1
|
Yu J, Fu Y, Tang X, Bao W, Li Z, Wang X, Wang X. Enrichment of EPA and DHA in glycerides by selective enzymatic ethanolysis. Food Chem 2025; 463:141226. [PMID: 39270490 DOI: 10.1016/j.foodchem.2024.141226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
It has been reported that eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in glycerides have various biological functions. This study presents an effective method for enriching glycerides rich in EPA and DHA through lipase-catalyzed alcoholysis. The results showed that Eversa® Transform 2.0 had the strongest discrimination against DHA and EPA in alcoholysis, which was verified by molecular docking. Additionally, selectivity of the lipase and ratio of DHA and EPA in glyceride products were significantly affected by alcohol type. Under the optimal conditions, the contents of EPA and DHA in glycerides after ethanolysis reached 12.91 % and 55.40 %, respectively, with a DHA yield of 79.22 %. In this study, an interesting finding was that Eversa® Transform 2.0 could effectively differentiate EPA and DHA during alcoholysis to allow us to prepare DHA-enriched glycerides and EPA-enriched ethyl esters after removing saturated and monounsaturated ethyl esters.
Collapse
Affiliation(s)
- Junwen Yu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Yijie Fu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Xiao Tang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Weijia Bao
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Zongrun Li
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Xiaowen Wang
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Shanxi Agricultural University, Taigu, Taiyuan, Shanxi, 030801, PR China
| | - Xiaosan Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Shanxi Agricultural University, Taigu, Taiyuan, Shanxi, 030801, PR China.
| |
Collapse
|
2
|
Che J, He N, Kuang X, Zheng C, Zhou R, Zhan X, Liu Z. Dietary n-3 Fatty Acids Intake and All-Cause and Cardiovascular Mortality in Patients With Prediabetes and Diabetes. J Clin Endocrinol Metab 2024; 109:2847-2856. [PMID: 38625900 DOI: 10.1210/clinem/dgae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
CONTEXT While the association between n-3 polyunsaturated fatty acids (PUFAs) and cardiovascular (CV) events has been thoroughly examined, there is still a scarcity of research regarding their effect on the long-term prognosis in diabetic patients. OBJECTIVE We aimed to explore the effects of n-3 PUFA on all-cause and cardiovascular mortality in patients with pre-diabetes and diabetes. METHOD Herein, a total of 16 539 eligible individuals were enrolled from the National Health and Nutrition Examination Survey (NHANES) 2003 to 2018, and categorized into T1, T2, and T3 based on the tertiles of n-3 PUFA. The Cox proportional risk regression models, Kaplan-Meier curve, and subgroup analysis were conducted to evaluate the association between n-3 PUFA and mortality. Restricted cubic spline (RCS) curves graphically demonstrated the dose-response relationship. Additionally, weighted quantile sum (WQS) models were adopted to measure the mixed and individual effects of n-3 PUFA on mortality. RESULTS Following a median follow-up period of 8.42 years, 3010 individuals died, with 989 deaths attributed to CV diseases. Significantly lower risk of all-cause (T2: 0.81 [0.71-0.92], T3: 0.77 [0.64-0.94]) and CV (T2: 0.75 [0.61-0.93]) mortality was observed after adjusting for multivariables compared to the reference (T1). Meanwhile, the RCS curve revealed a negative nonlinear association between n-3 PUFA and mortality. None of the interactions in any subgroup analysis were statistically significant except for BMI (P for interaction = .049). Finally, the WQS analysis demonstrated alpha-linolenic acid (ALA) and docosapentaenoic acid (DPA) as the main contributors to n-3 PUFAs' benefits against mortality. CONCLUSION Increased dietary intake of n-3 PUFAs, particularly ALA and DPA, was associated with a reduced risk of all-cause and CV mortality among Americans with prediabetes and diabetes.
Collapse
Affiliation(s)
- Jinhang Che
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401336, China
| | - Na He
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401336, China
| | - Xue Kuang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401336, China
| | - Caiyin Zheng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401336, China
| | - Ruoyu Zhou
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401336, China
| | - Xiaodan Zhan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401336, China
| | - Zengzhang Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401336, China
| |
Collapse
|
3
|
Gura KM, Chan A, Zong W, Pai N, Duro D. From the kitchen to the medicine cabinet: Examples of food products and supplements used for therapeutic intent. J Pediatr Gastroenterol Nutr 2024; 79:460-472. [PMID: 39034627 DOI: 10.1002/jpn3.12296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 07/23/2024]
Abstract
"Food as medicine" has existed for centuries as the foundation of health for many cultures around the globe. It is a practice built on the knowledge that food and diet play important roles in disease prevention and management. Foods that claim to have therapeutic properties are often referred to as functional foods. These foods contain a number of nutritional and nonnutritional compounds that can interact with pharmacologically relevant receptors, either directly or indirectly via their metabolites, to regulate cellular biochemical processes. Although opinions are changing, the concept of food as a therapeutic intervention goes against conventional Western medicine. To provide guidance to clinicians interested in using these products, members of the Food as Medicine working group of the Nutrition Committee NASPGHAN, as part of a two-part review series, have created summaries of several frequently used nutritional products for therapeutic intent (i.e., fermented foods, fiber, and long-chain omega-3 fatty acids) that includes indications, doses, and caveats. Gaps in their use in pediatric patients are discussed. Evidence supporting their use for management of gastrointestinal conditions, especially in the pediatric population, is provided when available.
Collapse
Affiliation(s)
- Kathleen M Gura
- Department of Pharmacy/Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alvin Chan
- UCLA Mattel Children's Hospital, Los Angeles, California, USA
- David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | - Nikhil Pai
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Division of Pediatric Gastroenterology & Nutrition, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Debora Duro
- Pediatric Gastroenterology, Hepatology and Nutrition, Salah Foundation Children Hospital at Broward Health, Fort Lauderdale, Florida, USA
- NOVA Southeastern University, Fort Lauderdale, Florida, USA
- Florida International University (FIU), Miami, Florida, USA
| |
Collapse
|
4
|
Wang W, Xu Y, Zhou J, Zang Y. Effects of omega-3 supplementation on lipid metabolism, inflammation, and disease activity in rheumatoid arthritis: a meta-analysis of randomized controlled trials. Clin Rheumatol 2024; 43:2479-2488. [PMID: 38922552 DOI: 10.1007/s10067-024-07040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Omega-3 possesses anti-inflammatory and lipid metabolism modifying effects in rheumatoid arthritis (RA), but inconsistency exists among previous studies. This meta-analysis intended to explore the effects of omega-3 supplementation on fatty acid distribution, blood lipid profiles, inflammation, and disease activity in RA patients. METHODS This meta-analysis followed the Preferred Reporting Item for Systematic Reviews and Meta-Analyses (PRISMA) protocol. PubMed, Web of Science, and Embase databases were searched until August 31, 2023. RESULTS Eighteen randomized controlled trials with 1018 RA patients were included. Regarding fatty acid distribution, omega-3 supplementation increased eicosapentaenoic acid (EPA) [standardized mean difference (SMD): 0.74; 95% confidence interval (CI): 0.46, 1.01; P < 0.001] and docosahexanoic acid (DHA) (SMD: 0.62; 95% CI: 0.35, 0.89; P < 0.001), but reduced omega-6:omega-3 ratio (SMD: -1.06; 95% CI: -1.39, -0.73; P < 0.001) in RA patients. Regarding blood lipid, omega-3 supplementation decreased triglyceride (TG) in RA patients (SMD: -0.47; 95% CI: -0.78, -0.16; P = 0.003). Regarding clinical symptoms, omega-3 supplementation reduced tender joint count (TJC) in RA patients (SMD: -0.59; 95% CI: -0.79, -0.39; P < 0.001). Notably, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and disease activity score on 28 joints (DAS28) score were slightly decreased by omega-3 supplementation but without statistical significance (all P > 0.05). Publication bias was low, and stability assessed by sensitivity analysis was good. CONCLUSION Omega-3 supplementation increases EPA and DHA, but reduces the omega-6:omega-3 ratio, TG, and TJC in RA patients.
Collapse
Affiliation(s)
- Wen Wang
- Department of Rheumatology & Immunology, The Suqian Clinical College of Xuzhou Medical University, Suqian, 223800, China
- Department of Rheumatology & Immunology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, China
| | - Yan Xu
- Department of Rheumatology & Immunology, The Suqian Clinical College of Xuzhou Medical University, Suqian, 223800, China
- Department of Rheumatology & Immunology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, China
| | - Jun Zhou
- Department of Rheumatology & Immunology, The Suqian Clinical College of Xuzhou Medical University, Suqian, 223800, China
| | - Yinshan Zang
- Department of Rheumatology & Immunology, The Suqian Clinical College of Xuzhou Medical University, Suqian, 223800, China.
- Department of Rheumatology & Immunology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, China.
| |
Collapse
|
5
|
Alqahtani S, Bakhamees BH, Almalki FM, Alshaer AB, Altaymani AF, Alazmi MM, Almutlaq KA, Albalawi AM, Alfaqih AA, Abdullah R, Alnashri AH, Ebrahim AM, Alghofaili J. Efficacy and Safety of Omega-3 Fatty Acids in Ameliorating Pruritus in Adult Patients With Chronic Kidney Disease: A Meta-Analysis of Randomized Controlled Trials. Cureus 2024; 16:e66452. [PMID: 39246955 PMCID: PMC11380528 DOI: 10.7759/cureus.66452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Chronic kidney disease-associated pruritus (CKD-aP) represents a common distressing problem in patients with end-stage renal disease. This study aimed to assess the efficacy and safety of omega-3 supplementation in the treatment of CKD-aP. MEDLINE/PubMed, Cochrane Central Register of Controlled Trials, Web of Science, ProQuest, and Scopus databases were searched systematically for articles published from inception until May 21, 2024. Outcomes were pruritus severity at the end of the study or its change from baseline (primary) and intervention-related adverse effects (secondary). Results were pooled as standardized mean difference (SMD) and risk ratio (RR) for numeric and dichotomous outcomes, respectively, along with their 95% confidence intervals (CIs). Eight studies were included. Treatment with omega-3 fatty acids showed a significantly lower severity of CKD-aP at the end of treatment (pooled SMD (95% CI) = -1.03 (-1.85, -0.22), p = 0.024) and changed from baseline (pooled SMD (95% CI) = -0.93 (-1.57, -0.28), p = 0.014). Omega-3 supplementation reduced the risk of CKD-aP (pooled RR (95% CI) = 0.68 (0.12, 3.81), p = 0.661). Omega-3 fatty acid supplementation appears to be a promising effective and safe treatment for CKD-aP. However, the included studies had several limitations that warrant further high-quality studies to elucidate its effect and investigate the causes of non-response in patients who did not improve.
Collapse
Affiliation(s)
- Saad Alqahtani
- Family Medicine, King Salman Armed Forces Hospital, Tabuk, SAU
| | | | | | - Aseel B Alshaer
- Internal Medicine, King Khalid University Hospital/King Saud University Hospital, Riyadh, SAU
| | | | | | | | | | - Alanoud A Alfaqih
- Medical School, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Raghad Abdullah
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, SAU
| | | | | | | |
Collapse
|
6
|
Pang C, Wang R, Liu K, Yuan X, Ni J, Cao Q, Chen Y, Dong PL, Han H. Serum and urine metabolomics based on UPLC-QTOF/MS reveal the effect and potential mechanism of "schisandra-evodia" herb pair in the treatment of Alzheimer's disease. Biomed Chromatogr 2024; 38:e5882. [PMID: 38649307 DOI: 10.1002/bmc.5882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
The "schisandra-evodia" herb pair (S-E) is a herbal preparation to treat Alzheimer's disease (AD). This study aims to investigate the therapeutic efficacy and potential mechanism of S-E in AD rats, utilizing pharmacodynamic assessments and serum- and urine-based metabolomic analyses. Pharmacodynamic assessments included Morris water maze test, hematoxylin-eosin staining and immunohistochemistry experiments. The results of the study showed that the AD model was successful; the S-E significantly enhanced long-term memory and spatial learning in AD rats. Meanwhile, S-E notably ameliorated Aβ25-35-induced cognitive impairment, improved hippocampal neuron morphology, decreased Aβ deposition in the hippocampus and mitigated inflammatory damage. We then analyzed serum and urine samples using UPLC-MS/MS to identify potential biomarkers and metabolic pathways. Metabolomic analysis revealed alterations in 40 serum metabolites and 38 urine metabolites following S-E treatment, predominantly affecting pathways related to taurine and hypotaurine metabolism, linoleic acid metabolism, α-linolenic acid metabolism, glycerophospholipid metabolism and arachidonic acid metabolism. This study elucidates the biochemical mechanism underlying AD and the metabolic pathway influenced by S-E, laying the groundwork for future clinical applications.
Collapse
Affiliation(s)
- Chengguo Pang
- College of Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Ruijiao Wang
- College of Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Kemeng Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xu Yuan
- College of Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Jiating Ni
- College of Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Qingyu Cao
- Institute of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yuanjin Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Pei Liang Dong
- Institute of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Hua Han
- College of Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Dos Santos Silva P, Kra G, Butenko Y, Daddam JR, Levin Y, Zachut M. Maternal supplementation with n-3 fatty acids affects placental lipid metabolism, inflammation, oxidative stress, the endocannabinoid system, and the neonate cytokine concentrations in dairy cows. J Anim Sci Biotechnol 2024; 15:74. [PMID: 38769527 PMCID: PMC11106909 DOI: 10.1186/s40104-024-01033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/06/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND The placenta plays a crucial role in supporting and influencing fetal development. We compared the effects of prepartum supplementation with omega-3 (n-3) fatty acid (FA) sources, flaxseed oil (FLX) and fish oil (FO), on the expression of genes and proteins related to lipid metabolism, inflammation, oxidative stress, and the endocannabinoid system (ECS) in the expelled placenta, as well as on FA profile and inflammatory response of neonates. Late-pregnant Holstein dairy cows were supplemented with saturated fat (CTL), FLX, or FO. Placental cotyledons (n = 5) were collected immediately after expulsion, and extracted RNA and proteins were analyzed by RT-PCR and proteomic analysis. Neonatal blood was assessed for FA composition and concentrations of inflammatory markers. RESULTS FO increased the gene expression of fatty acid binding protein 4 (FABP4), interleukin 10 (IL-10), catalase (CAT), cannabinoid receptor 1 (CNR1), and cannabinoid receptor 2 (CNR2) compared with CTL placenta. Gene expression of ECS-enzyme FA-amide hydrolase (FAAH) was lower in FLX and FO than in CTL. Proteomic analysis identified 3,974 proteins; of these, 51-59 were differentially abundant between treatments (P ≤ 0.05, |fold change| ≥ 1.5). Top canonical pathways enriched in FLX vs. CTL and in FO vs. CTL were triglyceride metabolism and inflammatory processes. Both n-3 FA increased the placental abundance of FA binding proteins (FABPs) 3 and 7. The abundance of CNR1 cannabinoid-receptor-interacting-protein-1 (CNRIP1) was reduced in FO vs. FLX. In silico modeling affirmed that bovine FABPs bind to endocannabinoids. The FLX increased the abundance of inflammatory CD44-antigen and secreted-phosphoprotein-1, whereas prostaglandin-endoperoxide synthase 2 was decreased in FO vs. CTL placenta. Maternal FO enriched neonatal plasma with n-3 FAs, and both FLX and FO reduced interleukin-6 concentrations compared with CTL. CONCLUSION Maternal n-3 FA from FLX and FO differentially affected the bovine placenta; both enhanced lipid metabolism and modulated oxidative stress, however, FO increased some transcriptional ECS components, possibly related to the increased FABPs. Maternal FO induced a unique balance of pro- and anti-inflammatory components in the placenta. Taken together, different sources of n-3 FA during late pregnancy enhanced placental immune and metabolic processes, which may affect the neonatal immune system.
Collapse
Affiliation(s)
- Priscila Dos Santos Silva
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel
| | - Gitit Kra
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yana Butenko
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel
| | | | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel.
| |
Collapse
|
8
|
Cerrato A, Aita SE, Cannazza G, Cavaliere C, Cavazzini A, Citti C, Montone CM, Taglioni E, Laganà A. One-phase extraction coupled with photochemical reaction allows the in-depth lipid characterization of hempseeds by untargeted lipidomics. Talanta 2024; 271:125686. [PMID: 38244310 DOI: 10.1016/j.talanta.2024.125686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Due to their valuable nutritional content, several hemp-derived products from hempseeds have recently been placed in the market as food and food ingredients. In particular, the lipid composition of hempseeds has raised interest for their rich content in biologically active polyunsaturated fatty acids with an optimum ratio of omega-3 and omega-6 compounds. At present, however, the overall polar lipidome composition of hempseeds remains largely unknown. In the present work, an analytical platform was developed for the extraction, untargeted HRMS-based analysis, and detailed annotation of the lipid species. First, five one- and two-phase solid-liquid extraction protocols were tested and compared on a hempseed pool sample to select the method that allowed the overall highest efficiency as well as easy coupling with lipid derivatization by photochemical [2 + 2] cycloaddition with 6-azauracil. Underivatized lipids were annotated employing a data processing workflow on Compound Discoverer software that was specifically designed for polar lipidomics, whereas inspection of the MS/MS spectra of the derivatized lipids following the aza-Paternò-Büchi reaction allowed pinpointing the regiochemistry of carbon-carbon double bonds. A total of 184 lipids were annotated, i.e., 26 fatty acids and 158 phospholipids, including minor subclasses such as N-acylphosphatidylethanolamines. Once the platform was set up, the lipid extracts from nine hempseed samples from different hemp strains were characterized, with information on the regiochemistry of free and conjugated fatty acids. The overall analytical approach helped to fill a gap in the knowledge of the nutritional composition of hempseeds.
Collapse
Affiliation(s)
- Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Sara Elsa Aita
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giuseppe Cannazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, Modena, 41125, Italy; Institute of Nanotechnology - CNR NANOTEC, Campus Ecotekne, Via Monteroni, Lecce, 73100, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, Ferrara, 44121, Italy
| | - Cinzia Citti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, Modena, 41125, Italy; Institute of Nanotechnology - CNR NANOTEC, Campus Ecotekne, Via Monteroni, Lecce, 73100, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Enrico Taglioni
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
9
|
Hegazi N, Khattab AR, Saad HH, Abib B, Farag MA. A multiplex metabolomic approach for quality control of Spirulina supplement and its allied microalgae (Amphora & Chlorella) assisted by chemometrics and molecular networking. Sci Rep 2024; 14:2809. [PMID: 38307932 PMCID: PMC10837195 DOI: 10.1038/s41598-024-53219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Microalgae species are of economic importance regarded as "green gold" being rich in bioactive compounds. Spirulina and Chlorella are the most popular microalgal species and are marketed as healthy food supplements. At the same time, Amphora holds potential as a source of healthy lipids and essential fatty acids. Yet, there are considerable variations in their reported chemical composition, and less is known about their compositional differences. A multiplexed metabolomic approach was adopted for the quality control (QC) of Spirulina supplements and to compare its constitutive metabolome to Chlorella and Amphora. The adopted protocol comprised gas chromatography-mass spectrometry (GC-MS), ultra-high performance liquid chromatography coupled with high-resolution tandem mass spectrometry (UPLC-HRMS/MS), and ultraviolet-visible spectrophotometry (UV/Vis) for mapping their primary and secondary metabolome. Interestingly, UPLC-HRMS/MS analysis delineated the abundance of fatty acids in Amphora versus glycolipids enrichment in Spirulina, and porphyrins were the main pigments identified in Spirulina, with scarce occurrence in Chlorella. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) analysis of GC-MS data set revealed palmitic acid, 3-mannobiose, and glyceryl-glycoside as being most enriched in Spirulina, versus sucrose and leucine in Chlorella and Amphora, respectively. Despite being of low discriminatory potential, UV/Vis OPLS-DA modeling showed that Spirulina was distinguished with the UV absorbances of carotenoids and chlorophyll pigments, as indicated by its OPLS-DA derived S-plot. Our study provides a QC approach for the analysis of the microalgal species and poses alternative spectral and compositional markers for their discrimination.
Collapse
Affiliation(s)
- Nesrine Hegazi
- Department of Phytochemistry and Plant Systematics, National Research Centre, Dokki, 12622, Cairo, Egypt.
| | - Amira R Khattab
- Pharmacognosy Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, 1029, Egypt
| | - Hamada H Saad
- Department of Phytochemistry and Plant Systematics, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Bishoy Abib
- Chemistry Department, American University in Cairo, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt.
| |
Collapse
|
10
|
Derbyshire EJ, Birch CS, Bonwick GA, English A, Metcalfe P, Li W. Optimal omegas - barriers and novel methods to narrow omega-3 gaps. A narrative review. Front Nutr 2024; 11:1325099. [PMID: 38371504 PMCID: PMC10869628 DOI: 10.3389/fnut.2024.1325099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/05/2024] [Indexed: 02/20/2024] Open
Abstract
Dietary intakes of omega-3 long chain polyunsaturated fatty acids (O3LC-PUFAs) such as eicosapentaenoic and docosahexaenoic acid are central to development and health across the life course. O3LC-PUFAs have been linked to neurological development, maternal and child health and the etiology of certain non-communicable diseases including age-related cognitive decline, cardiovascular disease, and diabetes. However, dietary inadequacies exist in the United Kingdom and on a wider global scale. One predominant dietary source of O3LC-PUFAs is fish and fish oils. However, growing concerns about overfishing, oceanic contaminants such as dioxins and microplastics and the trend towards plant-based diets appear to be acting as cumulative barriers to O3LC-PUFAs from these food sources. Microalgae are an alternative provider of O3LC-PUFA-rich oils. The delivery of these into food systems is gaining interest. The present narrative review aims to discuss the present barriers to obtaining suitable levels of O3LC-PUFAs for health and wellbeing. It then discusses potential ways forward focusing on innovative delivery methods to utilize O3LC-PUFA-rich oils including the use of fortification strategies, bioengineered plants, microencapsulation, and microalgae.
Collapse
Affiliation(s)
| | | | | | | | - Phil Metcalfe
- Efficiency Technologies Limited, Milton Keynes, England, United Kingdom
| | - Weili Li
- University of Chester, Chester, United Kingdom
| |
Collapse
|
11
|
Rafieipoor A, Torkaman M, Azaryan F, Tavakoli A, Mohammadian MK, Kohansal A, Shafaei H, Mirzaee P, Motiee Bijarpasi Z, Bahmani P, Khosravi M, Doaei S, Gholamalizadeh M. Effectiveness of omega-3 fatty acid supplementation for pruritus in patients undergoing hemodialysis. Front Nutr 2024; 11:1328469. [PMID: 38347960 PMCID: PMC10860752 DOI: 10.3389/fnut.2024.1328469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
Background Patients undergoing hemodialysis (HD) frequently experience the chronic kidney disease-associated pruritus (CKD-aP). Objective The aim of this study was to investigate the effectiveness of omega-3 supplementation in the management of CKD-aP in patients undergoing hemodialysis. Methods In this triple blind, randomized clinical trial, the effect of the omega-3 supplement on uremic CKD-aP was assessed in 112 chronic hemodialysis patients at Caspian Hemodialysis Center in Rasht, Iran. Patients were randomly divided into the intervention group receiving omega-3 supplements (3 g/day) and the control group receiving placebo containing MCT oil for 2 months. Results Omega-3 supplementation had no effect on CKD-aP. The results did not change after adjusting for age and sex, additional adjustments for weight, height, physical activity, smoking, and alcohol use, additional adjustments for underlying diseases and weight, height, physical activity, smoking, and drinking alcohol, and further adjustments for underlying diseases and biochemical indices. Discussion Omega-3 supplementation for 2 months had no effect on CKD-aP in patients with CKD. Further studies with longer duration are warranted. Clinical Trial Registration https://www.irct.ir/trial/66638, IRCT20151226025699N6.
Collapse
Affiliation(s)
- Alireza Rafieipoor
- Master of Nursing, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Mahdie Torkaman
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Azaryan
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Aryan Tavakoli
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Atefeh Kohansal
- School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hanieh Shafaei
- School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | - Pouya Mirzaee
- Department of Medicine, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Parsa Bahmani
- Department of Nutrition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Khosravi
- Urology Research Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeid Doaei
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Rao AS, Nair A, Nivetha K, Ayesha B, Hardi K, Divya V, Veena SM, Anantharaju KS, More SS. Impacts of Omega-3 Fatty Acids, Natural Elixirs for Neuronal Health, on Brain Development and Functions. Methods Mol Biol 2024; 2761:209-229. [PMID: 38427239 DOI: 10.1007/978-1-0716-3662-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Omega-3 fatty acids play a seminal role in maintaining the structural and functional integrity of the nervous system. These specialized molecules function as precursors for many lipid-based biological messengers. Also, studies suggest the role of these fatty acids in regulating healthy sleep cycles, cognitive ability, brain development, etc. Dietary intake of essential poly unsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are foundational to the optimal working of the nervous system. Besides regulating health, these biomolecules have great therapeutic value in treating several diseases, particularly nervous system diseases and disorders. Many recent studies conclusively demonstrated the beneficial effects of Omega-3 fatty acids in treating depression, neuropsychiatric disorders, neurodegenerative disorders, neurochemical disorders, and many other illnesses associated with the nervous system. This chapter summates the multifaceted role of poly unsaturated fatty acids, especially Omega-3 fatty acids (EPA and DHA), in the neuronal health and functioning. The importance of dietary intake of these essential fatty acids, their recommended dosages, bioavailability, the mechanism of their action, and therapeutic values are extensively discussed.
Collapse
Affiliation(s)
- Archana S Rao
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - Ajay Nair
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - K Nivetha
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - Bibi Ayesha
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - Kapadia Hardi
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - Vora Divya
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - S M Veena
- Department of Biotechnology, Sapthagiri College of Engineering, Bangalore, India
| | - K S Anantharaju
- Department of Chemistry, Dayananda Sagar College of Engineering, Bangalore, India
| | - Sunil S More
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| |
Collapse
|
13
|
Fekete M, Lehoczki A, Tarantini S, Fazekas-Pongor V, Csípő T, Csizmadia Z, Varga JT. Improving Cognitive Function with Nutritional Supplements in Aging: A Comprehensive Narrative Review of Clinical Studies Investigating the Effects of Vitamins, Minerals, Antioxidants, and Other Dietary Supplements. Nutrients 2023; 15:5116. [PMID: 38140375 PMCID: PMC10746024 DOI: 10.3390/nu15245116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cognitive impairment and dementia are burgeoning public health concerns, especially given the increasing longevity of the global population. These conditions not only affect the quality of life of individuals and their families, but also pose significant economic burdens on healthcare systems. In this context, our comprehensive narrative review critically examines the role of nutritional supplements in mitigating cognitive decline. Amidst growing interest in non-pharmacological interventions for cognitive enhancement, this review delves into the efficacy of vitamins, minerals, antioxidants, and other dietary supplements. Through a systematic evaluation of randomized controlled trials, observational studies, and meta-analysis, this review focuses on outcomes such as memory enhancement, attention improvement, executive function support, and neuroprotection. The findings suggest a complex interplay between nutritional supplementation and cognitive health, with some supplements showing promising results and others displaying limited or context-dependent effectiveness. The review highlights the importance of dosage, bioavailability, and individual differences in response to supplementation. Additionally, it addresses safety concerns and potential interactions with conventional treatments. By providing a clear overview of current scientific knowledge, this review aims to guide healthcare professionals and researchers in making informed decisions about the use of nutritional supplements for cognitive health.
Collapse
Affiliation(s)
- Mónika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Andrea Lehoczki
- National Institute for Haematology and Infectious Diseases, Department of Haematology and Stem Cell Transplantation, South Pest Central Hospital, 1097 Budapest, Hungary;
| | - Stefano Tarantini
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK 73104, USA
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Tamás Csípő
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Zoltán Csizmadia
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
14
|
Chen H, Leng X, Liu S, Zeng Z, Huang F, Huang R, Zou Y, Xu Y. Association between dietary intake of omega-3 polyunsaturated fatty acids and all-cause and cardiovascular mortality among hypertensive adults: Results from NHANES 1999-2018. Clin Nutr 2023; 42:2434-2442. [PMID: 37871484 DOI: 10.1016/j.clnu.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Hypertensive adults are at a higher risk of cardiovascular morbidity and mortality. Dietary omega-3 polyunsaturated fatty acids (N3-PUFA) intake has been associated with cardiovascular benefits. However, few studies have specifically investigated whether dietary intake of N3-PUFA is associated with lower risk of all-cause and cardiovascular mortality among hypertensive adults in the U.S. METHODS This prospective cohort study included 26,914 hypertensive individuals 18 years or older who participated in 10 NHANES cycles from 1999 to 2018. Dietary levels of N3-PUFA were obtained from the 24-hour dietary recalls. The dietary data were linked to mortality records from the National Death Index through December 31, 2019. The associations between dietary N3-PUFA levels and mortality were evaluated by constructing the Multivariable Cox Proportional Hazards models. RESULTS We observed an increasing trend of dietary N3-PUFA intake levels over the years, mainly driven by alpha-linolenic acid (ALA). Lower all-cause mortality risk was observed among hypertensive adults with higher consumption of total N3-PUFA [adjusted hazards ratio, 95% confidence interval: 0.91 (0.86, 0.97)], plant-based ALA [0.88 (0.83, 0.93)], fish oil-based eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) [0.91 (0.83, 0.99)], EPA [0.93 (0.88, 0.98)], docosapentaenoic acid (DPA) [0.73 (0.58, 0.91)], or DHA [0.95 (0.90, 0.99)]. Hypertensive adults were at lower risk of cardiovascular mortality if their diet contained higher levels of total N3-PUFA [0.68 (0.53, 0.88)], ALA [0.89 (0.80, 0.99)], EPA [0.87 (0.79, 0.97)] or DPA [0.86 (0.78, 0.95)]. Weighted quantile sum analysis showed that ALA, EPA, and DPA were the main contributors of the N3-PUFA benefits against mortality among hypertensive adults. CONCLUSIONS Dietary intake of N3-PUFA, particularly ALA, EPA, and DPA, was associated with lower risk of all-cause and cardiovascular mortality among U.S. hypertensive adults. These findings suggest that increasing dietary intake of N3-PUFA may serve as a potential strategy to lower hypertension-associated mortality risk.
Collapse
Affiliation(s)
- Hao Chen
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xuebing Leng
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33146, USA
| | - Shaohui Liu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Ziqi Zeng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Department of Medical Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Rongjie Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| | - Yunan Xu
- Department of Medical Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
15
|
Ocaña-Sánchez MF, Soto-Ojeda GA, Cocotle-Ronzón Y, Soria-Fregozo C, Sánchez-Medina A, García-Rodríguez RV, Rodríguez-Landa JF, Corro-Méndez EJ, Hernández-Lozano M. Flaxseed Oil ( Linum usitatissimum) Prevents Cognitive and Motor Damage in Rats with Hyperammonemia. Nutrients 2023; 15:4550. [PMID: 37960203 PMCID: PMC10647672 DOI: 10.3390/nu15214550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Hyperammonemia is characterized by the excessive accumulation of ammonia in the body as a result of the loss of liver detoxification, leading to the development of hepatic encephalopathy (HE). These metabolic alterations carry cognitive and motor deficits and cause neuronal damage, with no effective treatment at present. In this study, we aimed to evaluate the effect of two subacute oral administrations of flaxseed oil (0.26 and 0.52 mL/kg) on short- and long-term memory, visuospatial memory, locomotor activity, motor coordination, and the neuronal morphology of the prefrontal cortex (PFC) via tests on Wistar rats with hyperammonemia. The goal was to identify its role in the regulation of cerebral edema, without liver damage causing cerebral failure. In contrast with an ammonium-rich diet, flaxseed oil and normal foods did not cause cognitive impairment or motor alterations, as evidenced in the short-term and visuospatial memory tests. Furthermore, the flaxseed oil treatment maintained a regular neuronal morphology of the prefrontal cortex, which represents a neuroprotective effect. We conclude that the oral administration of flaxseed oil prevents cognitive and motor impairments as well as neuronal alterations in rats with hyperammonemia, which supports the potential use of this oil to ameliorate the changes that occur in hepatic encephalopathy.
Collapse
Affiliation(s)
- Marcos F. Ocaña-Sánchez
- Programa de Doctorado en Ciencias Biomédicas, Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa 91190, Mexico
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa 91090, Mexico; (G.A.S.-O.); (Y.C.-R.)
| | - Gabriel A. Soto-Ojeda
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa 91090, Mexico; (G.A.S.-O.); (Y.C.-R.)
| | - Yolanda Cocotle-Ronzón
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa 91090, Mexico; (G.A.S.-O.); (Y.C.-R.)
| | - Cesar Soria-Fregozo
- Laboratorio Ciencias Biomédicas/área Histología y Psicobiología, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Mexico;
| | - Alberto Sánchez-Medina
- Instituto de Química Aplicada, Universidad Veracruzana, Xalapa 91190, Mexico; (A.S.-M.); (R.V.G.-R.)
| | - Rosa V. García-Rodríguez
- Instituto de Química Aplicada, Universidad Veracruzana, Xalapa 91190, Mexico; (A.S.-M.); (R.V.G.-R.)
| | | | - Erick J. Corro-Méndez
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Amatlán 94945, Mexico;
| | - Minerva Hernández-Lozano
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa 91090, Mexico; (G.A.S.-O.); (Y.C.-R.)
| |
Collapse
|
16
|
Szczuko M, Szwec-Nadworna N, Palma J, Tomasik M, Ziętek M. Increased Demand of Obese Women for Protectins, Maresin, and Resolvin D1 in the Last Trimester of Pregnancy. Nutrients 2023; 15:4340. [PMID: 37892415 PMCID: PMC10609750 DOI: 10.3390/nu15204340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Pregnancy is a physiological state during which inflammation occurs. This complex biological response is necessary for the implantation process as well as delivery. In turn, its suppression during gestation favors the normal course of the pregnancy. Therefore, the presence of pro-resolving mediators, EPA and DHA derivatives, The aim of this study was to investigate the changes in the levels of anti-inflammatory resolvins and their precursors in different trimesters of pregnancy with consideration of the women's weight, including overweight and obese women before pregnancy. METHODS A total of 78 women participated in this study; the mean age and BMI before pregnancy were 32.3 ± 5.52 and 27.73 ± 6.13, respectively. The patients were divided into two groups, considering their BMI before pregnancy. The extraction of eicosanoids was performed by high-performance liquid chromatography. The results obtained were subjected to statistical analysis. The levels of all studied parameters showed statistically significant differences between the study group (SG) and the control group (CG) in the different trimesters of pregnancy. Over the course of pregnancy, the levels of protection (PDX), maresin, resolvins (RvD1, RvE1), and their precursors differed in relation to the trimester of pregnancy and the division into groups considering the correct body weight before pregnancy. RESULTS Overweight or obese women had significantly lower levels of RvE1 in the third trimester and their precursors compared to normal-weight women. While the levels of PDX and RvD1 were significantly higher, this may be due to both a lower intake of products rich in omega-3 fatty acids by obese women and an increased need of obese women's bodies to quench chronic inflammatory processes associated with obesity. CONCLUSIONS Both EPA and DHA derivatives are involved in calming down inflammation during pregnancy, which was observed.
Collapse
Affiliation(s)
- Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland;
| | - Natalia Szwec-Nadworna
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland;
| | - Joanna Palma
- Department of Biochemical Sciences, Pomeranian Medical University, 71-460 Szczecin, Poland;
| | - Małgorzata Tomasik
- Department of Integrated Dentistry, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Maciej Ziętek
- Department of Perinatology, Obstetrics and Gynecology, Pomeranian Medical University, 72-010 Police, Poland;
| |
Collapse
|
17
|
McClements DJ. Ultraprocessed plant-based foods: Designing the next generation of healthy and sustainable alternatives to animal-based foods. Compr Rev Food Sci Food Saf 2023; 22:3531-3559. [PMID: 37350040 DOI: 10.1111/1541-4337.13204] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Numerous examples of next-generation plant-based foods, such as meat, seafood, egg, and dairy analogs, are commercially available. These products are usually designed to have physicochemical properties, sensory attributes, and functional behaviors that match those of the animal-sourced products they are designed to replace. However, there has been concern about the potential negative impacts of these foods on human nutrition and health. In particular, many of these products have been criticized for being ultraprocessed foods that contain numerous ingredients and are manufactured using harsh processing operations. In this article, the concept of ultraprocessed foods is introduced and its relevance to describe the properties of next-generation plant-based foods is discussed. Most commercial plant-based meat, seafood, egg, and dairy analogs currently available do fall into this category, and so can be classified as ultraprocessed plant-based (UPB) foods. The nutrient content, digestibility, bioavailability, and gut microbiome effects of UPB foods are compared to those of animal-based foods, and the potential consequences of any differences on human health are discussed. Some commercial UPB foods would not be considered healthy based on their nutrient profiles, especially those plant-based cheeses that contain low levels of protein and high levels of fat, starch, and salt. However, it is argued that UPB foods can be designed to have good nutritional profiles and beneficial health effects. Finally, areas where further research are still needed to create a more healthy and sustainable food supply are discussed.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
18
|
Capra ME, Stanyevic B, Giudice A, Monopoli D, Decarolis NM, Esposito S, Biasucci G. Long-Chain Polyunsaturated Fatty Acids Effects on Cardiovascular Risk in Childhood: A Narrative Review. Nutrients 2023; 15:nu15071661. [PMID: 37049503 PMCID: PMC10096679 DOI: 10.3390/nu15071661] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Long-chain polyunsaturated fatty acids (LCPUFAs) are semi-essential fatty acids widely studied in adult subjects for their healthy-heart effects, especially on secondary prevention in patients who already experienced a cardiac event. LCPUFAs consumption is safe, without adverse effects, and they are usually well-tolerated; they can be taken either in foods or as nutritional supplements. LCPUFAs' positive effect on global health has been worldwide recognized also for pediatric patients. In childhood and adolescence, research has mainly focused on LCPUFAs' effects on neurodevelopment, brain and visual functions and on maternal-fetal medicine, yet their cardiovascular effects in childhood are still understudied. Atherosclerosis is a multifactorial process that starts even before birth and progresses throughout life; thus, cardiovascular prevention is advisable and effective from the very first years of life. Nutritional and lifestyle interventions are the main factors that can interfere with atherosclerosis in childhood, and the consumption of specific nutrients, such as LCPUFAs, can enhance positive nutritional effects. The aim of our narrative review is to analyze the effect of LCPUFAs on cardiovascular risk factors and on cardiovascular risk prevention in developmental age, focusing on specific conditions such as weight excess and dyslipidemia.
Collapse
Affiliation(s)
- Maria Elena Capra
- Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
- Società Italiana di Nutrizione Pediatrica, 20126 Milan, Italy
| | - Brigida Stanyevic
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| | - Antonella Giudice
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| | - Delia Monopoli
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| | - Nicola Mattia Decarolis
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| | - Giacomo Biasucci
- Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
- Società Italiana di Nutrizione Pediatrica, 20126 Milan, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
19
|
Wright K, Feeney M, Yerlett N, Meyer R. Nutritional Management of Children with Food Allergies. CURRENT TREATMENT OPTIONS IN ALLERGY 2022. [DOI: 10.1007/s40521-022-00320-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Purpose of the Review
The purpose of the review is to review the evidence for the nutritional management of paediatric food allergy and provide a practical approach for healthcare professionals working in this area.
Recent Findings
Dietary elimination remains the mainstay for management of food allergies in children. However, the elimination of food allergens increases the risk for growth faltering, micronutrient deficiencies and feeding difficulties. Breastmilk remains the ideal source of nutrition for infants, but when not available, the vast majority will tolerate an extensively hydrolysed formula, and rice hydrolysate has also been suggested as a suitable alternative. Only in severe cases, including anaphylaxis, eosinophilic oesophagitis and growth faltering, is an amino acid formula indicated. The early introduction of peanut and egg and avoiding the delay in the introduction of other allergens, when not already allergic, has been highlighted by recent studies.
Summary
Whilst the elimination of allergens increases the risk of developing poor growth, micronutrient deficiencies and feeding difficulties, optimal, early dietary input, including advice on active introduction of allergens and alternative feeds, ideally from a registered dietitian/nutritionist, may be prevent and improve outcomes.
Collapse
|
20
|
García-Maldonado E, Alcorta A, Zapatera B, Vaquero MP. Changes in fatty acid levels after consumption of a novel docosahexaenoic supplement from algae: a crossover randomized controlled trial in omnivorous, lacto-ovo vegetarians and vegans. Eur J Nutr 2022; 62:1691-1705. [DOI: 10.1007/s00394-022-03050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022]
Abstract
Abstract
Purpose
To determine serum fatty acids of lacto-ovo vegetarian (LOV), vegan (VEG) and omnivorous (OMN) adults, and to analyse the effects of consuming a docosahexaenoic acid (DHA) supplement of vegetable origin on fatty acid profile.
Methods
A randomized, double-blind, placebo-controlled crossover design was conducted in healthy adults. Volunteers (n = 116) were randomly assigned to a DHA-supplement (dose 250 mg/day), made from the microalgae Schizochytrium sp., or a placebo during 5-week periods separated by a 5-week washout interim period. Compliance and dietary intake were estimated and serum fatty acids were determined by gas chromatography. Results were analysed by mixed linear models.
Results
Percentage of linoleic acid (C18:2n6) in serum was the highest among the fatty acids in the three diet groups, followed by oleic (C18:1n9) and palmitic (C16:0) acids. Linoleic (C18:2n6) and alpha-linolenic (C18:3n3) acids were higher in VEG compared to OMN (p < 0.001), while in LOV, their levels were intermediate between the other groups. Women presented higher DHA (C22:6n3) than men (p < 0.001). The DHA-supplement increased serum DHA compared to placebo in the three diet groups (p < 0.001), and a higher increase was observed in VEG followed by LOV (p < 0.001). The ratio serum n-6/n-3 improved by the supplementation but remained higher in LOV and VEG than in OMN. In contrast, the DHA-supplement decreased docosapentaenoic (C22:5n3) and docosatetraenoic (C22:4n6) acids in all diet groups (p < 0.001) and increased the eicosapentaenoic to alpha-linolenic fatty acids ratio (p = 0.016).
Conclusion
The DHA-supplement at dose of 250 mg/day was effective in increasing serum DHA either in omnivorous, lacto-ovo vegetarian and vegan adults.
Clinical trial registration
Registered at Clinicaltrials.gov (www.clinicaltrials.gov), NCT04278482.
Collapse
|
21
|
Elouafy Y, El Yadini A, El Moudden H, Harhar H, Alshahrani MM, Awadh AAA, Goh KW, Ming LC, Bouyahya A, Tabyaoui M. Influence of the Extraction Method on the Quality and Chemical Composition of Walnut ( Juglans regia L.) Oil. Molecules 2022; 27:7681. [PMID: 36431782 PMCID: PMC9694896 DOI: 10.3390/molecules27227681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
The present study investigated and compared the quality and chemical composition of Moroccan walnut (Juglans regia L.) oil. This study used three extraction techniques: cold pressing (CP), soxhlet extraction (SE), and ultrasonic extraction (UE). The findings showed that soxhlet extraction gave a significantly higher oil yield compared to the other techniques used in this work (65.10% with p < 0.05), while cold pressing and ultrasonic extraction gave similar yields: 54.51% and 56.66%, respectively (p > 0.05). Chemical composition analysis was carried out by GC−MS and allowed 11 compounds to be identified, of which the major compound was linoleic acid (C18:2), with a similar percentage (between 57.08% and 57.84%) for the three extractions (p > 0.05). Regarding the carotenoid pigment, the extraction technique significantly affected its content (p < 0.05) with values between 10.11 mg/kg and 14.83 mg/kg. The chlorophyll pigment presented a similar content in both oils extracted by SE and UE (p > 0.05), 0.20 mg/kg and 0.16 mg/kg, respectively, while the lowest content was recorded in the cold-pressed oil with 0.13 mg/kg. Moreover, the analysis of phytosterols in walnut oil revealed significantly different contents (p < 0.05) for the three extraction techniques (between 1168.55 mg/kg and 1306.03 mg/kg). In addition, the analyses of tocopherol composition revealed that γ-tocopherol represented the main tocopherol isomer in all studied oils and the CP technique provided the highest content of total tocopherol with 857.65 mg/kg, followed by SE and UE with contents of 454.97 mg/kg and 146.31 mg/kg, respectively, which were significantly different (p < 0.05). This study presents essential information for producers of nutritional oils and, in particular, walnut oil; this information helps to select the appropriate method to produce walnut oil with the targeted quality properties and chemical compositions for the desired purpose. It also helps to form a scientific basis for further research on this plant in order to provide a vision for the possibility of exploiting these oils in the pharmaceutical, cosmetic, and food fields.
Collapse
Affiliation(s)
- Youssef Elouafy
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Adil El Yadini
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Hamza El Moudden
- Higher School of Technology of El Kelaa Des Sraghna, Cadi Ayyad University, El Kelaa Des Sraghna BP 104, Morocco
| | - Hicham Harhar
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Mohamed Tabyaoui
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| |
Collapse
|
22
|
Yue H, Bo Y, Tian Y, Mao L, Xue C, Dong P, Wang J. Docosahexaenoic Acid-Enriched Phosphatidylcholine Exerted Superior Effects to Triglyceride in Ameliorating Obesity-Induced Osteoporosis through Up-Regulating the Wnt/β-Catenin Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13904-13912. [PMID: 36260738 DOI: 10.1021/acs.jafc.2c06081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A growing number of studies reported that obesity is one of the major inducements for osteoporosis by promoting excessive adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Marine-derived DHA-enriched phosphatidylcholine (DHA-PC) exhibited activities to improve ovariectomized-induced osteoporosis and kidney damage. However, the potential effect of DHA-PC and efficacy differences between DHA-PC and traditional DHA (DHA-triglyceride, DHA-TG) on BMSCs differentiation in obesity-induced osteoporosis were not clear. In the present study, obesity-induced osteoporotic mice were supplemented with DHA-TG and DHA-PC for 120 days. Results showed that supplementing with DHA-PC improved the bone mineral density and biomechanical properties, increased the new bone formation rate by 55.2%, and reduced the amount of bone marrow fat to a greater extent than DHA-TG. Further in vitro results showed that DHA-PC significantly promoted the osteogenic differentiation and inhibited the adipogenic differentiation of BMSCs. Mechanistically, DHA-PC supplement up-regulated Wnt/β-catenin pathway in BMSCs and up-regulated the expression of osteogenic transcription factors, thereby promoting osteogenic differentiation. In summary, DHA-PC exerted a superior effect to DHA-TG in improving obesity-induced osteoporosis. The results provided new evidence for the application of different molecular forms of DHA in treatment of osteoporosis.
Collapse
Affiliation(s)
- Hao Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, ShandongChina
| | - Yuying Bo
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, ShandongChina
| | - Yingying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, ShandongChina
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, ShandongChina
| | - Lei Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, ShandongChina
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, ShandongChina
| | - Ping Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, ShandongChina
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, ShandongChina
| |
Collapse
|
23
|
Wang L, Dong B, Yang T, Zhang A, Hu X, Wang Z, Chang G, Chen G. Dietary linseed oil affects the polyunsaturated fatty acid and transcriptome profiles in the livers and breast muscles of ducks. Front Nutr 2022; 9:1030712. [PMID: 36386908 PMCID: PMC9650093 DOI: 10.3389/fnut.2022.1030712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/07/2022] [Indexed: 11/23/2022] Open
Abstract
Linseed oil, an important source of dietary α-linolenic acid, is used to provide meat enriched in n-3 PUFA. We investigated the effects of dietary linseed oil (0, 0.5, 1, and 2%) on growth performance, meat quality, tissue fatty acid (FA), and transcriptome profiles in ducks. The result showed that dietary linseed oil had no effect on growth performance. Increasing dietary linseed oil enrichment raised n-3 PUFA and linoleic acid (LA) levels in both the liver and breast muscle, but decreased dihomo-gamma-linolenic acid (DGLA) and arachidonic acid (ARA) levels in the liver. The liver n-3 PUFA content was negatively correlated with duck body weight. Transcriptome analysis showed that dietary linseed oil caused hepatic changes in genes (SCD, FADS1, FADS2, and ACOT6) related to the biosynthesis of unsaturated fatty acids. Besides, dietary linseed oil also affected the expression of genes related to PUFAs and downstream metabolites (such as linoleic acid, steroid hormone, progesterone, etc.) metabolic pathways in both liver and breast muscle. Key genes involved in PUFA synthesis and transport pathways were examined by RT-qPCR, and the results verified that hepatic expression levels of FADS1 and FADS2 decreased, and those of FABP4 and FABP5 increased when 2% linseed oil was added. CD36 expression level increased in breast muscle when 2% linseed oil was added. Thus, 2% dietary linseed oil supplementation produces n-3 PUFA-enriched duck products by regulating the PUFA metabolic pathways, which could be advantageous for health-conscious consumers.
Collapse
|
24
|
Sani MA, Tavassoli M, Azizi-Lalabadi M, Mohammadi K, McClements DJ. Nano-enabled plant-based colloidal delivery systems for bioactive agents in foods: Design, formulation, and application. Adv Colloid Interface Sci 2022; 305:102709. [PMID: 35640316 DOI: 10.1016/j.cis.2022.102709] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/21/2022]
Abstract
Consumers are becoming increasingly aware of the impact of their dietary choices on the environment, animal welfare, and health, which is causing many of them to adopt more plant-based diets. For this reason, many sectors of the food industry are reformulating their products to contain more plant-based ingredients. This article describes recent research on the formation and application of nano-enabled colloidal delivery systems formulated from plant-based ingredients, such as polysaccharides, proteins, lipids, and phospholipids. These delivery systems include nanoemulsions, solid lipid nanoparticles, nanoliposomes, nanophytosomes, and biopolymer nanoparticles. The composition, size, structure, and charge of the particles in these delivery systems can be manipulated to create novel or improved functionalities, such as improved robustness, higher optical clarity, controlled release, and increased bioavailability. There have been major advances in the design, assembly, and application of plant-based edible nanoparticles within the food industry over the past decade or so. As a result, there are now a wide range of different options available for creating delivery systems for specific applications. In the future, it will be important to establish whether these formulations can be produced using economically viable methods and provide the desired functionality in real-life applications.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Tavassoli
- Student's Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
25
|
Santos-Merino M, Gutiérrez-Lanza R, Nogales J, García JL, de la Cruz F. Synechococcus elongatus PCC 7942 as a Platform for Bioproduction of Omega-3 Fatty Acids. Life (Basel) 2022; 12:life12060810. [PMID: 35743841 PMCID: PMC9224711 DOI: 10.3390/life12060810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/22/2022] Open
Abstract
Alpha-linolenic acid and stearidonic acid are precursors of omega-3 polyunsaturated fatty acids, essential nutrients in the human diet. The ability of cyanobacteria to directly convert atmospheric carbon dioxide into bio-based compounds makes them promising microbial chassis to sustainably produce omega-3 fatty acids. However, their potential in this area remains unexploited, mainly due to important gaps in our knowledge of fatty acid synthesis pathways. To gain insight into the cyanobacterial fatty acid biosynthesis pathways, we analyzed two enzymes involved in the elongation cycle, FabG and FabZ, in Synechococcus elongatus PCC 7942. Overexpression of these two enzymes led to an increase in C18 fatty acids, key intermediates in omega-3 fatty acid production. Nevertheless, coexpression of these enzymes with desaturases DesA and DesB from Synechococcus sp. PCC 7002 did not improve alpha-linolenic acid production, possibly due to their limited role in fatty acid synthesis. In any case, efficient production of stearidonic acid was not achieved by cloning DesD from Synechocystis sp. PCC 6803 in combination with the aforementioned DesA and DesB, reaching maximum production at 48 h post induction. According to current knowledge, this is the first report demonstrating that S. elongatus PCC 7942 can be used as an autotrophic chassis to produce stearidonic acid.
Collapse
Affiliation(s)
- María Santos-Merino
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria—CSIC, 39011 Santander, Spain; (R.G.-L.); (F.d.l.C.)
- Correspondence:
| | - Raquel Gutiérrez-Lanza
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria—CSIC, 39011 Santander, Spain; (R.G.-L.); (F.d.l.C.)
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain;
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain;
| | - José Luis García
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain;
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria—CSIC, 39011 Santander, Spain; (R.G.-L.); (F.d.l.C.)
| |
Collapse
|
26
|
Cascading Crypthecodinium cohnii Biorefinery: Global Warming Potential and Techno-Economic Assessment. ENERGIES 2022. [DOI: 10.3390/en15103784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prior to the commissioning of a new industrial biorefinery it is deemed necessary to evaluate if the new project will be beneficial or detrimental to climate change, one of the main drivers for the sustainable development goals (SDG) of the United Nations. In particular, how SDG 7, Clean and Efficient Energy, SDG 3, Good Health and Well Being, SDG 9, Industry Innovation and Infrastructure, and SDG 12, Responsible Production and Consumption, would engage in a new biorefinery design, beneficial to climate change, i.e., fostering SDG 13, Climate Action. This study uses life cycle assessment methodology (LCA) to delve in detail into the Global Warming Impact category, project scenario GHG savings, using a conventional and a dynamic emission flux approach until 2060 (30-year lifetime). Water, heat and electricity circularity are in place by using a water recirculation process and a combined heat and power unit (CHP). A new historical approach to derive low and higher-end commodity prices (chemicals, electricity, heat, jet/maritime fuel, DHA, N-fertilizer) is used for the calculation of the economic indicators: Return of investment (ROI) and inflation-adjusted return (IAR), based upon the consumer price index (CPI). Main conclusions are: supercritical fluid extraction is the hotspot of energy consumption; C. cohnii bio-oil without DHA has higher sulfur concentration than crude oil based jet fuel requiring desulfurization, however the sulfur levels are compatible with maritime fuels; starting its operation in 2030, by 2100 an overall GHG savings of 73% (conventional LCA approach) or 85% (dynamic LCA approach) is projected; economic feasibility for oil productivity and content of 0.14 g/L/h and 27% (w/w) oil content, respectively (of which 31% is DHA), occurs for DHA-cost 100 times higher than reference fish oil based DHA; however future genetic engineering achieving 0.4 g/L/h and 70% (w/w) oil content (of which 31% is DHA), reduces the threshold to 20 times higher cost than reference fish oil based DHA; N-fertilizer, district heating and jet fuel may have similar values then their fossil counterparts.
Collapse
|
27
|
Esquivel MK. Nutrition Benefits and Considerations for Whole Foods Plant-Based Eating Patterns. Am J Lifestyle Med 2022; 16:284-290. [PMID: 35706588 PMCID: PMC9189583 DOI: 10.1177/15598276221075992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Whole foods plant-based approaches to eating place an emphasis on the intake of fruits, vegetables, whole grains, and legumes and have many health benefits. While there are key nutrients and phytochemicals that can contribute to the purported health benefits, practitioners and patients should also be advised of key nutrients for which intake may be compromised when following this dietary pattern. With careful planning and utility of dietary supplements, individuals can achieve optimal intake of calcium, iron, vitamin D, omega 3 fatty acid-docosahexaenoic acid (DHA), and vitamin B12 and experience the health benefits of a dietary fiber and a host of phytochemicals. This article presents the health benefits of these food substances and approaches for overcoming nutrients of concern when following whole food plant-based eating patterns.
Collapse
Affiliation(s)
- Monica K Esquivel
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
28
|
Williams EJ, Berthon BS, Stoodley I, Williams LM, Wood LG. Nutrition in Asthma. Semin Respir Crit Care Med 2022; 43:646-661. [PMID: 35272384 DOI: 10.1055/s-0042-1742385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An emerging body of evidence suggests that diet plays an important role in both the development and management of asthma. The relationship between dietary intake and asthma risk has been explored in epidemiological studies, though intervention trials examining the effects of nutrient intake and dietary patterns on asthma management are scarce. Evidence for diets high in fruits and vegetables, antioxidants, omega-3 fatty acids and soluble fiber such as the Mediterranean diet is conflicting. However, some studies suggest that these diets may reduce the risk of asthma, particularly in young children, and could have positive effects on disease management. In contrast, a Westernized dietary pattern, high in saturated fatty acids, refined grains, and sugars may promote an inflammatory environment resulting in the onset of disease and worsening of asthma outcomes. This review will summarize the state of the evidence for the impact of whole dietary patterns, as well as individual nutrients on the prevalence and management of asthma.
Collapse
Affiliation(s)
- Evan J Williams
- Hunter Medical Research Institute and School of Biomedical Science and Pharmacy, The University of Newcastle, Callaghan, Australia
| | - Bronwyn S Berthon
- Hunter Medical Research Institute and School of Biomedical Science and Pharmacy, The University of Newcastle, Callaghan, Australia
| | - Isobel Stoodley
- Hunter Medical Research Institute and School of Biomedical Science and Pharmacy, The University of Newcastle, Callaghan, Australia
| | - Lily M Williams
- Hunter Medical Research Institute and School of Biomedical Science and Pharmacy, The University of Newcastle, Callaghan, Australia
| | - Lisa G Wood
- Hunter Medical Research Institute and School of Biomedical Science and Pharmacy, The University of Newcastle, Callaghan, Australia
| |
Collapse
|
29
|
Uma VS, Usmani Z, Sharma M, Diwan D, Sharma M, Guo M, Tuohy MG, Makatsoris C, Zhao X, Thakur VK, Gupta VK. Valorisation of algal biomass to value-added metabolites: emerging trends and opportunities. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 22:1-26. [PMID: 35250414 PMCID: PMC8889523 DOI: 10.1007/s11101-022-09805-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Algal biomass is a promising feedstock for sustainable production of a range of value-added compounds and products including food, feed, fuel. To further augment the commercial value of algal metabolites, efficient valorization methods and biorefining channels are essential. Algal extracts are ideal sources of biotechnologically viable compounds loaded with anti-microbial, anti-oxidative, anti-inflammatory, anti-cancerous and several therapeutic and restorative properties. Emerging technologies in biomass valorisation tend to reduce the significant cost burden in large scale operations precisely associated with the pre-treatment, downstream processing and waste management processes. In order to enhance the economic feasibility of algal products in the global market, comprehensive extraction of multi-algal product biorefinery is envisaged as an assuring strategy. Algal biorefinery has inspired the technologists with novel prospectives especially in waste recovery, carbon concentration/sequestration and complete utilisation of the value-added products in a sustainable closed-loop methodology. This review critically examines the latest trends in the algal biomass valorisation and the expansive feedstock potentials in a biorefinery perspective. The recent scope dynamics of algal biomass utilisation such as bio-surfactants, oleochemicals, bio-stimulants and carbon mitigation have also been discussed. The existing challenges in algal biomass valorisation, current knowledge gaps and bottlenecks towards commercialisation of algal technologies are discussed. This review is a comprehensive presentation of the road map of algal biomass valorisation techniques towards biorefinery technology. The global market view of the algal products, future research directions and emerging opportunities are reviewed.
Collapse
Affiliation(s)
- V. S. Uma
- Radiological and Environmental Safety Group, Department of Atomic Energy, Indira Gandhi Centre for Atomic Research (IGCAR), Govt of India, Kalpakkam, Tamil Nadu India
| | - Zeba Usmani
- Department of Applied Biology, University of Science and Technology, Meghalaya, 793101 India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya, 793101 India
| | - Deepti Diwan
- School of Medicine, Washington University, Saint Louis, MO USA
| | - Monika Sharma
- Department of Botany, Sri Avadh Raj Singh Smarak Degree College, Gonda, UP India
| | - Miao Guo
- Department of Engineering, Faculty of Natural and Mathematical Sciences, King’s College, Strand Campus, The Strand London, London, WC2R 2LS UK
| | - Maria G. Tuohy
- Molecular Glycobiotechnology Group, Biochemistry, School of Natural Sciences, Ryan Institute and MaREI, National University of Ireland, H91 TK33 Galway, Ireland
| | - Charalampos Makatsoris
- Department of Engineering, Faculty of Natural and Mathematical Sciences, King’s College, Strand Campus, The Strand London, London, WC2R 2LS UK
| | - Xiaobin Zhao
- Future Business Cambridge, Cambond Limited, Centre Kings Hedges Road, Cambridge, CB4 2HY UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, EH9 3JG Edinburgh, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), 248007 Dehradun, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, EH9 3JG Edinburgh, UK
- Center for Safe and Improved Food, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG UK
| |
Collapse
|
30
|
Plant-based diets: a review of the definitions and nutritional role in the adult diet. Proc Nutr Soc 2022; 81:62-74. [DOI: 10.1017/s0029665121003839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Plant-based (PB) diets are associated with good health and are also recommended for environmental sustainability. The present review aimed to summarise the definitions of PB diets globally and to investigate the nutritional role of PB diets in adults. This review found that there is a wide range of PB definitions ranging from the traditional vegetarian diets (including vegan) to semi-vegetarian/flexitarian diets. Furthermore, other diets which were originally developed due to their associations with positive health outcomes, such as the portfolio, Mediterranean-style, DASH, healthy US-style, planetary health and Nordic-style diets, have been encompassed in PB definitions due to their emphasis on certain PB components. This review has highlighted that those consuming a PB diet are more likely to meet recommended intakes for carbohydrate, dietary fibre and vitamin E and are less likely to meet recommendations for protein, vitamin B12 and iodine compared to omnivores. Regardless of consumer type, neither PB consumers nor omnivores met recommendations for intakes of vitamin D, calcium and sodium. While intakes of protein, n-3, iron and zinc were generally sufficient from the PB diet, it is important to acknowledge the lower bioavailability of these nutrients from PB foods compared to animal-derived products. As dietary patterns shift towards a more PB diet, there is a need for further studies to investigate the role of PB diets for nutritional adequacy and status in populations currently accustomed to consuming a primarily omnivorous diet.
Collapse
|
31
|
Menon D, Lewis EJH, Perkins BA, Bril V. Omega-3 Nutrition Therapy for the Treatment of Diabetic Sensorimotor Polyneuropathy. Curr Diabetes Rev 2022; 18:e010921196028. [PMID: 34488588 DOI: 10.2174/1573399817666210901121111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
Despite advances in clinical and translational research, an effective therapeutic option for diabetic sensorimotor polyneuropathy (DSP) has remained elusive. The pathomechanisms of DSP are diverse, and along with hyperglycemia, the roles of inflammatory mediators and lipotoxicity in the development of microangiopathy have been well elucidated. Omega-3 (n-3) polyunsaturated fatty acids (PUFA) are essential fatty acids with a vital role in a number of physiological processes, including neural health, membrane structure integrity, anti-inflammatory processes, and lipid metabolism. Identification of n-3 PUFA derived specialised proresolving mediators (SPM), namely resolvins, neuroprotectin, and maresins which also favour nerve regeneration, have positioned n-3 PUFA as potential treatment options in DSP. Studies in n-3 PUFA treated animal models of DSP showed positive nerve benefits in functional, electrophysiological, and pathological indices. Clinical trials in humans are limited, but recent proof-of-concept evidence suggests n-3 PUFA has a positive effect on small nerve fibre regeneration with an increase in the small nerve fiber measure of corneal nerve fibre length (CNFL). Further randomized control trials with a longer duration of treatment, higher n-3 PUFA doses, and more rigorous neuropathy measures are needed to provide a definitive understanding of the benefits of n-3 PUFA supplementation in DSP.
Collapse
Affiliation(s)
- Deepak Menon
- Ellen and Martin Prosserman Centre for Neuromuscular Disorders. Division of Neurology, University Health Network, University of Toronto, Toronto, Canada
| | - Evan J H Lewis
- Lunenfeld-Tanenbaum Research Institute, Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada
| | - Bruce A Perkins
- Lunenfeld-Tanenbaum Research Institute, Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada
| | - Vera Bril
- Ellen and Martin Prosserman Centre for Neuromuscular Disorders. Division of Neurology, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
32
|
Kergomard J, Carrière F, Barouh N, Villeneuve P, Vié V, Bourlieu C. Digestibility and oxidative stability of plant lipid assemblies: An underexplored source of potentially bioactive surfactants? Crit Rev Food Sci Nutr 2021:1-20. [PMID: 34839771 DOI: 10.1080/10408398.2021.2005532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Most lipids in our diet come under the form of triacylglycerols that are often redispersed and stabilized by surfactants in processed foods. In plant however, lipid assemblies constitute interesting sources of natural bioactive and functional ingredients. In most photosynthetic sources, polar lipids rich in ω3 fatty acids are concentrated. The objective of this review is to summarize all the knowledge about the physico-chemical composition, digestive behavior and oxidative stability of plant polar lipid assemblies to emphasize their potential as functional ingredients in human diet and their potentialities to substitute artificial surfactants/antioxidants. The specific composition of plant membrane assemblies is detailed, including plasma membranes, oil bodies, and chloroplast; emphasizing its concentration in phospholipids, galactolipids, peculiar proteins, and phenolic compounds. These molecular species are hydrolyzed by specific digestive enzymes in the human gastrointestinal tract and reduced the hydrolysis of triacylglycerols and their subsequent absorption. Galactolipids specifically can activate ileal break and intrinsically present an antioxidant (AO) activity and metal chelating activity. In addition, their natural association with phenolic compounds and their physical state (Lα state of digalactosyldiacylglycerols) in membrane assemblies can enhance their stability to oxidation. All these elements make plant membrane molecules and assemblies very promising components with a wide range of potential applications to vectorize ω3 polyunsaturated fatty acids, and equilibrate human diet.
Collapse
Affiliation(s)
- Jeanne Kergomard
- INRAE/UM/Institut Agro, UMR 1208 IATE, Montpellier France.,IPR Institute of Physics, UMR UR1 CNRS 6251, Rennes 1 University, Rennes, France
| | - Frédéric Carrière
- Aix Marseille Université, CNRS, UMR7281 Bioénergétique et lngénierie des Protéines, Marseille, France
| | | | | | - Véronique Vié
- IPR Institute of Physics, UMR UR1 CNRS 6251, Rennes 1 University, Rennes, France
| | | |
Collapse
|
33
|
Couto D, Melo T, Conde TA, Moreira ASP, Ferreira P, Costa M, Silva J, Domingues R, Domingues P. Food grade extraction of Chlorella vulgaris polar lipids: A comparative lipidomic study. Food Chem 2021; 375:131685. [PMID: 34865930 DOI: 10.1016/j.foodchem.2021.131685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/04/2022]
Abstract
Glycolipids and phospholipids are the main reservoirs of omega polyunsaturated fatty acids in microalgae. Their extraction for the food industry requires food grade solvents, however, the use of these solvents is generally associated with low extraction yields. In this study, we evaluated the lipid extraction efficiency of food-grade ethanol, ultrasound-assisted ethanol (UAE) and dichloromethane/methanol (DCM) from Chlorella vulgaris cultivated under autotrophic and heterotrophic conditions. Yields of lipids, fatty acids (FA), and complex lipid profiles were determined by gravimetry, GC-MS, and LC-MS/MS, respectively. UAE and DCM showed the highest lipid yields with similar purity. The FA profiles were identical for all extracts. The polar lipidome of the DCM and UAE extracts was comparable, while the EtOH extracts were significantly different. These results demonstrated the effectiveness of UAE extraction to obtain high yields of polar lipids and omega-3 and -6-rich extracts from C. vulgaris that can be used for food applications.
Collapse
Affiliation(s)
- Daniela Couto
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tiago A Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Ana S P Moreira
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CICECO Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Paula Ferreira
- CICECO Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Margarida Costa
- Allmicroalgae Natural Products S.A, R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal
| | - Joana Silva
- Allmicroalgae Natural Products S.A, R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal
| | - Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| |
Collapse
|
34
|
Craig WJ, Mangels AR, Fresán U, Marsh K, Miles FL, Saunders AV, Haddad EH, Heskey CE, Johnston P, Larson-Meyer E, Orlich M. The Safe and Effective Use of Plant-Based Diets with Guidelines for Health Professionals. Nutrients 2021; 13:4144. [PMID: 34836399 PMCID: PMC8623061 DOI: 10.3390/nu13114144] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Plant-based diets, defined here as including both vegan and lacto-ovo-vegetarian diets, are growing in popularity throughout the Western world for various reasons, including concerns for human health and the health of the planet. Plant-based diets are more environmentally sustainable than meat-based diets and have a reduced environmental impact, including producing lower levels of greenhouse gas emissions. Dietary guidelines are normally formulated to enhance the health of society, reduce the risk of chronic diseases, and prevent nutritional deficiencies. We reviewed the scientific data on plant-based diets to summarize their preventative and therapeutic role in cardiovascular disease, cancer, diabetes, obesity, and osteoporosis. Consuming plant-based diets is safe and effective for all stages of the life cycle, from pregnancy and lactation, to childhood, to old age. Plant-based diets, which are high in fiber and polyphenolics, are also associated with a diverse gut microbiota, producing metabolites that have anti-inflammatory functions that may help manage disease processes. Concerns about the adequate intake of a number of nutrients, including vitamin B12, calcium, vitamin D, iron, zinc, and omega-3 fats, are discussed. The use of fortified foods and/or supplements as well as appropriate food choices are outlined for each nutrient. Finally, guidelines are suggested for health professionals working with clients consuming plant-based diets.
Collapse
Affiliation(s)
- Winston J. Craig
- Center for Nutrition, Healthy Lifestyles, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92354, USA; (F.L.M.); (E.H.H.); (C.E.H.); (P.J.)
| | | | - Ujué Fresán
- eHealth Group, Instituto de Salud Global Barcelona (ISGlobal), 08036 Barcelona, Spain;
| | - Kate Marsh
- Private Practice, Chatswood, NSW 2067, Australia;
| | - Fayth L. Miles
- Center for Nutrition, Healthy Lifestyles, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92354, USA; (F.L.M.); (E.H.H.); (C.E.H.); (P.J.)
- School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA;
| | - Angela V. Saunders
- Nutrition Insights, Sanitarium Health Food Company, Berkeley Vale, NSW 2261, Australia;
| | - Ella H. Haddad
- Center for Nutrition, Healthy Lifestyles, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92354, USA; (F.L.M.); (E.H.H.); (C.E.H.); (P.J.)
| | - Celine E. Heskey
- Center for Nutrition, Healthy Lifestyles, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92354, USA; (F.L.M.); (E.H.H.); (C.E.H.); (P.J.)
| | - Patricia Johnston
- Center for Nutrition, Healthy Lifestyles, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92354, USA; (F.L.M.); (E.H.H.); (C.E.H.); (P.J.)
| | - Enette Larson-Meyer
- Human Nutrition, Foods, and Exercise Virginia Tech, Blacksburg, VA 24061, USA;
| | - Michael Orlich
- School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA;
| |
Collapse
|
35
|
Lane KE, Wilson M, Hellon TG, Davies IG. Bioavailability and conversion of plant based sources of omega-3 fatty acids - a scoping review to update supplementation options for vegetarians and vegans. Crit Rev Food Sci Nutr 2021; 62:4982-4997. [PMID: 33576691 DOI: 10.1080/10408398.2021.1880364] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Omega-3 (n-3) fatty acids offer a plethora of health benefits with the majority of evidence showing beneficial effects from marine sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Emerging research examines the effects of n-3 dietary intakes on blood markers of vegetarians and vegans, but official guidance for plant based marine alternatives is yet to reach consensus. This scoping review provides an overview of trials investigating bioavailability of plant n-3 oils including EPA and DHA conversion. Searches of MEDLINE, PubMed, CINAHL and clinical trial registers identified randomized controlled trials from January 2010 to September 2020. The 'Omega-3 index' (EPA + DHA (O3I)), was used to compare n-3 status, metabolic conversion and bioavailability. Two reviewers independently screened articles and extracted data on outcomes. From 639 identified articles, screening and eligibility checks gave 13 articles. High dose flaxseed or echium seed oil supplements, provided no increases to O3I and some studies showed reductions. However, microalgal oil supplementation increased O3I levels for all studies. Findings indicate preliminary advice for vegetarians and vegans is regular consumption of preformed EPA and DHA supplements may help maintain optimal O3I. Further studies should establish optimum EPA and DHA ratios and dosages in vegetarian and vegan populations.
Collapse
Affiliation(s)
- Katie E Lane
- School of Sport and Exercise Sciences, Faculty of Science, Liverpool John Moores University, Research Institute for Sport and Exercise Sciences, Liverpool, UK
| | - Megan Wilson
- School of Sport and Exercise Sciences, Faculty of Science, Liverpool John Moores University, Research Institute for Sport and Exercise Sciences, Liverpool, UK
| | - Teuta G Hellon
- School of Medicine, University of Central Lancashire, Liverpool, UK
| | - Ian G Davies
- School of Sport and Exercise Sciences, Faculty of Science, Liverpool John Moores University, Research Institute for Sport and Exercise Sciences, Liverpool, UK
| |
Collapse
|
36
|
Yang J, Ciftci ON. In vitro bioaccessibility of fish oil-loaded hollow solid lipid micro- and nanoparticles. Food Funct 2020; 11:8637-8647. [PMID: 32936172 DOI: 10.1039/d0fo01591a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fish oil-loaded hollow solid lipid micro- and nanoparticles were prepared by atomization of the CO2-expanded lipid mixture. The obtained particles were spherical and free-flowing with an average particle size of 6.9 μm. Fish oil loading efficiency was achieved at 92.3% (w/w). The in vitro digestive stability, lipid digestibility and EPA and DHA bioaccessibility of the fish oil-loaded particles were examined using an in vitro sequential digestion model. The mean particle diameter increased markedly after oral (15.2 μm) and gastric (32.4 μm) digestion and then decreased after the small intestinal stage (24.0 μm). Fish oil-loaded particles remained spherical and intact but mainly agglomerated on the top phase throughout the oral and gastric digestion. However, a mixed digesta was formed after the small intestinal digestion, which contained digested broken particle pieces, undigested fish oil-loaded particles, free fatty acids, monoacylglycerols and micelles. The extent of lipolysis was significantly increased for the 30% fish oil-loaded particles as compared to physical mixtures of empty hollow solid lipid particles or bulk FHSO and fish oil (p < 0.05). Moreover, EPA and DHA bioaccessibility was significantly improved from 9.7 to 18.2% with the 30% fish oil-loaded particles (p < 0.05).
Collapse
Affiliation(s)
- Junsi Yang
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA.
| | - Ozan N Ciftci
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA.
| |
Collapse
|
37
|
McHugh J, Dalal M, Agarwal N. From Preconception Care to the First Day of School: Transforming the Health of New Families With Lifestyle Medicine. Am J Lifestyle Med 2020; 14:532-540. [PMID: 32922238 DOI: 10.1177/1559827620912703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lifestyle medicine holds great promise to transform health during the period from preconception to early childhood. Genetic, epigenetic, nutritional, and environmental factors have lifetime impact on the newborn and family. Little is known about the full potential of lifestyle medicine to improve maternal, child, and family health. Additionally, health care providers face limits in time and may have gaps in knowledge, that preclude discussion of the impact lifestyle medicine can the mother, newborn, and family. Greater understanding of the potential impact of lifestyle medicine provides opportunities to identify current deficiencies in care and areas for improvement and highlights the need for further research. This article reviews current evidence supporting the 6 pillars of lifestyle medicine: nutrition, physical activity, sleep, avoiding risky substance use, stress management and social connectedness as applied to maternal child care from preconception to early childhood, examines the current state of practice, and identifies opportunities for both practice change and further research. Rather than view each component of care in isolation, viewing care as a continuum from preconception to childhood can best establish healthy habits and optimize outcomes for the entire family.
Collapse
Affiliation(s)
- John McHugh
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Michelle Dalal
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Neeta Agarwal
- Indiana University, School of Medicine, Indianapolis, Indiana
| |
Collapse
|
38
|
Boccanegra B, Verhaart IEC, Cappellari O, Vroom E, De Luca A. Safety issues and harmful pharmacological interactions of nutritional supplements in Duchenne muscular dystrophy: considerations for Standard of Care and emerging virus outbreaks. Pharmacol Res 2020; 158:104917. [PMID: 32485610 PMCID: PMC7261230 DOI: 10.1016/j.phrs.2020.104917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
At the moment, little treatment options are available for Duchenne muscular dystrophy (DMD). The absence of the dystrophin protein leads to a complex cascade of pathogenic events in myofibres, including chronic inflammation and oxidative stress as well as altered metabolism. The attention towards dietary supplements in DMD is rapidly increasing, with the aim to counteract pathology-related alteration in nutrient intake, the consequences of catabolic distress or to enhance the immunological response of patients as nowadays for the COVID-19 pandemic emergency. By definition, supplements do not exert therapeutic actions, although a great confusion may arise in daily life by the improper distinction between supplements and therapeutic compounds. For most supplements, little research has been done and little evidence is available concerning their effects in DMD as well as their preventing actions against infections. Often these are not prescribed by clinicians and patients/caregivers do not discuss the use with their clinical team. Then, little is known about the real extent of supplement use in DMD patients. It is mistakenly assumed that, since compounds are of natural origin, if a supplement is not effective, it will also do no harm. However, supplements can have serious side effects and also have harmful interactions, in terms of reducing efficacy or leading to toxicity, with other therapies. It is therefore pivotal to shed light on this unclear scenario for the sake of patients. This review discusses the supplements mostly used by DMD patients, focusing on their potential toxicity, due to a variety of mechanisms including pharmacodynamic or pharmacokinetic interactions and contaminations, as well as on reports of adverse events. This overview underlines the need for caution in uncontrolled use of dietary supplements in fragile populations such as DMD patients. A culture of appropriate use has to be implemented between clinicians and patients' groups.
Collapse
Affiliation(s)
- Brigida Boccanegra
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Ingrid E C Verhaart
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Duchenne Parent Project, the Netherlands
| | - Ornella Cappellari
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Elizabeth Vroom
- Duchenne Parent Project, the Netherlands; World Duchenne Organisation (UPPMD), the Netherlands
| | - Annamaria De Luca
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
39
|
Rosario D, Boren J, Uhlen M, Proctor G, Aarsland D, Mardinoglu A, Shoaie S. Systems Biology Approaches to Understand the Host-Microbiome Interactions in Neurodegenerative Diseases. Front Neurosci 2020; 14:716. [PMID: 32733199 PMCID: PMC7360858 DOI: 10.3389/fnins.2020.00716] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases (NDDs) comprise a broad range of progressive neurological disorders with multifactorial etiology contributing to disease pathophysiology. Evidence of the microbiome involvement in the gut-brain axis urges the interest in understanding metabolic interactions between the microbiota and host physiology in NDDs. Systems Biology offers a holistic integrative approach to study the interplay between the different biologic systems as part of a whole, and may elucidate the host–microbiome interactions in NDDs. We reviewed direct and indirect pathways through which the microbiota can modulate the bidirectional communication of the gut-brain axis, and explored the evidence of microbial dysbiosis in Alzheimer’s and Parkinson’s diseases. As the gut microbiota being strongly affected by diet, the potential approaches to targeting the human microbiota through diet for the stimulation of neuroprotective microbial-metabolites secretion were described. We explored the potential of Genome-scale metabolic models (GEMs) to infer microbe-microbe and host-microbe interactions and to identify the microbiome contribution to disease development or prevention. Finally, a systemic approach based on GEMs and ‘omics integration, that would allow the design of sustainable personalized anti-inflammatory diets in NDDs prevention, through the modulation of gut microbiota was described.
Collapse
Affiliation(s)
- Dorines Rosario
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Jan Boren
- Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Gordon Proctor
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Dag Aarsland
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.,Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.,Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
40
|
Semba RD. Perspective: The Potential Role of Circulating Lysophosphatidylcholine in Neuroprotection against Alzheimer Disease. Adv Nutr 2020; 11:760-772. [PMID: 32190891 PMCID: PMC7360459 DOI: 10.1093/advances/nmaa024] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/02/2020] [Accepted: 02/19/2020] [Indexed: 12/28/2022] Open
Abstract
Alzheimer disease (AD), the most common cause of dementia, is a progressive disorder involving cognitive impairment, loss of learning and memory, and neurodegeneration affecting wide areas of the cerebral cortex and hippocampus. AD is characterized by altered lipid metabolism in the brain. Lower concentrations of long-chain PUFAs have been described in the frontal cortex, entorhinal cortex, and hippocampus in the brain in AD. The brain can synthesize only a few fatty acids; thus, most fatty acids must enter the brain from the blood. Recent studies show that PUFAs such as DHA (22:6) are transported across the blood-brain barrier (BBB) in the form of lysophosphatidylcholine (LPC) via a specific LPC receptor at the BBB known as the sodium-dependent LPC symporter 1 (MFSD2A). Higher dietary PUFA intake is associated with decreased risk of cognitive decline and dementia in observational studies; however, PUFA supplementation, with fatty acids esterified in triacylglycerols did not prevent cognitive decline in clinical trials. Recent studies show that LPC is the preferred carrier of PUFAs across the BBB into the brain. An insufficient pool of circulating LPC containing long-chain fatty acids could potentially limit the supply of long-chain fatty acids to the brain, including PUFAs such as DHA, and play a role in the pathobiology of AD. Whether adults with low serum LPC concentrations are at greater risk of developing cognitive decline and AD remains a major gap in knowledge. Preventing and treating cognitive decline and the development of AD remain a major challenge. The LPC pathway is a promising area for future investigators to identify modifiable risk factors for AD.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
41
|
Szabó Z, Marosvölgyi T, Szabó É, Bai P, Figler M, Verzár Z. The Potential Beneficial Effect of EPA and DHA Supplementation Managing Cytokine Storm in Coronavirus Disease. Front Physiol 2020; 11:752. [PMID: 32636763 PMCID: PMC7318894 DOI: 10.3389/fphys.2020.00752] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Zoltán Szabó
- Faculty of Health Sciences, Institute of Nutritional Sciences and Dietetics, University of Pecs, Pecs, Hungary
| | - Tamás Marosvölgyi
- Medical School, Institute of Bioanalysis, University of Pecs, Pecs, Hungary
| | - Éva Szabó
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Pecs, Hungary
| | - Péter Bai
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary.,Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Mária Figler
- Faculty of Health Sciences, Institute of Nutritional Sciences and Dietetics, University of Pecs, Pecs, Hungary.,2nd Department of Internal Medicine and Nephrology Centre, Clinical Centre, University of Pecs, Pecs, Hungary
| | - Zsófia Verzár
- Faculty of Health Sciences, Institute of Nutritional Sciences and Dietetics, University of Pecs, Pecs, Hungary
| |
Collapse
|
42
|
Charles CN, Swai H, Msagati T, Chacha M. Development of a Natural Product Rich in Bioavailable Omega-3 DHA from Locally Available Ingredients for Prevention of Nutrition Related Mental Illnesses. J Am Coll Nutr 2020; 39:720-732. [PMID: 32191568 DOI: 10.1080/07315724.2020.1727381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objectives: Poor mental health remains a serious public concern worldwide. The most vulnerable individuals are children and adolescents in developing countries. Nutritional deficiency of long-chain omega-3 fatty acids, particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have long been recognized as a major contributing factor for mental health illnesses. Provision of ready-to-use natural product rich in preformed Omega-3 DHA and EPA could address this problem. However, most commonly used products are expensive and contain less or no preformed Omega-3 DHA and EPA, making them less suitable for prevention of mental illnesses in resource-poor countries. The main objective of this study was to develop a natural product rich in preformed Omega-3 DHA and EPA from locally available ingredients.Methods: Linear programing (LP) was used to formulate a natural product rich in preformed Omega-3 DHA and other essential nutrients using locally available ingredients other than fish and dairy products. Laboratory analysis was then performed to validate the nutritional value of the LP-formulation using standard analytical methods. The relative difference between the LP tool calculated values, and the laboratory-analyzed values were calculated. Sensory testing was also done to evaluate consumer acceptance of the final product.Results: Optimal formulation contained about 220 mg of preformed Omega-3 DHA + EPA, enough to meet the RDI for children aged 2-10 years. The LP analysis further showed that the cost of the developed product is USD 0.15/100 g, which is 50% lower than that of Plumpy'nut. Laboratory analysis revealed similar results as that of LP at P = 0.05.Conclusions: These findings indicate that ready-to-use natural food rich in preformed DHA and EPA can be developed from locally available ingredients.
Collapse
Affiliation(s)
- Christina N Charles
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Hulda Swai
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Titus Msagati
- College of Science, Engineering and Technology, University of South Africa (UNISA), Pretoria, South Africa
| | - Musa Chacha
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
43
|
Lane KE, Zhou Q, Robinson S, Li W. The composition and oxidative stability of vegetarian omega-3 algal oil nanoemulsions suitable for functional food enrichment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:695-704. [PMID: 31602647 DOI: 10.1002/jsfa.10069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Long chain omega-3 polyunsaturated fatty acid (LCn3PUFA) nanoemulsion enriched foods offer the potential to address habitually low oily fish intakes. Nanoemulsions increase LCn3PUFA bioavailability, although they may cause lipid oxidation. The present study examined the oxidative stability of LCn3PUFA algal oil-in-water nanoemulsions created by ultrasound using natural and synthetic emulsifiers during 5 weeks of storage at 4, 20 and 40 °C. Fatty acid composition, droplet size ranges and volatile compounds were analysed. RESULTS No significant differences were found for fatty acid composition at various temperatures and storage times. Lecithin nanoemulsions had significantly larger droplet size ranges at baseline and during storage, regardless of temperatures. Although combined Tween 40 and lecithin nanoemulsions had low initial droplet size ranges, there were significant increases at 40 °C after 5 weeks of storage. Gas chromatograms identified hexanal and propanal as predominant volatile compounds, along with 2-ethylfuran, propan-3-ol and valeraldehyde. The Tween 40 only nanoemulsion sample showed the formation of lower concentrations of volatiles compared to lecithin samples. The formation of hexanal and propanal remained stable at lower temperatures, although higher concentrations were found in nanoemulsions than in bulk oil. The lecithin only sample had formation of higher concentrations of volatiles at increased temperatures, despite having significantly larger droplet size ranges than the other samples. CONCLUSION Propanal and hexanal were the most prevalent of five volatile compounds detected in bulk oil and lecithin and/or Tween 40 nanoemulsions. Oxidation compounds remained more stable at lower temperatures, indicating suitability for the enrichment of refrigerated foods. Further research aiming to evaluate the oxidation stability of these systems within food matrices is warranted. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Katie E Lane
- Liverpool John Moores University, School of Sport and Exercise Sciences, Faculty of Science, Liverpool, UK
| | - Qiqian Zhou
- Institute of Food Science and Innovation, University of Chester, Chester, UK
| | - Sharon Robinson
- NOW Food Research Centre, University of Chester, Chester, UK
| | - Weili Li
- Institute of Food Science and Innovation, University of Chester, Chester, UK
| |
Collapse
|
44
|
Algae Oil Treatment Protects Retinal Ganglion Cells (RGCs) via ERK Signaling Pathway in Experimental Optic Nerve Ischemia. Mar Drugs 2020; 18:md18020083. [PMID: 32012745 PMCID: PMC7074556 DOI: 10.3390/md18020083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/17/2022] Open
Abstract
Background: We investigated the therapeutic effects and related mechanisms of algae oil (ALG) to protect retinal ganglion cells (RGCs) in a rat model of anterior ischemic optic neuropathy (rAION). Methods: Rats were daily gavaged with ALG after rAION induction for seven days. The therapeutic effects of ALG on rAION were evaluated using flash visual evoked potentials (FVEPs), retrograde labeling of RGCs, TUNEL assay of the retina, and ED1 staining of optic nerves (ONs). The levels of inducible nitric oxide synthase (iNOS), IL-1β, TNF-α, Cl-caspase-3, ciliary neurotrophic factor (CNTF), and p-ERK were analyzed by using western blots. Results: Protection of visual function in FVEPs amplitude was noted, with a better preservation of the P1–N2 amplitude in the ALG-treated group (p = 0.032) than in the rAION group. The density of RGCs was 2.4-fold higher in the ALG-treated group compared to that in the rAION group (p < 0.0001). The number of ED1-positive cells in ONs was significantly reduced 4.1-fold in the ALG-treated group compared to those in the rAION group (p = 0.029). The number of apoptotic RGCs was 3.2-fold lower in number in the ALG-treated group (p = 0.001) than that in the rAION group. The ALG treatment inhibited ERK activation to reduce the levels of iNOS, IL-1β, TNF-α, and Cl-caspase-3 and to increase the level of CNTF in the rAION model. Conclusion: The treatment with ALG after rAION induction inhibits ERK activation to provide both anti-inflammatory and antiapoptotic effects in rAION.
Collapse
|
45
|
Nova P, Pimenta-Martins A, Laranjeira Silva J, Silva AM, Gomes AM, Freitas AC. Health benefits and bioavailability of marine resources components that contribute to health - what's new?. Crit Rev Food Sci Nutr 2020; 60:3680-3692. [PMID: 31920109 DOI: 10.1080/10408398.2019.1704681] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The strict connection between nutritional intake and health leads to a necessity of understanding the beneficial and protective role of healthy nutrients and foods. The marine environment is a source of a plethora of many organisms with unique properties, extremely rich in bioactive compounds and with remarkable potential for medical, industrial and biotechnological applications. Marine organisms are an extreme valuable source of functional ingredients such as polysaccharides, vitamins, minerals, pigments, enzymes, proteins and peptides, polyunsaturated fatty acids (PUFA), phenolic compounds and other secondary metabolites that prevent or have the potential to treat several diseases given their cardiovascular protective, anti-inflammatory, anti-hypertensive, anti-oxidant, anti-coagulant, anti-proliferative and anti-diabetic activities. This review provides an overview on the current advances regarding health benefits of marine bioactive compounds on several diseases and on human gut microbiota. In addition, it is discussed a crucial factor that is related to the effectiveness of these compounds on human organism namely its real bioavailability.
Collapse
Affiliation(s)
- Paulo Nova
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnlogia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ana Pimenta-Martins
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnlogia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | | | | | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnlogia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ana Cristina Freitas
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnlogia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
46
|
Increased Cellular Uptake of Polyunsaturated Fatty Acids and Phytosterols from Natural Micellar Oil. Nutrients 2020; 12:nu12010150. [PMID: 31948089 PMCID: PMC7019862 DOI: 10.3390/nu12010150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022] Open
Abstract
The transport of hydrophobic compounds to recipient cells is a critical step in nutrient supplementation. Here, we tested the effect of phospholipid-based emulsification on the uptake of hydrophobic compounds into various tissue culture cell lines. In particular, the uptake of ω-3 fatty acids from micellar or nonmicellar algae oil into cell models for enterocytes, epithelial cells, and adipocytes was tested. Micellization of algae oil did not result in adverse effects on cell viability in the target cells. In general, both micellar and nonmicellar oil increased intracellular docosahexaenoic acid (DHA) levels. However, micellar oil was more effective in terms of augmenting the intracellular levels of total polyunsaturated fatty acids (PUFAs) than nonmicellar oil. These effects were rather conserved throughout the cells tested, indicating that fatty acids from micellar oils are enriched by mechanisms independent of lipases or lipid transporters. Importantly, the positive effect of emulsification was not restricted to the uptake of fatty acids. Instead, the uptake of phytosterols from phytogenic oils into target cells also increased after micellization. Taken together, phospholipid-based emulsification is a straightforward, effective, and safe approach to delivering hydrophobic nutrients, such as fatty acids or phytosterols, to a variety of cell types in vitro. It is proposed that this method of emulsification is suitable for the effective supplementation of numerous hydrophobic nutrients.
Collapse
|
47
|
Charles CN, Msagati T, Swai H, Chacha M. Microalgae: An alternative natural source of bioavailable omega-3 DHA for promotion of mental health in East Africa. SCIENTIFIC AFRICAN 2019. [DOI: 10.1016/j.sciaf.2019.e00187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
48
|
Shapira N. The Metabolic Concept of Meal Sequence vs. Satiety: Glycemic and Oxidative Responses with Reference to Inflammation Risk, Protective Principles and Mediterranean Diet. Nutrients 2019; 11:E2373. [PMID: 31590352 PMCID: PMC6835480 DOI: 10.3390/nu11102373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/31/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
With increasing exposure to eating opportunities and postprandial conditions becoming dominant states, acute effects of meals are garnering interest. In this narrative review, meal components, combinations and course sequence were questioned vis-à-vis resultant postprandial responses, including satiety, glycemic, oxidative and inflammatory risks/outcomes vs. protective principles, with reference to the Mediterranean diet. Representative scientific literature was reviewed and explained, and corresponding recommendations discussed and illustrated. Starting meals with foods, courses and/or preloads high in innate/added/incorporated water and/or fibre, followed by protein-based courses, delaying carbohydrates and fatty foods and minimizing highly-processed/sweetened hedonic foods, would increase satiety-per-calorie vs. obesogenic passive overconsumption. Similarly, starting with high-water/fibre dishes, followed by high-protein foods, oils/fats, and delayed/reduced slowly-digested whole/complex carbohydrate sources, optionally closing with simpler carbohydrates/sugars, would reduce glycaemic response. Likewise, starting with foods high in innate/added/incorporated water/fibre/antioxidants, high monounsaturated fatty acid foods/oils, light proteins and whole/complex carbohydrate foods, with foods/oils low in n-6 polyunsaturated fatty acids (PUFA) and n-6:n-3 PUFA ratios, and minimal-to-no red meat and highly/ultra-processed foods/lipids, would reduce oxidative/inflammatory response. Pyramids illustrating representative meal sequences, from most-to-least protective foods, visually communicate similarities between axes, suggesting potential unification for optimal meal sequence, consistent with anti-inflammatory nutrition and Mediterranean diet/meal principles, warranting application and outcome evaluation.
Collapse
|
49
|
Dąbrowska M, Maciejczyk E, Kalemba D. Rose Hip Seed Oil: Methods of Extraction and Chemical Composition. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mariola Dąbrowska
- Lodz University of TechnologyInstitute of General Food ChemistryStefanowskiego Str. 4/10Lodz 90‐924Poland
| | - Ewa Maciejczyk
- Lodz University of TechnologyInstitute of General Food ChemistryStefanowskiego Str. 4/10Lodz 90‐924Poland
| | - Danuta Kalemba
- Lodz University of TechnologyInstitute of General Food ChemistryStefanowskiego Str. 4/10Lodz 90‐924Poland
| |
Collapse
|
50
|
Sicherheit und Risiken vegetarischer und veganer Ernährung in Schwangerschaft, Stillzeit und den ersten Lebensjahren. Monatsschr Kinderheilkd 2018. [DOI: 10.1007/s00112-018-0554-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|