1
|
Jiang Z, Wei Z, Zhang J, Zheng C, Zhu H, Zhai H, He S, Gao S, Zhao N, Zhang H, Liu Q. Source-sink synergy is the key unlocking sweet potato starch yield potential. Nat Commun 2024; 15:7260. [PMID: 39179563 PMCID: PMC11343742 DOI: 10.1038/s41467-024-51727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Sweet potato starch is in high demand globally for food and industry. However, starch content is negatively correlated with fresh yield. It is urgent to uncover the genetic basis and molecular mechanisms underlying the starch yield of sweet potato. Here we systematically explore source-sink synergy-mediated sweet potato starch yield formation: the production, loading, and transport of photosynthates in leaves, as well as their unloading and allocation in storage roots, lead to starch content divergence between sweet potato varieties. Moreover, we find that six haplotypes of IbPMA1 encoding a plasma membrane H+-ATPase are significantly linked with starch accumulation. Overexpression of IbPMA1 in sweet potato results in significantly increased starch and sucrose contents, while its knockdown exhibits an opposing effect. Furthermore, a basic helix-loop-helix (bHLH) transcription factor IbbHLH49 directly targets IbPMA1 and activates its transcription. Overexpression of IbbHLH49 notably improves source-sink synergy-mediated fresh yield and starch accumulation in sweet potato. Both IbbHLH49 and IbPMA1 substantially influence sugar transport and starch biosynthesis in source and sink tissues. These findings expand our understanding of starch yield formation and provide strategies and candidate genes for high starch breeding in root and tuber crops.
Collapse
Affiliation(s)
- Zhicheng Jiang
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Zihao Wei
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Jun Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Chenxing Zheng
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China.
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Mehdi F, Galani S, Wickramasinghe KP, Zhao P, Lu X, Lin X, Xu C, Liu H, Li X, Liu X. Current perspectives on the regulatory mechanisms of sucrose accumulation in sugarcane. Heliyon 2024; 10:e27277. [PMID: 38463882 PMCID: PMC10923725 DOI: 10.1016/j.heliyon.2024.e27277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024] Open
Abstract
Sugars transported from leaves (source) to stems (sink) energize cell growth, elongation, and maintenance. which are regulated by a variety of genes. This review reflects progress and prospects in the regulatory mechanism for maximum sucrose accumulation, including the role of sucrose metabolizing enzymes, sugar transporters and the elucidation of post-transcriptional control of sucrose-induced regulation of translation (SIRT) in the accumulation of sucrose. The current review suggests that SIRT is emerging as a significant mechanism controlling Scbzip44 activities in response to endogenous sugar signals (via the negative feedback mechanism). Sucrose-controlled upstream open reading frame (SC-uORF) exists at the 5' leader region of Scbzip44's main ORF, which inhibits sucrose accumulation through post-transcriptional regulatory mechanisms. Sucrose transporters (SWEET1a/4a/4b/13c, TST, SUT1, SUT4 and SUT5) are crucial for sucrose translocation from source to sink. Particularly, SWEET13c was found to be a major contributor to the efflux in the transportation of stems. Tonoplast sugar transporters (TSTs), which import sucrose into the vacuole, suggest their tissue-specific role from source to sink. Sucrose cleavage has generally been linked with invertase isozymes, whereas sucrose synthase (SuSy)-catalyzed metabolism has been associated with biosynthetic processes such as UDP-Glc, cellulose, hemicellulose and other polymers. However, other two key sucrose-metabolizing enzymes, such as sucrose-6-phosphate phosphohydrolase (S6PP) and sucrose phosphate synthase (SPS) isoforms, have been linked with sucrose biosynthesis. These findings suggest that manipulation of genes, such as overexpression of SPS genes and sucrose transporter genes, silencing of the SC-uORF of Scbzip44 (removing the 5' leader region of the main ORF that is called SIRT-Insensitive) and downregulation of the invertase genes, may lead to maximum sucrose accumulation. This review provides an overview of sugarcane sucrose-regulating systems and baseline information for the development of cultivars with higher sucrose accumulation.
Collapse
Affiliation(s)
- Faisal Mehdi
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Saddia Galani
- Dr.A. Q. Khan Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi Pakistan
| | - Kamal Priyananda Wickramasinghe
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
- Sugarcane Research Institute, Uda Walawa, 70190, Sri Lanka
| | - Peifang Zhao
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Xin Lu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Xiuqin Lin
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Chaohua Xu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Hongbo Liu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Xujuan Li
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Xinlong Liu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| |
Collapse
|
3
|
Helm T, Niehoff PJ, Gätgens J, Stausberg T, Pichler B, Häßler T, Wiechert W, Büchs J, Wierckx N, Noack S. Introducing molasses as an alternative feedstock into itaconate production using Ustilago sp. N Biotechnol 2023; 77:30-39. [PMID: 37336283 DOI: 10.1016/j.nbt.2023.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
In this work, we established an efficient process for the production of itaconate from the regionally sourced industrial side-stream molasses using Ustilago cynodontis and Ustilago maydis. While being relatively cheap and more environmentally friendly than refined sugars, there are some major challenges to overcome when working with molasses. Some of those challenges are a high nitrogen load, unknown impurities in the feedstock, and high amounts of ill-favoured carbon sources, such as sucrose or lactate. We could show that the activity of the sucrose-hydrolysing enzyme invertase plays a crucial role in the efficiency of the process and that the fructose utilisation differs between the two strains used in this work. Thus, with a higher invertase activity, the ability to convert fructose into the desired product itaconate, and an overall higher tolerance towards undesired substances in molasses, U. maydis is better equipped for the process on the alternative feedstock molasses than U. cynodontis. The established process with U. maydis reached competitive yields of up to 0.38 g g-1 and a titre of more than 37 g L-1. This shows that an efficient and cost-effective itaconate production process is generally feasible using U. maydis, which has the potential to greatly increase the sustainability of industrial itaconate production.
Collapse
Affiliation(s)
- Tabea Helm
- Institute of Bio, and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Paul-Joachim Niehoff
- Aachener Verfahrenstechnik - Biochemical Engineering (AVT.BioVT), RWTH Aachen University, D-52074 Aachen, Germany
| | - Jochem Gätgens
- Institute of Bio, and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Thilo Stausberg
- Institute of Bio, and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Bernadette Pichler
- Institute of Bio, and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Thomas Häßler
- Biotechnology & process development, Pfeifer & Langen GmbH & Co. KG, D-50189 Elsdorf, Germany
| | - Wolfgang Wiechert
- Institute of Bio, and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Jochen Büchs
- Aachener Verfahrenstechnik - Biochemical Engineering (AVT.BioVT), RWTH Aachen University, D-52074 Aachen, Germany
| | - Nick Wierckx
- Institute of Bio, and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Stephan Noack
- Institute of Bio, and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| |
Collapse
|
4
|
Ren Y, Liao S, Xu Y. An update on sugar allocation and accumulation in fruits. PLANT PHYSIOLOGY 2023; 193:888-899. [PMID: 37224524 DOI: 10.1093/plphys/kiad294] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Fruit sweetness is determined by the amount and composition of sugars in the edible flesh. The accumulation of sugar is a highly orchestrated process that requires coordination of numerous metabolic enzymes and sugar transporters. This coordination enables partitioning and long-distance translocation of photoassimilates from source tissues to sink organs. In fruit crops, sugars ultimately accumulate in the sink fruit. Whereas tremendous progress has been achieved in understanding the function of individual genes associated with sugar metabolism and sugar transport in non-fruit crops, there is less known about the sugar transporters and metabolic enzymes responsible for sugar accumulation in fruit crop species. This review identifies knowledge gaps and can serve as a foundation for future studies, with comprehensive updates focusing on (1) the physiological roles of the metabolic enzymes and sugar transporters responsible for sugar allocation and partitioning and that contribute to sugar accumulation in fruit crops; and (2) the molecular mechanisms underlying the transcriptional and posttranslational regulation of sugar transport and metabolism. We also provide insights into the challenges and future directions of studies on sugar transporters and metabolic enzymes and name several promising genes that should be targeted with gene editing in the pursuit of optimized sugar allocation and partitioning to enhance sugar accumulation in fruits.
Collapse
Affiliation(s)
- Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Shengjin Liao
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| |
Collapse
|
5
|
Spanic V, Vukovic A, Cseplo M, Vukovic R, Buchvaldt Amby D, Cairo Westergaard J, Puskas K, Roitsch T. Early leaf responses of cell physiological and sensor-based signatures reflect susceptibility of wheat seedlings to infection by leaf rust. PHYSIOLOGIA PLANTARUM 2023; 175:e13990. [PMID: 37616017 DOI: 10.1111/ppl.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Leaf rust caused by Puccinia triticina Erikss. can have devastating effects on wheat (Triticum aestivum L.), causing severe economic losses. This comprehensive study serves to facilitate our understanding of the impact of carbohydrate and antioxidant metabolism in association with sensor-based phenotyping and leaf rust stress responses in wheat seedlings. After 24 h of inoculation (hai) very susceptible variety to leaf rust (Ficko) increased cell-wall invertase (cwInv; EC 3.2.1.26), compared to other varieties that significantly increased cwInv later. This could mean that the Ficko variety cannot defend itself from leaf rust infections once symptoms have started to develop. Also, Ficko had significantly decreased amounts of cytoplasmic invertase (cytInv; EC 3.2.1.26) at 8 hai. The downregulation of cytInv in susceptible plants may facilitate the maintenance of elevated apoplastic sucrose availability favoring the pathogen. The significant role of vacuolar invertase (vacInv; EC 3.2.1.26) in moderately resistant varieties was recorded. Also, a significant decrease of glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and UDP-glucose pyrophosphorylase (UGPase; EC 2.7.7.9) in moderately resistant varieties might restrict normal development of leaf rust due to reduced sugar. During plant-pathogen interaction, when the invader spreads systemically throughout the plant, the main role of ascorbate peroxidase (APX; EC 1.11.1.11) activity in one moderately resistant variety (Olimpija) and catalase (CAT; EC 1.11.1.6) activity in another moderately resistant variety (Alka) is to protect the plant against oxidative damage in the early stages of infection. Non-invasive phenotyping with a sensor-based technique could be used as a rapid method for pre-symptomatic determination of wheat leaf rust resistance or susceptibility.
Collapse
Affiliation(s)
- Valentina Spanic
- Department of Small Cereal Crops Breeding and Genetics, Agricultural Institute Osijek, Osijek, Osijek, Croatia
| | - Ana Vukovic
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Monika Cseplo
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Rosemary Vukovic
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Daniel Buchvaldt Amby
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Crop Sciences, Taastrup, Denmark
| | - Jesper Cairo Westergaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Crop Sciences, Taastrup, Denmark
| | - Katalin Puskas
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Crop Sciences, Taastrup, Denmark
| |
Collapse
|
6
|
Nguyen TNH, Leclerc L, Manzanares-Dauleux MJ, Gravot A, Vicré M, Morvan-Bertrand A, Prud'homme MP. Fructan exohydrolases (FEHs) are upregulated by salicylic acid together with defense-related genes in non-fructan accumulating plants. PHYSIOLOGIA PLANTARUM 2023; 175:e13975. [PMID: 37616010 DOI: 10.1111/ppl.13975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Accepted: 07/04/2023] [Indexed: 08/25/2023]
Abstract
The identification of several fructan exohydrolases (FEHs, EC 3.2.1.80) in non-fructan accumulating plants raised the question of their roles. FEHs may be defense-related proteins involved in the interactions with fructan-accumulating microorganisms. Since known defense-related proteins are upregulated by defense-related phytohormones, we tested the hypothesis that FEHs of non-fructan accumulating plants are upregulated by salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) using the model plant Arabidopsis thaliana and the agronomically relevant and genetically related species Brassica napus. By sequence homologies with the two known FEH genes of A. thaliana, At6-FEH, and At6&1-FEH, the genes coding for the putative B. napus FEHs, Bn6-FEH and Bn6&1-FEH, were identified. Plants were treated at root level with SA, methyl jasmonate (MeJA) or 1-aminocyclopropane-1-carboxylic acid (ACC). The transcript levels of defense-related and FEH genes were measured after treatments. MeJA and ACC did not upregulate FEHs, while HEL (HEVEIN-LIKE PREPROTEIN) expression was enhanced by both phytohormones. In both species, the expression of AOS, encoding a JA biosynthesis enzyme, was enhanced by MeJA and that of the defensine PDF1.2 and the ET signaling transcription factor ERF1/2 by ACC. In contrast, SA not only increased the expression of genes encoding antimicrobial proteins (PR1 and HEL) and the defense-related transcription factor WRKY70 but also that of FEH genes, in particular 6&1-FEH genes. This result supports the putative role of FEHs as defense-related proteins. Genotypic variability of SA-mediated FEH regulation (transcript level and activities) was observed among five varieties of B. napus, suggesting different susceptibilities toward fructan-accumulating pathogens.
Collapse
Affiliation(s)
- Thi Ngoc Hanh Nguyen
- Normandie Université, UNICAEN, UMR 950 INRAE, EVA Ecophysiologie Végétale Agronomie et Nutritions N.C.S, SFR Normandie Végétale FED4277, Caen, France
- Normandie Université, Univ Rouen Normandie, Laboratoire Glyco-MEV EA 4358, SFR Normandie Végétale FED4277, Rouen, France
| | - Laëtitia Leclerc
- Normandie Université, UNICAEN, UMR 950 INRAE, EVA Ecophysiologie Végétale Agronomie et Nutritions N.C.S, SFR Normandie Végétale FED4277, Caen, France
| | | | - Antoine Gravot
- Institut Agro, Université Rennes, INRAE, IGEPP, Le Rheu, France
| | - Maïté Vicré
- Normandie Université, Univ Rouen Normandie, Laboratoire Glyco-MEV EA 4358, SFR Normandie Végétale FED4277, Rouen, France
| | - Annette Morvan-Bertrand
- Normandie Université, UNICAEN, UMR 950 INRAE, EVA Ecophysiologie Végétale Agronomie et Nutritions N.C.S, SFR Normandie Végétale FED4277, Caen, France
| | - Marie-Pascale Prud'homme
- Normandie Université, UNICAEN, UMR 950 INRAE, EVA Ecophysiologie Végétale Agronomie et Nutritions N.C.S, SFR Normandie Végétale FED4277, Caen, France
| |
Collapse
|
7
|
Yang H, Li Y, Qiao Y, Sun H, Liu W, Qiao W, Li W, Liu M, Dong B. Low light stress promotes new tiller regeneration by changing source-sink relationship and activating expression of expansin genes in wheat. PLANT, CELL & ENVIRONMENT 2023; 46:1562-1581. [PMID: 36695201 DOI: 10.1111/pce.14548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Low light stress seriously decreased wheat grain number through the formation of aborted spike during the reproductive period and induced new tiller regeneration to offset the loss of grain number. However, the mechanism by which plants coordinate spike aborted growth and the regeneration of new tillers remains unknown. To better understand this coordinated process, morphological, physiological and transcriptomic analyses were performed under low light stress at the young microspore stage. Our findings indicated that leaves exhausted most stored carbohydrates in 1 day of darkness. However, spike and uppermost internode (UI) were converted from sink to source, due to increased abscisic acid (ABA) content and decreased cytokinin content. During this process, genes encoding amylases, Sugars Will Eventually be Exported Transporters (SWEET) and sucrose transporters or sucrose carriers (SUT/SUC) were upregulated in spike and UI, which degraded starch into soluble sugars and loaded them into the phloem. Subsequently, soluble sugars were transported to tiller node (TN) where cytokinin and auxin content increased and ABA content decreased, followed by unloading into TN cells by upregulated cell wall invertase (CWINV) genes and highly expressed H+ /hexose symporter genes. Finally, expansin genes integrated the sugar pathway and hormone pathway, and regulate the formation of new tillers directly.
Collapse
Affiliation(s)
- Hong Yang
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Yongpeng Li
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Yunzhou Qiao
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Hongyong Sun
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Wenwen Liu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjun Qiao
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Weiqiang Li
- Jilin Da'an Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Mengyu Liu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Baodi Dong
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
8
|
Sehim AE, Hewedy OA, Altammar KA, Alhumaidi MS, Abd Elghaffar RY. Trichoderma asperellum empowers tomato plants and suppresses Fusarium oxysporum through priming responses. Front Microbiol 2023; 14:1140378. [PMID: 36998401 PMCID: PMC10043483 DOI: 10.3389/fmicb.2023.1140378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/21/2023] [Indexed: 03/15/2023] Open
Abstract
Plant-associated microbes play crucial roles in plant health and promote growth under stress. Tomato (Solanum lycopersicum) is one of the strategic crops grown throughout Egypt and is a widely grown vegetable worldwide. However, plant disease severely affects tomato production. The post-harvest disease (Fusarium wilt disease) affects food security globally, especially in the tomato fields. Thus, an alternative effective and economical biological treatment to the disease was recently established using Trichoderma asperellum. However, the role of rhizosphere microbiota in the resistance of tomato plants against soil-borne Fusarium wilt disease (FWD) remains unclear. In the current study, a dual culture assay of T. asperellum against various phytopathogens (e.g., Fusarium oxysporum, F. solani, Alternaria alternata, Rhizoctonia solani, and F. graminerarum) was performed in vitro. Interestingly, T. asperellum exhibited the highest mycelial inhibition rate (53.24%) against F. oxysporum. In addition, 30% free cell filtrate of T. asperellum inhibited F. oxysporum by 59.39%. Various underlying mechanisms were studied to explore the antifungal activity against F. oxysporum, such as chitinase activity, analysis of bioactive compounds by gas chromatography–mass spectrometry (GC–MS), and assessment of fungal secondary metabolites against F. oxysporum mycotoxins in tomato fruits. Additionally, the plant growth-promoting traits of T. asperellum were studied (e.g., IAA production, Phosphate solubilization), and the impact on tomato seeds germination. Scanning electron microscopy, plant root sections, and confocal microscopy were used to show the mobility of the fungal endophyte activity to promote tomato root growth compared with untreated tomato root. T. asperellum enhanced the growth of tomato seeds and controlled the wilt disease caused by the phytopathogen F. oxysporum by enhancing the number of leaves as well as shoot and root length (cm) and fresh and dry weights (g). Furthermore, Trichoderma extract protects tomato fruits from post-harvest infection by F. oxysporum. Taking together, T. asperellum represents a safe and effective controlling agent against Fusarium infection of tomato plants.
Collapse
Affiliation(s)
- Amira E. Sehim
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Omar A. Hewedy
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
- Department of Genetics, Faculty of Agriculture, Menoufia University, Shebeen El-Kom, Egypt
- *Correspondence: Omar A. Hewedy,
| | - Khadijah A. Altammar
- Department of Biology, College of Science, University of Hafr Al Batin, Hafar Al Batin, Saudi Arabia
| | - Maryam S. Alhumaidi
- Department of Biology, College of Science, University of Hafr Al Batin, Hafar Al Batin, Saudi Arabia
| | | |
Collapse
|
9
|
Mason PJ, Hoang NV, Botha FC, Furtado A, Marquardt A, Henry RJ. Organ-specific expression of genes associated with the UDP-glucose metabolism in sugarcane (Saccharum spp. hybrids). BMC Genomics 2023; 24:18. [PMID: 36639618 PMCID: PMC9840354 DOI: 10.1186/s12864-023-09124-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The importance of uridine 5'-diphosphate glucose (UDP-G) synthesis and degradation on carbon (C) partitioning has been indicated in several studies of plant systems, whereby the kinetic properties and abundance of involved enzymes had a significant effect upon the volume of C moving into the hemicellulose, cellulose and sucrose pools. In this study, the expression of 136 genes belonging to 32 gene families related to UDP-G metabolism was studied in 3 major sugarcane organs (including leaf, internode and root) at 6 different developmental stages in 2 commercial genotypes. RESULTS Analysis of the genes associated with UDP-G metabolism in leaves indicated low expression of sucrose synthase, but relatively high expression of invertase genes, specifically cell-wall invertase 4 and neutral acid invertase 1-1 and 3 genes. Further, organs that are primarily responsible for sucrose synthesis or bioaccumulation, i.e., in source organs (mature leaves) and storage sink organs (mature internodes), had very low expression of sucrose, cellulose and hemicellulose synthesis genes, specifically sucrose synthase 1 and 2, UDP-G dehydrogenase 5 and several cellulose synthase subunit genes. Gene expression was mostly very low in both leaf and mature internode samples; however, leaves did have a comparatively heightened invertase and sucrose phosphate synthase expression. Major differences were observed in the transcription of several genes between immature sink organs (roots and immature internodes). Gene transcription favoured utilisation of UDP-G toward insoluble and respiratory pools in roots. Whereas, there was comparatively higher expression of sucrose synthetic genes, sucrose phosphate synthase 1 and 4, and comparatively lower expression of many genes associated with C flow to insoluble and respiratory pools including myo-Inositol oxygenase, UDP-G dehydrogenase 4, vacuolar invertase 1, and several cell-wall invertases in immature internodes. CONCLUSION This study represents the first effort to quantify the expression of gene families associated with UDP-G metabolism in sugarcane. Transcriptional analysis displayed the likelihood that C partitioning in sugarcane is closely related to the transcription of genes associated with the UDP-G metabolism. The data presented may provide an accurate genetic reference for future efforts in altering UDP-G metabolism and in turn C partitioning in sugarcane.
Collapse
Affiliation(s)
- Patrick J. Mason
- grid.1003.20000 0000 9320 7537Queensland Alliance for Agriculture and Food Innovation (QAAFI), Level 2, Queensland Biosciences Precinct [#80], The University of Queensland, St Lucia, QLD 4072 Australia
| | - Nam V. Hoang
- grid.1003.20000 0000 9320 7537Queensland Alliance for Agriculture and Food Innovation (QAAFI), Level 2, Queensland Biosciences Precinct [#80], The University of Queensland, St Lucia, QLD 4072 Australia ,grid.4818.50000 0001 0791 5666Wageningen University and Research (WUR), PO Box 9101, Wageningen, 6700 HB The Netherlands
| | - Frederik C. Botha
- grid.1003.20000 0000 9320 7537Queensland Alliance for Agriculture and Food Innovation (QAAFI), Level 2, Queensland Biosciences Precinct [#80], The University of Queensland, St Lucia, QLD 4072 Australia
| | - Agnelo Furtado
- grid.1003.20000 0000 9320 7537Queensland Alliance for Agriculture and Food Innovation (QAAFI), Level 2, Queensland Biosciences Precinct [#80], The University of Queensland, St Lucia, QLD 4072 Australia
| | - Annelie Marquardt
- grid.1003.20000 0000 9320 7537Commonwealth Scientific and Industrial Research Organisation (CSIRO), Level 3, Queensland Biosciences Precinct [#80], The University of Queensland, St Lucia, QLD 4072 Australia
| | - Robert J. Henry
- grid.1003.20000 0000 9320 7537Queensland Alliance for Agriculture and Food Innovation (QAAFI), Level 2, Queensland Biosciences Precinct [#80], The University of Queensland, St Lucia, QLD 4072 Australia
| |
Collapse
|
10
|
Ma Q, Wu E, Wang H, Yuan Y, Feng Y, Liu J, Zhao L, Feng B. Exogenous 24-epibrassinolide boosts plant growth under alkaline stress from physiological and transcriptomic perspectives: The case of broomcorn millet (Panicum miliaceum L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114298. [PMID: 36403299 DOI: 10.1016/j.ecoenv.2022.114298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Land alkalization is an abiotic stress that affects global sustainable agricultural development and the balance of natural ecosystems. In this study, two broomcorn millet cultivars, T289 (alkaline-tolerant) and S223 (alkaline-sensitive), were selected to investigate the response of broomcorn millet to alkaline stress and the role of brassinolide (BR) in alkaline tolerance. Phenotypes, physiologies, and transcriptomes of T289 and S223 plants under only alkaline stress (AS) and alkaline stress with BR (AB) were compared. The results showed that alkaline stress inhibited growth, promoted the accumulation of soluble sugars and malondialdehyde, enhanced electrolyte leakage, and destroyed the integrity of broomcorn millet stomata. In contrast, BR lessened the negative effects of alkaline stress on plants. Transcriptome sequencing analysis showed that relative to control groups (CK, nutrient solution), in AS groups, 21,113 and 12,151 differentially expressed genes (DEGs) were identified in S223 and T289, respectively. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed various terms and pathways related to metabolism. Compared to S223, alkaline stress strongly activated the brassinosteroid biosynthesis pathway in T289. Conversely, ARF, TF, and TCH4, associated with cell growth and elongation, were inhibited by alkaline stress in S223. Moreover, alkaline stress induced the activation of the mitogen-activated protein kinase (MAPK) pathway, the abscisic acid signaling pathway that initiates stomatal closure, as well as the starch and sucrose metabolism. The EG and BGL genes, which are associated with cellulose degradation, were notably activated. BR enhanced alkaline tolerance, thereby alleviating the transcriptional responses of the two cultivars. Cultivar T289 is better in alkalized regions. Taken together, these results reveal how broomcorn millet responds to alkaline stress and BR mitigates alkaline stress, thus promoting agriculture in alkalized regions.
Collapse
Affiliation(s)
- Qian Ma
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling 712100, Shaanxi, PR China.
| | - Enguo Wu
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling 712100, Shaanxi, PR China.
| | - Honglu Wang
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling 712100, Shaanxi, PR China.
| | - Yuhao Yuan
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling 712100, Shaanxi, PR China.
| | - Yu Feng
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling 712100, Shaanxi, PR China.
| | - Jiajia Liu
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling 712100, Shaanxi, PR China.
| | - Lin Zhao
- Shaanxi Provincial Research Academy of Environmental Sciences, Xi'an 710000, Shaanxi, PR China.
| | - Baili Feng
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
11
|
Tang Y, Schiestl-Aalto P, Saurer M, Sahlstedt E, Kulmala L, Kolari P, Ryhti K, Salmon Y, Jyske T, Ding Y, Bäck J, Rinne-Garmston KT. Tree organ growth and carbon allocation dynamics impact the magnitude and δ13C signal of stem and soil CO2 fluxes. TREE PHYSIOLOGY 2022; 42:2404-2418. [PMID: 35849053 PMCID: PMC10101690 DOI: 10.1093/treephys/tpac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/08/2022] [Accepted: 07/02/2022] [Indexed: 05/14/2023]
Abstract
Incomplete knowledge of carbon (C) allocation dynamics in trees hinders accurate modeling and future predictions of tree growth. We studied C allocation dynamics in a mature Pinus sylvestris L. dominated forest with a novel analytical approach, allowing the first comparison of: (i) magnitude and δ13C of shoot, stem and soil CO2 fluxes (Ashoot, Rstem and Rsoil), (ii) concentration and δ13C of compound-specific and/or bulk non-structural carbohydrates (NSCs) in phloem and roots and (iii) growth of stem and fine roots. Results showed a significant effect of phloem NSC concentrations on tracheid growth, and both variables significantly impacted Rstem. Also, concentrations of root NSCs, especially starch, had a significant effect on fine root growth, although no effect of root NSC concentrations or root growth was detected on Rsoil. Time series analysis between δ13C of Ashoot and δ13C of Rstem or δ13C of Rsoil revealed strengthened C allocation to stem or roots under high C demands. Furthermore, we detected a significant correlation between δ13C of Rstem and δ13C of phloem sucrose and glucose, but not for starch or water-soluble carbohydrates. Our results indicate the need to include C allocation dynamics into tree growth models. We recommend using compound-specific concentration and δ13C analysis to reveal C allocation processes that may not be detected by the conventional approach that utilizes bulk organic matter.
Collapse
Affiliation(s)
| | - Pauliina Schiestl-Aalto
- Institute for Atmospheric and Earth System Research
(INAR)/Physics, Faculty of Science, University of
Helsinki, P.O. Box 68, FI-00014 Helsinki, Finland
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape
Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Elina Sahlstedt
- Bioeconomy and Environment Unit, Natural Resources Institute
Finland, Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Liisa Kulmala
- Institute for Atmospheric and Earth System Research (INAR)/Forest
Sciences, Faculty of Agriculture and Forestry, University
of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland
- Finnish Meteorological Institute, P.O. Box 503, FI-00101
Helsinki, Finland
| | - Pasi Kolari
- Institute for Atmospheric and Earth System Research
(INAR)/Physics, Faculty of Science, University of
Helsinki, P.O. Box 68, FI-00014 Helsinki, Finland
| | - Kira Ryhti
- Institute for Atmospheric and Earth System Research (INAR)/Forest
Sciences, Faculty of Agriculture and Forestry, University
of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland
| | - Yann Salmon
- Institute for Atmospheric and Earth System Research (INAR)/Forest
Sciences, Faculty of Agriculture and Forestry, University
of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland
- Institute for Atmospheric and Earth System Research
(INAR)/Physics, Faculty of Science, University of
Helsinki, P.O. Box 68, FI-00014 Helsinki, Finland
| | - Tuula Jyske
- Production Systems Unit, Natural Resources Institute Finland,
Tietotie 2, FI-02150 Espoo, Finland
| | - Yiyang Ding
- Department of Forest Sciences, Faculty of Agriculture and
Forestry, University of Helsinki, P.O. Box 27, FI-00014
Helsinki, Finland
| | - Jaana Bäck
- Institute for Atmospheric and Earth System Research (INAR)/Forest
Sciences, Faculty of Agriculture and Forestry, University
of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland
| | - Katja T Rinne-Garmston
- Bioeconomy and Environment Unit, Natural Resources Institute
Finland, Latokartanonkaari 9, FI-00790 Helsinki, Finland
| |
Collapse
|
12
|
Kopczewski T, Kuźniak E, Ciereszko I, Kornaś A. Alterations in Primary Carbon Metabolism in Cucumber Infected with Pseudomonas syringae pv lachrymans: Local and Systemic Responses. Int J Mol Sci 2022; 23:ijms232012418. [PMID: 36293272 PMCID: PMC9603868 DOI: 10.3390/ijms232012418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
The reconfiguration of the primary metabolism is essential in plant–pathogen interactions. We compared the local metabolic responses of cucumber leaves inoculated with Pseudomonas syringae pv lachrymans (Psl) with those in non-inoculated systemic leaves, by examining the changes in the nicotinamide adenine dinucleotides pools, the concentration of soluble carbohydrates and activities/gene expression of carbohydrate metabolism-related enzymes, the expression of photosynthesis-related genes, and the tricarboxylic acid cycle-linked metabolite contents and enzyme activities. In the infected leaves, Psl induced a metabolic signature with an altered [NAD(P)H]/[NAD(P)+] ratio; decreased glucose and sucrose contents, along with a changed invertase gene expression; and increased glucose turnover and accumulation of raffinose, trehalose, and myo-inositol. The accumulation of oxaloacetic and malic acids, enhanced activities, and gene expression of fumarase and l-malate dehydrogenase, as well as the increased respiration rate in the infected leaves, indicated that Psl induced the tricarboxylic acid cycle. The changes in gene expression of ribulose-l,5-bis-phosphate carboxylase/oxygenase large unit, phosphoenolpyruvate carboxylase and chloroplast glyceraldehyde-3-phosphate dehydrogenase were compatible with a net photosynthesis decline described earlier. Psl triggered metabolic changes common to the infected and non-infected leaves, the dynamics of which differed quantitatively (e.g., malic acid content and metabolism, glucose-6-phosphate accumulation, and glucose-6-phosphate dehydrogenase activity) and those specifically related to the local or systemic response (e.g., changes in the sugar content and turnover). Therefore, metabolic changes in the systemic leaves may be part of the global effects of local infection on the whole-plant metabolism and also represent a specific acclimation response contributing to balancing growth and defense.
Collapse
Affiliation(s)
- Tomasz Kopczewski
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Elżbieta Kuźniak
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
- Correspondence:
| | - Iwona Ciereszko
- Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Andrzej Kornaś
- Institute of Biology, Pedagogical University of Krakow, 30-084 Kraków, Poland
| |
Collapse
|
13
|
De Rocchis V, Jammer A, Camehl I, Franken P, Roitsch T. Tomato growth promotion by the fungal endophytes Serendipita indica and Serendipita herbamans is associated with sucrose de-novo synthesis in roots and differential local and systemic effects on carbohydrate metabolisms and gene expression. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153755. [PMID: 35961165 DOI: 10.1016/j.jplph.2022.153755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 05/28/2023]
Abstract
Plant growth-promoting and stress resilience-inducing root endophytic fungi represent an additional carbohydrate sink. This study aims to test if such root endophytes affect the sugar metabolism of the host plant to divert the flow of resources for their purposes. Fresh and dry weights of roots and shoots of tomato (Solanum lycopersicum) colonised by the closely related Serendipita indica and Serendipita herbamans were recorded. Plant carbohydrate metabolism was analysed by measuring sugar levels, by determining activity signatures of key enzymes of carbohydrate metabolism, and by quantifying mRNA levels of genes involved in sugar transport and turnover. During the interaction with the tomato plants, both fungi promoted root growth and shifted shoot biomass from stem to leaf tissues, resulting in increased leaf size. A common effect induced by both fungi was the inhibition of phosphofructokinase (PFK) in roots and leaves. This glycolytic-pacing enzyme shows how the glycolysis rate is reduced in plants and, eventually, how sugars are allocated to different tissues. Sucrose phosphate synthase (SPS) activity was strongly induced in colonised roots. This was accompanied by increased SPS-A1 gene expression in S. herbamans-colonised roots and by increased sucrose amounts in roots colonised by S. indica. Other enzyme activities were barely affected by S. indica, but mainly induced in leaves of S. herbamans-colonised plants and decreased in roots. This study suggests that two closely related root endophytic fungi differentially influence plant carbohydrate metabolism locally and systemically, but both induce a similar increase in plant biomass. Notably, both fungal endophytes induce an increase in SPS activity and, in the case of S. indica, sucrose resynthesis in roots. In leaves of S. indica-colonised plants, SWEET11b expression was enhanced, thus we assume that excess sucrose was exported by this transporter to the roots. .
Collapse
Affiliation(s)
- Vincenzo De Rocchis
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Alexandra Jammer
- Institute of Biology, University of Graz, NAWI Graz, Schubertstraße 51, 8010, Graz, Austria
| | - Iris Camehl
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
14
|
Liu N, Qi L, Huang M, Chen D, Yin C, Zhang Y, Wang X, Yuan G, Wang RJ, Yang J, Peng YL, Lu X. Comparative Secretome Analysis of Magnaporthe oryzae Identified Proteins Involved in Virulence and Cell Wall Integrity. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:728-746. [PMID: 34284133 PMCID: PMC9880818 DOI: 10.1016/j.gpb.2021.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/11/2020] [Accepted: 03/10/2021] [Indexed: 01/31/2023]
Abstract
Plant fungal pathogens secrete numerous proteins into the apoplast at the plant-fungus contact sites to facilitate colonization. However, only a few secretory proteins were functionally characterized in Magnaporthe oryzae, the fungal pathogen causing rice blast disease worldwide. Asparagine-linked glycosylation 3 (Alg3) is an α-1,3-mannosyltransferase functioning in the N-glycan synthesis of N-glycosylated secretory proteins. Fungal pathogenicity and cell wall integrity are impaired in Δalg3 mutants, but the secreted proteins affected in Δalg3 mutants are largely unknown. In this study, we compared the secretomes of the wild-type strain and the Δalg3 mutant and identified 51 proteins that require Alg3 for proper secretion. These proteins were predicted to be involved in metabolic processes, interspecies interactions, cell wall organization, and response to chemicals. Nine proteins were selected for further validation. We found that these proteins were localized at the apoplastic region surrounding the fungal infection hyphae. Moreover, the N-glycosylation of these proteins was significantly changed in the Δalg3 mutant, leading to the decreased protein secretion and abnormal protein localization. Furthermore, we tested the biological functions of two genes, INV1 (encoding invertase 1, a secreted invertase) and AMCase (encoding acid mammalian chinitase, a secreted chitinase). The fungal virulence was significantly reduced, and the cell wall integrity was altered in the Δinv1 and Δamcase mutant strains. Moreover, the N-glycosylation was essential for the function and secretion of AMCase. Taken together, our study provides new insight into the role of N-glycosylated secretory proteins in fungal virulence and cell wall integrity.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China,Graduate School of China Agricultural University, Beijing 100193, China
| | - Linlu Qi
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Manna Huang
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China,Graduate School of China Agricultural University, Beijing 100193, China
| | - Deng Chen
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Changfa Yin
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China,Graduate School of China Agricultural University, Beijing 100193, China
| | - Yiying Zhang
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China,Graduate School of China Agricultural University, Beijing 100193, China
| | - Xingbin Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China,Graduate School of China Agricultural University, Beijing 100193, China
| | - Guixin Yuan
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China,Graduate School of China Agricultural University, Beijing 100193, China
| | - Rui-Jin Wang
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Xunli Lu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China,Corresponding author.
| |
Collapse
|
15
|
Priming with fungal elicitor elicits early signaling defense against leaf spot of broccoli underlying cellular, biochemical and gene expression. Microbiol Res 2022; 263:127143. [DOI: 10.1016/j.micres.2022.127143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
|
16
|
Gong P, Kang J, Sadeghnezhad E, Bao R, Ge M, Zhuge Y, Shangguan L, Fang J. Transcriptional Profiling of Resistant and Susceptible Cultivars of Grapevine ( Vitis L.) Reveals Hypersensitive Responses to Plasmopara viticola. Front Microbiol 2022; 13:846504. [PMID: 35572700 PMCID: PMC9097084 DOI: 10.3389/fmicb.2022.846504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Grapevine downy mildew is the most serious disease of grapevine cultivars that affects the rate of resistance/susceptibility to Plasmopara viticola. In this study, we used the susceptible cultivar "Zitian Seedless" and the resistant cultivar "Kober 5BB" as materials to determine the transcriptome differences and phenotypes of the leaves after inoculation with downy mildew. The differences in microstructures and molecular levels were compared and analyzed. Fluorescence staining and microscopic observations confirmed that hypersensitive cell death occurred around the stomata in "Kober 5BB" infected by downy mildew zoospores. Meanwhile, transcriptomic profiling indicated that there were 11,713 and 6,997 gene expression differences between the resistant and susceptible cultivars at 72 h after inoculation when compared to control (0 h), respectively. The differentially expressed genes of the two cultivars are significantly enriched in different pathways, including response to plant-pathogen interaction, mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone signal transduction, phenylpropanoid, and flavonoid biosynthesis. Furthermore, the results of functional enrichment analysis showed that H2O2 metabolism, cell death, reactive oxygen response, and carbohydrate metabolism are also involved in the defense response of "Kober 5BB," wherein a total of 322 key genes have been identified. The protein interaction network showed that metacaspases (MCAs), vacuolar processing enzymes (VPEs), and Papain-like cysteine proteases (PLCPs) play an important role in the execution of hypersensitive responses (HR). In conclusion, we demonstrated that HR cell death is the key strategy in the process of grape defense against downy mildew, which may be mediated or activated by Caspase-like proteases.
Collapse
Affiliation(s)
- Peijie Gong
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jun Kang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ehsan Sadeghnezhad
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ruoxuan Bao
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mengqing Ge
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yaxian Zhuge
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lingfei Shangguan
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jinggui Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Singh D, Singla-Pareek SL, Pareek A. Two-component signaling system in plants: interaction network and specificity in response to stress and hormones. PLANT CELL REPORTS 2021; 40:2037-2046. [PMID: 34109469 DOI: 10.1007/s00299-021-02727-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Plants are exposed to various environmental challenges that can hamper their growth, development, and productivity. Being sedentary, plants cannot escape from these unfavorable environmental conditions and have evolved various signaling cascades to endure them. The two-component signaling (TCS) system is one such essential signaling circuitry present in plants regulating responses against multiple abiotic and biotic stresses. It is among the most ancient and evolutionary conserved signaling pathways in plants, which include membrane-bound histidine kinases (HKs), cytoplasmic histidine phosphotransfer proteins (Hpts), and nuclear or cytoplasmic response regulators (RRs). At the same time, TCS also involved in many signaling circuitries operative in plants in response to diverse hormones. These plant growth hormones play a significant role in diverse physiological and developmental processes, and their contribution to plant stress responses is coming up in a big way. Therefore, it is intriguing to know how TCS and various plant growth regulators, along with the key transcription factors, directly or indirectly control the responses of plants towards diverse stresses. The present review attempts to explore this relationship, hoping that this knowledge will contribute towards developing crop plants with enhanced climate resilience.
Collapse
Affiliation(s)
- Deepti Singh
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, Delhi, India.
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| |
Collapse
|
18
|
Kaur R, Zhawar VK. Regulation of secondary antioxidants and carbohydrates by gamma-aminobutyric acid under salinity-alkalinity stress in rice (Oryza sativa L.). Biol Futur 2021; 72:229-239. [PMID: 34554480 DOI: 10.1007/s42977-020-00055-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/12/2020] [Indexed: 11/29/2022]
Abstract
Gamma-aminobutyric acid (GABA) is known to improve tolerance against abiotic stresses but less studied for salinity-alkalinity stress (SAS). In the present study, GABA regulation of secondary antioxidants and carbohydrates was studied in rice in the presence and absence of SAS. About 1.5 mM GABA, 200 mM SAS, GABA + SAS were applied to 5-day old seedlings, and thereafter measurements were done in shoots and roots at 24, 48, 72 h in rice cultivars CSR 43 (tolerant) and Pusa 44 (susceptible). SAS was applied in molar ratio of 1:9:9:1 of NaCl:Na2SO4:NaHCO3:Na2CO3. Peroxidases (POX), polyphenol oxidases (PPO), lignin, flavonoids and phenolics from secondary metabolism and invertases, hexoses, sucrose and starch from carbohydrate metabolism were studied. Pusa 44 increased soluble POX, lignin, flavonoids in shoots but deficient in roots during stress period but improved under GABA + SAS. CSR 43 increased soluble POX, lignin, flavonoids in roots consistently throughout the stress period and also improved under GABA + SAS. Early increase in cell wall POX/PPO under SAS was seen in CSR 43 only, while Pusa 44 improved this under GABA + SAS. During stress period, CSR 43 showed an increasing trend of cell wall invertase activity, sucrose, sucrose-to-hexose ratio and starch in roots but Pusa 44 showed poor such response but Pusa 44 improved starch, sucrose, sucrose-to-hexose ratio by significant amount in both shoots and roots under GABA + SAS. The overall study indicated GABA as an important regulator of secondary and carbohydrate metabolisms. Besides improving secondary antioxidants, GABA under stress may improve cellular reserves like starch and protective sugars like sucrose.
Collapse
Affiliation(s)
- Ramanjeet Kaur
- Department of Biochemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, India, 141004
| | - Vikramjit Kaur Zhawar
- Department of Biochemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, India, 141004.
| |
Collapse
|
19
|
Pan K, Lu C, Nie P, Hu M, Zhou X, Chen X, Wang W. Predominantly symplastic phloem unloading of photosynthates maintains efficient starch accumulation in the cassava storage roots (Manihot esculenta Crantz). BMC PLANT BIOLOGY 2021; 21:318. [PMID: 34217217 PMCID: PMC8254309 DOI: 10.1186/s12870-021-03088-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 06/08/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Cassava (Manihot esculenta Crantz) efficiently accumulates starch in its storage roots. However, how photosynthates are transported from the leaves to the phloem (especially how they are unloaded into parenchymal cells of storage roots) remains unclear. RESULTS Here, we investigated the sucrose unloading pattern and its impact on cassava storage root development using microstructural and physiological analyses, namely, carboxyfluorescein (CF) and C14 isotope tracing. The expression profiling of genes involved in symplastic and apoplastic transport was performed, which included enzyme activity, protein gel blot analysis, and transcriptome sequencing analyses. These finding showed that carbohydrates are transported mainly in the form of sucrose, and more than 54.6% was present in the stem phloem. Sucrose was predominantly unloaded symplastically from the phloem into storage roots; in addition, there was a shift from apoplastic to symplastic unloading accompanied by the onset of root swelling. Statistical data on the microstructures indicated an enrichment of plasmodesmata within sieve, companion, and parenchyma cells in the developing storage roots of a cultivar but not in a wild ancestor. Tracing tests with CF verified the existence of a symplastic channel, and [14C] Suc demonstrated that sucrose could rapidly diffuse into root parenchyma cells from phloem cells. The relatively high expression of genes encoding sucrose synthase and associated proteins appeared in the middle and late stages of storage roots but not in primary fibrous roots, or secondary fibrous roots. The inverse expression pattern of sucrose transporters, cell wall acid invertase, and soluble acid invertase in these corresponding organs supported the presence of a symplastic sucrose unloading pathway. The transcription profile of genes involved in symplastic unloading and their significantly positive correlation with the starch yield at the population level confirmed that symplastic sucrose transport is vitally important in the development of cassava storage roots. CONCLUSIONS In this study, we revealed that the cassava storage root phloem sucrose unloading pattern was predominantly a symplastic unloading pattern. This pattern is essential for efficient starch accumulation in high-yielding varieties compared with low-yielding wild ancestors.
Collapse
Affiliation(s)
- Kun Pan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, China
- Hainan Medical University, Haikou, 571199, China
| | - Cheng Lu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, China
| | - Peixian Nie
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Taian, 271000, Shandong, China
| | - Meizhen Hu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, China
| | - Xincheng Zhou
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, China
| | - Xin Chen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, China
| | - Wenquan Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, China.
| |
Collapse
|
20
|
Zhong HL, Liu Y, Nie YD, Wang Z, Zhu L, Wang N, Li JH, Han FX, Li GY. Change of soluble acid invertase gene ( SAI-1) haplotype in hybrid sorghum breeding program in China. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:37. [PMID: 37309441 PMCID: PMC10236051 DOI: 10.1007/s11032-021-01231-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
Sugar metabolism is the most important and core one which drives plant growth and development. Invertases are key enzymes that regulate sugar metabolism. A still-growing number of studies have revealed that invertases play a crucial role in various aspects of plant growth and development. Crop yield is the product of sugar metabolism; it could be deduced that invertase also regulated the yield formation. So we have done a series of research on soluble acid invertase in sweet sorghum from enzyme activity to gene cloning and functional marker development. In this paper, we sequenced full length of SAI-1 gene in 69 grain sorghum parent lines, trying to see how it differs in their gene sequences and their distribution in related hybrid varieties released in the past. To our surprise, the result showed that B-lines and restore lines (R-line) have almost different SAI-1 haplotype distribution. The change of haplotype of SAI-1 gene is associated with yield gain as with grain sorghum breeding progress, which proved that SAI-1 may take a very important role in yield formation. And we also found the SAI-1 gene tends to become shorter as with the breeding advance, which means short sequence in introns, while exon remains unchanged leading to higher gene efficiency. The best SAI-1 haplotype combination of sorghum hybrid was also found for different planting regions. These findings are of great significance for improving breeding efficiency, understanding heterosis, and germplasm enhancement. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01231-2.
Collapse
Affiliation(s)
- Hai-Li Zhong
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yang Liu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013 Guangdong China
| | - Yuan-Dong Nie
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhi Wang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Li Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Nai Wang
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Changchun, 130033 Jilin China
| | - Ji-Hong Li
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Changchun, 130033 Jilin China
| | - Fen-Xia Han
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Gui-Ying Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
21
|
Wu W, Du K, Kang X, Wei H. The diverse roles of cytokinins in regulating leaf development. HORTICULTURE RESEARCH 2021; 8:118. [PMID: 34059666 PMCID: PMC8167137 DOI: 10.1038/s41438-021-00558-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 05/24/2023]
Abstract
Leaves provide energy for plants, and consequently for animals, through photosynthesis. Despite their important functions, plant leaf developmental processes and their underlying mechanisms have not been well characterized. Here, we provide a holistic description of leaf developmental processes that is centered on cytokinins and their signaling functions. Cytokinins maintain the growth potential (pluripotency) of shoot apical meristems, which provide stem cells for the generation of leaf primordia during the initial stage of leaf formation; cytokinins and auxins, as well as their interaction, determine the phyllotaxis pattern. The activities of cytokinins in various regions of the leaf, especially at the margins, collectively determine the final leaf morphology (e.g., simple or compound). The area of a leaf is generally determined by the number and size of the cells in the leaf. Cytokinins promote cell division and increase cell expansion during the proliferation and expansion stages of leaf cell development, respectively. During leaf senescence, cytokinins reduce sugar accumulation, increase chlorophyll synthesis, and prolong the leaf photosynthetic period. We also briefly describe the roles of other hormones, including auxin and ethylene, during the whole leaf developmental process. In this study, we review the regulatory roles of cytokinins in various leaf developmental stages, with a focus on cytokinin metabolism and signal transduction processes, in order to shed light on the molecular mechanisms underlying leaf development.
Collapse
Affiliation(s)
- Wenqi Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, PR China
| | - Kang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory for Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiangyang Kang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, PR China.
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China.
- Key Laboratory for Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
22
|
Du JS, Hang LF, Hao Q, Yang HT, Ali S, Badawy RSE, Xu XY, Tan HQ, Su LH, Li HX, Zou KX, Li Y, Sun B, Lin LJ, Lai YS. The dissection of R genes and locus Pc5.1 in Phytophthora capsici infection provides a novel view of disease resistance in peppers. BMC Genomics 2021; 22:372. [PMID: 34016054 PMCID: PMC8139160 DOI: 10.1186/s12864-021-07705-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023] Open
Abstract
Background Phytophthora capsici root rot (PRR) is a disastrous disease in peppers (Capsicum spp.) caused by soilborne oomycete with typical symptoms of necrosis and constriction at the basal stem and consequent plant wilting. Most studies on the QTL mapping of P. capsici resistance suggested a consensus broad-spectrum QTL on chromosome 5 named Pc.5.1 regardless of P. capsici isolates and resistant resources. In addition, all these reports proposed NBS-ARC domain genes as candidate genes controlling resistance. Results We screened out 10 PRR-resistant resources from 160 Capsicum germplasm and inspected the response of locus Pc.5.1 and NBS-ARC genes during P. capsici infection by comparing the root transcriptomes of resistant pepper 305R and susceptible pepper 372S. To dissect the structure of Pc.5.1, we anchored genetic markers onto pepper genomic sequence and made an extended Pc5.1 (Ext-Pc5.1) located at 8.35Mb38.13Mb on chromosome 5 which covered all Pc5.1 reported in publications. A total of 571 NBS-ARC genes were mined from the genome of pepper CM334 and 34 genes were significantly affected by P. capsici infection in either 305R or 372S. Only 5 inducible NBS-ARC genes had LRR domains and none of them was positioned at Ext-Pc5.1. Ext-Pc5.1 did show strong response to P. capsici infection and there were a total of 44 differentially expressed genes (DEGs), but no candidate genes proposed by previous publications was included. Snakin-1 (SN1), a well-known antimicrobial peptide gene located at Pc5.1, was significantly decreased in 372S but not in 305R. Moreover, there was an impressive upregulation of sugar pathway genes in 305R, which was confirmed by metabolite analysis of roots. The biological processes of histone methylation, histone phosphorylation, DNA methylation, and nucleosome assembly were strongly activated in 305R but not in 372S, indicating an epigenetic-related defense mechanism. Conclusions Those NBS-ARC genes that were suggested to contribute to Pc5.1 in previous publications did not show any significant response in P. capsici infection and there were no significant differences of these genes in transcription levels between 305R and 372S. Other pathogen defense-related genes like SN1 might account for Pc5.1. Our study also proposed the important role of sugar and epigenetic regulation in the defense against P. capsici. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07705-z.
Collapse
Affiliation(s)
- Jin-Song Du
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin-Feng Hang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Hao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hai-Tao Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siyad Ali
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | | | - Xiao-Yu Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hua-Qiang Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li-Hong Su
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huan-Xiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai-Xi Zou
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li-Jin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yun-Song Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
23
|
Comparison and Characterization of a Cell Wall Invertase Promoter from Cu-Tolerant and Non-Tolerant Populations of Elsholtzia haichowensis. Int J Mol Sci 2021; 22:ijms22105299. [PMID: 34069912 PMCID: PMC8157609 DOI: 10.3390/ijms22105299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/04/2022] Open
Abstract
Cell wall invertase (CWIN) activity and the expression of the corresponding gene were previously observed to be significantly elevated in a Cu-tolerant population of Elsholtzia haichowensis relative to a non-tolerant population under copper stress. To understand the differences in CWIN gene regulation between the two populations, their CWIN promoter β-glucuronidase (GUS) reporter vectors were constructed. GUS activity was measured in transgenic Arabidopsis in response to copper, sugar, and phytohormone treatments. Under the copper treatment, only the activity of the CWIN promoter from the Cu-tolerant population was slightly increased. Glucose and fructose significantly induced the activity of CWIN promoters from both populations. Among the phytohormone treatments, only salicylic acid induced significantly higher (p < 0.05) activity of the Cu-tolerant CWIN promoter relative to the non-tolerant promoters. Analysis of 5′-deletion constructs revealed that a 270-bp promoter fragment was required for SA induction of the promoter from the Cu-tolerant population. Comparison of this region in the two CWIN promoters revealed that it had 10 mutation sites and contained CAAT-box and W-box cis-elements in the Cu-tolerant promoter only. This work provides insights into the regulatory role of SA in CWIN gene expression and offers an explanation for differences in CWIN expression between E. haichowensis populations.
Collapse
|
24
|
Liu C, Xi H, Chen X, Zhao Y, Yao J, Si J, Zhang L. Genome-wide identification and expression pattern of alkaline/neutral invertase gene family in Dendrobium catenatum. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1901610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Chen Liu
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Hangxian Xi
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Xueliang Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Yuxue Zhao
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Jinbo Yao
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, PR China
| |
Collapse
|
25
|
Nishimura A, Yoshioka A, Kariya K, Ube N, Ueno K, Tebayashi SI, Osaki-Oka K, Ishihara A. Sugars in an aqueous extract of the spent substrate of the mushroom Hypsizygus marmoreus induce defense responses in rice. Biosci Biotechnol Biochem 2021; 85:743-755. [PMID: 33580659 DOI: 10.1093/bbb/zbaa122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/23/2020] [Indexed: 01/26/2023]
Abstract
Plant defense responses are activated by various exogenous stimuli. We found that an aqueous extract of spent mushroom substrate used for the cultivation of Hypsizygus marmoreus induced defense responses in rice. Fractionation of the spent mushroom substrate extract indicated that the compounds responsible for this induction were neutral and hydrophilic molecules with molecular weights lower than 3 kDa. Compounds with these characteristics, namely glucose, fructose, and sucrose, were detected in the extract at concentrations of 17.4, 3.3, and 1.6 mM, respectively, and the treatment of rice leaves with these sugars induced defense responses. Furthermore, microarray analysis indicated that the genes involved in defense responses were commonly activated by the treatment of leaves with spent mushroom substrate extract and glucose. These findings indicate that the induction of defense responses by treatment with spent mushroom substrate extract is, at least in part, attributable to the sugar constituents of the extract.
Collapse
Affiliation(s)
- Ayami Nishimura
- Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Anna Yoshioka
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Keisuke Kariya
- Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Naoki Ube
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Kotomi Ueno
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Shin-Ichi Tebayashi
- Faculty of Agriculture and Marine Science, Kochi University, 200B Monobe, Nankoku, Kochi, Japan
| | | | | |
Collapse
|
26
|
Völz R, Park JY, Harris W, Hwang S, Lee YH. Lyso-phosphatidylethanolamine primes the plant immune system and promotes basal resistance against hemibiotrophic pathogens. BMC Biotechnol 2021; 21:12. [PMID: 33536000 PMCID: PMC7856808 DOI: 10.1186/s12896-020-00661-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
Background Lyso-phosphatidylethanolamine (LPE) is a natural phospholipid that functions in the early stages of plant senescence. Plant innate immunity and early leaf senescence share molecular components. To reveal conserved mechanisms that link-up both processes, we tried to unravel to what extent LPE coordinates defense response and by what mode of action. Result We found that LPE-treatment induces signaling and biosynthesis gene expression of the defensive hormone salicylic acid (SA). However, jasmonic acid and ethylene triggered gene induction levels are indistinguishable from the control. In accordance with gene induction for SA, oxidative stress, and reactive oxygen species (ROS) production, we detected raised in-situ hydrogen peroxide levels following LPE-application. Yet, ROS-burst assays of LPE-pretreated plants revealed a reduced release of ROS after PAMP-administration suggesting that LPE interferes with an oxidative burst. Our data refer to a priming effect of LPE on SA/ROS-associated genomic loci that encode pivotal factors in early senescence and considerably improve plant basal immunity. Thus, we challenged Arabidopsis thaliana with the hemibiotrophic pathogen Pseudomonas syringae. Consistently, we found an increased resistance in the LPE-pretreated Arabidopsis plants compared to the mock-pretreated control. Conclusions Our results underscore a beneficial effect of LPE on plant innate immunity against hemibiotrophs. Given the resistance-promoting effect of exogenously applied LPE, this bio-agent bears the potential of being applied as a valuable tool for the genetic activation of defense-associated traits. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-020-00661-8.
Collapse
Affiliation(s)
- Ronny Völz
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.
| | - Ju-Young Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - William Harris
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | | | - Yong-Hwan Lee
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea. .,Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea. .,Center for Fungal Genetic Resources, Seoul National University, Seoul, 08826, South Korea. .,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
27
|
Whole-Transcriptome RNA Sequencing Reveals the Global Molecular Responses and CeRNA Regulatory Network of mRNAs, lncRNAs, miRNAs and circRNAs in Response to Salt Stress in Sugar Beet ( Beta vulgaris). Int J Mol Sci 2020; 22:ijms22010289. [PMID: 33396637 PMCID: PMC7795855 DOI: 10.3390/ijms22010289] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/25/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
Sugar beet is an important sugar-yielding crop with some tolerance to salt, but the mechanistic basis of this tolerance is not known. In the present study, we have used whole-transcriptome RNA-seq and degradome sequencing in response to salt stress to uncover differentially expressed (DE) mRNAs, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in both leaves and roots. A competitive endogenous RNA (ceRNA) network was constructed with the predicted DE pairs, which revealed regulatory roles under salt stress. A functional analysis suggests that ceRNAs are implicated in copper redistribution, plasma membrane permeability, glycometabolism and energy metabolism, NAC transcription factor and the phosphoinositol signaling system. Overall, we conducted for the first time a full transcriptomic analysis of sugar beet under salt stress that involves a potential ceRNA network, thus providing a basis to study the potential functions of lncRNAs/circRNAs.
Collapse
|
28
|
Mechri B, Tekaya M, Attia F, Hammami M, Chehab H. Drought stress improved the capacity of Rhizophagus irregularis for inducing the accumulation of oleuropein and mannitol in olive (Olea europaea) roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:178-191. [PMID: 32961433 DOI: 10.1016/j.plaphy.2020.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Olive trees are often subjected to a prolonged dry season with low water availability, which induces oxidative stress. Arbuscular mycorrhizal (AM) symbioses can improve olive plant tolerance to water deficit. This study investigated several aspects related to drought tolerance in AM fungi olive plants. Non-AM and AM plants were grown under well-watered or drought-stressed conditions, and mycorrhizal growth response, neutral lipid fatty acid (NLFA)16:1ω5 and phospholipid fatty acid (PLFA) 16:1ω5 in roots (intraradical mycelium) and in soil (extraradical mycelium), carbohydrates (monosaccharides, disaccharides and polyols) and phenolic compounds (phenolic alcohols, flavonoids, lignans, secoiridoids and hydroxycinnamic acid derivatives) were determined. Results showed that the amounts of PLFA 16:1ω5 and NLFA 16:1ω5 were significantly influenced by drought stress conditions. The NLFA 16:1ω5/PLFA 16:1ω5 ratio showed a dramatic decrease (-62%) with the application of water deficit stress, indicating that AM fungi allocated low carbon to storage structures under stress conditions. Mannitol and verbascoside are the main compounds detected in the roots of well-watered plants, whereas oleuropein and mannitol are the main compounds differentially accumulated in the roots of water-stressed plants. The oleuropein/verbascoside ratio increased in the case of drought-stressed AM plants by 30%, while the mannitol/oleuropein ratio was decreased by 46%, when compared to the non-AM stressed plants. Mycorrhization therefore oriented the flux toward the biosynthetic pathway of oleuropein and the data suggest that sugar and phenolic compound metabolism may have been redirected to the formation of oleuropein in roots of AM stressed plants, that may underlie their enhanced tolerance to drought stress.
Collapse
Affiliation(s)
- Beligh Mechri
- Laboratory of Biochemistry, USCR Mass Spectrometry, LR-NAFS/LR12ES05 Nutrition Functional Foods and Vascular Health, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia.
| | - Meriem Tekaya
- Laboratory of Biochemistry, USCR Mass Spectrometry, LR-NAFS/LR12ES05 Nutrition Functional Foods and Vascular Health, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia
| | - Faouzi Attia
- The Olive Tree Institute, Unit Specializing in Sousse, Ibn Khaldoun Street B.P. 14, 4061, Sousse, Tunisia
| | - Mohamed Hammami
- Laboratory of Biochemistry, USCR Mass Spectrometry, LR-NAFS/LR12ES05 Nutrition Functional Foods and Vascular Health, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia
| | - Hechmi Chehab
- The Olive Tree Institute, Unit Specializing in Sousse, Ibn Khaldoun Street B.P. 14, 4061, Sousse, Tunisia
| |
Collapse
|
29
|
Leiva-Ampuero A, Agurto M, Matus JT, Hoppe G, Huidobro C, Inostroza-Blancheteau C, Reyes-Díaz M, Stange C, Canessa P, Vega A. Salinity impairs photosynthetic capacity and enhances carotenoid-related gene expression and biosynthesis in tomato ( Solanum lycopersicum L. cv. Micro-Tom). PeerJ 2020; 8:e9742. [PMID: 32995076 PMCID: PMC7502237 DOI: 10.7717/peerj.9742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/26/2020] [Indexed: 01/19/2023] Open
Abstract
Carotenoids are essential components of the photosynthetic antenna and reaction center complexes, being also responsible for antioxidant defense, coloration, and many other functions in multiple plant tissues. In tomato, salinity negatively affects the development of vegetative organs and productivity, but according to previous studies it might also increase fruit color and taste, improving its quality, which is a current agricultural challenge. The fruit quality parameters that are increased by salinity are cultivar-specific and include carotenoid, sugar, and organic acid contents. However, the relationship between vegetative and reproductive organs and response to salinity is still poorly understood. Considering this, Solanum lycopersicum cv. Micro-Tom plants were grown in the absence of salt supplementation as well as with increasing concentrations of NaCl for 14 weeks, evaluating plant performance from vegetative to reproductive stages. In response to salinity, plants showed a significant reduction in net photosynthesis, stomatal conductance, PSII quantum yield, and electron transport rate, in addition to an increase in non-photochemical quenching. In line with these responses the number of tomato clusters decreased, and smaller fruits with higher soluble solids content were obtained. Mature-green fruits also displayed a salt-dependent higher induction in the expression of PSY1, PDS, ZDS, and LYCB, key genes of the carotenoid biosynthesis pathway, in correlation with increased lycopene, lutein, β-carotene, and violaxanthin levels. These results suggest a key relationship between photosynthetic plant response and yield, involving impaired photosynthetic capacity, increased carotenoid-related gene expression, and carotenoid biosynthesis.
Collapse
Affiliation(s)
- Andrés Leiva-Ampuero
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario Agurto
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - José Tomás Matus
- Institute for Integrative Systems Biology, I2SysBio, Universitat de València - CSIC, Valencia, Spain
| | - Gustavo Hoppe
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Camila Huidobro
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Inostroza-Blancheteau
- Núcleo de Investigación en Producción Alimentaria (NIPA), Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Marjorie Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile.,Center of Plant, Soil Interaction, and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Claudia Stange
- Centro de Biología Molecular Vegetal (CBMV), Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Paulo Canessa
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Andrea Vega
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
30
|
Jiang N, Yu P, Fu W, Li G, Feng B, Chen T, Li H, Tao L, Fu G. Acid invertase confers heat tolerance in rice plants by maintaining energy homoeostasis of spikelets. PLANT, CELL & ENVIRONMENT 2020; 43:1273-1287. [PMID: 31994745 DOI: 10.1111/pce.13733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 05/25/2023]
Abstract
Heat stress impairs both pollen germination and pollen tube elongation, resulting in pollination failure caused by energy imbalance. Invertase plays a critical role in the maintenance of energy homoeostasis; however, few studies investigated this during heat stress. Two rice cultivars with different heat tolerance, namely, TLY83 (heat tolerant) and LLY722 (heat susceptible), were subjected to heat stress. At anthesis, heat stress significantly decreased spikelet fertility, accompanied by notable reductions in pollen germination on stigma and pollen tube elongation in ovule, especially in LLY722. Acid invertase (INV), rather than sucrose synthase, contributed to sucrose metabolism, which explains the different tolerances of both cultivars. Under heat stress, larger enhancements in NAD(H), ATP, and antioxidant capacity were found in TLY83 compared with LLY722, whereas a sharp reduction in poly(ADP-ribose) polymerase (PARP) activity was found in the former compared with the latter. Importantly, exogenous INV, 3-aminobenzamide (a PARP inhibitor), sucrose, glucose, and fructose significantly increased spikelet fertility under heat stress, where INV activity was enhanced and PARP activity was inhibited. Therefore, INV can balance the energy production and consumption to provide sufficient energy for pollen germination and pollen tube growth under heat stress.
Collapse
Affiliation(s)
- Ning Jiang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Pinghui Yu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Weimeng Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guangyan Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Hubo Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guanfu Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
31
|
Wanjala BW, Ateka EM, Miano DW, Low JW, Kreuze JF. Storage Root Yield of Sweetpotato as Influenced by Sweetpotato leaf curl virus and Its Interaction With Sweetpotato feathery mottle virus and Sweetpotato chlorotic stunt virus in Kenya. PLANT DISEASE 2020; 104:1477-1486. [PMID: 32196415 DOI: 10.1094/pdis-06-19-1196-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, the effect of a Kenyan strain of Sweetpotato leaf curl virus (SPLCV) and its interactions with Sweetpotato feathery mottle virus (SPFMV) and Sweetpotato chlorotic stunt virus (SPCSV) on root yield was determined. Trials were performed during two seasons using varieties Kakamega and Ejumula and contrasting in their resistance to sweetpotato virus disease in a randomized complete block design with 16 treatments replicated three times. The treatments included plants graft inoculated with SPLCV, SPFMV, and SPCSV alone and in possible dual or triple combinations. Yield and yield-related parameters were evaluated at harvest. The results showed marked differences in the effect of SPLCV infection on the two varieties. Ejumula, which is highly susceptible to SPFMV and SPCSV, suffered no significant yield loss from SPLCV infection, whereas Kakamega, which is moderately resistant to SPFMV and SPCSV, suffered an average of 47% yield loss from SPLCV, despite only mild symptoms occurring in both varieties. These results highlight the variability in yield response to SPLCV between sweetpotato cultivars as well as a lack of correlation of SPLCV-related symptoms with yield reduction. In addition, they underline the lack of correlation between resistance to the RNA viruses SPCSV and SPFMV and the DNA virus SPLCV.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Bramwel W Wanjala
- Sub-Saharan Africa Regional Office, International Potato Center, 00603 Nairobi, Kenya
- School of Agriculture, Jomo Kenyatta University of Agriculture and Technology, 00200 Nairobi, Kenya
| | - Elijah M Ateka
- School of Agriculture, Jomo Kenyatta University of Agriculture and Technology, 00200 Nairobi, Kenya
| | - Douglas W Miano
- Department of Plant Science and Crop Protection, University of Nairobi, 00100 Nairobi, Kenya
| | - Jan W Low
- Sub-Saharan Africa Regional Office, International Potato Center, 00603 Nairobi, Kenya
| | - Jan F Kreuze
- International Potato Center, La Molina Apartado Postal 1558, Lima, Peru
| |
Collapse
|
32
|
Shen S, Liang XG, Zhang L, Zhao X, Liu YP, Lin S, Gao Z, Wang P, Wang ZM, Zhou SL. Intervening in sibling competition for assimilates by controlled pollination prevents seed abortion under postpollination drought in maize. PLANT, CELL & ENVIRONMENT 2020; 43:903-919. [PMID: 31851373 DOI: 10.1111/pce.13704] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
During maize production, drought throughout the flowering stage usually induces seed abortion and yield losses. The influence of postpollination drought stress on seed abortion and its underlying mechanisms are not well characterized. By intervening in the competition for assimilates between kernel siblings under different degrees of postpollination drought stresses accompanied by synchronous pollination (SP) and incomplete pollination (ICP) approaches, the mechanisms of postpollination abortion were investigated at physiological and molecular levels. Upon SP treatment, up to 15% of the fertilized apical kernels were aborted in the drought-exacerbated competition for assimilates. The aborted kernels exhibited weak sucrose hydrolysis and starch synthesis but promoted the synthesis of trehalose-6-phosphate and ethylene. In ICP where basal pollination was prevented, apical kernel growth was restored with reinstated sucrose metabolism and starch synthesis and promoted sucrose and hexose levels under drought stress. In addition, the equilibrium between ethylene and polyamine in response to the drought and pollination treatments was associated with the abortion process. We conclude that competition for assimilates drives postpollination kernel abortion, whereas differences in sugar metabolism and the equilibrium between ethylene and polyamines may be relevant to the "live or die" choice of kernel siblings during this competition.
Collapse
Affiliation(s)
- Si Shen
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Xiao-Gui Liang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Li Zhang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xue Zhao
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Yun-Peng Liu
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- School of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Shan Lin
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Zhen Gao
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- Scientific Observing and Experimental Station of Wuqiao for Crop Water Use Efficiency, Ministry of Agriculture and Rural Affairs, Wuqiao, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| | - Zhi-Min Wang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- Scientific Observing and Experimental Station of Wuqiao for Crop Water Use Efficiency, Ministry of Agriculture and Rural Affairs, Wuqiao, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| | - Shun-Li Zhou
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- Scientific Observing and Experimental Station of Wuqiao for Crop Water Use Efficiency, Ministry of Agriculture and Rural Affairs, Wuqiao, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| |
Collapse
|
33
|
Tarkowski ŁP, Tsirkone VG, Osipov EM, Beelen S, Lammens W, Vergauwen R, Van den Ende W, Strelkov SV. Crystal structure of Arabidopsis thaliana neutral invertase 2. Acta Crystallogr F Struct Biol Commun 2020; 76:152-157. [PMID: 32134001 PMCID: PMC7057345 DOI: 10.1107/s2053230x2000179x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/07/2020] [Indexed: 11/11/2022] Open
Abstract
The metabolism of sucrose is of crucial importance for life on Earth. In plants, enzymes called invertases split sucrose into glucose and fructose, contributing to the regulation of metabolic fluxes. Invertases differ in their localization and pH optimum. Acidic invertases present in plant cell walls and vacuoles belong to glycoside hydrolase family 32 (GH32) and have an all-β structure. In contrast, neutral invertases are located in the cytosol and organelles such as chloroplasts and mitochondria. These poorly understood enzymes are classified into a separate GH100 family. Recent crystal structures of the closely related neutral invertases InvA and InvB from the cyanobacterium Anabaena revealed a predominantly α-helical fold with unique features compared with other sucrose-metabolizing enzymes. Here, a neutral invertase (AtNIN2) from the model plant Arabidopsis thaliana was heterologously expressed, purified and crystallized. As a result, the first neutral invertase structure from a higher plant has been obtained at 3.4 Å resolution. The hexameric AtNIN2 structure is highly similar to that of InvA, pointing to high evolutionary conservation of neutral invertases.
Collapse
Affiliation(s)
- Łukasz P. Tarkowski
- Molecular Plant Biology Laboratory, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium
| | - Vicky G. Tsirkone
- Molecular Plant Biology Laboratory, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium
| | - Evgenii M. Osipov
- Molecular Plant Biology Laboratory, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium
| | - Steven Beelen
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, O&N II, bus 822, 3000 Leuven, Belgium
| | - Willem Lammens
- Molecular Plant Biology Laboratory, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium
| | - Rudy Vergauwen
- Molecular Plant Biology Laboratory, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium
| | - Wim Van den Ende
- Molecular Plant Biology Laboratory, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium
| | - Sergei V. Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, O&N II, bus 822, 3000 Leuven, Belgium
| |
Collapse
|
34
|
Andreas P, Kisiala A, Emery RJN, De Clerck-Floate R, Tooker JF, Price PW, Miller III DG, Chen MS, Connor EF. Cytokinins Are Abundant and Widespread Among Insect Species. PLANTS (BASEL, SWITZERLAND) 2020; 9:E208. [PMID: 32041320 PMCID: PMC7076654 DOI: 10.3390/plants9020208] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 01/09/2023]
Abstract
Cytokinins (CKs) are a class of compounds that have long been thought to be exclusively plant growth regulators. Interestingly, some species of phytopathogenic bacteria and fungi have been shown to, and gall-inducing insects have been hypothesized to, produce CKs and use them to manipulate their host plants. We used high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-MS/MS) to examine concentrations of a wide range of CKs in 17 species of phytophagous insects, including gall- and non-gall-inducing species from all six orders of Insecta that contain species known to induce galls: Thysanoptera, Hemiptera, Lepidoptera, Coleoptera, Diptera, and Hymenoptera. We found CKs in all six orders of insects, and they were not associated exclusively with gall-inducing species. We detected 24 different CK analytes, varying in their chemical structure and biological activity. Isoprenoid precursor nucleotide and riboside forms of trans-zeatin (tZ) and isopentenyladenine (iP) were most abundant and widespread across the surveyed insect species. Notably, the observed concentrations of CKs often markedly exceeded those reported in plants suggesting that insects are synthesizing CKs rather than obtaining them from the host plant via tissue consumption, compound sequestration, and bioaccumulation. These findings support insect-derived CKs as means for gall-inducing insects to manipulate their host plant to facilitate cell proliferation, and for both gall- and non-gall-inducing insects to modify nutrient flux and plant defenses during herbivory. Furthermore, wide distribution of CKs across phytophagous insects, including non-gall-inducing species, suggests that insect-borne CKs could be involved in manipulation of source-sink mechanisms of nutrient allocation to sustain the feeding site and altering plant defensive responses, rather than solely gall induction. Given the absence of any evidence for genes in the de novo CK biosynthesis pathway in insects, we postulate that the tRNA-ipt pathway is responsible for CK production. However, the unusually high concentrations of CKs in insects, and the tendency toward dominance of their CK profiles by tZ and iP suggest that the tRNA-ipt pathway functions differently and substantially more efficiently in insects than in plants.
Collapse
Affiliation(s)
- Peter Andreas
- Department of Biology, Trent University, Peterborough, ON K9J 7B8, Canada; (P.A.); (A.K.); (R.J.N.E.)
| | - Anna Kisiala
- Department of Biology, Trent University, Peterborough, ON K9J 7B8, Canada; (P.A.); (A.K.); (R.J.N.E.)
| | - R. J. Neil Emery
- Department of Biology, Trent University, Peterborough, ON K9J 7B8, Canada; (P.A.); (A.K.); (R.J.N.E.)
| | | | - John F. Tooker
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Peter W. Price
- Department of Ecology and Evolutionary Biology, Northern Arizona University, Flagstaff, AZ 86001, USA;
| | - Donald G. Miller III
- Department of Biological Sciences, California State University, Chico, CA 95929, USA;
| | - Ming-Shun Chen
- USDA-ARS and Department of Entomology, Kansas State University, Manhattan, KS 66506, USA;
| | - Edward F. Connor
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| |
Collapse
|
35
|
Breia R, Conde A, Pimentel D, Conde C, Fortes AM, Granell A, Gerós H. VvSWEET7 Is a Mono- and Disaccharide Transporter Up-Regulated in Response to Botrytis cinerea Infection in Grape Berries. FRONTIERS IN PLANT SCIENCE 2020; 10:1753. [PMID: 32047506 PMCID: PMC6996298 DOI: 10.3389/fpls.2019.01753] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/13/2019] [Indexed: 05/24/2023]
Abstract
The newly-identified SWEETs are high-capacity, low-affinity sugar transporters with important roles in numerous physiological mechanisms where sugar efflux is critical. SWEETs are desirable targets for manipulation by pathogens and their expression may be transcriptionally reprogrammed during infection. So far, few plant SWEET transporters have been functionally characterized, especially in grapevine. In this study, in the Botrytis-susceptible variety "Trincadeira," we thoroughly analyzed modifications in the gene expression profile of key SWEET genes in Botrytis cinerea-infected grape berries. VvSWEET7 and VvSWEET15 are likely to play an important role during fruit development and Botrytis infection as they are strongly expressed at the green and mature stage, respectively, and were clearly up-regulated in response to infection. Also, B. cinerea infection down-regulated VvSWEET17a expression at the green stage, VvSWEET10 and VvSWEET17d expression at the veraison stage, and VvSWEET11 expression at the mature stage. VvSWEET7 was functionally characterized by heterologous expression in Saccharomyces cerevisiae as a low-affinity, high-capacity glucose and sucrose transporter with a K m of 15.42 mM for glucose and a K m of 40.08 mM for sucrose. VvSWEET7-GFP and VvSWEET15-GFP fusion proteins were transiently expressed in Nicotiana benthamiana epidermal cells and confocal microscopy allowed to observe that both proteins clearly localize to the plasma membrane. In sum, VvSWEETs transporters are important players in sugar mobilization during grape berry development and their expression is transcriptionally reprogrammed in response to Botrytis infection.
Collapse
Affiliation(s)
- Richard Breia
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Diana Pimentel
- University of Lisbon, Lisbon Science Faculty, BioISI, Campo Grande, Lisbon, Portugal
| | - Carlos Conde
- i3S-Institute of Research and Innovation in Health, University of Porto, Porto, Portugal
- IBMC-Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal
| | - Ana Margarida Fortes
- University of Lisbon, Lisbon Science Faculty, BioISI, Campo Grande, Lisbon, Portugal
| | - Antonio Granell
- Institute of Molecular and Cellular Biology of Plants, Spanish National Research Council (CSIC), Polytechnic University of Valencia, Valencia, Spain
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
36
|
Chen Z, Qin C, Wang M, Liao F, Liao Q, Liu X, Li Y, Lakshmanan P, Long M, Huang D. Ethylene-mediated improvement in sucrose accumulation in ripening sugarcane involves increased sink strength. BMC PLANT BIOLOGY 2019; 19:285. [PMID: 31253103 PMCID: PMC6599285 DOI: 10.1186/s12870-019-1882-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/11/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Sugarcane is a major crop producing about 80% of sugar globally. Increasing sugar content is a top priority for sugarcane breeding programs worldwide, however, the progress is extremely slow. Owing to its commercial significance, the physiology of sucrose accumulation has been studied extensively but it did not lead to any significant practical outcomes. Recent molecular studies are beginning to recognize genes and gene networks associated with this phenomenon. To further advance our molecular understanding of sucrose accumulation, we altered sucrose content of sugarcane genotypes with inherently large variation for sucrose accumulation using a sugarcane ripener, ethylene, and studied their transcriptomes to identify genes associated with the phenomenon. RESULTS Sucrose content variation in the experimental genotypes was substantial, with the top-performing clone producing almost 60% more sucrose than the poorest performer. Ethylene treatment increased stem sucrose content but that occurred only in low-sugar genotype. Transcriptomic analyses have identified about 160,000 unigenes of which 86,000 annotated genes were classified into functional groups associated with carbohydrate metabolism, signaling, localization, transport, hydrolysis, growth, catalytic activity, membrane and storage, suggesting the structural and functional specification, including sucrose accumulation, occurring in maturing internodes. About 25,000 genes were differentially expressed between all genotypes and treatments combined. Genotype had a dominant effect on differential gene expression than ethylene treatment. Sucrose and starch metabolism genes were more responsive to ethylene treatment in low-sugar genotype. Ethylene caused differential gene expression of many stress-related transcription factors, carbohydrate metabolism, hormone metabolism and epigenetic modification. Ethylene-induced expression of ethylene-responsive transcription factors, cytosolic acid- and cell wall-bound invertases, and ATPase was more pronounced in low- than in high-sugar genotype, suggesting an ethylene-stimulated sink activity and consequent increased sucrose accumulation in low-sugar genotype. CONCLUSION Ethylene-induced sucrose accumulation is more pronounced in low-sugar sugarcane genotype, and this is possibly achieved by the preferential activation of genes such as invertases that increase sink strength in the stem. The relatively high enrichment of differentially expressed genes associated with hormone metabolism and signaling and stress suggests a strong hormonal regulation of source-sink activity, growth and sucrose accumulation in sugarcane.
Collapse
Affiliation(s)
- Zhongliang Chen
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs /Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Cuixian Qin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs /Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Miao Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs /Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Fen Liao
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs /Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Qing Liao
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs /Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Xihui Liu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs /Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Yangrui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs /Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Prakash Lakshmanan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs /Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, QLD, St Lucia, 4072 Australia
| | - Minghua Long
- College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Dongliang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs /Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| |
Collapse
|
37
|
Gaid M, Grosch JH, Möller S, Beerhues L, Krull R. Toward enhanced hyperforin production in St. John's wort root cultures. Eng Life Sci 2019; 19:916-930. [PMID: 32624982 DOI: 10.1002/elsc.201900043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/10/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
During the past decades, several trials targeted a stable, sustainable and economic production of St. John's wort (Hypericum perforatum) extract. The value of this extract stems from its use to treat depression and skin irritation due to its hyperforin content. Previously, hyperforin-forming in vitro root cultures were established. Here, detailed growth and production kinetics have been analyzed over 40 days of cultivation. In the first 10 days, sucrose was completely hydrolyzed to glucose and fructose. The ammonium consumption supported the increase in the biomass and hyperforin production. When sucrose was replaced with glucose/fructose, the linear growth phase started 6 days earlier and resulted in a higher space-time-yield. The maximum hyperforin production was 0.82 mg L-1 day-1, which was 67 % higher than in the sucrose-supplemented standard cultivation. Buffering the sucrose-supplemented medium with phosphate caused a 2.7-fold increase in the product to biomass yield coefficient. However, the combination of monosaccharides and buffering conditions did not cause an appreciable improvements in the production performance of the shake flask approaches. A potential scalability from flask to lab-scale stirred bioreactors has been demonstrated. The results obtained offer a basis for a scalable production of hyperforin and a sustainable source for a tissue culture-based phytomedicine.
Collapse
Affiliation(s)
- Mariam Gaid
- Institute of Pharmaceutical Biology Technische Universität Braunschweig Braunschweig Germany.,Center of Pharmaceutical Engineering (PVZ) Technische Universität Braunschweig Braunschweig Germany
| | - Jan-Hendrik Grosch
- Institute of Biochemical Engineering Technische Universität Braunschweig Braunschweig Germany.,Center of Pharmaceutical Engineering (PVZ) Technische Universität Braunschweig Braunschweig Germany.,Braunschweig Centre of Systems Biology (BRICS) Technische Universität Braunschweig Braunschweig Germany
| | - Steve Möller
- Institute of Biochemical Engineering Technische Universität Braunschweig Braunschweig Germany.,Center of Pharmaceutical Engineering (PVZ) Technische Universität Braunschweig Braunschweig Germany.,Braunschweig Centre of Systems Biology (BRICS) Technische Universität Braunschweig Braunschweig Germany
| | - Ludger Beerhues
- Institute of Pharmaceutical Biology Technische Universität Braunschweig Braunschweig Germany.,Center of Pharmaceutical Engineering (PVZ) Technische Universität Braunschweig Braunschweig Germany
| | - Rainer Krull
- Institute of Biochemical Engineering Technische Universität Braunschweig Braunschweig Germany.,Center of Pharmaceutical Engineering (PVZ) Technische Universität Braunschweig Braunschweig Germany.,Braunschweig Centre of Systems Biology (BRICS) Technische Universität Braunschweig Braunschweig Germany
| |
Collapse
|
38
|
Vicentini TM, Cavalheiro AH, Dechandt CRP, Alberici LC, Vargas-Rechia CG. Aluminum directly inhibits alternative oxidase pathway and changes metabolic and redox parameters on Jatropha curcas cell culture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:92-97. [PMID: 30660100 DOI: 10.1016/j.plaphy.2019.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Aluminum (Al) toxicity has been recognized to be a main limiting factor of crop productivity in acid soil. Al interacts with cell walls disrupting the functions of the plasma membrane and is associated with oxidative damage and mitochondrial dysfunction. Jatropha curcas L. (J. curcas) is a drought resistant plant, widely distributed around the world, with great economic and medicinal importance. Here we investigated the effects of Al on J. curcas mitochondrial function and cell viability, analyzing mitochondrial respiration, phenolic compounds, reducing sugars and cell viability in cultured J. curcas cells. The results showed that at 70 μM, Al limited mitochondrial respiration by inhibiting the alternative oxidase (AOX) pathway in the respiratory chain. An increased concentration of reducing sugars and reduced concentration of intracellular phenolic compounds was observed during respiratory inhibition. After inhibition, a time-dependent upregulation of AOX mRNA was observed followed by restoration of respiratory activity and reducing sugar concentrations. Cultured J. curcas cells were very resistant to Al-induced cell death. In addition, at 70 μM, Al also appeared as an inhibitor of cell wall invertase. In conclusion, Al tolerance in cultured J. curcas cells involves a inhibition of mitochondrial AOX pathway, which seems to start an oxidative burst to induce AOX upregulation, which in turn restores consumption of O2 and substrates. These data provide new insight into the signaling cascades that modulate the Al tolerance mechanism.
Collapse
Affiliation(s)
- Tatiane M Vicentini
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Amanda H Cavalheiro
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Carlos R P Dechandt
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Luciane C Alberici
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Carem G Vargas-Rechia
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
39
|
Tarkowski ŁP, Van de Poel B, Höfte M, Van den Ende W. Sweet Immunity: Inulin Boosts Resistance of Lettuce ( Lactuca sativa) against Grey Mold ( Botrytis cinerea) in an Ethylene-Dependent Manner. Int J Mol Sci 2019; 20:E1052. [PMID: 30823420 PMCID: PMC6429215 DOI: 10.3390/ijms20051052] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 11/17/2022] Open
Abstract
The concept of "Sweet Immunity" postulates that sugar metabolism and signaling influence plant immune networks. In this study, we tested the potential of commercially available inulin-type fructans to limit disease symptoms caused by Botrytis cinerea in lettuce. Spraying mature lettuce leaves, with inulin-type fructans derived from burdock or chicory was as effective in reducing grey mold disease symptoms caused by Botrytis cinerea as spraying with oligogalacturonides (OGs). OGs are well-known defense elicitors in several plant species. Spraying with inulin and OGs induced accumulation of hydrogen peroxide and levels further increased upon pathogen infection. Inulin and OGs were no longer able to limit Botrytis infection when plants were treated with the ethylene signaling inhibitor 1-methylcyclopropene (1-MCP), indicating that a functional ethylene signaling pathway is needed for the enhanced defense response. Soluble sugars accumulated in leaves primed with OGs, while 1-MCP treatment had an overall negative effect on the sucrose pool. Accumulation of γ-aminobutyric acid (GABA), a stress-associated non-proteinogenic amino acid and possible signaling compound, was observed in inulin-treated samples after infection and negatively affected by the 1-MCP treatment. We have demonstrated for the first time that commercially available inulin-type fructans and OGs can improve the defensive capacity of lettuce, an economically important species. We discuss our results in the context of a possible recognition of fructans as Damage or Microbe Associated Molecular Patterns.
Collapse
Affiliation(s)
- Łukasz Paweł Tarkowski
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium.
| | - Bram Van de Poel
- Laboratory of Molecular Plant Hormone Physiology, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium.
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, UGhent, 9000 Ghent, Belgium.
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium.
| |
Collapse
|
40
|
Rafique S. Differential expression of leaf proteome of tolerant and susceptible maize ( Zea mays L.) genotypes in response to multiple abiotic stresses. Biochem Cell Biol 2019; 97:581-588. [PMID: 30807207 DOI: 10.1139/bcb-2018-0338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In the present work, tropical maize genotypes were evaluated for multiple stresses (drought × low-N and waterlogging × low-N) applied simultaneously to 30-day-old maize seedlings. Two-dimensional gel electrophoresis was used to examine the protein changes induced by combined stress, in leaves, of tolerant and susceptible genotypes. Moreover, physiological and biochemical parameters were assessed to understand the physiological status of tolerant and susceptible genotypes under combined stress. The results show that up-regulated proteins of the tolerant genotype have a significant role in activating defense response, restoration of plant growth, and to maintain metabolic homeostasis under stressful conditions. Therefore, they contribute to improve and maintain the state of acclimation of the genotype under stress. Alternatively in the susceptible genotype, the up-regulated proteins are representative biomarkers of stress or are involved in the defense against pathogens and efforts to maintain energy metabolism. Thus, protecting the survival of the genotype under multiple stress conditions. We conclude that depending on the given stress treatment, tolerant and susceptible genotypes differed in stress-enduring approaches. Therefore, the study provides insight to comprehend the response of tolerant and susceptible genotypes under combined stress conditions, which could be valuable for further research and will demonstrate that it is advantageous to select combined stress-tolerant genotypes.
Collapse
Affiliation(s)
- Suphia Rafique
- Department of Biotechnology, Faculty of Chemicals and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.,Department of Biotechnology, Faculty of Chemicals and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
41
|
Verma I, Roopendra K, Sharma A, Chandra A, Kamal A. Expression analysis of genes associated with sucrose accumulation and its effect on source-sink relationship in high sucrose accumulating early maturing sugarcane variety. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:207-220. [PMID: 30804643 PMCID: PMC6352523 DOI: 10.1007/s12298-018-0627-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/10/2018] [Accepted: 11/16/2018] [Indexed: 05/14/2023]
Abstract
Sucrose synthesis/accumulation in sugarcane depends on the source-sink communication wherein source responds to sink demand for photoassimilate supply. Sucrose in stalk (sink) acts as signal, and sends feedback to restrain further synthesis of sucrose by regulating photosynthetic efficiency of leaves (source). Hence sucrose synthesis/accumulation is controlled by many genes and regulatory sequences including 3 invertases (SAI, CWI, NI), sucrose synthase (SuSy) and sucrose phosphate synthase (SPS). SPS and invertase play key role in enhancing sink strength which ultimately promotes greater sucrose accumulation in the sink tissues. In present study, a significant positive correlation was found between sucrose% of source and sink tissues which was greater in the top (R 2 = 0.679) than middle (R 2 = 0.580) and bottom (R 2 = 0.518) internodes, depicting that sucrose accumulation in the stalk bears a direct relation with sucrose translocation efficiency from source. Results indicated an increased sucrose% with maturity, while reducing sugar content decreased with crop growth. qRT-PCR results exhibited an elevated expression of invertase in immature sink tissues depicting increased sink requirement, which declined with maturity. Similarly, increased PEP carboxylase gene expression as observed supported the fact that higher sink demand results in enhanced photosynthetic rate and thus influences the source activity. SPS was found active at initial stage of cane development indicating its role in sucrose synthesis. Thus by studying expression patterns of the different genes both, in source and sink tissues, a better understanding of the sucrose accumulation pathway in sugarcane is possible, which in turn can help in elucidating ways to enhance sucrose concentration in sink.
Collapse
Affiliation(s)
- I. Verma
- Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Sugarcane Research, Lucknow, 226002 India
- Department of Biosciences, Integral University, Lucknow, 226021 India
| | - K. Roopendra
- Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Sugarcane Research, Lucknow, 226002 India
| | - A. Sharma
- Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Sugarcane Research, Lucknow, 226002 India
| | - A. Chandra
- Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Sugarcane Research, Lucknow, 226002 India
| | - A. Kamal
- Department of Biosciences, Integral University, Lucknow, 226021 India
| |
Collapse
|
42
|
Su T, Han M, Min J, Zhou H, Zhang Q, Zhao J, Fang Y. Functional Characterization of Invertase Inhibitors PtC/VIF1 and 2 Revealed Their Involvements in the Defense Response to Fungal Pathogen in Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2019; 10:1654. [PMID: 31969894 PMCID: PMC6960229 DOI: 10.3389/fpls.2019.01654] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/22/2019] [Indexed: 05/05/2023]
Abstract
In higher plants, cell wall invertase (CWI) and vacuolar invertase (VI) were considered to be essential coordinators in carbohydrate partitioning, sink strength determination, and stress responses. An increasing body of evidence revealed that the tight regulation of CWI and VI substantially depends on the post-translational mechanisms, which were mediated by small proteinaceous inhibitors (C/VIFs, Inhibitor of β-Fructosidases). As yet, the extensive survey of the molecular basis and biochemical property of C/VIFs remains largely unknown in black cottonwood (Populus trichocarpa Torr. & A. Gray), a model species of woody plants. In the present work, we have initiated a systematic review of the genomic structures, phylogenies, cis-regulatory elements, and conserved motifs as well as the tissue-specific expression, resulting in the identification of 39 genes encoding C/VIF in poplar genome. We characterized two putative invertase inhibitors PtC/VIF1 and 2, showing predominant transcript levels in the roots and highly divergent responses to the selected stress cues including fusarium wilt, drought, ABA, wound, and senescence. In silico prediction of the signal peptide hinted us that they both likely had the apoplastic targets. Based on the experimental visualization via the transient and stable transformation assays, we confirmed that PtC/VIF1 and 2 indeed secreted to the extracellular compartments. Further validation of their recombinant enzymes revealed that they displayed the potent inhibitory affinities on the extracted CWI, supporting the patterns that act as the typical apoplastic invertase inhibitors. To our knowledge, it is the first report on molecular characterization of the functional C/VIF proteins in poplar. Our results indicate that PtC/VIF1 and 2 may exert essential roles in defense- and stress-related responses. Moreover, novel findings of the up- and downregulated C/VIF genes and functional enzyme activities enable us to further unravel the molecular mechanisms in the promotion of woody plant performance and adapted-biotic stress, underlying the homeostatic control of sugar in the apoplast.
Collapse
Affiliation(s)
- Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China
| | - Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- *Correspondence: Mei Han, ;
| | - Jie Min
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Huaiye Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Qi Zhang
- College of Forest, Nanjing Forestry University, Nanjing, China
| | - Jingyi Zhao
- College of Forest, Nanjing Forestry University, Nanjing, China
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
43
|
Su T, Han M, Min J, Chen P, Mao Y, Huang Q, Tong Q, Liu Q, Fang Y. Genome-Wide Survey of Invertase Encoding Genes and Functional Characterization of an Extracellular Fungal Pathogen-Responsive Invertase in Glycine max. Int J Mol Sci 2018; 19:E2395. [PMID: 30110937 PMCID: PMC6121457 DOI: 10.3390/ijms19082395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 01/08/2023] Open
Abstract
Invertases are essential enzymes that irreversibly catalyze the cleavage of sucrose into glucose and fructose. Cell wall invertase (CWI) and vacuolar invertase (VI) are glycosylated proteins and exert fundamental roles in plant growth as well as in response to environmental cues. As yet, comprehensive insight into invertase encoding genes are lacking in Glycine max. In the present study, the systematic survey of gene structures, coding regions, regulatory elements, conserved motifs, and phylogenies resulted in the identification of thirty⁻two putative invertase genes in soybean genome. Concomitantly, impacts on gene expression, enzyme activities, proteins, and soluble sugar accumulation were explored in specific tissues upon stress perturbation. In combination with the observation of subcellular compartmentation of the fluorescent fusion protein that indeed exported to apoplast, heterologous expression, and purification in using Pichia pastoris system revealed that GmCWI4 was a typical extracellular invertase. We postulated that GmCWI4 may play regulatory roles and be involved in pathogenic fungi defense. The experimental evaluation of physiological significance via phenotypic analysis of mutants under stress exposure has been initiated. Moreover, our paper provides theoretical basis for elucidating molecular mechanisms of invertase in association with inhibitors underlying the stress regime, and will contribute to the improvement of plant performance to a diverse range of stressors.
Collapse
Affiliation(s)
- Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Jie Min
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Peixian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yuxin Mao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiao Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qian Tong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiuchen Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
44
|
Kuska MT, Behmann J, Großkinsky DK, Roitsch T, Mahlein AK. Screening of Barley Resistance Against Powdery Mildew by Simultaneous High-Throughput Enzyme Activity Signature Profiling and Multispectral Imaging. FRONTIERS IN PLANT SCIENCE 2018; 9:1074. [PMID: 30083181 PMCID: PMC6065056 DOI: 10.3389/fpls.2018.01074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/03/2018] [Indexed: 05/13/2023]
Abstract
Molecular marker analysis allow for a rapid and advanced pre-selection and resistance screenings in plant breeding processes. During the phenotyping process, optical sensors have proved their potential to determine and assess the function of the genotype of the breeding material. Thereby, biomarkers for specific disease resistance traits provide valuable information for calibrating optical sensor approaches during early plant-pathogen interactions. In this context, the combination of physiological, metabolic phenotyping and phenomic profiles could establish efficient identification and quantification of relevant genotypes within breeding processes. Experiments were conducted with near-isogenic lines of H. vulgare (susceptible, mildew locus o (mlo) and Mildew locus a (Mla) resistant). Multispectral imaging of barley plants was daily conducted 0-8 days after inoculation (dai) in a high-throughput facility with 10 wavelength bands from 400 to 1,000 nm. In parallel, the temporal dynamics of the activities of invertase isoenzymes, as key sink specific enzymes that irreversibly cleave the transport sugar sucrose into the hexose monomers, were profiled in a semi high-throughput approach. The activities of cell wall, cytosolic and vacuole invertase revealed specific dynamics of the activity signatures for susceptible genotypes and genotypes with mlo and Mla based resistances 0-120 hours after inoculation (hai). These patterns could be used to differentiate between interaction types and revealed an early influence of Blumeria graminis f.sp. hordei (Bgh) conidia on the specific invertase activity already 0.5 hai. During this early powdery mildew pathogenesis, the reflectance intensity increased in the blue bands and at 690 nm. The Mla resistant plants showed an increased reflectance at 680 and 710 nm and a decreased reflectance in the near infrared bands from 3 dai. Applying a Support Vector Machine classification as a supervised machine learning approach, the pixelwise identification and quantification of powdery mildew diseased barley tissue and hypersensitive response spots were established. This enables an automatic identification of the barley-powdery mildew interaction. The study established a proof-of-concept for plant resistance phenotyping with multispectral imaging in high-throughput. The combination of invertase analysis and multispectral imaging showed to be a complementing validation system. This will provide a deeper understanding of optical data and its implementation into disease resistance screening.
Collapse
Affiliation(s)
- Matheus T. Kuska
- Institute for Crop Science and Resource Conservation-Plant Diseases and Plant Protection, University of Bonn, Bonn, Germany
| | - Jan Behmann
- Institute for Crop Science and Resource Conservation-Plant Diseases and Plant Protection, University of Bonn, Bonn, Germany
| | - Dominik K. Großkinsky
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Frederiksberg, Denmark
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Taastrup, Denmark
| | - Anne-Katrin Mahlein
- Institute for Crop Science and Resource Conservation-Plant Diseases and Plant Protection, University of Bonn, Bonn, Germany
- Institute of Sugar Beet Research (IfZ), Göttingen, Germany
| |
Collapse
|
45
|
Juárez-Colunga S, López-González C, Morales-Elías NC, Massange-Sánchez JA, Trachsel S, Tiessen A. Genome-wide analysis of the invertase gene family from maize. PLANT MOLECULAR BIOLOGY 2018; 97:385-406. [PMID: 29948658 DOI: 10.1007/s11103-018-0746-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 06/04/2018] [Indexed: 05/14/2023]
Abstract
The recent release of the maize genome (AGPv4) contains annotation errors of invertase genes and therefore the enzymes are bestly curated manually at the protein level in a comprehensible fashion The synthesis, transport and degradation of sucrose are determining factors for biomass allocation and yield of crop plants. Invertase (INV) is a key enzyme of carbon metabolism in both source and sink tissues. Current releases of the maize genome correctly annotates only two vacuolar invertases (ivr1 and ivr2) and four cell wall invertases (incw1, incw2 (mn1), incw3, and incw4). Our comprehensive survey identified 21 INV isogenes for which we propose a standard nomenclature grouped phylogenetically by amino acid similarity: three vacuolar (INVVR), eight cell wall (INVCW), and ten alkaline/neutral (INVAN) isogenes which form separate dendogram branches due to distinct molecular features. The acidic enzymes were curated for the presence of the DPN tripeptide which is coded by one of the smallest exons reported in plants. Particular attention was placed on the molecular role of INV in vascular tissues such as the nodes, internodes, leaf sheath, husk leaves and roots. We report the expression profile of most members of the maize INV family in nine tissues in two developmental stages, R1 and R3. INVCW7, INVVR2, INVAN8, INVAN9, INVAN10, and INVAN3 displayed the highest absolute expressions in most tissues. INVVR3, INVCW5, INVCW8, and INVAN1 showed low mRNA levels. Expressions of most INVs were repressed from stage R1 to R3, except for INVCW7 which increased significantly in all tissues after flowering. The mRNA levels of INVCW7 in the vegetative stem correlated with a higher transport rate of assimilates from leaves to the cob which led to starch accumulation and growth of the female reproductive organs.
Collapse
Affiliation(s)
- Sheila Juárez-Colunga
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Km 9.6 Libramiento Norte, Irapuato, C.P. 36824, Guanajuato, Mexico
| | - Cristal López-González
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Km 9.6 Libramiento Norte, Irapuato, C.P. 36824, Guanajuato, Mexico
| | - Norma Cecilia Morales-Elías
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Km 9.6 Libramiento Norte, Irapuato, C.P. 36824, Guanajuato, Mexico
| | - Julio Armando Massange-Sánchez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Km 9.6 Libramiento Norte, Irapuato, C.P. 36824, Guanajuato, Mexico
- KWS Group, Grimsehlstrasse 31, 37574, Einbeck, Germany
| | - Samuel Trachsel
- Global Maize Program, Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), Km 45 Carretera Mexico-Veracruz, El Batán, 56130, Texcoco, State Of Mexico, Mexico
- Department of Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Axel Tiessen
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Km 9.6 Libramiento Norte, Irapuato, C.P. 36824, Guanajuato, Mexico.
| |
Collapse
|
46
|
Mansouri M, Naghavi MR, Alizadeh H, Mohammadi-Nejad G, Mousavi SA, Salekdeh GH, Tada Y. Transcriptomic analysis of Aegilops tauschii during long-term salinity stress. Funct Integr Genomics 2018; 19:13-28. [PMID: 29931612 DOI: 10.1007/s10142-018-0623-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 03/17/2018] [Accepted: 06/07/2018] [Indexed: 10/28/2022]
Abstract
Aegilops tauschii is the diploid progenitor of the bread wheat D-genome. It originated from Iran and is a source of abiotic stress tolerance genes. However, little is known about the molecular events of salinity tolerance in Ae. tauschii. This study investigates the leaf transcriptional changes associated with long-term salt stress. Total RNA extracted from leaf tissues of control and salt-treated samples was sequenced using the Illumina technology, and more than 98 million high-quality reads were assembled into 255,446 unigenes with an average length of 1398 bp and an N50 of 2269 bp. Functional annotation of the unigenes showed that 93,742 (36.69%) had at least a significant BLAST hit in the SwissProt database, while 174,079 (68.14%) showed significant similarity to proteins in the NCBI nr database. Differential expression analysis identified 4506 salt stress-responsive unigenes. Bioinformatic analysis of the differentially expressed unigenes (DEUs) revealed a number of biological processes and pathways involved in the establishment of ion homeostasis, signaling processes, carbohydrate metabolism, and post-translational modifications. Fine regulation of starch and sucrose content may be important features involved in salt tolerance in Ae. tauschii. Moreover, 82% of DEUs mapped to the D-subgenome, including known QTL for salt tolerance, and these DEUs showed similar salt stress responses in other accessions of Ae. tauschii. These results could provide fundamental insight into the regulatory process underlying salt tolerance in Ae. tauschii and wheat and facilitate identification of genes involved in their salt tolerance mechanisms.
Collapse
Affiliation(s)
- Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Reza Naghavi
- Agronomy and Plant Breeding Department, Agricultural & Natural Resources College, University of Tehran, Karaj, 31587-11167, Iran.
| | - Hoshang Alizadeh
- Agronomy and Plant Breeding Department, Agricultural & Natural Resources College, University of Tehran, Karaj, 31587-11167, Iran
| | - Ghasem Mohammadi-Nejad
- Department of Agronomy and plant Breeding, College of Agriculture and Center of Excellence for Abiotic Stress in Cereal Crop, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Seyed Ahmad Mousavi
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran
| | - Yuichi Tada
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
47
|
Tiedge K, Lohaus G. Nectar Sugar Modulation and Cell Wall Invertases in the Nectaries of Day- and Night- Flowering Nicotiana. FRONTIERS IN PLANT SCIENCE 2018; 9:622. [PMID: 29868078 PMCID: PMC5954170 DOI: 10.3389/fpls.2018.00622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/19/2018] [Indexed: 05/31/2023]
Abstract
Nectar composition varies between species, depending on flowering time and pollinator type, among others. Various models of the biochemical and molecular mechanisms underlying nectar production and secretion have been proposed. To gain insights into these mechanisms, day- and night-flowering tobacco (Nicotiana) species with high or low proportions of hexoses in the nectar were analyzed. Nectar and nectaries were simultaneously collected, throughout the day and night. Soluble sugars and starch were determined and the activity and expression level of cell wall invertase (CW-INVs) were measured in nectaries. Nectaries and nectar of the five Nicotiana species contained different amounts of sucrose, glucose, and fructose. CW-INV activity was detected in the nectaries of all Nicotiana species and is probably involved in the hydrolysis of sucrose in the nectary tissue and during nectar secretion. The larger differences in the sucrose-to-hexose-ratio between nectaries and nectar in diurnal species compared to nocturnal species can be explained by higher sucrose cleavage within the nectaries in night-flowering species, and during secretion in day-flowering species. However, cell wall invertase alone cannot be responsible for the differences in sugar concentrations. Within the nectaries of the Nicotiana species, a portion of the sugars is transiently stored as starch. In general, night-flowering species showed higher starch contents in the nectaries compared to day-flowering species. Moreover, in night flowering species, the starch content decreased during the first half of the dark period, when nectar production peaks. The sucrose concentrations in the cytoplasm of nectarial cells were extrapolated from nectary sucrose contents. In day-flowering species, the sucrose concentration in the nectary cytoplasm was about twice as high as in nectar, whereas in night-flowering species the situation was the opposite, which implies different secretion mechanisms. The secreted nectar sugars remained stable for the complete flower opening period, which indicates that post-secretory modification is unlikely. On the basis of these results, we present an adapted model of the mechanisms underlying the secretion of nectar sugars in day- and night-flowering Nicotiana.
Collapse
|
48
|
Huot OB, Levy JG, Tamborindeguy C. Global gene regulation in tomato plant (Solanum lycopersicum) responding to vector (Bactericera cockerelli) feeding and pathogen ('Candidatus Liberibacter solanacearum') infection. PLANT MOLECULAR BIOLOGY 2018; 97:57-72. [PMID: 29619663 DOI: 10.1007/s11103-018-0724-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/28/2018] [Indexed: 05/24/2023]
Abstract
Different responses are elicited in tomato plants by Bactericera cockerelli harboring or not the pathogen 'Candidatus Liberibacter solanacearum'. 'Candidatus Liberibacter solanacearum' (Lso) has emerged as a major pathogen of crops worldwide. This bacterial pathogen is transmitted by Bactericera cockerelli, the tomato psyllid, to solanaceous crops. In this study, the transcriptome profiles of tomato (Solanum lycopersicum) exposed to B. cockerelli infestation and Lso infection were evaluated at 1, 2 and 4 weeks following colonization and/or infection. The plant transcriptional responses to Lso-negative B. cockerelli were different than plant responses to Lso-positive B. cockerelli. The comparative transcriptome analyses of plant responses to Lso-negative B. cockerelli revealed the up-regulation of genes associated with plant defenses regardless of the time-point. In contrast, the general responses to Lso-positive B. cockerelli and Lso-infection were temporally different. Infected plants down-regulated defense genes at week one while delayed the up-regulation of the defense genes until weeks two and four, time points in which early signs of disease development were also detected in the transcriptional response. For example, infected plants regulated carbohydrate metabolism genes which could be linked to the disruption of sugar distribution usually associated with Lso infection. Also, infected plants down-regulated photosynthesis-related genes potentially resulting in plant chlorosis, another symptom associated with Lso infection. Overall, this study highlights that tomato plants induce different sets of genes in response to different stages of B. cockerelli infestation and Lso infection. This is the first transcriptome study of tomato responses to B. cockerelli and Lso, a first step in the direction of finding plant defense genes to enhance plant resistance.
Collapse
Affiliation(s)
- Ordom Brian Huot
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Julien Gad Levy
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
49
|
Shen S, Zhang L, Liang XG, Zhao X, Lin S, Qu LH, Liu YP, Gao Z, Ruan YL, Zhou SL. Delayed pollination and low availability of assimilates are major factors causing maize kernel abortion. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1599-1613. [PMID: 29365129 PMCID: PMC5888920 DOI: 10.1093/jxb/ery013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/09/2018] [Indexed: 05/05/2023]
Abstract
Selective seed abortion is a survival strategy adopted by many species that sacrifices some seeds to allow the remaining ones to set. While in evolutionary terms this is a successful approach, it causes huge losses to crop yields. A pollination time gap (PTG) has been suggested to be associated with position-related grain abortion. To test this hypothesis, we developed a novel approach to alter the natural pattern of maize (Zea mays L.) pollination and to examine the impact of PTGs on kernel growth and the underlying physiological basis. When apical and basal kernels were synchronously pollinated, the basal kernels set and matured but the apical kernels were aborted at an early stage. Delaying pollination to the basal ovaries suppressed their development and reduced invertase activity and sugar levels, which allowed the apical kernels to set and grow normally. In situ localization revealed normal cell wall invertase activity in apical and basal kernels under synchronous pollination but reduced activity in the delayed-pollinated kernels independent of their position. Starch, which was abundant in basal kernel areas, was absent in the apical kernel regions under synchronous pollination but apparent with delayed pollination. Our analyses identified PTG-related sink strength and a low level of local assimilates as the main causes of grain abortion.
Collapse
Affiliation(s)
- Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Li Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiao-Gui Liang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xue Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shan Lin
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Ling-Hua Qu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yun-Peng Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhen Gao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Scientific Observation and Experimental Station of Crop High Efficient Use of Water in Wuqiao, Ministry of Agriculture, Wuqiao, China
| |
Collapse
|
50
|
Genome-Wide Identification, Expression, and Functional Analysis of the Alkaline/Neutral Invertase Gene Family in Pepper. Int J Mol Sci 2018; 19:ijms19010224. [PMID: 29324672 PMCID: PMC5796173 DOI: 10.3390/ijms19010224] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 01/15/2023] Open
Abstract
Alkaline/neutral invertase (NINV) proteins irreversibly cleave sucrose into fructose and glucose, and play important roles in carbohydrate metabolism and plant development. To investigate the role of NINVs in the development of pepper fruits, seven NINV genes (CaNINV1-7) were identified. Phylogenetic analysis revealed that the CaNINV family could be divided into α and β groups. CaNINV1-6 had typical conserved regions and similar protein structures to the NINVs of other plants, while CaNINV7 lacked amino acid sequences at the C-terminus and N-terminus ends. An expression analysis of the CaNINV genes in different tissues demonstrated that CaNINV5 is the dominant NINV in all the examined tissues (root, stem, leaf, bud, flower, and developmental pepper fruits stage). Notably, the expression of CaNINV5 was found to gradually increase at the pre-breaker stages, followed by a decrease at the breaker stages, while it maintained a low level at the post-breaker stages. Furthermore, the invertase activity of CaNINV5 was identified by functional complementation of the invertase-deficient yeast strain SEY2102, and the optimum pH of CaNINV5 was found to be ~7.5. The gene expression and enzymatic activity of CaNINV5 suggest that it might be the main NINV enzyme for hydrolysis of sucrose during pepper fruit development.
Collapse
|