1
|
Yao G, Wang Z, Xie R, Zhanghuang C, Yan B. Trace element zinc metabolism and its relation to tumors. Front Endocrinol (Lausanne) 2024; 15:1457943. [PMID: 39717098 PMCID: PMC11664221 DOI: 10.3389/fendo.2024.1457943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
Zinc is an essential trace element in the human body, playing a crucial role in cellular metabolism.Dysregulation of zinc homeostasis can lead to abnormal cellular metabolism, contributing to diseases and closely related to tumor development. Adequate zinc intake can maintain zinc homeostasis in the body and support normal cellular metabolism. This review discusses the metabolic processes of zinc in the human body and its close relationship with tumorigenesis. It briefly describes zinc absorption, transport, storage, and release, as well as its important role in gene expression, signal transduction, oxidative stress, immune response, and apoptosis. It focuses on the abnormal cellular metabolism caused by excessive or insufficient zinc, the relationship between zinc homeostasis disruption and metabolic syndrome, and the mechanisms involved in tumor development. It analyzes how changes in the expression and activity of zinc transporters may lead to disrupted zinc homeostasis in tumor tissues. It points out that zinc deficiency is associated with various cancers, including prostate cancer, hepatocellular carcinoma, pancreatic cancer, lung cancer, ovarian cancer, esophageal squamous cell carcinoma, and breast cancer. The summary emphasizes that zinc metalloproteins could serve as potential targets for cancer therapy, and regulating the expression and activity of zinc transport proteins may offer new methods and strategies for clinical cancer treatment.
Collapse
Affiliation(s)
- Guiping Yao
- Department of Urology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Zhiwei Wang
- Department of Urology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Rui Xie
- Department of Orthopedics, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Chenghao Zhanghuang
- Department of Urology, Kunming Children’s Hospital, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming Children’s Solid Tumor Diagnosis and Treatment Center, Kunming, Yunnan, China
- Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Clinical Medical Center for Pediatric Diseases, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Bing Yan
- Department of Urology, Kunming Children’s Hospital, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming Children’s Solid Tumor Diagnosis and Treatment Center, Kunming, Yunnan, China
- Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Clinical Medical Center for Pediatric Diseases, Kunming Children’s Hospital, Kunming, Yunnan, China
| |
Collapse
|
2
|
Bujalance-Fernández J, Carro E, Jurado-Sánchez B, Escarpa A. Biocatalytic ZIF-8 surface-functionalized micromotors navigating in the cerebrospinal fluid: toward Alzheimer management. NANOSCALE 2024; 16:20917-20924. [PMID: 39469769 DOI: 10.1039/d4nr02044h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Alzheimer's disease (AD) is the major cause of irreversible dementia in the elderly population worldwide and one of the major causes of the decrease in the quality of life. Efficient diagnosis and monitoring would allow a fast treatment to delay the appearance of symptoms. Herein, zeolitic imidazole framework (ZIF-8)@Au@catalase micromotors are described for motion-based sensing of copper as a marker of AD. The synthesis design was based on enzyme covalent immobilization instead of encapsulation to maximize the contact with the sample at the microscale for the potential use of extremely low AD-diagnosed sample volumes. The micromotors are prepared by asymmetric modification of ZIF-8 with a gold layer for functionalization of catalase as a compatible biocatalyst. The micromotors can propel at speeds of up to 287 ± 41 μm s-1 in cerebrospinal fluid (CSF) samples of healthy volunteers. Yet, in the presence of copper, catalase poisoning results in a decrease in the speed that can be monitored for motion-based sensing detection, as illustrated in the analysis of CSF samples from AD patients from mild to severe stages (Braak III to Braak VI). The copper-mediated modulation of catalase activity proposed here as an indicator of progression states in AD disease possesses distinct advantages such as ultrafast analysis (less than 1 min) and requiring only 1 μL of sample, holding considerable promise as a supporting prescreening tool for fast diagnosis of AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- J Bujalance-Fernández
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Universidad de Alcala, Alcala de Henares, E-28802 Madrid, Spain.
| | - E Carro
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Majadahonda, Madrid, 28220, Spain
- CIBERNED, Madrid, Spain
| | - B Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Universidad de Alcala, Alcala de Henares, E-28802 Madrid, Spain.
- Chemical Research Institute "Andres M. del Rio", Universidad de Alcala, E-28802, Madrid, Spain
| | - A Escarpa
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Universidad de Alcala, Alcala de Henares, E-28802 Madrid, Spain.
- Chemical Research Institute "Andres M. del Rio", Universidad de Alcala, E-28802, Madrid, Spain
| |
Collapse
|
3
|
Huang Y, Wei Y, Liang F, Huang Y, Huang J, Luo X, Xie B. Exploring the link between dietary zinc intake and endometriosis risk: insights from a cross-sectional analysis of American women. BMC Public Health 2024; 24:2935. [PMID: 39443887 PMCID: PMC11515777 DOI: 10.1186/s12889-024-20433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Endometriosis is a complex disorder with genetic, immune, inflammatory, and multifactorial etiologies. Zinc, an essential trace element, plays a crucial role in various physiological processes. Dysregulation or deficiency of zinc can lead to aberrations in human physiology. However, the association between dietary zinc and endometriosis remains ambiguous. This study aimed to investigate the link between dietary zinc intake and endometriosis. METHODS Utilizing cross-sectional data from the National Health and Nutrition Examination Survey, we analyzed information from American women aged 20-54 years between 1999 and 2006. After adjusting for relevant covariates, multivariable logistic regression analysis was employed to assess correlations. RESULTS A total of 4315 women were included in the study. The multivariable logistic regression model revealed a positive correlation between dietary zinc intake and the risk of endometriosis, even after controlling for confounding variables. Relative to individuals with lower zinc consumption (≤ 8 mg/day), the adjusted odds ratio (OR) values for dietary zinc intake and endometriosis in the 8-14 mg/day and > 14 mg/day groups were 1.19 (95% CI: 0.92-1.54, p = 0.189) and 1.60 (95% CI: 1.12-2.27, p = 0.009), respectively. CONCLUSIONS Our findings suggest a positive correlation between dietary zinc intake and the prevalence of endometriosis. However, further investigations are necessary to better understand this association and explore the potential role of dietary zinc in endometriosis.
Collapse
Affiliation(s)
- Yingmei Huang
- Gynecology Department, The First People's Hospital of Nanning, Nanning, China
| | - Yumei Wei
- Gynecology Department, The First People's Hospital of Nanning, Nanning, China
| | - Feng Liang
- Gynecology Department, The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yingqin Huang
- Center for Reproductive Medicine, Maternaland , Child Health Hospital in Guangxi, Nanning, China
| | - Jianyong Huang
- Gynecology Department, The First People's Hospital of Nanning, Nanning, China
| | - Xuehui Luo
- Gynecology Department, The First People's Hospital of Nanning, Nanning, China
| | - Baoli Xie
- Gynecology Department, The First People's Hospital of Nanning, Nanning, China.
| |
Collapse
|
4
|
Bauer CD, Mosley DD, Samuelson DR, Poole JA, Smith DR, Knoell DL, Wyatt TA. Zinc Protects against Swine Barn Dust-Induced Cilia Slowing. Biomolecules 2024; 14:843. [PMID: 39062557 PMCID: PMC11274422 DOI: 10.3390/biom14070843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Agricultural workers exposed to organic dust from swine concentrated animal feeding operations (CAFOs) have increased chances of contracting chronic lung disease. Mucociliary clearance represents a first line of defense against inhaled dusts, but organic dust extracts (ODEs) from swine barns cause cilia slowing, leading to decreased bacterial clearance and increased lung inflammation. Because nutritional zinc deficiency is associated with chronic lung disease, we examined the role of zinc supplementation in ODE-mediated cilia slowing. Ciliated mouse tracheal epithelial cells were pretreated with 0-10 µg/mL ZinProTM for 1 h, followed by treatment with 5% ODE for 24 h. Cilia beat frequency (CBF) and protein kinase C epsilon (PKCε) activity were assayed. ODE treatment resulted in cilia slowing after 24 h, which was reversed with 0.5 and 1.0 µg/mL ZinPro pre-treatment. No zinc protection was observed at 50 ng/mL, and ciliated cells detached at high concentrations (100 µg/mL). ZinPro alone produced no changes in the baseline CBF and showed no toxicity to the cells at concentrations of up to 10 µg/mL. Pre-treatment with ZinPro inhibited ODE-stimulated PKCε activation in a dose-dependent manner. Based on ZinPro's superior cell permeability compared to zinc salts, it may be therapeutically more effective at reversing ODE-mediated cilia slowing through a PKCε pathway. These data demonstrate that zinc supplementation may support the mucociliary transport apparatus in the protection of CAFO workers against dust-mediated chronic lung disease.
Collapse
Affiliation(s)
- Christopher D. Bauer
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of Nebraska Medical Center, 985910 Nebraska Medical Center, Omaha, NE 68198, USA; (C.D.B.); (D.D.M.); (D.R.S.)
| | - Deanna D. Mosley
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of Nebraska Medical Center, 985910 Nebraska Medical Center, Omaha, NE 68198, USA; (C.D.B.); (D.D.M.); (D.R.S.)
| | - Derrick R. Samuelson
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of Nebraska Medical Center, 985910 Nebraska Medical Center, Omaha, NE 68198, USA; (C.D.B.); (D.D.M.); (D.R.S.)
| | - Jill A. Poole
- Department of Internal Medicine, Division of Allergy & Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Deandra R. Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (D.L.K.)
| | - Daren L. Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (D.L.K.)
| | - Todd A. Wyatt
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of Nebraska Medical Center, 985910 Nebraska Medical Center, Omaha, NE 68198, USA; (C.D.B.); (D.D.M.); (D.R.S.)
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
5
|
Guo T, Wang J, Meng X, Wang Y, Lou Y, Ma J, Xu S, Ni X, Jia Z, Jin L, Wang C, Chen Q, Li P, Huang Y, Ren S. Deciphering the role of zinc homeostasis in the tumor microenvironment and prognosis of prostate cancer. Discov Oncol 2024; 15:207. [PMID: 38833013 DOI: 10.1007/s12672-024-01006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Dysregulation of zinc homeostasis is widely recognized as a hallmark feature of prostate cancer (PCa) based on the compelling clinical and experimental evidence. Nevertheless, the implications of zinc dyshomeostasis in PCa remains largely unexplored. METHODS In this research, the zinc homeostasis pattern subtype (ZHPS) was constructed according to the profile of zinc homeostasis genes. The identified subtypes were assessed for their immune functions, mutational landscapes, biological peculiarities and drug susceptibility. Subsequently, we developed the optimal signature, known as the zinc homeostasis-related risk score (ZHRRS), using the approach won out in multifariously machine learning algorithms. Eventually, clinical specimens, Bayesian network inference and single-cell sequencing were used to excavate the underlying mechanisms of MT1A in PCa. RESULTS The zinc dyshomeostasis subgroup, ZHPS2, possessed a markedly worse prognosis than ZHPS1. Moreover, ZHPS2 demonstrated a more conspicuous genomic instability and better therapeutic responses to docetaxel and olaparib than ZHPS1. Compared with traditional clinicopathological characteristics and 35 published signatures, ZHRRS displayed a significantly improved accuracy in prognosis prediction. The diagnostic value of MT1A in PCa was substantiated through analysis of clinical samples. Additionally, we inferred and established the regulatory network of MT1A to elucidate its biological mechanisms. CONCLUSIONS The ZHPS classifier and ZHRRS model hold great potential as clinical applications for improving outcomes of PCa patients.
Collapse
Affiliation(s)
- Tao Guo
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Wang
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiangyu Meng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Wang
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yihaoyun Lou
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianglei Ma
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shuang Xu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiangyu Ni
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zongming Jia
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lichen Jin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chengyu Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyang Chen
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Peng Li
- Department of Urology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China.
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Shancheng Ren
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
6
|
Upton C, Healey J, Rothnie AJ, Goddard AD. Insights into membrane interactions and their therapeutic potential. Arch Biochem Biophys 2024; 755:109939. [PMID: 38387829 DOI: 10.1016/j.abb.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Recent research into membrane interactions has uncovered a diverse range of therapeutic opportunities through the bioengineering of human and non-human macromolecules. Although the majority of this research is focussed on fundamental developments, emerging studies are showcasing promising new technologies to combat conditions such as cancer, Alzheimer's and inflammatory and immune-based disease, utilising the alteration of bacteriophage, adenovirus, bacterial toxins, type 6 secretion systems, annexins, mitochondrial antiviral signalling proteins and bacterial nano-syringes. To advance the field further, each of these opportunities need to be better understood, and the therapeutic models need to be further optimised. Here, we summarise the knowledge and insights into several membrane interactions and detail their current and potential uses therapeutically.
Collapse
Affiliation(s)
- Calum Upton
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK
| | - Joseph Healey
- Nanosyrinx, The Venture Centre, University of Warwick Science Park, Coventry, CV4 7EZ, UK
| | - Alice J Rothnie
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK
| | - Alan D Goddard
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
7
|
Ferronato G, Cattaneo L, Amato A, Minuti A, Loor JJ, Trevisi E, Cavallo C, Attard G, Elolimy AA, Liotta L, Lopreiato V. Residual feed intake is related to metabolic and inflammatory response during the preweaning period in Italian Simmental calves. J Dairy Sci 2024; 107:1685-1693. [PMID: 37944812 DOI: 10.3168/jds.2023-23617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/24/2023] [Indexed: 11/12/2023]
Abstract
Residual Feed Intake (RFI) is defined as the difference between measured and predicted intake. Understanding its biological regulators could benefit farm profit margins. The most-efficient animals (M-Eff) have observed intake smaller than predicted resulting in negative RFI, whereas the least-efficient (L-Eff) animals have positive RFI. Hence, this observational study aimed at retrospectively comparing the blood immunometabolic profile in calves with divergent RFI during the preweaning period. Twenty-two Italian Simmental calves were monitored from birth through 60 d of age. Calves received 3 L of colostrum from their respective dams. From 2 to 53 d of age, calves were fed a milk replacer twice daily, whereas from 54 to 60 d (i.e., weaning) calves were stepped down to only one meal in the morning. Calves had ad libitum access to concentrate and intakes were recorded daily. The measurement of BW and blood samples were performed at 0, 1, 7, 14, 21, 28, 35, 45, 54, and 60 d of age. Calves were ranked and categorized as M-Eff or L-Eff according to the median RFI value. Median RFI was -0.06 and 0.04 kg of DMI/d for M-Eff and L-Eff, respectively. No evidence for group differences was noted for colostrum and plasma IgG concentrations. Although growth rate was not different, as expected, (0.67 kg/d [95% CI = 0.57-0.76] for both L-Eff and M-Eff) throughout the entire preweaning period (0-60 d), starter intake was greater in L-Eff compared with M-Eff calves (+36%). Overall, M-Eff calves had a greater gain-to-feed ratio compared with L-Eff calves (+16%). Plasma ceruloplasmin, myeloperoxidase, and reactive oxygen metabolites concentrations were greater in L-Eff compared with M-Eff calves. Compared with L-Eff, M-Eff calves had an overall greater plasma concentration of globulin, and γ-glutamyl transferase (indicating a better colostrum uptake) and Zn at 1 d. Retinol and urea were overall greater in L-Eff. The improved efficiency in nutrient utilization observed in M-Eff was paired with a lower grade of oxidative stress and systemic inflammation. L-Eff may have had greater energy expenditure to support the activation of the immune system.
Collapse
Affiliation(s)
- Giulia Ferronato
- Department of Civil Engineering, Architecture, Environment, Land Planning and Mathematics (DICATAM), Università degli Studi di Brescia, 25121 Brescia, Italy
| | - Luca Cattaneo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| | - Annalisa Amato
- Department of Veterinary Sciences, Università di Messina, 98168 Messina, Italy
| | - Andrea Minuti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Erminio Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Carmelo Cavallo
- Department of Veterinary Sciences, Università di Messina, 98168 Messina, Italy
| | - George Attard
- Department of Rural Sciences and Food Systems, University of Malta, 2080 Msida, Malta
| | - Ahmed A Elolimy
- Animal Production Department, National Research Centre, Giza 12622, Egypt
| | - Luigi Liotta
- Department of Veterinary Sciences, Università di Messina, 98168 Messina, Italy
| | - Vincenzo Lopreiato
- Department of Veterinary Sciences, Università di Messina, 98168 Messina, Italy
| |
Collapse
|
8
|
Su X, Yue X, Zhang Y, Shen L, Zhang H, Wang X, Yin T, Zhang H, Peng J, Wang X, Zou W, Liang D, Du Y, Liu Y, Cao Y, Ji D, Liang C. Elevated levels of Zn, Cu and Co are associated with an increased risk of endometriosis: Results from a casecontrol study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115932. [PMID: 38232522 DOI: 10.1016/j.ecoenv.2024.115932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND Endometriosis is a common gynecological disease that affects approximately 5 %∼10 % of reproductive-aged women. Zinc (Zn), selenium (Se), copper (Cu), cobalt (Co) and molybdenum (Mo) are essential trace elements and are very important for human health. However, studies on the relationship between mixtures of essential trace elements and the risk of endometriosis are limited and inconsistent. In particular, studies confirming the association via different sample types are limited. OBJECTIVE This study aimed to investigate the associations between Zn, Se, Cu, Co and Mo concentrations in blood and follicular fluid (FF) and endometriosis risk in a Chinese population. METHODS A total of 609 subjects undergoing in vitro fertilization (IVF) were recruited; 836 samples were analyzed, including 451 blood samples (234 controls and 217 cases) and 385 FF samples (203 controls and 182 cases). In addition, 227 subjects provided both blood and FF samples. Zn, Se, Cu, Co and Mo concentrations in blood and FF were quantified via inductively coupled plasma-mass spectrometry (ICP-MS). The associations between the levels of Zn, Se, Cu, Co and Mo and the risk of endometriosis were assessed using single-element models (logistic regression models), and the combined effect of the trace elements on endometriosis risk was assessed using multielement models (Bayesian kernel machine regression (BKMR) and weighted quantile sum (WQS) regression). RESULTS Based on the single-element models, significant associations of Zn concentrations in blood (high-level vs. low-level group: aOR = 14.17, 95 % CI: 7.31, 27.50) and FF (first tertile vs. second tertile group: aOR = 0.34, 95 % CI: 0.16, 0.71; third tertile vs. second tertile group: aOR = 2.32, 95 % CI: 1.38, 3.91, respectively) and Co concentrations in blood (first tertile vs. second tertile group, aOR = 0.24, 95 % CI: 0.12, 0.48) and FF (third tertile vs. second tertile group: aOR = 3.87, 95 % CI: 2.19, 6.84) with endometriosis risk were found after adjustment for all confounders. In FF, Cu and Mo levels were significantly greater among the cases than among the controls, with a positive association with endometriosis risk (Cu (first tertile vs. second tertile group: aOR = 0.39, 95 % CI: 0.19, 0.81; third tertile vs. second tertile group: aOR = 2.73, 95 % CI: 1.61, 4.66, respectively) and Mo (high-level vs. low-level group: aOR = 14.93, 95 % CI: 7.16, 31.12)). However, similar associations between blood Cu and Mo levels and endometriosis risk were not found. In addition, the levels of these five essential trace element mixtures in blood and in FF were significantly and positively associated with endometriosis risk according to the BKMR analyses; the levels of Zn and Cu in blood and the levels of Mo in FF were significantly related to the risk of endometriosis, and the posterior inclusion probabilities (PIPs) were 1.00, 0.99 and 1.00 for Zn and Cu levels in blood and Mo levels in FF, respectively. Furthermore, Zn and Mo were the highest weighted elements in blood and FF, respectively, according to WQS analyses. CONCLUSION The risk of endometriosis was associated with elevated levels of several essential trace elements (Zn, Cu and Co). Elevated levels of these elements may be involved in the pathomechanism of endometriosis. However, further studies with larger sample sizes will be necessary to confirm these associations.
Collapse
Affiliation(s)
- Xun Su
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; the First Affiliated Hospital & School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xinyu Yue
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; the First Affiliated Hospital & School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; the First Affiliated Hospital & School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Lingchao Shen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; the First Affiliated Hospital & School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Huan Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China
| | - Xin Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; the First Affiliated Hospital & School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Tao Yin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; the First Affiliated Hospital & School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hua Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; the First Affiliated Hospital & School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Jie Peng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; the First Affiliated Hospital & School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiaolei Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; the First Affiliated Hospital & School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Weiwei Zou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; the First Affiliated Hospital & School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Dan Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; the First Affiliated Hospital & School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yajing Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; the First Affiliated Hospital & School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; the First Affiliated Hospital & School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Chunmei Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; the First Affiliated Hospital & School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China; School of Basic Medical Sciences, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
9
|
Franco C, Canzoniero LMT. Zinc homeostasis and redox alterations in obesity. Front Endocrinol (Lausanne) 2024; 14:1273177. [PMID: 38260166 PMCID: PMC10800374 DOI: 10.3389/fendo.2023.1273177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Impairment of both cellular zinc and redox homeostasis is a feature of several chronic diseases, including obesity. A significant two-way interaction exists between redox metabolism and the relatively redox-inert zinc ion. Redox metabolism critically influences zinc homeostasis and controls its cellular availability for various cellular functions by regulating zinc exchange from/to zinc-binding proteins. Zinc can regulate redox metabolism and exhibits multiple pro-antioxidant properties. On the other hand, even minor disturbances in zinc status and zinc homeostasis affect systemic and cellular redox homeostasis. At the cellular level, zinc homeostasis is regulated by a multi-layered machinery consisting of zinc-binding molecules, zinc sensors, and two selective families of zinc transporters, the Zinc Transporter (ZnT) and Zrt, Irt-like protein (ZIP). In the present review, we summarize the current state of knowledge on the role of the mutual interaction between zinc and redox homeostasis in physiology and pathophysiology, pointing to the role of zinc in the alterations responsible for redox stress in obesity. Since zinc transporters primarily control zinc homeostasis, we describe how changes in the expression and activity of these zinc-regulating proteins are associated with obesity.
Collapse
|
10
|
Jamei M, Sadeghi AA, Chamani M. Dose-responses of zinc as zinc-methionine supplements on antioxidant status, hematological parameters, immune response and the expression of IL-4 and IL-6 genes of ewes in the hot season. Anim Biotechnol 2023; 34:4860-4868. [PMID: 37078772 DOI: 10.1080/10495398.2023.2200428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
This study was implemented to evaluate the effects of different zinc doses as Zinc-Met supplement (Zinpro®) on the antioxidant status, blood immune cells, antibody titers, and the expression of IL-4 and IL-6 genes of ewes in the hot season. In a completely randomized design, 24 ewes were assigned to treatments as follow: 0, 15, 30 and 45 mg/kg zinc as Zinc-Met supplementation for 40 days in region with 40 °C and vaccinated against food-and-mouth disease as an immune challenge at day 30, and then blood samples were collected on day 40. Ewes were fed a basal diet containing 29.9 mg zinc/kg. The highest activity of the antioxidant enzyme and the lowest lipid peroxidation values were found in ewes receiving 30 and 45 mg/kg zinc following a linear trend. The highest lymphocytes count and antibody titers were found in ewes received 30 mg zinc/kg. There were no significant differences among treatments for the relative expression of genes. In overall, zinc supplementation non-significantly up-regulate interleukin-4 and down-regulate interleukin-6. It was concluded that zinc supplementation as Zinc-Met could enhance the antioxidant status and immune response of ewes under heat stress; supplementation of diet with 30 mg zinc/kg (300 mg/kg Zinpro®) appeared to be the most effective dose.
Collapse
Affiliation(s)
- Matin Jamei
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Asghar Sadeghi
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Chamani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Kumar S, Ansari S, Narayanan S, Ranjith-Kumar CT, Surjit M. Antiviral activity of zinc against hepatitis viruses: current status and future prospects. Front Microbiol 2023; 14:1218654. [PMID: 37908540 PMCID: PMC10613677 DOI: 10.3389/fmicb.2023.1218654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Viral hepatitis is a major public health concern globally. World health organization aims at eliminating viral hepatitis as a public health threat by 2030. Among the hepatitis causing viruses, hepatitis B and C are primarily transmitted via contaminated blood. Hepatitis A and E, which gets transmitted primarily via the feco-oral route, are the leading cause of acute viral hepatitis. Although vaccines are available against some of these viruses, new cases continue to be reported. There is an urgent need to devise a potent yet economical antiviral strategy against the hepatitis-causing viruses (denoted as hepatitis viruses) for achieving global elimination of viral hepatitis. Although zinc was known to mankind for a long time (since before Christ era), it was identified as an element in 1746 and its importance for human health was discovered in 1963 by the pioneering work of Dr. Ananda S. Prasad. A series of follow up studies involving zinc supplementation as a therapy demonstrated zinc as an essential element for humans, leading to establishment of a recommended dietary allowance (RDA) of 15 milligram zinc [United States RDA for zinc]. Being an essential component of many cellular enzymes and transcription factors, zinc is vital for growth and homeostasis of most living organisms, including human. Importantly, several studies indicate potent antiviral activity of zinc. Multiple studies have demonstrated antiviral activity of zinc against viruses that cause hepatitis. This article provides a comprehensive overview of the findings on antiviral activity of zinc against hepatitis viruses, discusses the mechanisms underlying the antiviral properties of zinc and summarizes the prospects of harnessing the therapeutic benefit of zinc supplementation therapy in reducing the disease burden due to viral hepatitis.
Collapse
Affiliation(s)
- Shiv Kumar
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shabnam Ansari
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sriram Narayanan
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - C. T. Ranjith-Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Milan Surjit
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
12
|
Schull Q, Beauvieux A, Viblanc VA, Metral L, Leclerc L, Romero D, Pernet F, Quéré C, Derolez V, Munaron D, McKindsey CW, Saraux C, Bourjea J. An integrative perspective on fish health: Environmental and anthropogenic pathways affecting fish stress. MARINE POLLUTION BULLETIN 2023; 194:115318. [PMID: 37542925 DOI: 10.1016/j.marpolbul.2023.115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
Multifactorial studies assessing the cumulative effects of natural and anthropogenic stressors on individual stress response are crucial to understand how organisms and populations cope with environmental change. We tested direct and indirect causal pathways through which environmental stressors affect the stress response of wild gilthead seabream in Mediterranean costal lagoons using an integrative PLS-PM approach. We integrated information on 10 environmental variables and 36 physiological variables into seven latent variables reflecting lagoons features and fish health. These variables concerned fish lipid reserves, somatic structure, inorganic contaminant loads, and individual trophic and stress response levels. This modelling approach allowed explaining 30 % of the variance within these 46 variables considered. More importantly, 54 % of fish stress response was explained by the dependent lagoon features, fish age, fish diet, fish reserve, fish structure and fish contaminant load latent variables included in our model. This integrative study sheds light on how individuals deal with contrasting environments and multiple ecological pressures.
Collapse
Affiliation(s)
- Quentin Schull
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Sète, France.
| | | | | | - Luisa Metral
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Sète, France
| | - Lina Leclerc
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Sète, France
| | - Diego Romero
- Área de Toxicología, Facultad de Veterinaria, Campus Regional de Excelencia Internacional Campus Mare Nostrum, Universidad de Murcia, Espinardo, 30071, Murcia, Spain
| | - Fabrice Pernet
- Ifremer/LEMAR UMR 6539, Technopole de Brest-Iroise, Plouzané, France
| | - Claudie Quéré
- Ifremer/LEMAR UMR 6539, Technopole de Brest-Iroise, Plouzané, France
| | | | | | | | - Claire Saraux
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Sète, France; Université de Strasbourg, CNRS, IPHC, UMR, 7178 Strasbourg, France
| | - Jerôme Bourjea
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Sète, France
| |
Collapse
|
13
|
Guttek K, Reinhold A, Grüngreiff K, Schraven B, Reinhold D. Zinc aspartate induces proliferation of resting and antigen-stimulated human PBMC under high-density cell culture condition. J Trace Elem Med Biol 2023; 77:127152. [PMID: 36924587 DOI: 10.1016/j.jtemb.2023.127152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Zinc, one of the most important essential trace elements in the human body, regulates a wide range of cellular functions of immune cells, such as proliferation, differentiation and survival. Zinc deficiency affects both the innate and adaptive immune system. Zinc supplementation was discussed as possible therapy for infectious diseases and T cell-mediated autoimmune diseases. However, the influence of commercial zinc preparations on proliferation and cytokine production of resting and antigen-stimulated peripheral blood mononuclear cells (PBMC) has not yet been completely investigated. METHODS Here, we examined whether zinc aspartate (Unizink®), an approved drug to treat zinc deficiency in patients, induces proliferation, cytokine production, and induction of apoptosis/caspase 3/7 activity of resting PBMC under high-density cell culture condition. In addition, we performed antigen-specific proliferation experiments, where PBMCs of healthy donors vaccinated against Influenza A (H1N1) and/or SARS-CoV-2 were stimulated with Influenza A (H1N1) peptides or SARS-CoV-2 peptides as well as the Mixed Lymphocyte Culture (MLC) in the presence of increasing concentrations of zinc aspartate. RESULTS We observed a dose-dependent enhancement of proliferation and induction of cytokine production (IFN-γ, IL-5, GM-CSF and CXCL10) of resting PBMC in presence of zinc aspartate. The number of cells with active caspase 3/7 and, consecutively, the amount of cells undergoing apoptosis steadily decreased in presence of zinc aspartate. Moreover, zinc aspartate was capable of stimulating antigen-specific PBMC proliferation using MLC or influenza A (H1N1) and SARS-CoV-2 peptides in both a dose-dependent and a donor-specific manner. In the absence of zinc aspartate, we clearly could discriminate two groups of responders: low and high responders to antigenic stimulation. The addition of increasing concentration of zinc aspartate significantly stimulated the proliferation of PBMC from low responders, but not from high responders. CONCLUSION Taken together, our results suggest that zinc aspartate induces the proliferation of resting and antigen-stimulated PBMCs under high-density cell culture conditions. Thus, zinc might represent a supportive treatment in patients suffering from infectious diseases.
Collapse
Affiliation(s)
- Karina Guttek
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infection and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Center of Health and Medical Prevention (CHaMP), Otto-von-Guericke University, Magdeburg, Germany
| | | | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infection and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Center of Health and Medical Prevention (CHaMP), Otto-von-Guericke University, Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infection and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Center of Health and Medical Prevention (CHaMP), Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
14
|
Samuelson DR, Smith DR, Cunningham KC, Haq S, Villageliú DN, Ellis CM, Chowdhury NB, Ramer-Tait AE, Price JD, Knoell DL. The Inherited Intestinal Microbiota from Myeloid-Specific ZIP8KO Mice Impairs Pulmonary Host Defense against Pneumococcal Pneumonia. Pathogens 2023; 12:639. [PMID: 37242309 PMCID: PMC10222741 DOI: 10.3390/pathogens12050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Intestinal dysbiosis increases susceptibility to infection through the alteration of metabolic profiles, which increases morbidity. Zinc (Zn) homeostasis in mammals is tightly regulated by 24 Zn transporters. ZIP8 is unique in that it is required by myeloid cells to maintain proper host defense against bacterial pneumonia. In addition, a frequently occurring ZIP8 defective variant (SLC39A8 rs13107325) is strongly associated with inflammation-based disorders and bacterial infection. In this study, we developed a novel model to study the effects of ZIP8-mediated intestinal dysbiosis on pulmonary host defense independent of the genetic effects. Cecal microbial communities from a myeloid-specific Zip8 knockout mouse model were transplanted into germ-free mice. Conventionalized ZIP8KO-microbiota mice were then bred to produce F1 and F2 generations of ZIP8KO-microbiota mice. F1 ZIP8KO-microbiota mice were also infected with S. pneumoniae, and pulmonary host defense was assessed. Strikingly, the instillation of pneumococcus into the lung of F1 ZIP8KO-microbiota mice resulted in a significant increase in weight loss, inflammation, and mortality when compared to F1 wild-type (WT)-microbiota recipients. Similar defects in pulmonary host defense were observed in both genders, although consistently greater in females. From these results, we conclude that myeloid Zn homeostasis is not only critical for myeloid function but also plays a significant role in the maintenance and control of gut microbiota composition. Further, these data demonstrate that the intestinal microbiota, independent of host genetics, play a critical role in governing host defense in the lung against infection. Finally, these data strongly support future microbiome-based interventional studies, given the high incidence of zinc deficiency and the rs13107325 allele in humans.
Collapse
Affiliation(s)
- Derrick R. Samuelson
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68508, USA
| | - Deandra R. Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6120, USA
| | - Kelly C. Cunningham
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA
| | - Sabah Haq
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6120, USA
| | - Daniel N. Villageliú
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA
| | - Christi M. Ellis
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA
| | - Niaz Bahar Chowdhury
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0643, USA
| | - Amanda E. Ramer-Tait
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68508, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA
| | - Jeffrey D. Price
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68508, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA
| | - Daren L. Knoell
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6120, USA
| |
Collapse
|
15
|
CHAUDHARY SANDEEPK, DUTTA NARAYAN, JADHAV SE, PATTANAIK AK. Effect of customised supplement on haemato-biochemical profile, serum minerals, metabolic hormones, antioxidant capacity and gene expression in crossbred calves. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2023. [DOI: 10.56093/ijans.v93i2.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Present experiment examined the supplementary effect of a tailor-made supplement to farmers’-based diet in crossbred calves. Male crossbred calves (15) were randomly allocated in 3 dietary treatments consisting of 5 calves in each. The dietary treatments were: Control- cereal straw-based diet with concentrate mixture as per the farmers’ practices; CS (customised supplement)- control diet with additional customised supplement @ 0.25% of BW; SD-standard diet. Serum glucose was higher in SD than control, however, CS had an intermediate response. The serum macro (Ca and i-P) and trace (Zn, Cu, Fe and Mn) minerals were higher in SD and CS than control. The serum T3 and T4 hormones were significantly higher in SD and CS than control group. The serum growth hormone (GH) and insulin-like growth factor-1 (IGF-1) were significantly higher in SD than control groups, however, SD had an intermediate position. The total antioxidant capacity (TAOC) was significantly higher in SD and CS than control group. The relative mRNA expression of cytokines, viz. IL-2 and IL-4 was significantly higher in SD and CS than control group. The relative mRNA expression of leptin (LEP) was significantly higher and ghrelin (GHRL) was significantly lower in SD than control group, however, CS had a transitional position. Thus, it can be concluded that supplementation of the customised supplement (@ 0.25% BW) to farmers’-based diet significantly improved the serum glucose concentration, metabolic hormone profile, antioxidant capacity and relative mRNA expression of cytokines and genes involved in energy metabolism in crossbred calves.
Collapse
|
16
|
Bhardwaj AK, Chejara S, Malik K, Kumar R, Kumar A, Yadav RK. Agronomic biofortification of food crops: An emerging opportunity for global food and nutritional security. FRONTIERS IN PLANT SCIENCE 2022; 13:1055278. [PMID: 36570883 PMCID: PMC9780467 DOI: 10.3389/fpls.2022.1055278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 05/30/2023]
Abstract
Fortification of food with mineral micronutrients and micronutrient supplementation occupied the center stage during the two-year-long Corona Pandemic, highlighting the urgent need to focus on micronutrition. Focus has also been intensified on the biofortification (natural assimilation) of mineral micronutrients into food crops using various techniques like agronomic, genetic, or transgenic. Agronomic biofortification is a time-tested method and has been found useful in the fortification of several nutrients in several crops, yet the nutrient use and uptake efficiency of crops has been noted to vary due to different growing conditions like soil type, crop management, fertilizer type, etc. Agronomic biofortification can be an important tool in achieving nutritional security and its importance has recently increased because of climate change related issues, and pandemics such as COVID-19. The introduction of high specialty fertilizers like nano-fertilizers, chelated fertilizers, and water-soluble fertilizers that have high nutrient uptake efficiency and better nutrient translocation to the consumable parts of a crop plant has further improved the effectiveness of agronomic biofortification. Several new agronomic biofortification techniques like nutripriming, foliar application, soilless activation, and mechanized application techniques have further increased the relevance of agronomic biofortification. These new technological advances, along with an increased realization of mineral micronutrient nutrition have reinforced the relevance of agronomic biofortification for global food and nutritional security. The review highlights the advances made in the field of agronomic biofortification via the improved new fertilizer forms, and the emerging techniques that achieve better micronutrient use efficiency of crop plants.
Collapse
|
17
|
Jomova K, Makova M, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Rhodes CJ, Valko M. Essential metals in health and disease. Chem Biol Interact 2022; 367:110173. [PMID: 36152810 DOI: 10.1016/j.cbi.2022.110173] [Citation(s) in RCA: 263] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
Abstract
In total, twenty elements appear to be essential for the correct functioning of the human body, half of which are metals and half are non-metals. Among those metals that are currently considered to be essential for normal biological functioning are four main group elements, sodium (Na), potassium (K), magnesium (Mg), and calcium (Ca), and six d-block transition metal elements, manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), zinc (Zn) and molybdenum (Mo). Cells have developed various metallo-regulatory mechanisms for maintaining a necessary homeostasis of metal-ions for diverse cellular processes, most importantly in the central nervous system. Since redox active transition metals (for example Fe and Cu) may participate in electron transfer reactions, their homeostasis must be carefully controlled. The catalytic behaviour of redox metals which have escaped control, e.g. via the Fenton reaction, results in the formation of reactive hydroxyl radicals, which may cause damage to DNA, proteins and membranes. Transition metals are integral parts of the active centers of numerous enzymes (e.g. Cu,Zn-SOD, Mn-SOD, Catalase) which catalyze chemical reactions at physiologically compatible rates. Either a deficiency, or an excess of essential metals may result in various disease states arising in an organism. Some typical ailments that are characterized by a disturbed homeostasis of redox active metals include neurological disorders (Alzheimer's, Parkinson's and Huntington's disorders), mental health problems, cardiovascular diseases, cancer, and diabetes. To comprehend more deeply the mechanisms by which essential metals, acting either alone or in combination, and/or through their interaction with non-essential metals (e.g. chromium) function in biological systems will require the application of a broader, more interdisciplinary approach than has mainly been used so far. It is clear that a stronger cooperation between bioinorganic chemists and biophysicists - who have already achieved great success in understanding the structure and role of metalloenzymes in living systems - with biologists, will access new avenues of research in the systems biology of metal ions. With this in mind, the present paper reviews selected chemical and biological aspects of metal ions and their possible interactions in living systems under normal and pathological conditions.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences and Informatics, Constantine The Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Marianna Makova
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37, Bratislava, Slovakia
| | - Suliman Y Alomar
- King Saud University, Zoology Department, College of Science, Riyadh, 11451, Saudi Arabia
| | - Saleh H Alwasel
- King Saud University, Zoology Department, College of Science, Riyadh, 11451, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | | | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37, Bratislava, Slovakia; King Saud University, Zoology Department, College of Science, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
18
|
Baarz BR, Laurentius T, Wolf J, Wessels I, Bollheimer LC, Rink L. Short-term zinc supplementation of zinc-deficient seniors counteracts CREMα - mediated IL-2 suppression. Immun Ageing 2022; 19:40. [PMID: 36042501 PMCID: PMC9424813 DOI: 10.1186/s12979-022-00295-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/07/2022] [Indexed: 01/19/2023]
Abstract
Background Aging is accompanied by a dramatic decline in the interleukin (IL)-2 production capacity of human immune cells, thus making seniors more susceptible to a variety of age-related diseases. A common cause of impaired cytokine production in advanced age is a deficiency of the essential micronutrient zinc. Nevertheless, the molecular mechanisms underlying a zinc deficiency-induced decrease in IL-2 production have not yet been satisfactorily elucidated. Recent animal and in vitro data suggested that the transcription factor cAMP-responsive element modulator (CREM) \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α plays a critical role in T cells´ disturbed IL-2 production in suboptimal zinc conditions. However, its role in the human aging process and the possibility of influencing this detrimental process by short-term zinc supplementation have not yet been evaluated. Results Comparing peripheral lymphocytes of 23 young and 31 elderly subjects with either high, intermediate, or deficient zinc status, we observed zinc-dependent regulation of the IL-2 production mediated by the transcription factor CREM \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α. For the first time in humans, we report a mutual relationship between low zinc levels, high CREM \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α expression, subsequent impaired IL-2 production, and vice versa. Remarkably, an average of only 6 days of in vivo zinc supplementation to zinc-deficient seniors was sufficient to rapidly improve zinc status, reverse CREM \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α overexpression, and counteract subsequent low IL-2 production rates. Conclusions Our ex vivo and in vivo data identify zinc deficiency-mediated CREM \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α overexpression as a key cellular mechanism underlying impaired IL-2 production in the elderly and point toward the use of zinc as a rapidly immune-enhancing add-on nutraceutical in geriatric therapy. Graphical abstract During the aging process, there is a progressive decrease in zinc status, which in turn leads to overexpression of the transcription factor CREM\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{\alpha }$$\end{document}α in peripheral lymphocytes. CREMα is a negative regulator of the IL-2 gene, the overexpression of which dramatically limits adequate IL-2 production. This deleterious mechanism can be counteracted by short-term oral zinc administration, which can adjust IL-2 production in old, zinc-deficient individuals to a level similar to that of young adults.![]()
Collapse
|
19
|
Zhang Y, Gao H, Zheng W, Xu H. Current understanding of the interactions between metal ions and Apolipoprotein E in Alzheimer's disease. Neurobiol Dis 2022; 172:105824. [PMID: 35878744 DOI: 10.1016/j.nbd.2022.105824] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia in the elderly, is a chronic and progressive neurodegenerative disorder with no effective disease-modifying treatments to date. Studies have shown that an imbalance in brain metal ions, such as zinc, copper, and iron, is closely related to the onset and progression of AD. Many efforts have been made to understand metal-related mechanisms and therapeutic strategies for AD. Emerging evidence suggests that interactions of brain metal ions and apolipoprotein E (ApoE), which is the strongest genetic risk factor for late-onset AD, may be one of the mechanisms for neurodegeneration. Here, we summarize the key points regarding how metal ions and ApoE contribute to the pathogenesis of AD. We further describe the interactions between metal ions and ApoE in the brain and propose that their interactions play an important role in neuropathological alterations and cognitive decline in AD.
Collapse
Affiliation(s)
- Yanhui Zhang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Huiling Gao
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wei Zheng
- Department of Histology and Embryology, China Medical University, Shenyang, China
| | - He Xu
- Department of Anatomy, Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen, China.
| |
Collapse
|
20
|
Sun X, Hou Y, Wang Y, Guo C, Wang Q, Zhang Y, Yang Z, Wang Z, Cao Z, Wang W, Li S. The Blood Immune Cell Count, Immunoglobulin, Inflammatory Factor, and Milk Trace Element in Transition Cows and Calves Were Altered by Increasing the Dietary n-3 or n-6 Polyunsaturated Fatty Acid Levels. Front Immunol 2022; 13:897660. [PMID: 35874736 PMCID: PMC9300944 DOI: 10.3389/fimmu.2022.897660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Transition dairy cows experience sudden changes in both metabolic and immune functions, which lead to many diseases in postpartum cows. Therefore, it is crucial to monitor and guarantee the nutritional and healthy status of transition cows. The objective of this study was to determine the effect of diet enriched in n-3 or n-6 polyunsaturated fatty acid (PUFA) on colostrum composition and blood immune index of multiparous Holstein cows and neonatal calves during the transition period. Forty-five multiparous Holstein dairy cows at 240 days of pregnancy were randomly assigned to receive 1 of 3 isoenergetic and isoprotein diets: 1) CON, hydrogenated fatty acid (control), 1% of hydrogenated fatty acid [diet dry matter (DM) basis] during prepartum and postpartum, respectively; 2) HN3, 3.5% of extruding flaxseed (diet DM basis, n-3 PUFA source); 3) HN6, 8% of extruding soybeans (diet DM basis, C18:2n-6 PUFA source). Diets containing n-3 and n-6 PUFA sources decreased colostrum immunoglobulin G (IgG) concentration but did not significantly change the colostrum IgG yield compared with those with CON. The commercial milk yield (from 14 to 28 days after calving) was higher in the HN3 and HN6 than that in the CON. Furthermore, the n-3 PUFA source increased neutrophil cell counts in blood during the prepartum period and increased neutrophil percentage during the postpartum period when compared with those with control treatment. Diets containing supplemental n-3 PUFA decreased the serum concentration of interleukin (IL)-1β in maternal cows compared with those in control and n-6 PUFA during prepartum and postpartum. In addition, the neonatal calf serum concentration of tumor necrosis factor (TNF) was decreased in HN3 compared with that in the HN6 treatment. The diet with the n-3 PUFA source could potentially increase the capacity of neutrophils to defend against pathogens in maternal cows by increasing the neutrophil numbers and percentage during the transition period. Meanwhile, the diet with n-3 PUFA source could decrease the pro-inflammatary cytokine IL-1β of maternal cows during the transition period and decline the content of pro-inflammatary cytokine TNF of neonatal calves. It suggested that the highest milk production in n-3 PUFA treatment may partially be due to these beneficial alterations.
Collapse
Affiliation(s)
- Xiaoge Sun
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuhuang Hou
- Laboratory for Animal Production and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Yue Wang
- Animal Production Systems group, Wageningen University & Research, Wageningen, Netherlands
| | - Cheng Guo
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Qianqian Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhantao Yang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhonghan Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Shengli Li, ; Wei Wang,
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Shengli Li, ; Wei Wang,
| |
Collapse
|
21
|
Xia W, Li C, Zhao D, Xu L, Kuang M, Yao X, Hu H. The Impact of Zinc Supplementation on Critically Ill Patients With Acute Kidney Injury: A Propensity Score Matching Analysis. Front Nutr 2022; 9:894572. [PMID: 35769374 PMCID: PMC9234667 DOI: 10.3389/fnut.2022.894572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/17/2022] [Indexed: 12/05/2022] Open
Abstract
Background Zinc is an essential trace element involved in multiple metabolic processes. Acute kidney injury (AKI) is associated with low plasma zinc, but outcomes with zinc supplementation in critically ill patients with AKI remain unknown. Our objective was to investigate the effectiveness of zinc supplementation in this patient population. Methods Critically ill patients with AKI were identified from the Medical Informative Mart for Intensive Care IV database. Prosperity score matching (PSM) was applied to match patients receiving zinc treatment to those without zinc treatment. The association between zinc sulfate use and in-hospital mortality and 30-day mortality, need for renal replacement therapy (RRT), and length of stay was determined by logistic regression and Cox proportional hazards modeling. Results A total of 9,811 AKI patients were included in the study. PSM yielded 222 pairs of patients who received zinc treatment and those who did not. Zinc supplementation was associated with reduced in-hospital mortality (HR = 0.48 (95% CI: 0.28, 0.83) P = 0.009) and 30-day mortality (HR = 0.51 (95% CI, 0.30, 0.86) P = 0.012). In the subgroup analysis, zinc use was associated with reduced in-hospital mortality in patients with stage 1 AKI and those with sepsis. Conclusions Zinc supplementation was associated with improved survival in critically ill patients with AKI. The supplementation was especially effective in those with stage 1 AKI and sepsis. These results need to be verified in randomized controlled trials.
Collapse
Affiliation(s)
- Wenkai Xia
- Department of Nephrology, The Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, China
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Chenyu Li
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Danyang Zhao
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lingyu Xu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meisi Kuang
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Xiajuan Yao
- Department of Nephrology, The Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, China
| | - Hong Hu
- Department of Nephrology, The Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, China
- *Correspondence: Hong Hu
| |
Collapse
|
22
|
Omer AK, Khorshidi S, Mortazavi N, Rahman HS. A Review on the Antiviral Activity of Functional Foods Against COVID-19 and Viral Respiratory Tract Infections. Int J Gen Med 2022; 15:4817-4835. [PMID: 35592539 PMCID: PMC9112189 DOI: 10.2147/ijgm.s361001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Due to the absence of successful therapy, vaccines for protection are continuously being developed. Since vaccines must be thoroughly tested, viral respiratory tract infections (VRTIs), mainly coronaviruses, have seriously affected human health worldwide in recent years. In this review, we presented the relevant data which originated from trusted publishers regarding the practical benefits of functional foods (FFs) and their dietary sources, in addition to natural plant products, in viral respiratory and COVID-19 prevention and immune-boosting activities. As a result, FFs were confirmed to be functionally active ingredients for preventing COVID-19 and VRTIs. Furthermore, the antiviral activity and immunological effects of FFs against VRTIs and COVID-19 and their potential main mechanisms of action are also being reviewed. Therefore, to prevent COVID-19 and VRTIs, it is critical to identify controlling the activities and immune-enhancing functional food constituents as early as possible. We further aimed to summarize functional food constituents as a dietary supplement that aids in immune system boosting and may effectively reduce VRTIs and COVID-19 and promote therapeutic efficacy.
Collapse
Affiliation(s)
- Abdullah Khalid Omer
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
- Razga Company, Sulaimaniyah, Kurdistan Region, Iraq
| | - Sonia Khorshidi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Negar Mortazavi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Iraq
| |
Collapse
|
23
|
Abstract
Zn2+ ions are essential in many physiological processes, including enzyme catalysis, protein structural stabilization, and the regulation of many proteins. The affinities of proteins for Zn2+ ions span several orders of magnitude, with catalytic Zn2+ ions generally held more tightly than structural or regulatory ones. Metal carrier proteins, most of which are not specific for Zn2+, bind these ions with a broad range of affinities that overlap those of catalytic, structural, and regulatory Zn2+ ions and are thought to be responsible for distributing the metal through most cells, tissues, and fluid compartments. While little is known about how many proteins obtain or release these ions, there is now considerable experimental evidence suggesting that metal carrier proteins may be responsible for transferring metals to and from some Zn2+-dependent proteins, thus serving as a major regulatory factor for them. In this review, the biological roles of Zn2+ and structures of Zn2+ binding sites are examined, and experimental evidence demonstrating the direct participation of metal carrier proteins in enzyme regulation is discussed. Mechanisms of metal ion transfer are also offered, and the potential physiological significance of this phenomenon is explored.
Collapse
|
24
|
The Relationship between Metal Exposure and Chronic Obstructive Pulmonary Disease in the General US Population: NHANES 2015–2016. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042085. [PMID: 35206273 PMCID: PMC8871875 DOI: 10.3390/ijerph19042085] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/23/2022]
Abstract
The effects of metal on pulmonary function are inconsistent, and abnormal distribution of metals can decrease lung function. However, the effects of metals exposure on chronic obstructive pulmonary disease (COPD) are still unclear. This study aims to explore the relationship between metal exposure and COPD risk. Cross-sectional data from the National Health and Nutrition Survey (NHANES) 2015–2016 was analyzed. Inductively coupled plasma dynamic reaction cell mass spectrometry (ICP-DRC-MS) was used to measure the metals concentration in the blood. The multiple linear regression and restricted cubic spline (RCS) were used to analyze the relationship between metals exposure and COPD risk. In this study, 1399 participants were included, of which 107 participants were diagnosed with COPD using self-reported chronic bronchitis, emphysema, and COPD. The second and third tertiles of copper increased the COPD risk by 1.98-fold (95% CI: 1.08–3.62) and 2.43-fold (95% CI: 1.32–4.48) compared with the first tertile, using p = 0.005 for the trend after adjusting for the covariates. RCS showed a positive linear correlation between copper and COPD risk (p = 0.006 for overall association) in all participants. When stratified by sex, the multi-factor analysis showed that the third tertile of copper increased male’s COPD risk by 3.42-fold (95% CI: 1.52–7.76), with p = 0.003 for the trend, and RCS also showed a positive linear correlation (p = 0.013 for overall association). Although RCS showed that selenium can reduce the COPD risk (p = 0.008 for overall association) in males, an association between selenium and COPD was not observed (p > 0.05). Our findings suggest that a high concentration of copper may increase COPD risk in males in the general US population, and more research is needed to explore its possible mechanism of action.
Collapse
|
25
|
Samuelson DR, Smith DR, Cunningham KC, Wyatt TA, Hall SC, Murry DJ, Chhonker YS, Knoell DL. ZIP8-Mediated Intestinal Dysbiosis Impairs Pulmonary Host Defense against Bacterial Pneumonia. Int J Mol Sci 2022; 23:1022. [PMID: 35162945 PMCID: PMC8834709 DOI: 10.3390/ijms23031022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Pneumococcal pneumonia is a leading cause of morbidity and mortality worldwide. An increased susceptibility is due, in part, to compromised immune function. Zinc is required for proper immune function, and an insufficient dietary intake increases the risk of pneumonia. Our group was the first to reveal that the Zn transporter, ZIP8, is required for host defense. Furthermore, the gut microbiota that is essential for lung immunity is adversely impacted by a commonly occurring defective ZIP8 allele in humans. Taken together, we hypothesized that loss of the ZIP8 function would lead to intestinal dysbiosis and impaired host defense against pneumonia. To test this, we utilized a novel myeloid-specific Zip8KO mouse model in our studies. The comparison of the cecal microbial composition of wild-type and Zip8KO mice revealed significant differences in microbial community structure. Most strikingly, upon a S. pneumoniae lung infection, mice recolonized with Zip8KO-derived microbiota exhibited an increase in weight loss, bacterial dissemination, and lung inflammation compared to mice recolonized with WT microbiota. For the first time, we reveal the critical role of myeloid-specific ZIP8 on the maintenance of the gut microbiome structure, and that loss of ZIP8 leads to intestinal dysbiosis and impaired host defense in the lung. Given the high incidence of dietary Zn deficiency and the ZIP8 variant allele in the human population, additional investigation is warranted to improve surveillance and treatment strategies.
Collapse
Affiliation(s)
- Derrick R. Samuelson
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.C.C.); (T.A.W.)
| | - Deandra R. Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (S.C.H.); (D.J.M.); (Y.S.C.)
| | - Kelly C. Cunningham
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.C.C.); (T.A.W.)
| | - Todd A. Wyatt
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.C.C.); (T.A.W.)
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Sannette C. Hall
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (S.C.H.); (D.J.M.); (Y.S.C.)
| | - Daryl J. Murry
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (S.C.H.); (D.J.M.); (Y.S.C.)
| | - Yashpal S. Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (S.C.H.); (D.J.M.); (Y.S.C.)
| | - Daren L. Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (S.C.H.); (D.J.M.); (Y.S.C.)
| |
Collapse
|
26
|
Ermakov VV, Jovanović LN. Biological Role of Trace Elements and Viral Pathologies. GEOCHEMISTRY INTERNATIONAL 2022; 60. [PMCID: PMC8853261 DOI: 10.1134/s0016702922020045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The review presents summarized information on a new research avenue in biogeochemistry and geochemical ecology: relationships between the microcosm (viruses) and manifestations of animal and human pathologies. Some aspects of the biological action of selenium, zinc, copper and iodine, their influence on the manifestation and course of viral infections are considered. Attention is focused on the antioxidant, membrane-protective, boosting immunity, hormonal functions of trace elements, and on the antibacterial and antiviral properties of metallic copper and its compounds. The criteria currently applied in assessing the Se status of territories are compared with the incidence of COVID-19 and HIV in the population of the Russian Federation. In some cases, selenium deficiency in the environment is shown to be associated with a higher susceptibility to RNA viral infections. Emphasis is put on the necessity of improving the criteria for assessing the trace element status of territories and further studies in the geochemical ecology of viruses and their role in the biosphere.
Collapse
Affiliation(s)
- V. V. Ermakov
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - L. N. Jovanović
- ALFA BK University, Palmira Toljatija, 3, 11070 Belgrade, Serbia
| |
Collapse
|
27
|
Faheem A, Cinti S. Non-invasive electrochemistry-driven metals tracing in human biofluids. Biosens Bioelectron 2021; 200:113904. [PMID: 34959184 DOI: 10.1016/j.bios.2021.113904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/03/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Wearable analytical devices represent the future for fast, de-centralized, and human-centered health monitoring. Electrochemistry-based platforms have been highlighted as the role model for future developments amid diverse strategies and transduction technologies. Among the various relevant analytes to be real-time and non-invasively monitored in bodily fluids, we review the latest wearable achievements towards determining essential and toxic metals. On-skin measurements represent an excellent possibility for humankind: real-time monitoring, digital/fast communication with specialists, quick interventions, removing barriers in developing countries. In this review, we discuss the achievements over the last 5 years in non-invasive electrochemical platforms, providing a comprehensive table for quick visualizing the diverse sensing/technological advances. In the final section, challenges and future perspectives about wearables are deeply discussed.
Collapse
Affiliation(s)
- Aroosha Faheem
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli "Federico II", 80055, Naples, Italy.
| |
Collapse
|
28
|
Nabi-Afjadi M, Karami H, Goudarzi K, Alipourfard I, Bahreini E. The effect of vitamin D, magnesium and zinc supplements on interferon signaling pathways and their relationship to control SARS-CoV-2 infection. Clin Mol Allergy 2021; 19:21. [PMID: 34749737 PMCID: PMC8573303 DOI: 10.1186/s12948-021-00161-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/12/2021] [Indexed: 01/08/2023] Open
Abstract
The concern of today's communities is to find a way to prevent or treat COVID-19 and reduce its symptoms in the patients. However, the genetic mutations and more resistant strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerge; the designed vaccines and adjuvant therapies would potentially control the symptoms and severity of COVID-19. The most important complication of this viral infection is acute respiratory distress syndrome, which occurs due to the infiltration of leukocytes into the alveoli and the raised cytokine storm. Interferons, as a cytokine family in the host, play an important role in the immune-related antiviral defense and have been considered in the treatment protocols of COVID-19. In addition, it has been indicated that some nutrients, including vitamin D, magnesium and zinc are essential in the modulation of the immune system and interferon (IFN) signaling pathway. Several recent studies have investigated the treatment effect of vitamin D on COVID-19 and reported the association between optimal levels of this vitamin and reduced disease risk. In the present study, the synergistic action of vitamin D, magnesium and zinc in IFN signaling is discussed as a treatment option for COVID-19 involvement.
Collapse
Affiliation(s)
- Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Hadis Karami
- Department of Molecular Cell Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Kaveh Goudarzi
- Nursing Department, Islamic Azad University, Khorasgan Branch, Isfahan, Iran
| | - Iraj Alipourfard
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Bankowa 9, 40-007, Katowice, Poland
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran.
| |
Collapse
|
29
|
Hall SC, Smith DR, Dyavar SR, Wyatt TA, Samuelson DR, Bailey KL, Knoell DL. Critical Role of Zinc Transporter (ZIP8) in Myeloid Innate Immune Cell Function and the Host Response against Bacterial Pneumonia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1357-1370. [PMID: 34380651 PMCID: PMC10575710 DOI: 10.4049/jimmunol.2001395] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/29/2021] [Indexed: 11/19/2022]
Abstract
Zinc (Zn) is required for proper immune function and host defense. Zn homeostasis is tightly regulated by Zn transporters that coordinate biological processes through Zn mobilization. Zn deficiency is associated with increased susceptibility to bacterial infections, including Streptococcus pneumoniae, the most commonly identified cause of community-acquired pneumonia. Myeloid cells, including macrophages and dendritic cells (DCs), are at the front line of host defense against invading bacterial pathogens in the lung and play a critical role early on in shaping the immune response. Expression of the Zn transporter ZIP8 is rapidly induced following bacterial infection and regulates myeloid cell function in a Zn-dependent manner. To what extent ZIP8 is instrumental in myeloid cell function requires further study. Using a novel, myeloid-specific, Zip8 knockout model, we identified vital roles of ZIP8 in macrophage and DC function upon pneumococcal infection. Administration of S. pneumoniae into the lung resulted in increased inflammation, morbidity, and mortality in Zip8 knockout mice compared with wild-type counterparts. This was associated with increased numbers of myeloid cells, cytokine production, and cell death. In vitro analysis of macrophage and DC function revealed deficits in phagocytosis and increased cytokine production upon bacterial stimulation that was, in part, due to increased NF-κB signaling. Strikingly, alteration of myeloid cell function resulted in an imbalance of Th17/Th2 responses, which is potentially detrimental to host defense. These results (for the first time, to our knowledge) reveal a vital ZIP8- and Zn-mediated axis that alters the lung myeloid cell landscape and the host response against pneumococcus.
Collapse
Affiliation(s)
- Sannette C Hall
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Deandra R Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Shetty Ravi Dyavar
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Todd A Wyatt
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE
- Pulmonary Division, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE; and
- Department of Veterans Affairs Nebraska, University of Nebraska Medical Center, Western Iowa Health Care System, Omaha, NE
| | - Derrick R Samuelson
- Pulmonary Division, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE; and
| | - Kristina L Bailey
- Pulmonary Division, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE; and
- Department of Veterans Affairs Nebraska, University of Nebraska Medical Center, Western Iowa Health Care System, Omaha, NE
| | - Daren L Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE;
| |
Collapse
|
30
|
Kim B, Kim HY, Lee WW. Zap70 Regulates TCR-Mediated Zip6 Activation at the Immunological Synapse. Front Immunol 2021; 12:687367. [PMID: 34394081 PMCID: PMC8358678 DOI: 10.3389/fimmu.2021.687367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/15/2021] [Indexed: 01/23/2023] Open
Abstract
The essential microelement zinc plays immunoregulatory roles via its ability to influence signaling pathways. Zinc deficiency impairs overall immune function and resultantly increases susceptibility to infection. Thus, zinc is considered as an immune-boosting supplement for populations with hypozincemia at high-risk for infection. Besides its role as a structural cofactor of many proteins, zinc also acts as an intracellular messenger in immune cell signaling. T-cell activation instructs zinc influx from extracellular and subcellular sources through the Zip6 and Zip8 zinc transporters, respectively. Increased cytoplasmic zinc participates in the regulation of T-cell responses by modifying activation signaling. However, the mechanism underlying the activation-dependent movement of zinc ions by Zip transporters in T cells remains elusive. Here, we demonstrate that Zip6, one of the most abundantly expressed Zip transporters in T cells, is mainly localized to lipid rafts in human T cells and is recruited into the immunological synapse in response to TCR stimulation. This was demonstrated through confocal imaging of the interaction between CD4+ T cells and antigen-presenting cells. Further, immunoprecipitation assays show that TCR triggering induces tyrosine phosphorylation of Zip6, which has at least three putative tyrosine motifs in its long cytoplasmic region, and this phosphorylation is coupled with its physical interaction with Zap70. Silencing Zip6 reduces zinc influx from extracellular sources and suppresses T-cell responses, suggesting an interaction between Zip6-mediated zinc influx and TCR activation. These results provide new insights into the mechanism through which Zip6-mediated zinc influx occurs in a TCR activation-dependent manner in human CD4+ T cells.
Collapse
Affiliation(s)
- Bonah Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Hee Young Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, South Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, South Korea.,Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
31
|
Kim B, Lee WW. Regulatory Role of Zinc in Immune Cell Signaling. Mol Cells 2021; 44:335-341. [PMID: 33986184 PMCID: PMC8175146 DOI: 10.14348/molcells.2021.0061] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023] Open
Abstract
Zinc is an essential micronutrient with crucial roles in multiple facets of biological processes. Dysregulated zinc homeostasis impairs overall immune function and resultantly increases susceptibility to infection. Clinically, zinc supplementation is practiced for treatment of several infectious diseases, such as diarrhea and malaria. Recent focus on zinc as a beneficial element for immune system support has resulted in investigation of the immunomodulatory roles of zinc in a variety of immune cells. Besides its classical role as a cofactor that regulates the structural function of thousands of proteins, accumulating evidence suggests that zinc also acts, in a manner similar to calcium, as an ionic regulator of immune responses via participation as an intracellular messenger in signaling pathways. In this review, we focus on the role of zinc as a signaling molecule in major pathways such as those downstream of Toll-like receptors-, T cell receptor-, and cytokine-mediated signal transduction that regulate the activity and function of monocytes/macrophages and T cells, principal players in the innate and adaptive immune systems.
Collapse
Affiliation(s)
- Bonah Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Ischemic/Hypoxic Disease Institute, and Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Korea
- Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea
| |
Collapse
|
32
|
Cattaneo L, Lopreiato V, Piccioli-Cappelli F, Trevisi E, Minuti A. Plasma albumin-to-globulin ratio before dry-off as a possible index of inflammatory status and performance in the subsequent lactation in dairy cows. J Dairy Sci 2021; 104:8228-8242. [PMID: 33865585 DOI: 10.3168/jds.2020-19944] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/05/2021] [Indexed: 01/27/2023]
Abstract
The dry-off of dairy cows represents an important phase of the lactation cycle, influencing the outcome of the next lactation. Among the physiological changes, the severity of the inflammatory response can vary after the dry-off, and this response might have consequences on cow adaptation in the transition period. The plasma protein profile is a diagnostic tool widely used in humans and animals to assess the inflammatory status and predict the outcome of severe diseases. The albumin-to-globulin ratio (AG) can represent a simple and useful proxy for the inflammatory condition. In this study, we investigated the relationship between AG before dry-off and inflammation, metabolic profile, and performance of 75 Holstein dairy cows. Blood samples were collected from -62 (7 d before dry-off) to 28 d relative to calving (DFC) to measure metabolic profile biomarkers, inflammatory variables, and liver function. Daily milk yield in the first month of lactation was recorded. Milk composition, body condition score, fertility, and health status were also assessed. The AG calculated 1 wk before dry-off (-62 DFC) was used to retrospectively group cows into tertiles (1.06 ± 0.09 for HI, 0.88 ± 0.04 for IN, and 0.72 ± 0.08 for LO). Data were subjected to ANOVA using the PROC MIXED program in SAS software. Differences among groups observed at -62 DFC were almost maintained throughout the period of interest, but AG peaked before calving. According to the level of acute-phase proteins (haptoglobin, ceruloplasmin, albumin, cholesterol, retinol-binding protein), bilirubin, and paraoxonase, a generally overall lower inflammatory condition was found in HI and IN than in the LO group immediately after the dry-off but also after calving. The HI cows had greater milk yield than LO cows, but no differences were observed in milk composition. The somatic cell count reflected the AG ratio trend, with higher values in LO than IN and HI either before dry-off or after calving. Fertility was better in HI cows, with fewer days open and services per pregnancy than IN and LO cows. Overall, cows with high AG before dry-off showed an improved adaptation to the new lactation, as demonstrated by a reduced systemic inflammatory response and increased milk yield than cows with low AG. In conclusion, the AG ratio before dry-off might represent a rapid and useful proxy to evaluate the innate immune status and likely the ability to adapt while switching from the late lactation to the nonlactating phase and during the transition period with emphasis on early lactation.
Collapse
Affiliation(s)
- L Cattaneo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - V Lopreiato
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - F Piccioli-Cappelli
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production of the Università Cattolica del Sacro Cuore (CREI), 29122 Piacenza, Italy.
| | - A Minuti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
33
|
John AD, Ragavee A, Selvaraj AD. Protective role of biosynthesised zinc oxide nanoparticles on pancreatic beta cells: an in vitro and in vivo approach. IET Nanobiotechnol 2020; 14:756-760. [PMID: 33399105 PMCID: PMC8676548 DOI: 10.1049/iet-nbt.2020.0084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 11/19/2022] Open
Abstract
Sulphonylureas are extensively used in the treatment of type II diabetes; however, these drugs have complications of hypoglycaemia and weight gain. The current study aims at developing a potent antidiabetic drug that has lesser side effects and better management of its associated conditions. Zinc oxide nanoparticles (ZnO NPs) were synthesised using Syzygium cumini seed extract with an average size of 18.92 nm. In vitro studies on rat insulinoma (RIN-5F) cells revealed that cells treated with synthesised ZnO NPs showed a dose-dependent increase in insulin secretion. Streptozotocin-fructose-induced type II diabetic rats treated with ZnO NPS exhibited a significant reduction (p < 0.01) in the blood glucose levels, total cholesterol, triglycerides, and low-density lipoprotein levels and increase (p < 0.01) in serum insulin and liver antioxidant enzyme levels proclaiming its role as a hypoglycaemic and hypolipidaemic drug. Treatment of ZnO NPs in diabetic rats exhibited an increased number of beta cells which was responsible for its increased insulin levels and reduced glucose levels. From the overall observations, biosynthesised ZnO NPs exhibited an efficacious hypoglycaemic effect in diabetic rats, so it can be suggested as a potent antidiabetic drug.
Collapse
Affiliation(s)
- Arul Daniel John
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Ambalavanan Ragavee
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Asha Devi Selvaraj
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
34
|
Liu X, Ma Y, Chen L, Yu X, Feng J. Effects of different zinc sources on growth performance, antioxidant capacity and zinc storage of weaned piglets. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Gasmi A, Tippairote T, Mujawdiya PK, Peana M, Menzel A, Dadar M, Gasmi Benahmed A, Bjørklund G. Micronutrients as immunomodulatory tools for COVID-19 management. Clin Immunol 2020; 220:108545. [PMID: 32710937 PMCID: PMC7833875 DOI: 10.1016/j.clim.2020.108545] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 01/08/2023]
Abstract
COVID-19 rapidly turned to a global pandemic posing lethal threats to overwhelming health care capabilities, despite its relatively low mortality rate. The clinical respiratory symptoms include dry cough, fever, anosmia, breathing difficulties, and subsequent respiratory failure. No known cure is available for COVID-19. Apart from the anti-viral strategy, the supports of immune effectors and modulation of immunosuppressive mechanisms is the rationale immunomodulation approach in COVID-19 management. Diet and nutrition are essential for healthy immunity. However, a group of micronutrients plays a dominant role in immunomodulation. The deficiency of most nutrients increases the individual susceptibility to virus infection with a tendency for severe clinical presentation. Despite a shred of evidence, the supplementation of a single nutrient is not promising in the general population. Individuals at high-risk for specific nutrient deficiencies likely benefit from supplementation. The individual dietary and nutritional status assessments are critical for determining the comprehensive actions in COVID-19.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Torsak Tippairote
- Philosophy Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand; Nutritional and Environmental Medicine Department, BBH Hospital, Bangkok, Thailand
| | | | | | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| |
Collapse
|
36
|
Hidayati NV, Prudent P, Asia L, Vassalo L, Torre F, Widowati I, Sabdono A, Syakti AD, Doumenq P. Assessment of the ecological and human health risks from metals in shrimp aquaculture environments in Central Java, Indonesia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41668-41687. [PMID: 32696401 DOI: 10.1007/s11356-020-09967-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
The occurrence and contamination level of seven important toxic metals (Cd, Cu, Co, Cr, Hg, Pb, and Zn) and three additional metals (Al, Fe, and Mn) in the water, sediment, and shrimp muscle in aquaculture areas located in Central Java, Indonesia, were investigated. The results suggest that the majority of metals have higher concentrations in the inlet followed by the outlet and ponds. Cd dissolved in the waters exhibited the highest level in Pekalongan (3.15 ± 0.33 μg L-1). Although Pb was not detected in the water, it was detected in the sediment, and the concentration ranged from 7.6 to 15.40 mg kg-1 dw. In general, the heavy metal concentrations in the sediments were found to decrease in the sequence Al > Fe > Mn > Zn > Cr > Cu > Co > Pb. Concentrations below the effects range low level based on the Canadian sediment quality guidelines were found for Cr, Cu, Pb, and Zn, whereas moderate sediment pollution (25-75 mg kg-1 dw) was observed for Cr (all regions), Cu (except in the Pekalongan region), and Zn (Brebes and Tegal regions) according to the US EPA standard. The status of the waters was evaluated by calculating a pollution index derived mostly from Mn and Zn. The ecological risk (geoaccumulation index (Igeo), contamination factor (CF), pollution load index (PLI), and potential ecological risk index (ERI)) determined in the sediments indicated that all studied areas had low to moderate contamination. The concentrations of all metals in shrimp were generally below the maximum limits for seafood, except for Zn (in all stations), Pb, and Cr (Tegal and Pekalongan). The hazard index values for metals indicated that consuming shrimp would not have adverse effects on human health.
Collapse
Affiliation(s)
- Nuning Vita Hidayati
- Aix-Marseille University, CNRS, LCE, Marseille, France
- Fisheries and Marine Science Faculty, Jenderal Soedirman University, Kampus Karangwangkal, Jl. dr. Suparno, Purwokerto, 53123, Indonesia
- Faculty of Fisheries and Marine Sciences, Diponegoro University, Jl. Prof. H. Soedharto, SH, Tembalang, Semarang, 50275, Indonesia
- Center for Maritime Biosciences Studies - Institute for Sciences and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. dr. Suparno, Purwokerto, 53123, Indonesia
| | | | - Laurence Asia
- Aix-Marseille University, CNRS, LCE, Marseille, France
| | | | - Franck Torre
- Aix-Marseille University, CNRS, IMBE, IRD, Avignon Université, Marseille, France
| | - Ita Widowati
- Faculty of Fisheries and Marine Sciences, Diponegoro University, Jl. Prof. H. Soedharto, SH, Tembalang, Semarang, 50275, Indonesia
| | - Agus Sabdono
- Faculty of Fisheries and Marine Sciences, Diponegoro University, Jl. Prof. H. Soedharto, SH, Tembalang, Semarang, 50275, Indonesia
| | - Agung Dhamar Syakti
- Center for Maritime Biosciences Studies - Institute for Sciences and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. dr. Suparno, Purwokerto, 53123, Indonesia.
- Marine Science and Fisheries Faculty, Raja Ali Haji Maritime University, Jl. Politeknik, Senggarang, Tanjungpinang, Riau Islands Province, 29100, Indonesia.
| | | |
Collapse
|
37
|
Cattaneo L, Lopreiato V, Trevisi E, Minuti A. Association of postpartum uterine diseases with lying time and metabolic profiles of multiparous Holstein dairy cows in the transition period. Vet J 2020; 263:105533. [PMID: 32928490 DOI: 10.1016/j.tvjl.2020.105533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
The objective of this study was to assess how uterine disorders alter the lying behaviour and plasma biomarkers in dairy cows. 34 multiparous cows were retrospectively classified into three groups according to the first uterine disorder that cows were diagnosed with: retained placenta (RP), metritis (MET), or healthy (H; cows without any clinical disease). Lying time (LT) and duration of lying bouts (LB) were monitored between 6 weeks prior to and 8 weeks after calving via the AfiAct II pedometer. Blood samples were collected routinely between 14 days before and 28 days after calving. Data was analysed using Proc MIXED of SAS ver. 9.4. Regardless of grouping, both LT and LB were longer (P < 0.01) in the prepartum period (774 ± 16.6 min/day and 89.9 ± 2.1 min/bout) than in the first 28 days after calving (DFC; 653 ± 16.7 min/day and 63.7 ± 2.1 min/bout). Cows with RP had longer LT than healthy cows during the last 3 weeks before calving (837 ± 30.9 vs. 735 ± 27.1 min/day; P < 0.05). LT in cows with MET and healthy cows were not significantly different. The LB was similar among groups, averaging 76.1 ± 3.4 min/bout in healthy cows, 73.2 ± 3.8 min/bout in cows with RP, and 75.2 ± 3.7 min/bout in cows with MET (P > 0.05). Compared with healthy cows, cows with RP laid down longer and stood up for shorter times (P < 0.05), particularly before calving. In addition, cows with RP had increased mobilization of body stores and more pronounced inflammatory status, as demonstrated by plasma haptoglobin (P = 0.04) and albumin (P < 0.01) concentrations. Our data suggest that automatic monitoring of lying behaviour could help identify cows at increased risk of developing certain disorders, such as RP.
Collapse
Affiliation(s)
- L Cattaneo
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| | - A Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
38
|
Abstract
Metals are essential components in all forms of life required for the function of nearly half of all enzymes and are critically involved in virtually all fundamental biological processes. Especially, the transition metals iron (Fe), zinc (Zn), manganese (Mn), nickel (Ni), copper (Cu) and cobalt (Co) are crucial micronutrients known to play vital roles in metabolism as well due to their unique redox properties. Metals carry out three major functions within metalloproteins: to provide structural support, to serve as enzymatic cofactors, and to mediate electron transportation. Metal ions are also involved in the immune system from metal allergies to nutritional immunity. Within the past decade, much attention has been drawn to the roles of metal ions in the immune system, since increasing evidence has mounted to suggest that metals are critically implicated in regulating both the innate immune sensing of and the host defense against invading pathogens. The importance of ions in immunity is also evidenced by the identification of various immunodeficiencies in patients with mutations in ion channels and transporters. In addition, cancer immunotherapy has recently been conclusively demonstrated to be effective and important for future tumor treatment, although only a small percentage of cancer patients respond to immunotherapy because of inadequate immune activation. Importantly, metal ion-activated immunotherapy is becoming an effective and potential way in tumor therapy for better clinical application. Nevertheless, we are still in a primary stage of discovering the diverse immunological functions of ions and mechanistically understanding the roles of these ions in immune regulation. This review summarizes recent advances in the understanding of metal-controlled immunity. Particular emphasis is put on the mechanisms of innate immune stimulation and T cell activation by the essential metal ions like calcium (Ca2+), zinc (Zn2+), manganese (Mn2+), iron (Fe2+/Fe3+), and potassium (K+), followed by a few unessential metals, in order to draw a general diagram of metalloimmunology.
Collapse
Affiliation(s)
- Chenguang Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Rui Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoming Wei
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Mengze Lv
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
39
|
Lin W, Han W, Wen K, Huang S, Tang Y, Lin Z, Han M. The Alterations of Copper and Zinc Homeostasis in Acute Appendicitis and the Clinical Significance. Biol Trace Elem Res 2019; 192:116-122. [PMID: 30771140 DOI: 10.1007/s12011-019-01661-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/04/2019] [Indexed: 02/05/2023]
Abstract
Copper (Cu) and zinc (Zn) are involved in inflammatory process. This study was to investigate the clinical significance of Cu and Zn homeostasis alterations in acute appendicitis (AA). One hundred twenty-two AA patients and 102 healthy controls were enrolled in this study. Of which, 85 patients' appendixes were collected after appendectomy. Another six appendixes from colon cancer patients were collected as tissue controls. The contents of Cu and Zn in serum or appendix were detected, and the Cu to Zn ratio (CZr) was calculated. The concentrations of serum ceruloplasmin (CP), Cu/Zn superoxide dismutase (SOD1), interleukin-6 (IL-6), and interleukin-22 in serum were measured, as well as the activity of CP and SOD1. The serum Zn concentration and SOD1 activity, appendix contents of Cu and Zn significantly decreased in AA patients, compared with those of controls, while serum CZr, concentrations of CP, SOD1, and IL-6, as well as CP activity increased significantly in AA patients. Additionally, serum concentrations of Zn, CP, CZr, or SOD1 activity varied in different pathological types of AA. Indicators such as serum SOD1 activity might serve as predictors for pathological classification before surgery. The serum Zn and CZr may be helpful for diagnosis of pure AA. The Cu and Zn homeostasis was altered in AA patients, which might contribute to inflammatory process of AA.
Collapse
Affiliation(s)
- Wenhao Lin
- Emergency Department of Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Wei Han
- Emergency Department of Shenzhen University General Hospital, Shenzhen, China
| | - Ke Wen
- Department of Microsurgery, Taihe Hospital, Shiyan, China
| | - Sunhua Huang
- Emergency Department of Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yao Tang
- Emergency Department of Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Zhexuan Lin
- Bio-analytical Laboratory, Shantou University Medical College, Shantou, China.
| | - Ming Han
- Emergency Department of Shenzhen University General Hospital, Shenzhen, China.
| |
Collapse
|
40
|
Skrajnowska D, Bobrowska-Korczak B. Role of Zinc in Immune System and Anti-Cancer Defense Mechanisms. Nutrients 2019; 11:E2273. [PMID: 31546724 PMCID: PMC6835436 DOI: 10.3390/nu11102273] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023] Open
Abstract
The human body cannot store zinc reserves, so a deficiency can arise relatively quickly, e.g., through an improper diet. Severe zinc deficiency is rare, but mild deficiencies are common around the world. Many epidemiological studies have shown a relationship between the zinc content in the diet and the risk of cancer. The anti-cancer effect of zinc is most often associated with its antioxidant properties. However, this is just one of many possibilities, including the influence of zinc on the immune system, transcription factors, cell differentiation and proliferation, DNA and RNA synthesis and repair, enzyme activation or inhibition, the regulation of cellular signaling, and the stabilization of the cell structure and membranes. This study presents selected issues regarding the current knowledge of anti-cancer mechanisms involving this element.
Collapse
Affiliation(s)
- Dorota Skrajnowska
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| | | |
Collapse
|
41
|
Baesler J, Kopp JF, Pohl G, Aschner M, Haase H, Schwerdtle T, Bornhorst J. Zn homeostasis in genetic models of Parkinson's disease in Caenorhabditis elegans. J Trace Elem Med Biol 2019; 55:44-49. [PMID: 31345364 PMCID: PMC6676891 DOI: 10.1016/j.jtemb.2019.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/09/2019] [Accepted: 05/09/2019] [Indexed: 01/13/2023]
Abstract
While the underlying mechanisms of Parkinson's disease (PD) are still insufficiently studied, a complex interaction between genetic and environmental factors is emphasized. Nevertheless, the role of the essential trace element zinc (Zn) in this regard remains controversial. In this study we altered Zn balance within PD models of the versatile model organism Caenorhabditis elegans (C. elegans) in order to examine whether a genetic predisposition in selected genes with relevance for PD affects Zn homeostasis. Protein-bound and labile Zn species act in various areas, such as enzymatic catalysis, protein stabilization pathways and cell signaling. Therefore, total Zn and labile Zn were quantitatively determined in living nematodes as individual biomarkers of Zn uptake and bioavailability with inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) or a multi-well method using the fluorescent probe ZinPyr-1. Young and middle-aged deletion mutants of catp-6 and pdr-1, which are orthologues of mammalian ATP13A2 (PARK9) and parkin (PARK2), showed altered Zn homeostasis following Zn exposure compared to wildtype worms. Furthermore, age-specific differences in Zn uptake were observed in wildtype worms for total as well as labile Zn species. These data emphasize the importance of differentiation between Zn species as meaningful biomarkers of Zn uptake as well as the need for further studies investigating the role of dysregulated Zn homeostasis in the etiology of PD.
Collapse
Affiliation(s)
- Jessica Baesler
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany
| | - Johannes F Kopp
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany
| | - Gabriele Pohl
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461 Bronx, NY, USA
| | - Hajo Haase
- TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany; Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany
| | - Julia Bornhorst
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany; Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany.
| |
Collapse
|
42
|
Mohammad Malyar R, Li H, Enayatullah H, Hou L, Ahmad Farid R, Liu D, Akhter Bhat J, Miao J, Gan F, Huang K, Chen X. Zinc-enriched probiotics enhanced growth performance, antioxidant status, immune function, gene expression, and morphological characteristics of Wistar rats raised under high ambient temperature. 3 Biotech 2019; 9:291. [PMID: 31321197 PMCID: PMC6606684 DOI: 10.1007/s13205-019-1819-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/18/2019] [Indexed: 01/18/2023] Open
Abstract
The present study was conducted to evaluate the effects of zinc-enriched probiotics (ZnP) on growth performance, antioxidant status, immune function, related gene expression, and morphological characteristics of Wistar rats raised under high heat stress condition during summer. 36, 6-week-old male Wistar rats were randomly divided into three groups; fed with basal diet (control), basal diet with probiotics (P), and basal diet with zinc-enriched probiotics supplementation (ZnP, 100 mg/L), for 40 consecutive days. Blood samples were collected through intracardiac method on the last day of experiment and tissues were collected from liver, heart, and kidneys. The results revealed that both P and ZnP significantly (P < 0.05) enhanced growth performance. However, ZnP remarkably increased glutathione content, glutathione peroxidase, and superoxide dismutase activities but reduced malondialdehyde level in serum of the Wistar rats. The concentration of IL-2, IL-6, and IFN-γ was significantly (P < 0.05) increased with treatments of P and ZnP compared to control group while IL-10 was significantly (P < 0.05) decreased. Additionally, the expression of SOD1, SOD2, MT1, and MT2 genes was significantly (P < 0.05) up-regulated with the treatment of ZnP, but Hsp90 and Hsp70 heat shock genes were significantly (P < 0.05) down-regulated with the treatment of P and ZnP, respectively. Hematoxylin and Eosin staining showed that both P and ZnP supplementation treatments induced changes in villus height and intestinal wall thickness. In conclusion, zinc-enriched probiotics supplementation can improve the growth performance of Wistar rats under high ambient temperature through enhancing antioxidant status, immune function, related genes expression, and intestinal morphological characteristics. This product may serves as a potential nutritive supplement for Wistar rats under high heat stress conditions.
Collapse
Affiliation(s)
- Rahmani Mohammad Malyar
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
- Faculty of Veterinary Science, Nangarhar University, Jalalabad, Nangarhar Province Afghanistan
| | - Hu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hamdard Enayatullah
- College of Animal Science and Technology, Agricultural University, Nanjing, 210095 China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Rawan Ahmad Farid
- Faculty of Veterinary Science, Nangarhar University, Jalalabad, Nangarhar Province Afghanistan
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Javaid Akhter Bhat
- National Centre for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jinfeng Miao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
43
|
Role of Zinc Signaling in the Regulation of Mast Cell-, Basophil-, and T Cell-Mediated Allergic Responses. J Immunol Res 2018; 2018:5749120. [PMID: 30596108 PMCID: PMC6286780 DOI: 10.1155/2018/5749120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 10/23/2018] [Indexed: 01/26/2023] Open
Abstract
Zinc is essential for maintaining normal structure and physiological function of cells. Its deficiency causes growth retardation, immunodeficiency, and neuronal degeneration. Zinc homeostasis is tightly regulated by zinc transporters and metallothioneins that control zinc concentration and its distribution in individual cells and contributes to zinc signaling. The intracellular zinc signaling regulates immune reactions. Although many molecules involved in these processes have zinc-binding motifs, the molecular mechanisms and the role of zinc in immune responses have not been elucidated. We and others have demonstrated that zinc signaling plays diverse and specific roles in vivo and in vitro in studies using knockout mice lacking zinc transporter function and metallothionein function. In this review, we discuss the impact of zinc signaling focusing particularly on mast cell-, basophil-, and T cell-mediated inflammatory and allergic responses. We also describe zinc signaling dysregulation as a leading health problem in inflammatory disease and allergy.
Collapse
|
44
|
Essential Role of Zinc and Zinc Transporters in Myeloid Cell Function and Host Defense against Infection. J Immunol Res 2018; 2018:4315140. [PMID: 30417019 PMCID: PMC6207864 DOI: 10.1155/2018/4315140] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022] Open
Abstract
Zinc is an essential micronutrient known to play a vital role in host defense against pathogens. Diets that are deficient in zinc lead to impaired immunity and delayed recovery from and worse outcomes following infection. Sustained insufficient zinc intake leads to dysregulation of the innate immune response and increases susceptibility to infection whereas zinc supplementation in at-risk populations has been shown to restore host defense and reduce pathogen-related morbidity and mortality. Upon infection, zinc deficiency leads to increased pathology due to imbalance in key signaling networks that result in excessive inflammation and collateral tissue damage. In particular, zinc impacts macrophage function, a critical front-line cell in host defense, in addition to other immune cells. Deficits in zinc adversely impact macrophage function resulting in dysregulation of phagocytosis, intracellular killing, and cytokine production. An additional work in this field has revealed a vital role for several zinc transporter proteins that are required for proper bioredistribution of zinc within mononuclear cells to achieve an optimal immune response against invading microorganisms. In this review, we will discuss the most recent developments regarding zinc's role in innate immunity and protection against pathogen invasion.
Collapse
|
45
|
Hasan M, Sutradhar I, Shahabuddin A, Sarker M. Double Burden of Malnutrition among Bangladeshi Women: A Literature Review. Cureus 2017; 9:e1986. [PMID: 29503780 PMCID: PMC5826745 DOI: 10.7759/cureus.1986] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/26/2017] [Indexed: 12/18/2022] Open
Abstract
A narrative review was carried out of existing literature comprising nationally representative data. We searched PubMed, Google Scholar, and Banglajol databases. Quantitative studies reporting the prevalence and risk factors of the double burden of malnutrition (DBM) among Bangladeshi women based on nationally representative data were considered for this review. We included studies published between 1st May 2007 and 30th April 2017 in English language. Two researchers individually searched and screened all the relevant articles and separately extracted data using a data extraction table created in Microsoft Excel. Another researcher cross-checked the whole process to maintain consistency. Any sort of disagreement was resolved by group consensus. Thematic analysis was performed for data analysis. According to the included studies, the prevalence of underweight and stunting dramatically reduced among Bangladeshi women in last 10 years, though, nearly one-fourth of women are underweight and one-fifth of women are stunted in Bangladesh. Additionally, nearly half of the country's women are suffering from different micronutrient deficiencies. This immense burden of undernutrition is accompanied by the presence of overweight or obesity among nearly half of the adult women. Women's age, area of residence, education and wealth index have a significant influence on determining their nutritional status. DBM is an inevitable reality among Bangladesh women. The adverse health consequences of women's undernutrition and overnutrition have been well documented. As women's nutritional status is a multifaceted issue, effective implementation of very specific and focused public health interventions with inclusive multi-sectoral and multi-stakeholder approaches are indispensable to combat this problem.
Collapse
Affiliation(s)
- Mehedi Hasan
- James P Grant School of Public Health, BRAC University
| | | | | | | |
Collapse
|
46
|
Derby N, Aravantinou M, Kenney J, Ugaonkar SR, Wesenberg A, Wilk J, Kizima L, Rodriguez A, Zhang S, Mizenina O, Levendosky K, Cooney ML, Seidor S, Gettie A, Grasperge B, Blanchard J, Piatak M, Lifson JD, Fernández-Romero J, Zydowsky TM, Robbiani M. An intravaginal ring that releases three antiviral agents and a contraceptive blocks SHIV-RT infection, reduces HSV-2 shedding, and suppresses hormonal cycling in rhesus macaques. Drug Deliv Transl Res 2017; 7:840-858. [PMID: 28600625 PMCID: PMC5656733 DOI: 10.1007/s13346-017-0389-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Women globally need access to multipurpose prevention technologies (MPTs) that prevent human immunodeficiency virus (HIV), sexually transmitted infections that increase HIV acquisition/transmission risk, and unintended pregnancy. Seeking an MPT with activity against HIV, herpes simplex virus-2 (HSV-2), and human papillomavirus (HPV), we developed a prototype intravaginal ring (IVR), the MZCL IVR, which released the antiviral agents MIV-150, zinc acetate, and carrageenan (MZC for short) and the contraceptive levonorgestrel (LNG). Previously, we showed that an MZC gel has potent activity against immunodeficiency viruses, HSV-2, and HPV and that the MZCL (MZC with LNG) IVR releases all four components in macaques in vivo at levels associated with efficacy. Vaginal fluid from treated macaques has in vitro activity against HIV, HSV-2, and HPV. Herein, we assessed the ability of the MZCL IVR to protect macaques against repeated co-challenge with HSV-2 and SHIV-RT (simian immunodeficiency virus [SIV] containing the reverse transcriptase gene from HIV) and prevent hormonal cycling. We evaluated in vivo drug release in co-challenged macaques by measuring drug levels in blood and vaginal fluid and residual drug levels in used IVRs. The MZCL IVR significantly prevented SHIV-RT infection, reduced HSV-2 vaginal shedding, and prevented cycling. No non-nucleoside HIV reverse transcriptase inhibitor (NNRTI)-resistant SHIV was detected in macaques that became infected after continuous exposure to MZC from the IVR. Macaques wearing the MZCL IVR also had carrageenan levels in vaginal fluid expected to protect from HPV (extrapolated from mice) and LNG levels in blood associated with contraceptive efficacy. The MZCL IVR is a promising MPT candidate that warrants further development.
Collapse
MESH Headings
- Alphapapillomavirus/drug effects
- Alphapapillomavirus/physiology
- Animals
- Antiviral Agents/administration & dosage
- Antiviral Agents/pharmacology
- Carrageenan/administration & dosage
- Carrageenan/pharmacology
- Contraceptive Agents, Female/administration & dosage
- Contraceptive Agents, Female/pharmacology
- Contraceptive Devices, Female
- Disease Models, Animal
- Drug Therapy, Combination/methods
- Female
- Herpes Simplex/prevention & control
- Herpesvirus 2, Human/drug effects
- Herpesvirus 2, Human/physiology
- Humans
- Macaca mulatta
- Menstrual Cycle
- Pyridines/administration & dosage
- Pyridines/pharmacology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Urea/administration & dosage
- Urea/analogs & derivatives
- Urea/pharmacology
- Vaginal Creams, Foams, and Jellies/administration & dosage
- Vaginal Creams, Foams, and Jellies/pharmacology
- Virus Shedding/drug effects
- Zinc Acetate/administration & dosage
- Zinc Acetate/pharmacology
Collapse
Affiliation(s)
- Nina Derby
- Population Council, 1230 York Avenue, New York, NY, 10065, USA.
| | | | - Jessica Kenney
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | | | - Asa Wesenberg
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Jolanta Wilk
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Larisa Kizima
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Aixa Rodriguez
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Shimin Zhang
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Olga Mizenina
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | | | | | - Samantha Seidor
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, 455 First Avenue, 7th Floor, New York, NY, 10016, USA
| | - Brooke Grasperge
- Tulane Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433-8915, USA
| | - James Blanchard
- Tulane Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433-8915, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702-1201, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702-1201, USA
| | - José Fernández-Romero
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
- Science Department, Borough of Manhattan Community College, The City University of New York, 199 Chambers Street, New York, NY, 10007, USA
| | | | | |
Collapse
|
47
|
Bayrami A, Parvinroo S, Habibi-Yangjeh A, Rahim Pouran S. Bio-extract-mediated ZnO nanoparticles: microwave-assisted synthesis, characterization and antidiabetic activity evaluation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:730-739. [DOI: 10.1080/21691401.2017.1337025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Abolfazl Bayrami
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Shadi Parvinroo
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Shima Rahim Pouran
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
48
|
Persistent low serum zinc is associated with recurrent sepsis in critically ill patients - A pilot study. PLoS One 2017; 12:e0176069. [PMID: 28472045 PMCID: PMC5417428 DOI: 10.1371/journal.pone.0176069] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/05/2017] [Indexed: 12/22/2022] Open
Abstract
Zinc is an essential trace element for both pathogens and hosts. Hypozincemia is a well known phenomenon in sepsis patients and represents the innate immune systems attempt to deprive pathogens of zinc. However little is known about course, restitution and prognostic value of serum zinc levels in sepsis patients. We performed a prospective observational single-center study set in a tertiary care university hospital intensive care unit. Serum zinc levels were singularly measured of healthy controls and sequentially of surgical sepsis patients and surgical patients over a 8-day period. Throughout the study period, we report significantly decreased serum zinc levels in surgical and surgical sepsis patients compared to healthy controls. Lower serum zinc levels in surgical sepsis patients were associated with a higher susceptibility to a recurrent sepsis episode. Furthermore, surgical sepsis patients with a higher number of organ dysfunctions and increased in-hospital mortality at day 28 and 90 showed lower serum zinc levels at admission. We report serum zinc levels as a promising biomarker in the diagnosis and evaluation of sepsis patients. However, it is still unclear whether these findings are caused by an over-amplified redistribution of zinc during acute-phase response, or whether the critically ill patients were zinc deficient before sepsis.
Collapse
|
49
|
Barman S, Srinivasan K. Zinc supplementation alleviates hyperglycemia and associated metabolic abnormalities in streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 2016; 94:1356-1365. [DOI: 10.1139/cjpp-2016-0084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cause and effect relationship between diabetes and zinc is complex and unclear. This animal study has examined the potential of zinc supplementation in beneficial modulating hyperglycemia, insulin secretion, and metabolic abnormalities associated with diabetes. The study was conducted in streptozotocin-induced diabetic rats. Groups of hyperglycemic rats were subjected to dietary interventions for 6 weeks with zinc supplementation (5 times and 10 times the normal level). Supplemental-zinc-fed diabetic groups showed significant control on hyperglycemia and hypoinsulinemia. There was a significant reduction in protein glycosylation, glucosuria, and urinary excretion of proteins and urea in diabetic animals maintained on a zinc-supplemented diet. Diabetic rats showed significantly higher plasma albumin and lower plasma urea and creatinine levels upon zinc supplementation. Significant alterations in insulin sensitivity indices HOMA-IR, HOMA-B, and QUICKI were also indicated by zinc supplementation. The pathological abnormalities in pancreatic islets of diabetic animals were significantly alleviated by dietary zinc intervention. This study provides the first evidence that zinc supplementation can partially ameliorate the severity of diabetic hyperglycemia and associated metabolic abnormalities, hypoinsulinemia, insulin resistance, and altered pancreatic morphology. Thus, zinc supplementation may offer a significant potential for clinical application in managing diabetic hyperglycemia and related metabolic complications.
Collapse
Affiliation(s)
- Susmita Barman
- Department of Biochemistry and Nutrition, CSIR – Central Food Technological Research Institute, Mysore 570 020, India
- Department of Biochemistry and Nutrition, CSIR – Central Food Technological Research Institute, Mysore 570 020, India
| | - Krishnapura Srinivasan
- Department of Biochemistry and Nutrition, CSIR – Central Food Technological Research Institute, Mysore 570 020, India
- Department of Biochemistry and Nutrition, CSIR – Central Food Technological Research Institute, Mysore 570 020, India
| |
Collapse
|
50
|
Palomares RA, Hurley DJ, Bittar JHJ, Saliki JT, Woolums AR, Moliere F, Havenga LJ, Norton NA, Clifton SJ, Sigmund AB, Barber CE, Berger ML, Clark MJ, Fratto MA. Effects of injectable trace minerals on humoral and cell-mediated immune responses to Bovine viral diarrhea virus, Bovine herpes virus 1 and Bovine respiratory syncytial virus following administration of a modified-live virus vaccine in dairy calves. Vet Immunol Immunopathol 2016; 178:88-98. [PMID: 27496747 DOI: 10.1016/j.vetimm.2016.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/24/2016] [Accepted: 07/04/2016] [Indexed: 12/21/2022]
Abstract
Our objective was to evaluate the effect of an injectable trace mineral (ITM) supplement containing zinc, manganese, selenium, and copper on the humoral and cell mediated immune (CMI) responses to vaccine antigens in dairy calves receiving a modified-live viral (MLV) vaccine containing BVDV, BHV1, PI3V and BRSV. A total of 30 dairy calves (3.5 months of age) were administered a priming dose of the MLV vaccine containing BHV1, BVDV1 & 2, BRSV, PI3V, and an attenuated-live Mannheimia-Pasteurella bacterin subcutaneously (SQ). Calves were randomly assigned to 1 of 2 groups: (1) administration of ITM SQ (ITM, n=15) or (2) injection of sterile saline SQ (Control; n=15). Three weeks later, calves received a booster of the same vaccine combination SQ, and a second administration of ITM, or sterile saline, according to the treatment group. Blood samples were collected on days 0, 7, 14, 21, 28, 42, 56, and 90 post-vaccination for determination of antibody titer, viral recall antigen-induced IFN-γ production, and viral antigen-induced proliferation by peripheral blood mononuclear cells (PBMC). Administration of ITM concurrently with MLV vaccination resulted in higher antibody titers to BVDV1 on day 28 after priming vaccination compared to the control group (P=0.03). Calves treated with ITM showed an earlier enhancement in PBMC proliferation to BVDV1 following vaccination compared to the control group. Proliferation of PBMC after BVDV stimulation tended to be higher on day 14 after priming vaccination in calves treated with ITM than in the control group (P=0.08). Calves that received ITM showed higher PBMC proliferation to BRSV stimulation on day 7 after priming vaccination compared to the control group (P=0.01). Moreover, calves in the ITM group also had an enhanced production IFN-γ by PBMC after stimulation with BRSV on day 21 after priming vaccination compared to day 0 (P<0.01). In conclusion, administration of ITM concurrently with MLV vaccination in dairy calves resulted in increased antibody titer to BVDV1, and greater PBMC proliferation to BVDV1 and BRSV recall stimulation compared to the control group, suggesting that ITM might represent a promising tool to enhance the humoral and CMI responses to MLV vaccines in cattle.
Collapse
Affiliation(s)
- R A Palomares
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 United States; Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens GA 30602 United States.
| | - D J Hurley
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 United States; Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens GA 30602 United States
| | - J H J Bittar
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 United States
| | - J T Saliki
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-2771, United States
| | - A R Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - F Moliere
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 United States
| | - L J Havenga
- Multimin USA, Inc. Fort Collins, CO, United States
| | - N A Norton
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens GA 30602 United States
| | - S J Clifton
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 United States
| | - A B Sigmund
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 United States
| | - C E Barber
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 United States
| | - M L Berger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 United States
| | - M J Clark
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 United States
| | - M A Fratto
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 United States
| |
Collapse
|