1
|
Asenjo-Bueno A, Alcalde-Estévez E, Olmos G, Martínez-Miguel P, Ruiz-Torres MP, López-Ongil S. Respiratory dysfunction in old mice could be related to inflammation and lung fibrosis induced by hyperphosphatemia. Eur J Clin Invest 2024; 54:e14302. [PMID: 39155424 DOI: 10.1111/eci.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND With age, lungs undergo typical changes that lead to a deterioration of respiratory function. Our aim was to assess the role of age-associated hyperphosphatemia in these changes. METHODS We used C57BL6 mice to study an ageing model in vivo and human lung fibroblasts were treated with a phosphate donor, beta-glycerophosphate (BGP), to explore mechanisms involved. Respiratory function was registered with a double chamber plethysmograph. Lung structure was analysed by different staining, phosphate and cytokines levels by colorimeric kits, expression of fibrosis, inflammation and ET-1 system by western blot or RT-PCR. RESULTS Old mice showed hyperphosphatemia, along with lung fibrosis, loss of elastin, increased expression of pro-inflammatory cytokines and impaired respiratory function. BGP induced inflammation and fibrosis in fibroblasts through the activation and binding of NFkB to the MCP-1 or FN promoters. BGP increased ECE-1 expression by inducing NFkB binding to the ECE-1 promoter. QNZ, an NFkB inhibitor, blocked these effects. When ECE-1 was inhibited with phosphoramidon, BGP-induced inflammation and fibrosis were significantly reduced, suggesting a role for ET-1 in BGP-mediated effects.ET-1 produced effects similar to those of BGP, which were also dependent on NFkB. To study the pathophysiological relevance of hyperphosphatemia in vivo, a low-P diet was administered to a group of old animals, showing an improvement in fibrosis, inflammation and respiratory function compared to old mice on a standard diet. CONCLUSION These results suggest that age-related hyperphosphatemia induces inflammation, fibrosis, and impaired respiratory function in old mice; these effects appear to be mediated by ET-1 and NFkB activation.
Collapse
Affiliation(s)
- Ana Asenjo-Bueno
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Elena Alcalde-Estévez
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Gemma Olmos
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid, Spain
- Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid, Spain
| | - Patricia Martínez-Miguel
- Servicio de Nefrología del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - María Piedad Ruiz-Torres
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid, Spain
- Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid, Spain
| | - Susana López-Ongil
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid, Spain
- Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
2
|
Belostotsky V, Atkinson SA, Filler G. Zinc Supplementation Trial in Pediatric Chronic Kidney Disease: Effects on Circulating FGF-23 and Klotho. Can J Kidney Health Dis 2024; 11:20543581241234723. [PMID: 38487751 PMCID: PMC10938622 DOI: 10.1177/20543581241234723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/22/2024] [Indexed: 03/17/2024] Open
Abstract
Background Zinc status, its role in bone metabolism and efficacy of deficiency correction has not been well studied in children with chronic kidney disease (CKD). Objectives The primary objective was to investigate whether 3 months of oral zinc supplementation corrects zinc deficiency in children with CKD who have native or transplanted kidneys. The secondary objective was to compare circulating intact FGF-23 (iFGF-23), c-terminal FGF-23 (cFGF-23), and Klotho between zinc-sufficient and zinc-deficient children with CKD and to assess the relationship between circulating zinc, iFGF-23, cFGF-23, Klotho, bone biomarkers, copper, and phosphate excretion pre-supplementation and post-supplementation of zinc. Methods Forty-one children (25 male and 16 female, age 12.94 ± 4.13 years) with CKD in native or transplanted kidneys were recruited through 2 pediatric nephrology divisions in Ontario, Canada. Of those, 14 patients (9 native CKD, 5 transplant CKD) with identified zinc deficiency (64% enrollment rate) received zinc citrate supplement for 3 months: 10 mg orally once (4-8 years) or twice (9-18 years) daily. Results Zinc deficiency (plasma concentration < 11.5 µmol/L) was found in 22 patients (53.7%). A linear regression model suggested that zinc concentration reduced by 0.026 µmol/L (P = .04) for every 1-unit of estimated glomerular filtration rate (eGFR) drop. Zinc deficiency status was associated with higher serum iFGF-23; however, this was predominantly determined by the falling GFR. Zinc deficient and sufficient children had similar circulating c-FGF-23 and alpha-Klotho. Normalization of plasma zinc concentration was achieved in 8 (5 native CKD and 3 transplant CKD) out of 14 treated patients rising from 10.04 ± 1.42 to 12.29 ± 3.77 μmol/L (P = .0038). There were no significant changes in other biochemical measures in all treated patients. A statistically significant (P = .0078) rise in c-FGF-23 was observed only in a subgroup of 11 children treated with zinc but not receiving calcitriol. Conclusions Zinc status is related to kidney function and possibly connected to bone metabolism in patients with CKD. However, it plays a minor role in fine-tuning various metabolic processes. In this exploratory non-randomized study, 3 months supplementation with zinc corrected deficiency in just over half of patients and only modestly affected bone metabolism in asymptomatic CKD patients.
Collapse
Affiliation(s)
- V. Belostotsky
- Division of Nephrology, Department of Paediatrics, McMaster Children’s Hospital, Hamilton, ON, Canada
| | - S. A. Atkinson
- Department of Paediatrics, McMaster University, Hamilton, ON, Canada
| | - G. Filler
- Division of Nephrology, Departments of Paediatrics and Medicine, Western University, London, ON, Canada
- Lilibeth Caberto Kidney Clinical Research Unit, London, ON, Canada
| |
Collapse
|
3
|
Schnicker NJ, Xu Z, Amir M, Gakhar L, Huang CL. Conformational landscape of soluble α-klotho revealed by cryogenic electron microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583144. [PMID: 38496408 PMCID: PMC10942382 DOI: 10.1101/2024.03.02.583144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
α-Klotho (KLA) is a type-1 membranous protein that can associate with fibroblast growth factor receptor (FGFR) to form co-receptor for FGF23. The ectodomain of unassociated KLA is shed as soluble KLA (sKLA) to exert FGFR/FGF23-independent pleiotropic functions. The previously determined X-ray crystal structure of the extracellular region of sKLA in complex with FGF23 and FGFR1c suggests that sKLA functions solely as an on-demand coreceptor for FGF23. To understand the FGFR/FGF23-independent pleiotropic functions of sKLA, we investigated biophysical properties and structure of apo-sKLA. Mass photometry revealed that sKLA can form a stable structure with FGFR and/or FGF23 as well as sKLA dimer in solution. Single particle cryogenic electron microscopy (cryo-EM) supported the dimeric structure of sKLA. Cryo-EM further revealed a 3.3Å resolution structure of apo-sKLA that overlays well with its counterpart in the ternary complex with several distinct features. Compared to the ternary complex, the KL2 domain of apo-sKLA is more flexible. 3D variability analysis revealed that apo-sKLA adopts conformations with different KL1-KL2 interdomain bending and rotational angles. The potential multiple forms and shapes of sKLA support its role as FGFR-independent hormone with pleiotropic functions. A comprehensive understanding of the sKLA conformational landscape will provide the foundation for developing klotho-related therapies for diseases.
Collapse
Affiliation(s)
- Nicholas J. Schnicker
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, Iowa City, Iowa, 52242, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, 52242, USA
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, Iowa City, Iowa, 52242, USA
| | - Mohammad Amir
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, 52242, USA
| | - Lokesh Gakhar
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, Iowa City, Iowa, 52242, USA
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Chou-Long Huang
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, 52242, USA
| |
Collapse
|
4
|
Hamid AK, Pastor Arroyo EM, Calvet C, Hewitson TD, Muscalu ML, Schnitzbauer U, Smith ER, Wagner CA, Egli-Spichtig D. Phosphate Restriction Prevents Metabolic Acidosis and Curbs Rise in FGF23 and Mortality in Murine Folic Acid-Induced AKI. J Am Soc Nephrol 2024; 35:261-280. [PMID: 38189228 PMCID: PMC10914210 DOI: 10.1681/asn.0000000000000291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024] Open
Abstract
SIGNIFICANCE STATEMENT Patients with AKI suffer a staggering mortality rate of approximately 30%. Fibroblast growth factor 23 (FGF23) and phosphate (P i ) rise rapidly after the onset of AKI and have both been independently associated with ensuing morbidity and mortality. This study demonstrates that dietary P i restriction markedly diminished the early rise in plasma FGF23 and prevented the rise in plasma P i , parathyroid hormone, and calcitriol in mice with folic acid-induced AKI (FA-AKI). Furthermore, the study provides evidence for P i -sensitive osseous Fgf23 mRNA expression and reveals that P i restriction mitigated calciprotein particles (CPPs) formation, inflammation, acidosis, cardiac electrical disturbances, and mortality in mice with FA-AKI. These findings suggest that P i restriction may have a prophylactic potential in patients at risk for AKI. BACKGROUND In AKI, plasma FGF23 and P i rise rapidly and are independently associated with disease severity and outcome. METHODS The effects of normal (NP) and low (LP) dietary P i were investigated in mice with FA-AKI after 3, 24, and 48 hours and 14 days. RESULTS After 24 hours of AKI, the LP diet curbed the rise in plasma FGF23 and prevented that of parathyroid hormone and calcitriol as well as of osseous but not splenic or thymic Fgf23 mRNA expression. The absence of Pth prevented the rise in calcitriol and reduced the elevation of FGF23 in FA-AKI with the NP diet. Furthermore, the LP diet attenuated the rise in renal and plasma IL-6 and mitigated the decline in renal α -Klotho. After 48 hours, the LP diet further dampened renal IL-6 expression and resulted in lower urinary neutrophil gelatinase-associated lipocalin. In addition, the LP diet prevented the increased formation of CPPs. Fourteen days after AKI induction, the LP diet group maintained less elevated plasma FGF23 levels and had greater survival than the NP diet group. This was associated with prevention of metabolic acidosis, hypocalcemia, hyperkalemia, and cardiac electrical disturbances. CONCLUSIONS This study reveals P i -sensitive FGF23 expression in the bone but not in the thymus or spleen in FA-AKI and demonstrates that P i restriction mitigates CPP formation, inflammation, acidosis, and mortality in this model. These results suggest that dietary P i restriction could have prophylactic potential in patients at risk for AKI.
Collapse
Affiliation(s)
- Ahmad Kamal Hamid
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| | - Eva Maria Pastor Arroyo
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| | - Charlotte Calvet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| | - Timothy D. Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne Australia
| | - Maria Lavinia Muscalu
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| | - Udo Schnitzbauer
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Edward R. Smith
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne Australia
| | - Carsten Alexander Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| | - Daniela Egli-Spichtig
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| |
Collapse
|
5
|
Verlinden L, Li S, Veldurthy V, Carmeliet G, Christakos S. Relationship of the bone phenotype of the Klotho mutant mouse model of accelerated aging to changes in skeletal architecture that occur with chronological aging. Front Endocrinol (Lausanne) 2024; 15:1310466. [PMID: 38352710 PMCID: PMC10861770 DOI: 10.3389/fendo.2024.1310466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Due to the relatively long life span of rodent models, in order to expediate the identification of novel therapeutics of age related diseases, mouse models of accelerated aging have been developed. In this study we examined skeletal changes in the male and female Klotho mutant (kl/kl) mice and in male and female chronically aged mice to determine whether the accelerated aging bone phenotype of the kl/kl mouse reflects changes in skeletal architecture that occur with chronological aging. Methods 2, 6 and 20-23 month old C57BL/6 mice were obtained from the National Institute of Aging aged rodent colony and wildtype and kl/kl mice were generated as previously described by M. Kuro-o. Microcomputed tomography analysis was performed ex vivo to examine trabecular and cortical parameters from the proximal metaphyseal and mid-diaphyseal areas, respectively. Serum calcium and phosphate were analyzed using a colorimetric assay. The expression of duodenal Trpv6, which codes for TRPV6, a vitamin D regulated epithelial calcium channel whose expression reflects intestinal calcium absorptive efficiency, was analyzed by quantitative real-time PCR. Results and discussion Trabecular bone volume (BV/TV) and trabecular number decreased continuously with age in males and females. In contrast to aging mice, an increase in trabecular bone volume and trabecular number was observed in both male and female kl/kl mice. Cortical thickness decreased with advancing age and also decreased in male and female kl/kl mice. Serum calcium and phosphate levels were significantly increased in kl/kl mice but did not change with age. Aging resulted in a decline in Trpv6 expression. In the kl/kl mice duodenal Trpv6 was significantly increased. Our findings reflect differences in bone architecture as well as differences in calcium and phosphate homeostasis and expression of Trpv6 between the kl/kl mutant mouse model of accelerated aging and chronological aging. Although the Klotho deficient mouse has provided a new understanding of the regulation of mineral homeostasis and bone metabolism, our findings suggest that changes in bone architecture in the kl/kl mouse reflect in part systemic disturbances that differ from pathophysiological changes that occur with age including dysregulation of calcium homeostasis that contributes to age related bone loss.
Collapse
Affiliation(s)
- Lieve Verlinden
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Shanshan Li
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, United States
| | - Vaishali Veldurthy
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, United States
| | - Geert Carmeliet
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
6
|
Wolf L, Vogt J, Alber J, Franjic D, Feger M, Föller M. PKC regulates αKlotho gene expression in MDCK and NRK-52E cells. Pflugers Arch 2024; 476:75-86. [PMID: 37773536 PMCID: PMC10758369 DOI: 10.1007/s00424-023-02863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Particularly expressed in the kidney, αKlotho is a transmembrane protein that acts together with bone hormone fibroblast growth factor 23 (FGF23) to regulate renal phosphate and vitamin D homeostasis. Soluble Klotho (sKL) is released from the transmembrane form and controls various cellular functions as a paracrine and endocrine factor. αKlotho deficiency accelerates aging, whereas its overexpression favors longevity. Higher αKlotho abundance confers a better prognosis in cardiovascular and renal disease owing to anti-inflammatory, antifibrotic, or antioxidant effects and tumor suppression. Serine/threonine protein kinase C (PKC) is ubiquitously expressed, affects several cellular responses, and is also implicated in heart or kidney disease as well as cancer. We explored whether PKC is a regulator of αKlotho. Experiments were performed in renal MDCK or NRK-52E cells and PKC isoform and αKlotho expression determined by qRT-PCR and Western Blotting. In both cell lines, PKC activation with phorbol ester phorbol-12-myristate-13-acetate (PMA) downregulated, while PKC inhibitor staurosporine enhanced αKlotho mRNA abundance. Further experiments with PKC inhibitor Gö6976 and RNA interference suggested that PKCγ is the major isoform for the regulation of αKlotho gene expression in the two cell lines. In conclusion, PKC is a negative regulator of αKlotho gene expression, an effect which may be relevant for the unfavorable effect of PKC on heart or kidney disease and tumorigenesis.
Collapse
Affiliation(s)
- Lisa Wolf
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Julia Vogt
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Jana Alber
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Domenic Franjic
- Core Facility Hohenheim, Data and Statistical Consulting, University of Hohenheim, 70599, Stuttgart, Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| |
Collapse
|
7
|
Wang YY, Lin YH, Wu VC, Lin YH, Huang CY, Ku WC, Sun CY. Decreased Klotho Expression Causes Accelerated Decline of Male Fecundity through Oxidative Injury in Murine Testis. Antioxidants (Basel) 2023; 12:1671. [PMID: 37759974 PMCID: PMC10526093 DOI: 10.3390/antiox12091671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress is the etiology for 30-80% of male patients affected by infertility, which is a major health problem worldwide. Klotho protein is an aging suppressor that functions as a humoral factor modulating various cellular processes including antioxidation and anti-inflammation, and its dysregulation leads to human pathologies. Male mice lacking Klotho are sterile, and decreased Klotho levels in the serum are observed in men suffering from infertility with lower sperm counts. However, the mechanism by which Klotho maintains healthy male fertility remains unclear. Klotho haplodeficiency (Kl+/-) accelerates fertility reduction by impairing sperm quality and spermatogenesis in Kl+/- mice. Testicular proteomic analysis revealed that loss of Klotho predominantly disturbed oxidation and the glutathione-related pathway. We further focused on the glutathione-S-transferase (GST) family which counteracts oxidative stress in most cell types and closely relates with fertility. Several GST proteins, including GSTP1, GSTO2, and GSTK1, were significantly downregulated, which subsequently resulted in increased levels of the lipid peroxidation product 4-hydroxynonenal and apoptosis in murine testis with low or no expression of Klotho. Taken together, the loss of one Kl allele accelerates male fecundity loss because diminished antioxidant capability induces oxidative injury in mice. This is the first study that highlights a connection between Klotho and GST proteins.
Collapse
Affiliation(s)
- Ya-Yun Wang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan; (Y.-Y.W.); (Y.-H.L.)
| | - Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan; (Y.-Y.W.); (Y.-H.L.)
| | - Vin-Cent Wu
- Taiwan Consortium for Acute Kidney Injury and Renal Diseases (CAKs), Taipei 100, Taiwan;
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Yu-Hua Lin
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan;
- Division of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei City 231, Taiwan
| | - Chia-Yen Huang
- Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei 106, Taiwan;
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Wei-Chi Ku
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Chiao-Yin Sun
- Division of Nephrology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
8
|
Mok Y, Wang F, Ballew SH, Menez S, Butler KR, Wagenknecht L, Sedaghat S, Lutsey PL, Coresh J, Blaha MJ, Matsushita K. Kidney function, bone-mineral metabolism markers, and calcification of coronary arteries, aorta, and cardiac valves in older adults. Atherosclerosis 2023; 368:35-43. [PMID: 36754659 PMCID: PMC9992265 DOI: 10.1016/j.atherosclerosis.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIMS The contribution of kidney dysfunction, especially at mild-to-moderate stages, and bone-mineral metabolism (BMM) markers to vascular calcification remains controversial or unclear. We comprehensively evaluated the association of kidney and BMM markers with coronary artery calcification (CAC) and extra-coronary calcification (ECC). METHODS In 1931 ARIC participants (age 73-95 years) without coronary heart disease at visit 7 (2018-19), we investigated the associations of estimated glomerular filtration rate (eGFR) (with creatinine, cystatin C, and both) and five serum BMM markers (calcium, fibroblast growth factor 23, magnesium, parathyroid hormone, and phosphorus) with high CAC and ECC (sex-race specific ≥75th vs. <75th percentile Agatston score) or any vs. zero CAC and ECC using multivariable logistic regression. For eGFR and BMM markers, we took their weighted cumulative averages from visit 1 (1987-89) to visit 5 (2011-13). RESULTS Lower eGFR, regardless of equations used, was not robustly associated with high CAC or ECC. Among BMM markers, only higher phosphorus levels, even within the normal range, showed robust associations with high CAC (only when modeled continuously) and ECC, independently of kidney function (e.g., odds ratio 1.94 [95%CI 1.38-2.73] for high aortic valve calcification, in the highest vs. lowest quartile). Results were generally consistent when analyzing any CAC or ECC, although cystatin C-based eGFR <60 mL/min/1.73 m2 became significantly associated with mitral valve calcification (odds ratio 1.69 [1.10-2.60]). CONCLUSIONS Among kidney and BMM measures tested, only serum phosphorus demonstrated robust associations with both CAC and ECC, supporting a key role of phosphorus in the pathophysiology of vascular calcification.
Collapse
Affiliation(s)
- Yejin Mok
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Frances Wang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shoshana H Ballew
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Steve Menez
- Division of Nephrology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kenneth R Butler
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lynne Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sanaz Sedaghat
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Pamela L Lutsey
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael J Blaha
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kunihiro Matsushita
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Ohsawa Y, Ohtsubo H, Munekane A, Ohkubo K, Murakami T, Fujino M, Nishimatsu SI, Hagiwara H, Nishimura H, Kaneko R, Suzuki T, Tatsumi R, Mizunoya W, Hinohara A, Fukunaga M, Sunada Y. Circulating α-Klotho Counteracts Transforming Growth Factor-β-Induced Sarcopenia. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:591-607. [PMID: 36773783 DOI: 10.1016/j.ajpath.2023.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 02/12/2023]
Abstract
α-Klotho is a longevity-related protein. Its deficiency shortens lifespan with prominent senescent phenotypes, including muscle atrophy and weakness in mice. α-Klotho has two forms: membrane α-Klotho and circulating α-Klotho (c-α-Klotho). Loss of membrane α-Klotho impairs a phosphaturic effect, thereby accelerating phosphate-induced aging. However, the mechanisms of senescence on c-α-Klotho loss remain largely unknown. Here, we show that, with the aging of wild-type mice, c-α-Klotho declined, whereas Smad2, an intracellular transforming growth factor (TGF)-β effector, became activated in skeletal muscle. Moreover, c-α-Klotho suppressed muscle-wasting TGF-β molecules, including myostatin, growth and differentiation factor 11, activin, and TGF-β1, through binding to ligands as well as type I and type II serine/threonine kinase receptors. Indeed, c-α-Klotho reversed impaired in vitro myogenesis caused by these TGF-βs. Oral administration of Ki26894, a small-molecule inhibitor of type I receptors for these TGF-βs, restored muscle atrophy and weakness in α-Klotho (-/-) mice and in elderly wild-type mice by suppression of activated Smad2 and up-regulated Cdkn1a (p21) transcript, a target of phosphorylated Smad2. Ki26894 also induced the slow to fast myofiber switch. These findings show c-α-Klotho's potential as a circulating inhibitor counteracting TGF-β-induced sarcopenia. A novel therapy involving TGF-β blockade could thus be developed to prevent sarcopenia.
Collapse
Affiliation(s)
- Yutaka Ohsawa
- Department of Neurology, Kawasaki Medical School, Kurashiki City, Okayama, Japan.
| | - Hideaki Ohtsubo
- Department of Neurology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Asami Munekane
- Department of Neurology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Kohei Ohkubo
- Department of Neurology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Tatsufumi Murakami
- Department of Neurology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Masahiro Fujino
- Department of Health and Sports Science, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki City, Okayama, Japan
| | | | - Hiroki Hagiwara
- Department of Medical Science, Teikyo University of Science, Adachi-ku, Tokyo, Japan
| | - Hirotake Nishimura
- Department of Pathology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Ryuki Kaneko
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Wataru Mizunoya
- Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Atsushi Hinohara
- Research Coordination Group, Tokyo Research Park, R&D Division, Kyowa Kirin Co, Ltd, Machida-shi, Tokyo, Japan
| | | | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, Kurashiki City, Okayama, Japan.
| |
Collapse
|
10
|
Wolf L, Föller M, Feger M. The impact of SGLT2 inhibitors on αKlotho in renal MDCK and HK-2 cells. Front Endocrinol (Lausanne) 2023; 14:1069715. [PMID: 36967770 PMCID: PMC10032406 DOI: 10.3389/fendo.2023.1069715] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
αKlotho is a transmembrane protein predominantly expressed in the kidney serving as a co-receptor for phosphate homeostasis-regulating hormone FGF23 and has an extracellular domain that can be cleaved off and is a hormone. αKlotho deficiency results in accelerated aging and early onset of aging-associated diseases while its overexpression strongly expands the lifespan of mice. Moreover, αKlotho exerts health-beneficial anti-inflammatory, anti-neoplastic, anti-fibrotic, and anti-oxidant effects. Higher αKlotho levels are associated with better outcomes in renal and cardiovascular diseases. SGLT2 inhibitors are novel drugs in the treatment of diabetes by inhibiting renal glucose transport and have additional nephro- and cardioprotective effects. We explored whether SGLT2 inhibitors affect αKlotho gene expression and protein secretion. Experiments were performed in renal MDCK and HK-2 cells, and αKlotho transcripts were determined by qRT-PCR and Klotho protein by ELISA. SGLT2 inhibitors canagliflozin, sotagliflozin, and dapagliflozin enhanced whereas empagliflozin reduced αKlotho gene expression in MDCK cells. By the same token, canagliflozin, sotagliflozin, dapagliflozin, but not empagliflozin down-regulated p65 subunit of pro-inflammatory NFκB. In HK-2 cells, all SGLT2 inhibitors reduced αKlotho transcripts. Canagliflozin and sotagliflozin, however, increased Klotho protein concentration in the cell culture supernatant, an effect paralleled by up-regulation of ADAM17. Taken together, our investigations demonstrate complex effects of different SGLT2 inhibitors on αKlotho gene expression and protein secretion in renal MDCK and HK-2 cells.
Collapse
|
11
|
Münz S, Wolf L, Hoelzle LE, Chernyakov D, Edemir B, Föller M. Impact of cytotoxic agents or apoptosis stimulants on αklotho in MDCK, NRK-52E and HK2 kidney cells. Aging (Albany NY) 2022; 14:7282-7299. [PMID: 35997650 PMCID: PMC9550246 DOI: 10.18632/aging.204238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
αKlotho is a transmembrane protein acting as a co-receptor for FGF23, a bone hormone regulating renal phosphate and vitamin D metabolism. αKlotho expression is controlled by PPARγ. Soluble αklotho (sKL) regulates cellular signaling impacting stress resistance and death. αKlotho deficiency causes early onset of aging-associated diseases while its overexpression markedly increases lifespan. Cellular stress due to cytotoxic therapeutics or apoptosis induction through caspase activation or serum deficiency may result in cell death. Owing to αklotho's role in cellular stress and aging, this study explored the effect of cytotoxic agents or apoptosis stimulants on cellular αklotho expression. Experiments were performed in renal MDCK, NRK-52E and HK-2 cells. Gene expression was determined by qRT-PCR, sKL by ELISA, apoptosis and necrosis by annexin V binding and a fluorescent DNA dye, and cell viability by MTT assay. Cytostatic drugs cisplatin, paclitaxel, and doxorubicin as well as apoptosis induction with caspase 3 activator PAC-1 and serum deprivation induced αklotho and PPARG gene expression while decreasing viability and proliferation and inducing apoptosis of MDCK and NRK-52E cells to a variable extent. PPARγ antagonism attenuated up-regulation of αklotho in MDCK cells. In HK-2 cells, αklotho gene expression and sKL protein were down-regulated by chemotherapeutics. SKL serum levels in patients following chemotherapy were not significantly changed. In summary, potentially fatal stress results in up-regulation of αKlotho gene expression in MDCK and NRK-52E cells and down-regulation in HK-2 cells. These results indicate that different renal cell lines may exhibit completely different regulation of αklotho.
Collapse
Affiliation(s)
- Sina Münz
- Department of Physiology, University of Hohenheim, Stuttgart 70599, Germany
| | - Lisa Wolf
- Department of Physiology, University of Hohenheim, Stuttgart 70599, Germany
| | - Ludwig E Hoelzle
- Institute of Animal Science, University of Hohenheim, Stuttgart 70599, Germany
| | - Dmitry Chernyakov
- Department of Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Bayram Edemir
- Department of Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart 70599, Germany
| |
Collapse
|
12
|
Hu MC, Moe OW. Phosphate and Cellular Senescence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:55-72. [PMID: 35288873 PMCID: PMC10513121 DOI: 10.1007/978-3-030-91623-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cellular senescence is one type of permeant arrest of cell growth and one of increasingly recognized contributor to aging and age-associated disease. High phosphate and low Klotho individually and synergistically lead to age-related degeneration in multiple organs. Substantial evidence supports the causality of high phosphate in cellular senescence, and potential contribution to human aging, cancer, cardiovascular, kidney, neurodegenerative, and musculoskeletal diseases. Phosphate can induce cellular senescence both by direct phosphotoxicity, and indirectly through downregulation of Klotho and upregulation of plasminogen activator inhibitor-1. Restriction of dietary phosphate intake and blockage of intestinal absorption of phosphate help suppress cellular senescence. Supplementation of Klotho protein, cellular senescence inhibitor, and removal of senescent cells with senolytic agents are potential novel strategies to attenuate phosphate-induced cellular senescence, retard aging, and ameliorate age-associated, and phosphate-induced disorders.
Collapse
Affiliation(s)
- Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Departments of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
13
|
Czaya B, Heitman K, Campos I, Yanucil C, Kentrup D, Westbrook D, Gutierrez O, Babitt JL, Jung G, Salusky IB, Hanudel M, Faul C. Hyperphosphatemia increases inflammation to exacerbate anemia and skeletal muscle wasting independently of FGF23-FGFR4 signaling. eLife 2022; 11:74782. [PMID: 35302487 PMCID: PMC8963881 DOI: 10.7554/elife.74782] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/17/2022] [Indexed: 12/01/2022] Open
Abstract
Elevations in plasma phosphate concentrations (hyperphosphatemia) occur in chronic kidney disease (CKD), in certain genetic disorders, and following the intake of a phosphate-rich diet. Whether hyperphosphatemia and/or associated changes in metabolic regulators, including elevations of fibroblast growth factor 23 (FGF23) directly contribute to specific complications of CKD is uncertain. Here, we report that similar to patients with CKD, mice with adenine-induced CKD develop inflammation, anemia, and skeletal muscle wasting. These complications are also observed in mice fed high phosphate diet even without CKD. Ablation of pathologic FGF23-FGFR4 signaling did not protect mice on an increased phosphate diet or mice with adenine-induced CKD from these sequelae. However, low phosphate diet ameliorated anemia and skeletal muscle wasting in a genetic mouse model of CKD. Our mechanistic in vitro studies indicate that phosphate elevations induce inflammatory signaling and increase hepcidin expression in hepatocytes, a potential causative link between hyperphosphatemia, anemia, and skeletal muscle dysfunction. Our study suggests that high phosphate intake, as caused by the consumption of processed food, may have harmful effects irrespective of pre-existing kidney injury, supporting not only the clinical utility of treating hyperphosphatemia in CKD patients but also arguing for limiting phosphate intake in healthy individuals.
Collapse
Affiliation(s)
- Brian Czaya
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States,Department of Medicine, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Kylie Heitman
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States
| | - Isaac Campos
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States
| | - Christopher Yanucil
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States
| | - David Westbrook
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States
| | - Orlando Gutierrez
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States
| | - Jodie L Babitt
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Grace Jung
- Department of Medicine, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Isidro B Salusky
- Department of Pediatrics, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Mark Hanudel
- Department of Pediatrics, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Christian Faul
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
14
|
Alexander R, Debiec N, Razzaque MS, He P. Inorganic phosphate-induced cytotoxicity. IUBMB Life 2021; 74:117-124. [PMID: 34676972 DOI: 10.1002/iub.2561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/27/2021] [Accepted: 09/18/2021] [Indexed: 12/17/2022]
Abstract
Phosphate, an essential nutrient, is available in organic and inorganic forms. The balance of phosphate is central for cellular homeostasis through the genomic roles of DNA and RNA synthesis and cell signaling processes. Therefore, an imbalance of this nutrient, manifested, either as a deficiency or excess in phosphate levels, can result in pathology, ranging from cytotoxicity to musculoskeletal defects. Inorganic phosphate (Pi) overdosing can result in a wide spectrum of cytotoxicity processes, as noted in both animal models and human studies. These include rewired cell signaling pathways, impaired bone mineralization, infertility, premature aging, vascular calcification, and renal dysfunction. This article briefly reviews the regulation of phosphate homeostasis and elaborates on cytotoxic effects of excessive Pi, as documented in cell-based models.
Collapse
Affiliation(s)
- Rachel Alexander
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| | - Nicholas Debiec
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| | - Mohammad S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| | - Ping He
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| |
Collapse
|
15
|
Understanding the Stony Bridge between Osteoporosis and Vascular Calcification: Impact of the FGF23/Klotho axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7536614. [PMID: 34539972 PMCID: PMC8448600 DOI: 10.1155/2021/7536614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/07/2021] [Indexed: 12/11/2022]
Abstract
A relationship between osteoporosis (OP) and vascular calcification (VC) is now proposed. There are common mechanisms underlying the regulation of them. Fibroblast growth factor- (FGF-) 23 and Klotho are hormones associated with the metabolic axis of osteovascular metabolism. Most recently, it was suggested that the FGF23-klotho axis is associated with increasing incidence of fractures and is potentially involved in the progression of the aortic-brachial stiffness ratio. Herein, we discussed the potential role of the FGF23/Klotho axis in the pathophysiology of OP and VC. We want to provide an update review in order to allow a better understanding of the potential role of the FGF23/Klotho axis in comorbidity of OP and VC. We believe that a better understanding of the relationship between both entities can help in proposing new therapeutic targets for reducing the increasing prevalence of OP and VC in the aging population.
Collapse
|
16
|
The Protein-Independent Role of Phosphate in the Progression of Chronic Kidney Disease. Toxins (Basel) 2021; 13:toxins13070503. [PMID: 34357974 PMCID: PMC8310030 DOI: 10.3390/toxins13070503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Several factors contribute to renal-function decline in CKD patients, and the role of phosphate content in the diet is still a matter of debate. This study aims to analyze the mechanism by which phosphate, independent of protein, is associated with the progression of CKD. Adult Munich-Wistar rats were submitted to 5/6 nephrectomy (Nx), fed with a low-protein diet, and divided into two groups. Only phosphate content (low phosphate, LoP, 0.2%; high phosphate, HiP, 0.95%) differentiated diets. After sixty days, biochemical parameters and kidney histology were analyzed. The HiP group presented worse renal function, with higher levels of PTH, FGF-23, and fractional excretion of phosphate. In the histological analysis of the kidney tissue, they also showed a higher percentage of interstitial fibrosis, expression of α-actin, PCNA, and renal infiltration by macrophages. The LoP group presented higher expression of beclin-1 in renal tubule cells, a marker of autophagic flux, when compared to the HiP group. Our findings highlight the action of phosphate in the induction of kidney interstitial inflammation and fibrosis, contributing to the progression of renal disease. A possible effect of phosphate on the dysregulation of the renal cell autophagy mechanism needs further investigation with clinical studies.
Collapse
|
17
|
Kuro-O M. Phosphate as a Pathogen of Arteriosclerosis and Aging. J Atheroscler Thromb 2021; 28:203-213. [PMID: 33028781 PMCID: PMC8048948 DOI: 10.5551/jat.rv17045] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
During the evolution of skeletons, terrestrial vertebrates acquired strong bones made of calcium-phosphate. By keeping the extracellular fluid in a supersaturated condition regarding calcium and phosphate ions, they created the bone when and where they wanted simply by providing a cue for precipitation. To secure this strategy, they acquired a novel endocrine system to strictly control the extracellular phosphate concentration. In response to phosphate intake, fibroblast growth factor-23 (FGF23) is secreted from the bone and acts on the kidney through binding to its receptor Klotho to increase urinary phosphate excretion, thereby maintaining phosphate homeostasis. The FGF23-Klotho endocrine system, when disrupted in mice, results in hyperphosphatemia and vascular calcification. Besides, mice lacking Klotho or FGF23 suffer from complex aging-like phenotypes, which are alleviated by placing them on a low- phosphate diet, indicating that phosphate is primarily responsible for the accelerated aging. Phosphate acquires the ability to induce cell damage and inflammation when precipitated with calcium. In the blood, calcium-phosphate crystals are adsorbed by serum protein fetuin-A and prevented from growing into large precipitates. Consequently, nanoparticles that comprised calcium-phosphate crystals and fetuin-A, termed calciprotein particles (CPPs), are generated and dispersed as colloids. CPPs increase in the blood with an increase in serum phosphate and age. Circulating CPP levels correlate positively with vascular stiffness and chronic non-infectious inflammation, raising the possibility that CPPs may be an endogenous pro-aging factor. Terrestrial vertebrates with the bone made of calcium- phosphate may be destined to age due to calcium-phosphate in the blood.
Collapse
Affiliation(s)
- Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University
| |
Collapse
|
18
|
Yu Z, Ling Z, Lu L, Zhao J, Chen X, Xu P, Zou X. Regulatory Roles of Bone in Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:610581. [PMID: 33408628 PMCID: PMC7779400 DOI: 10.3389/fnagi.2020.610581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis and neurodegenerative diseases are two kinds of common disorders of the elderly, which often co-occur. Previous studies have shown the skeletal and central nervous systems are closely related to pathophysiology. As the main structural scaffold of the body, the bone is also a reservoir for stem cells, a primary lymphoid organ, and an important endocrine organ. It can interact with the brain through various bone-derived cells, mostly the mesenchymal and hematopoietic stem cells (HSCs). The bone marrow is also a place for generating immune cells, which could greatly influence brain functions. Finally, the proteins secreted by bones (osteokines) also play important roles in the growth and function of the brain. This article reviews the latest research studying the impact of bone-derived cells, bone-controlled immune system, and bone-secreted proteins on the brain, and evaluates how these factors are implicated in the progress of neurodegenerative diseases and their potential use in the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Zhengran Yu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Lu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Zhao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Arnst JL, Beck GR. Modulating phosphate consumption, a novel therapeutic approach for the control of cancer cell proliferation and tumorigenesis. Biochem Pharmacol 2020; 183:114305. [PMID: 33129806 DOI: 10.1016/j.bcp.2020.114305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023]
Abstract
Phosphorus, often in the form of inorganic phosphate (Pi), is critical to cellular function on many levels; it is required as an integral component of kinase signaling, in the formation and function of DNA and lipids, and energy metabolism in the form of ATP. Accordingly, crucial aspects of cell mitosis - such as DNA synthesis and ATP energy generation - elevate the cellular requirement for Pi, with rapidly dividing cells consuming increased levels. Mechanisms to sense, respond, acquire, accumulate, and potentially seek Pi have evolved to support highly proliferative cellular states such as injury and malignant transformation. As such, manipulating Pi availability to target rapidly dividing cells presents a novel strategy to reduce or prevent unrestrained cell growth. Currently, limited knowledge exists regarding how modulating Pi consumption by pre-cancerous cells might influence the initiation of aberrant growth during malignant transformation, and if reducing the bioavailability or suppressing Pi consumption by malignant cells could alter tumorigenesis. The concept of targeting Pi-regulated pathways and/or consumption by pre-cancerous or tumor cells represents a novel approach to cancer prevention and control, although current data remains insufficient as to rigorously assess the therapeutic value and physiological relevance of this strategy. With this review, we present a critical evaluation of the paradox of how an element critical to essential cellular functions can, when available in excess, influence and promote a cancer phenotype. Further, we conjecture how Pi manipulation could be utilized as a therapeutic intervention, either systemically or at the cell level, to ultimately suppress or treat cancer initiation and/or progression.
Collapse
Affiliation(s)
- Jamie L Arnst
- Emory University, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta, GA 30322, United States
| | - George R Beck
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA 30033, United States; Emory University, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta, GA 30322, United States; The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
20
|
Fujii Y, Kozak E, Dutra E, Varadi A, Reichenberger EJ, Chen IP. Restriction of Dietary Phosphate Ameliorates Skeletal Abnormalities in a Mouse Model for Craniometaphyseal Dysplasia. J Bone Miner Res 2020; 35:2070-2081. [PMID: 33463757 PMCID: PMC9164311 DOI: 10.1002/jbmr.4110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/22/2020] [Accepted: 06/07/2020] [Indexed: 11/08/2022]
Abstract
Craniometaphyseal dysplasia (CMD), a rare genetic bone disorder, is characterized by lifelong progressive thickening of craniofacial bones and metaphyseal flaring of long bones. The autosomal dominant form of CMD is caused by mutations in the progressive ankylosis gene ANKH (mouse ortholog Ank), encoding a pyrophosphate (PPi) transporter. We previously reported reduced formation and function of osteoblasts and osteoclasts in a knockin (KI) mouse model for CMD (AnkKI/KI) and in CMD patients. We also showed rapid protein degradation of mutant ANK/ANKH. Mutant ANK protein displays reduced PPi transport, which may alter the inorganic phosphate (Pi) and PPi ratio, an important regulatory mechanism for bone mineralization. Here we investigate whether reducing dietary Pi intake can ameliorate the CMD-like skeletal phenotype by comparing male and female Ank+/+ and AnkKI/KI mice exposed to a low (0.3%) and normal (0.7%) Pi diet for 13 weeks from birth. Serum Pi and calcium (Ca) levels were not significantly changed by diet, whereas PTH and 25-hydroxy vitamin D (25-OHD) were decreased by low Pi diet but only in male Ank+/+ mice. Importantly, the 0.3% Pi diet significantly ameliorated mandibular hyperostosis in both sexes of AnkKI/KI mice. A tendency of decreased femoral trabeculation was observed in male and female Ank+/+ mice as well as in male AnkKI/KI mice fed with the 0.3% Pi diet. In contrast, in female AnkKI/KI mice the 0.3% Pi diet resulted in increased metaphyseal trabeculation. This was also the only group that showed increased bone formation rate. Low Pi diet led to increased osteoclast numbers and increased bone resorption in all mice. We conclude that lowering but not depleting dietary Pi delays the development of craniofacial hyperostosis in CMD mice without severely compromising serum levels of Pi, Ca, PTH, and 25-OHD. These findings may have implications for better clinical care of patients with CMD. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Eszter Kozak
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Eliane Dutra
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Andras Varadi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Ernst J Reichenberger
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| | - I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
21
|
Agoro R, Ni P, Noonan ML, White KE. Osteocytic FGF23 and Its Kidney Function. Front Endocrinol (Lausanne) 2020; 11:592. [PMID: 32982979 PMCID: PMC7485387 DOI: 10.3389/fendo.2020.00592] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Osteocytes, which represent up to 95% of adult skeletal cells, are deeply embedded in bone. These cells exhibit important interactive abilities with other bone cells such as osteoblasts and osteoclasts to control skeletal formation and resorption. Beyond this local role, osteocytes can also influence the function of distant organs due to the presence of their sophisticated lacunocanalicular system, which connects osteocyte dendrites directly to the vasculature. Through these networks, osteocytes sense changes in circulating metabolites and respond by producing endocrine factors to control homeostasis. One critical function of osteocytes is to respond to increased blood phosphate and 1,25(OH)2 vitamin D (1,25D) by producing fibroblast growth factor-23 (FGF23). FGF23 acts on the kidneys through partner fibroblast growth factor receptors (FGFRs) and the co-receptor Klotho to promote phosphaturia via a downregulation of phosphate transporters, as well as the control of vitamin D metabolizing enzymes to reduce blood 1,25D. In the first part of this review, we will explore the signals involved in the positive and negative regulation of FGF23 in osteocytes. In the second portion, we will bridge bone responses with the review of current knowledge on FGF23 endocrine functions in the kidneys.
Collapse
Affiliation(s)
- Rafiou Agoro
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Pu Ni
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Megan L. Noonan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kenneth E. White
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Medicine/Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
22
|
Maique J, Flores B, Shi M, Shepard S, Zhou Z, Yan S, Moe OW, Hu MC. High Phosphate Induces and Klotho Attenuates Kidney Epithelial Senescence and Fibrosis. Front Pharmacol 2020; 11:1273. [PMID: 32973510 PMCID: PMC7468469 DOI: 10.3389/fphar.2020.01273] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Cellular senescence is an irreversible cell growth arrest and is associated with aging and age-related diseases. High plasma phosphate (Pi) and deficiency of Klotho contribute to aging and kidney fibrosis, a pathological feature in the aging kidney and chronic kidney disease. This study examined the interactive role of Pi and Klotho in kidney senescence and fibrosis. Homozygous Klotho hypomorphic mice had high plasma Pi, undetectable Klotho in plasma and kidney, high senescence with massive collagen accumulation in kidney tubules, and fibrin deposits in peritubular capillaries. To examine the Pi effect on kidney senescence, a high (2%) Pi diet was given to wild-type mice. One week of high dietary Pi mildly increased plasma Pi, and upregulated kidney p16/p21 expression, but did not significantly decrease Klotho. Two weeks of high Pi intake led to increase in plasminogen activator inhibitor (PAI)-1, and decrease in kidney Klotho, but still without detectable increase in kidney fibrosis. More prolonged dietary Pi for 12 weeks exacerbated kidney senescence and fibrosis; more so in heterozygous Klotho hypomorphic mice compared to wild-type mice, and in mice with chronic kidney disease (CKD) on high Pi diet compared to CKD mice fed a normal Pi diet. In cultured kidney tubular cells, high Pi directly induced cellular senescence, injury and epithelial-mesenchymal transition, and enhanced H2O2-induced cellular senescence and injury, which were abrogated by Klotho. Fucoidan, a bioactive molecule with multiple biologic functions including senescence inhibition, blunted Pi-induced cellular senescence, oxidation, injury, epithelial-mesenchymal transition, and senescence-associated secretary phenotype. In conclusion, high Pi activates senescence through distinct but interconnected mechanisms: upregulating p16/p21 (early), and elevating plasminogen activator inhibitor-1 and downregulating Klotho (late). Klotho may be a promising agent to attenuate senescence and ameliorate age-associated, and Pi-induced kidney degeneration such as kidney fibrosis.
Collapse
Affiliation(s)
- Jenny Maique
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Brianna Flores
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Mingjun Shi
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sierra Shepard
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Zhiyong Zhou
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Shirely Yan
- Departments of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
23
|
Bi X, Yang K, Zhang B, Zhao J. The Protective Role of Klotho in CKD-Associated Cardiovascular Disease. KIDNEY DISEASES 2020; 6:395-406. [PMID: 33313060 DOI: 10.1159/000509369] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Background Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality in advanced CKD. The major pathological changes of CKD-associated CVD are severe vascular media calcification, aberrant cardiac remodeling such as hypertrophy and fibrosis, as well as accelerated atherosclerosis. α-Klotho is proposed as an anti-aging gene, which is primarily expressed in the kidney. Recent studies reveal that α-Klotho deficiency is associated with profound cardiovascular dysfunction. Of note, CKD represents extremely declined α-Klotho levels, hinting that α-Klotho deficiency may be implicated in the pathogenesis of CKD-associated CVD. Summary Based on the pathogenic mechanism of α-Klotho deficiency and decreased Klotho levels in the circulation even early in stage 1 of CKD, α-Klotho serves as a sensitive biomarker for renal insufficiency and also a novel predictor of risk of overall mortality of CVD events in CKD. Meanwhile, loss of Klotho resulted from kidney dysfunction markedly contributes to the progressive development of CKD and CVD. By contrast, prevention of Klotho decline using exogenous supplementation or genetically activated ways by several mechanisms can dramatically mitigate cardiac dysfunction, prevent vascular calcification, and retard the progression of CKD-accelerated atherosclerosis. Key Messages Klotho deficiency is proposed as a novel predictive biomarker as well as a pathogenic contributor to CVD events in CKD. In the future, Klotho may be a crucial potential therapeutic strategy to decrease the burden of CVD comorbidity with CKD in clinics.
Collapse
Affiliation(s)
- Xianjin Bi
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ke Yang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bo Zhang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
24
|
Moor MB, Ramakrishnan SK, Legrand F, Bachtler M, Koesters R, Hynes NE, Pasch A, Bonny O. Elevated serum magnesium lowers calcification propensity in Memo1-deficient mice. PLoS One 2020; 15:e0236361. [PMID: 32706793 PMCID: PMC7380890 DOI: 10.1371/journal.pone.0236361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/03/2020] [Indexed: 11/18/2022] Open
Abstract
MEdiator of cell MOtility1 (MEMO1) is a ubiquitously expressed redox protein involved in extracellular ligand-induced cell signaling. We previously reported that inducible whole-body Memo1 KO (cKO) mice displayed a syndrome of premature aging and disturbed mineral metabolism partially recapitulating the phenotype observed in Klotho or Fgf23-deficient mouse models. Here, we aimed at delineating the contribution of systemic mineral load on the Memo1 cKO mouse phenotype. We attempted to rescue the Memo1 cKO phenotype by depleting phosphate or vitamin D from the diet, but did not observe any effect on survival. However, we noticed that, by contrast to Klotho or Fgf23-deficient mouse models, Memo1 cKO mice did not present any soft-tissue calcifications and displayed even a decreased serum calcification propensity. We identified higher serum magnesium levels as the main cause of protection against calcifications. Expression of genes encoding intestinal and renal magnesium channels and the regulator epidermal growth factor were increased in Memo1 cKO. In order to check whether magnesium reabsorption in the kidney alone was driving the higher magnesemia, we generated a kidney-specific Memo1 KO (kKO) mouse model. Memo1 kKO mice also displayed higher magnesemia and increased renal magnesium channel gene expression. Collectively, these data identify MEMO1 as a novel regulator of magnesium homeostasis and systemic calcification propensity, by regulating expression of the main magnesium channels.
Collapse
Affiliation(s)
- Matthias B. Moor
- Department of Medical Biosciences, University of Lausanne, Lausanne, Switzerland
- The National Centre of Competence in Research (NCCR) "Kidney.CH - Kidney Control of Homeostasis", Zürich, Switzerland
| | - Suresh K. Ramakrishnan
- Department of Medical Biosciences, University of Lausanne, Lausanne, Switzerland
- The National Centre of Competence in Research (NCCR) "Kidney.CH - Kidney Control of Homeostasis", Zürich, Switzerland
| | - Finola Legrand
- Department of Medical Biosciences, University of Lausanne, Lausanne, Switzerland
| | - Matthias Bachtler
- Calciscon AG, Nidau, Switzerland and Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Robert Koesters
- Department of Nephrology, Hôpital Tenon, Université Pierre et Marie Curie, Paris, France
| | - Nancy E. Hynes
- Friedrich Miescher Institute for Biomedical Research and University of Basel, Basel, Switzerland
| | - Andreas Pasch
- Calciscon AG, Nidau, Switzerland and Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Olivier Bonny
- Department of Medical Biosciences, University of Lausanne, Lausanne, Switzerland
- The National Centre of Competence in Research (NCCR) "Kidney.CH - Kidney Control of Homeostasis", Zürich, Switzerland
- Department of Medicine, Service of Nephrology, Lausanne University Hospital, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
25
|
Munc13 mediates klotho-inhibitable diacylglycerol-stimulated exocytotic insertion of pre-docked TRPC6 vesicles. PLoS One 2020; 15:e0229799. [PMID: 32134975 PMCID: PMC7058344 DOI: 10.1371/journal.pone.0229799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/13/2020] [Indexed: 11/29/2022] Open
Abstract
α-Klotho is a type 1 transmembrane protein that exhibits aging suppression function. The large amino-terminal extracellular domain of α-klotho is shed as soluble klotho (sKlotho) and functions as a circulating cardioprotective hormone. Diacylglycerol (DAG)-activated calcium-permeable TRPC6 channel plays a critical role in stress-induced cardiac remodeling. DAG activates TRPC6 by acting directly on the channel to increase its activity and by stimulation of channel exocytosis. sKlotho protects the heart by inhibiting DAG stimulation of TRPC6 exocytosis. How DAG stimulates TRPC6 exocytosis and thereby inhibition by sKlotho are unknown. Using a compound that directly activates TRPC6 without affecting channel exocytosis, we validate that sKlotho selectively blocks DAG stimulation of channel exocytosis. We further show that DAG stimulates exocytosis of TRPC6-containing vesicles pre-docked to the plasma membrane. Mnuc13 family proteins play important roles in the proper assembly of SNARE proteins and priming the vesicle competent for fusion. We show that DAG stimulates TRPC6 exocytosis by targeting to the C1 domain of Munc13-2. The results provide fresh insights into the molecular mechanism by which DAG regulates vesicle fusion and how sKlotho protects the heart against injury.
Collapse
|
26
|
Hanazaki A, Ikuta K, Sasaki S, Sasaki S, Koike M, Tanifuji K, Arima Y, Kaneko I, Shiozaki Y, Tatsumi S, Hasegawa T, Amizuka N, Miyamoto K, Segawa H. Role of sodium-dependent Pi transporter/Npt2c on Pi homeostasis in klotho knockout mice different properties between juvenile and adult stages. Physiol Rep 2020; 8:e14324. [PMID: 32026654 PMCID: PMC7002534 DOI: 10.14814/phy2.14324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SLC34A3/NPT2c/NaPi-2c/Npt2c is a growth-related NaPi cotransporter that mediates the uptake of renal sodium-dependent phosphate (Pi). Mutation of human NPT2c causes hereditary hypophosphatemic rickets with hypercalciuria. Mice with Npt2c knockout, however, exhibit normal Pi metabolism. To investigate the role of Npt2c in Pi homeostasis, we generated α-klotho-/- /Npt2c-/- (KL2cDKO) mice and analyzed Pi homeostasis. α-Klotho-/- (KLKO) mice exhibit hyperphosphatemia and markedly increased kidney Npt2c protein levels. Genetic disruption of Npt2c extended the lifespan of KLKO mice similar to that of α-Klotho-/- /Npt2a-/- mice. Adult KL2cDKO mice had hyperphosphatemia, but analysis of Pi metabolism revealed significantly decreased intestinal and renal Pi (re)absorption compared with KLKO mice. The 1,25-dihydroxy vitamin D3 concentration was not reduced in KL2cDKO mice compared with that in KLKO mice. The KL2cDKO mice had less severe soft tissue and vascular calcification compared with KLKO mice. Juvenile KL2cDKO mice had significantly reduced plasma Pi levels, but Pi metabolism was not changed. In Npt2cKO mice, plasma Pi levels began to decrease around the age of 15 days and significant hypophosphatemia developed within 21 days. The findings of the present study suggest that Npt2c contributes to regulating plasma Pi levels in the juvenile stage and affects Pi retention in the soft and vascular tissues in KLKO mice.
Collapse
Affiliation(s)
- Ai Hanazaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Kayo Ikuta
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Shohei Sasaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Sumire Sasaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Megumi Koike
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Kazuya Tanifuji
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Yuki Arima
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Ichiro Kaneko
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Yuji Shiozaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Sawako Tatsumi
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Tomoka Hasegawa
- Developmental Biology of Hard TissueHokkaido University Graduate School of Dental MedicineSapporoJapan
| | - Norio Amizuka
- Developmental Biology of Hard TissueHokkaido University Graduate School of Dental MedicineSapporoJapan
| | - Ken‐ichi Miyamoto
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Hiroko Segawa
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| |
Collapse
|
27
|
Shi M, Maique J, Shaffer J, Davidson T, Sebti S, Fernández ÁF, Zou Z, Yan S, Levine B, Moe OW, Hu MC. The tripartite interaction of phosphate, autophagy, and αKlotho in health maintenance. FASEB J 2020; 34:3129-3150. [PMID: 31908069 PMCID: PMC7286356 DOI: 10.1096/fj.201902127r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
Aging-related organ degeneration is driven by multiple factors including the cell maintenance mechanisms of autophagy, the cytoprotective protein αKlotho, and the lesser known effects of excess phosphate (Pi), or phosphotoxicity. To examine the interplay between Pi, autophagy, and αKlotho, we used the BK/BK mouse (homozygous for mutant Becn1F121A ) with increased autophagic flux, and αKlotho-hypomorphic mouse (kl/kl) with impaired urinary Pi excretion, low autophagy, and premature organ dysfunction. BK/BK mice live longer than WT littermates, and have heightened phosphaturia from downregulation of two key NaPi cotransporters in the kidney. The multi-organ failure in kl/kl mice was rescued in the double-mutant BK/BK;kl/kl mice exhibiting lower plasma Pi, improved weight gain, restored plasma and renal αKlotho levels, decreased pathology of multiple organs, and improved fertility compared to kl/kl mice. The beneficial effects of heightened autophagy from Becn1F121A was abolished by chronic high-Pi diet which also shortened life span in the BK/BK;kl/kl mice. Pi promoted beclin 1 binding to its negative regulator BCL2, which impairs autophagy flux. Pi downregulated αKlotho, which also independently impaired autophagy. In conclusion, Pi, αKlotho, and autophagy interact intricately to affect each other. Both autophagy and αKlotho antagonizes phosphotoxicity. In concert, this tripartite system jointly determines longevity and life span.
Collapse
Affiliation(s)
- Mingjun Shi
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jenny Maique
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joy Shaffer
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Taylor Davidson
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Salwa Sebti
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Álvaro F. Fernández
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhongju Zou
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shirley Yan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Orson W. Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
28
|
Brown RB. Diabetes, Diabetic Complications, and Phosphate Toxicity: A Scoping Review. Curr Diabetes Rev 2020; 16:674-689. [PMID: 31686640 DOI: 10.2174/1573399815666191104113236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
This article presents a scoping review and synthesis of research findings investigating the toxic cellular accumulation of dysregulated inorganic phosphate-phosphate toxicity-as a pathophysiological determinant of diabetes and diabetic complications. Phosphorus, an essential micronutrient, is closely linked to the cellular metabolism of glucose for energy production, and serum inorganic phosphate is often transported into cells along with glucose during insulin therapy. Mitochondrial dysfunction and apoptosis, endoplasmic reticulum stress, neuronal degeneration, and pancreatic cancer are associated with dysregulated levels of phosphate in diabetes. Ectopic calcification involving deposition of calcium-phosphate crystals is prevalent throughout diabetic complications, including vascular calcification, nephropathy, retinopathy, and bone disorders. A low-glycemic, low-phosphate dietary intervention is proposed for further investigations in the treatment and prevention of diabetes and related diabetic pathologies.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
29
|
Nakajima T, Maruhashi T, Morimatsu T, Mukai Y. Cyclin-dependent kinase Pho85p and its cyclins are involved in replicative lifespan through multiple pathways in yeast. FEBS Lett 2019; 594:1166-1175. [PMID: 31797348 DOI: 10.1002/1873-3468.13707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 11/07/2022]
Abstract
Lifespan is determined by genetic factors and influenced by environmental factors. Here, we find that the phosphate signal transduction (PHO) pathway is involved in the determination of replicative lifespan in budding yeast. Extracellular phosphate does not affect the lifespan. However, deletion of PHO80 (cyclin) and PHO85 (cyclin-dependent kinase) genes, that is, negative regulators of the PHO pathway, shortens the lifespan, which is restored by further deletion of PHO4 (transcriptional activator). Four of the other nine Pho85p cyclin genes are also required to maintain normal lifespan. The short-lived mutants show a metabolic profile that is similar to strains with normal lifespan. Thus, Pho85p kinase genetically determines replicative lifespan in combination with relevant cyclins. Our findings uncover novel cellular signals in longevity regulation.
Collapse
Affiliation(s)
- Toshio Nakajima
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Tsubasa Maruhashi
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Takaaki Morimatsu
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Yukio Mukai
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| |
Collapse
|
30
|
Abstract
The Klotho proteins, αKlotho and βKlotho, are essential components of endocrine fibroblast growth factor (FGF) receptor complexes, as they are required for the high-affinity binding of FGF19, FGF21 and FGF23 to their cognate FGF receptors (FGFRs). Collectively, these proteins form a unique endocrine system that governs multiple metabolic processes in mammals. FGF19 is a satiety hormone that is secreted from the intestine on ingestion of food and binds the βKlotho-FGFR4 complex in hepatocytes to promote metabolic responses to feeding. By contrast, under fasting conditions, the liver secretes the starvation hormone FGF21, which induces metabolic responses to fasting and stress responses through the activation of the hypothalamus-pituitary-adrenal axis and the sympathetic nervous system following binding to the βKlotho-FGFR1c complex in adipocytes and the suprachiasmatic nucleus, respectively. Finally, FGF23 is secreted by osteocytes in response to phosphate intake and binds to αKlotho-FGFR complexes, which are expressed most abundantly in renal tubules, to regulate mineral metabolism. Growing evidence suggests that the FGF-Klotho endocrine system also has a crucial role in the pathophysiology of ageing-related disorders, including diabetes, cancer, arteriosclerosis and chronic kidney disease. Therefore, targeting the FGF-Klotho endocrine axes might have therapeutic benefit in multiple systems; investigation of the crystal structures of FGF-Klotho-FGFR complexes is paving the way for the development of drugs that can regulate these axes.
Collapse
Affiliation(s)
- Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan. .,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
31
|
Fukuda-Tatano S, Yamamoto H, Nakahashi O, Yoshikawa R, Hayashi M, Kishimoto M, Imi Y, Yamanaka-Okumura H, Ohnishi K, Masuda M, Taketani Y. Regulation of α-Klotho Expression by Dietary Phosphate During Growth Periods. Calcif Tissue Int 2019; 104:667-678. [PMID: 30671592 DOI: 10.1007/s00223-019-00525-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
Abstract
Inorganic phosphate (Pi) is an essential nutrient for maintaining various biological functions, particularly during growth periods. Excess intake of dietary Pi increases the secretion of fibroblast growth factor 23 (FGF23) and parathyroid hormone to maintain plasma Pi levels. FGF23 is a potent phosphaturic factor that binds to the α-klotho/FGFR complex in the kidney to promote excretion of Pi into the urine. In addition, excess intake of dietary Pi decreases renal α-klotho expression. Down-regulation or lack of α-klotho induces a premature aging-like phenotype, resulting from hyperphosphatemia, and leading to conditions such as ectopic calcification and osteoporosis. However, it remains unclear what effects dietary Pi has on α-klotho expression at different life stages, especially during growth periods. To investigate this, we used C57BL/6J mice in two life stages during growing period. Weaned (3 weeks old) and periadolescent (7 weeks old) were randomly divided into seven experimental groups and fed with 0.02, 0.3, 0.6, 0.9, 1.2, 1.5, or 1.8% Pi diets for 7 days. As a result, elevated plasma Pi and FGF23 levels and decreased renal α-klotho expression were observed in weaned mice fed with a high Pi diet. In addition, a high Pi diet clearly induced renal calcification in the weaned mice. However, in the periadolescent group, renal calcification was not observed, even in the 1.8% Pi diet group. The present study indicates that a high Pi diet in weaned mice has much greater adverse effects on renal α-klotho expression and pathogenesis of renal calcification compared with periadolescent mice.
Collapse
Affiliation(s)
- Shiori Fukuda-Tatano
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
- Department of Health and Nutrition, Faculty of Nursing and Nutrition, The University of Shimane, 151 Nishihayashigi, Izumo, Shimane, 693-8550, Japan
| | - Hironori Yamamoto
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
- Department of Health and Nutrition, Faculty of Human Life, Jin-ai University, Ohde-cho 3-1-1, Echizen, Fukui, 915-8586, Japan
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Otoki Nakahashi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
- Division of Functional Food Chemistry, Institute for Health Science, Tokushima Bunri University, 180 Nishihamahoji, Yamashiro-cho, Tokushima, Tokushima, 770-8514, Japan
| | - Ryouhei Yoshikawa
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mayu Hayashi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Maki Kishimoto
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yukiko Imi
- Department of Clinical Nutrition and Dietetics, Konan Women's University, Kobe, 658-0001, Japan
| | - Hisami Yamanaka-Okumura
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kohta Ohnishi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masashi Masuda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yutaka Taketani
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| |
Collapse
|
32
|
FGF-23 Deficiency Impairs Hippocampal-Dependent Cognitive Function. eNeuro 2019; 6:eN-NRS-0469-18. [PMID: 30911673 PMCID: PMC6430630 DOI: 10.1523/eneuro.0469-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 01/05/2023] Open
Abstract
Fibroblast growth factor receptor (FGFR) and α-Klotho transduce FGF-23 signaling in renal tubules to maintain systemic phosphate/vitamin D homeostasis. Mice deficient for either the ligand, FGF-23, or the co-receptor, Klotho, are phenocopies with both showing rapid and premature development of multiple aging-like abnormalities. Such similarity in phenotype, suggests that FGF-23 and Klotho have co-dependent systemic functions. Recent reports revealed inverse central nervous system (CNS) effects of Klotho deficiency or Klotho overexpression on hippocampal synaptic, neurogenic, and cognitive functions. However, it is unknown whether FGF-23 deficiency effects function of the hippocampus. We report that, similar to Klotho-deficient mice, FGF-23-deficient mice develop dose-dependent, hippocampal-dependent cognitive impairment. However, FGF-23-deficient brains had no gross structural or developmental defects, no change in hippocampal synaptic plasticity, and only minor impairment to postnatal hippocampal neurogenesis. Together, these data provide evidence that FGF-23 deficiency impairs hippocampal-dependent cognition but otherwise results in a brain phenotype that is distinct from the KL-deficient mouse.
Collapse
|
33
|
LCE: an open web portal to explore gene expression and clinical associations in lung cancer. Oncogene 2018; 38:2551-2564. [PMID: 30532070 PMCID: PMC6477796 DOI: 10.1038/s41388-018-0588-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023]
Abstract
We constructed a lung cancer-specific database housing expression data and clinical data from over 6700 patients in 56 studies. Expression data from 23 genome-wide platforms were carefully processed and quality controlled, whereas clinical data were standardized and rigorously curated. Empowered by this lung cancer database, we created an open access web resource—the Lung Cancer Explorer (LCE), which enables researchers and clinicians to explore these data and perform analyses. Users can perform meta-analyses on LCE to gain a quick overview of the results on tumor vs non-malignant tissue (normal) differential gene expression and expression-survival association. Individual dataset-based survival analysis, comparative analysis, and correlation analysis are also provided with flexible options to allow for customized analyses from the user.
Collapse
|
34
|
Takashi Y, Fukumoto S. FGF23 beyond Phosphotropic Hormone. Trends Endocrinol Metab 2018; 29:755-767. [PMID: 30217676 DOI: 10.1016/j.tem.2018.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/14/2022]
Abstract
Fibroblast growth factor (FGF) 23 is a bone-derived phosphotropic hormone that regulates phosphate and vitamin D metabolism. FGF23 mainly affects kidney function via the FGF receptor (FGFR)/α-Klotho complex. The physiological roles of FGF23 and α-Klotho in the regulation of mineral homeostasis have been well established. In addition, recent studies have reported that FGF23 has various effects on many other tissues, sometimes in an α-Klotho-independent manner, especially under pathological conditions. However, how FGF23 works in these tissues without α-Klotho is not entirely clear. Here we review the recent reports concerning the actions of FGF23 on various tissues and discuss the remaining questions about FGF23.
Collapse
Affiliation(s)
- Yuichi Takashi
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, Tokushima 7708503, Japan; Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, Tokushima 7708503, Japan
| | - Seiji Fukumoto
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, Tokushima 7708503, Japan.
| |
Collapse
|
35
|
Mytych J, Romerowicz-Misielak M, Koziorowski M. Klotho protects human monocytes from LPS-induced immune impairment associated with immunosenescent-like phenotype. Mol Cell Endocrinol 2018; 470:1-13. [PMID: 28478304 DOI: 10.1016/j.mce.2017.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 12/01/2022]
Abstract
In this study, we provide a new evidence on immunosenescent-like phenotype induction in low density monocytes due to the long-term treatment with lipopolysaccharide (LPS). We show that LPS caused oxidative and nitrosative stress through zinc downregulation and calcium accumulation. In turn, increased amounts of ROS/RNS and pro-inflammatory cytokines TNFα, IL-1β, IL-6 led to the irreversible DNA damage, persistent DDR activation, proliferation inhibition, reduction in cell growth and immune impairment. Furthermore, we provide evidence that klotho reduced levels of ROS/RNS and pro-inflammatory cytokines as well as upregulated secretion of anti-inflammatory IL-10 in LPS-treated monocytes, thus the observed DNA damage was less severe, promptly and properly fixed and cells quickly resumed normal proliferation and maintained their immune functionality. Therefore, klotho protein could be considered as a protective factor against immunosenescent-like phenotype in monocytes an issue relevant to many immune disorders.
Collapse
Affiliation(s)
- Jennifer Mytych
- Institute of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland; Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland.
| | - Maria Romerowicz-Misielak
- Institute of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland; Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
| | - Marek Koziorowski
- Institute of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland; Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
| |
Collapse
|
36
|
Hernando N, Wagner CA. Mechanisms and Regulation of Intestinal Phosphate Absorption. Compr Physiol 2018; 8:1065-1090. [PMID: 29978897 DOI: 10.1002/cphy.c170024] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
States of hypo- and hyperphosphatemia have deleterious consequences including rickets/osteomalacia and renal/cardiovascular disease, respectively. Therefore, the maintenance of appropriate plasma levels of phosphate is an essential requirement for health. This control is executed by the collaborative action of intestine and kidney whose capacities to (re)absorb phosphate are regulated by a number of hormonal and metabolic factors, among them parathyroid hormone, fibroblast growth factor 23, 1,25(OH)2 vitamin D3 , and dietary phosphate. The molecular mechanisms responsible for the transepithelial transport of phosphate across enterocytes are only partially understood. Indeed, whereas renal reabsorption entirely relies on well-characterized active transport mechanisms of phosphate across the renal proximal epithelia, intestinal absorption proceeds via active and passive mechanisms, with the molecular identity of the passive component still unknown. The active absorption of phosphate depends mostly on the activity and expression of the sodium-dependent phosphate cotransporter NaPi-IIb (SLC34A2), which is highly regulated by many of the factors, mentioned earlier. Physiologically, the contribution of NaPi-IIb to the maintenance of phosphate balance appears to be mostly relevant during periods of low phosphate availability. Therefore, its role in individuals living in industrialized societies with high phosphate intake is probably less relevant. Importantly, small increases in plasma phosphate, even within normal range, associate with higher risk of cardiovascular disease. Therefore, therapeutic approaches to treat hyperphosphatemia, including dietary phosphate restriction and phosphate binders, aim at reducing intestinal absorption. Here we review the current state of research in the field. © 2017 American Physiological Society. Compr Physiol 8:1065-1090, 2018.
Collapse
Affiliation(s)
- Nati Hernando
- National Center for Competence in Research NCCR Kidney.CH, Institute of Physiology, University Zurich-Irchel, Zurich, Switzerland
| | - Carsten A Wagner
- National Center for Competence in Research NCCR Kidney.CH, Institute of Physiology, University Zurich-Irchel, Zurich, Switzerland
| |
Collapse
|
37
|
Campos-Obando N, Lahousse L, Brusselle G, Stricker BH, Hofman A, Franco OH, Uitterlinden AG, Zillikens MC. Serum phosphate levels are related to all-cause, cardiovascular and COPD mortality in men. Eur J Epidemiol 2018; 33:859-871. [PMID: 29766437 PMCID: PMC6133003 DOI: 10.1007/s10654-018-0407-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 05/04/2018] [Indexed: 01/20/2023]
Abstract
Hyperphosphatemia has been associated with increased mortality in chronic kidney disease but the nature of such a relation in the general population is unclear. To investigate the association between phosphate (P) levels and all-cause and cause-specific mortality, we assessed two cohorts from the Rotterdam Study, with follow-up of 14.5 (RS-I) and 10.9 (RS-II) years until January 2012 with availability of fasting phosphate levels. Deaths were classified according to International Classification of Diseases into 7 groups: cardiovascular, cancer, infections, external, dementia, chronic lung diseases and other causes. Sex-stratified Weibull and competing-risks models were adjusted for age, BMI and smoking. Hazard ratios are expressed per 1 mg/dL increase in phosphate levels. The total number of participants included 3731 (RS-I, 2154 women) and 2494 (RS-II, 1361 women) subjects. The main outcome measures were all-cause and cause-specific mortality. A significant positive association was found between phosphate and all-cause mortality in men (pooled HR (95% CI): 1.46 (1.26–1.69)) but not in women (0.90 (0.77–1.05)). In men, higher phosphate increased the risk for cardiovascular mortality (1.66 (1.29–2.14)), other causes (1.67 (1.16–2.40)) and chronic lung disease mortality (1.94 (1.02–3.72)), the latter driven by mortality due to chronic obstructive pulmonary disease (COPD) (4.44 (2.08–9.49)). No relations were found for mortality due to infections, cancer, dementia or external causes. In conclusion, serum P is associated with increased all-cause, cardiovascular and COPD mortality in men but not women. The association with COPD mortality is novel and needs further research on underlying mechanisms.
Collapse
Affiliation(s)
- Natalia Campos-Obando
- Department of Internal Medicine, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Lies Lahousse
- Department of Epidemiology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands.,Department of Respiratory Medicine, Ghent University Hospital, 9000, Ghent, Belgium
| | - Guy Brusselle
- Department of Epidemiology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands.,Department of Respiratory Medicine, Ghent University Hospital, 9000, Ghent, Belgium.,Department of Respiratory Medicine, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, The Netherlands. .,Department of Epidemiology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
38
|
Yoshikawa R, Yamamoto H, Nakahashi O, Kagawa T, Tajiri M, Nakao M, Fukuda S, Arai H, Masuda M, Iwano M, Takeda E, Taketani Y. The age-related changes of dietary phosphate responsiveness in plasma 1,25-dihydroxyvitamin D levels and renal Cyp27b1 and Cyp24a1 gene expression is associated with renal α-Klotho gene expression in mice. J Clin Biochem Nutr 2017; 62:68-74. [PMID: 29371756 PMCID: PMC5773827 DOI: 10.3164/jcbn.17-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022] Open
Abstract
In this study, we investigated the relationship between age-related changes in renal α-Klotho gene expression, vitamin D metabolism and the responsiveness of dietary phosphate in 1, 2 and 13 month-old mice fed a high phosphate (phosphate 1.2%) diet or low phosphate (phosphate 0.02%) diet for 5 days. We found that 1,25-dihydroxyvitamin D levels in plasma were significantly lower in the high phosphate group than the low phosphate group for 1 and 2 month-old mice, but not 13 month-old mice. In addition, in the high phosphate group plasma 1,25-dihydroxyvitamin D levels were decreased in 2 month-old mice relative to 1 month-old mice, but 13 month-old mice had higher levels than 2 month-old mice. In fact, plasma 1,25-dihydroxyvitamin D levels showed a significant correlation with vitamin D metabolism gene Cyp27b1 and Cyp24a1 mRNA expression in the high phosphate group. Interestingly, renal α-Klotho mRNA and protein levels were significant change with age. Furthermore, α-Klotho mRNA expression showed a significant negative correlation with plasma 1,25-dihydroxyvitamin D levels in the high phosphate group. Our results suggest that age-related alterations in renal α-Klotho expression could affect the responsiveness of dietary phosphate to vitamin D metabolism.
Collapse
Affiliation(s)
- Ryouhei Yoshikawa
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hironori Yamamoto
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.,Department of Health and Nutrition, Faculty of Human Life, Jin-ai University, 3-1-1 Ohde-cho, Echizen-city, Fukui 915-8586, Japan.,Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Otoki Nakahashi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.,Division of Functional Food Chemistry, Institute for Health Science, Tokushima Bunri University, 180 Nishihamahoji, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Tomohiro Kagawa
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Mari Tajiri
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Mari Nakao
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Shiori Fukuda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hidekazu Arai
- Laboratory of Clinical Nutrition and Management, Graduate School of Nutritional and Environmental Sciences, The University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Masashi Masuda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Masayuki Iwano
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Eiji Takeda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yutaka Taketani
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
39
|
Mencke R, Olauson H, Hillebrands JL. Effects of Klotho on fibrosis and cancer: A renal focus on mechanisms and therapeutic strategies. Adv Drug Deliv Rev 2017; 121:85-100. [PMID: 28709936 DOI: 10.1016/j.addr.2017.07.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/28/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022]
Abstract
Klotho is a membrane-bound protein predominantly expressed in the kidney, where it acts as a permissive co-receptor for Fibroblast Growth Factor 23. In its shed form, Klotho exerts anti-fibrotic effects in several tissues. Klotho-deficient mice spontaneously develop fibrosis and Klotho deficiency exacerbates the disease progression in fibrotic animal models. Furthermore, Klotho overexpression or supplementation protects against fibrosis in various models of renal and cardiac fibrotic disease. These effects are mediated at least partially by the direct inhibitory effects of soluble Klotho on TGFβ1 signaling, Wnt signaling, and FGF2 signaling. Soluble Klotho, as present in the circulation, appears to be the primary mediator of anti-fibrotic effects. Similarly, through inhibition of the TGFβ1, Wnt, FGF2, and IGF1 signaling pathways, Klotho also inhibits tumorigenesis. The Klotho promoter gene is generally hypermethylated in cancer, and overexpression or supplementation of Klotho has been found to inhibit tumor growth in various animal models. This review focuses on the protective effects of soluble Klotho in inhibiting renal fibrosis and fibrosis in distant organs secondary to renal Klotho deficiency. We also discuss the structure-function relationships of Klotho domains and biological effects in the context of potential targeted treatment strategies.
Collapse
Affiliation(s)
- Rik Mencke
- Department of Pathology and Medical Biology (Division of Pathology), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hannes Olauson
- Department of Clinical Science, Intervention and Technology (Division of Renal Medicine), Karolinska Institutet, Stockholm, Sweden
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology (Division of Pathology), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
40
|
Wright JD, An SW, Xie J, Yoon J, Nischan N, Kohler JJ, Oliver N, Lim C, Huang CL. Modeled structural basis for the recognition of α2-3-sialyllactose by soluble Klotho. FASEB J 2017; 31:3574-3586. [PMID: 28442546 PMCID: PMC5503716 DOI: 10.1096/fj.201700043r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/11/2017] [Indexed: 01/09/2023]
Abstract
Soluble Klotho (sKlotho) is the shed ectodomain of antiaging membrane Klotho that contains 2 extracellular domains KL1 and KL2, each of which shares sequence homology to glycosyl hydrolases. sKlotho elicits pleiotropic cellular responses with a poorly understood mechanism of action. Notably, in injury settings, sKlotho confers cardiac and renal protection by down-regulating calcium-permeable transient receptor potential canonical type isoform 6 (TRPC6) channels in cardiomyocytes and glomerular podocytes. Inhibition of PI3K-dependent exocytosis of TRPC6 is thought to be the underlying mechanism, and recent studies showed that sKlotho interacts with α2-3-sialyllactose-containing gangliosides enriched in lipid rafts to inhibit raft-dependent PI3K signaling. However, the structural basis for binding and recognition of α2-3-sialyllactose by sKlotho is unknown. Using homology modeling followed by docking, we identified key protein residues in the KL1 domain that are likely involved in binding sialyllactose. Functional experiments based on the ability of Klotho to down-regulate TRPC6 channel activity confirm the importance of these residues. Furthermore, KL1 domain binds α2-3-sialyllactose, down-regulates TRPC6 channels, and exerts protection against stress-induced cardiac hypertrophy in mice. Our results support the notion that sialogangliosides and lipid rafts are membrane receptors for sKlotho and that the KL1 domain is sufficient for the tested biologic activities. These findings can help guide the design of a simpler Klotho mimetic.-Wright, J. D., An, S.-W., Xie, J., Yoon, J., Nischan, N., Kohler, J. J., Oliver, N., Lim, C., Huang, C.-L. Modeled structural basis for the recognition of α2-3-sialyllactose by soluble Klotho.
Collapse
Affiliation(s)
- Jon D Wright
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sung-Wan An
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Texas, USA
| | - Jian Xie
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Texas, USA
| | - Joonho Yoon
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Texas, USA
| | - Nicole Nischan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Noelynn Oliver
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan;
- Department of Chemistry, National Tsing Hua University, HsinChu, Taiwan
| | - Chou-Long Huang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Texas, USA;
| |
Collapse
|
41
|
Nutrients Turned into Toxins: Microbiota Modulation of Nutrient Properties in Chronic Kidney Disease. Nutrients 2017; 9:nu9050489. [PMID: 28498348 PMCID: PMC5452219 DOI: 10.3390/nu9050489] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/22/2017] [Accepted: 05/09/2017] [Indexed: 12/24/2022] Open
Abstract
In chronic kidney disease (CKD), accumulation of uremic toxins is associated with an increased risk of death. Some uremic toxins are ingested with the diet, such as phosphate and star fruit-derived caramboxin. Others result from nutrient processing by gut microbiota, yielding precursors of uremic toxins or uremic toxins themselves. These nutrients include l-carnitine, choline/phosphatidylcholine, tryptophan and tyrosine, which are also sold over-the-counter as nutritional supplements. Physicians and patients alike should be aware that, in CKD patients, the use of these supplements may lead to potentially toxic effects. Unfortunately, most patients with CKD are not aware of their condition. Some of the dietary components may modify the gut microbiota, increasing the number of bacteria that process them to yield uremic toxins, such as trimethylamine N-Oxide (TMAO), p-cresyl sulfate, indoxyl sulfate and indole-3 acetic acid. Circulating levels of nutrient-derived uremic toxins are associated to increased risk of death and cardiovascular disease and there is evidence that this association may be causal. Future developments may include maneuvers to modify gut processing or absorption of these nutrients or derivatives to improve CKD patient outcomes.
Collapse
|
42
|
Mencke R, Hillebrands JL. The role of the anti-ageing protein Klotho in vascular physiology and pathophysiology. Ageing Res Rev 2017; 35:124-146. [PMID: 27693241 DOI: 10.1016/j.arr.2016.09.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023]
Abstract
Klotho is an anti-ageing protein that functions in many pathways that govern ageing, like regulation of phosphate homeostasis, insulin signaling, and Wnt signaling. Klotho expression levels and levels in blood decline during ageing. The vascular phenotype of Klotho deficiency features medial calcification, intima hyperplasia, endothelial dysfunction, arterial stiffening, hypertension, and impaired angiogenesis and vasculogenesis, with characteristics similar to aged human arteries. Klotho-deficient phenotypes can be prevented and rescued by Klotho gene expression or protein supplementation. High phosphate levels are likely to be directly pathogenic and are a prerequisite for medial calcification, but more important determinants are pathways that regulate cellular senescence, suggesting that deficiency of Klotho renders cells susceptible to phosphate toxicity. Overexpression of Klotho is shown to ameliorate medial calcification, endothelial dysfunction, and hypertension. Endogenous vascular Klotho expression is a controversial subject and, currently, no compelling evidence exists that supports the existence of vascular membrane-bound Klotho expression, as expressed in kidney. In vitro, Klotho has been shown to decrease oxidative stress and apoptosis in both SMCs and ECs, to reduce SMC calcification, to maintain the contractile SMC phenotype, and to prevent μ-calpain overactivation in ECs. Klotho has many protective effects with regard to the vasculature and constitutes a very promising therapeutic target. The purpose of this review is to explore the etiology of the vascular phenotype of Klotho deficiency and the therapeutic potential of Klotho in vascular disease.
Collapse
|
43
|
Hikone K, Hasegawa T, Tsuchiya E, Hongo H, Sasaki M, Yamamoto T, Kudo A, Oda K, Haraguchi M, de Freitas PHL, Li M, Iida J, Amizuka N. Histochemical Examination on Periodontal Tissues of Klotho-Deficient Mice Fed With Phosphate-Insufficient Diet. J Histochem Cytochem 2017; 65:207-221. [PMID: 28122194 DOI: 10.1369/0022155416689670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To elucidate which of elevated serum concentration of inorganic phosphate (Pi) or disrupted signaling linked to αklotho/fibroblast growth factor 23 (FGF23) is a predominant regulator for senescence-related degeneration seen in αKlotho-deficient mice, we have examined histological alteration of the periodontal tissues in the mandibular interalveolar septum of αKlotho-deficient mice fed with Pi-insufficient diet. We prepared six groups of mice: wild-type, kl/kl, and αKlotho-/- mice with normal diet or low-Pi diet. As a consequence, kl/klnorPi and αKlotho-/-norPi mice showed the same abnormalities in periodontal tissues: intensely stained areas with hematoxylin in the interalveolar septum, dispersed localization of alkaline phosphatase-positive osteoblasts and tartrate-resistant acid phosphatase-reactive osteoclasts, and accumulation of dentin matrix protein 1 in the osteocytic lacunae. Although kl/kllowPi mice improved these histological abnormalities, αKlotho-/- lowPi mice failed to normalize those. Gene expression of αKlotho was shown to be increased in kl/kl lowPi specimens. It seems likely that histological abnormalities of kl/kl mice have been improved by the rescued expression of αKlotho, rather than low concentration of serum Pi. Thus, the histological malformation in periodontal tissues in αKlotho-deficient mice appears to be due to not only increased concentration of Pi but also disrupted αklotho/FGF23 signaling.
Collapse
Affiliation(s)
- Kumiko Hikone
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan.,Department of Orthodontics (KH, JI), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Erika Tsuchiya
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hiromi Hongo
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics, Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan (MS)
| | - Tomomaya Yamamoto
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Ai Kudo
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Kimimitsu Oda
- Division of Biochemistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan (KO)
| | - Mai Haraguchi
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | | | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, China (ML)
| | - Junichiro Iida
- Department of Orthodontics (KH, JI), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
44
|
Kim JH, Xie J, Hwang KH, Wu YL, Oliver N, Eom M, Park KS, Barrezueta N, Kong ID, Fracasso RP, Huang CL, Cha SK. Klotho May Ameliorate Proteinuria by Targeting TRPC6 Channels in Podocytes. J Am Soc Nephrol 2017; 28:140-151. [PMID: 27151926 PMCID: PMC5198269 DOI: 10.1681/asn.2015080888] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 03/18/2016] [Indexed: 12/30/2022] Open
Abstract
Klotho is a type-1 membrane protein predominantly produced in the kidney, the extracellular domain of which is secreted into the systemic circulation. Membranous and secreted Klotho protect organs, including the kidney, but whether and how Klotho directly protects the glomerular filter is unknown. Here, we report that secreted Klotho suppressed transient receptor potential channel 6 (TRPC6)-mediated Ca2+ influx in cultured mouse podocytes by inhibiting phosphoinositide 3-kinase-dependent exocytosis of the channel. Furthermore, soluble Klotho reduced ATP-stimulated actin cytoskeletal remodeling and transepithelial albumin leakage in these cells. Overexpression of TRPC6 by gene delivery in mice induced albuminuria, and exogenous administration of Klotho ameliorated the albuminuria. Notably, immunofluorescence and in situ hybridization revealed Klotho expression in podocytes of mouse and human kidney. Heterozygous Klotho-deficient CKD mice had aggravated albuminuria compared with that in wild-type CKD mice with a similar degree of hypertension and reduced clearance function. Finally, disrupting the integrity of glomerular filter by saline infusion-mediated extracellular fluid volume expansion increased urinary Klotho excretion. These results reveal a potential novel function of Klotho in protecting the glomerular filter, and may offer a new therapeutic strategy for treatment of proteinuria.
Collapse
Affiliation(s)
- Ji-Hee Kim
- Departments of Physiology and Global Medical Science
| | - Jian Xie
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kyu-Hee Hwang
- Departments of Physiology and Global Medical Science
| | - Yueh-Lin Wu
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan; and
| | - Noelynn Oliver
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| | | | - Kyu-Sang Park
- Departments of Physiology and Global Medical Science
- Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Nestor Barrezueta
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| | - In-Deok Kong
- Departments of Physiology and Global Medical Science
- Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - R Paul Fracasso
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| | - Chou-Long Huang
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas;
| | - Seung-Kuy Cha
- Departments of Physiology and Global Medical Science,
- Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
45
|
Alesutan I, Feger M, Tuffaha R, Castor T, Musculus K, Buehling SS, Heine CL, Kuro-O M, Pieske B, Schmidt K, Tomaschitz A, Maerz W, Pilz S, Meinitzer A, Voelkl J, Lang F. Augmentation of phosphate-induced osteo-/chondrogenic transformation of vascular smooth muscle cells by homoarginine. Cardiovasc Res 2016; 110:408-418. [DOI: 10.1093/cvr/cvw062] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
46
|
Wound healing delays in α-Klotho-deficient mice that have skin appearance similar to that in aged humans - Study of delayed wound healing mechanism. Biochem Biophys Res Commun 2016; 473:845-852. [PMID: 27037022 DOI: 10.1016/j.bbrc.2016.03.138] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 03/29/2016] [Indexed: 12/21/2022]
Abstract
Skin atrophy and delayed wound healing are observed in aged humans; however, the molecular mechanism are still elusive. The aim of this study was to analyze the molecular mechanisms of delayed wound healing by aging using α-Klotho-deficient (kl/kl) mice, which have phenotypes similar to those of aged humans. The kl/kl mice showed delayed wound healing and impaired granulation formation compared with those in wild-type (WT) mice. The skin graft experiments revealed that delayed wound healing depends on humoral factors, but not on kl/kl skin tissue. The mRNA expression levels of cytokines related to acute inflammation including IL-1β, IL-6 and TNF-α were higher in wound lesions of kl/kl mice compared with the levels in WT mice by RT-PCR analysis. LPS-induced TNF-α production model using spleen cells revealed that TNF-α production was significantly increased in the presence of FGF23. Thus, higher levels of FGF23 in kl/kl mouse may have a role to increase TNF-α production in would lesion independently of α-Klotho protein, and impair granulation formation and delay wound healing.
Collapse
|
47
|
Abstract
Alpha-Klotho (αKlotho) protein is encoded by the gene, Klotho, and functions as a coreceptor for endocrine fibroblast growth factor-23. The extracellular domain of αKlotho is cleaved by secretases and released into the circulation where it is called soluble αKlotho. Soluble αKlotho in the circulation starts to decline in chronic kidney disease (CKD) stage 2 and urinary αKlotho in even earlier CKD stage 1. Therefore soluble αKlotho is an early and sensitive marker of decline in kidney function. Preclinical data from numerous animal experiments support αKlotho deficiency as a pathogenic factor for CKD progression and extrarenal CKD complications including cardiac and vascular disease, hyperparathyroidism, and disturbed mineral metabolism. αKlotho deficiency induces cell senescence and renders cells susceptible to apoptosis induced by a variety of cellular insults including oxidative stress. αKlotho deficiency also leads to defective autophagy and angiogenesis and promotes fibrosis in the kidney and heart. Most importantly, prevention of αKlotho decline, upregulation of endogenous αKlotho production, or direct supplementation of soluble αKlotho are all associated with attenuation of renal fibrosis, retardation of CKD progression, improvement of mineral metabolism, amelioration of cardiac function and morphometry, and alleviation of vascular calcification in CKD. Therefore in rodents, αKlotho is not only a diagnostic and prognostic marker for CKD but the enhancement of endogenous or supplement of exogenous αKlotho are promising therapeutic strategies to prevent, retard, and decrease the comorbidity burden of CKD.
Collapse
Affiliation(s)
- J A Neyra
- University of Texas Southwestern Medical Center, Dallas, TX, United States; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - M C Hu
- University of Texas Southwestern Medical Center, Dallas, TX, United States; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
48
|
Deficiency of Soluble α-Klotho as an Independent Cause of Uremic Cardiomyopathy. VITAMINS AND HORMONES 2016; 101:311-30. [PMID: 27125747 DOI: 10.1016/bs.vh.2016.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiovascular disease (CVD) is the major cause of mortality for patients with chronic kidney disease (CKD). Cardiac hypertrophy, occurring in up to 95% patients with CKD (also known as uremic cardiomyopathy), increases their risk for cardiovascular death. Many CKD-specific risk factors of uremic cardiomyopathy have been recognized, such as secondary hyperparathyroidism, indoxyl sulfate (IS)/p-cresyl, and vitamin D deficiency. However, several randomized controlled trials have recently shown that these risk factors have little impact on the mortality of CVD. Klotho is a type 1 membrane protein predominantly produced in the kidney, and CKD is known to be a Klotho-deficient state. Because of its important role in FGF23 and phosphate metabolism, Klotho is believed to affect cardiac growth and function indirectly through FGF23 and phosphate. Recent studies showed that soluble Klotho protects the heart against stress-induced cardiac hypertrophy by inhibiting TRPC6 channel-mediated abnormal Ca(2+) signaling in the heart, and the decreased level of circulating soluble Klotho in CKD is an important cause of uremic cardiomyopathy independent of FGF23 and phosphate. These new evidence suggested that Klotho is an independent contributing factor for uremic cardiomyopathy and a possible new target for treatment of this disease.
Collapse
|
49
|
Abstract
The α-Klotho mouse is an animal model that prematurely shows phenotypes resembling human aging, such as osteoporosis, arteriosclerosis, pulmonary emphysema, and kidney damage. Interestingly, these abnormalities are triggered by a deficiency of a single protein, α-Klotho. The kidney is an organ that highly expresses α-Klotho, suggesting that α-Klotho is important for kidney function. Recent studies suggest that α-Klotho is associated with phosphate, vitamin D, and calcium homeostasis. The calcium imbalance in α-Klotho mice may induce calpain overactivation, leading to cell death and tissue destruction. α-Klotho is predicted to have glycosidase activity, capable of modifying the N-glycans of channels and transporters and regulating transmembrane movement of several ions, including calcium. Interestingly, N-glycan changes are observed in the kidney of α-Klotho mice and normal aged mice in association with decreased α-Klotho levels. These results imply that glycobiology and α-Klotho function are interesting targets for future studies.
Collapse
|
50
|
Leibrock CB, Voelkl J, Kohlhofer U, Quintanilla-Martinez L, Kuro-O M, Lang F. Bicarbonate-sensitive calcification and lifespan of klotho-deficient mice. Am J Physiol Renal Physiol 2015; 310:F102-8. [PMID: 26538435 DOI: 10.1152/ajprenal.00037.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 11/02/2015] [Indexed: 01/03/2023] Open
Abstract
Klotho, a protein counteracting aging, is a powerful inhibitor of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] formation and regulator of mineral metabolism. In klotho hypomorphic (kl/kl) mice, excessive 1,25(OH)2D3 formation leads to hypercalcemia, hyperphosphatemia and vascular calcification, severe growth deficits, accelerated aging and early death. Kl/kl mice further suffer from extracellular volume depletion and hypotension, leading to the stimulation of antidiuretic hormone and aldosterone release. A vitamin D-deficient diet, restriction of dietary phosphate, inhibition of mineralocorticoid receptors with spironolactone, and dietary NaCl all extend the lifespan of kl/kl mice. Kl/kl mice suffer from acidosis. The present study explored whether replacement of tap drinking water by 150 mM NaHCO3 affects the growth, tissue calcification, and lifespan of kl/kl mice. As a result, NaHCO3 administration to kl/kl mice did not reverse the growth deficit but substantially decreased tissue calcification and significantly increased the average lifespan from 78 to 127 days. NaHCO3 did not significantly affect plasma concentrations of 1,25(OH)2D3 and Ca(2+) but significantly decreased plasma phosphate concentration and plasma aldosterone concentration. The present study reveals a novel effect of bicarbonate, i.e., a favorable influence on vascular calcification and early death of klotho-deficient mice.
Collapse
Affiliation(s)
| | - Jakob Voelkl
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Ursula Kohlhofer
- Department of Pathology, University of Tübingen, Tübingen, Germany; and
| | | | - Makoto Kuro-O
- Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany;
| |
Collapse
|