1
|
Ly H. Highly pathogenic avian influenza H5N1 virus infection of companion animals. Virulence 2024; 15:2289780. [PMID: 38064414 PMCID: PMC10761027 DOI: 10.1080/21505594.2023.2289780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Affiliation(s)
- Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
2
|
Elhusseiny MH, Elsayed MM, Mady WH, Mahana O, Bakry NR, Abdelaziz O, Arafa AS, Shahein MA, Eid S, Naguib MM. Genetic features of avian influenza (A/H5N8) clade 2.3.4.4b isolated from quail in Egypt. Virus Res 2024; 350:199482. [PMID: 39396573 PMCID: PMC11532269 DOI: 10.1016/j.virusres.2024.199482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Several genotypes of the highly pathogenic avian influenza (HPAI) virus H5N8 subtype within clade 2.3.4.4b continue to circulate in different species of domestic birds across Egypt. It is believed that quail contribute to virus replication and adaptation to other gallinaceous poultry species and humans. This study provides genetic characterization of the full genome of HPAI H5N8 isolated from quail in Egypt. The virus was isolated from a commercial quail farm associated with respiratory signs. To characterize the genetic features of the detected virus, gene sequencing via Sanger technology and phylogenetic analysis were performed. The results revealed high nucleotide identity with the HPAI H5N8 virus from Egypt, which has multiple basic amino acid motifs PLREKRRKR/GLF at the hemagglutinin (HA) cleavage site. Phylogenetic analysis of the eight gene segments revealed that the quail isolate is grouped with HPAI H5N8 viruses of clade 2.3.4.4b and closely related to the most recent circulating H5N8 viruses in Egypt. Whole-genome characterization revealed amino acid preferences for avian receptors with few mutations, indicating their affinity for human-like receptors and increased virulence in mammals, such as S123P, S133A, T156A and A263T in the HA gene. In addition, the sequencing results revealed a lack of markers associated with influenza antiviral resistance in the neuraminidase and matrix-2 coding proteins. The results of the present study support the spread of HPAIV H5N8 to species other than chickens in Egypt. Therefore, continuous surveillance of AIV in different bird species in Egypt followed by full genomic characterization is needed for better virus control and prevention.
Collapse
Affiliation(s)
- Mohamed H Elhusseiny
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Moataz M Elsayed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Wesam H Mady
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Osama Mahana
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Neveen R Bakry
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Ola Abdelaziz
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Abdel-Sattar Arafa
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | | | - Samah Eid
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Mahmoud M Naguib
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt; Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK.
| |
Collapse
|
3
|
Cheung PHH, Yuen TL, Tang TT, Leung HY, Lee TTW, Chan P, Cheng Y, Fung SY, Ye ZW, Chan CP, Jin DY. Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling. J Med Virol 2024; 96:e70062. [PMID: 39569434 DOI: 10.1002/jmv.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
Exactly why human infection of avian influenza A virus H7N9 causes more severe disease in the elderly remains elusive. In this study, we found that H7N9 PB1-F2 is a pathogenic factor in 15-18-month-old BALB/C mice (aged mice) but not in 6-8-week-old young adult mice (young mice). Recombinant influenza A virus with H7N9 PB1-F2-knockout was less pathogenic in aged mice as indicated with delayed weight loss. In contrast, survival of young mice infected with this virus was diminished. Furthermore, tissue damage, inflammation, proinflammatory cytokine and 2'3'-cGAMP production in the lung were less pronounced in infected aged mice despite no change in viral titer. cGAS is known to produce 2'3'-cGAMP to boost proinflammatory cytokine expression through STING-NF-κB signaling. We found that H7N9 PB1-F2 promoted interferon β (IFNβ) and chemokine gene expression in cultured cells through the mitochondrial DNA-cGAS-STING-NF-κB pathway. H7N9 PB1-F2 formed protein aggregate and caused mitochondrial cristae collapse, complex V-dependent electron transport dysfunction, reverse electron transfer-dependent oxidized mitochondrial DNA release to the cytoplasm and activation of cGAS-STING-NF-κB signaling. PB1-F2 N57 truncation, which is frequently observed in human circulating strains, mitigated H7N9 PB1-F2-mediated mitochondrial dysfunction and cGAS activation. In addition, we found that PB1-F2 of pathogenic avian influenza viruses triggered more robust cGAS activation than their human-adapted descendants. Our findings provide one explanation to age-dependent pathogenesis of H7N9 infection.
Collapse
Affiliation(s)
| | - Tin-Long Yuen
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Tze-Tung Tang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Ho-Yin Leung
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | | | - Pearl Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yun Cheng
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Sin-Yee Fung
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Zi-Wei Ye
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Wang X, Tang XE, Zheng H, Gao R, Lu X, Yang W, Zhou L, Chen Y, Gu M, Hu J, Liu X, Hu S, Liu K, Liu X. Amino acid mutations PB1-V719M and PA-N444D combined with PB2-627K contribute to the pathogenicity of H7N9 in mice. Vet Res 2024; 55:86. [PMID: 38970119 PMCID: PMC11227215 DOI: 10.1186/s13567-024-01342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 07/07/2024] Open
Abstract
H7N9 subtype avian influenza viruses (AIVs) cause 1567 human infections and have high mortality, posing a significant threat to public health. Previously, we reported that two avian-derived H7N9 isolates (A/chicken/Eastern China/JTC4/2013 and A/chicken/Eastern China/JTC11/2013) exhibit different pathogenicities in mice. To understand the genetic basis for the differences in virulence, we constructed a series of mutant viruses based on reverse genetics. We found that the PB2-E627K mutation alone was not sufficient to increase the virulence of H7N9 in mice, despite its ability to enhance polymerase activity in mammalian cells. However, combinations with PB1-V719M and/or PA-N444D mutations significantly enhanced H7N9 virulence. Additionally, these combined mutations augmented polymerase activity, thereby intensifying virus replication, inflammatory cytokine expression, and lung injury, ultimately increasing pathogenicity in mice. Overall, this study revealed that virulence in H7N9 is a polygenic trait and identified novel virulence-related residues (PB2-627K combined with PB1-719M and/or PA-444D) in viral ribonucleoprotein (vRNP) complexes. These findings provide new insights into the molecular mechanisms underlying AIV pathogenesis in mammals, with implications for pandemic preparedness and intervention strategies.
Collapse
Affiliation(s)
- Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Xin-En Tang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Huafen Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Ruyi Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Xiaolong Lu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Wenhao Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Le Zhou
- Yangzhou Center for Disease Control and Prevention, Yangzhou, 225009, China
| | - Yu Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Min Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Jiao Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Xiaowen Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Shunlin Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Kaituo Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Kareinen L, Tammiranta N, Kauppinen A, Zecchin B, Pastori A, Monne I, Terregino C, Giussani E, Kaarto R, Karkamo V, Lähteinen T, Lounela H, Kantala T, Laamanen I, Nokireki T, London L, Helve O, Kääriäinen S, Ikonen N, Jalava J, Kalin-Mänttäri L, Katz A, Savolainen-Kopra C, Lindh E, Sironen T, Korhonen EM, Aaltonen K, Galiano M, Fusaro A, Gadd T. Highly pathogenic avian influenza A(H5N1) virus infections on fur farms connected to mass mortalities of black-headed gulls, Finland, July to October 2023. Euro Surveill 2024; 29:2400063. [PMID: 38904109 PMCID: PMC11191417 DOI: 10.2807/1560-7917.es.2024.29.25.2400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/06/2024] [Indexed: 06/22/2024] Open
Abstract
Highly pathogenic avian influenza (HPAI) has caused widespread mortality in both wild and domestic birds in Europe 2020-2023. In July 2023, HPAI A(H5N1) was detected on 27 fur farms in Finland. In total, infections in silver and blue foxes, American minks and raccoon dogs were confirmed by RT-PCR. The pathological findings in the animals include widespread inflammatory lesions in the lungs, brain and liver, indicating efficient systemic dissemination of the virus. Phylogenetic analysis of Finnish A(H5N1) strains from fur animals and wild birds has identified three clusters (Finland I-III), and molecular analyses revealed emergence of mutations known to facilitate viral adaptation to mammals in the PB2 and NA proteins. Findings of avian influenza in fur animals were spatially and temporally connected with mass mortalities in wild birds. The mechanisms of virus transmission within and between farms have not been conclusively identified, but several different routes relating to limited biosecurity on the farms are implicated. The outbreak was managed in close collaboration between animal and human health authorities to mitigate and monitor the impact for both animal and human health.
Collapse
Affiliation(s)
| | | | | | - Bianca Zecchin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Ambra Pastori
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Calogero Terregino
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Edoardo Giussani
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | | | | | | | | | | | | | | | | | - Otto Helve
- Finnish Institute for Health and Welfare (THL), Department of Health Security, Helsinki, Finland
| | - Sohvi Kääriäinen
- Finnish Institute for Health and Welfare (THL), Department of Health Security, Helsinki, Finland
| | - Niina Ikonen
- Finnish Institute for Health and Welfare (THL), Department of Health Security, Helsinki, Finland
| | - Jari Jalava
- Finnish Institute for Health and Welfare (THL), Department of Health Security, Helsinki, Finland
| | - Laura Kalin-Mänttäri
- Finnish Institute for Health and Welfare (THL), Department of Health Security, Helsinki, Finland
| | - Anna Katz
- Finnish Institute for Health and Welfare (THL), Department of Health Security, Helsinki, Finland
| | - Carita Savolainen-Kopra
- Finnish Institute for Health and Welfare (THL), Department of Health Security, Helsinki, Finland
| | - Erika Lindh
- Finnish Institute for Health and Welfare (THL), Department of Health Security, Helsinki, Finland
| | - Tarja Sironen
- University of Helsinki, Department of Veterinary Biosciences, Helsinki, Finland
| | - Essi M Korhonen
- University of Helsinki, Department of Veterinary Biosciences, Helsinki, Finland
| | - Kirsi Aaltonen
- University of Helsinki, Department of Veterinary Biosciences, Helsinki, Finland
| | - Monica Galiano
- Worldwide Influenza Centre, Francis Crick Institute, London, United Kingdom
| | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Tuija Gadd
- Finnish Food Authority (FFA), Helsinki, Finland
| |
Collapse
|
6
|
Tare DS, Keng SS, Walimbe AM, Pawar SD. Phylogeography and gene pool analysis of highly pathogenic avian influenza H5N1 viruses reported in India from 2006 to 2021. Arch Virol 2024; 169:111. [PMID: 38664271 DOI: 10.1007/s00705-024-06032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/15/2024] [Indexed: 05/24/2024]
Abstract
India has reported highly pathogenic avian influenza (HPAI) H5N1 virus outbreaks since 2006, with the first human case reported in 2021. These included viruses belonging to the clades 2.2, 2.2.2, 2.2.2.1, 2.3.2.1a, and 2.3.2.1c. There are currently no data on the gene pool of HPAI H5N1 viruses in India. Molecular clock and phylogeography analysis of the HA and NA genes; and phylogenetic analysis of the internal genes of H5N1 viruses from India were carried out. Sequences reported from 2006 to 2015; and sequences from 2021 that were available in online databases were used in the analysis. Five separate introductions of H5N1 viruses into India were observed, via Indonesia or Korea (2002), Bangladesh (2009), Bhutan (2010), and China (2013, 2018) (clades 2.2, 2.2.2, 2.2.2.1, 2.3.2.1a, 2.3.2.1c, and 2.3.4.4b). Phylogenetic analysis revealed eight reassortant genotypes. The H5N1 virus isolated from the human case showed a unique reassortant genotype. Amino acid markers associated with adaptation to mammals were also present. This is the first report of the spatio-temporal origins and gene pool analysis of H5N1 viruses from India, highlighting the need for increased molecular surveillance.
Collapse
Affiliation(s)
- Deeksha S Tare
- ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune, 411021, India
| | - Sachin S Keng
- ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune, 411021, India
| | - Atul M Walimbe
- ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune, 411021, India
- ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, 411001, India
| | - Shailesh D Pawar
- ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune, 411021, India.
| |
Collapse
|
7
|
Murashkina T, Sharshov K, Gadzhiev A, Petherbridge G, Derko A, Sobolev I, Dubovitskiy N, Loginova A, Kurskaya O, Kasianov N, Kabilov M, Mine J, Uchida Y, Tsunekuni R, Saito T, Alekseev A, Shestopalov A. Avian Influenza Virus and Avian Paramyxoviruses in Wild Waterfowl of the Western Coast of the Caspian Sea (2017-2020). Viruses 2024; 16:598. [PMID: 38675939 PMCID: PMC11054612 DOI: 10.3390/v16040598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The flyways of many different wild waterfowl pass through the Caspian Sea region. The western coast of the middle Caspian Sea is an area with many wetlands, where wintering grounds with large concentrations of birds are located. It is known that wild waterfowl are a natural reservoir of the influenza A virus. In the mid-2000s, in the north of this region, the mass deaths of swans, gulls, and pelicans from high pathogenicity avian influenza virus (HPAIV) were noted. At present, there is still little known about the presence of avian influenza virus (AIVs) and different avian paramyxoviruses (APMVs) in the region's waterfowl bird populations. Here, we report the results of monitoring these viruses in the wild waterfowl of the western coast of the middle Caspian Sea from 2017 to 2020. Samples from 1438 individuals of 26 bird species of 7 orders were collected, from which 21 strains of AIV were isolated, amounting to a 1.46% isolation rate of the total number of samples analyzed (none of these birds exhibited external signs of disease). The following subtypes were determined and whole-genome nucleotide sequences of the isolated strains were obtained: H1N1 (n = 2), H3N8 (n = 8), H4N6 (n = 2), H7N3 (n = 2), H8N4 (n = 1), H10N5 (n = 1), and H12N5 (n = 1). No high pathogenicity influenza virus H5 subtype was detected. Phylogenetic analysis of AIV genomes did not reveal any specific pattern for viruses in the Caspian Sea region, showing that all segments belong to the Eurasian clades of classic avian-like influenza viruses. We also did not find the amino acid substitutions in the polymerase complex (PA, PB1, and PB2) that are critical for the increase in virulence or adaptation to mammals. In total, 23 hemagglutinating viruses not related to influenza A virus were also isolated, of which 15 belonged to avian paramyxoviruses. We were able to sequence 12 avian paramyxoviruses of three species, as follows: Newcastle disease virus (n = 4); Avian paramyxovirus 4 (n = 5); and Avian paramyxovirus 6 (n = 3). In the Russian Federation, the Newcastle disease virus of the VII.1.1 sub-genotype was first isolated from a wild bird (common pheasant) in the Caspian Sea region. The five avian paramyxovirus 4 isolates obtained belonged to the common clade in Genotype I, whereas phylogenetic analysis of three isolates of Avian paramyxovirus 6 showed that two isolates, isolated in 2017, belonged to Genotype I and that an isolate identified in 2020 belonged to Genotype II. The continued regular monitoring of AIVs and APMVs, the obtaining of data on the biological properties of isolated strains, and the accumulation of information on virus host species will allow for the adequate planning of epidemiological measures, suggest the most likely routes of spread of the virus, and assist in the prediction of the introduction of the viruses in the western coastal region of the middle Caspian Sea.
Collapse
Affiliation(s)
- Tatyana Murashkina
- Federal Research Center of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences (FRC FTM SB RAS), Novosibirsk 630060, Russia; (T.M.); (A.D.); (I.S.); (N.D.); (A.L.); (O.K.); (N.K.); (A.A.); (A.S.)
| | - Kirill Sharshov
- Federal Research Center of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences (FRC FTM SB RAS), Novosibirsk 630060, Russia; (T.M.); (A.D.); (I.S.); (N.D.); (A.L.); (O.K.); (N.K.); (A.A.); (A.S.)
| | - Alimurad Gadzhiev
- Faculty of Ecology and Sustainable Development, Dagestan State University, Makhachkala 367016, Russia;
| | - Guy Petherbridge
- Caspian Centre for Nature Conservation, International Institute of Ecology and Sustainable Development, Association of Universities and Research Centres of Caspian Region States, Makhachkala 367016, Russia;
| | - Anastasiya Derko
- Federal Research Center of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences (FRC FTM SB RAS), Novosibirsk 630060, Russia; (T.M.); (A.D.); (I.S.); (N.D.); (A.L.); (O.K.); (N.K.); (A.A.); (A.S.)
| | - Ivan Sobolev
- Federal Research Center of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences (FRC FTM SB RAS), Novosibirsk 630060, Russia; (T.M.); (A.D.); (I.S.); (N.D.); (A.L.); (O.K.); (N.K.); (A.A.); (A.S.)
| | - Nikita Dubovitskiy
- Federal Research Center of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences (FRC FTM SB RAS), Novosibirsk 630060, Russia; (T.M.); (A.D.); (I.S.); (N.D.); (A.L.); (O.K.); (N.K.); (A.A.); (A.S.)
| | - Arina Loginova
- Federal Research Center of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences (FRC FTM SB RAS), Novosibirsk 630060, Russia; (T.M.); (A.D.); (I.S.); (N.D.); (A.L.); (O.K.); (N.K.); (A.A.); (A.S.)
| | - Olga Kurskaya
- Federal Research Center of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences (FRC FTM SB RAS), Novosibirsk 630060, Russia; (T.M.); (A.D.); (I.S.); (N.D.); (A.L.); (O.K.); (N.K.); (A.A.); (A.S.)
| | - Nikita Kasianov
- Federal Research Center of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences (FRC FTM SB RAS), Novosibirsk 630060, Russia; (T.M.); (A.D.); (I.S.); (N.D.); (A.L.); (O.K.); (N.K.); (A.A.); (A.S.)
| | - Marsel Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia;
| | - Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, Tsukuba 305-0856, Japan; (J.M.); (Y.U.); (R.T.); (T.S.)
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, Tsukuba 305-0856, Japan; (J.M.); (Y.U.); (R.T.); (T.S.)
| | - Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, Tsukuba 305-0856, Japan; (J.M.); (Y.U.); (R.T.); (T.S.)
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, Tsukuba 305-0856, Japan; (J.M.); (Y.U.); (R.T.); (T.S.)
| | - Alexander Alekseev
- Federal Research Center of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences (FRC FTM SB RAS), Novosibirsk 630060, Russia; (T.M.); (A.D.); (I.S.); (N.D.); (A.L.); (O.K.); (N.K.); (A.A.); (A.S.)
| | - Alexander Shestopalov
- Federal Research Center of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences (FRC FTM SB RAS), Novosibirsk 630060, Russia; (T.M.); (A.D.); (I.S.); (N.D.); (A.L.); (O.K.); (N.K.); (A.A.); (A.S.)
- Caspian Centre for Nature Conservation, International Institute of Ecology and Sustainable Development, Association of Universities and Research Centres of Caspian Region States, Makhachkala 367016, Russia;
| |
Collapse
|
8
|
Fusaro A, Zecchin B, Giussani E, Palumbo E, Agüero-García M, Bachofen C, Bálint Á, Banihashem F, Banyard AC, Beerens N, Bourg M, Briand FX, Bröjer C, Brown IH, Brugger B, Byrne AMP, Cana A, Christodoulou V, Dirbakova Z, Fagulha T, Fouchier RAM, Garza-Cuartero L, Georgiades G, Gjerset B, Grasland B, Groza O, Harder T, Henriques AM, Hjulsager CK, Ivanova E, Janeliunas Z, Krivko L, Lemon K, Liang Y, Lika A, Malik P, McMenamy MJ, Nagy A, Nurmoja I, Onita I, Pohlmann A, Revilla-Fernández S, Sánchez-Sánchez A, Savic V, Slavec B, Smietanka K, Snoeck CJ, Steensels M, Svansson V, Swieton E, Tammiranta N, Tinak M, Van Borm S, Zohari S, Adlhoch C, Baldinelli F, Terregino C, Monne I. High pathogenic avian influenza A(H5) viruses of clade 2.3.4.4b in Europe-Why trends of virus evolution are more difficult to predict. Virus Evol 2024; 10:veae027. [PMID: 38699215 PMCID: PMC11065109 DOI: 10.1093/ve/veae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Since 2016, A(H5Nx) high pathogenic avian influenza (HPAI) virus of clade 2.3.4.4b has become one of the most serious global threats not only to wild and domestic birds, but also to public health. In recent years, important changes in the ecology, epidemiology, and evolution of this virus have been reported, with an unprecedented global diffusion and variety of affected birds and mammalian species. After the two consecutive and devastating epidemic waves in Europe in 2020-2021 and 2021-2022, with the second one recognized as one of the largest epidemics recorded so far, this clade has begun to circulate endemically in European wild bird populations. This study used the complete genomes of 1,956 European HPAI A(H5Nx) viruses to investigate the virus evolution during this varying epidemiological outline. We investigated the spatiotemporal patterns of A(H5Nx) virus diffusion to/from and within Europe during the 2020-2021 and 2021-2022 epidemic waves, providing evidence of ongoing changes in transmission dynamics and disease epidemiology. We demonstrated the high genetic diversity of the circulating viruses, which have undergone frequent reassortment events, providing for the first time a complete overview and a proposed nomenclature of the multiple genotypes circulating in Europe in 2020-2022. We described the emergence of a new genotype with gull adapted genes, which offered the virus the opportunity to occupy new ecological niches, driving the disease endemicity in the European wild bird population. The high propensity of the virus for reassortment, its jumps to a progressively wider number of host species, including mammals, and the rapid acquisition of adaptive mutations make the trend of virus evolution and spread difficult to predict in this unfailing evolving scenario.
Collapse
Affiliation(s)
- Alice Fusaro
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Bianca Zecchin
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Edoardo Giussani
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Elisa Palumbo
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Montserrat Agüero-García
- Ministry of Agriculture, Fisheries and Food, Laboratorio Central de Veterinaria (LCV), Ctra. M-106, Km 1,4 Algete, Madrid 28110, Spain
| | - Claudia Bachofen
- Federal Department of Home Affairs FDHA Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern 3147, Switzerland
| | - Ádám Bálint
- Veterinary Diagnostic Directorate (NEBIH), Laboratory of Virology, National Food Chain Safety Office, Tábornok utca 2, Budapest 1143, Hungary
| | - Fereshteh Banihashem
- Department of Microbiology, National Veterinary Institute (SVA), Travvägen 20, Uppsala 75189, Sweden
| | - Ashley C Banyard
- WOAH/FAO international reference laboratory for Avian Influenza and Newcastle Disease, Virology Department, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Nancy Beerens
- Department of Virology Wageningen Bioveterinary Research, Houtribweg 39, Lelystad 8221 RA, The Netherlands
| | - Manon Bourg
- Luxembourgish Veterinary and Food Administration (ALVA), State Veterinary Laboratory, 1 Rue Louis Rech, Dudelange 3555, Luxembourg
| | - Francois-Xavier Briand
- Agence Nationale de Sécurité Sanitaire, de l’Alimentation, de l’Environnement et du Travail, Laboratoire de Ploufragan-Plouzané-Niort, Unité de Virologie, Immunologie, Parasitologie Avaires et Cunicoles, 41 Rue de Beaucemaine – BP 53, Ploufragan 22440, France
| | - Caroline Bröjer
- Department of Pathology and Wildlife Disease, National Veterinary Institute (SVA), Travvägen 20, Uppsala 75189, Sweden
| | - Ian H Brown
- WOAH/FAO international reference laboratory for Avian Influenza and Newcastle Disease, Virology Department, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Brigitte Brugger
- Icelandic Food and Veterinary Authority, Austurvegur 64, Selfoss 800, Iceland
| | - Alexander M P Byrne
- WOAH/FAO international reference laboratory for Avian Influenza and Newcastle Disease, Virology Department, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Armend Cana
- Kosovo Food and Veterinary Agency, Sector of Serology and Molecular Diagnostics, Kosovo Food and Veterinary Laboratory, Str Lidhja e Pejes, Prishtina 10000, Kosovo
| | - Vasiliki Christodoulou
- Laboratory for Animal Health Virology Section Veterinary Services (1417), 79, Athalassa Avenue Aglantzia, Nicosia 2109, Cyprus
| | - Zuzana Dirbakova
- Department of Animal Health, State Veterinary Institute, Pod Dráhami 918, Zvolen 96086, Slovakia
| | - Teresa Fagulha
- I.P. (INIAV, I.P.), Avenida da República, Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, Oeiras 2780 – 157, Portugal
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Dr. Molewaterplein 40, Rotterdam 3015 GD, The Netherlands
| | - Laura Garza-Cuartero
- Department of Agriculture, Food and the Marine, Central Veterinary Research Laboratory (CVRL), Backweston Campus, Stacumny Lane, Celbridge, Co. Kildare W23 X3PH, Ireland
| | - George Georgiades
- Thessaloniki Veterinary Centre (TVC), Department of Avian Diseases, 26th October Street 80, Thessaloniki 54627, Greece
| | - Britt Gjerset
- Immunology & Virology department, Norwegian Veterinary Institute, Arboretveien 57, Oslo Pb 64, N-1431 Ås, Norway
| | - Beatrice Grasland
- Agence Nationale de Sécurité Sanitaire, de l’Alimentation, de l’Environnement et du Travail, Laboratoire de Ploufragan-Plouzané-Niort, Unité de Virologie, Immunologie, Parasitologie Avaires et Cunicoles, 41 Rue de Beaucemaine – BP 53, Ploufragan 22440, France
| | - Oxana Groza
- Republican Center for Veterinary Diagnostics (NRL), 3 street Murelor, Chisinau 2051, Republic of Moldova
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Ana Margarida Henriques
- I.P. (INIAV, I.P.), Avenida da República, Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, Oeiras 2780 – 157, Portugal
| | - Charlotte Kristiane Hjulsager
- Department for Virus and Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, Copenhagen DK-2300, Denmark
| | - Emiliya Ivanova
- National Reference Laboratory for Avian Influenza and Newcastle Disease, National Diagnostic and Research Veterinary Medical Institute (NDRVMI), 190 Lomsko Shose Blvd., Sofia 1231, Bulgaria
| | - Zygimantas Janeliunas
- National Food and Veterinary Risk Assessment Institute (NFVRAI), Kairiukscio str. 10, Vilnius 08409, Lithuania
| | - Laura Krivko
- Institute of Food Safety, Animal Health and Environment (BIOR), Laboratory of Microbilogy and Pathology, 3 Lejupes Street, Riga 1076, Latvia
| | - Ken Lemon
- Virological Molecular Diagnostic Laboratory, Veterinary Sciences Division, Department of Virology, Agri-Food and Bioscience Institute (AFBI), Stoney Road, Belfast BT4 3SD, Northern Ireland
| | - Yuan Liang
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, Frederiksberg 1870, Denmark
| | - Aldin Lika
- Animal Health Department, Food Safety and Veterinary Institute, Rruga Aleksandër Moisiu 10, Tirana 1001, Albania
| | - Péter Malik
- Veterinary Diagnostic Directorate (NEBIH), Laboratory of Virology, National Food Chain Safety Office, Tábornok utca 2, Budapest 1143, Hungary
| | - Michael J McMenamy
- Virological Molecular Diagnostic Laboratory, Veterinary Sciences Division, Department of Virology, Agri-Food and Bioscience Institute (AFBI), Stoney Road, Belfast BT4 3SD, Northern Ireland
| | - Alexander Nagy
- Department of Molecular Biology, State Veterinary Institute Prague, Sídlištní 136/24, Praha 6-Lysolaje 16503, Czech Republic
| | - Imbi Nurmoja
- National Centre for Laboratory Research and Risk Assessment (LABRIS), Kreutzwaldi 30, Tartu 51006, Estonia
| | - Iuliana Onita
- Institute for Diagnosis and Animal Health (IDAH), Str. Dr. Staicovici 63, Bucharest 050557, Romania
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Sandra Revilla-Fernández
- Austrian Agency for Health and Food Safety (AGES), Institute for Veterinary Disease Control, Robert Koch Gasse 17, Mödling 2340, Austria
| | - Azucena Sánchez-Sánchez
- Ministry of Agriculture, Fisheries and Food, Laboratorio Central de Veterinaria (LCV), Ctra. M-106, Km 1,4 Algete, Madrid 28110, Spain
| | - Vladimir Savic
- Croatian Veterinary Institute, Poultry Centre, Heinzelova 55, Zagreb 10000, Croatia
| | - Brigita Slavec
- University of Ljubljana – Veterinary Faculty/National Veterinary Institute, Gerbičeva 60, Ljubljana 1000, Slovenia
| | - Krzysztof Smietanka
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantow 57, Puławy 24-100, Poland
| | - Chantal J Snoeck
- Luxembourg Institute of Health (LIH), Department of Infection and Immunity, 29 Rue Henri Koch, Esch-sur-Alzette 4354, Luxembourg
| | - Mieke Steensels
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Ukkel 1180, Ukkel, Belgium
| | - Vilhjálmur Svansson
- Biomedical Center, Institute for Experimental Pathology, University of Iceland, Keldnavegi 3 112 Reykjavík Ssn. 650269 4549, Keldur 851, Iceland
| | - Edyta Swieton
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantow 57, Puławy 24-100, Poland
| | - Niina Tammiranta
- Finnish Food Authority, Animal Health Diagnostic Unit, Veterinary Virology, Mustialankatu 3, Helsinki FI-00790, Finland
| | - Martin Tinak
- Department of Animal Health, State Veterinary Institute, Pod Dráhami 918, Zvolen 96086, Slovakia
| | - Steven Van Borm
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Ukkel 1180, Ukkel, Belgium
| | - Siamak Zohari
- Department of Microbiology, National Veterinary Institute (SVA), Travvägen 20, Uppsala 75189, Sweden
| | - Cornelia Adlhoch
- European Centre for Disease Prevention and Control, Gustav III:s boulevard 40, Solna 169 73, Sweden
| | | | - Calogero Terregino
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Isabella Monne
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| |
Collapse
|
9
|
Pramod RK, Atul PK, Pandey M, Anbazhagan S, Mhaske ST, Barathidasan R. Care, management, and use of ferrets in biomedical research. Lab Anim Res 2024; 40:10. [PMID: 38532510 DOI: 10.1186/s42826-024-00197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/02/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
The ferret (Mustela putorius furo) is a small domesticated species of the family Mustelidae within the order Carnivora. The present article reviews and discusses the current state of knowledge about housing, care, breeding, and biomedical uses of ferrets. The management and breeding procedures of ferrets resemble those used for other carnivores. Understanding its behavior helps in the use of environmental enrichment and social housing, which promote behaviors typical of the species. Ferrets have been used in research since the beginning of the twentieth century. It is a suitable non-rodent model in biomedical research because of its hardy nature, social behavior, diet and other habits, small size, and thus the requirement of a relatively low amount of test compounds and early sexual maturity compared with dogs and non-human primates. Ferrets and humans have numerous similar anatomical, metabolic, and physiological characteristics, including the endocrine, respiratory, auditory, gastrointestinal, and immunological systems. It is one of the emerging animal models used in studies such as influenza and other infectious respiratory diseases, cystic fibrosis, lung cancer, cardiac research, gastrointestinal disorders, neuroscience, and toxicological studies. Ferrets are vulnerable to many human pathogenic organisms, like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), because air transmission of this virus between them has been observed in the laboratory. Ferrets draw the attention of the medical community compared to rodents because they occupy a distinct niche in biomedical studies, although they possess a small representation in laboratory research.
Collapse
Affiliation(s)
- Ravindran Kumar Pramod
- ICMR-National Animal Resource Facility for Biomedical Research, Genome Valley, Hyderabad, Telangana, 500101, India.
| | - Pravin Kumar Atul
- ICMR-National Animal Resource Facility for Biomedical Research, Genome Valley, Hyderabad, Telangana, 500101, India
| | - Mamta Pandey
- ICMR-National Animal Resource Facility for Biomedical Research, Genome Valley, Hyderabad, Telangana, 500101, India
| | - S Anbazhagan
- ICMR-National Animal Resource Facility for Biomedical Research, Genome Valley, Hyderabad, Telangana, 500101, India
| | - Suhas T Mhaske
- ICMR-National Animal Resource Facility for Biomedical Research, Genome Valley, Hyderabad, Telangana, 500101, India
| | - R Barathidasan
- ICMR-National Animal Resource Facility for Biomedical Research, Genome Valley, Hyderabad, Telangana, 500101, India
| |
Collapse
|
10
|
Mine J, Takadate Y, Kumagai A, Sakuma S, Tsunekuni R, Miyazawa K, Uchida Y. Genetics of H5N1 and H5N8 High-Pathogenicity Avian Influenza Viruses Isolated in Japan in Winter 2021-2022. Viruses 2024; 16:358. [PMID: 38543724 PMCID: PMC10975693 DOI: 10.3390/v16030358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 05/23/2024] Open
Abstract
In winter 2021-2022, H5N1 and H5N8 high-pathogenicity avian influenza (HPAI) viruses (HPAIVs) caused serious outbreaks in Japan: 25 outbreaks of HPAI at poultry farms and 107 cases in wild birds or in the environment. Phylogenetic analyses divided H5 HPAIVs isolated in Japan in the winter of 2021-2022 into three groups-G2a, G2b, and G2d-which were disseminated at different locations and times. Full-genome sequencing analyses of these HPAIVs revealed a strong relationship of multiple genes between Japan and Siberia, suggesting that they arose from reassortment events with avian influenza viruses (AIVs) in Siberia. The results emphasize the complex of dissemination and reassortment events with the movement of migratory birds, and the importance of continual monitoring of AIVs in Japan and Siberia for early alerts to the intrusion of HPAIVs.
Collapse
Affiliation(s)
- Junki Mine
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba 305-0856, Ibaraki, Japan (A.K.); (S.S.); (R.T.); (K.M.); (Y.U.)
| | | | | | | | | | | | | |
Collapse
|
11
|
Hook JL, Bhattacharya J. The pathogenesis of influenza in intact alveoli: virion endocytosis and its effects on the lung's air-blood barrier. Front Immunol 2024; 15:1328453. [PMID: 38343548 PMCID: PMC10853445 DOI: 10.3389/fimmu.2024.1328453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Lung infection by influenza A virus (IAV) is a major cause of global mortality from lung injury, a disease defined by widespread dysfunction of the lung's air-blood barrier. Endocytosis of IAV virions by the alveolar epithelium - the cells that determine barrier function - is central to barrier loss mechanisms. Here, we address the current understanding of the mechanistic steps that lead to endocytosis in the alveolar epithelium, with an eye to how the unique structure of lung alveoli shapes endocytic mechanisms. We highlight where future studies of alveolar interactions with IAV virions may lead to new therapeutic approaches for IAV-induced lung injury.
Collapse
Affiliation(s)
- Jaime L. Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jahar Bhattacharya
- Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
12
|
Li J, Takeda M, Imahatakenaka M, Ikeda M. Identification of dihydroorotate dehydrogenase inhibitor, vidofludimus, as a potent and novel inhibitor for influenza virus. J Med Virol 2024; 96:e29372. [PMID: 38235544 DOI: 10.1002/jmv.29372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/19/2024]
Abstract
Influenza A virus (IAV) infection causes respiratory disease. Recently, infection of IAV H5N1 among mammals are reported in farmed mink. Therefore, to discover antivirals against IAV, we screened a compound library by using the RNA-dependent RNA polymerase (RdRp) assay system derived from H5N1 IAV including a drug-resistant PA mutant (I38T) and a viral polymerase activity enhancing PB2 mutant (T271A). Upon screening, we found vidofludimus can be served as a potential inhibitor for IAV. Vidofludimus an orally active inhibitor for dihydroorotate dehydrogenase (DHODH), a key enzyme for the cellular de novo pyrimidine biosynthesis pathway. We found that vidofludimus exerted antiviral activity against wild-type and drug-resistant mutant IAV, with effective concentrations (EC50 ) of 2.10 and 2.11 μM, respectively. The anti-IAV activity of vidofludimus was canceled by the treatment of uridine or cytidine through pyrimidine salvage synthesis pathway, or orotic acid through pyrimidine de novo synthesis pathway. This indicated that the main target of vidofludimus is DHODH in IAV RdRp expressing cells. We also produced recombinant seasonal IAV H1N1 virion and influenza B virus (IBV) RdRp assay system and confirmed vidofludimus also carried highly antiviral activity against seasonal IAV and IBV. Vidofludimus is a candidate drug for the future threat of IAV H5N1 infection among humans as well as seasonal influenza virus infection.
Collapse
Affiliation(s)
- Jiazhou Li
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Midori Takeda
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Mikiko Imahatakenaka
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Masanori Ikeda
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
13
|
Cronk BD, Caserta LC, Laverack M, Gerdes RS, Hynes K, Hopf CR, Fadden MA, Nakagun S, Schuler KL, Buckles EL, Lejeune M, Diel DG. Infection and tissue distribution of highly pathogenic avian influenza A type H5N1 (clade 2.3.4.4b) in red fox kits ( Vulpes vulpes). Emerg Microbes Infect 2023; 12:2249554. [PMID: 37589241 PMCID: PMC10512766 DOI: 10.1080/22221751.2023.2249554] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
Avian influenza H5N1 is a highly pathogenic virus that primarily affects birds. However, it can also infect other animal species, including mammals. We report the infection of nine juvenile red foxes (Vulpes vulpes) with Highly Pathogenic Avian Influenza A type H5N1 (Clade 2.3.4.4b) in the spring of 2022 in the central, western, and northern regions of New York, USA. The foxes displayed neurologic signs, and examination of brain and lung tissue revealed lesions, with brain lesions ranging from moderate to severe meningoencephalitis. Analysis of tissue tropism using RT-PCR methods showed a comparatively lower Ct value in the brain, which was confirmed by in situ hybridization targeting Influenza A RNA. The viral RNA labelling was highly clustered and overlapped the brain lesions, observed in neurons, and grey matter. Whole viral genome sequences obtained from the affected foxes were subjected to phylogenetic and mutation analysis to determine influenza A clade, host specificity, and potential occurrence of viral reassortment. Infections in red foxes likely occurred due to preying on infected wild birds and are unlikely due to transmission between foxes or other mammals.
Collapse
Affiliation(s)
- Brittany D. Cronk
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Leonardo Cardia Caserta
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Melissa Laverack
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Rhea S. Gerdes
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Kevin Hynes
- New York State Department of Environmental Conservation, Wildlife Health Program, Albany, NY, USA
| | - Cynthia R. Hopf
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Melissa A. Fadden
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Shotaro Nakagun
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Krysten L. Schuler
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Elizabeth L. Buckles
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Manigandan Lejeune
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
14
|
Guo Y, Bai X, Liu Z, Liang B, Zheng Y, Dankar S, Ping J. Exploring the alternative virulence determinants PB2 S155N and PA S49Y/D347G that promote mammalian adaptation of the H9N2 avian influenza virus in mice. Vet Res 2023; 54:97. [PMID: 37858267 PMCID: PMC10588254 DOI: 10.1186/s13567-023-01221-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/07/2023] [Indexed: 10/21/2023] Open
Abstract
The occurrence of human infections caused by avian H9N2 influenza viruses has raised concerns regarding the potential for human epidemics and pandemics. The molecular basis of viral adaptation to a new host needs to be further studied. Here, the bases of nucleotides 627 and 701 of PB2 were changed according to the uncoverable purine-to-pyrimidine transversion to block the development of PB2 627K and 701N mutations during serial passaging in mice. The purpose of this experiment was to identify key adaptive mutations in polymerase and NP genes that were obscured by the widely known host range determinants PB2 627K and 701N. Mouse-adapted H9N2 variants were obtained via twelve serial lung-to-lung passages. Sequence analysis showed that the mouse-adapted viruses acquired several mutations within the seven gene segments (PB2, PB1, PA, NP, HA, NA, and NS). One variant isolate with the highest polymerase activity possessed three substitutions, PB2 S155N, PA S49Y and D347G, which contributed to the highly virulent and mouse-adaptative phenotype. Further studies demonstrated that these three mutations resulted in increased polymerase activity, viral transcription and replication in mammalian cells, severe interstitial pneumonia, excessive inflammatory cellular infiltration and increased growth rates in mice. Our results suggest that the substitution of these three amino acid mutations may be an alternative strategy for H9N2 avian influenza viruses to adapt to mammalian hosts. The continued surveillance of zoonotic H9N2 influenza viruses should also include these mammalian adaptation markers as part of our pandemic preparedness efforts.
Collapse
Affiliation(s)
- Yanna Guo
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuebing Bai
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyuan Liu
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bing Liang
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiqing Zheng
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Samar Dankar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ONK1V 8M5, Canada
| | - Jihui Ping
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
15
|
Domańska-Blicharz K, Świętoń E, Świątalska A, Monne I, Fusaro A, Tarasiuk K, Wyrostek K, Styś-Fijoł N, Giza A, Pietruk M, Zecchin B, Pastori A, Adaszek Ł, Pomorska-Mól M, Tomczyk G, Terregino C, Winiarczyk S. Outbreak of highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus in cats, Poland, June to July 2023. Euro Surveill 2023; 28:2300366. [PMID: 37535474 PMCID: PMC10401911 DOI: 10.2807/1560-7917.es.2023.28.31.2300366] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
BackgroundOver a 3-week period in late June/early July 2023, Poland experienced an outbreak caused by highly pathogenic avian influenza (HPAI) A(H5N1) virus in cats.AimThis study aimed to characterise the identified virus and investigate possible sources of infection.MethodsWe performed next generation sequencing and phylogenetic analysis of detected viruses in cats.ResultsWe sampled 46 cats, and 25 tested positive for avian influenza virus. The identified viruses belong to clade 2.3.4.4b, genotype CH (H5N1 A/Eurasian wigeon/Netherlands/3/2022-like). In Poland, this genotype was responsible for several poultry outbreaks between December 2022 and January 2023 and has been identified only sporadically since February 2023. Viruses from cats were very similar to each other, indicating one common source of infection. In addition, the most closely related virus was detected in a dead white stork in early June. Influenza A(H5N1) viruses from cats possessed two amino acid substitutions in the PB2 protein (526R and 627K) which are two molecular markers of virus adaptation in mammals. The virus detected in the white stork presented one of those mutations (627K), which suggests that the virus that had spilled over to cats was already partially adapted to mammalian species.ConclusionThe scale of HPAI H5N1 virus infection in cats in Poland is worrying. One of the possible sources seems to be poultry meat, but to date no such meat has been identified with certainty. Surveillance should be stepped up on poultry, but also on certain species of farmed mammals kept close to infected poultry farms.
Collapse
Affiliation(s)
| | - Edyta Świętoń
- Department of Omic Analyses, National Veterinary Research Institute, Puławy, Poland
| | | | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Karolina Tarasiuk
- Department of Poultry Diseases, National Veterinary Research Institute, Puławy, Poland
| | - Krzysztof Wyrostek
- Department of Poultry Diseases, National Veterinary Research Institute, Puławy, Poland
| | - Natalia Styś-Fijoł
- Department of Poultry Diseases, National Veterinary Research Institute, Puławy, Poland
| | - Aleksandra Giza
- Department of Omic Analyses, National Veterinary Research Institute, Puławy, Poland
| | - Marta Pietruk
- Department of Omic Analyses, National Veterinary Research Institute, Puławy, Poland
| | - Bianca Zecchin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Ambra Pastori
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Łukasz Adaszek
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, University of Life Sciences, Poznan, Poland
| | - Grzegorz Tomczyk
- Department of Poultry Diseases, National Veterinary Research Institute, Puławy, Poland
| | - Calogero Terregino
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Stanisław Winiarczyk
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
- Director General, National Veterinary Research Institute, Puławy, Poland
| |
Collapse
|
16
|
Guan L, Babujee L, Browning VL, Presler R, Pattinson D, Nguyen HLK, Hoang VMP, Le MQ, van Bakel H, Neumann G, Kawaoka Y. Continued Circulation of Highly Pathogenic H5 Influenza Viruses in Vietnamese Live Bird Markets in 2018-2021. Viruses 2023; 15:1596. [PMID: 37515281 PMCID: PMC10384249 DOI: 10.3390/v15071596] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
We isolated 77 highly pathogenic avian influenza viruses during routine surveillance in live poultry markets in northern provinces of Vietnam from 2018 to 2021. These viruses are of the H5N6 subtype and belong to HA clades 2.3.4.4g and 2.3.4.4h. Interestingly, we did not detect viruses of clade 2.3.4.4b, which in recent years have dominated in different parts of the world. The viruses isolated in this current study do not encode major determinants of mammalian adaptation (e.g., PB2-E627K or PB1-D701N) but possess amino acid substitutions that may affect viral receptor-binding, replication, or the responses to human antiviral factors. Several of the highly pathogenic H5N6 virus samples contained other influenza viruses, providing an opportunity for reassortment. Collectively, our study demonstrates that the highly pathogenic H5 viruses circulating in Vietnam in 2018-2021 were different from those in other parts of the world, and that the Vietnamese H5 viruses continue to evolve through mutations and reassortment.
Collapse
Affiliation(s)
- Lizheng Guan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (V.L.B.); (R.P.); (D.P.)
| | - Lavanya Babujee
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (V.L.B.); (R.P.); (D.P.)
| | - Victoria L. Browning
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (V.L.B.); (R.P.); (D.P.)
| | - Robert Presler
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (V.L.B.); (R.P.); (D.P.)
| | - David Pattinson
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (V.L.B.); (R.P.); (D.P.)
| | - Hang Le Khanh Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (H.L.K.N.); (V.M.P.H.); (M.Q.L.)
| | - Vu Mai Phuong Hoang
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (H.L.K.N.); (V.M.P.H.); (M.Q.L.)
| | - Mai Quynh Le
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (H.L.K.N.); (V.M.P.H.); (M.Q.L.)
| | - Harm van Bakel
- Department of Genetics and Genomic Services, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (V.L.B.); (R.P.); (D.P.)
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (V.L.B.); (R.P.); (D.P.)
- Division of Virology, Department of Microbiology and Immunology, International Research Center for Infectious Diseases, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Research Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research (UTOPIA) Center, Tokyo 108-8639, Japan
| |
Collapse
|
17
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Melidou A, Mirinavičiūtė G, Niqueux É, Ståhl K, Staubach C, Terregino C, Baldinelli F, Broglia A, Kohnle L. Avian influenza overview April - June 2023. EFSA J 2023; 21:e08191. [PMID: 37485254 PMCID: PMC10358191 DOI: 10.2903/j.efsa.2023.8191] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Between 29 April and 23 June 2023, highly pathogenic avian influenza (HPAI) A(H5N1) virus (clade 2.3.4.4b) outbreaks were reported in domestic (98) and wild (634) birds across 25 countries in Europe. A cluster of outbreaks in mulard ducks for foie gras production was concentrated in Southwest France, whereas the overall A(H5N1) situation in poultry in Europe and worldwide has eased. In wild birds, black-headed gulls and several new seabird species, mostly gulls and terns (e.g. sandwich terns), were heavily affected, with increased mortality being observed in both adults and juveniles after hatching. Compared to the same period last year, dead seabirds have been increasingly found inland and not only along European coastlines. As regards mammals, A(H5N1) virus was identified in 24 domestic cats and one caracal in Poland between 10 and 30 June 2023. Affected animals showed neurological and respiratory signs, sometimes mortality, and were widely scattered across nine voivodeships in the country. All cases are genetically closely related and identified viruses cluster with viruses detected in poultry (since October 2022, but now only sporadic) and wild birds (December 2022-January 2023) in the past. Uncertainties still exist around their possible source of infection, with no feline-to-feline or feline-to-human transmission reported so far. Since 10 May 2023 and as of 4 July 2023, two A(H5N1) clade 2.3.4.4b virus detections in humans were reported from the United Kingdom, and two A(H9N2) and one A(H5N6) human infections in China. In addition, one person infected with A(H3N8) in China has died. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA, low to moderate for occupationally or otherwise exposed people to infected birds or mammals (wild or domesticated).
Collapse
|
18
|
Duong BT, Than DD, Ankhanbaatar U, Gombo-Ochir D, Shura G, Tsolmon A, Pun Mok CK, Basan G, Yeo SJ, Park H. Assessing potential pathogenicity of novel highly pathogenic avian influenza (H5N6) viruses isolated from Mongolian wild duck feces using a mouse model. Emerg Microbes Infect 2022; 11:1425-1434. [PMID: 35451353 PMCID: PMC9154755 DOI: 10.1080/22221751.2022.2069515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Several novel highly pathogenic avian influenza (HPAIVs) A(H5N6) viruses were reported in Mongolia in 2020, some of which included host-specific markers associated with mammalian infection. However, their pathogenicity has not yet been investigated. Here, we isolated and evaluate two novel genotypes of A(H5N6) subtype in Mongolia during 2018–2019 (A/wildDuck/MN/H5N6/2018-19). Their evolution pattern and molecular characteristics were evaluated using gene sequencing and their pathogenicity was determined using a mouse model. We also compared their antigenicity with previous H5 Clade 2.3.4.4 human isolates by cross-hemagglutination inhibition (HI). Our data suggests that A/wildDuck/MN/H5N6/2018-19 belongs to clade 2.3.4.4h, and maintains several residues associated with mammal adaptation. In addition, our evaluations revealed that their isolates are less virulent in mice than the previously identified H5 human isolates. However, their antigenicity is distinct from other HPAIVs H5 clade 2.3.4.4, thus supporting their continued evaluation as potential infection risks and the preparation of novel candidate vaccines for their neutralization.
Collapse
Affiliation(s)
- Bao Tuan Duong
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan, Korea
| | - Duc Duong Than
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan, Korea
| | | | | | - Gansukh Shura
- State Central Veterinary Laboratory, Zaisan, Ulaanbaatar, Mongolia
| | | | - Chris Ka Pun Mok
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ganzorig Basan
- State Central Veterinary Laboratory, Zaisan, Ulaanbaatar, Mongolia
| | - Seon Ju Yeo
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan, Korea
| |
Collapse
|
19
|
Elkhatib WF, Abdelkareem SS, Khalaf WS, Shahin MI, Elfadil D, Alhazmi A, El-Batal AI, El-Sayyad GS. Narrative review on century of respiratory pandemics from Spanish flu to COVID-19 and impact of nanotechnology on COVID-19 diagnosis and immune system boosting. Virol J 2022; 19:167. [PMID: 36280866 PMCID: PMC9589879 DOI: 10.1186/s12985-022-01902-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022] Open
Abstract
The rise of the highly lethal severe acute respiratory syndrome-2 (SARS-2) as corona virus 2019 (COVID-19) reminded us of the history of other pandemics that happened in the last century (Spanish flu) and stayed in the current century, which include Severe-Acute-Respiratory-Syndrome (SARS), Middle-East-Respiratory-Syndrome (MERS), Corona Virus 2019 (COVID-19). We review in this report the newest findings and data on the origin of pandemic respiratory viral diseases, reservoirs, and transmission modes. We analyzed viral adaption needed for host switch and determinants of pathogenicity, causative factors of pandemic viruses, and symptoms and clinical manifestations. After that, we concluded the host factors associated with pandemics morbidity and mortality (immune responses and immunopathology, ages, and effect of pandemics on pregnancy). Additionally, we focused on the burdens of COVID-19, non-pharmaceutical interventions (quarantine, mass gatherings, facemasks, and hygiene), and medical interventions (antiviral therapies and vaccines). Finally, we investigated the nanotechnology between COVID-19 analysis and immune system boosting (Nanoparticles (NPs), antimicrobial NPs as antivirals and immune cytokines). This review presents insights about using nanomaterials to treat COVID-19, improve the bioavailability of the abused drugs, diminish their toxicity, and improve their performance.
Collapse
Affiliation(s)
- Walid F Elkhatib
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo, 11566, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
| | - Shereen S Abdelkareem
- Department of Alumni, School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, Egypt
| | - Wafaa S Khalaf
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11751, Egypt
| | - Mona I Shahin
- Zoology Department, Faculty of Tymaa, Tabuk University, Tymaa, 71491, Kingdom of Saudi Arabia
| | - Dounia Elfadil
- Biology and Chemistry Department, Hassan II University of Casablanca, Casablanca, Morocco
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Ahmed I El-Batal
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
20
|
Chen H, Gao X, Zhao S, Bao C, Ming X, Qian Y, Zhou Y, Jung YS. Pirh2 restricts influenza A virus replication by modulating short-chain ubiquitination of its nucleoprotein. FASEB J 2022; 36:e22537. [PMID: 36070077 DOI: 10.1096/fj.202200473r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/01/2022] [Accepted: 08/24/2022] [Indexed: 11/11/2022]
Abstract
Influenza A viruses (IAVs) rely on viral ribonucleoprotein (vRNP) complexes to control transcription and replication. Each vRNP consists of one viral genomic RNA segment associated with multiple nucleoproteins (NP) and a trimeric IAV RNA polymerase complex. Previous studies showed that post-translational modifications of vRNP components, such as NP, by host factors would in turn affect the IAV life cycle or modulate host anti-viral response. In this study, we found host E3 ubiquitin ligase Pirh2 interacted with NP and mediated short-chain ubiquitination of NP at lysine 351, which suppressed NP-PB2 interaction and vRNP formation. In addition, we showed that knockdown of Pirh2 promoted IAV replication, whereas overexpression of Pirh2 inhibited IAV replication. However, Pirh2-ΔRING lacking E3 ligase activity failed to inhibit IAV infection. Moreover, we showed that Pirh2 had no effect on the replication of a rescued virus, WSN-K351R, carrying lysine-to-arginine substitution at residue 351. Interestingly, by analyzing human and avian IAVs from 2011 to 2020 in influenza research databases, we found that 99.18% of 26 977 human IAVs encode lysine, but 95.3% of 9956 avian IAVs encode arginine at residue 351 of NP protein. Consistently, knockdown of Pirh2 failed to promote propagation of two avian-like influenza viruses, H9N2-W1 and H9N2-C1, which naturally encode arginine at residue 351 of NP. Taken together, we demonstrated that Pirh2 is a host factor restricting IAV infection by modulating short-chain ubiquitination of NP. Meanwhile, it is noteworthy that residue 351 of NP targeted by Pirh2 may associate with the evasion of human anti-viral response against avian-like influenza viruses.
Collapse
Affiliation(s)
- Huan Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Foreign Expert Workshop, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyu Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Foreign Expert Workshop, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shiying Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Foreign Expert Workshop, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chenyi Bao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Foreign Expert Workshop, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xin Ming
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Foreign Expert Workshop, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yingjuan Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Foreign Expert Workshop, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Jiangsu Agri-animal Husbandry Vocational College, Veterinary Bio-pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, China
| | - Yan Zhou
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yong-Sam Jung
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Foreign Expert Workshop, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Durairaj K, Trinh TTT, Yun SY, Yeo SJ, Sung HW, Park H. Molecular Characterization and Pathogenesis of H6N6 Low Pathogenic Avian Influenza Viruses Isolated from Mallard Ducks (Anas platyrhynchos) in South Korea. Viruses 2022; 14:v14051001. [PMID: 35632743 PMCID: PMC9143286 DOI: 10.3390/v14051001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
The subtype H6N6 has been identified worldwide following the increasing frequency of avian influenza viruses (AIVs). These AIVs also have the ability to bind to human-like receptors, thereby increasing the risk of animal-human transmission. In September 2019, an H6N6 avian influenza virus—KNU2019-48 (A/Mallard (Anas platyrhynchos)/South Korea/KNU 2019-48/2019(H6N6))—was isolated from Anas platyrhynchos in South Korea. Phylogenetic analysis results revealed that the hemagglutinin (HA) gene of this strain belongs to the Korean lineage, whereas the neuraminidase (NA) and polymerase basic protein 1 (PB1) genes belong to the Chinese lineage. Outstanding internal proteins such as PB2, polymerase acidic protein, nucleoprotein, matrix protein, and non-structural protein belong to the Vietnamese lineage. Additionally, a monobasic amino acid (PRIETR↓GLF) at the HA cleavage site; non-deletion of the stalk region (residue 59–69) in the NA gene; and E627 in the PB2 gene indicate that the KNU2019-48 isolate is a typical low-pathogenic avian influenza (LPAI) virus. The nucleotide sequence similarity analysis of HA revealed that the highest homology (97.18%) of this isolate is to that of A/duck/Jiangxi/01.14 NCJD125-P/2015(H6N6), and the amino acid sequence of NA (97.38%) is closely related to that of A/duck/Fujian/10.11_FZHX1045-C/2016 (H6N6). An in vitro analysis of the KNU2019-48 virus shows a virus titer of not more than 2.8 Log10 TCID 50/mL until 72 h post-infection, whereas in the lungs, the virus is detected at 3 dpi (days post-infection). The isolated KNU2019-48 (H6N6) strain is the first reported AIV in Korea, and the H6 subtype virus has co-circulated in China, Vietnam, and Korea for half a decade. Overall, our study demonstrates that Korean H6N6 strain PB1-S375N, PA-A404S, and S409N mutations are infectious in humans and might contribute to the enhanced pathogenicity of this strain. Therefore, we emphasize the importance of continuous and intensive surveillance of the H6N6 virus not only in Korea but also worldwide.
Collapse
Affiliation(s)
- Kaliannan Durairaj
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (K.D.); (S.-Y.Y.)
| | - Thuy-Tien Thi Trinh
- Institute of Endemic Diseases, Medical Research Center, Department of Tropical Medicine and Parasitology, Seoul National University, Seoul 03080, Korea;
| | - Su-Yeon Yun
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (K.D.); (S.-Y.Y.)
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
- Correspondence: (S.-J.Y.); (H.-W.S.); (H.P.)
| | - Haan-Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (S.-J.Y.); (H.-W.S.); (H.P.)
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (K.D.); (S.-Y.Y.)
- Correspondence: (S.-J.Y.); (H.-W.S.); (H.P.)
| |
Collapse
|
22
|
Taniguchi K, Ando Y, Kobayashi M, Toba S, Nobori H, Sanaki T, Noshi T, Kawai M, Yoshida R, Sato A, Shishido T, Naito A, Matsuno K, Okamatsu M, Sakoda Y, Kida H. Characterization of the In Vitro and In Vivo Efficacy of Baloxavir Marboxil against H5 Highly Pathogenic Avian Influenza Virus Infection. Viruses 2022; 14:v14010111. [PMID: 35062315 PMCID: PMC8777714 DOI: 10.3390/v14010111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Human infections caused by the H5 highly pathogenic avian influenza virus (HPAIV) sporadically threaten public health. The susceptibility of HPAIVs to baloxavir acid (BXA), a new class of inhibitors for the influenza virus cap-dependent endonuclease, has been confirmed in vitro, but it has not yet been fully characterized. Here, the efficacy of BXA against HPAIVs, including recent H5N8 variants, was assessed in vitro. The antiviral efficacy of baloxavir marboxil (BXM) in H5N1 virus-infected mice was also investigated. BXA exhibited similar in vitro activities against H5N1, H5N6, and H5N8 variants tested in comparison with seasonal and other zoonotic strains. Compared with oseltamivir phosphate (OSP), BXM monotherapy in mice infected with the H5N1 HPAIV clinical isolate, the A/Hong Kong/483/1997 strain, also caused a significant reduction in viral titers in the lungs, brains, and kidneys, thereby preventing acute lung inflammation and reducing mortality. Furthermore, compared with BXM or OSP monotherapy, combination treatments with BXM and OSP using a 48-h delayed treatment model showed a more potent effect on viral replication in the organs, accompanied by improved survival. In conclusion, BXM has a potent antiviral efficacy against H5 HPAIV infections.
Collapse
Affiliation(s)
- Keiichi Taniguchi
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan; (M.O.); (Y.S.)
| | - Yoshinori Ando
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Masanori Kobayashi
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Shinsuke Toba
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan; (K.M.); (H.K.)
| | - Haruaki Nobori
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Takao Sanaki
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Takeshi Noshi
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Makoto Kawai
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Ryu Yoshida
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Akihiko Sato
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan; (K.M.); (H.K.)
| | - Takao Shishido
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
- Correspondence: ; Tel.: +81-6-6331-7263
| | - Akira Naito
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Keita Matsuno
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan; (K.M.); (H.K.)
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido 001-0020, Japan
| | - Masatoshi Okamatsu
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan; (M.O.); (Y.S.)
| | - Yoshihiro Sakoda
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan; (M.O.); (Y.S.)
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido 001-0020, Japan
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan; (K.M.); (H.K.)
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido 001-0020, Japan
| |
Collapse
|
23
|
Aji D, Chang N, Zhang C, Du F, Li J, Yun F, Shi W, Bi Y, Ma Z. Rapid Emergence of the Reassortant 2.3.4.4b H5N2 Highly Pathogenic Avian Influenza Viruses in a Live Poultry Market in Xinjiang, Northwest China. Avian Dis 2021; 65:578-583. [PMID: 35068101 DOI: 10.1637/aviandiseases-d-21-00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/12/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Dilihuma Aji
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Nana Chang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Cheng Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Fei Du
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Juan Li
- Key Laboratory of Etiology and Emerging infections Disease in Shandong First Medical University, Tai an 271016, China
| | - Fengze Yun
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Weifeng Shi
- Key Laboratory of Etiology and Emerging infections Disease in Shandong First Medical University, Tai an 271016, China
| | - Yuhai Bi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
24
|
Campbell LK, Fleming-Canepa X, Webster RG, Magor KE. Tissue Specific Transcriptome Changes Upon Influenza A Virus Replication in the Duck. Front Immunol 2021; 12:786205. [PMID: 34804075 PMCID: PMC8602823 DOI: 10.3389/fimmu.2021.786205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Ducks are the natural host and reservoir of influenza A virus (IAV), and as such are permissive to viral replication while being unharmed by most strains. It is not known which mechanisms of viral control are globally regulated during infection, and which are specific to tissues during infection. Here we compare transcript expression from tissues from Pekin ducks infected with a recombinant H5N1 strain A/Vietnam 1203/04 (VN1203) or an H5N2 strain A/British Columbia 500/05 using RNA-sequencing analysis and aligning reads to the NCBI assembly ZJU1.0 of the domestic duck (Anas platyrhynchos) genome. Highly pathogenic VN1203 replicated in lungs and showed systemic dissemination, while BC500, like most low pathogenic strains, replicated in the intestines. VN1203 infection induced robust differential expression of genes all three days post infection, while BC500 induced the greatest number of differentially expressed genes on day 2 post infection. While there were many genes globally upregulated in response to either VN1203 or BC500, tissue specific gene expression differences were observed. Lungs of ducks infected with VN1203 and intestines of birds infected with BC500, tissues important in influenza replication, showed highest upregulation of pattern recognition receptors and interferon stimulated genes early in the response. These tissues also appear to have specific downregulation of inflammatory components, with downregulation of distinct sets of proinflammatory cytokines in lung, and downregulation of key components of leukocyte recruitment and complement pathways in intestine. Our results suggest that global and tissue specific regulation patterns help the duck control viral replication as well as limit some inflammatory responses in tissues involved in replication to avoid damage.
Collapse
Affiliation(s)
- Lee K Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | | | - Robert G Webster
- Division of Virology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Katharine E Magor
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
25
|
Nguyen ATV, Hoang VT, Sung HW, Yeo SJ, Park H. Genetic Characterization and Pathogenesis of Three Novel Reassortant H5N2 Viruses in South Korea, 2018. Viruses 2021; 13:v13112192. [PMID: 34834997 PMCID: PMC8619638 DOI: 10.3390/v13112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/03/2022] Open
Abstract
The outbreaks of H5N2 avian influenza viruses have occasionally caused the death of thousands of birds in poultry farms. Surveillance during the 2018 winter season in South Korea revealed three H5N2 isolates in feces samples collected from wild birds (KNU18-28: A/Wild duck/South Korea/KNU18-28/2018, KNU18-86: A/Bean Goose/South Korea/KNU18-86/2018, and KNU18-93: A/Wild duck/South Korea/KNU18-93/2018). Phylogenetic tree analysis revealed that these viruses arose from reassortment events among various virus subtypes circulating in South Korea and other countries in the East Asia–Australasian Flyway. The NS gene of the KNU18-28 and KNU18-86 isolates was closely related to that of China’s H10N3 strain, whereas the KNU18-93 strain originated from the H12N2 strain in Japan, showing two different reassortment events and different from a low pathogenic H5N3 (KNU18-91) virus which was isolated at the same day and same place with KNU18-86 and KNU18-93. These H5N2 isolates were characterized as low pathogenic avian influenza viruses. However, many amino acid changes in eight gene segments were identified to enhance polymerase activity and increase adaptation and virulence in mice and mammals. Experiments reveal that viral replication in MDCK cells was quite high after 12 hpi, showing the ability to replicate in mouse lungs. The hematoxylin and eosin-stained (H&E) lung sections indicated different degrees of pathogenicity of the three H5N2 isolates in mice compared with that of the control H1N1 strain. The continuing circulation of these H5N2 viruses may represent a potential threat to mammals and humans. Our findings highlight the need for intensive surveillance of avian influenza virus circulation in South Korea to prevent the risks posed by these reassortment viruses to animal and public health.
Collapse
Affiliation(s)
- Anh Thi Viet Nguyen
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (A.T.V.N.); (V.T.H.)
| | - Vui Thi Hoang
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (A.T.V.N.); (V.T.H.)
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Correspondence: (S.-J.Y.); (H.P.)
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (A.T.V.N.); (V.T.H.)
- Correspondence: (S.-J.Y.); (H.P.)
| |
Collapse
|
26
|
Ancestral sequence reconstruction pinpoints adaptations that enable avian influenza virus transmission in pigs. Nat Microbiol 2021; 6:1455-1465. [PMID: 34702977 PMCID: PMC8557130 DOI: 10.1038/s41564-021-00976-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022]
Abstract
Understanding the evolutionary adaptations that enable avian influenza viruses to transmit in mammalian hosts could allow better detection of zoonotic viruses with pandemic potential. We applied ancestral sequence reconstruction to gain viruses representing different adaptive stages of the European avian-like (EA) H1N1 swine influenza virus as it transitioned from avian to swine hosts since 1979. Ancestral viruses representing the avian-like precursor virus and EA swine viruses from 1979–1983, 1984–1987, and 1988–1992 were reconstructed and characterized. Glycan array analyses showed stepwise changes in the hemagglutinin receptor binding specificity from recognizing both alpha2,3- and alpha2,6-sialosides to alpha2,6-sialosides; however, efficient transmission in piglets was enabled by adaptive changes in the viral polymerase protein and nucleoprotein that have been fixed after 1983. PB1-Q621R and NP-R351K increased viral replication and transmission in piglets when introduced into the 1979–1983 ancestral virus that lacked efficient transmissibility. The stepwise adaptation of an avian influenza virus to a mammalian host suggests that there may be opportunities to intervene and prevent interspecies jump through strategic coordination of surveillance and risk assessment activities.
Collapse
|
27
|
Li X, Qiao S, Zhao Y, Gu M, Gao R, Liu K, Ge Z, Ma J, Wang X, Hu J, Hu S, Liu X, Chen S, Peng D, Liu X. G1-like PB2 gene improves virus replication and competitive advantage of H9N2 virus. Virus Genes 2021; 57:521-528. [PMID: 34519961 DOI: 10.1007/s11262-021-01870-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
H9N2 subtype avian influenza virus has dramatically evolved and undergone extensive reassortment since its emergence in early 1990s in China. The genotype S (G57), emerging in 2007 with the substitution of F98-like PB2 and M gene by G1-like ones, has become the overwhelming predominant genotype for the past 11 years since 2010. Here, we found that virus with G1-like PB2 were more efficient in protein expression and in infectious virus production than that with F98-like PB2 gene. By coinfected MDCK cells with the reassortant virus, more survival opportunity for viruses with G1-like PB2 than that of F/98-like was observed. Besides, in animal experiments, we found that the G1-like PB2 increases virus infectivity, replication, and virus shedding of H9N2 in chickens. Our results suggested that the substitution of G1-like PB2 play important role in promoting the fitness of genotype S H9N2 virus in China.
Collapse
Affiliation(s)
- Xiuli Li
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shumiao Qiao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Zhao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kaituo Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhichuang Ge
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jing Ma
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Sujuan Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
28
|
Yeo SJ, Hoang VT, Duong TB, Nguyen NM, Tuong HT, Azam M, Sung HW, Park H. Emergence of a Novel Reassortant H5N3 Avian Influenza Virus in Korean Mallard Ducks in 2018. Intervirology 2021; 65:1-16. [PMID: 34438407 DOI: 10.1159/000517057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/29/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The avian influenza (AI) virus causes a highly contagious disease which is common in wild and domestic birds and sporadic in humans. Mutations and genetic reassortments among the 8 negative-sense RNA segments of the viral genome alter its pathogenic potential, demanding well-targeted, active surveillance for infection control. METHODS Wild duck fecal samples were collected during the 2018 bird health annual surveillance in South Korea for tracking variations of the AI virus. One low-pathogenic avian influenza H5N3 reassortment virus (A/mallard duck/South Korea/KNU18-91/2018 [H5N3]) was isolated and genomically characterized by phylogenetic and molecular analyses in this study. RESULTS It was devoid of polybasic amino acids at the hemagglutinin (HA) cleavage site and exhibited a stalk region without deletion in the neuraminidase (NA) gene and NA inhibitor resistance-linked E/D627K/N and D701N marker mutations in the PB2 gene, suggesting its low-pathogenic AI. It showed a potential of a reassortment where only HA originated from the H5N3 poultry virus of China and other genes were derived from Mongolia. In phylogenetic analysis, HA was different from that of the isolate of H5N3 in Korea, 2015. In addition, this novel virus showed adaptation in Madin-Darby canine kidney cells, with 8.05 ± 0.14 log10 50% tissue culture infectious dose (TCID50) /mL at 36 h postinfection. However, it could not replicate in mice well, showing positive growth at 3 days postinfection (dpi) (2.1 ± 0.13 log10 TCID50/mL) but not at 6 dpi. CONCLUSIONS The HA antigenic relationship of A/mallard duck/South Korea/KNU18-91/2018 (H5N3) showed differences toward one of the old low-pathogenic H5N3 viruses in Korea. These results indicated that a novel reassortment low-pathogenic avian influenza H5N3 subtype virus emerged in South Korea in 2018 via novel multiple reassortments with Eurasian viruses, rather than one of old Korean H5N3 strains.
Collapse
Affiliation(s)
- Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, Republic of Korea,
| | - Vui Thi Hoang
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Tuan Bao Duong
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Ngoc Minh Nguyen
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Hien Thi Tuong
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Mudsser Azam
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyun Park
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
29
|
Elgendy EM, Arai Y, Kawashita N, Isobe A, Daidoji T, Ibrahim MS, Ono T, Takagi T, Nakaya T, Matsumoto K, Watanabe Y. Double mutations in the H9N2 avian influenza virus PB2 gene act cooperatively to increase viral host adaptation and replication for human infections. J Gen Virol 2021; 102. [PMID: 34061017 DOI: 10.1099/jgv.0.001612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Avian H9N2 influenza viruses in East Asia are genetically diversified and multiple genotypes (A-W) have been established in poultry. Genotype S strains are currently the most prevalent strains, have caused many human infections and pose a public health threat. In this study, human adaptation mutations in the PB2 polymerase in genotype S strains were identified by database screening. Several PB2 double mutations were identified that acted cooperatively to produce higher genotype S virus polymerase activity and replication in human cells than in avian cells and to increase viral growth and virulence in mice. These mutations were chronologically and phylogenetically clustered in a new group within genotype S viruses. Most of the relevant human virus isolates carry the PB2-A588V mutation together with another PB2 mutation (i.e. K526R, E627V or E627K), indicating a host adaptation advantage for these double mutations. The prevalence of PB2 double mutations in human H9N2 virus isolates has also been found in genetically related human H7N9 and H10N8 viruses. These results suggested that PB2 double mutations in viruses in the field acted cooperatively to increase human adaptation of the currently prevalent H9N2 genotype S strains. This may have contributed to the recent surge of H9N2 infections and may be applicable to the human adaptation of several other avian influenza viruses. Our study provides a better understanding of the human adaptation pathways of genetically related H9N2, H7N9 and H10N8 viruses in nature.
Collapse
Affiliation(s)
- Emad Mohamed Elgendy
- Department of Infectious Diseases, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Yasuha Arai
- Department of Infectious Diseases, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Norihito Kawashita
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Ayana Isobe
- Department of Infectious Diseases, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomo Daidoji
- Department of Infectious Diseases, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Madiha Salah Ibrahim
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Takao Ono
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Tatsuya Takagi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiko Matsumoto
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Yohei Watanabe
- Department of Infectious Diseases, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
30
|
Identification and molecular characterization of H9N2 viruses carrying multiple mammalian adaptation markers in resident birds in central-western wetlands in India. INFECTION GENETICS AND EVOLUTION 2021; 94:105005. [PMID: 34293481 DOI: 10.1016/j.meegid.2021.105005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/03/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022]
Abstract
We report here a targeted risk-based study to investigate the presence of influenza A viruses at the migratory-wild-domestic bird interface across the major wetlands of central India's Maharashtra state during the winter migration season. The H9N2 viruses have been isolated and confirmed in 3.86% (33/854) of the fecal samples of resident birds. To investigate the genetic pools of H9N2 circulating in resident birds, we sequenced two isolates of H9N2 from distant wetlands. Sequence and phylogenetic analyses have shown that these viruses are triple reassortants, with HA, NA, NP, and M genes belonging to G1 sub-lineage (A/quail/Hong Kong/G1/1997), PB2, PB1, and NS genes originating from the prototype Eurasian lineage (A/mallard/France/090360/2009) and PA gene deriving from Y439/Korean-like (A/duck/Hong Kong/Y439/97) sub-lineage. It was confirmed not only that four of their gene segments had a high genetic association with the zoonotic H9N2 virus, A/Human/India/TCM2581/2019, but also that they had many molecular markers associated with mammalian adaptation and enhanced virulence in mammals including the unique multiple basic amino acids, KSKR↓GLF at the HA cleavage site, and analog N-and O-glycosylation patterns on HA with that of the zoonotic H9N2 virus. Furthermore, future experiments would be to characterize these isolates biologically to address the public health concern. Importantly, due to the identification of these viruses at a strategic geographical location in India (a major stop-over point in the Central Asian flyway), these novel viruses also pose a possible threat to be exported to other regions via migratory/resident birds. Consequently, systematic investigation and active monitoring are a prerequisite for identifying and preventing the spread of viruses of zoonotic potential by enforcing strict biosecurity measures.
Collapse
|
31
|
Sun N, Li C, Li XF, Deng YQ, Jiang T, Zhang NN, Zu S, Zhang RR, Li L, Chen X, Liu P, Gold S, Lu N, Du P, Wang J, Qin CF, Cheng G. Type-IInterferon-Inducible SERTAD3 Inhibits Influenza A Virus Replication by Blocking the Assembly of Viral RNA Polymerase Complex. Cell Rep 2021; 33:108342. [PMID: 33147462 DOI: 10.1016/j.celrep.2020.108342] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/03/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023] Open
Abstract
Influenza A virus (IAV) infection stimulates a type I interferon (IFN-I) response in host cells that exerts antiviral effects by inducing the expression of hundreds of IFN-stimulated genes (ISGs). However, most ISGs are poorly studied for their roles in the infection of IAV. Herein, we demonstrate that SERTA domain containing 3 (SERTAD3) has a significant inhibitory effect on IAV replication in vitro. More importantly, Sertad3-/- mice develop more severe symptoms upon IAV infection. Mechanistically, we find SERTAD3 reduces IAV replication through interacting with viral polymerase basic protein 2 (PB2), polymerase basic protein 1 (PB1), and polymerase acidic protein (PA) to disrupt the formation of the RNA-dependent RNA polymerase (RdRp) complex. We further identify an 8-amino-acid peptide of SERTAD3 as a minimum interacting motif that can disrupt RdRp complex formation and inhibit IAV replication. Thus, our studies not only identify SERTAD3 as an antiviral ISG, but also provide the mechanism of potential application of SERTAD3-derived peptide in suppressing influenza replication.
Collapse
Affiliation(s)
- Nina Sun
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of System Medicine, Suzhou, Jiangsu 215123, China
| | - Chunfeng Li
- Institute for Immunity, Transplantation and Infection, Department of Pathology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yong-Qiang Deng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Tao Jiang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Na-Na Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Shulong Zu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of System Medicine, Suzhou, Jiangsu 215123, China
| | - Rong-Rong Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lili Li
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of System Medicine, Suzhou, Jiangsu 215123, China
| | - Xiang Chen
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ping Liu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Sarah Gold
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ning Lu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Peishuang Du
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Jingfeng Wang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of System Medicine, Suzhou, Jiangsu 215123, China; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
32
|
Genetic Characterization and Pathogenesis of Avian Influenza Virus H7N3 Isolated from Spot-Billed Ducks in South Korea, Early 2019. Viruses 2021; 13:v13050856. [PMID: 34067187 PMCID: PMC8151380 DOI: 10.3390/v13050856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022] Open
Abstract
Low-pathogenicity avian influenza viruses (LPAIV) introduced by migratory birds circulate in wild birds and can be transmitted to poultry. These viruses can mutate to become highly pathogenic avian influenza viruses causing severe disease and death in poultry. In March 2019, an H7N3 avian influenza virus—A/Spot-billed duck/South Korea/WKU2019-1/2019 (H7N3)—was isolated from spot-billed ducks in South Korea. This study aimed to evaluate the phylogenetic and mutational analysis of this isolate. Molecular analysis revealed that the genes for HA (hemagglutinin) and NA (neuraminidase) of this strain belonged to the Central Asian lineage, whereas genes for other internal proteins such as polymerase basic protein 1 (PB1), PB2, nucleoprotein, polymerase acidic protein, matrix protein, and non-structural protein belonged to that of the Korean lineage. In addition, a monobasic amino acid (PQIEPR/GLF) at the HA cleavage site, and the non-deletion of the stalk region in the NA gene indicated that this isolate was a typical LPAIV. Nucleotide sequence similarity analysis of HA revealed that the highest homology (99.51%) of this isolate is to that of A/common teal/Shanghai/CM1216/2017 (H7N7), and amino acid sequence of NA (99.48%) was closely related to that of A/teal/Egypt/MB-D-487OP/2016 (H7N3). An in vitro propagation of the A/Spot-billed duck/South Korea/WKU2019-1/2019 (H7N3) virus showed highest (7.38 Log10 TCID50/mL) virus titer at 60 h post-infection, and in experimental mouse lungs, the virus was detected at six days’ post-infection. Our study characterizes genetic mutations, as well as pathogenesis in both in vitro and in vivo model of a new Korea H7N3 viruses in 2019, carrying multiple potential mutations to become highly pathogenic and develop an ability to infect humans; thus, emphasizing the need for routine surveillance of avian influenza viruses in wild birds.
Collapse
|
33
|
Li X, Zhao Y, Qiao S, Gu M, Gao R, Ge Z, Xu X, Wang X, Ma J, Hu J, Hu S, Liu X, Chen S, Peng D, Jiao X, Liu X. The Packaging Regions of G1-Like PB2 Gene Contribute to Improving the Survival Advantage of Genotype S H9N2 Virus in China. Front Microbiol 2021; 12:655057. [PMID: 33967991 PMCID: PMC8096984 DOI: 10.3389/fmicb.2021.655057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The genotype S (G57) H9N2 virus, which first emerged in 2007 with the substitution of the G1-like PB2 gene for F98-like ones, has become the predominant genotype in the past 10 years. However, whether this substitution plays a role in the fitness of genotype S H9N2 viruses remains unknown. Comparison of the PB2 genes of F98-like and G1-like viruses revealed a close homology in amino acid sequences but great variations at nucleotide levels. We then determined if the packaging region, a unique sequence in each segment utilized for the assembly of the vRNA into virions, played a role in the fitness of the S genotype. The chimeric H9N2 virus with PB2 segments of the G1-like packaging regions significantly increased viral protein levels and polymerase activity. Substituting the packaging regions in the two terminals of F98-like PB2 with the sequence of G1-like further improved its competitive advantage. Substitution of the packaging regions of F98-like PB2 with those of G1-like sequences increased the infectivity of the chimeric virus in the lungs and brains of chicken at 3 days post infection (dpi) and extended the lengths of virus shedding time. Our study suggests that the packaging regions of the G1-like PB2 gene contribute to improve the survival advantage of the genotype S H9N2 virus in China.
Collapse
Affiliation(s)
- Xiuli Li
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ying Zhao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shumiao Qiao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhichuang Ge
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiulong Xu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Yangzhou University Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jing Ma
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Sujuan Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Yangzhou University Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
34
|
Rioux M, Francis ME, Swan CL, Ge A, Kroeker A, Kelvin AA. The Intersection of Age and Influenza Severity: Utility of Ferrets for Dissecting the Age-Dependent Immune Responses and Relevance to Age-Specific Vaccine Development. Viruses 2021; 13:678. [PMID: 33920917 PMCID: PMC8071347 DOI: 10.3390/v13040678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Many factors impact the host response to influenza virus infection and vaccination. Ferrets have been an indispensable reagent for influenza virus research for almost one hundred years. One of the most significant and well-known factors affecting human disease after infection is host age. Another significant factor is the virus, as strain-specific disease severity is well known. Studying age-related impacts on viral infection and vaccination outcomes requires an animal model that reflects both the physiological and immunological changes that occur with human aging, and sensitivity to differentially virulent influenza viruses. The ferret is uniquely susceptible to a plethora of influenza viruses impacting humans and has proven extremely useful in studying the clinical and immunological pictures of influenza virus infection. Moreover, ferrets developmentally have several of the age-related physiological changes that occur in humans throughout infancy, adulthood, old age, and pregnancy. In this review, we discuss ferret susceptibility to influenza viruses, summarize previous influenza studies using ferrets as models of age, and finally, highlight the application of ferret age models in the pursuit of prophylactic and therapeutic agents to address age-related influenza disease severity.
Collapse
Affiliation(s)
- Melissa Rioux
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H4R2, Canada; (M.R.); (A.G.)
| | - Magen E. Francis
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
| | - Cynthia L. Swan
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
| | - Anni Ge
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H4R2, Canada; (M.R.); (A.G.)
| | - Andrea Kroeker
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
| | - Alyson A. Kelvin
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H4R2, Canada; (M.R.); (A.G.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
- Department of Pediatrics, Division of Infectious Disease, Faculty of Medicine, Dalhousie University, Halifax, NS B3K6R8, Canada
- The Canadian Center for Vaccinology (IWK Health Centre, Dalhousie University and the Nova Scotia Health Authority), Halifax, NS B3K6R8, Canada
- Department of Biochemistry, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N5E5, Canada
| |
Collapse
|
35
|
Mercan Y, Atim G, Kayed AE, Azbazdar ME, Kandeil A, Ali MA, Rubrum A, McKenzie P, Webby RJ, Erima B, Wabwire-Mangen F, Ukuli QA, Tugume T, Byarugaba DK, Kayali G, Ducatez MF, Koçer ZA. Molecular Characterization of Closely Related H6N2 Avian Influenza Viruses Isolated from Turkey, Egypt, and Uganda. Viruses 2021; 13:v13040607. [PMID: 33918166 PMCID: PMC8065897 DOI: 10.3390/v13040607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 01/22/2023] Open
Abstract
Genetic analysis of circulating avian influenza viruses (AIVs) in wild birds at different geographical regions during the same period could improve our knowledge about virus transmission dynamics in natural hosts, virus evolution as well as zoonotic potential. Here, we report the genetic and molecular characterization of H6N2 influenza viruses isolated from migratory birds in Turkey, Egypt, and Uganda during 2017–2018. The Egyptian and Turkish isolates were genetically closer to each other than they were to the virus isolated from Uganda. Our results also suggest that multiple reassortment events were involved in the genesis of the isolated viruses. All viruses contained molecular markers previously associated with increased replication and/or pathogenicity in mammals. The results of this study indicate that H6N2 viruses carried by migratory birds on the West Asian/East African and Mediterranean/Black Sea flyways have the potential to transmit to mammals including humans. Additionally, adaptation markers in these viruses indicate the potential risk for poultry, which also increases the possibility of human exposure to these viruses.
Collapse
Affiliation(s)
- Yavuz Mercan
- Emerging Viral Diseases Laboratory, Izmir Biomedicine and Genome Center, 35340 Izmir, Turkey; (Y.M.); (M.E.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Gladys Atim
- Makerere University Walter Reed Project, P.O. Box 7062 Kampala, Uganda; (G.A.); (B.E.); (F.W.-M.); (Q.A.U.); (T.T.); (D.K.B.)
| | - Ahmed E. Kayed
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12311, Egypt; (A.E.K.); (A.K.); (M.A.A.)
| | - M. Ekin Azbazdar
- Emerging Viral Diseases Laboratory, Izmir Biomedicine and Genome Center, 35340 Izmir, Turkey; (Y.M.); (M.E.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12311, Egypt; (A.E.K.); (A.K.); (M.A.A.)
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12311, Egypt; (A.E.K.); (A.K.); (M.A.A.)
| | - Adam Rubrum
- St Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (P.M.); (R.J.W.)
| | - Pamela McKenzie
- St Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (P.M.); (R.J.W.)
| | - Richard J. Webby
- St Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (P.M.); (R.J.W.)
| | - Bernard Erima
- Makerere University Walter Reed Project, P.O. Box 7062 Kampala, Uganda; (G.A.); (B.E.); (F.W.-M.); (Q.A.U.); (T.T.); (D.K.B.)
| | - Fred Wabwire-Mangen
- Makerere University Walter Reed Project, P.O. Box 7062 Kampala, Uganda; (G.A.); (B.E.); (F.W.-M.); (Q.A.U.); (T.T.); (D.K.B.)
- School of Public Health, Makerere University, P.O. Box 7062 Kampala, Uganda
| | - Qouilazoni A. Ukuli
- Makerere University Walter Reed Project, P.O. Box 7062 Kampala, Uganda; (G.A.); (B.E.); (F.W.-M.); (Q.A.U.); (T.T.); (D.K.B.)
| | - Titus Tugume
- Makerere University Walter Reed Project, P.O. Box 7062 Kampala, Uganda; (G.A.); (B.E.); (F.W.-M.); (Q.A.U.); (T.T.); (D.K.B.)
| | - Denis K. Byarugaba
- Makerere University Walter Reed Project, P.O. Box 7062 Kampala, Uganda; (G.A.); (B.E.); (F.W.-M.); (Q.A.U.); (T.T.); (D.K.B.)
- College of Veterinary Medicine, Makerere University, P.O. Box 7062 Kampala, Uganda
| | - Ghazi Kayali
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, USA;
- Human Link, Dubai, United Arab Emirates
| | | | - Zeynep A. Koçer
- Emerging Viral Diseases Laboratory, Izmir Biomedicine and Genome Center, 35340 Izmir, Turkey; (Y.M.); (M.E.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Izmir, Turkey
- Correspondence: ; Tel.: +90-232-299-4165
| |
Collapse
|
36
|
Trinh TTT, Duong BT, Nguyen ATV, Tuong HT, Hoang VT, Than DD, Nam S, Sung HW, Yun KJ, Yeo SJ, Park H. Emergence of Novel Reassortant H1N1 Avian Influenza Viruses in Korean Wild Ducks in 2018 and 2019. Viruses 2020; 13:v13010030. [PMID: 33375376 PMCID: PMC7823676 DOI: 10.3390/v13010030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/19/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023] Open
Abstract
Influenza A virus subtype H1N1 has caused global pandemics like the “Spanish flu” in 1918 and the 2009 H1N1 pandemic several times. H1N1 remains in circulation and survives in multiple animal sources, including wild birds. Surveillance during the winter of 2018–2019 in Korea revealed two H1N1 isolates in samples collected from wild bird feces: KNU18-64 (A/Greater white-fronted goose/South Korea/KNU18-64/2018(H1N1)) and WKU19-4 (A/wild bird/South Korea/WKU19-4/2019(H1N1)). Phylogenetic analysis indicated that M gene of KNU18-64(H1N1) isolate resembles that of the Alaskan avian influenza virus, whereas WKU19-4(H1N1) appears to be closer to the Mongolian virus. Molecular characterization revealed that they harbor the amino acid sequence PSIQRS↓GLF and are low-pathogenicity influenza viruses. In particular, the two isolates harbored three different mutation sites, indicating that they have different virulence characteristics. The mutations in the PB1-F2 and PA protein of WKU19-4(H1N1) indicate increasing polymerase activity. These results corroborate the kinetic growth data for WKU19-4 in MDCK cells: a dramatic increase in the viral titer after 12 h post-inoculation compared with that in the control group H1N1 (CA/04/09(pdm09)). The KNU18-64(H1N1) isolate carries mutations indicating an increase in mammal adaptation; this characterization was confirmed by the animal study in mice. The KNU18-64(H1N1) group showed the presence of viruses in the lungs at days 3 and 6 post-infection, with titers of 2.71 ± 0.16 and 3.71 ± 0.25 log10(TCID50/mL), respectively, whereas the virus was only detected in the WKU19-4(H1N1) group at day 6 post-infection, with a lower titer of 2.75 ± 0.51 log10(TCID50/mL). The present study supports the theory that there is a relationship between Korea and America with regard to reassortment to produce novel viral strains. Therefore, there is a need for increased surveillance of influenza virus circulation in free-flying and wild land-based birds in Korea, particularly with regard to Alaskan and Asian strains.
Collapse
Affiliation(s)
- Thuy-Tien Thi Trinh
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Bao Tuan Duong
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Anh Thi Viet Nguyen
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Hien Thi Tuong
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Vui Thi Hoang
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Duong Duc Than
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - SunJeong Nam
- Division of EcoScience, Ewha University, Seoul 03760, Korea;
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Korea;
| | - Ki-Jung Yun
- Department of Pathology, School of Medicine, Wonkwang University, Iksan 570-749, Korea;
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Correspondence: (S.-J.Y.); (H.P.)
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
- Correspondence: (S.-J.Y.); (H.P.)
| |
Collapse
|
37
|
Ciminski K, Chase GP, Beer M, Schwemmle M. Influenza A Viruses: Understanding Human Host Determinants. Trends Mol Med 2020; 27:104-112. [PMID: 33097424 DOI: 10.1016/j.molmed.2020.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 01/13/2023]
Abstract
Previous influenza A virus (IAV) pandemics have invariably been caused by the introduction of an emergent IAV strain from an animal host into a human population with no or only little pre-existing immunity to the novel strain. Although zoonotic spillover of IAVs into humans can be associated with severe disease and a high fatality rate, these strains are typically poorly adapted to humans and are unable to establish sustained transmission between humans. Given the presumably very high degree of exposure to animal populations with endemic IAV, the number of pandemics remains surprisingly low. In this review, we provide an updated perspective on the molecular mechanisms underlying the adaptation of zoonotic IAV to human hosts, and discuss the implications for future pandemics.
Collapse
Affiliation(s)
- Kevin Ciminski
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Geoffrey P Chase
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany.
| | - Martin Schwemmle
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
38
|
Sirotkin K, Sirotkin D. Might SARS-CoV-2 Have Arisen via Serial Passage through an Animal Host or Cell Culture?: A potential explanation for much of the novel coronavirus' distinctive genome. Bioessays 2020; 42:e2000091. [PMID: 32786014 PMCID: PMC7435492 DOI: 10.1002/bies.202000091] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/13/2020] [Indexed: 12/16/2022]
Abstract
Despite claims from prominent scientists that SARS-CoV-2 indubitably emerged naturally, the etiology of this novel coronavirus remains a pressing and open question: Without knowing the true nature of a disease, it is impossible for clinicians to appropriately shape their care, for policy-makers to correctly gauge the nature and extent of the threat, and for the public to appropriately modify their behavior. Unless the intermediate host necessary for completing a natural zoonotic jump is identified, the dual-use gain-of-function research practice of viral serial passage should be considered a viable route by which the novel coronavirus arose. The practice of serial passage mimics a natural zoonotic jump, and offers explanations for SARS-CoV-2's distinctive spike-protein region and its unexpectedly high affinity for angiotensin converting enzyme (ACE2), as well as the notable polybasic furin cleavage site within it. Additional molecular clues raise further questions, all of which warrant full investigation into the novel coronavirus's origins and a re-examination of the risks and rewards of dual-use gain-of-function research.
Collapse
Affiliation(s)
- Karl Sirotkin
- Karl Sirotkin LLC, 1301 Tadsworth TerraceLake MaryFL32746USA
| | - Dan Sirotkin
- Karl Sirotkin LLC, 1301 Tadsworth TerraceLake MaryFL32746USA
| |
Collapse
|
39
|
Adaptation of influenza B virus by serial passage in human airway epithelial cells. Virology 2020; 549:68-76. [PMID: 32853848 DOI: 10.1016/j.virol.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 11/24/2022]
Abstract
Influenza B viruses cause seasonal epidemics and are a considerable burden to public health. To understand their adaptation capability, we examined the genetic changes that occurred following 15 serial passages of two influenza B viruses, B/Brisbane/60/2008 and B/Victoria/504/2000, in human epithelial cells. Thirteen distinct amino acid mutations were found in the PB1, PA, hemagglutinin (HA), neuraminidase (NA), and M proteins after serial passage in the human lung epithelial cell line, Calu-3, and normal human bronchial epithelial (NHBE) cells. These changes were associated with significantly decreased viral replication levels. Our results demonstrate that adaptation of influenza B viruses for growth in human airway epithelial cells is partially conferred by selection of HA1, NA, and polymerase mutations that regulate receptor specificity, functional compatibility with the HA protein, and polymerase activity, respectively.
Collapse
|
40
|
Nguyen NM, Sung HW, Yun KJ, Park H, Yeo SJ. Genetic Characterization of a Novel North American-Origin Avian Influenza A (H6N5) Virus Isolated from Bean Goose of South Korea in 2018. Viruses 2020; 12:v12070774. [PMID: 32709116 PMCID: PMC7411716 DOI: 10.3390/v12070774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
The complex overlap in waterfowl migratory pathways across the world has established numerous occurrences of genetic reassortment and intercontinental spread of avian influenza virus (AIV) over long distances, thereby calling for huge efforts and targeted surveillance for infection control. During annual surveillance in South Korea in 2018, a novel avian influenza H6N5 (K6) subtype was isolated from the fecal sample of wild bird. Genomic characterization using a phylogenetic tree indicated the K6 virus to be of North American-origin, with partial homology to an H6N5 strain, A/Aix galericulata/South Korea/K17-1638-5/2017 (K17). A monobasic residue at the HA cleavage site and absence of a notable mutation at the HA receptor-binding site suggested the isolate to be of low pathogenicity. However, molecular analysis revealed the E119V mutation in the NA gene and a human host marker mutation E382D in the polymerase acidic (PA) gene, implying their susceptibility to neuraminidase inhibitors and potential infectivity in humans, respectively. For comparison, K6 and K17 were found to be dissimilar for various mutations, such as A274T of PB2, S375N/T of PB1, or V105M of NP, each concerning the increased virulence of K6 in mammalian system. Moreover, kinetic data presented the highest viral titer of this H6N5 isolate at 106.37 log10TCID50 after 48 h of infection, thus proving efficient adaptability for replication in a mammalian system in vitro. The mouse virus challenge study showed insignificant influence on the total body weight, while viral load shedding in lungs peaked at 1.88 ± 0.21 log10 TICD50/mL, six days post infection. The intercontinental transmission of viruses from North America may continuously be present in Korea, thereby providing constant opportunities for virus reassortment with local resident AIVs; these results hint at the increased potential risk of host jumping capabilities of the new isolates. Our findings reinforce the demand for regular surveillance, not only in Korea but also along the flyways in Alaska.
Collapse
Affiliation(s)
- Ngoc Minh Nguyen
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea;
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Korea;
| | - Ki-Jung Yun
- Department of Pathology, School of Medicine, Wonkwang University, Iksan 570-749, Korea;
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea;
- Correspondence: (H.P.); (S.-J.Y.)
| | - Seon-Ju Yeo
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea;
- Correspondence: (H.P.); (S.-J.Y.)
| |
Collapse
|
41
|
Zhang H, Li H, Wang W, Wang Y, Han GZ, Chen H, Wang X. A unique feature of swine ANP32A provides susceptibility to avian influenza virus infection in pigs. PLoS Pathog 2020; 16:e1008330. [PMID: 32084248 PMCID: PMC7055917 DOI: 10.1371/journal.ppat.1008330] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/04/2020] [Accepted: 01/17/2020] [Indexed: 12/31/2022] Open
Abstract
Both the replication and transcription of the influenza virus are catalyzed by the viral polymerase complex. The polymerases of most avian influenza A viruses have poor performance in mammalian cells, which is considered to be one of the important species barriers. Pigs have been long considered as important intermediate hosts for interspecies transmission of the avian influenza virus, because of their susceptibility to infection with both avian and mammalian influenza viruses. However, the molecular basis of influenza polymerase adaptation in pigs remains largely unknown. ANP32A and ANP32B proteins have been identified as playing fundamental roles in influenza virus replication and host range determination. In this study, we found that swine ANP32A (swANP32A), unlike swine ANP32B or other mammalian ANP32A or B, shows stronger supporting activity to avian viral polymerase. Knockout of ANP32A in pig cells PK15 dramatically reduced avian influenza polymerase activity and viral infectivity, suggesting a unique feature of swANP32A in supporting avian influenza viral polymerase. This species-specific activity is mapped to two key sites, 106V and 156S, in swANP32A. Interestingly, the amino acid 106V is unique to pigs among all the vertebrate species studied, and when combined with 156S, exhibits positive epistasis in pigs. Mutation of 106V and 156S to the signature found in ANP32As from other mammalian species weakened the interaction between swANP32A and chicken viral polymerase, and reduced polymerase activity. Understanding the molecular basis of ANP32 proteins may help to discover new antiviral targets and design avian influenza resistant genome edited pigs.
Collapse
Affiliation(s)
- Haili Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongxin Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenqiang Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yujie Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guan-Zhu Han
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
- * E-mail:
| |
Collapse
|
42
|
Identification, Genetic Analysis, and Pathogenicity of Classical Swine H1N1 and Human-Swine Reassortant H1N1 Influenza Viruses from Pigs in China. Viruses 2020; 12:v12010055. [PMID: 31906591 PMCID: PMC7019673 DOI: 10.3390/v12010055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/22/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022] Open
Abstract
Swine influenza virus causes a substantial disease burden to swine populations worldwide and poses an imminent threat to the swine industry and humans. Given its importance, we characterized two swine influenza viruses isolated from Shandong, China. The homology and phylogenetic analyses showed that all eight gene segments of A/swine/Shandong/AV1522/2011(H1N1) were closely related to A/Maryland/12/1991(H1N1) circulating in North America. The HA, NA, M, and NS genes of the isolate were also confirmed to have a high homology to A/swine/Hubei/02/2008(H1N1) which appeared in China in 2008, and the virus was clustered into the classical swine lineage. The gene segments of A/swine/Shandong/AV1523/2011(H1N1) were highly homologous to the early human H1N1 and H2N2 influenza viruses, except for the HA gene, and the virus was a reassortant H1N1 virus containing genes from the classical swine (HA) and human (NA, PB2, PB1, PA, NP, M, and NS) lineages. Both the viruses could cause lethal infection and replicate efficiently in the lungs, brains, spleens, and kidneys of mice. Histopathological examinations showed that AV1522 and AV1523 viruses caused a spectrum of marked pneumonia and meningoencephalitis according to the duration of infection, demonstrating a progression of respiratory disease and neurological disease over the course of infection that ultimately resulted in lethality for the infected mice. The changes in the pathogenicity of swine influenza viruses to mammals, accompanied with the continuous reassortment and evolution of the viruses, highlights the importance of ongoing epidemiological investigation.
Collapse
|
43
|
Sharshov K, Mine J, Sobolev I, Kurskaya O, Dubovitskiy N, Kabilov M, Alikina T, Nakayama M, Tsunekuni R, Derko A, Prokopyeva E, Alekseev A, Shchelkanov M, Druzyaka A, Gadzhiev A, Uchida Y, Shestopalov A, Saito T. Characterization and Phylodynamics of Reassortant H12Nx Viruses in Northern Eurasia. Microorganisms 2019; 7:microorganisms7120643. [PMID: 31816947 PMCID: PMC6956379 DOI: 10.3390/microorganisms7120643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/19/2019] [Accepted: 11/30/2019] [Indexed: 11/16/2022] Open
Abstract
Wild waterfowl birds are known to be the main reservoir for a variety of avian influenza viruses of different subtypes. Some subtypes, such as H2Nx, H8Nx, H12Nx, and H14Nx, occur relatively rarely in nature. During 10-year long-term surveillance, we isolated five rare H12N5 and one H12N2 viruses in three different distinct geographic regions of Northern Eurasia and studied their characteristics. H12N2 from the Far East region was a double reassortant containing hemagglutinin (HA), non-structural (NS) and nucleoprotein (NP) segments of the American lineage and others from the classical Eurasian avian-like lineage. H12N5 viruses contain Eurasian lineage segments. We suggest a phylogeographical scheme for reassortment events associated with geographical groups of aquatic birds and their migration flyways. The H12N2 virus is of particular interest as this subtype has been found in common teal in the Russian Far East region, and it has a strong relation to North American avian influenza virus lineages, clearly showing that viral exchange of segments between the two continents does occur. Our results emphasize the importance of Avian Influenza Virus (AIV) surveillance in Northern Eurasia for the annual screening of virus characteristics, including the genetic constellation of rare virus subtypes, to understand the evolutionary ecology of AIV.
Collapse
Affiliation(s)
- Kirill Sharshov
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (O.K.); (N.D.); (E.P.); (A.A.); (A.S.)
- Correspondence: ; Tel.: +7-960-794-2136; Fax: +7-383-333-6456
| | - Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan; (J.M.); (M.N.); (R.T.); (Y.U.); (T.S.)
| | - Ivan Sobolev
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (O.K.); (N.D.); (E.P.); (A.A.); (A.S.)
| | - Olga Kurskaya
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (O.K.); (N.D.); (E.P.); (A.A.); (A.S.)
| | - Nikita Dubovitskiy
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (O.K.); (N.D.); (E.P.); (A.A.); (A.S.)
| | - Marsel Kabilov
- Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (M.K.); (T.A.)
| | - Tatiana Alikina
- Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (M.K.); (T.A.)
| | - Momoko Nakayama
- Division of Transboundary Animal Disease, National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan; (J.M.); (M.N.); (R.T.); (Y.U.); (T.S.)
| | - Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan; (J.M.); (M.N.); (R.T.); (Y.U.); (T.S.)
| | - Anastasiya Derko
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (O.K.); (N.D.); (E.P.); (A.A.); (A.S.)
| | - Elena Prokopyeva
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (O.K.); (N.D.); (E.P.); (A.A.); (A.S.)
| | - Alexander Alekseev
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (O.K.); (N.D.); (E.P.); (A.A.); (A.S.)
| | - Michael Shchelkanov
- School of Biomedicine, Far Eastern Federal University, 690091 Vladivostok, Russia;
- Laboratory of Virology, Federal Scientific Center of East Asia Terrestrial Biodiversity, 690022 Vladivostok, Russia
- Laboratory of marine microbiota, National Scientific Center o Marine Biology, 690041 Vladivostok, Russia
| | - Alexey Druzyaka
- Laboratory of behavioral ecology, Institute of Animal Systematics and Ecology, 630091 Novosibirsk, Russia;
| | - Alimurad Gadzhiev
- Department of Ecology, Dagestan State University, 367000 Makhachkala, Russia;
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan; (J.M.); (M.N.); (R.T.); (Y.U.); (T.S.)
| | - Alexander Shestopalov
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (O.K.); (N.D.); (E.P.); (A.A.); (A.S.)
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan; (J.M.); (M.N.); (R.T.); (Y.U.); (T.S.)
| |
Collapse
|
44
|
Suttie A, Deng YM, Greenhill AR, Dussart P, Horwood PF, Karlsson EA. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes 2019; 55:739-768. [PMID: 31428925 PMCID: PMC6831541 DOI: 10.1007/s11262-019-01700-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Avian influenza viruses (AIVs) circulate globally, spilling over into domestic poultry and causing zoonotic infections in humans. Fortunately, AIVs are not yet capable of causing sustained human-to-human infection; however, AIVs are still a high risk as future pandemic strains, especially if they acquire further mutations that facilitate human infection and/or increase pathogenesis. Molecular characterization of sequencing data for known genetic markers associated with AIV adaptation, transmission, and antiviral resistance allows for fast, efficient assessment of AIV risk. Here we summarize and update the current knowledge on experimentally verified molecular markers involved in AIV pathogenicity, receptor binding, replicative capacity, and transmission in both poultry and mammals with a broad focus to include data available on other AIV subtypes outside of A/H5N1 and A/H7N9.
Collapse
Affiliation(s)
- Annika Suttie
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
- School of Health and Life Sciences, Federation University, Churchill, Australia
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Yi-Mo Deng
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andrew R Greenhill
- School of Health and Life Sciences, Federation University, Churchill, Australia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
| | - Paul F Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Erik A Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia.
| |
Collapse
|
45
|
Zhao P, Sun L, Xiong J, Wang C, Chen L, Yang P, Yu H, Yan Q, Cheng Y, Jiang L, Chen Y, Zhao G, Jiang Q, Xiong C. Semiaquatic mammals might be intermediate hosts to spread avian influenza viruses from avian to human. Sci Rep 2019; 9:11641. [PMID: 31406229 PMCID: PMC6690891 DOI: 10.1038/s41598-019-48255-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/30/2019] [Indexed: 12/29/2022] Open
Abstract
Avian influenza A viruses (AIVs) can occasionally transmit to mammals and lead to the development of human pandemic. A species of mammal is considered as a mixing vessel in the process of host adaptation. So far, pigs are considered as a plausible intermediate host for the generation of human pandemic strains, and are labelled ‘mixing vessels’. In this study, through the analysis of two professional databases, the Influenza Virus Resource of NCBI and the Global Initiative on Sharing Avian Influenza Data (GISAID), we found that the species of mink (Neovison vison) can be infected by more subtypes of influenza A viruses with considerably higher α-diversity related indices. It suggested that the semiaquatic mammals (riverside mammals), rather than pigs, might be the intermediate host to spread AIVs and serve as a potential mixing vessel for the interspecies transmission among birds, mammals and human. In epidemic areas, minks, possibly some other semiaquatic mammals as well, could be an important sentinel species for influenza surveillance and early warning.
Collapse
Affiliation(s)
- Ping Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Lingsha Sun
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jiasheng Xiong
- College of Marine Science, Shandong University, Weihai, China
| | - Chuan Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liang Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengfei Yang
- Huai'an Center for Disease Control and Prevention, Huai'an, China
| | - Hao Yu
- Hongze Center for Disease Control and Prevention, Hongze, China
| | - Qingli Yan
- Huai'an Center for Disease Control and Prevention, Huai'an, China
| | - Yan Cheng
- Hongze Center for Disease Control and Prevention, Hongze, China
| | - Lufang Jiang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Genming Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Qingwu Jiang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Chenglong Xiong
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China. .,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| |
Collapse
|
46
|
Wang L, Cui Q, Zhao X, Li P, Wang Y, Rong L, Du R. Generation of a Reassortant Influenza A Subtype H3N2 Virus Expressing Gaussia Luciferase. Viruses 2019; 11:v11070665. [PMID: 31330768 PMCID: PMC6669691 DOI: 10.3390/v11070665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 12/22/2022] Open
Abstract
Reporter influenza A viruses (IAVs) carrying fluorescent or luminescent genes provide a powerful tool for both basic and translational research. Most reporter IAVs are based on the backbone of either subtype H1N1 viruses, A/Puerto Rico/8/1934 (PR8) or A/WSN/1933, but no reporter subtype H3N2 virus is currently available to our knowledge. Since the IAV subtype H3N2 co-circulates with H1N1 among humans causing annual epidemics, a reporter influenza A subtype H3N2 virus would be highly valuable. In this study, the segments of A/Wyoming/3/03 (NY, H3N2) virus encoding hemagglutinin and neuraminidase, respectively, were reassorted with the six internal genes of PR8 where the NS gene was fused with a Gaussia luciferase (Gluc) gene. Using reverse genetics, NY-r19-Gluc, a replication competent reassortant influenza A subtype H3N2 virus expressing reporter Gluc was successfully generated. This reporter virus is stable during replication in Madin-Darby canine kidney (MDCK) cells, and preliminary studies demonstrated it as a useful tool to evaluate antivirals. In addition, NY-r19-Gluc virus will be a powerful tool in other studies including the application of diagnostic and therapeutic antibodies as well as the evaluation of novel vaccines.
Collapse
Affiliation(s)
- Lin Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China
| | - Xiujuan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ping Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yanyan Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China.
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China.
| |
Collapse
|
47
|
Nooruzzaman M, Mumu TT, Hasnat A, Akter MN, Rasel MSU, Rahman MM, Parvin R, Begum JA, Chowdhury EH, Islam MR. A new reassortant clade 2.3.2.1a H5N1 highly pathogenic avian influenza virus causing recent outbreaks in ducks, geese, chickens and turkeys in Bangladesh. Transbound Emerg Dis 2019; 66:2120-2133. [PMID: 31168925 DOI: 10.1111/tbed.13264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/23/2019] [Accepted: 06/01/2019] [Indexed: 12/16/2022]
Abstract
A total of 15 dead or sick birds from 13 clinical outbreaks of avian influenza in ducks, geese, chickens and turkeys in 2017 in Bangladesh were examined. The presence of H5N1 influenza A virus in the affected birds was detected by RT-PCR. Phylogenetic analysis based on full-length gene sequences of all eight gene segments revealed that these recent outbreaks were caused by a new reassortant of clade 2.3.2.1a H5N1 virus, which had been detected earlier in 2015 during surveillance in live bird markets (LBMs) and wet lands. This reassortant virus acquired PB2, PB1, PA, NP and NS genes from low pathogenic avian influenza viruses mostly of non-H9N2 subtypes but retained HA, NA and M genes of the old clade 2.3.2.1a viruses. Nevertheless, the HA gene of these new viruses was 2.7% divergent from that of the old clade 2.3.2.1a viruses circulated in Bangladesh. Interestingly, similar reassortment events could be traced back in four 2.3.2.1a virus isolates of 2013 from backyard ducks. It suggests that this reassortant virus emerged in 2013, which took two years to be detected at a broader scale (i.e. in LBMs), another two years until it became widely spread in poultry and fully replaced the old viruses. Several mutations were detected in the recent Bangladeshi isolates, which are likely to influence possible phenotypic alterations such as increased mammalian adaptation, reduced susceptibility to antiviral agents and reduced host antiviral response.
Collapse
Affiliation(s)
- Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Tanjin Tamanna Mumu
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Azmary Hasnat
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mst Nazia Akter
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Salah Uddin Rasel
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Mijanur Rahman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Jahan Ara Begum
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Rafiqul Islam
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
48
|
Fundamental Contribution and Host Range Determination of ANP32A and ANP32B in Influenza A Virus Polymerase Activity. J Virol 2019; 93:JVI.00174-19. [PMID: 30996088 PMCID: PMC6580979 DOI: 10.1128/jvi.00174-19] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
The polymerase of the influenza virus is part of the key machinery necessary for viral replication. However, the avian influenza virus polymerase is restricted in mammalian cells. The cellular protein ANP32A has been recently found to interact with viral polymerase and to influence both polymerase activity and interspecies restriction. We report here that either human ANP32A or ANP32B is indispensable for human influenza A virus RNA replication. The contribution of huANP32B is equal to that of huANP32A, and together they play a fundamental role in the activity of human influenza A virus polymerase, while neither human ANP32A nor ANP32B supports the activity of avian viral polymerase. Interestingly, we found that avian ANP32B was naturally inactive, leaving avian ANP32A alone to support viral replication. Two amino acid mutations at sites 129 to 130 in chicken ANP32B lead to the loss of support of viral replication and weak interaction with the viral polymerase complex, and these amino acids are also crucial in the maintenance of viral polymerase activity in other ANP32 proteins. Our findings strongly support ANP32A and ANP32B as key factors for both virus replication and adaptation.IMPORTANCE The key host factors involved in the influenza A viral polymerase activity and RNA replication remain largely unknown. We provide evidence here that ANP32A and ANP32B from different species are powerful factors in the maintenance of viral polymerase activity. Human ANP32A and ANP32B contribute equally to support human influenza viral RNA replication. However, unlike avian ANP32A, the avian ANP32B is evolutionarily nonfunctional in supporting viral replication because of a mutation at sites 129 and 130. These sites play an important role in ANP32A/ANP32B and viral polymerase interaction and therefore determine viral replication, suggesting a novel interface as a potential target for the development of anti-influenza strategies.
Collapse
|
49
|
Gu Y, Hsu ACY, Pang Z, Pan H, Zuo X, Wang G, Zheng J, Wang F. Role of the Innate Cytokine Storm Induced by the Influenza A Virus. Viral Immunol 2019; 32:244-251. [PMID: 31188076 DOI: 10.1089/vim.2019.0032] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Influenza A viruses (IAVs) can be classified into dozens of subtypes based on their hemagglutinin (HA) and neuraminidase (NA) proteins. To date, 18 HA subtypes and 11 NA subtypes of IAVs that spread in animals and humans have been found. Following infection, the IAV first induces the innate immune system, which can rapidly recruit innate immune cells and cytokines to the site of infection. Influenza-induced cytokine storms have been associated with uncontrolled proinflammatory responses, which may lead to significant immunopathy and severe disease. Cytokine storms are complicated by several types of cytokines and chemokines that have various activities. In addition to their direct effects, their crossregulation causes cytokine networks to form; these networks determine the outcome of viral infections. In this review, we focus on cytokine storms and their signaling pathways that are triggered by the different subtypes of IAV.
Collapse
Affiliation(s)
- Yinuo Gu
- 1Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Alan Chen-Yu Hsu
- 2Priority Research Center for Healthy Lungs, Faculty of Health and Medicine, the University of Newcastle, Newcastle, New South Wales, Australia
| | - Zhiqiang Pang
- 1Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - He Pan
- 1Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xu Zuo
- 1Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Guoqiang Wang
- 1Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jingtong Zheng
- 1Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Fang Wang
- 1Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
50
|
Fleming-Canepa X, Aldridge JR, Canniff L, Kobewka M, Jax E, Webster RG, Magor KE. Duck innate immune responses to high and low pathogenicity H5 avian influenza viruses. Vet Microbiol 2018; 228:101-111. [PMID: 30593354 DOI: 10.1016/j.vetmic.2018.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/28/2022]
Abstract
Ducks are the reservoir host of influenza A viruses, and are permissive for replication of most strains, yet can elicit robust innate immune responses to highly pathogenic strains. Tissue tropism and viral amino acid differences affect virulence, but we have limited knowledge about how viral differences influence the host innate immune response. Here we compare the innate immune response in Pekin ducks to a recombinant highly-pathogenic avian influenza (HPAI) H5N1 virus and a naturally arising attenuated variant of this strain that differs at one amino acid in polymerase A (T515A), as well as ducks infected with two different H5 strains of low pathogenic avian influenza (LPAI). Using qPCR we examined the relative abundance of transcripts for RIG-I and interferon-beta (IFNβ), and downstream interferon stimulated genes (ISGs). The polymerase PA (T515A) mutation did not significantly affect replication in vivo but greatly attenuated host interferon responses. ISG induction was robust for both H5N1 strains, but was three times lower for the PA mutant strain. Low pathogenic viruses elicited detectable induction of RIG-I, IFNβ and ISGs in lung and intestine tissues that correlated with the recovery of viruses from tracheal or cloacal swabs. Several genes in the MAVS signaling pathway were also upregulated by H5N1, which contributed to further amplification of the signal. We also examined hematoxylin-eosin stained tissue sections and observe evidence of lung pathology and splenocyte depletion with both H5N1 viruses at 3 dpi, and recovery by 6 dpi. However, for both H5N1 strains we observed inflammation around neurons in brain, with increased cytokine expression in some individuals. Our findings reveal HPAI H5N1 viruses induced stronger innate immune responses to the infection, while LPAI viruses elicit a milder response.
Collapse
Affiliation(s)
- Ximena Fleming-Canepa
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Jerry R Aldridge
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA; Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Lauren Canniff
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Michelle Kobewka
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Elinor Jax
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell, 78315, Germany
| | - Robert G Webster
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Katharine E Magor
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, T6G 2E1, Canada.
| |
Collapse
|