide binding, but also recognizes the GIPR C-terminal stalk region in a helical conformation that acts as a molecular mimic of the ligand peptide and locks GIPR in a novel auto-inhibited state. Furthermore, administration of mAb2 in diet-induced obesity mice for 7 weeks leads to both reduction in body weight gain and improvement of metabolic profiles. In contrast, mAb1 has no effect on body weight or other metabolic improvement. Together, our studies reveal the unique molecular mechanism of action underlying the superior antagonistic activity of mAb2 and signify the promising therapeutic potential of effective GIPR antagonism for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Xiaoshan Min
- Departments of Therapeutics Discovery, Amgen Research, South San Francisco, CA, USA
| | - Junming Yie
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, CA, USA
| | - Jinghong Wang
- Department of Cardiometabolic Disorders, Amgen Research, South San Francisco, CA, USA
| | - Ben C Chung
- Departments of Therapeutics Discovery, Amgen Research, South San Francisco, CA, USA
| | - Ching-Shin Huang
- Departments of Therapeutics Discovery, Amgen Research, South San Francisco, CA, USA
| | - Haoda Xu
- Departments of Therapeutics Discovery, Amgen Research, South San Francisco, CA, USA
| | - Jie Yang
- Department of Therapeutic Discovery, Amgen Research, Thousand Oaks, CA, USA
| | - Liying Deng
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, CA, USA
| | - Joanne Lin
- Department of Therapeutic Discovery, Amgen Research, Thousand Oaks, CA, USA
| | - Qing Chen
- Department of Therapeutic Discovery, Amgen Research, Thousand Oaks, CA, USA
| | - Christina M Abbott
- Department of Therapeutic Discovery, Amgen Research, Thousand Oaks, CA, USA
| | - Caroline Gundel
- Department of Cardiometabolic Disorders, Amgen Research, South San Francisco, CA, USA
| | - Stephen A Thibault
- Departments of Therapeutics Discovery, Amgen Research, South San Francisco, CA, USA
| | - Tina Meng
- Department of Therapeutic Discovery, Amgen Research, Thousand Oaks, CA, USA
| | - Darren L Bates
- Department of Therapeutic Discovery, Amgen Research, Thousand Oaks, CA, USA
| | - David J Lloyd
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, CA, USA
| | - Murielle M Véniant
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, CA, USA
| | - Zhulun Wang
- Departments of Therapeutics Discovery, Amgen Research, South San Francisco, CA, USA
| |
Collapse
|
38
|
Boer GA, Holst JJ. Incretin Hormones and Type 2 Diabetes-Mechanistic Insights and Therapeutic Approaches. BIOLOGY 2020; 9:biology9120473. [PMID: 33339298 PMCID: PMC7766765 DOI: 10.3390/biology9120473] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Simple Summary When we ingest a meal, our intestine secretes hormones that are released into the bloodstream. Amongst these hormones are the incretins hormones which stimulate the release of insulin from the pancreas which is essential for the regulation of in particular postprandial glucose concentrations. In patients with type 2 diabetes, the effect of the incretins is diminished. This is thought to contribute importantly to the pathophysiology of the disease. However, in pharmacological amounts, the incretins may still influence insulin secretion and metabolism. Much research has therefore been devoted to the development of incretin-based therapies for type 2 diabetes. These therapies include compounds that strongly resemble the incretins, hereby stimulating their effects as well as inhibitors of the enzymatic degradation of the hormones, thereby increasing the concentration of incretins in the blood. Both therapeutic approaches have been implemented successfully, but research is still ongoing aimed at the development of further optimized therapies. Abstract Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted from the gut upon nutrient stimulation and regulate postprandial metabolism. These hormones are known as classical incretin hormones and are responsible for a major part of postprandial insulin release. The incretin effect is severely reduced in patients with type 2 diabetes, but it was discovered that administration of GLP-1 agonists was capable of normalizing glucose control in these patients. Over the last decades, much research has been focused on the development of incretin-based therapies for type 2 diabetes. These therapies include incretin receptor agonists and inhibitors of the incretin-degrading enzyme dipeptidyl peptidase-4. Especially the development of diverse GLP-1 receptor agonists has shown immense success, whereas studies of GIP monotherapy in patients with type 2 diabetes have consistently been disappointing. Interestingly, both GIP-GLP-1 co-agonists and GIP receptor antagonists administered in combination with GLP-1R agonists appear to be efficient with respect to both weight loss and control of diabetes, although the molecular mechanisms behind these effects remain unknown. This review describes our current knowledge of the two incretin hormones and the development of incretin-based therapies for treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Geke Aline Boer
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
- Correspondence: ; Tel.: +45-2875-7518
| |
Collapse
|
39
|
Campbell JE. Targeting the GIPR for obesity: To agonize or antagonize? Potential mechanisms. Mol Metab 2020; 46:101139. [PMID: 33290902 PMCID: PMC8085569 DOI: 10.1016/j.molmet.2020.101139] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic peptide (GIP) is one of two incretin hormones that communicate nutrient intake with systemic metabolism. Although GIP was the first incretin hormone to be discovered, the understanding of GIP's biology was quickly outpaced by research focusing on the other incretin hormone, glucagon-like peptide 1 (GLP-1). Early work on GIP produced the theory that GIP is obesogenic, limiting interest in developing GIPR agonists to treat type 2 diabetes. A resurgence of GIP research has occurred in the last five years, reinvigorating interest in this peptide. Two independent approaches have emerged for treating obesity, one promoting GIPR agonism and the other antagonism. In this report, evidence supporting both cases is discussed and hypotheses are presented to reconcile this apparent paradox. SCOPE OF THE REVIEW This review presents evidence to support targeting GIPR to reduce obesity. Most of the focus is on the effect of singly targeting the GIPR using both a gain- and loss-of-function approach, with additional sections that discuss co-targeting of the GIPR and GLP-1R. MAJOR CONCLUSIONS There is substantial evidence to support that GIPR agonism and antagonism can positively impact body weight. The long-standing theory that GIP drives weight gain is exclusively derived from loss-of-function studies, with no evidence to support that GIPR agonisms increases adiposity or body weight. There is insufficient evidence to reconcile the paradoxical observations that both GIPR agonism and antagonism can reduce body weight; however, two independent hypotheses centered on GIPR antagonism are presented based on new data in an effort to address this question. The first discusses the compensatory relationship between incretin receptors and how antagonism of the GIPR may enhance GLP-1R activity. The second discusses how chronic GIPR agonism may produce desensitization and ultimately loss of GIPR activity that mimics antagonism. Overall, it is clear that a deeper understanding of GIP biology is required to understand how modulating this system impacts metabolic homeostasis.
Collapse
Affiliation(s)
- Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
40
|
Wilson JM, Nikooienejad A, Robins DA, Roell WC, Riesmeyer JS, Haupt A, Duffin KL, Taskinen M, Ruotolo G. The dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist, tirzepatide, improves lipoprotein biomarkers associated with insulin resistance and cardiovascular risk in patients with type 2 diabetes. Diabetes Obes Metab 2020; 22:2451-2459. [PMID: 33462955 PMCID: PMC7756479 DOI: 10.1111/dom.14174] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
AIM To better understand the marked decrease in serum triglycerides observed with tirzepatide in patients with type 2 diabetes, additional lipoprotein-related biomarkers were measured post hoc in available samples from the same study. MATERIALS AND METHODS Patients were randomized to receive once-weekly subcutaneous tirzepatide (1, 5, 10 or 15 mg), dulaglutide (1.5 mg) or placebo. Serum lipoprotein profile, apolipoprotein (apo) A-I, B and C-III and preheparin lipoprotein lipase (LPL) were measured at baseline and at 4, 12 and 26 weeks. Lipoprotein particle profile by nuclear magnetic resonance was assessed at baseline and 26 weeks. The lipoprotein insulin resistance (LPIR) score was calculated. RESULTS At 26 weeks, tirzepatide dose-dependently decreased apoB and apoC-III levels, and increased serum preheparin LPL compared with placebo. Tirzepatide 10 and 15 mg decreased large triglyceride-rich lipoprotein particles (TRLP), small low-density lipoprotein particles (LDLP) and LPIR score compared with both placebo and dulaglutide. Treatment with dulaglutide also reduced apoB and apoC-III levels but had no effect on either serum LPL or large TRLP, small LDLP and LPIR score. The number of total LDLP was also decreased with tirzepatide 10 and 15 mg compared with placebo. A greater reduction in apoC-III with tirzepatide was observed in patients with high compared with normal baseline triglycerides. At 26 weeks, change in apoC-III, but not body weight, was the best predictor of changes in triglycerides with tirzepatide, explaining up to 22.9% of their variability. CONCLUSIONS Tirzepatide treatment dose-dependently decreased levels of apoC-III and apoB and the number of large TRLP and small LDLP, suggesting a net improvement in atherogenic lipoprotein profile.
Collapse
Affiliation(s)
| | | | | | | | | | - Axel Haupt
- Eli Lilly and CompanyIndianapolisIndianaUSA
| | | | - Marja‐Riitta Taskinen
- Research Program for Clinical and Molecular Medicine UnitDiabetes and Obesity, University of HelsinkiHelsinkiFinland
| | | |
Collapse
|
41
|
Dragano NRV, Fernø J, Diéguez C, López M, Milbank E. Reprint of: Recent Updates on Obesity Treatments: Available Drugs and Future Directions. Neuroscience 2020; 447:191-215. [PMID: 33046217 DOI: 10.1016/j.neuroscience.2020.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the last thirty years, obesity has reached epidemic proportions and is now regarded as a major health issue in contemporary society trending to serious economic and social burdens. The latest projections of the World Health Organization are alarming. By 2030, nearly 60% of the worldwide population could be either obese or overweight, highlighting the needs to find innovative treatments. Currently, bariatric surgery is the most effective way to efficiently lower body mass. Although great improvements in terms of recovery and patient care were made in these surgical procedures, bariatric surgery remains an option for extreme forms of obesity and seems unable to tackle obesity pandemic expansion. Throughout the last century, numerous pharmacological strategies targeting either peripheral or central components of the energy balance regulatory system were designed to reduce body mass, some of them reaching sufficient levels of efficiency and safety. Nevertheless, obesity drug therapy remains quite limited on its effectiveness to actually overcome the obesogenic environment. Thus, innovative unimolecular polypharmacology strategies, able to simultaneously target multiple actors involved in the obesity initiation and expansion, were developed during the last ten years opening a new promising avenue in the pharmacological management of obesity. In this review, we first describe the clinical features of obesity-associated conditions and then focus on the outcomes of currently approved drug therapies for obesity as well as new ones expecting to reach the clinic in the near future.
Collapse
Affiliation(s)
- Nathalia R V Dragano
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Carlos Diéguez
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Edward Milbank
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| |
Collapse
|
42
|
Abu-Farha M, Ghosh A, Al-Khairi I, Madiraju SRM, Abubaker J, Prentki M. The multi-faces of Angptl8 in health and disease: Novel functions beyond lipoprotein lipase modulation. Prog Lipid Res 2020; 80:101067. [PMID: 33011191 DOI: 10.1016/j.plipres.2020.101067] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Angiopoietin-like protein (ANGPTL) family members, mainly ANGPTL3, ANGPTL4 and ANGPTL8, are physiological inhibitors of lipoprotein lipase (LPL), and play a critical role in lipoprotein and triglyceride metabolism in response to nutritional cues. ANGPTL8 has been described by different names in various studies and has been ascribed various functions at the systemic and cellular levels. Circulating ANGPTL8 originates mainly from the liver and to a smaller extent from adipose tissues. In the blood, ANGPTL8 forms a complex with ANGPTL3 or ANGPTL4 to inhibit LPL in fed or fasted conditions, respectively. Evidence is emerging for additional intracellular and receptor-mediated functions of ANGPTL8, with implications in NFκB mediated inflammation, autophagy, adipogenesis, intra-cellular lipolysis and regulation of circadian clock. Elevated levels of plasma ANGPTL8 are associated with metabolic syndrome, type 2 diabetes, atherosclerosis, hypertension and NAFLD/NASH, even though the precise relationship is not known. Whether ANGPTL8 has direct pathogenic role in these diseases, remains to be explored. In this review, we develop a balanced view on the proposed association of this protein in the regulation of several pathophysiological processes. We also discuss the well-established functions of ANGPTL8 in lipoprotein metabolism in conjunction with the emerging novel extracellular and intracellular roles of ANGPTL8 and the implicated metabolic and signalling pathways. Understanding the diverse functions of ANGPTL8 in various tissues and metabolic states should unveil new opportunities of therapeutic intervention for cardiometabolic disorders.
Collapse
Affiliation(s)
- Mohamed Abu-Farha
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Anindya Ghosh
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Irina Al-Khairi
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - S R Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait..
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| |
Collapse
|
43
|
Ryu AR, Kim YW, Lee MY. Chlorin e6-mediated photodynamic therapy modulates adipocyte differentiation and lipogenesis in 3T3-L1 cells. Photodiagnosis Photodyn Ther 2020; 31:101917. [DOI: 10.1016/j.pdpdt.2020.101917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 11/26/2022]
|
44
|
Onogi Y, Khalil AEMM, Ussar S. Identification and characterization of adipose surface epitopes. Biochem J 2020; 477:2509-2541. [PMID: 32648930 PMCID: PMC7360119 DOI: 10.1042/bcj20190462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Adipose tissue is a central regulator of metabolism and an important pharmacological target to treat the metabolic consequences of obesity, such as insulin resistance and dyslipidemia. Among the various cellular compartments, the adipocyte cell surface is especially appealing as a drug target as it contains various proteins that when activated or inhibited promote adipocyte health, change its endocrine function and eventually maintain or restore whole-body insulin sensitivity. In addition, cell surface proteins are readily accessible by various drug classes. However, targeting individual cell surface proteins in adipocytes has been difficult due to important functions of these proteins outside adipose tissue, raising various safety concerns. Thus, one of the biggest challenges is the lack of adipose selective surface proteins and/or targeting reagents. Here, we discuss several receptor families with an important function in adipogenesis and mature adipocytes to highlight the complexity at the cell surface and illustrate the problems with identifying adipose selective proteins. We then discuss that, while no unique adipocyte surface protein might exist, how splicing, posttranslational modifications as well as protein/protein interactions can create enormous diversity at the cell surface that vastly expands the space of potentially unique epitopes and how these selective epitopes can be identified and targeted.
Collapse
Affiliation(s)
- Yasuhiro Onogi
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ahmed Elagamy Mohamed Mahmoud Khalil
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Siegfried Ussar
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|
45
|
Samms RJ, Coghlan MP, Sloop KW. How May GIP Enhance the Therapeutic Efficacy of GLP-1? Trends Endocrinol Metab 2020; 31:410-421. [PMID: 32396843 DOI: 10.1016/j.tem.2020.02.006] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists improve glucose homeostasis, reduce bodyweight, and over time benefit cardiovascular health in type 2 diabetes mellitus (T2DM). However, dose-related gastrointestinal effects limit efficacy, and therefore agents possessing GLP-1 pharmacology that can also target alternative pathways may expand the therapeutic index. One approach is to engineer GLP-1 activity into the sequence of glucose-dependent insulinotropic polypeptide (GIP). Although the therapeutic implications of the lipogenic actions of GIP are debated, its ability to improve lipid and glucose metabolism is especially evident when paired with the anorexigenic mechanism of GLP-1. We review the complexity of GIP in regulating adipose tissue function and energy balance in the context of recent findings in T2DM showing that dual GIP/GLP-1 receptor agonist therapy produces profound weight loss, glycemic control, and lipid lowering.
Collapse
Affiliation(s)
- Ricardo J Samms
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Matthew P Coghlan
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Kyle W Sloop
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA.
| |
Collapse
|
46
|
Frias JP, Nauck MA, Van J, Benson C, Bray R, Cui X, Milicevic Z, Urva S, Haupt A, Robins DA. Efficacy and tolerability of tirzepatide, a dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist in patients with type 2 diabetes: A 12-week, randomized, double-blind, placebo-controlled study to evaluate different dose-escalation regimens. Diabetes Obes Metab 2020; 22:938-946. [PMID: 31984598 PMCID: PMC7318331 DOI: 10.1111/dom.13979] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022]
Abstract
AIM To assess the efficacy and tolerability of tirzepatide treatment using three different dose-escalation regimens in patients with type 2 diabetes. MATERIALS AND METHODS In this double-blind, placebo-controlled study, patients were randomized (1:1:1:1) to receive either once-weekly subcutaneous tirzepatide or placebo. The tirzepatide dose groups and dose-escalation regimens were: 12 mg (4 mg weeks 0-3; 8 mg weeks 4-7; 12 mg weeks 8-11), 15 mg-1 (2.5 mg weeks 0-1; 5 mg weeks 2-3; 10 mg weeks 4-7; 15 mg weeks 8-11) and 15 mg-2 (2.5 mg weeks 0-3; 7.5 mg weeks 4-7; 15 mg weeks 8-11). The primary objective was to compare tirzepatide with placebo in HbA1c change from baseline at 12 weeks. RESULTS Overall, 111 patients were randomized: placebo, 26; tirzepatide 12 mg, 29; tirzepatide 15 mg-1, 28; tirzepatide 15 mg-2, 28. The mean age was 57.4 years, HbA1c 8.4% and body mass index 31.9 kg/m2 . At week 12, absolute HbA1c change from baseline (SE) was greater in the tirzepatide treatment groups compared with placebo (placebo, +0.2% [0.21]; 12 mg, -1.7% [0.19]; 15 mg-1, -2.0% [0.20]; 15 mg-2, -1.8% [0.19]). The incidence of nausea was: placebo, 7.7%; 12 mg group, 24.1%; 15 mg-1 group, 39.3%; 15 mg-2 group, 35.7%. Three patients discontinued the treatment because of adverse events, one from each of the placebo, 12 mg and 15 mg-1 groups. CONCLUSIONS Tirzepatide treatment for 12 weeks resulted in clinically significant reductions in HbA1c. This suggests that lower starting doses and smaller dose increments are associated with a more favourable side effect profile.
Collapse
Affiliation(s)
| | - Michael A. Nauck
- Diabetes Center Bochum‐Hattingen, St Josef Hospital, Ruhr‐University BochumBochumGermany
| | - Joanna Van
- Diabetes Research CenterTustinCalifornia
| | | | - Ross Bray
- Eli Lilly and CompanyIndianapolisIndiana
| | - Xuewei Cui
- Eli Lilly and CompanyIndianapolisIndiana
| | | | | | - Axel Haupt
- Eli Lilly and CompanyIndianapolisIndiana
| | | |
Collapse
|
47
|
Stemmer K, Finan B, DiMarchi RD, Tschöp MH, Müller TD. Insights into incretin-based therapies for treatment of diabetic dyslipidemia. Adv Drug Deliv Rev 2020; 159:34-53. [PMID: 32485206 DOI: 10.1016/j.addr.2020.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/09/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023]
Abstract
Derangements in triglyceride and cholesterol metabolism (dyslipidemia) are major risk factors for the development of cardiovascular diseases in obese and type-2 diabetic (T2D) patients. An emerging class of glucagon-like peptide-1 (GLP-1) analogues and next generation peptide dual-agonists such as GLP-1/glucagon or GLP-1/GIP could provide effective therapeutic options for T2D patients. In addition to their role in glucose and energy homeostasis, GLP-1, GIP and glucagon serve as regulators of lipid metabolism. This review summarizes the current knowledge in GLP-1, glucagon and GIP effects on lipid and lipoprotein metabolism and frames the emerging therapeutic benefits of GLP-1 analogs and GLP-1-based multiagonists as add-on treatment options for diabetes associated dyslipidemia.
Collapse
|
48
|
Dragano NRV, Fernø J, Diéguez C, López M, Milbank E. Recent Updates on Obesity Treatments: Available Drugs and Future Directions. Neuroscience 2020; 437:215-239. [PMID: 32360593 DOI: 10.1016/j.neuroscience.2020.04.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
In the last thirty years, obesity has reached epidemic proportions and is now regarded as a major health issue in contemporary society trending to serious economic and social burdens. The latest projections of the World Health Organization are alarming. By 2030, nearly 60% of the worldwide population could be either obese or overweight, highlighting the needs to find innovative treatments. Currently, bariatric surgery is the most effective way to efficiently lower body mass. Although great improvements in terms of recovery and patient care were made in these surgical procedures, bariatric surgery remains an option for extreme forms of obesity and seems unable to tackle obesity pandemic expansion. Throughout the last century, numerous pharmacological strategies targeting either peripheral or central components of the energy balance regulatory system were designed to reduce body mass, some of them reaching sufficient levels of efficiency and safety. Nevertheless, obesity drug therapy remains quite limited on its effectiveness to actually overcome the obesogenic environment. Thus, innovative unimolecular polypharmacology strategies, able to simultaneously target multiple actors involved in the obesity initiation and expansion, were developed during the last ten years opening a new promising avenue in the pharmacological management of obesity. In this review, we first describe the clinical features of obesity-associated conditions and then focus on the outcomes of currently approved drug therapies for obesity as well as new ones expecting to reach the clinic in the near future.
Collapse
Affiliation(s)
- Nathalia R V Dragano
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Carlos Diéguez
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Edward Milbank
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| |
Collapse
|
49
|
Trzaskalski NA, Fadzeyeva E, Mulvihill EE. Dipeptidyl Peptidase-4 at the Interface Between Inflammation and Metabolism. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2020; 13:1179551420912972. [PMID: 32231442 PMCID: PMC7088130 DOI: 10.1177/1179551420912972] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 12/25/2022]
Abstract
Dipeptidyl peptidase-4 (DPP4) is a serine protease that rapidly inactivates the incretin peptides, glucagon-like peptide-1, and glucose-dependent insulinotropic polypeptide to modulate postprandial islet hormone secretion and glycemia. Dipeptidyl peptidase-4 also has nonglycemic effects by controlling the progression of inflammation, which may be mediated more through direct protein-protein interactions than catalytic activity in the context of nonalcoholic fatty liver disease (NAFLD), obesity, and type 2 diabetes (T2D). Failure to resolve inflammation resulting in chronic subclinical activation of the immune system may influence the development of metabolic dysregulation. Thus, through both its cleavage and regulation of the bioactivity of peptide hormones and its influence on inflammation, DPP4 exhibits a diverse array of effects that can influence the progression of metabolic disease. Here, we highlight our current understanding of the complex biology of DPP4 at the intersection of inflammation, obesity, T2D, and NAFLD. We compare and review new mechanisms identified in basic laboratory and clinical studies, which may have therapeutic application and relevance to the pathogenesis of obesity and T2D.
Collapse
Affiliation(s)
- Natasha A Trzaskalski
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Evgenia Fadzeyeva
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
50
|
Ceddia RP, Collins S. A compendium of G-protein-coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin Sci (Lond) 2020; 134:473-512. [PMID: 32149342 PMCID: PMC9137350 DOI: 10.1042/cs20190579] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand-receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein-coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.
Collapse
Affiliation(s)
- Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| |
Collapse
|