1
|
Ren Y, Yao D, Wu F, Xiao J, Ma L, Zhang Y, Zhang Z, He G, Deng W, Qin B, Lei N, Wang F. Tolerogenic nanovaccines for the treatment of type I allergic diseases. J Control Release 2025; 380:664-685. [PMID: 39955034 DOI: 10.1016/j.jconrel.2025.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/28/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
The high prevalence of type I allergic diseases such as allergic rhinitis, allergic asthma, food allergies, allergic conjunctivitis, and atopic dermatitis has emerged as a significant public health concern globally. Failure of immune tolerance to ordinarily harmless substances or stimulation, and subsequent induction of T helper 2 cells by antigen-presenting cells evokes the allergic immune response, which results in persistent inflammation, tissue damage, and organ function impairment. Current therapeutic approaches for allergic diseases include avoiding allergen exposure, corticosteroids, biologics, etc. However, these strategies only relieve allergic symptoms but hardly prevent the deteriorative progression and may have adverse effects on patients. With the rapid development of nanotechnology and immunology, emerging tolerogenic nanovaccines represent novel approaches with the potential to cure type I allergic diseases rather than merely alleviate symptoms. In this review, we expound the burgeoning field of tolerogenic nanovaccines against type I allergic diseases, highlight various types of antigens employed in constructing allergen extracts, protein/peptide and nucleic acid-based tolerogenic nanovaccines, and discuss their application in allergic rhinitis, allergic asthma, food allergies, allergic conjunctivitis, and atopic dermatitis.
Collapse
Affiliation(s)
- Yuxuan Ren
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Daoke Yao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Fang Wu
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Xiao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Lixia Ma
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yong Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhihui Zhang
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guangjie He
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Wengjing Deng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Bo Qin
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Ningjing Lei
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Fazhan Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
2
|
Kotsubo Y, Hara A, Hayashi R, Iwasa Y. Age-dependence of food allergy due to decreased supply of naïve T cells. J Theor Biol 2025; 602-603:112060. [PMID: 39929322 DOI: 10.1016/j.jtbi.2025.112060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/06/2025] [Accepted: 01/28/2025] [Indexed: 03/01/2025]
Abstract
Food allergies to eggs and cow's milk are common during infancy but often undergo desensitization during childhood. To investigate the age dependence of food allergies, we develop a simple mathematical model focusing on T helper 2 cells (Th2) causing allergies and induced regulatory T cells (iTreg) suppressing them. We assume as follows: Both types of cells differentiate from naïve T cells reactive to specific food allergens, with the rate of supply from the thymus decreasing with age. Naïve T cells are activated by allergens in peripheral tissues, differentiating into both Th2 and iTreg cells. The activation rate of Th2 cells is reduced by iTreg cells. Th2 cells promote allergies while iTreg cells help mitigate them. Analyses show that food allergies may develop at one age and resolve at a later age. Negative selection in the thymus reduces the number of naïve T cells that react to proteins resembling components of the body. As a result, allergies to these substances tend to start and resolve earlier in life than those to dissimilar materials. Food allergy starting at an older age tends to have a longer duration if the rate of naïve T cell supply decreases according to a hyperbolic (instead of exponential) function of age.
Collapse
Affiliation(s)
- Yuna Kotsubo
- Department of Biology, Faculty of Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Akane Hara
- School of Pharmacy and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama City 930-0194, Japan.
| | - Rena Hayashi
- Department of Biology, Faculty of Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yoh Iwasa
- Department of Biology, Faculty of Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
3
|
Abo-Zaid MA, Elsapagh RM, Sultan NS, Mawkili W, Hegazy MM, Ismail AH. Allergy Treatment: A Comprehensive Review of Nanoparticle-based Allergen Immunotherapy. FRONT BIOSCI-LANDMRK 2025; 30:26550. [PMID: 40152375 DOI: 10.31083/fbl26550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 03/29/2025]
Abstract
Allergic disorders rising in prevalence globally, affecting a substantial proportion of individuals in industrialized nations. The imbalance in the immune system, characterized by elevated allergen-specific T helper 2 (Th2) cells and immunoglobulin E (IgE) antibodies, is a key factor in allergy development. Allergen-specific immunotherapy (AIT) is the only treatment capable of alleviating allergic symptoms, preventing new sensitizations, and reducing asthma risk in allergic rhinitis patients. Traditional AIT, however, faces challenges such as frequent administration, adverse effects, and inconsistent patient outcomes. Nanoparticle-based approaches have emerged as a promising strategy to enhance AIT. This review explores the utilization of nanoparticles in AIT, highlighting their ability to interact with the immune system and improve therapeutic outcomes. Various types of nanoparticles, including polyesters, polysaccharide polymers, liposomes, protamine-based nanoparticles (NPs), and polyanhydrides, have been employed as adjuvants or carriers to enhance AIT's efficacy and safety. Nanoparticles offer advantages such as allergen protection, improved immune response modulation, targeted cell delivery, and reduced side effects. This review provides an overview of the current landscape of nanoparticle-based allergen immunotherapy, discussing its potential to revolutionize allergy treatment compared to traditional immunotherapy.
Collapse
Affiliation(s)
- Mabrouk A Abo-Zaid
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, 45142 Jazan, Kingdom of Saudi Arabia
| | | | - Nourhan S Sultan
- Biotechnology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Wedad Mawkili
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, 45142 Jazan, Kingdom of Saudi Arabia
| | - Maysa M Hegazy
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, 45142 Jazan, Kingdom of Saudi Arabia
| | - Ahmed H Ismail
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, 45142 Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Rojas M, Acosta-Ampudia Y, Heuer LS, Zang W, M Monsalve D, Ramírez-Santana C, Anaya JM, M Ridgway W, A Ansari A, Gershwin ME. Antigen-specific T cells and autoimmunity. J Autoimmun 2024; 148:103303. [PMID: 39141985 DOI: 10.1016/j.jaut.2024.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Autoimmune diseases (ADs) showcase the intricate balance between the immune system's protective functions and its potential for self-inflicted damage. These disorders arise from the immune system's erroneous targeting of the body's tissues, resulting in damage and disease. The ability of T cells to distinguish between self and non-self-antigens is pivotal to averting autoimmune reactions. Perturbations in this process contribute to AD development. Autoreactive T cells that elude thymic elimination are activated by mimics of self-antigens or are erroneously activated by self-antigens can trigger autoimmune responses. Various mechanisms, including molecular mimicry and bystander activation, contribute to AD initiation, with specific triggers and processes varying across the different ADs. In addition, the formation of neo-epitopes could also be implicated in the emergence of autoreactivity. The specificity of T cell responses centers on the antigen recognition sequences expressed by T cell receptors (TCRs), which recognize peptide fragments displayed by major histocompatibility complex (MHC) molecules. The assortment of TCR gene combinations yields a diverse array of T cell populations, each with distinct affinities for self and non-self antigens. However, new evidence challenges the traditional notion that clonal expansion solely steers the selection of higher-affinity T cells. Lower-affinity T cells also play a substantial role, prompting the "two-hit" hypothesis. High-affinity T cells incite initial responses, while their lower-affinity counterparts perpetuate autoimmunity. Precision treatments that target antigen-specific T cells hold promise for avoiding widespread immunosuppression. Nevertheless, detection of such antigen-specific T cells remains a challenge, and multiple technologies have been developed with different sensitivities while still harboring several drawbacks. In addition, elements such as human leukocyte antigen (HLA) haplotypes and validation through animal models are pivotal for advancing these strategies. In brief, this review delves into the intricate mechanisms contributing to ADs, accentuating the pivotal role(s) of antigen-specific T cells in steering immune responses and disease progression, as well as the novel strategies for the identification of antigen-specific cells and their possible future use in humans. Grasping the mechanisms behind ADs paves the way for targeted therapeutic interventions, potentially enhancing treatment choices while minimizing the risk of systemic immunosuppression.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA; Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luke S Heuer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Weici Zang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | | | - William M Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Aftab A Ansari
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
5
|
Wang Y, Liu L. Immunological factors, important players in the development of asthma. BMC Immunol 2024; 25:50. [PMID: 39060923 PMCID: PMC11282818 DOI: 10.1186/s12865-024-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Asthma is a heterogeneous disease, and its development is the result of a combination of factors, including genetic factors, environmental factors, immune dysfunction and other factors. Its specific mechanism has not yet been fully investigated. With the improvement of disease models, research on the pathogenesis of asthma has made great progress. Immunological disorders play an important role in asthma. Previously, we thought that asthma was mainly caused by an imbalance between Th1 and Th2 immune responses, but this theory cannot fully explain the pathogenesis of asthma. Recent studies have shown that T-cell subsets such as Th1 cells, Th2 cells, Th17 cells, Tregs and their cytokines contribute to asthma through different mechanisms. For the purpose of the present study, asthma was classified into distinct phenotypes based on airway inflammatory cells, such as eosinophilic asthma, characterized by predominant eosinophil aggregates, and neutrophilic asthma, characterized by predominant neutrophil aggregates. This paper will examine the immune mechanisms underlying different types of asthma, and will utilize data from animal models and clinical studies targeting specific immune pathways to inform more precise treatments for this condition.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pediatric Respiratory, Children's Medical Center,The First Hospital of Jilin University, Changchun, 130021, China
| | - Li Liu
- Department of Pediatric Respiratory, Children's Medical Center,The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Liu S, Hu X, Zhang J, Lv L, He Y, Jiang L, Qin G. Bibliometric analysis of T cells in allergic rhinitis. Heliyon 2024; 10:e32756. [PMID: 38975117 PMCID: PMC11226833 DOI: 10.1016/j.heliyon.2024.e32756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
By reviewing the relevant literature in the field of T cell and allergic rhinitis, we determined the development status, study hotspots, and research frontiers viewpoints of this field to provide a reference for researchers and clinical workers. METHODS Web of Science Core Collection (WoSCC) was applied to obtain the studies related to T cells and allergic rhinitis (AR) from 2003 to 2023, and the information extracted from these studies was analyzed using CiteSpace 6.1. R6 and VOSviewer 1.6.18. RESULTS In total, 1585 articles were collected from WoSCC, with the time set between 2003 and 2023. Overall, a growing number of articles are being published annually. The countries and institutions with the maximum publications volume are China (370, 23.34 %) and Sun Yat-sen University (34, 2.15 %). The biggest contributor to the field was Durham, Stephen R. from the UK (22, 1.39 %). The Journal of Allergy and Clinical Immunology published the most related papers in the field (88, 5.54 %). Immunotherapy, Th cells, and inflammation were found to be the research hotspots in this area of T cells and allergic rhinitis in recent years. Pathway, model, Regulatory T cells (Treg cells), regulatory B cells, immunoglobulin E,and innate lymphoid cells were the current research hotspots in this field. CONCLUSION The field of T cell and allergic rhinitis is developing rapidly, and many countries significantly contributed to this field. Most researchers in this field mainly focused on immunotherapy, Th cell, and inflammation. Pathway, model, Treg cell, regulatory B cell, immunoglobulin E,and innate lymphoid cells were the main subject of current research, and future development is expected to occur in this field.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, People's Hospital of Deyang City, Sichuan, Deyang, 618000, People's Republic of China
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Xiaoyan Hu
- Department of Pathogen Biology, School of Basic Medicine, Southwest Medical University, Luzhou, 646000, People's Republic of China
- Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Jing Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Liangge Lv
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yuxiao He
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Liang Jiang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| |
Collapse
|
7
|
Wilkinson CL, Nakano K, Grimm SA, Whitehead GS, Arao Y, Blackshear PJ, Karmaus PW, Fessler MB, Cook DN, Nakano H. GM-CSF-dependent CD301b+ lung dendritic cells confer tolerance to inhaled allergens. RESEARCH SQUARE 2024:rs.3.rs-4414130. [PMID: 38883724 PMCID: PMC11177951 DOI: 10.21203/rs.3.rs-4414130/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The severity of allergic asthma is driven by the balance between allergen-specific T regulatory (Treg) and T helper (Th)2 cells. However, it is unclear whether specific subsets of conventional dendritic cells (cDCs) promote the differentiation of these two T cell lineaeges. We have identified a subset of lung resident type 2 cDCs (cDC2s) that display high levels of CD301b and have potent Treg-inducing activity ex vivo. Single cell RNA sequencing and adoptive transfer experiments show that during allergic sensitization, many CD301b+ cDC2s transition in a stepwise manner to CD200+ cDC2s that selectively promote Th2 differentiation. GM-CSF augments the development and maintenance of CD301b+ cDC2s in vivo, and also selectively expands Treg-inducing CD301b+ cDC2s derived from bone marrow. Upon their adoptive transfer to recipient mice, lung-derived CD301b+ cDC2s confer immunological tolerance to inhaled allergens. Thus, GM-CSF maintains lung homeostasis by increasing numbers of Treg-inducing CD301b+ cDC2s.
Collapse
Affiliation(s)
- Christina L. Wilkinson
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Keiko Nakano
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Sara A. Grimm
- Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Gregory S. Whitehead
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Yukitomo Arao
- Signal Transduction Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Perry J. Blackshear
- Signal Transduction Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Peer W. Karmaus
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Michael B. Fessler
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Donald N. Cook
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Hideki Nakano
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
8
|
Li QH, Zhao QY, Yang WJ, Jiang AF, Ren CE, Meng YH. Beyond Immune Balance: The Pivotal Role of Decidual Regulatory T Cells in Unexplained Recurrent Spontaneous Abortion. J Inflamm Res 2024; 17:2697-2710. [PMID: 38707955 PMCID: PMC11070170 DOI: 10.2147/jir.s459263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Recurrent spontaneous abortion (RSA) is defined as two or more consecutive pregnancy failures, which brings tremendous stress to women of childbearing age and seriously affects family well-being. However, the reason in about 50% of cases remains unknown and is defined as unexplained recurrent spontaneous abortion (URSA). The immunological perspective in URSA has attracted widespread attention in recent years. The embryo is regarded as a semi-allogeneic graft to the mother. A successful pregnancy requires transition to an immune environment conducive to embryo survival at the maternal-fetal interface. As an important member of regulatory immunity, regulatory T (Treg) cells play a key role in regulating immune tolerance at the maternal-fetal interface. This review will focus on the phenotypic plasticity and lineage stability of Treg cells to illustrate its relationship with URSA.
Collapse
Affiliation(s)
- Qing-Hui Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261021, People’s Republic of China
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Qiu-Yan Zhao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261021, People’s Republic of China
| | - Wei-Jing Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261021, People’s Republic of China
| | - Ai-Fang Jiang
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Chun-E Ren
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Yu-Han Meng
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| |
Collapse
|
9
|
Wørzner K, Zimmermann J, Buhl R, Desoi A, Christensen D, Dietrich J, Nguyen NDNT, Lindenstrøm T, Woodworth JS, Alhakeem RS, Yu S, Ødum N, Mortensen R, Ashouri JF, Pedersen GK. Repeated immunization with ATRA-containing liposomal adjuvant transdifferentiates Th17 cells to a Tr1-like phenotype. J Autoimmun 2024; 144:103174. [PMID: 38377868 DOI: 10.1016/j.jaut.2024.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
In many autoimmune diseases, autoantigen-specific Th17 cells play a pivotal role in disease pathogenesis. Th17 cells can transdifferentiate into other T cell subsets in inflammatory conditions, however, there have been no attempts to target Th17 cell plasticity using vaccines. We investigated if autoantigen-specific Th17 cells could be specifically targeted using a therapeutic vaccine approach, where antigen was formulated in all-trans retinoic acid (ATRA)-containing liposomes, permitting co-delivery of antigen and ATRA to the same target cell. Whilst ATRA was previously found to broadly reduce Th17 responses, we found that antigen formulated in ATRA-containing cationic liposomes only inhibited Th17 cells in an antigen-specific manner and not when combined with an irrelevant antigen. Furthermore, this approach shifted existing Th17 cells away from IL-17A expression and transcriptomic analysis of sorted Th17 lineage cells from IL-17 fate reporter mice revealed a shift of antigen-specific Th17 cells to exTh17 cells, expressing functional markers associated with T cell regulation and tolerance. In the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, vaccination with myelin-specific (MOG) antigen in ATRA-containing liposomes reduced Th17 responses and alleviated disease. This highlights the potential of therapeutic vaccination for changing the phenotype of existing Th17 cells in the context of immune mediated diseases.
Collapse
Affiliation(s)
- Katharina Wørzner
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark.
| | - Julie Zimmermann
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Regitze Buhl
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Anna Desoi
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Jes Dietrich
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Thomas Lindenstrøm
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Joshua S Woodworth
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Steven Yu
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, USA
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Denmark
| | - Rasmus Mortensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Judith F Ashouri
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, USA.
| | - Gabriel K Pedersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Denmark
| |
Collapse
|
10
|
Pan Y, Zhang X, Geng H, Yu Y, Liu J, Li M, Yang H, Yuan Y, Xu Y, Wu Y, Wu G, Ma X, Cheng L. Increased Nasal Blimp1 + Treg Cells After Sublingual Immunotherapy Reflect the Efficacy of Treatment in Allergic Rhinitis. Adv Ther 2024; 41:1698-1710. [PMID: 38443650 DOI: 10.1007/s12325-024-02819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Allergen-specific immunotherapy (AIT) plays a pivotal role in altering the immune status and tissue responses in allergic rhinitis (AR). This study focuses on the impact of sublingual immunotherapy (SLIT) involving dust mite drops, exploring the modulation of regulatory T cells (Treg) and their specific marker, BLIMP1, in the nasal mucosa. METHODS Immune cells were isolated from nasal lavage fluid of patients with AR undergoing SLIT (n = 94). Treg cells were analyzed for BLIMP1 expression, and chemokine levels associated with Treg recruitment were assessed using Luminex assay. Patients were categorized on the basis of SLIT efficacy and followed for changes after discontinuation. RESULTS SLIT induced a significant increase in nasal Treg cells (7.09 ± 2.59% vs. 0.75 ± 0.27%, P < 0.0001). BLIMP1 expression in Treg cells notably increased after SLIT (0.36 ± 0.22% to 16.86 ± 5.74%, P < 0.0001). Ineffective SLIT cases exhibited lower levels of nasal Treg and Blimp1 + Treg cells (both P < 0.0001). Receiver operating characteristic (ROC) analysis confirmed their potential as efficacy predictors (AUC = 0.908 and 0.968, respectively). SLIT discontinuation led to a significant reduction in Treg and Blimp1 + Treg cells (P < 0.001), emphasizing their maintenance during treatment. Pro-inflammatory cytokines decreased (P < 0.001), while CCL2 associated with Treg recruitment increased (P = 0.0015). CONCLUSION Elevated nasal Blimp1 + Treg cells serve as a predictive biomarker for SLIT responsiveness in pediatric AR. Their influence on immunotherapy effectiveness contributes to a nuanced understanding of SLIT mechanisms, allowing for disease stratification and personalized treatment plans. This study offers scientific support for predicting SLIT efficacy, enhancing the prospects of improved treatment outcomes in AR.
Collapse
Affiliation(s)
- Yue Pan
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Xinxin Zhang
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Huanting Geng
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Yan Yu
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Jianyong Liu
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Menglin Li
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Huijun Yang
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Yifang Yuan
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Yao Xu
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Yujia Wu
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Geping Wu
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China.
- Office of Science Education, Zhangjiagang Hospital Affiliated to Soochow University, 68 West Jiyang Road, Suzhou, 215000, China.
| | - Xingkai Ma
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
- Information Center, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Lei Cheng
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
11
|
Moțățăianu A, Andone S, Stoian A, Bălașa R, Huțanu A, Sărmășan E. A Potential Role of Interleukin-5 in the Pathogenesis and Progression of Amyotrophic Lateral Sclerosis: A New Molecular Perspective. Int J Mol Sci 2024; 25:3782. [PMID: 38612591 PMCID: PMC11011909 DOI: 10.3390/ijms25073782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Cumulative data suggest that neuroinflammation plays a prominent role in amyotrophic lateral sclerosis (ALS) pathogenesis. The purpose of this work was to assess if patients with ALS present a specific peripheral cytokine profile and if it correlates with neurological disability assessed by ALSFRS-R, the rate of disease progression, and the pattern of disease progression (horizontal spreading [HSP] versus vertical spreading [VSP]). We determined the levels of 15 cytokines in the blood of 59 patients with ALS and 40 controls. We identified a positive correlation between levels of pro-inflammatory cytokines (interleukin [IL]-17F, IL-33, IL-31) and the age of ALS patients, as well as a positive correlation between IL-12p/70 and survival from ALS onset and ALS diagnosis. Additionally, there was a positive correlation between the ALSFRS-R score in the upper limb and respiratory domain and IL-5 levels. In our ALS cohort, the spreading pattern was 42% horizontal and 58% vertical, with patients with VSP showing a faster rate of ALS progression. Furthermore, we identified a negative correlation between IL-5 levels and the rate of disease progression, as well as a positive correlation between IL-5 and HSP of ALS. To the best of our knowledge, this is the first study reporting a "protective" role of IL-5 in ALS.
Collapse
Affiliation(s)
- Anca Moțățăianu
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (S.A.); (A.S.); (R.B.); (E.S.)
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Sebastian Andone
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (S.A.); (A.S.); (R.B.); (E.S.)
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Adina Stoian
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (S.A.); (A.S.); (R.B.); (E.S.)
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Rodica Bălașa
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (S.A.); (A.S.); (R.B.); (E.S.)
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Adina Huțanu
- Department of Laboratory Medicine, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Emanuela Sărmășan
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (S.A.); (A.S.); (R.B.); (E.S.)
| |
Collapse
|
12
|
Cepika AM, Amaya L, Waichler C, Narula M, Mantilla MM, Thomas BC, Chen PP, Freeborn RA, Pavel-Dinu M, Nideffer J, Porteus M, Bacchetta R, Müller F, Greenleaf WJ, Chang HY, Roncarolo MG. Epigenetic signature and key transcriptional regulators of human antigen-specific type 1 regulatory T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.582969. [PMID: 38559096 PMCID: PMC10979855 DOI: 10.1101/2024.03.07.582969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Human adaptive immunity is orchestrated by effector and regulatory T (Treg) cells. Natural Tregs arise in the thymus where they are shaped to recognize self-antigens, while type 1 Tregs or Tr1 cells are induced from conventional peripheral CD4 + T cells in response to peripheral antigens, such as alloantigens and allergens. Tr1 cells have been developed as a potential therapy for inducing antigen-specific tolerance, because they can be rapidly differentiated in vitro in response to a target antigen. However, the epigenetic landscape and the identity of transcription factors (TFs) that regulate differentiation, phenotype, and functions of human antigen-specific Tr1 cells is largely unknown, hindering Tr1 research and broader clinical development. Here, we reveal the unique epigenetic signature of antigen-specific Tr1 cells, and TFs that regulate their differentiation, phenotype and function. We showed that in vitro induced antigen-specific Tr1 cells are distinct both clonally and transcriptionally from natural Tregs and other conventional CD4 + T cells on a single-cell level. An integrative analysis of Tr1 cell epigenome and transcriptome identified a TF signature unique to antigen-specific Tr1 cells, and predicted that IRF4, BATF, and MAF act as their transcriptional regulators. Using functional genomics, we showed that each of these TFs play a non-redundant role in regulating Tr1 cell differentiation, suppressive function, and expression of co-inhibitory and cytotoxic proteins. By using the Tr1-specific TF signature as a molecular fingerprint, we tracked Tr1 cells in peripheral blood of recipients of allogeneic hematopoietic stem cell transplantation treated with adoptive Tr1 cell therapy. Furthermore, the same signature identified Tr1 cells in resident CD4 + T cells in solid tumors. Altogether, these results reveal the epigenetic signature and the key transcriptional regulators of human Tr1 cells. These data will guide mechanistic studies of human Tr1 cell biology and the development and optimization of adoptive Tr1 cell therapies.
Collapse
|
13
|
Rad LM, Arellano G, Podojil JR, O'Konek JJ, Shea LD, Miller SD. Engineering nanoparticle therapeutics for food allergy. J Allergy Clin Immunol 2024; 153:549-559. [PMID: 37926124 PMCID: PMC10939913 DOI: 10.1016/j.jaci.2023.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Food allergy is a growing public health issue among children and adults that can lead to life-threatening anaphylaxis following allergen exposure. The criterion standard for disease management includes food avoidance and emergency epinephrine administration because current allergen-specific immunotherapy treatments are limited by adverse events and unsustained desensitization. A promising approach to remedy these shortcomings is the use of nanoparticle-based therapies that disrupt disease-driving immune mechanisms and induce more sustained tolerogenic immune pathways. The pathophysiology of food allergy includes multifaceted interactions between effector immune cells, including lymphocytes, antigen-presenting cells, mast cells, and basophils, mainly characterized by a TH2 cell response. Regulatory T cells, TH1 cell responses, and suppression of other major allergic effector cells have been found to be major drivers of beneficial outcomes in these nanoparticle therapies. Engineered nanoparticle formulations that have shown efficacy at reducing allergic responses and revealed new mechanisms of tolerance include polymeric-, lipid-, and emulsion-based nanotherapeutics. This review highlights the recent engineering design of these nanoparticles, the mechanisms induced by them, and their future potential therapeutic targets.
Collapse
Affiliation(s)
- Laila M Rad
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Mich
| | - Gabriel Arellano
- Department of Microbiology-Immunology, Northwestern University, Chicago, Ill; Center for Human Immunology, Northwestern University, Chicago, Ill
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Northwestern University, Chicago, Ill; Center for Human Immunology, Northwestern University, Chicago, Ill; Cour Pharmaceutical Development Company, Skokie, Ill
| | - Jessica J O'Konek
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, Mich.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Mich.
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University, Chicago, Ill; Center for Human Immunology, Northwestern University, Chicago, Ill.
| |
Collapse
|
14
|
Martín-Cruz L, Benito-Villalvilla C, Sirvent S, Angelina A, Palomares O. The Role of Regulatory T Cells in Allergic Diseases: Collegium Internationale Allergologicum (CIA) Update 2024. Int Arch Allergy Immunol 2024; 185:503-518. [PMID: 38408438 DOI: 10.1159/000536335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/16/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Allergy represents a major health problem of increasing prevalence worldwide with a high socioeconomic impact. Our knowledge on the molecular mechanisms underlying allergic diseases and their treatments has significantly improved over the last years. The generation of allergen-specific regulatory T cells (Tregs) is crucial in the induction of healthy immune responses to allergens, preventing the development and worsening of allergic diseases. SUMMARY In the last decades, intensive research has focused on the study of the molecular mechanisms involved in Treg development and Treg-mediated suppression. These mechanisms are essential for the induction of sustained tolerance by allergen-specific immunotherapy (AIT) after treatment discontinuation. Compelling experimental evidence demonstrated altered suppressive capacity of Tregs in patients suffering from allergic rhinitis, allergic asthma, food allergy, or atopic dermatitis, as well as the restoration of their numbers and functionality after successful AIT. KEY MESSAGE The better understanding of the molecular mechanisms involved in Treg generation during allergen tolerance induction might well contribute to the development of novel strategies for the prevention and treatment of allergic diseases.
Collapse
Affiliation(s)
- Leticia Martín-Cruz
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Complutense University, Madrid, Spain
| | - Cristina Benito-Villalvilla
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University, Madrid, Spain
| | - Sofía Sirvent
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| |
Collapse
|
15
|
Forouhandeh H, Soofiyani SR, Hosseini K, Beirami SM, Ahangari H, Moammer Y, Ebrahimzadeh S, Nejad MK, Farjami A, Khodaiefar F, Tarhriz V. Modulation of the Immune System Mechanisms using Probiotic Bacteria in Allergic Diseases: Focus on Allergic Retinitis and Food Allergies. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:11-26. [PMID: 37842889 DOI: 10.2174/0127722708246899230928080651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Allergic illnesses occur when an organism's immune system is excessively responsive to certain antigens, such as those that are presented in the environment. Some people suffer from a wide range of immune system-related illnesses including allergic rhinitis, asthma, food allergies, hay fever, and even anaphylaxis. Immunotherapy and medications are frequently used to treat allergic disorders. The use of probiotics in bacteriotherapy has lately gained interest. Probiotics are essential to human health by modulating the gut microbiota in some ways. Due to probiotics' immunomodulatory properties present in the gut microbiota of all animals, including humans, these bacterial strains can prevent a wide variety of allergic disorders. Probiotic treatment helps allergy patients by decreasing inflammatory cytokines and enhancing intestinal permeability, which is important in the battle against allergy. By altering the balance of Th1 and Th2 immune responses in the intestinal mucosa, probiotics can heal allergic disorders. Numerous studies have shown a correlation between probiotics and a reduced risk of allergy disorders. A wide range of allergic disorders, including atopic dermatitis, asthma, allergic retinitis and food allergies has been proven to benefit from probiotic bacteria. Therefore, the use of probiotics in the treatment of allergic diseases offers a promising perspective. Considering that probiotic intervention in the treatment of diseases is a relatively new field of study, more studies in this regard seem necessary.
Collapse
Affiliation(s)
- Haleh Forouhandeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sohrab Minaei Beirami
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yusif Moammer
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Ebrahimzadeh
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoomeh Kashef Nejad
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Khodaiefar
- Department of Traditional Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
16
|
Brazhnikov G, Smolnikov E, Litovkina A, Jiang T, Shatilov A, Tulaeva I, Tulaev M, Karaulov A, Poroshina A, Zhernov Y, Focke‐Tejkl M, Weber M, Akinfenwa O, Elisyutina O, Andreev S, Shilovskiy I, Shershakova N, Smirnov V, Fedenko E, Lepeshkova TS, Beltyukov EC, Naumova VV, Kundi M, Khaitov M, Wiedermann U, Valenta R, Campana R. Natural human Bet v 1-specific IgG antibodies recognize non-conformational epitopes whereas IgE reacts with conformational epitopes. Allergy 2023; 78:3136-3153. [PMID: 37701941 PMCID: PMC10952721 DOI: 10.1111/all.15865] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND The nature of epitopes on Bet v 1 recognized by natural IgG antibodies of birch pollen allergic patients and birch pollen-exposed but non-sensitized subjects has not been studied in detail. OBJECTIVE To investigate IgE and IgG recognition of Bet v 1 and to study the effects of natural Bet v 1-specific IgG antibodies on IgE recognition of Bet v 1 and Bet v 1-induced basophil activation. METHODS Sera from birch pollen allergic patients (BPA, n = 76), allergic patients without birch pollen allergy (NBPA, n = 40) and non-allergic individuals (NA, n = 48) were tested for IgE, IgG as well as IgG1 and IgG4 reactivity to folded recombinant Bet v 1, two unfolded recombinant Bet v 1 fragments comprising the N-terminal (F1) and C-terminal half of Bet v 1 (F2) and unfolded peptides spanning the corresponding sequences of Bet v 1 and the apple allergen Mal d 1 by ELISA or micro-array analysis. The ability of Bet v 1-specific serum antibodies from non-allergic subjects to inhibit allergic patients IgE or IgG binding to rBet v 1 or to unfolded Bet v 1-derivatives was assessed by competition ELISAs. Furthermore, the ability of serum antibodies from allergic and non-allergic subjects to modulate Bet v 1-induced basophil activation was investigated using rat basophilic leukaemia cells expressing the human FcεRI which had been loaded with IgE from BPA patients. RESULTS IgE antibodies from BPA patients react almost exclusively with conformational epitopes whereas IgG, IgG1 and IgG4 antibodies from BPA, NBPA and NA subjects recognize mainly unfolded and sequential epitopes. IgG competition studies show that IgG specific for unfolded/sequential Bet v 1 epitopes is not inhibited by folded Bet v 1 and hence the latter seem to represent cryptic epitopes. IgG reactivity to Bet v 1 peptides did not correlate with IgG reactivity to the corresponding Mal d 1 peptides and therefore does not seem to be a result of primary sensitization to PR10 allergen-containing food. Natural Bet v 1-specific IgG antibodies inhibited IgE binding to Bet v 1 only poorly and could even enhance Bet v 1-specific basophil activation. CONCLUSION IgE and IgG antibodies from BPA patients and birch pollen-exposed non-sensitized subjects recognize different epitopes. These findings explain why natural allergen-specific IgG do not protect against allergic symptoms and suggest that allergen-specific IgE and IgG have different clonal origin.
Collapse
Affiliation(s)
- Georgii Brazhnikov
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Evgenii Smolnikov
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
- Department of Immunology, Institute of MedicineRUDN UniversityMoscowRussia
| | - Alla Litovkina
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
- Department of Immunology, Institute of MedicineRUDN UniversityMoscowRussia
| | - Tianchi Jiang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Artem Shatilov
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
| | - Inna Tulaeva
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Laboratory of Immunopathology, Department of Clinical Immunology and AllergologyI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Mikhail Tulaev
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and AllergologyI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Alina Poroshina
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
| | - Yury Zhernov
- F. Erismann Institute of Public HealthI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Margarete Focke‐Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Karl Landsteiner University of Health SciencesKremsAustria
| | - Milena Weber
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Oluwatoyin Akinfenwa
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Olga Elisyutina
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
- Department of Immunology, Institute of MedicineRUDN UniversityMoscowRussia
| | - Sergey Andreev
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
| | - Igor Shilovskiy
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
| | - Nadezhda Shershakova
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
| | - Valeriy Smirnov
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
| | - Elena Fedenko
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
| | | | - Evgeny Cronidovich Beltyukov
- Department of Faculty Therapy, Endocrinology, Allergology and ImmunologyUral State Medical UniversityYekaterinburgRussia
| | - Veronika Victorovna Naumova
- Department of Faculty Therapy, Endocrinology, Allergology and ImmunologyUral State Medical UniversityYekaterinburgRussia
| | - Michael Kundi
- Institute for Hygiene and Applied Immunology, Center for Public HealthMedical University of ViennaViennaAustria
| | - Musa Khaitov
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
- Pirogov Russian National Research Medical UniversityMoscowRussia
| | - Ursula Wiedermann
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- National Research Center Institute of Immunology Federal Medical‐Biological Agency of RussiaMoscowRussia
- Laboratory of Immunopathology, Department of Clinical Immunology and AllergologyI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
- Karl Landsteiner University of Health SciencesKremsAustria
| | - Raffaela Campana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
17
|
Klein M, Plante S, Boulay MÈ, Boulet LP, Chakir J. Discrepancy in the suppressive function of regulatory T cells in allergic asthmatic vs. allergic rhinitis subjects upon low-dose allergen challenges. FRONTIERS IN ALLERGY 2023; 4:1296601. [PMID: 38106504 PMCID: PMC10722309 DOI: 10.3389/falgy.2023.1296601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
Background Regulatory T cells (Tregs) contribute to the maintenance of immunological tolerance. There is evidence of impaired function of these cells in people with asthma and allergy. In this study, we evaluated and compared the function of Tregs in allergic asthmatic and allergic non-asthmatic patients, both before and after low-dose allergen challenges. Methods Three groups of subjects were recruited for a baseline evaluation: healthy controls without allergy or asthma, allergic asthmatic subjects, and allergic non-asthmatic subjects. All of them were subjected to expiratory flow measurements, sputum induction, and blood sampling. In addition, both groups of allergic subjects underwent low-dose allergen challenges. Tregs were isolated from whole blood using CD4+CD25high and CD127low staining. The suppression function was measured by flow cytometry. The levels of IL-10, IFN-γ, IgG4, IgA, and TGF-β were measured using ELISA, and sputum Foxp3 was evaluated using qRT-PCR. Results The suppressive function of Tregs in healthy controls was significantly higher than in allergic asthmatic or allergic non-asthmatic subjects. Repeated exposure to low doses of allergen increased the suppressor function of Tregs in allergic non-asthmatic subjects but decreased it in allergic asthmatic subjects. Foxp3 gene expression was increased in induced sputum in allergic non-asthmatic subjects, whereas it did not change in asthmatic subjects. Serum IL-10 level was decreased in allergic asthmatic subjects after allergen challenge but not in allergic non-asthmatic subjects. IFN-γ level increased upon allergen challenge in allergic non-asthmatic subjects. IgG4 level was higher in allergic non-asthmatic subjects than in allergic asthmatic subjects. Conclusions Low-dose allergen challenges stimulate the suppressor function of Tregs in non-asthmatic allergic subjects but not in allergic asthmatic subjects.
Collapse
Affiliation(s)
| | | | | | | | - Jamila Chakir
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
18
|
Yazici D, Ogulur I, Pat Y, Babayev H, Barletta E, Ardicli S, Bel Imam M, Huang M, Koch J, Li M, Maurer D, Radzikowska U, Satitsuksanoa P, Schneider SR, Sun N, Traidl S, Wallimann A, Wawrocki S, Zhakparov D, Fehr D, Ziadlou R, Mitamura Y, Brüggen MC, van de Veen W, Sokolowska M, Baerenfaller K, Nadeau K, Akdis M, Akdis CA. The epithelial barrier: The gateway to allergic, autoimmune, and metabolic diseases and chronic neuropsychiatric conditions. Semin Immunol 2023; 70:101846. [PMID: 37801907 DOI: 10.1016/j.smim.2023.101846] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Since the 1960 s, our health has been compromised by exposure to over 350,000 newly introduced toxic substances, contributing to the current pandemic in allergic, autoimmune and metabolic diseases. The "Epithelial Barrier Theory" postulates that these diseases are exacerbated by persistent periepithelial inflammation (epithelitis) triggered by exposure to a wide range of epithelial barrier-damaging substances as well as genetic susceptibility. The epithelial barrier serves as the body's primary physical, chemical, and immunological barrier against external stimuli. A leaky epithelial barrier facilitates the translocation of the microbiome from the surface of the afflicted tissues to interepithelial and even deeper subepithelial locations. In turn, opportunistic bacterial colonization, microbiota dysbiosis, local inflammation and impaired tissue regeneration and remodelling follow. Migration of inflammatory cells to susceptible tissues contributes to damage and inflammation, initiating and aggravating many chronic inflammatory diseases. The objective of this review is to highlight and evaluate recent studies on epithelial physiology and its role in the pathogenesis of chronic diseases in light of the epithelial barrier theory.
Collapse
Affiliation(s)
- Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Elena Barletta
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Swiss Institute of Bioinformatics (SIB), Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mengting Huang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Jana Koch
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Swiss Institute of Bioinformatics (SIB), Davos, Switzerland
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Debbie Maurer
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | | | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Na Sun
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Stephan Traidl
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Alexandra Wallimann
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sebastian Wawrocki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Damir Zhakparov
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Danielle Fehr
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Reihane Ziadlou
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marie-Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Katja Baerenfaller
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Swiss Institute of Bioinformatics (SIB), Davos, Switzerland
| | - Kari Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland.
| |
Collapse
|
19
|
Li D, Ou Q, Shen Q, Lu MM, Xu JY, Jin C, Gao F, Wang J, Zhang J, Zhang J, Li J, Lu L, Xu GT, Tian H. Subconjunctival injection of human umbilical cord mesenchymal stem cells alleviates experimental allergic conjunctivitis via regulating T cell response. Stem Cell Res Ther 2023; 14:281. [PMID: 37784129 PMCID: PMC10546642 DOI: 10.1186/s13287-023-03484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/29/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND T helper 2 (Th2) cells are thought to play critical roles in allergic conjunctivitis (AC). They release inflammatory cytokines to promote an allergic response in AC. Due to individual heterogeneity and long-term chronic management, current therapies do not always effectively control AC. Mesenchymal stem cells (MSCs) have been shown to be effective in treating allergy-related disorders, but it is unclear how exactly the Th2-mediated allergic response is attenuated. This study aims to elucidate the therapeutic effect and mechanism of the human umbilical cord MSCs (hUCMSCs) in a mouse model of experimental AC (EAC). METHODS A mouse EAC model was established by inoculating short ragweed (SRW) pollen. After the SRW pollen challenge, the mice received a single subconjunctival or tail vein injection of 2 × 106 hUCMSCs, or subconjunctival injection of hUCMSCs conditioned medium (hUCMSC-CM), and dexamethasone eye drops was used as positive control; subsequent scratching behavior and clinical symptoms were assessed. Immunostaining and flow cytometry were carried out to show allergic reactions and the activation of CD4 + T cell subsets in the conjunctiva and cervical lymph nodes (CLNs). Gene expression was determined by RNA-seq and further verified by qRT-PCR and Western blot. Co-culture assays were performed to explore the regulatory role of hUCMSCs in the differentiation of CD4 + naive T cells (Th0) into Th2 cells. RESULTS Subconjunctival administration of hUCMSCs resulted in fewer instances of scratching and lower inflammation scores in EAC mice compared to the tail vein delivery, hUCMSC-CM and control groups. Subconjunctival administration of hUCMSCs reduced the number of activated mast cells and infiltrated eosinophils in the conjunctiva, as well as decreased the number of Th2 cells in CLNs. After pretreatment with EAC mouse serum in vitro to mimic the in vivo milieu, hUCMSCs were able to inhibit the differentiation of Th0 into Th2 cells. Further evidence demonstrated that repression of Th2 cell differentiation by hUCMSCs is mediated by CRISPLD2 through downregulation of STAT6 phosphorylation. Additionally, hUMCSCs were able to promote the differentiation of Th0 cells into regulatory T cells in CLNs of EAC mice. CONCLUSIONS Subconjunctival injection of hUCMSCs suppressed the Th2-allergic response and alleviated clinical symptoms. This study provides not only a potential therapeutic target for the treatment of AC but also other T cell-mediated diseases.
Collapse
Affiliation(s)
- Dongli Li
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Qingjian Ou
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Qi Shen
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Michael Mingze Lu
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Caixia Jin
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Furong Gao
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Juan Wang
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Jieping Zhang
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
- Department of Physiology and Pharmacology, TUSM, Shanghai, 200092, China
| | - Jiao Li
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China.
- Department of Physiology and Pharmacology, TUSM, Shanghai, 200092, China.
- The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China.
- Department of Physiology and Pharmacology, TUSM, Shanghai, 200092, China.
| |
Collapse
|
20
|
Suhrkamp I, Scheffold A, Heine G. T-cell subsets in allergy and tolerance induction. Eur J Immunol 2023; 53:e2249983. [PMID: 37489248 DOI: 10.1002/eji.202249983] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Antigen-specific T lymphocytes are the central regulators of tolerance versus immune pathology against otherwise innocuous antigens and key targets of antigen-specific immune therapy. Recent advances in the understanding of T cells in tolerance and allergy resulted from improved technologies to directly characterize allergen-specific T cells by multiparameter flow cytometry or single-cell sequencing. This unravelled phenotypically and functionally distinct populations, such as Type 2a T helper cells (Th2a), follicular Th cells (Tfh), regulatory T cells (Treg), Type 1 regulatory T cells (Tr1), and follicular T regulatory cells. Here we will discuss the role of the different Th-cell subsets in the healthy state, during sensitization and development of allergy, and in tolerance induction by allergen immunotherapy (AIT). To date, the mechanisms of AIT as the only causal treatment of allergy are not completely understood. The analyses of allergen-specific T cells directly ex vivo during AIT support the concept of specific-Th2(a) cell deletion rather than an expansion of allergen-specific Tr1 or Treg cells as underlying mechanism.
Collapse
Affiliation(s)
- Ina Suhrkamp
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Guido Heine
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
21
|
Abbott CA, Freimayer EL, Tyllis TS, Norton TS, Alsharifi M, Heng AHS, Pederson SM, Qu Z, Armstrong M, Hill GR, McColl SR, Comerford I. Determination of Tr1 cell populations correlating with distinct activation states in acute IAV infection. Mucosal Immunol 2023; 16:606-623. [PMID: 37321403 DOI: 10.1016/j.mucimm.2023.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Type I regulatory (Tr1) cells are defined as FOXP3-IL-10-secreting clusters of differentiation (CD4+) T cells that contribute to immune suppression and typically express the markers LAG-3 and CD49b and other co-inhibitory receptors. These cells have not been studied in detail in the context of the resolution of acute infection in the lung. Here, we identify FOXP3- interleukin (IL)-10+ CD4+ T cells transiently accumulating in the lung parenchyma during resolution of the response to sublethal influenza A virus (IAV) infection in mice. These cells were dependent on IL-27Rα, which was required for timely recovery from IAV-induced weight loss. LAG-3 and CD49b were not generally co-expressed by FOXP3- IL-10+ CD4+ T cells in this model and four populations of these cells based on LAG-3 and CD49b co-expression were apparent [LAG-3-CD49b- (double negative), LAG-3+CD49b+ (double positive), LAG-3+CD49b- (LAG-3+), LAG-3-CD49b+ (CD49b+)]. However, each population exhibited suppressive potential consistent with the definition of Tr1 cells. Notably, differences between these populations of Tr1 cells were apparent including differential dependence on IL-10 to mediate suppression and expression of markers indicative of different activation states and terminal differentiation. Sort-transfer experiments indicated that LAG-3+ Tr1 cells exhibited the capacity to convert to double negative and double positive Tr1 cells, indicative of plasticity between these populations. Together, these data determine the features and suppressive potential of Tr1 cells in the resolution of IAV infection and identify four populations delineated by LAG-3 and CD49b, which likely correspond to different Tr1 cell activation states.
Collapse
Affiliation(s)
- Caitlin A Abbott
- The Chemokine Biology Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, Australia.
| | - Emily L Freimayer
- The Chemokine Biology Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Timona S Tyllis
- The Chemokine Biology Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Todd S Norton
- The Chemokine Biology Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Mohammed Alsharifi
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, Australia
| | - Aaron H S Heng
- The Chemokine Biology Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Stephen M Pederson
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, Adelaide, Australia; Black Ochre Data Laboratories, Indigenous Genomics, Telethon Kids Institute, Adelaide, Australia
| | - Zhipeng Qu
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Mark Armstrong
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA; Division of Medical Oncology, University of Washington, Seattle, USA
| | - Shaun R McColl
- The Chemokine Biology Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Iain Comerford
- The Chemokine Biology Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
22
|
Nahm DH. Regulatory T Cell-Targeted Immunomodulatory Therapy for Long-Term Clinical Improvement of Atopic Dermatitis: Hypotheses and Perspectives. Life (Basel) 2023; 13:1674. [PMID: 37629531 PMCID: PMC10455293 DOI: 10.3390/life13081674] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Atopic dermatitis (AD) is a chronically relapsing inflammatory skin disorder characterized by itching and eczematous lesions. It is often associated with a personal or familial history of allergic diseases. Allergic inflammation induced by immunoglobulin E and T-helper type 2 (Th2) cell responses to common environmental agents has been suggested to play an essential role in AD pathogenesis. The standard therapies for AD, including topical or systemic agents, focus on controlling skin inflammation. Recently developed monoclonal antibody to interleukin-4 receptor alpha or Janus kinase inhibitors can provide significant clinical improvements in patients with AD by inhibiting Th2 cell-mediated skin inflammation. However, the clinical efficacy of the Th2 cell-targeted therapy is transient and incomplete in patients with AD. Patients with AD are seeking a permanent cure. Therefore, the development of novel immunomodulatory strategies that can improve a long-term clinical outcome and provide a long-term treatment-free clinical remission of AD (disease-modifying therapy) is needed. Regulatory T (Treg) cells play a critical role in the maintenance of immune tolerance and suppress the development of autoimmune and allergic diseases. This review provides three working hypotheses and perspectives for the treatment of AD by Treg cell activation. (1) A decreased number or function of Treg cells is a critical event that causes the activation of Th2 cells, leading to the development and maintenance of AD. (2) Activation of Treg cells is an effective therapeutic approach for AD. (3) Many different immunomodulatory strategies activating Treg cells can provide a long-term clinical improvement of AD by induction of immune tolerance. The Treg cell-targeted immunomodulatory therapies for AD include allergen immunotherapy, microbiota, vitamin D, polyvalent human immunoglobulin G, monoclonal antibodies to the surface antigens of T cell or antigen-presenting cell, and adoptive transfer of autologous Treg cells or genetically engineered Treg cells expanded in vitro.
Collapse
Affiliation(s)
- Dong-Ho Nahm
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
23
|
Ren H, Zhu X, Zhai S, Feng X, Yan Z, Sun J, Liu Y, Gao Z, Long F. Seabuckthorn juice alleviates allergic symptoms in shrimp-induced food allergy mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Zeng Z, Li S, Ye Y, Ling Y, Gong Y, Zi X, Yang J, McElwee KJ, Zhang X. Allergen desensitization reduces the severity of relapsed alopecia areata in dust-mite allergic patients. Exp Dermatol 2023. [PMID: 37114716 DOI: 10.1111/exd.14819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
Atopy may be a facilitating factor in some alopecia areata (AA) patients with early disease onset and more severe/extensive AA. The underlying immune mechanisms are unknown, but allergen responses may support a pro-inflammatory environment that indirectly promotes AA. To investigate the long-term effect of allergen immunotherapy (AIT) against house dust mite (HDM) allergy on disease severity and prognosis for AA patients. An observational comparative effectiveness study was conducted on 69 AA patients with HDM allergy. 34 patients received conventional/traditional AA treatment (TrAA) plus AIT (AIT-TrAA), and 35 patients received TrAA alone. Serum total immunoglobulin E (tIgE), HDM specific IgE (sIgE), HDM specific IgG4 (sIgG4) and cytokines (IL-4, IL-5, IL-10, IL-12, IL-13, IL-33, IFNγ) were quantified in these patients, together with 58 non-allergic AA patients and 40 healthy controls. At the end of the 3-year desensitization course, the AIT-TrAA group presented with lower SALT scores than the TrAA group, especially in non-alopecia totalis/universalis (AT/U) patients and pre-adolescent AT/U patients (age ≤ 14). In patients with elevated tIgE levels before AIT, a decrease in tIgE was correlated to reduced extent of AA on completion of the AIT course. After desensitization, elevation of IL-5 and decrease of IL-33 were observed in HDM allergic-AA patients. Desensitization to HDM in allergic AA patients reduces the severity of relapse-related hair loss over the 3-year AIT treatment course, possibly via opposing Th2 dominance. This adjunctive treatment may help reduce disease severity and curtail the disease process in allergic patients with AA.
Collapse
Affiliation(s)
- Zixun Zeng
- Department of Dermatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Shuifeng Li
- Department of Dermatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Yanting Ye
- Department of Dermatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Yunxia Ling
- Department of Dermatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Yugang Gong
- Department of Dermatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Xue Zi
- Department of Dermatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Jian Yang
- Department of Dermatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Kevin J McElwee
- Centre for Skin Sciences, University of Bradford, Bradford, UK
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xingqi Zhang
- Department of Dermatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
25
|
Wise SK, Damask C, Roland LT, Ebert C, Levy JM, Lin S, Luong A, Rodriguez K, Sedaghat AR, Toskala E, Villwock J, Abdullah B, Akdis C, Alt JA, Ansotegui IJ, Azar A, Baroody F, Benninger MS, Bernstein J, Brook C, Campbell R, Casale T, Chaaban MR, Chew FT, Chambliss J, Cianferoni A, Custovic A, Davis EM, DelGaudio JM, Ellis AK, Flanagan C, Fokkens WJ, Franzese C, Greenhawt M, Gill A, Halderman A, Hohlfeld JM, Incorvaia C, Joe SA, Joshi S, Kuruvilla ME, Kim J, Klein AM, Krouse HJ, Kuan EC, Lang D, Larenas-Linnemann D, Laury AM, Lechner M, Lee SE, Lee VS, Loftus P, Marcus S, Marzouk H, Mattos J, McCoul E, Melen E, Mims JW, Mullol J, Nayak JV, Oppenheimer J, Orlandi RR, Phillips K, Platt M, Ramanathan M, Raymond M, Rhee CS, Reitsma S, Ryan M, Sastre J, Schlosser RJ, Schuman TA, Shaker MS, Sheikh A, Smith KA, Soyka MB, Takashima M, Tang M, Tantilipikorn P, Taw MB, Tversky J, Tyler MA, Veling MC, Wallace D, Wang DY, White A, Zhang L. International consensus statement on allergy and rhinology: Allergic rhinitis - 2023. Int Forum Allergy Rhinol 2023; 13:293-859. [PMID: 36878860 DOI: 10.1002/alr.23090] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 09/13/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND In the 5 years that have passed since the publication of the 2018 International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis (ICAR-Allergic Rhinitis 2018), the literature has expanded substantially. The ICAR-Allergic Rhinitis 2023 update presents 144 individual topics on allergic rhinitis (AR), expanded by over 40 topics from the 2018 document. Originally presented topics from 2018 have also been reviewed and updated. The executive summary highlights key evidence-based findings and recommendation from the full document. METHODS ICAR-Allergic Rhinitis 2023 employed established evidence-based review with recommendation (EBRR) methodology to individually evaluate each topic. Stepwise iterative peer review and consensus was performed for each topic. The final document was then collated and includes the results of this work. RESULTS ICAR-Allergic Rhinitis 2023 includes 10 major content areas and 144 individual topics related to AR. For a substantial proportion of topics included, an aggregate grade of evidence is presented, which is determined by collating the levels of evidence for each available study identified in the literature. For topics in which a diagnostic or therapeutic intervention is considered, a recommendation summary is presented, which considers the aggregate grade of evidence, benefit, harm, and cost. CONCLUSION The ICAR-Allergic Rhinitis 2023 update provides a comprehensive evaluation of AR and the currently available evidence. It is this evidence that contributes to our current knowledge base and recommendations for patient evaluation and treatment.
Collapse
Affiliation(s)
- Sarah K Wise
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Cecelia Damask
- Otolaryngology-HNS, Private Practice, University of Central Florida, Lake Mary, Florida, USA
| | - Lauren T Roland
- Otolaryngology-HNS, Washington University, St. Louis, Missouri, USA
| | - Charles Ebert
- Otolaryngology-HNS, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joshua M Levy
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Sandra Lin
- Otolaryngology-HNS, University of Wisconsin, Madison, Wisconsin, USA
| | - Amber Luong
- Otolaryngology-HNS, McGovern Medical School of the University of Texas, Houston, Texas, USA
| | - Kenneth Rodriguez
- Otolaryngology-HNS, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ahmad R Sedaghat
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Elina Toskala
- Otolaryngology-HNS, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Baharudin Abdullah
- Otolaryngology-HNS, Universiti Sains Malaysia, Kubang, Kerian, Kelantan, Malaysia
| | - Cezmi Akdis
- Immunology, Infectious Diseases, Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Jeremiah A Alt
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | | | - Antoine Azar
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fuad Baroody
- Otolaryngology-HNS, University of Chicago, Chicago, Illinois, USA
| | | | | | - Christopher Brook
- Otolaryngology-HNS, Harvard University, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Raewyn Campbell
- Otolaryngology-HNS, Macquarie University, Sydney, NSW, Australia
| | - Thomas Casale
- Allergy/Immunology, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Mohamad R Chaaban
- Otolaryngology-HNS, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fook Tim Chew
- Allergy/Immunology, Genetics, National University of Singapore, Singapore, Singapore
| | - Jeffrey Chambliss
- Allergy/Immunology, University of Texas Southwestern, Dallas, Texas, USA
| | - Antonella Cianferoni
- Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Anne K Ellis
- Allergy/Immunology, Queens University, Kingston, ON, Canada
| | | | - Wytske J Fokkens
- Otorhinolaryngology, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | | | - Matthew Greenhawt
- Allergy/Immunology, Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Amarbir Gill
- Otolaryngology-HNS, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashleigh Halderman
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Jens M Hohlfeld
- Respiratory Medicine, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | | | - Stephanie A Joe
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Shyam Joshi
- Allergy/Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | | | - Jean Kim
- Otolaryngology-HNS, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adam M Klein
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Helene J Krouse
- Otorhinolaryngology Nursing, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Edward C Kuan
- Otolaryngology-HNS, University of California Irvine, Orange, California, USA
| | - David Lang
- Allergy/Immunology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Matt Lechner
- Otolaryngology-HNS, University College London, Barts Health NHS Trust, London, UK
| | - Stella E Lee
- Otolaryngology-HNS, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Victoria S Lee
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Patricia Loftus
- Otolaryngology-HNS, University of California San Francisco, San Francisco, California, USA
| | - Sonya Marcus
- Otolaryngology-HNS, Stony Brook University, Stony Brook, New York, USA
| | - Haidy Marzouk
- Otolaryngology-HNS, State University of New York Upstate, Syracuse, New York, USA
| | - Jose Mattos
- Otolaryngology-HNS, University of Virginia, Charlottesville, Virginia, USA
| | - Edward McCoul
- Otolaryngology-HNS, Ochsner Clinic, New Orleans, Louisiana, USA
| | - Erik Melen
- Pediatric Allergy, Karolinska Institutet, Stockholm, Sweden
| | - James W Mims
- Otolaryngology-HNS, Wake Forest University, Winston Salem, North Carolina, USA
| | - Joaquim Mullol
- Otorhinolaryngology, Hospital Clinic Barcelona, Barcelona, Spain
| | - Jayakar V Nayak
- Otolaryngology-HNS, Stanford University, Palo Alto, California, USA
| | - John Oppenheimer
- Allergy/Immunology, Rutgers, State University of New Jersey, Newark, New Jersey, USA
| | | | - Katie Phillips
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael Platt
- Otolaryngology-HNS, Boston University, Boston, Massachusetts, USA
| | | | | | - Chae-Seo Rhee
- Rhinology/Allergy, Seoul National University Hospital and College of Medicine, Seoul, Korea
| | - Sietze Reitsma
- Otolaryngology-HNS, University of Amsterdam, Amsterdam, Netherlands
| | - Matthew Ryan
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Joaquin Sastre
- Allergy, Fundacion Jiminez Diaz, University Autonoma de Madrid, Madrid, Spain
| | - Rodney J Schlosser
- Otolaryngology-HNS, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Theodore A Schuman
- Otolaryngology-HNS, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Marcus S Shaker
- Allergy/Immunology, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Aziz Sheikh
- Primary Care, University of Edinburgh, Edinburgh, Scotland
| | - Kristine A Smith
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | - Michael B Soyka
- Otolaryngology-HNS, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Masayoshi Takashima
- Otolaryngology-HNS, Houston Methodist Academic Institute, Houston, Texas, USA
| | - Monica Tang
- Allergy/Immunology, University of California San Francisco, San Francisco, California, USA
| | | | - Malcolm B Taw
- Integrative East-West Medicine, University of California Los Angeles, Westlake Village, California, USA
| | - Jody Tversky
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew A Tyler
- Otolaryngology-HNS, University of Minnesota, Minneapolis, Minnesota, USA
| | - Maria C Veling
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Dana Wallace
- Allergy/Immunology, Nova Southeastern University, Ft. Lauderdale, Florida, USA
| | - De Yun Wang
- Otolaryngology-HNS, National University of Singapore, Singapore, Singapore
| | - Andrew White
- Allergy/Immunology, Scripps Clinic, San Diego, California, USA
| | - Luo Zhang
- Otolaryngology-HNS, Beijing Tongren Hospital, Beijing, China
| |
Collapse
|
26
|
Bai J, Tan BK. B Lineage Cells and IgE in Allergic Rhinitis and CRSwNP and the Role of Omalizumab Treatment. Am J Rhinol Allergy 2023; 37:182-192. [PMID: 36848269 PMCID: PMC10830379 DOI: 10.1177/19458924221147770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) and chronic rhinosinusitis (CRS) are two prevalent nasal diseases where both type 2 inflammation and immunoglobulin E (IgE) may play important roles. Although they can exist independently or comorbidly, subtle but important differences exist in immunopathogenesis. OBJECTIVE To summarize current knowledge of pathophysiological roles of B lineage cells and IgE in AR and CRS with nasal polyps (CRSwNP). METHODS Searched PubMed database, reviewed AR and CRSwNP-related literature, and discussed disease diagnosis, comorbidity, epidemiology, pathophysiology, and treatment. Similarities and differences in B-cell biology and IgE are compared in the 2 conditions. RESULTS Both AR and CRSwNP have evidence for pathological type 2 inflammation, B-cell activation and differentiation, and IgE production. However, distinctions exist in the clinical and serological profiles at diagnosis, as well as treatments utilized. B-cell activation in AR may more frequently be regulated in the germinal center of lymphoid follicles, whereas CRSwNP may occur via extrafollicular pathways although controversies remain in these initial activating events. Oligoclonal and antigen-specific IgE maybe predominate in AR, but polyclonal and antigen-nonspecific IgE may predominate in CRSwNP. Omalizumab has been shown efficacious in treating both AR and CRSwNP in multiple clinical trials but is the only Food and Drug Administration-approved anti-IgE biologic to treat CRSwNP or allergic asthma. Staphylococcus aureus frequently colonizes the nasal airway and has the ability to activate type two responses including B-cell responses although the extent to which it modulates AR and CRSwNP disease severity is being investigated. CONCLUSION This review highlights current knowledge of the roles of B cells and IgE in the pathogenesis of AR and CRSwNP and a small comparison between the 2 diseases. More systemic studies should be done to elevate the understanding of these diseases and their treatment.
Collapse
Affiliation(s)
- Junqin Bai
- Department of Otolaryngology, 12244Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Bruce K Tan
- Department of Otolaryngology, 12244Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Allergy and Immunology, Department of Medicine, 12244Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
27
|
Hanif T, Ivaska LE, Ahmad F, Tan G, Mikola E, Puhakka T, Palomares O, Akdis CA, Toppila-Salmi S, Jartti T. Tonsillar transcriptional profiles in atopic and non-atopic subjects. Allergy 2023; 78:522-536. [PMID: 35899482 PMCID: PMC10087516 DOI: 10.1111/all.15458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/29/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Emerging research suggests that local lymphatic tissue such as tonsils have important role in regulating the immune responses. However, allergen sensitization-induced alterations in transcriptome of tonsils are not known. OBJECTIVES To examine the key differences in tonsillar gene expression between atopic and non-atopic subjects and further by type of sensitization. METHODS RNA-sequencing was performed on 52 tonsillar samples from atopic and non-atopic tonsillectomy patients. Sensitization to common food- and aero-allergen was defined by allergen specific IgE. Following groups were studied: (1) aero- and food-allergen sensitized (AS+FS) versus non-sensitized (NS), (2) aeroallergen-sensitized (AS) versus food-allergen sensitized (FS), (3) AS versus NS, (4) FS versus NS. Bioinformatics analysis was done using DESeq2(v3.10.2), WGCNA and GATK pipeline in R software (v3.3.1). Protein-protein interaction network was made from String database. RESULTS We studied 13 aeroallergen-sensitized, 6 food-allergen sensitized, 4 both food-and aero-allergen-sensitized and 29 non-sensitized tonsillectomy patients. Overall, 697 unique differentially expressed genes (DEGs) were detected in all sensitized subgroups including chemokines (CXCL2, CXCL8, CXCL10, CXCL11), IL-20RA, MUC1 and MUC20. When comparing different groups, the gene expression profiles overlapped except the AS versus FS group comparison, suggesting significantly different gene expression between the two sensitization subgroups. Furthermore, aeroallergen-sensitized subjects had more prominent immune responses compared with non-sensitized and food-allergen sensitized subjects including gene expression for IL-17 pathway and Toll-like receptor signalling pathway. CONCLUSION Allergic sensitization is associated with extensive tonsillar transcriptomic alterations and changes in immune related genes and pathways. Distinct differences were found between aero-allergen and food-allergen sensitization.
Collapse
Affiliation(s)
- Tanzeela Hanif
- Department of Pediatrics and Adolescent Medicine, University of Turku, Turku, Finland.,Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Lotta E Ivaska
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital and University of Turku, Turku, Finland
| | - Freed Ahmad
- Department of Biology University of Turku, Turku, Finland
| | - Ge Tan
- Functional Genomics Center Zurich, ETH Zürich/University of Zürich, Zurich, Switzerland.,Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland.,Christine Kuhne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Emilia Mikola
- Department of Otorhinolaryngology, Satakunta Central Hospital, Pori, Finland
| | - Tuomo Puhakka
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital and University of Turku, Turku, Finland
| | - Oscar Palomares
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland.,Christine Kuhne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland.,Christine Kuhne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Sanna Toppila-Salmi
- Haartman Institute, University of Helsinki & Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Jartti
- Department of Pediatrics and Adolescent Medicine, University of Turku, Turku, Finland.,PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
28
|
Erratum: Type 1 regulatory T cell-mediated tolerance in health and disease. Front Immunol 2023; 13:1125497. [PMID: 36761160 PMCID: PMC9903213 DOI: 10.3389/fimmu.2022.1125497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 01/26/2023] Open
Abstract
[This corrects the article .].
Collapse
|
29
|
Nuyttens L, De Vlieger L, Diels M, Schrijvers R, Bullens DMA. The clinical and immunological basis of early food introduction in food allergy prevention. FRONTIERS IN ALLERGY 2023; 4:1111687. [PMID: 36756279 PMCID: PMC9899849 DOI: 10.3389/falgy.2023.1111687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
IgE-mediated food allergy has an estimated prevalence of 6%-10% in developed countries. Allergen avoidance has long been the main focus in the prevention of food allergy and late solid food introduction after 6-12 months of age was recommended in high-risk infants. However, the rising prevalence of food allergy despite delayed exposure to allergens and the observations that IgE-mediated sensitization to food products could even occur before the introduction of solid foods resulted in a shift towards early solid food introduction as an attempt to prevent IgE-mediated food allergy. Since then, many trials focused on the clinical outcome of early allergen introduction and overall seem to point to a protective effect on the development of IgE-mediated food allergies. For non-IgE-mediated diseases of food allergy, evidence of early food introduction seems less clear. Moreover, data on the underlying immunological processes in early food introduction is lacking. The goal of this review is to summarize the available data of immunological changes in early food introduction to prevent IgE and non-IgE mediated food allergy.
Collapse
Affiliation(s)
- L. Nuyttens
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology & Transplantation, KU Leuven, Leuven, Belgium,Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - L. De Vlieger
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology & Transplantation, KU Leuven, Leuven, Belgium
| | - M. Diels
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - R. Schrijvers
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology & Transplantation, KU Leuven, Leuven, Belgium,Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
| | - D. M. A. Bullens
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology & Transplantation, KU Leuven, Leuven, Belgium,Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium,Correspondence: D. M. A Bullens
| |
Collapse
|
30
|
Yin T, Zhang X, Iwatani S, Miyanaga K, Yamamoto N. Uptake of Levilactobacillus brevis JCM 1059 by THP-1 Cells via Interaction between SlpB and CAP-1 Promotes Cytokine Production. Microorganisms 2023; 11:microorganisms11020247. [PMID: 36838212 PMCID: PMC9962577 DOI: 10.3390/microorganisms11020247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Several probiotic lactic acid bacteria (LAB) exert immunomodulatory effects on the host. However, the reasons for the different effects of LAB have not been fully elucidated. To understand the different immunomodulatory effects of LAB, we evaluated the levels of critical molecules in differentiated monocytic THP-1 and dendritic cells (DCs) following the uptake of various LAB strains. Lactobacillus helveticus JCM 1120, Lactobacillus acidophilus JCM 1132, Levilactobacillus brevis JCM 1059, and Lentilactobacillus kefiri JCM 5818 showed significantly higher uptake among the 12 LAB species tested. The uptake of microbeads by THP-1 DC increased when coupled with the surface layer proteins (Slps) from the tested strains. SlpB was mainly observed in the L. brevis JCM 1059 Slps extract. The expected cell surface receptor for SlpB on THP-1 DC was purified using SlpB-coupled affinity resin and identified as adenylyl cyclase-associated protein 1 (CAP-1). SlpB binding to THP-1 DC decreased after the addition of anti-CAP-1 and anti-DC-SIGN antibodies but not after the addition of anti-macrophage-inducible C-type lectin (Mincle) antibody. These results suggest that SlpB on L. brevis JCM 1059 plays preferentially binds to CAP-1 on THP-1 DC and plays a crucial role in bacterial uptake by THP-1 cells as well as in subsequent interleukin-12 (IL-12) production.
Collapse
Affiliation(s)
- Tingyu Yin
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Kanagawa, Japan
| | - Xiaoxi Zhang
- Department of Microbiology and Immunology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Shun Iwatani
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Kanagawa, Japan
- Tsukuba Biotechnology Research Center, Astellas Pharma Inc., 5-2-3, Tokodai, Tsukuba-shi 300-2698, Ibaraki, Japan
| | - Kazuhiko Miyanaga
- Department of Infection and Immunity, School of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi 329-0498, Tochigi, Japan
| | - Naoyuki Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Kanagawa, Japan
- Correspondence: ; Tel.: +81-45-924-5105
| |
Collapse
|
31
|
Akdis CA, Akdis M, Boyd SD, Sampath V, Galli SJ, Nadeau KC. Allergy: Mechanistic insights into new methods of prevention and therapy. Sci Transl Med 2023; 15:eadd2563. [PMID: 36652536 DOI: 10.1126/scitranslmed.add2563] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the past few decades, the prevalence of allergic diseases has increased worldwide. Here, we review the etiology and pathophysiology of allergic diseases, including the role of the epithelial barrier, the immune system, climate change, and pollutants. Our current understanding of the roles of early life and infancy; diverse diet; skin, respiratory, and gut barriers; and microbiome in building immune tolerance to common environmental allergens has led to changes in prevention guidelines. Recent developments on the mechanisms involved in allergic diseases have been translated to effective treatments, particularly in the past 5 years, with additional treatments now in advanced clinical trials.
Collapse
Affiliation(s)
- Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos CH-7265, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos CH-7265, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos CH-7265, Switzerland
| | - Scott D Boyd
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA 94305, USA
| | - Stephen J Galli
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
32
|
Freeborn RA, Strubbe S, Roncarolo MG. Type 1 regulatory T cell-mediated tolerance in health and disease. Front Immunol 2022; 13:1032575. [PMID: 36389662 PMCID: PMC9650496 DOI: 10.3389/fimmu.2022.1032575] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 09/02/2023] Open
Abstract
Type 1 regulatory T (Tr1) cells, in addition to other regulatory cells, contribute to immunological tolerance to prevent autoimmunity and excessive inflammation. Tr1 cells arise in the periphery upon antigen stimulation in the presence of tolerogenic antigen presenting cells and secrete large amounts of the immunosuppressive cytokine IL-10. The protective role of Tr1 cells in autoimmune diseases and inflammatory bowel disease has been well established, and this led to the exploration of this population as a potential cell therapy. On the other hand, the role of Tr1 cells in infectious disease is not well characterized, thus raising concern that these tolerogenic cells may cause general immune suppression which would prevent pathogen clearance. In this review, we summarize current literature surrounding Tr1-mediated tolerance and its role in health and disease settings including autoimmunity, inflammatory bowel disease, and infectious diseases.
Collapse
Affiliation(s)
- Robert A. Freeborn
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Steven Strubbe
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Maria Grazia Roncarolo
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, United States
- Center for Definitive and Curative Medicine (CDCM), Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|
33
|
The Genetic Factors of the Airway Epithelium Associated with the Pathology of Asthma. Genes (Basel) 2022; 13:genes13101870. [PMID: 36292755 PMCID: PMC9601469 DOI: 10.3390/genes13101870] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2022] Open
Abstract
Asthma is a chronic disease of the airways characterized by inflammation, tightened muscles, and thickened airway walls leading to symptoms such as shortness of breath, chest tightness, and cough in patients. The increased risk of asthma in children of asthmatics parents supports the existence of genetic factors involved in the pathogenesis of this disease. Genome-wide association studies have discovered several single nucleotide polymorphisms associated with asthma. These polymorphisms occur within several genes and can contribute to different asthma phenotypes, affect disease severity, and clinical response to different therapies. The complexity in the etiology of asthma also results from interactions between environmental and genetic factors. Environmental exposures have been shown to increase the prevalence of asthma in individuals who are genetically susceptible. This review summarizes what is currently known about the genetics of asthma in relation to risk, response to common treatments, and gene-environmental interactions.
Collapse
|
34
|
Hesse L, Oude Elberink J, van Oosterhout AJ, Nawijn MC. Allergen immunotherapy for allergic airway diseases: Use lessons from the past to design a brighter future. Pharmacol Ther 2022; 237:108115. [DOI: 10.1016/j.pharmthera.2022.108115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
|
35
|
Que W, Ma K, Hu X, Guo WZ, Li XK. Combinations of anti-GITR antibody and CD28 superagonist induce permanent allograft acceptance by generating type 1 regulatory T cells. SCIENCE ADVANCES 2022; 8:eabo4413. [PMID: 35921418 PMCID: PMC9348800 DOI: 10.1126/sciadv.abo4413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Type 1 regulatory T (Tr1) cells represent a subset of IL-10-producing CD4+Foxp3- T cells and play key roles in promoting transplant tolerance. However, no effective pharmacological approaches have been able to induce Tr1 cells in vivo. We herein report the combined use of a CD28 superagonist (D665) and anti-glucocorticoid-induced tumor necrosis factor receptor-related protein monoclonal antibody (G3c) to induce Tr1 cells in vivo. Large amounts of IL-10/interferon-γ-co-producing CD4+Foxp3- Tr1 cells were generated by D665-G3c sequential treatment in mice. Mechanistic studies suggested that D665-G3c induced Tr1 cells via transcription factors Prdm1 and Maf. G3c contributed to Tr1 cell generation via the activation of mitogen-activated protein kinase-signal transducer and activator of transcription 3 signaling. Tr1 cells suppressed dendritic cell maturation and T cell responses and mediated permanent allograft acceptance in fully major histocompatibility complex-mismatched mice in an IL-10-dependent manner. In vivo Tr1 cell induction is a promising strategy for achieving transplant tolerance.
Collapse
Affiliation(s)
- Weitao Que
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kuai Ma
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Xin Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Kang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
36
|
Matsuda M, Terada T, Kitatani K, Kawata R, Nabe T. Roles of type 1 regulatory T (Tr1) cells in allergen-specific immunotherapy. FRONTIERS IN ALLERGY 2022; 3:981126. [PMID: 35991310 PMCID: PMC9381954 DOI: 10.3389/falgy.2022.981126] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
Allergen-specific immunotherapy (AIT) is the only causative treatment for allergic diseases by modification of the immune response to allergens. A key feature of AIT is to induce immunotolerance to allergens by generating antigen-specific regulatory T (Treg) cells in allergic patients. Type 1 regulatory T (Tr1) cells and forkhead box protein 3 (Foxp3)-expressing Treg cells are well known among Treg cell subsets. Foxp3 was identified as a master transcription factor of Treg cells, and its expression is necessary for their suppressive activity. In contrast to Foxp3+ Treg cells, the master transcription factor of Tr1 cells has not been elucidated. Nevertheless, Tr1 cells are generally considered as a distinct subset of Treg cells induced in the periphery during antigen exposure in tolerogenic conditions and can produce large amounts of anti-inflammatory cytokines such as interleukin-10 and transforming growth factor-β, followed by down-regulation of the function of effector immune cells independently of Foxp3 expression. Since the discovery of Tr1 cells more than 20 years ago, research on Tr1 cells has expanded our understanding of the mechanism of AIT. Although the direct precursors and true identity of these cells continues to be disputed, we and others have demonstrated that Tr1 cells are induced in the periphery by AIT, and the induced cells are re-activated by antigens, followed by suppression of allergic symptoms. In this review, we discuss the immune mechanisms for the induction of Tr1 cells by AIT and the immune-suppressive roles of Tr1 cells in AIT.
Collapse
Affiliation(s)
- Masaya Matsuda
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan
| | - Tetsuya Terada
- Department of Otolaryngology, Head & Neck Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Kazuyuki Kitatani
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan
| | - Ryo Kawata
- Department of Otolaryngology, Head & Neck Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Takeshi Nabe
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan
- Correspondence: Takeshi Nabe
| |
Collapse
|
37
|
Bellinghausen I, Khatri R, Saloga J. Current Strategies to Modulate Regulatory T Cell Activity in Allergic Inflammation. Front Immunol 2022; 13:912529. [PMID: 35720406 PMCID: PMC9205643 DOI: 10.3389/fimmu.2022.912529] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
Over the past decades, atopic diseases, including allergic rhinitis, asthma, atopic dermatitis, and food allergy, increased strongly worldwide, reaching up to 50% in industrialized countries. These diseases are characterized by a dominating type 2 immune response and reduced numbers of allergen-specific regulatory T (Treg) cells. Conventional allergen-specific immunotherapy is able to tip the balance towards immunoregulation. However, in mouse models of allergy adaptive transfer of Treg cells did not always lead to convincing beneficial results, partially because of limited stability of their regulatory phenotype activity. Besides genetic predisposition, it has become evident that environmental factors like a westernized lifestyle linked to modern sanitized living, the early use of antibiotics, and the consumption of unhealthy foods leads to epithelial barrier defects and dysbiotic microbiota, thereby preventing immune tolerance and favoring the development of allergic diseases. Epigenetic modification of Treg cells has been described as one important mechanism in this context. In this review, we summarize how environmental factors affect the number and function of Treg cells in allergic inflammation and how this knowledge can be exploited in future allergy prevention strategies as well as novel therapeutic approaches.
Collapse
Affiliation(s)
- Iris Bellinghausen
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Rahul Khatri
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Joachim Saloga
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
38
|
Lu J, Ji X, Wang L, Sun F, Huang C, Peng H, Jiang Y, Guo Z, Liu X, Ji Y, Lu D. Interleukin‑27 ameliorates allergic asthma by alleviating the lung Th2 inflammatory environment. Int J Mol Med 2022; 49:86. [PMID: 35514302 PMCID: PMC9106376 DOI: 10.3892/ijmm.2022.5142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/20/2022] [Indexed: 11/22/2022] Open
Abstract
Interleukin (IL)‑27 can inhibit the differentiation of Th2 cells and plays a role in the development of asthma. However, whether the therapeutic administration of IL‑27 in a mouse model of asthma can inhibit allergic responses remains a matter of debate. Additionally, the mechanisms through which IL‑27 ameliorates inflammatory responses in asthma are not yet fully understood. Thus, the aim of the present study was to examine the effects of IL‑27 on asthma using a mouse model and to elucidate the underlying mechanisms. For this purpose, mice received an intranasal administration of IL‑27 and the total and differential cell counts, levels of cytokines and type 1 regulatory T (Tr1) cells in the lungs were detected. The protein and mRNA levels of signal transducer and activator of transcription (STAT)1 and STAT3 were analyzed and airway remodeling was assessed. The results indicated that IL‑27 did not ameliorate airway inflammation, airway hyperresponsiveness, and airway remolding when administrated therapeutically. Preventatively, the administration of IL‑27 decreased the concentrations of Th2 cytokines and increased the number of Tr1 cells. The protein and mRNA levels of STAT1 and STAT3 were increased. Taken together, these findings demonstrate that the prophylactic administration of IL‑27 ameliorates asthma by alleviating the lung Th2 inflammatory environment through the restoration of both the STAT1 and STAT3 pathways. IL‑27 may thus prove to be useful as a novel agent for the prevention of asthma.
Collapse
Affiliation(s)
- Jiameng Lu
- School of Microelectronics, Shandong University, Jinan, Shandong 250100, P.R. China
| | - Xiaoqing Ji
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Lixia Wang
- Division of Disinfectant and Supply, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Fei Sun
- Graduate School of Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| | - Chuanjun Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong 250014, P.R. China
| | - Haiying Peng
- Graduate School of Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| | - Yunxiu Jiang
- Graduate School of Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| | - Zihan Guo
- Graduate School of Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| | - Xinyi Liu
- Graduate School of Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| | - Yanbo Ji
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Degan Lu
- Department of Respiratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
39
|
Bossini-Castillo L, Glinos DA, Kunowska N, Golda G, Lamikanra AA, Spitzer M, Soskic B, Cano-Gamez E, Smyth DJ, Cattermole C, Alasoo K, Mann A, Kundu K, Lorenc A, Soranzo N, Dunham I, Roberts DJ, Trynka G. Immune disease variants modulate gene expression in regulatory CD4 + T cells. CELL GENOMICS 2022; 2:None. [PMID: 35591976 PMCID: PMC9010307 DOI: 10.1016/j.xgen.2022.100117] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 11/02/2021] [Accepted: 03/15/2022] [Indexed: 12/30/2022]
Abstract
Identifying cellular functions dysregulated by disease-associated variants could implicate novel pathways for drug targeting or modulation in cell therapies. However, follow-up studies can be challenging if disease-relevant cell types are difficult to sample. Variants associated with immune diseases point toward the role of CD4+ regulatory T cells (Treg cells). We mapped genetic regulation (quantitative trait loci [QTL]) of gene expression and chromatin activity in Treg cells, and we identified 133 colocalizing loci with immune disease variants. Colocalizations of immune disease genome-wide association study (GWAS) variants with expression QTLs (eQTLs) controlling the expression of CD28 and STAT5A, involved in Treg cell activation and interleukin-2 (IL-2) signaling, support the contribution of Treg cells to the pathobiology of immune diseases. Finally, we identified seven known drug targets suitable for drug repurposing and suggested 63 targets with drug tractability evidence among the GWAS signals that colocalized with Treg cell QTLs. Our study is the first in-depth characterization of immune disease variant effects on Treg cell gene expression modulation and dysregulation of Treg cell function.
Collapse
Affiliation(s)
| | - Dafni A. Glinos
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- New York Genome Center, New York, NY, USA
| | - Natalia Kunowska
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Gosia Golda
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Abigail A. Lamikanra
- NHS Blood and Transplant, Oxford, UK
- BRC Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michaela Spitzer
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | - Blagoje Soskic
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | - Eddie Cano-Gamez
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | - Deborah J. Smyth
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | | | - Kaur Alasoo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Alice Mann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Kousik Kundu
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Anna Lorenc
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Nicole Soranzo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Ian Dunham
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | - David J. Roberts
- NHS Blood and Transplant, Oxford, UK
- BRC Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Gosia Trynka
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| |
Collapse
|
40
|
Bolivar-Wagers S, Larson JH, Jin S, Blazar BR. Cytolytic CD4 + and CD8 + Regulatory T-Cells and Implications for Developing Immunotherapies to Combat Graft-Versus-Host Disease. Front Immunol 2022; 13:864748. [PMID: 35493508 PMCID: PMC9040077 DOI: 10.3389/fimmu.2022.864748] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/16/2022] [Indexed: 02/03/2023] Open
Abstract
Regulatory T-cells (Treg) are critical for the maintenance of immune homeostasis and tolerance induction. While the immunosuppressive mechanisms of Treg have been extensively investigated for decades, the mechanisms responsible for Treg cytotoxicity and their therapeutic potential in regulating immune responses have been incompletely explored and exploited. Conventional cytotoxic T effector cells (Teffs) are known to be important for adaptive immune responses, particularly in the settings of viral infections and cancer. CD4+ and CD8+ Treg subsets may also share similar cytotoxic properties with conventional Teffs. Cytotoxic effector Treg (cyTreg) are a heterogeneous population in the periphery that retain the capacity to suppress T-cell proliferation and activation, induce cellular apoptosis, and migrate to tissues to ensure immune homeostasis. The latter can occur through several cytolytic mechanisms, including the Granzyme/Perforin and Fas/FasL signaling pathways. This review focuses on the current knowledge and recent advances in our understanding of cyTreg and their potential application in the treatment of human disease, particularly Graft-versus-Host Disease (GVHD).
Collapse
Affiliation(s)
| | | | | | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
41
|
Fernandez‐Santamaria R, Satitsuksanoa P. Engineered IL-10: A matter of affinity. Allergy 2022; 77:1067-1069. [PMID: 34626499 DOI: 10.1111/all.15132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022]
Abstract
Pleiotropic roles of IL-10. Immune cells including regulatory T cells and B cells, ILCregs, macrophages, and DCs produce IL-10, which exerts both anti-inflammatory and pro-inflammatory effects. In an anti-inflammatory state, IL-10 suppresses inflammatory signals from several immune cells. In a pro-inflammatory state, IL-10 can induce CD8+ T cells to release IFN-γ and granzyme B. The underlying mechanism that defines anti-inflammatory and pro-inflammatory activities of IL-10 depends on the binding affinity of IL-10 to its receptors (IL-10Rα and IL-10Rβ). The dimerization of the IL-10 complex activates STAT1/STAT3 and diversifies the biological effects of IL-10. In hindsight, high-affinity to IL-10Rβ leads to both anti-inflammatory and pro-inflammatory activities while low-affinity to IL-10Rβ only induces anti-inflammatory functions.
Collapse
Affiliation(s)
- Ruben Fernandez‐Santamaria
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Allergy Research Group Medicine Department Instituto de Investigación Biomédica de Málaga‐IBIMAUniversidad de Málaga‐UMA Málaga Spain
| | - Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne – Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| |
Collapse
|
42
|
Liu C, Cao M, Yang N, Reid-Adam J, Tversky J, Zhan J, Li XM. Time-dependent dual beneficial modulation of interferon-γ, interleukin 5, and Treg cytokines in asthma patient peripheral blood mononuclear cells by ganoderic acid B. Phytother Res 2022; 36:1231-1240. [PMID: 35112740 DOI: 10.1002/ptr.7266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/20/2021] [Accepted: 08/14/2021] [Indexed: 11/09/2022]
Abstract
Th2 cytokines play a dominant role in the pathogenesis of allergic asthma. Interferon gamma (IFN-γ), a Th1 cytokine, links to therapeutic mechanisms of allergic asthma. Interleukin (IL)-10, a regulatory cytokine, is involved in the induction of immune tolerance. We previously demonstrated that Anti-Asthma Simplified Herbal Medicine Intervention (ASHMI) suppressed Th2 and increased IFN-γ in patients with asthma and in animal models, but its bioactive compound is unknown. Ganoderic acid beta (GAB) was isolated from Ganoderma lucidum (one herb in ASHMI). Human peripheral blood mononuclear cells (PBMCs) from adult patients with asthma were cultured with GAB or dexamethasone (Dex) in the presence of environmental allergens. The cytokine levels of IL-10, IFN-γ, IL-5, transcription factors T-bet, Foxp-3, and GATA3 were measured. Following 3-day culture, GAB, but not Dex, significantly increased IL-10 and IFN-γ levels by allergic patients' PBMCs. Following 6-day treatment, GAB inhibited IL-5 production, but IL-10 and IFN-γ remained high. Dex suppressed production of all three cytokines. GAB suppressed GATA3 and maintained Foxp-3 and T-bet gene expression, while Dex significantly suppressed GATA3 and T-bet expression. GAB simultaneously increased IL-10, IFN-γ associated with induction of T-bet and Foxp3, while suppressing IL-5, which was associated with suppression of GATA3, demonstrating unique beneficial cytokine modulatory effect, which distinguishes from Dex's overall suppression.
Collapse
Affiliation(s)
- Changda Liu
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingzhuo Cao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Nan Yang
- General Nutraceutical Technology LLC, Elmsford, New York, USA.,Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Jessica Reid-Adam
- Department of Pediatrics, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Jody Tversky
- The Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland, USA
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, Logan, Utah, USA
| | - Xiu-Min Li
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA.,Department of Otolaryngology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
43
|
Zhang Y, Yang Y, Guo J, Cui L, Yang L, Li Y, Mou Y, Jia C, Zhang L, Song X. miR-146a enhances regulatory T-cell differentiation and function in allergic rhinitis by targeting STAT5b. Allergy 2022; 77:550-558. [PMID: 34716993 DOI: 10.1111/all.15163] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/24/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND MicroRNA (miR)-146a, as an important immune regulatory factor with an anti-inflammatory effect, plays a crucial role in regulatory T-cell (Tregs) differentiation and function in allergic rhinitis (AR). The present study aimed to investigate the regulatory mechanism employed by miR-146a to control Treg differentiation and function in AR. METHODS Expression of miR-146a and STAT5b in peripheral blood mononuclear cells (PBMCs) and nasal mucosa from patients with AR was detected by qPCR and Western blotting. Tregs were quantified by flow cytometry in miR-146a knockdown or STAT5b knockdown PBMCs. FOXP3, IL-10, and TGF-β levels were detected by Western blotting or ELISA in miR-146a knockdown or STAT5b overexpressing PBMCs, as well as in STAT5b knockdown PBMCs overexpressing miR-146a. The effect of miR-146a on STAT5b was observed by luciferase assay and knockdown experiments. RESULTS Levels of miR146a and STAT5b in the nasal mucosa or PBMCs were significantly lower in the AR group than in the control group. There were significantly fewer Tregs in miR-146a knockdown or STAT5b knockdown PBMCs compared to control PBMCs. Expression of FOXP3, IL-10, and TGF-β was decreased in the miR-146a knockdown group but increased in the STAT5b overexpression group. In contrast, miR-146a overexpression increased the levels of these factors, but knockdown of STAT5b significantly inhibited this effect. Luciferase assay and knockdown experiments showed that miR-146a bound directly to STAT5b. CONCLUSIONS miR-146a enhances Treg differentiation and function in AR by positively targeting STAT5b.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Otolaryngology, Head and Neck Surgery Yantai Yuhuangding Hospital Qingdao University Yantai China
| | - Yujuan Yang
- Department of Otolaryngology, Head and Neck Surgery Yantai Yuhuangding Hospital Qingdao University Yantai China
| | - Jing Guo
- Department of Otolaryngology, Head and Neck Surgery Yantai Yuhuangding Hospital Qingdao University Yantai China
| | - Limei Cui
- Department of Otolaryngology, Head and Neck Surgery Yantai Yuhuangding Hospital Qingdao University Yantai China
| | - Liping Yang
- Department of Otolaryngology, Head and Neck Surgery Yantai Yuhuangding Hospital Qingdao University Yantai China
| | - Yumei Li
- Department of Otolaryngology, Head and Neck Surgery Yantai Yuhuangding Hospital Qingdao University Yantai China
| | - Yakui Mou
- Department of Otolaryngology, Head and Neck Surgery Yantai Yuhuangding Hospital Qingdao University Yantai China
| | - Chuanliang Jia
- Department of Otolaryngology, Head and Neck Surgery Yantai Yuhuangding Hospital Qingdao University Yantai China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery Beijing Tongren HospitalCapital Medical University Beijing China
- Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery Yantai Yuhuangding Hospital Qingdao University Yantai China
| |
Collapse
|
44
|
Musiol S, Alessandrini F, Jakwerth CA, Chaker AM, Schneider E, Guerth F, Schnautz B, Grosch J, Ghiordanescu I, Ullmann JT, Kau J, Plaschke M, Haak S, Buch T, Schmidt-Weber CB, Zissler UM. TGF-β1 Drives Inflammatory Th Cell But Not Treg Cell Compartment Upon Allergen Exposure. Front Immunol 2022; 12:763243. [PMID: 35069535 PMCID: PMC8777012 DOI: 10.3389/fimmu.2021.763243] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
TGF-β1 is known to have a pro-inflammatory impact by inducing Th9 and Th17 cells, while it also induces anti-inflammatory Treg cells (Tregs). In the context of allergic airway inflammation (AAI) its dual role can be of critical importance in influencing the outcome of the disease. Here we demonstrate that TGF-β is a major player in AAI by driving effector T cells, while Tregs differentiate independently. Induction of experimental AAI and airway hyperreactivity in a mouse model with inducible genetic ablation of the gene encoding for TGFβ-receptor 2 (Tgfbr2) on CD4+T cells significantly reduced the disease phenotype. Further, it blocked the induction of pro-inflammatory T cell frequencies (Th2, Th9, Th17), but increased Treg cells. To translate these findings into a human clinically relevant context, Th2, Th9 and Treg cells were quantified both locally in induced sputum and systemically in blood of allergic rhinitis and asthma patients with or without allergen-specific immunotherapy (AIT). Natural allergen exposure induced local and systemic Th2, Th9, and reduced Tregs cells, while therapeutic allergen exposure by AIT suppressed Th2 and Th9 cell frequencies along with TGF-β and IL-9 secretion. Altogether, these findings support that neutralization of TGF-β represents a viable therapeutic option in allergy and asthma, not posing the risk of immune dysregulation by impacting Tregs cells.
Collapse
Affiliation(s)
- Stephanie Musiol
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Francesca Alessandrini
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Constanze A Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Adam M Chaker
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany.,Department of Otorhinolaryngology, Klinikum rechts der Isar, TUM School of Medicine, Technical University Munich, Munich, Germany
| | - Evelyn Schneider
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Ferdinand Guerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Benjamin Schnautz
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Johanna Grosch
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Ileana Ghiordanescu
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Julia T Ullmann
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Josephine Kau
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Mirjam Plaschke
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Stefan Haak
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Carsten B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
45
|
Schulte S, Heide J, Ackermann C, Peine S, Ramharter M, Mackroth MS, Woost R, Jacobs T, Schulze zur Wiesch J. Deciphering the Plasmodium falciparum malaria-specific CD4+ T-cell response: ex vivo detection of high frequencies of PD-1+TIGIT+ EXP1-specific CD4+ T cells using a novel HLA-DR11-restricted MHC class II tetramer. Clin Exp Immunol 2021; 207:227-236. [PMID: 35020841 PMCID: PMC8982981 DOI: 10.1093/cei/uxab027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 02/03/2023] Open
Abstract
Relatively little is known about the ex vivo frequency and phenotype of the Plasmodium falciparum-specific CD4+ T-cell response in humans. The exported protein 1 (EXP1) is expressed by plasmodia at both, the liver stage and blood stage, of infection making it a potential target for CD4+ and CD8+ effector T cells. Here, a fluorochrome-labelled HLA-DRB1∗11:01-restriced MHC class II tetramer derived from the P. falciparum EXP1 (aa62-74) was established for ex vivo tetramer analysis and magnetic bead enrichment in 10 patients with acute malaria. EXP1-specific CD4+ T cells were detectable in 9 out of 10 (90%) malaria patients expressing the HLA-DRB1∗11 molecule with an average ex vivo frequency of 0.11% (0-0.22%) of total CD4+ T cells. The phenotype of EXP1-specific CD4+ T cells was further assessed using co-staining with activation (CD38, HLA-DR, CD26), differentiation (CD45RO, CCR7, KLRG1, CD127), senescence (CD57), and co-inhibitory (PD-1, TIGIT, LAG-3, TIM-3) markers as well as the ectonucleotidases CD39 and CD73. EXP1-specific tetramer+ CD4+ T cells had a distinct phenotype compared to bulk CD4+ T cells and displayed a highly activated effector memory phenotype with elevated levels of co-inhibitory receptors and activation markers: EXP1-specific CD4+ T cells universally expressed the co-inhibitory receptors PD-1 and TIGIT as well as the activation marker CD38 and showed elevated frequencies of CD39. These results demonstrate that MHC class II tetramer enrichment is a sensitive approach to investigate ex vivo antigen-specific CD4+ T cells in malaria patients that will aid further analysis of the role of CD4+ T cells during malaria.
Collapse
Affiliation(s)
- Sophia Schulte
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janna Heide
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Christin Ackermann
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Ramharter
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany,Department of Tropical Medicine, Bernhard-Nocht-Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Maria Sophia Mackroth
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany,Department of Tropical Medicine, Bernhard-Nocht-Institute for Tropical Medicine (BNITM), Hamburg, Germany,Protozoa Immunology, Bernhard-Nocht-Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Robin Woost
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Thomas Jacobs
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany,Protozoa Immunology, Bernhard-Nocht-Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany,Correspondence: Julian Schulze zur Wiesch, Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| |
Collapse
|
46
|
Cossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, Lenz D, Levings MK, Lino AC, Liotta F, Long HM, Lugli E, MacDonald KN, Maggi L, Maini MK, Mair F, Manta C, Manz RA, Mashreghi MF, Mazzoni A, McCluskey J, Mei HE, Melchers F, Melzer S, Mielenz D, Monin L, Moretta L, Multhoff G, Muñoz LE, Muñoz-Ruiz M, Muscate F, Natalini A, Neumann K, Ng LG, Niedobitek A, Niemz J, Almeida LN, Notarbartolo S, Ostendorf L, Pallett LJ, Patel AA, Percin GI, Peruzzi G, Pinti M, Pockley AG, Pracht K, Prinz I, Pujol-Autonell I, Pulvirenti N, Quatrini L, Quinn KM, Radbruch H, Rhys H, Rodrigo MB, Romagnani C, Saggau C, Sakaguchi S, Sallusto F, Sanderink L, Sandrock I, Schauer C, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schober K, Schoen J, Schuh W, Schüler T, Schulz AR, Schulz S, Schulze J, Simonetti S, Singh J, Sitnik KM, Stark R, Starossom S, Stehle C, Szelinski F, Tan L, Tarnok A, Tornack J, Tree TIM, van Beek JJP, van de Veen W, van Gisbergen K, Vasco C, Verheyden NA, von Borstel A, Ward-Hartstonge KA, Warnatz K, Waskow C, Wiedemann A, Wilharm A, Wing J, Wirz O, Wittner J, Yang JHM, Yang J. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur J Immunol 2021; 51:2708-3145. [PMID: 34910301 PMCID: PMC11115438 DOI: 10.1002/eji.202170126] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Institute for Biotechnology, Technische Universität, Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Richard Addo
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Eduardo Arranz
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Sudipto Bari
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | | | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Cristian G. Beccaria
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - David Bernardo
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jessica Borger
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Chotima Böttcher
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonie Brockmann
- Department of Microbiology & Immunology, Columbia University, New York City, USA
| | - Marie Burns
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Dirk H. Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Fernando Gabriel Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - IIFP (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Eleni Christakou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Cornelis
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Martin S. Davey
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Gabriele De Simone
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Michael Delacher
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany
- Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - James Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Jun Dong
- Cell Biology, German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Thomas Dörner
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Regine J. Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charles-Antoine Dutertre
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pascale Eede
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Simon Fillatreau
- Institut Necker Enfants Malades, INSERM U1151-CNRS, UMR8253, Paris, France
- Université de Paris, Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Aida Fiz-Lopez
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Marie Follo
- Department of Medicine I, Lighthouse Core Facility, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gemma A. Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Nicola Gagliani
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Giovanni Galletti
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - José Antonio Garrote
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Laboratory of Molecular Genetics, Servicio de Análisis Clínicos, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Paola Gruarin
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Christopher M. Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Guido Heine
- Division of Allergy, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Carolina Hernández
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oliver Hoelsken
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Qing Huang
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna E. Huber
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - William Y. K. Hwang
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
- Executive Offices, National Cancer Centre Singapore, Singapore
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabine M. Ivison
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter K. Jani
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kessler
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Steven Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Laura Knop
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - H. Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny F. Kuehne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Daniel Lenz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Andreia C. Lino
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Katherine N. MacDonald
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mala K. Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Calin Manta
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | | | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Henrik E. Mei
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Fritz Melchers
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, Leipzig University, Härtelstr.16, −18, Leipzig, 04107, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Leticia Monin
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Luis Enrique Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Franziska Muscate
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Guan Ng
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Jana Niemz
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Samuele Notarbartolo
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Lennard Ostendorf
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura J. Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Amit A. Patel
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Gulce Itir Percin
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Giovanna Peruzzi
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Katharina Pracht
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irma Pujol-Autonell
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Peter Gorer Department of Immunobiology, King’s College London, London, UK
| | - Nadia Pulvirenti
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Kylie M. Quinn
- School of Biomedical and Health Sciences, RMIT University, Bundorra, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helena Radbruch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hefin Rhys
- Flow Cytometry Science Technology Platform, The Francis Crick Institute, London, UK
| | - Maria B. Rodrigo
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | | | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Lieke Sanderink
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christine Schauer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Janina Schoen
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Axel R. Schulz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Schulze
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Jeeshan Singh
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katarzyna M. Sitnik
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Regina Stark
- Charité Universitätsmedizin Berlin – BIH Center for Regenerative Therapies, Berlin, Germany
- Sanquin Research – Adaptive Immunity, Amsterdam, The Netherlands
| | - Sarah Starossom
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Franziska Szelinski
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Attila Tarnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
- Department of Precision Instrument, Tsinghua University, Beijing, China
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Julia Tornack
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Timothy I. M. Tree
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Jasper J. P. van Beek
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Chiara Vasco
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anouk von Borstel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kirsten A. Ward-Hartstonge
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Medicine III, Technical University Dresden, Dresden, Germany
| | - Annika Wiedemann
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - James Wing
- Immunology Frontier Research Center, Osaka University, Japan
| | - Oliver Wirz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jens Wittner
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jennie H. M. Yang
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Juhao Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
47
|
The Emerging Roles of T Helper Cell Subsets and Cytokines in Severe Neutrophilic Asthma. Inflammation 2021; 45:1007-1022. [PMID: 34825300 DOI: 10.1007/s10753-021-01598-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/01/2021] [Accepted: 11/07/2021] [Indexed: 12/11/2022]
Abstract
Neutrophilic asthma (NA) is a severe type of steroid resistant asthma, and so far the immune mechanisms underlying NA are not clear. In this article, we performed a comprehensive assessment of Th-cell subsets and cytokines in severe NA patients. A total of 13 healthy individuals and 31 severe asthma patients were enrolled in this study. Refractory asthma patients were defined as those with eosinophilic asthma (EA, accounted for 32% of asthmatic patients) or NA (68%) according to sputum neutrophil/eosinophil counts or blood eosinophils. Th-cell subsets in peripheral blood mononuclear cells (PBMCs) were analyzed by flow cytometry, and cytokines were detected by cytometric bead array (CBA). The results showed significant differences were observed in Th-cell phenotypes, where the number of Th1 cells were reduced and the numbers of Th2 cells were increased in NA and EA groups, respectively, when compared with healthy controls. Th17 cells were not strongly associated with severe neutrophilic asthma. The frequencies of mucosal-associated invariant T (MAIT) cells were strikingly reduced in severe asthma patients, especially in the NA group. This NA group also showed increased levels of IL-17A, IL-17F, TNF-α, and IL-6 in serum and increased levels of IL-17A, IL-17F, IFN-γ, TNF-α, IL-1β, IL-5, IL-6, and IL-8 in sputum. In addition, sputum IL-6 was positively correlated with TNF-α, IFN-γ, IL-17A, and IL-8. Our results uncovered a controversial role for Th17 cells, which were reduced in severe asthma patients. Severe neutrophilic asthma was associated with a striking deficiency of MAIT cells and high pro-inflammatory cytokine levels.
Collapse
|
48
|
New Insights into the Role of PD-1 and Its Ligands in Allergic Disease. Int J Mol Sci 2021; 22:ijms222111898. [PMID: 34769327 PMCID: PMC8584538 DOI: 10.3390/ijms222111898] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death 1 (PD-1) and its ligands PD-L1 and PD-L2 are receptors that act in co-stimulatory and coinhibitory immune responses. Signaling the PD-1/PD-L1 or PD-L2 pathway is essential to regulate the inflammatory responses to infections, autoimmunity, and allergies, and it has been extensively studied in cancer. Allergic diseases include asthma, rhinoconjunctivitis, atopic dermatitis, drug allergy, and anaphylaxis. These overactive immune responses involve IgE-dependent activation and increased CD4+ T helper type 2 (Th2) lymphocytes. Recent studies have shown that PD-L1 and PD-L2 act to regulate T-cell activation and function. However, the main role of PD-1 and its ligands is to balance the immune response; however, the inflammatory process of allergic diseases is poorly understood. These immune checkpoint molecules can function as a brake or a kick-start to regulate the adaptive immune response. These findings suggest that PD-1 and its ligands may be a key factor in studying the exaggerated response in hypersensitivity reactions in allergies. This review summarizes the current understanding of the role of PD-1 and PD-L1 and PD-L2 pathway regulation in allergic diseases and how this immunomodulatory pathway is currently being targeted to develop novel therapeutic immunotherapy.
Collapse
|
49
|
Liu JMH, Chen P, Uyeda MJ, Cieniewicz B, Sayitoglu EC, Thomas BC, Sato Y, Bacchetta R, Cepika AM, Roncarolo MG. Pre-clinical development and molecular characterization of an engineered type 1 regulatory T-cell product suitable for immunotherapy. Cytotherapy 2021; 23:1017-1028. [PMID: 34404616 PMCID: PMC8546780 DOI: 10.1016/j.jcyt.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative therapeutic approach for many hematological disorders. However, allo-HSCT is frequently accompanied by a serious side effect: graft-versus-host disease (GVHD). The clinical use of allo-HSCT is limited by the inability of current immunosuppressive regimens to adequately control GvHD without impairing the graft-versus-leukemia effect (GvL) conferred by transplanted healthy immune cells. To address this, the authors have developed an engineered type 1 regulatory T-cell product called CD4IL-10 cells. CD4IL-10 cells are obtained through lentiviral transduction, which delivers the human IL10 gene into purified polyclonal CD4+ T cells. CD4IL-10 cells may provide an advantage over standard-of-care immunosuppressants because of the ability to suppress GvHD through continuous secretion of IL-10 and enhance the GvL effect in myeloid malignancies through targeted killing of malignant myeloid cells. METHODS Here the authors established a production process aimed at current Good Manufacturing Practice (cGMP) production for CD4IL-10 cells. RESULTS The authors demonstrated that the CD4IL-10 cell product maintains the suppressive and cytotoxic functions of previously described CD4IL-10 cells. In addition, RNA sequencing analysis of CD4IL-10 identified novel transcriptome changes, indicating that CD4IL-10 cells primarily upregulate cytotoxicity-related genes. These include four molecules with described roles in CD8+ T and natural killer cell-mediated cytotoxicity: CD244, KLRD1, KLRC1 and FASLG. Finally, it was shown that CD4IL-10 cells upregulate IL-22, which mediates wound healing and tissue repair, particularly in the gut. CONCLUSIONS Collectively, these results pave the way toward clinical translation of the cGMP-optimized CD4IL-10 cell product and uncover new molecules that have a role in the clinical application of CD4IL-10 cells.
Collapse
Affiliation(s)
- Jeffrey Mao-Hwa Liu
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Ping Chen
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Molly Javier Uyeda
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, California, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Brandon Cieniewicz
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Ece Canan Sayitoglu
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Benjamin Craig Thomas
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Yohei Sato
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Rosa Bacchetta
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Alma-Martina Cepika
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Maria Grazia Roncarolo
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, California, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, California, USA.
| |
Collapse
|
50
|
Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol 2021; 21:739-751. [PMID: 33846604 DOI: 10.1038/s41577-021-00538-7] [Citation(s) in RCA: 504] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
There has been a steep increase in allergic and autoimmune diseases, reaching epidemic proportions and now affecting more than one billion people worldwide. These diseases are more common in industrialized countries, and their prevalence continues to rise in developing countries in parallel to urbanization and industrialization. Intact skin and mucosal barriers are crucial for the maintenance of tissue homeostasis as they protect host tissues from infections, environmental toxins, pollutants and allergens. A defective epithelial barrier has been demonstrated in allergic and autoimmune conditions such as asthma, atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, eosinophilic esophagitis, coeliac disease and inflammatory bowel disease. In addition, leakiness of the gut epithelium is also implicated in systemic autoimmune and metabolic conditions such as diabetes, obesity, multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis and autoimmune hepatitis. Finally, distant inflammatory responses due to a 'leaky gut' and microbiome changes are suspected in Alzheimer disease, Parkinson disease, chronic depression and autism spectrum disorders. This article introduces an extended 'epithelial barrier hypothesis', which proposes that the increase in epithelial barrier-damaging agents linked to industrialization, urbanization and modern life underlies the rise in allergic, autoimmune and other chronic conditions. Furthermore, it discusses how the immune responses to dysbiotic microbiota that cross the damaged barrier may be involved in the development of these diseases.
Collapse
|