1
|
Doidy J, Wang Y, Gouaille L, Goma-Louamba I, Jiang Z, Pourtau N, Le Gourrierec J, Sakr S. Sugar Transport and Signaling in Shoot Branching. Int J Mol Sci 2024; 25:13214. [PMID: 39684924 DOI: 10.3390/ijms252313214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The source-sink relationship is critical for proper plant growth and development, particularly for vegetative axillary buds, whose activity shapes the branching pattern and ultimately the plant architecture. Once formed from axillary meristems, axillary buds remain dormant or become active to grow into new branches. This transition is notably driven by the regulation of the bud sink strength, which is reflected in the ability to unload, metabolize and store photoassimilates. Plants have so far developed two main mechanisms for unloading sugars (sucrose) towards sink organs, a symplasmic pathway and an apoplasmic pathway, but so far limited investigations have been reported about the modes of sugar uptake during the transition from the dormant to the active outgrowth state of the bud. The available data indicate that the switch from dormant bud to active outgrowing state, requires sugar and is shortly preceded by an increase in bud metabolic activity and a remobilization of the stem starch reserves in favor of growing buds. This activation of the bud sink strength is accompanied by an up-regulation of the main markers of apoplasmic unloading, such as sugar transporters (sucrose transporters-SUTs; sugar will eventually be exported transporters-SWEETs), sucrose hydrolyzing enzymes (cell wall invertase-CWINV) and sugar metabolic pathways (glycolysis/tricarboxylic cycle-TCA; oxidative pentose phosphate pathway-OPPP). As these results are limited to a few species, they are not sufficient to provide a complete and accurate picture of the mode(s) of sugar unloading toward axillary buds and deserve to be complemented by additional studies in a wide variety of plants using systems integration, combining genetic, molecular and immunolocalization approaches. Altogether, we discuss here how sugar is a systemic regulator of shoot branching, acting both as an energy-rich molecule and a signaling entity in the establishment of the bud sink strength.
Collapse
Affiliation(s)
- Joan Doidy
- EBI Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267, 86073 Poitiers, France
| | - Yuhui Wang
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Léo Gouaille
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France
| | - Ingrid Goma-Louamba
- EBI Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267, 86073 Poitiers, France
| | - Zhengrong Jiang
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Nathalie Pourtau
- EBI Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267, 86073 Poitiers, France
| | - José Le Gourrierec
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France
| | - Soulaiman Sakr
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France
| |
Collapse
|
2
|
Farooq S, Lone ML, Ul Haq A, Parveen S, Altaf F, Tahir I. Signalling cascades choreographing petal cell death: implications for postharvest quality. PLANT MOLECULAR BIOLOGY 2024; 114:63. [PMID: 38805152 DOI: 10.1007/s11103-024-01449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/01/2024] [Indexed: 05/29/2024]
Abstract
Senescence is a multifaceted and dynamic developmental phase pivotal in the plant's lifecycle, exerting significant influence and involving intricate regulatory mechanisms marked by a variety of structural, biochemical and molecular alterations. Biochemical changes, including reactive oxygen species (ROS) generation, membrane deterioration, nucleic acid degradation and protein degradation, characterize flower senescence. The progression of senescence entails a meticulously orchestrated network of interconnected molecular mechanisms and signalling pathways, ensuring its synchronized and efficient execution. Within flowering plants, petal senescence emerges as a crucial aspect significantly impacting flower longevity and postharvest quality, emphasizing the pressing necessity of unravelling the underlying signalling cascades orchestrating this process. Understanding the complex signalling pathways regulating petal senescence holds paramount importance, not only shedding light on the broader phenomenon of plant senescence but also paving the way for the development of targeted strategies to enhance the postharvest longevity of cut flowers. Various signalling pathways participate in petal senescence, encompassing hormone signalling, calcium signalling, protein kinase signalling and ROS signalling. Among these, the ethylene signalling pathway is extensively studied, and the manipulation of genes associated with ethylene biosynthesis or signal transduction has demonstrated the potential to enhance flower longevity. A thorough understanding of these complex pathways is critical for effectively delaying flower senescence, thereby enhancing postharvest quality and ornamental value. Therefore, this review adopts a viewpoint that combines fundamental research into the molecular intricacies of senescence with a practical orientation towards developing strategies for improving the postharvest quality of cut flowers. The innovation of this review is to shed light on the pivotal signalling cascades underpinning flower senescence and offer insights into potential approaches for modulating these pathways to postpone petal senescence in ornamental plants.
Collapse
Affiliation(s)
- Sumira Farooq
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Mohammad Lateef Lone
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Aehsan Ul Haq
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Shazia Parveen
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Foziya Altaf
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Inayatullah Tahir
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
3
|
Wenzl C, Lohmann JU. 3D imaging reveals apical stem cell responses to ambient temperature. Cells Dev 2023; 175:203850. [PMID: 37182581 DOI: 10.1016/j.cdev.2023.203850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Plant growth is driven by apical meristems at the shoot and root growth points, which comprise continuously active stem cell populations. While many of the key factors involved in homeostasis of the shoot apical meristem (SAM) have been extensively studied under artificial constant growth conditions, only little is known how variations in the environment affect the underlying regulatory network. To shed light on the responses of the SAM to ambient temperature, we combined 3D live imaging of fluorescent reporter lines that allowed us to monitor the activity of two key regulators of stem cell homeostasis in the SAM namely CLAVATA3 (CLV3) and WUSCHEL (WUS), with computational image analysis to derive morphological and cellular parameters of the SAM. Whereas CLV3 expression marks the stem cell population, WUS promoter activity is confined to the organizing center (OC), the niche cells adjacent to the stem cells, hence allowing us to record on the two central cell populations of the SAM. Applying an integrated computational analysis of our data we found that variations in ambient temperature not only led to specific changes in spatial expression patterns of key regulators of SAM homeostasis, but also correlated with modifications in overall cellular organization and shoot meristem morphology.
Collapse
Affiliation(s)
- Christian Wenzl
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Liu Q, Cheng L, Nian H, Jin J, Lian T. Linking plant functional genes to rhizosphere microbes: a review. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:902-917. [PMID: 36271765 PMCID: PMC10106864 DOI: 10.1111/pbi.13950] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 05/04/2023]
Abstract
The importance of rhizomicrobiome in plant development, nutrition acquisition and stress tolerance is unquestionable. Relevant plant genes corresponding to the above functions also regulate rhizomicrobiome construction. Deciphering the molecular regulatory network of plant-microbe interactions could substantially contribute to improving crop yield and quality. Here, the plant gene-related nutrient uptake, biotic and abiotic stress resistance, which may influence the composition and function of microbial communities, are discussed in this review. In turn, the influence of microbes on the expression of functional plant genes, and thereby plant growth and immunity, is also reviewed. Moreover, we have specifically paid attention to techniques and methods used to link plant functional genes and rhizomicrobiome. Finally, we propose to further explore the molecular mechanisms and signalling pathways of microbe-host gene interactions, which could potentially be used for managing plant health in agricultural systems.
Collapse
Affiliation(s)
- Qi Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Lang Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Jian Jin
- Northeast Institute of Geography and AgroecologyChinese Academy of SciencesHarbinChina
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
5
|
Taleski M, Chapman K, Novák O, Schmülling T, Frank M, Djordjevic MA. CEP peptide and cytokinin pathways converge on CEPD glutaredoxins to inhibit root growth. Nat Commun 2023; 14:1683. [PMID: 36973257 PMCID: PMC10042822 DOI: 10.1038/s41467-023-37282-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
AbstractC-TERMINALLY ENCODED PEPTIDE (CEP) and cytokinin hormones act over short and long distances to control plant responses to environmental cues. CEP and cytokinin pathway mutants share phenotypes, however, it is not known if these pathways intersect. We show that CEP and cytokinin signalling converge on CEP DOWNSTREAM (CEPD) glutaredoxins to inhibit primary root growth. CEP inhibition of root growth was impaired in mutants defective in trans-zeatin (tZ)-type cytokinin biosynthesis, transport, perception, and output. Concordantly, mutants affected in CEP RECEPTOR 1 showed reduced root growth inhibition in response to tZ, and altered levels of tZ-type cytokinins. Grafting and organ-specific hormone treatments showed that tZ-mediated root growth inhibition involved CEPD activity in roots. By contrast, root growth inhibition by CEP depended on shoot CEPD function. The results demonstrate that CEP and cytokinin pathways intersect, and utilise signalling circuits in separate organs involving common glutaredoxin genes to coordinate root growth.
Collapse
|
6
|
Adamec L, Plačková L, Doležal K. Cytokinins and auxins in organs of aquatic carnivorous plants: what do they reflect? ANNALS OF BOTANY 2022; 130:869-882. [PMID: 36215097 PMCID: PMC9758306 DOI: 10.1093/aob/mcac122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND AIMS Aquatic carnivorous plants have typical rootless linear shoots bearing traps and exhibit steep physiological polarity with rapid apical growth. The aim was to analyse auxin and cytokinin metabolites in traps, leaves/shoots and shoot apices in several species of genera Aldrovanda and Utricularia to elucidate how the hormonal profiles reflect the specific organ functions and polarity. METHODS The main auxin and cytokinin metabolites were analysed in miniature samples (>2 mg dry weight) of different organs of Aldrovanda vesiculosa and six Utricularia species using ultraperformance liquid chromatography coupled with triple quadrupole mass spectrometry. KEY RESULTS Total contents of biologically active forms (free bases, ribosides) of all four main endogenously occurring cytokinin types were consistently higher in traps than in leaves in four Utricularia species with monomorphic shoots and/or higher than in shoots in two Utricularia species with dimorphic shoots. In Aldrovanda traps, the total content of different cytokinin forms was similar to or lower than that in shoots. In U. australis leaves, feeding on prey increased all cytokinin forms, while no consistent differences occurred in Aldrovanda. In four aquatic Utricularia species with monomorphic shoots, the content of four auxin forms was usually higher in traps than in leaves. Zero IAA content was determined in U. australis leaves from a meso-eutrophic site or when prey-fed. CONCLUSIONS Different cytokinin and auxin profiles estimated in traps and leaves/shoots of aquatic carnivorous plants indicate an association with different dominant functions of these organs: nutrient uptake by traps versus photosynthetic function of traps. Interplay of cytokinins and auxins regulates apical dominance in these plants possessing strong polarity.
Collapse
Affiliation(s)
- Lubomír Adamec
- Institute of Botany of the Czech Academy of Sciences, Dukelská 135, CZ-379 01 Třeboň, Czech Republic
| | - Lenka Plačková
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Karel Doležal
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| |
Collapse
|
7
|
Min X, Wang Q, Wei Z, Liu Z, Liu W. Full-length transcriptional analysis reveals the complex relationship of leaves and roots in responses to cold-drought combined stress in common vetch. FRONTIERS IN PLANT SCIENCE 2022; 13:976094. [PMID: 36212304 PMCID: PMC9538161 DOI: 10.3389/fpls.2022.976094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/25/2022] [Indexed: 05/27/2023]
Abstract
Plant responses to single or combined abiotic stresses between aboveground and underground parts are complex and require crosstalk signaling pathways. In this study, we explored the transcriptome data of common vetch (Vicia sativa L.) subjected to cold and drought stress between leaves and roots via meta-analysis to identify the hub abiotic stress-responsive genes. A total of 4,836 and 3,103 differentially expressed genes (DEGs) were identified in the leaves and roots, respectively. Transcriptome analysis results showed that the set of stress-responsive DEGs to concurrent stress is distinct from single stress, indicating a specialized and unique response to combined stresses in common vetch. Gene Ontology (GO) enrichment analyses identified that "Photosystem II," "Defence response," and "Sucrose synthase/metabolic activity" were the most significantly enriched categories in leaves, roots, and both tissues, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis results indicated that "ABC transporters" are the most enriched pathway and that all of the genes were upregulated in roots. Furthermore, 29 co-induced DEGs were identified as hub genes based on the consensus expression profile module of single and co-occurrence stress analysis. In transgenic yeast, the overexpression of three cross-stress tolerance candidate genes increased yeast tolerance to cold-drought combined stress. The elucidation of the combined stress-responsive network in common vetch to better parse the complex regulation of abiotic responses in plants facilitates more adequate legume forage breeding for combined stress tolerance.
Collapse
Affiliation(s)
- Xueyang Min
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Engineering Research Centre of Grassland Industry, Ministry of Education, Western China Technology Innovation Centre for Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qiuxia Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Engineering Research Centre of Grassland Industry, Ministry of Education, Western China Technology Innovation Centre for Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Zhenwu Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Engineering Research Centre of Grassland Industry, Ministry of Education, Western China Technology Innovation Centre for Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Wenxian Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Engineering Research Centre of Grassland Industry, Ministry of Education, Western China Technology Innovation Centre for Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
8
|
Vuković R, Čamagajevac IŠ, Vuković A, Šunić K, Begović L, Mlinarić S, Sekulić R, Sabo N, Španić V. Physiological, Biochemical and Molecular Response of Different Winter Wheat Varieties under Drought Stress at Germination and Seedling Growth Stage. Antioxidants (Basel) 2022; 11:antiox11040693. [PMID: 35453378 PMCID: PMC9028496 DOI: 10.3390/antiox11040693] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/24/2023] Open
Abstract
Due to climate change in recent years, there has been an increasing water deficit during the winter wheat sowing period. This study evaluated six Croatian winter wheat varieties’ physiological, biochemical, and molecular responses under two drought stress levels at the germination/seedling growth stage. Lipid peroxidation was mainly induced under both drought stress treatments, while the antioxidative response was variety-specific. The most significant role in the antioxidative response had glutathione along with the ascorbate-glutathione pathway. Under drought stress, wheat seedlings responded in proline accumulation that was correlated with the P5CS gene expression. Expression of genes encoding dehydrins (DHN5, WZY2) was highly induced under the drought stress in all varieties, while genes encoding transcription factors were differentially regulated. Expression of DREB1 was upregulated under severe drought stress in most varieties, while the expression of WRKY2 was downregulated or revealed control levels. Different mechanisms were shown to contribute to the drought tolerance in different varieties, which was mainly associated with osmotic adjustment and dehydrins expression. Identifying different mechanisms in drought stress response would advance our understanding of the complex strategies contributing to wheat tolerance to drought in the early growth stage and could contribute to variety selection useful for developing new drought-tolerant varieties.
Collapse
Affiliation(s)
- Rosemary Vuković
- Department of Biology, University of Osijek, 31000 Osijek, Croatia; (R.V.); (I.Š.Č.); (A.V.); (L.B.); (S.M.); (R.S.); (N.S.)
| | - Ivna Štolfa Čamagajevac
- Department of Biology, University of Osijek, 31000 Osijek, Croatia; (R.V.); (I.Š.Č.); (A.V.); (L.B.); (S.M.); (R.S.); (N.S.)
| | - Ana Vuković
- Department of Biology, University of Osijek, 31000 Osijek, Croatia; (R.V.); (I.Š.Č.); (A.V.); (L.B.); (S.M.); (R.S.); (N.S.)
| | - Katarina Šunić
- Department of Small Cereal Crops, Agricultural Institute Osijek, 31000 Osijek, Croatia;
| | - Lidija Begović
- Department of Biology, University of Osijek, 31000 Osijek, Croatia; (R.V.); (I.Š.Č.); (A.V.); (L.B.); (S.M.); (R.S.); (N.S.)
| | - Selma Mlinarić
- Department of Biology, University of Osijek, 31000 Osijek, Croatia; (R.V.); (I.Š.Č.); (A.V.); (L.B.); (S.M.); (R.S.); (N.S.)
| | - Ramona Sekulić
- Department of Biology, University of Osijek, 31000 Osijek, Croatia; (R.V.); (I.Š.Č.); (A.V.); (L.B.); (S.M.); (R.S.); (N.S.)
| | - Nikolina Sabo
- Department of Biology, University of Osijek, 31000 Osijek, Croatia; (R.V.); (I.Š.Č.); (A.V.); (L.B.); (S.M.); (R.S.); (N.S.)
| | - Valentina Španić
- Department of Small Cereal Crops, Agricultural Institute Osijek, 31000 Osijek, Croatia;
- Correspondence:
| |
Collapse
|
9
|
Verma SK, Mittal S, Gayacharan, Wankhede DP, Parida SK, Chattopadhyay D, Prasad G, Mishra DC, Joshi DC, Singh M, Singh K, Singh AK. Transcriptome Analysis Reveals Key Pathways and Candidate Genes Controlling Seed Development and Size in Ricebean ( Vigna umbellata). Front Genet 2022; 12:791355. [PMID: 35126460 PMCID: PMC8815620 DOI: 10.3389/fgene.2021.791355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/23/2021] [Indexed: 11/27/2022] Open
Abstract
Ricebean (Vigna umbellata) is a lesser known pulse with well-recognized potential. Recently, it has emerged as a legume with endowed nutritional potential because of high concentration of quality protein and other vital nutrients in its seeds. However, the genes and pathways involved in regulating seed development and size are not understood in this crop. In our study, we analyzed the transcriptome of two genotypes with contrasting grain size (IC426787: large seeded and IC552985: small seeded) at two different time points, namely, 5 and 10 days post-anthesis (DPA). The bold seeded genotype across the time points (B5_B10) revealed 6,928 differentially expressed genes (DEGs), whereas the small seeded genotype across the time point (S5_S10) contributed to 14,544 DEGs. We have also identified several candidate genes for seed development-related traits like seed size and 100-seed weight. On the basis of similarity search and domain analysis, some candidate genes (PHO1, cytokinin dehydrogenase, A-type cytokinin, and ARR response negative regulator) related to 100-seed weight and seed size showed downregulation in the small seeded genotype. The MapMan and KEGG analysis confirmed that auxin and cytokinin pathways varied in both the contrasting genotypes and can therefore be the regulators of the seed size and other seed development-related traits in ricebeans. A total of 51 genes encoding SCF TIR1/AFB , Aux/IAA, ARFs, E3 ubiquitin transferase enzyme, and 26S proteasome showing distinct expression dynamics in bold and small genotypes were also identified. We have also validated randomly selected SSR markers in eight accessions of the Vigna species (V. umbellata: 6; Vigna radiata: 1; and Vigna mungo: 1). Cross-species transferability pattern of ricebean-derived SSR markers was higher in V. radiata (73.08%) than V. mungo (50%). To the best of our knowledge, this is the first transcriptomic study conducted in this crop to understand the molecular basis of any trait. It would provide us a comprehensive understanding of the complex transcriptome dynamics during the seed development and gene regulatory mechanism of the seed size determination in ricebeans.
Collapse
Affiliation(s)
| | - Shikha Mittal
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Gayacharan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | | | | | - Geeta Prasad
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | | | - Mohar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
10
|
Barbier FF, Cao D, Fichtner F, Weiste C, Perez-Garcia MD, Caradeuc M, Le Gourrierec J, Sakr S, Beveridge CA. HEXOKINASE1 signalling promotes shoot branching and interacts with cytokinin and strigolactone pathways. THE NEW PHYTOLOGIST 2021; 231:1088-1104. [PMID: 33909299 DOI: 10.1111/nph.17427] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/18/2021] [Indexed: 05/08/2023]
Abstract
Plant architecture is controlled by several endogenous signals including hormones and sugars. However, only little information is known about the nature and roles of the sugar signalling pathways in this process. Here we test whether the sugar signalling pathway mediated by HEXOKINASE1 (HXK1) is involved in the control of shoot branching. To test the involvement of HXK1 in shoot branching and in the hormonal network controlling this process, we modulated the HXK1 pathway using physiological and genetic approaches in rose, pea and arabidopsis. Mannose-induced HXK signalling triggered bud outgrowth in rose and pea. In arabidopsis, both HXK1 deficiency and defoliation led to decreased shoot branching and conferred hypersensitivity to auxin. Complementation of the HXK1 knockout mutant gin2 with a catalytically inactive HXK1, restored shoot branching to the wild-type level. HXK1-deficient plants displayed decreased cytokinin levels and increased expression of MAX2, which is required for strigolactone signalling. The branching phenotype of HXK1-deficient plants could be partly restored by cytokinin treatment and strigolactone deficiency could override the negative impact of HXK1 deficiency on shoot branching. Our observations demonstrate that HXK1 signalling contributes to the regulation of shoot branching and interacts with hormones to modulate plant architecture.
Collapse
Affiliation(s)
- Francois F Barbier
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université Angers, Angers, 49000, France
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Da Cao
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Franziska Fichtner
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | | | - Mathieu Caradeuc
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université Angers, Angers, 49000, France
| | - José Le Gourrierec
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université Angers, Angers, 49000, France
| | - Soulaiman Sakr
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université Angers, Angers, 49000, France
| | - Christine A Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Qld, 4072, Australia
| |
Collapse
|
11
|
Nguyen HN, Lai N, Kisiala AB, Emery RJN. Isopentenyltransferases as master regulators of crop performance: their function, manipulation, and genetic potential for stress adaptation and yield improvement. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1297-1313. [PMID: 33934489 PMCID: PMC8313133 DOI: 10.1111/pbi.13603] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 03/23/2021] [Accepted: 04/11/2021] [Indexed: 05/27/2023]
Abstract
Isopentenyltransferase (IPT) in plants regulates a rate-limiting step of cytokinin (CTK) biosynthesis. IPTs are recognized as key regulators of CTK homeostasis and phytohormone crosstalk in both biotic and abiotic stress responses. Recent research has revealed the regulatory function of IPTs in gene expression and metabolite profiles including source-sink modifications, energy metabolism, nutrient allocation and storage, stress defence and signalling pathways, protein synthesis and transport, and membrane transport. This suggests that IPTs play a crucial role in plant growth and adaptation. In planta studies of IPT-driven modifications indicate that, at a physiological level, IPTs improve stay-green characteristics, delay senescence, reduce stress-induced oxidative damage and protect photosynthetic machinery. Subsequently, these improvements often manifest as enhanced or stabilized crop yields and this is especially apparent under environmental stress. These mechanisms merit consideration of the IPTs as 'master regulators' of core cellular metabolic pathways, thus adjusting plant homeostasis/adaptive responses to altered environmental stresses, to maximize yield potential. If their expression can be adequately controlled, both spatially and temporally, IPTs can be a key driver for seed yield. In this review, we give a comprehensive overview of recent findings on how IPTs influence plant stress physiology and yield, and we highlight areas for future research.
Collapse
Affiliation(s)
| | - Nhan Lai
- School of BiotechnologyVietnam National UniversityHo Chi Minh CityVietnam
| | | | | |
Collapse
|
12
|
Horner W, Brunkard JO. Cytokinins Stimulate Plasmodesmatal Transport in Leaves. FRONTIERS IN PLANT SCIENCE 2021; 12:674128. [PMID: 34135930 PMCID: PMC8201399 DOI: 10.3389/fpls.2021.674128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Plant cells are connected by plasmodesmata (PD), nanoscopic channels in cell walls that allow diverse cytosolic molecules to move between neighboring cells. PD transport is tightly coordinated with physiology and development, although the range of signaling pathways that influence PD transport has not been comprehensively defined. Several plant hormones, including salicylic acid (SA) and auxin, are known to regulate PD transport, but the effects of other hormones have not been established. In this study, we provide evidence that cytokinins promote PD transport in leaves. Using a green fluorescent protein (GFP) movement assay in the epidermis of Nicotiana benthamiana, we have shown that PD transport significantly increases when leaves are supplied with exogenous cytokinins at physiologically relevant concentrations or when a positive regulator of cytokinin responses, ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 5 (AHP5), is overexpressed. We then demonstrated that silencing cytokinin receptors, ARABIDOPSIS HISTIDINE KINASE 3 (AHK3) or AHK4 or overexpressing a negative regulator of cytokinin signaling, AAHP6, significantly decreases PD transport. These results are supported by transcriptomic analysis of mutants with increased PD transport (ise1-4), which show signs of enhanced cytokinin signaling. We concluded that cytokinins contribute to dynamic changes in PD transport in plants, which will have implications in several aspects of plant biology, including meristem patterning and development, regulation of the sink-to-source transition, and phytohormone crosstalk.
Collapse
Affiliation(s)
- Wilson Horner
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA, United States
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, WI, United States
| | - Jacob O. Brunkard
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA, United States
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, WI, United States
| |
Collapse
|
13
|
Salam BB, Barbier F, Danieli R, Teper-Bamnolker P, Ziv C, Spíchal L, Aruchamy K, Shnaider Y, Leibman D, Shaya F, Carmeli-Weissberg M, Gal-On A, Jiang J, Ori N, Beveridge C, Eshel D. Sucrose promotes stem branching through cytokinin. PLANT PHYSIOLOGY 2021; 185:1708-1721. [PMID: 33793932 PMCID: PMC8133652 DOI: 10.1093/plphys/kiab003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/16/2020] [Indexed: 05/23/2023]
Abstract
Shoot branching is an important aspect of plant architecture because it substantially affects plant biology and agricultural performance. Sugars play an important role in the induction of shoot branching in several species, including potato (Solanum tuberosum L.). However, the mechanism by which sugars affect shoot branching remains mostly unknown. In the present study, we addressed this question using sugar-mediated induction of bud outgrowth in potato stems under etiolated conditions. Our results indicate that sucrose feeding to detached stems promotes the accumulation of cytokinin (CK), as well as the expression of vacuolar invertase (VInv), an enzyme that contributes to sugar sink strength. These effects of sucrose were suppressed by CK synthesis and perception inhibitors, while CK supplied to detached stems induced bud outgrowth and VInv activity in the absence of sucrose. CK-induced bud outgrowth was suppressed in vinv mutants, which we generated by genome editing. Altogether, our results identify a branching-promoting module, and suggest that sugar-induced lateral bud outgrowth is in part promoted by the induction of CK-mediated VInv activity.
Collapse
Affiliation(s)
- Bolaji Babajide Salam
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel
| | - Francois Barbier
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia
| | - Raz Danieli
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel
| | | | - Carmit Ziv
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Lukáš Spíchal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University in Olomouc, Czech Republic (L.S.)
| | - Kalaivani Aruchamy
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Yula Shnaider
- Department of Plant Pathology and Weed Research, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Diana Leibman
- Department of Plant Pathology and Weed Research, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Felix Shaya
- Department of Fruit Tree Sciences, The Volcani Center, ARO, Rishon LeZion, Israel
| | | | - Amit Gal-On
- Department of Plant Pathology and Weed Research, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Jiming Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel
| | - Christine Beveridge
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia
| | - Dani Eshel
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel
| |
Collapse
|
14
|
Pérez-Llorca M, Munné-Bosch S. Aging, stress, and senescence in plants: what can biological diversity teach us? GeroScience 2021; 43:167-180. [PMID: 33590435 DOI: 10.1007/s11357-021-00336-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/03/2021] [Indexed: 11/25/2022] Open
Abstract
Aging, stress, and senescence in plants are interconnected processes that determine longevity. We focus here on compiling and discussing our current knowledge on the mechanisms of development that long-lived perennial plants have evolved to prevent and delay senescence. Clonal and nonclonal perennial herbs of various life forms and longevities will be particularly considered to illustrate what biological diversity can teach us about aging as a universal phenomenon. Source-sink relations and redox signaling will also be discussed as examples of regulatory mechanisms of senescence at the organ level. Whether or not effective mechanisms that biological diversity has evolved to completely prevent the wear and tear of aging will be applicable to human aging in the near future ultimately depends on ethical aspects.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain.,Institute of Research in Biodiversity (IRBio), University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain. .,Institute of Research in Biodiversity (IRBio), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
15
|
Nguyen HN, Kambhampati S, Kisiala A, Seegobin M, Emery RJN. The soybean ( Glycine max L.) cytokinin oxidase/dehydrogenase multigene family; Identification of natural variations for altered cytokinin content and seed yield. PLANT DIRECT 2021; 5:e00308. [PMID: 33644633 PMCID: PMC7887454 DOI: 10.1002/pld3.308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 05/11/2023]
Abstract
Cytokinins (CKs) play a fundamental role in regulating dynamics of organ source/sink relationships during plant development, including flowering and seed formation stages. As a result, CKs are key drivers of seed yield. The cytokinin oxidase/dehydrogenase (CKX) is one of the critical enzymes responsible for regulating plant CK levels by causing their irreversible degradation. Variation of CKX activity is significantly correlated with seed yield in many crop species while in soybean (Glycine max L.), the possible associations between CKX gene family members (GFMs) and yield parameters have not yet been assessed. In this study, 17 GmCKX GFMs were identified, and natural variations among GmCKX genes were probed among soybean cultivars with varying yield characteristics. The key CKX genes responsible for regulating CK content during seed filling stages of reproductive development were highlighted using comparative phylogenetics, gene expression analysis and CK metabolite profiling. Five of the seventeen identified GmCKX GFMs, showed natural variations in the form of single nucleotide polymorphisms (SNPs). The gene GmCKX7-1, with high expression during critical seed filling stages, was found to have a non-synonymous mutation (H105Q), on one of the active site residues, Histidine 105, previously reported to be essential for co-factor binding to maintain structural integrity of the enzyme. Soybean lines with this mutation had higher CK content and desired yield characteristics. The potential for marker-assisted selection based on the identified natural variation within GmCKX7-1, is discussed in the context of hormonal control that can result in higher soybean yield.
Collapse
Affiliation(s)
| | - Shrikaar Kambhampati
- Department of BiologyTrent UniversityPeterboroughONCanada
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | - Anna Kisiala
- Department of BiologyTrent UniversityPeterboroughONCanada
| | - Mark Seegobin
- Department of BiologyTrent UniversityPeterboroughONCanada
| | | |
Collapse
|
16
|
Berková V, Kameniarová M, Ondrisková V, Berka M, Menšíková S, Kopecká R, Luklová M, Novák J, Spíchal L, Rashotte AM, Brzobohatý B, Černý M. Arabidopsis Response to Inhibitor of Cytokinin Degradation INCYDE: Modulations of Cytokinin Signaling and Plant Proteome. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1563. [PMID: 33202776 PMCID: PMC7698199 DOI: 10.3390/plants9111563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022]
Abstract
Cytokinins are multifaceted plant hormones that play crucial roles in plant interactions with the environment. Modulations in cytokinin metabolism and signaling have been successfully used for elevating plant tolerance to biotic and abiotic stressors. Here, we analyzed Arabidopsis thaliana response to INhibitor of CYtokinin DEgradation (INCYDE), a potent inhibitor of cytokinin dehydrogenase. We found that at low nanomolar concentration, the effect of INCYCE on seedling growth and development was not significantly different from that of trans-Zeatin treatment. However, an alteration in the spatial distribution of cytokinin signaling was found at low micromolar concentrations, and proteomics analysis revealed a significant impact on the molecular level. An in-depth proteome analysis of an early (24 h) response and a dose-dependent response after 168 h highlighted the effects on primary and secondary metabolism, including alterations in ribosomal subunits, RNA metabolism, modulations of proteins associated with chromatin, and the flavonoid and phenylpropanoid biosynthetic pathway. The observed attenuation in stress-response mechanisms, including abscisic acid signaling and the metabolism of jasmonates, could explain previously reported positive effects of INCYDE under mild stress conditions.
Collapse
Affiliation(s)
- Veronika Berková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Vladěna Ondrisková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Simona Menšíková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Markéta Luklová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 77200 Olomouc, Czech Republic;
| | - Aaron M. Rashotte
- Department of Biological Sciences, Auburn University, Auburn, AL 811, USA;
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
- Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| |
Collapse
|
17
|
Khandal H, Gupta SK, Dwivedi V, Mandal D, Sharma NK, Vishwakarma NK, Pal L, Choudhary M, Francis A, Malakar P, Singh NP, Sharma K, Sinharoy S, Singh NP, Sharma R, Chattopadhyay D. Root-specific expression of chickpea cytokinin oxidase/dehydrogenase 6 leads to enhanced root growth, drought tolerance and yield without compromising nodulation. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2225-2240. [PMID: 32181964 PMCID: PMC7589355 DOI: 10.1111/pbi.13378] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 05/11/2023]
Abstract
Cytokinin group of phytohormones regulate root elongation and branching during post-embryonic development. Cytokinin-degrading enzymes cytokinin oxidases/dehydrogenases (CKXs) have been deployed to investigate biological activities of cytokinin and to engineer root growth. We expressed chickpea cytokinin oxidase 6 (CaCKX6) under the control of a chickpea root-specific promoter of CaWRKY31 in Arabidopsis thaliana and chickpea having determinate and indeterminate growth patterns, respectively, to study the effect of cytokinin depletion on root growth and drought tolerance. Root-specific expression of CaCKX6 led to a significant increase in lateral root number and root biomass in Arabidopsis and chickpea without any penalty to vegetative and reproductive growth of shoot. Transgenic chickpea lines showed increased CKX activity in root. Soil-grown advanced chickpea transgenic lines exhibited higher root-to-shoot biomass ratio and enhanced long-term drought tolerance. These chickpea lines were not compromised in root nodulation and nitrogen fixation. The seed yield in some lines was up to 25% higher with no penalty in protein content. Transgenic chickpea seeds possessed higher levels of zinc, iron, potassium and copper. Our results demonstrated the potential of cytokinin level manipulation in increasing lateral root number and root biomass for agronomic trait improvement in an edible legume crop with indeterminate growth habit.
Collapse
Affiliation(s)
| | | | - Vikas Dwivedi
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Drishti Mandal
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | | | - Lalita Pal
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | - Aleena Francis
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Paheli Malakar
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | - Kapil Sharma
- Repository of Tomato Genomics ResourcesDepartment of Plant SciencesUniversity of HyderabadHyderabadIndia
| | | | | | - Rameshwar Sharma
- Repository of Tomato Genomics ResourcesDepartment of Plant SciencesUniversity of HyderabadHyderabadIndia
| | | |
Collapse
|
18
|
Opio P, Tomiyama H, Saito T, Ohkawa K, Ohara H, Kondo S. Paclobutrazol elevates auxin and abscisic acid, reduces gibberellins and zeatin and modulates their transporter genes in Marubakaido apple (Malus prunifolia Borkh. var. ringo Asami) rootstocks. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:502-511. [PMID: 32836196 DOI: 10.1016/j.plaphy.2020.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
To examine the dwarfing mechanism in apples, one-year-old Marubakaido (Malus prunifolia Borkh.) (invigorating) apple rootstock stools were foliar-sprayed with 860 mg L-1 of paclobutrazol (PBZ) as a single application or without. M.9 apple rootstock (dwarf) was used as a positive control. The phytohormones were estimated in the shoot bark and sub-apical shoot and gene expression in the apices of terminal shoots. Evident responses to PBZ were observed a fortnight after treatment, as the shoot and internode lengths were suppressed significantly. Endogenous indole-3-acetic acid increased in the PBZ treatment, and the polar auxin transporter genes MdPIN1 and MdLAX1 and the biosynthesis gene MdYUCCA10a were upregulated along with the MdARF2 gene. Additionally, PBZ increased the abscisic acid (ABA) concentration and the biosynthesis-related gene MdNCED1 but repressed the degradation gene MdCYP707A1. The ABA transporter gene MdAITb-like was upregulated by PBZ. The concentrations of the gibberellins (GAs) GA1 and GA4 decreased in the PBZ-treated rootstocks. The GA transporter gene MdNFP3.1-like and the signaling gene MdGID1b-like were strongly downregulated by PBZ, whereas the catabolic gene MdGA2OX2 was upregulated. PBZ treatment significantly reduced trans-zeatin (tZ) levels and downregulated the cytokinin biosynthesis gene MdIPT6 but upregulated the MdCKX7 degradation gene. Additionally, PBZ upregulated the cytokinin-related transporter genes MdPUP7-like and MdPUP9-like. Collectively, our results show that the physiological and molecular effect of PBZ was observed within two weeks, and this was indicated by the modulation of phytohormonal levels as well as transporter and other gene expression in Marubakaido apple rootstocks.
Collapse
Affiliation(s)
- Peter Opio
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan
| | - Hiroyuki Tomiyama
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan
| | - Takanori Saito
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan
| | - Katsuya Ohkawa
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan
| | - Hitoshi Ohara
- Center for Environment, Health and Field Sciences, Chiba University, Kashiwa, 277-0882, Japan
| | - Satoru Kondo
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan.
| |
Collapse
|
19
|
Rezaei Ghaleh Z, Sarmast MK, Atashi S. 6-Benzylaminopurine (6-BA) ameliorates drought stress response in tall fescue via the influencing of biochemicals and strigolactone-signaling genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:877-887. [PMID: 32905982 DOI: 10.1016/j.plaphy.2020.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Drought is a major agricultural and societal concern that causes farmers worldwide billions of dollars in annual losses. By revealing the as-of-yet unknown details of the biochemical and phytohormonal crosstalk occurring in drought-stressed plants, novel strategies can be pioneered to enhance drought tolerance in crop plants. Toward this goal, exogenous treatments containing the synthetic cytokinin 6-Benzylaminopurine (6-BA) were applied to the perennial monocot grass Festuca arundinacea (Tall Fescue). These plants were subjected to three irrigation levels: 100% ± 5%, 50% ± 5%, and 25% ± 5% of field capacity, at which a number of morpho-physiological and biochemical responses were evaluated. Furthermore, to elucidate the crosstalk between cytokinin (CK) and strigolactone (SL), we evaluated the activities of several SL-responsive genes. Drought conditions were shown to have widespread effects on morpho-physiological and biochemical indices. However, foliar application of 6-BA on tall fescue largely ameliorated drought stress symptoms. Water-soluble carbohydrates also declined significantly in response to CK over the course of drought progression, with virtually no change to starch content. Severe drought stress also upregulated a number of SL-response genes in the leaves of plants, indicating a correlation between the degree of drought severity and the quantity of SLs in tall fescue. Furthermore, the drought‒mediated induction of SL-signaling genes (including FaD14 and FaMax2) was inhibited in response to exogenous application of 6-BA, implying that 6-BA is a drought-dependent suppressor of SL-signaling genes. However, our results also hint at the existence of an as-of-yet poorly-characterized system of complex phytohormonal responses coordinated from multiple signaling pathways in response to drought.
Collapse
Affiliation(s)
- Zahra Rezaei Ghaleh
- Department of Horticultural Science and Landscape Engineering, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources (GUASNR), Gorgan, 49138-43464, Golestan, Iran
| | - Mostafa K Sarmast
- Department of Horticultural Science and Landscape Engineering, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources (GUASNR), Gorgan, 49138-43464, Golestan, Iran.
| | - Sadegh Atashi
- Department of Horticultural Science and Landscape Engineering, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources (GUASNR), Gorgan, 49138-43464, Golestan, Iran
| |
Collapse
|
20
|
Fenollosa E, Munné-Bosch S. Reproductive load modulates drought stress response but does not compromise recovery in an invasive plant during the Mediterranean summer. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:221-230. [PMID: 32771933 DOI: 10.1016/j.plaphy.2020.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/10/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Despite summer drought may challenge plant survival in Mediterranean-type ecosystems, the role of reproductive load on drought stress and recovery has been poorly studied in invasive plants, most particularly under natural field conditions. In this study, a highly plastic clonal invasive species, Carpobrotus edulis was used to explore a putative differential response to drought between reproductive (senescent) ramets and non-reproductive ramets. Furthermore, fruit removal was used to assess how alterations on the source-sink dynamics influence plant performance during drought stress and recovery. We examined the variations in chloroplast pigments, antioxidants, lipid peroxidation and cytokinins in leaves of non-reproductive and reproductive ramets (either with intact or fruit-removed ramets) in response to summer drought stress and recovery after rains under Mediterranean field conditions. Results showed that although both ramet types within a C. edulis patch recovered at the end of the summer, increased photoprotective investment was found in leaves from reproductive ramets, thus indicating an increased photoprotective demand associated with reproduction at the ramet level. This response was associated with differentiated cytokinin contents in leaves of reproductive ramets compared to those of non-reproductive ramets. Although leaf senescence was not reversed by the fruit removal, leaves recovered their chlorophyll content after rainfall during late summer in parallel with the accumulation of cytokinins. In conclusion, C. edulis shows a huge plasticity in drought stress responses with a marked compartmentation at the ramet level, which helps at least in part to an efficient recovery from unpredictable water shortage periods in the current frame of climate change.
Collapse
Affiliation(s)
- Erola Fenollosa
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institute of Research in Biodiversity (IRBio), University of Barcelona, Spain.
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institute of Research in Biodiversity (IRBio), University of Barcelona, Spain
| |
Collapse
|
21
|
Liang B, Sun Y, Li Z, Zhang X, Yin B, Zhou S, Xu J. Crop Load Influences Growth and Hormone Changes in the Roots of "Red Fuji" Apple. FRONTIERS IN PLANT SCIENCE 2020; 11:665. [PMID: 32528508 PMCID: PMC7265680 DOI: 10.3389/fpls.2020.00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Crop load has a substantial impact on growth of the aerial and belowground parts of apple trees. Here, we examined the effects of different crop loads on growth and hormone levels in apple roots. A crop load of 1.5 (T1.5) fruits per cm2 trunk cross-sectional area (TCSA) treatment resulted in lower root growth vigor, while non-fruiting (T0) and T0.4 conditions showed higher root growth vigor. In all treatments, dead roots increased in length 90 days after full bloom (DAFB), whereas live roots were more abundant at about 50 and 170 DAFB, showing a bimodal curve. During each root growth peak, levels of cytokinins (CTKs), indole acetic acid (IAA), and gibberellic acid (GA3) were higher. Moreover, hormone levels gradually decreased with increasing crop load within each peak. Root turnover tended to decrease with decreasing crop load. These findings indicate that root growth and hormone contents were positively correlated during the fruit growth phase, and that the negative impact of crop load on root growth may have been caused by hormone level decreases.
Collapse
|
22
|
Hai NN, Chuong NN, Tu NHC, Kisiala A, Hoang XLT, Thao NP. Role and Regulation of Cytokinins in Plant Response to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2020; 9:E422. [PMID: 32244272 PMCID: PMC7238249 DOI: 10.3390/plants9040422] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/12/2020] [Accepted: 03/27/2020] [Indexed: 01/04/2023]
Abstract
Cytokinins (CKs) are key phytohormones that not only regulate plant growth and development but also mediate plant tolerance to drought stress. Recent advances in genome-wide association studies coupled with in planta characterization have opened new avenues to investigate the drought-responsive expression of CK metabolic and signaling genes, as well as their functions in plant adaptation to drought. Under water deficit, CK signaling has evolved as an inter-cellular communication network which is essential to crosstalk with other types of phytohormones and their regulating pathways in mediating plant stress response. In this review, we revise the current understanding of CK involvement in drought stress tolerance. Particularly, a genetic framework for CK signaling and CK crosstalk with abscisic acid (ABA) in the precise monitoring of drought responses is proposed. In addition, the potential of endogenous CK alteration in crops towards developing drought-tolerant crops is also discussed.
Collapse
Affiliation(s)
- Nguyen Ngoc Hai
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (N.N.H.); (N.N.C.); (N.H.C.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Environmental and Life Science, Trent University, Peterborough, ON K9L 0G2 Canada
| | - Nguyen Nguyen Chuong
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (N.N.H.); (N.N.C.); (N.H.C.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Huu Cam Tu
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (N.N.H.); (N.N.C.); (N.H.C.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Anna Kisiala
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada;
| | - Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (N.N.H.); (N.N.C.); (N.H.C.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (N.N.H.); (N.N.C.); (N.H.C.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
23
|
Andreas P, Kisiala A, Emery RJN, De Clerck-Floate R, Tooker JF, Price PW, Miller III DG, Chen MS, Connor EF. Cytokinins Are Abundant and Widespread Among Insect Species. PLANTS (BASEL, SWITZERLAND) 2020; 9:E208. [PMID: 32041320 PMCID: PMC7076654 DOI: 10.3390/plants9020208] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 01/09/2023]
Abstract
Cytokinins (CKs) are a class of compounds that have long been thought to be exclusively plant growth regulators. Interestingly, some species of phytopathogenic bacteria and fungi have been shown to, and gall-inducing insects have been hypothesized to, produce CKs and use them to manipulate their host plants. We used high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-MS/MS) to examine concentrations of a wide range of CKs in 17 species of phytophagous insects, including gall- and non-gall-inducing species from all six orders of Insecta that contain species known to induce galls: Thysanoptera, Hemiptera, Lepidoptera, Coleoptera, Diptera, and Hymenoptera. We found CKs in all six orders of insects, and they were not associated exclusively with gall-inducing species. We detected 24 different CK analytes, varying in their chemical structure and biological activity. Isoprenoid precursor nucleotide and riboside forms of trans-zeatin (tZ) and isopentenyladenine (iP) were most abundant and widespread across the surveyed insect species. Notably, the observed concentrations of CKs often markedly exceeded those reported in plants suggesting that insects are synthesizing CKs rather than obtaining them from the host plant via tissue consumption, compound sequestration, and bioaccumulation. These findings support insect-derived CKs as means for gall-inducing insects to manipulate their host plant to facilitate cell proliferation, and for both gall- and non-gall-inducing insects to modify nutrient flux and plant defenses during herbivory. Furthermore, wide distribution of CKs across phytophagous insects, including non-gall-inducing species, suggests that insect-borne CKs could be involved in manipulation of source-sink mechanisms of nutrient allocation to sustain the feeding site and altering plant defensive responses, rather than solely gall induction. Given the absence of any evidence for genes in the de novo CK biosynthesis pathway in insects, we postulate that the tRNA-ipt pathway is responsible for CK production. However, the unusually high concentrations of CKs in insects, and the tendency toward dominance of their CK profiles by tZ and iP suggest that the tRNA-ipt pathway functions differently and substantially more efficiently in insects than in plants.
Collapse
Affiliation(s)
- Peter Andreas
- Department of Biology, Trent University, Peterborough, ON K9J 7B8, Canada; (P.A.); (A.K.); (R.J.N.E.)
| | - Anna Kisiala
- Department of Biology, Trent University, Peterborough, ON K9J 7B8, Canada; (P.A.); (A.K.); (R.J.N.E.)
| | - R. J. Neil Emery
- Department of Biology, Trent University, Peterborough, ON K9J 7B8, Canada; (P.A.); (A.K.); (R.J.N.E.)
| | | | - John F. Tooker
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Peter W. Price
- Department of Ecology and Evolutionary Biology, Northern Arizona University, Flagstaff, AZ 86001, USA;
| | - Donald G. Miller III
- Department of Biological Sciences, California State University, Chico, CA 95929, USA;
| | - Ming-Shun Chen
- USDA-ARS and Department of Entomology, Kansas State University, Manhattan, KS 66506, USA;
| | - Edward F. Connor
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| |
Collapse
|
24
|
Steady-State Levels of Cytokinins and Their Derivatives May Serve as a Unique Classifier of Arabidopsis Ecotypes. PLANTS 2020; 9:plants9010116. [PMID: 31963497 PMCID: PMC7020191 DOI: 10.3390/plants9010116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 11/17/2022]
Abstract
We determined steady-state (basal) endogenous levels of three plant hormones (abscisic acid, cytokinins and indole-3-acetic acid) in a collection of thirty different ecotypes of Arabidopsis that represent a broad genetic variability within this species. Hormone contents were analysed separately in plant shoots and roots after 21 days of cultivation on agar plates in a climate-controlled chamber. Using advanced statistical and machine learning methods, we tested if basal hormonal levels can be considered a unique ecotype-specific classifier. We also explored possible relationships between hormone levels and the prevalent environmental conditions in the site of origin for each ecotype. We found significant variations in basal hormonal levels and their ratios in both root and shoot among the ecotypes. We showed the prominent position of cytokinins (CK) among the other hormones. We found the content of CK and CK metabolites to be a reliable ecotype-specific identifier. Correlation with the mean temperature at the site of origin and the large variation in basal hormonal levels suggest that the high variability may potentially be in response to environmental factors. This study provides a starting point for ecotype-specific genetic maps of the CK metabolic and signalling network to explore its contribution to the adaptation of plants to local environmental conditions.
Collapse
|
25
|
Nardozza S, Cooney J, Boldingh HL, Hewitt KG, Trower T, Jones D, Thrimawithana AH, Allan AC, Richardson AC. Phytohormone and Transcriptomic Analysis Reveals Endogenous Cytokinins Affect Kiwifruit Growth under Restricted Carbon Supply. Metabolites 2020; 10:E23. [PMID: 31947989 PMCID: PMC7022440 DOI: 10.3390/metabo10010023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022] Open
Abstract
Following cell division, fruit growth is characterized by both expansion through increases in cell volume and biomass accumulation in cells. Fruit growth is limited by carbon starvation; however, the mechanism controlling fruit growth under restricted carbohydrate supply is poorly understood. In a previous study using red-fleshed kiwifruit, we showed that long-term carbon starvation had detrimental effects on carbohydrate, anthocyanin metabolism, and fruit growth. To elucidate the mechanisms underlying the reduction in fruit growth during kiwifruit development, we integrated phytohormone profiling with transcriptomic and developmental datasets for fruit under high or low carbohydrate supplies. Phytohormone profiling of the outer pericarp tissue of kiwifruit showed a 6-fold reduction in total cytokinin concentrations in carbon-starved fruit, whilst other hormones were less affected. Principal component analysis visualised that cytokinin composition was distinct between fruit at 16 weeks after mid bloom, based on their carbohydrate supply status. Cytokinin biosynthetic genes (IPT, CYP735A) were significantly downregulated under carbon starvation, in agreement with the metabolite data. Several genes that code for expansins, proteins involved in cell wall loosening, were also downregulated under carbon starvation. In contrast to other fleshy fruits, our results suggest that cytokinins not only promote cell division, but also drive fruit cell expansion and growth in kiwifruit.
Collapse
Affiliation(s)
- Simona Nardozza
- The New Zealand Institute for Plant and Food Research Limited (PFR), 1142 Auckland, New Zealand; (D.J.); (A.H.T.); (A.C.A.)
| | - Janine Cooney
- The New Zealand Institute for Plant and Food Research Limited (PFR), 3240 Hamilton, New Zealand; (J.C.); (H.L.B.); (K.G.H.); (T.T.)
| | - Helen L. Boldingh
- The New Zealand Institute for Plant and Food Research Limited (PFR), 3240 Hamilton, New Zealand; (J.C.); (H.L.B.); (K.G.H.); (T.T.)
| | - Katrin G. Hewitt
- The New Zealand Institute for Plant and Food Research Limited (PFR), 3240 Hamilton, New Zealand; (J.C.); (H.L.B.); (K.G.H.); (T.T.)
| | - Tania Trower
- The New Zealand Institute for Plant and Food Research Limited (PFR), 3240 Hamilton, New Zealand; (J.C.); (H.L.B.); (K.G.H.); (T.T.)
| | - Dan Jones
- The New Zealand Institute for Plant and Food Research Limited (PFR), 1142 Auckland, New Zealand; (D.J.); (A.H.T.); (A.C.A.)
| | - Amali H. Thrimawithana
- The New Zealand Institute for Plant and Food Research Limited (PFR), 1142 Auckland, New Zealand; (D.J.); (A.H.T.); (A.C.A.)
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited (PFR), 1142 Auckland, New Zealand; (D.J.); (A.H.T.); (A.C.A.)
- School of Biological Sciences, University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand
| | - Annette C. Richardson
- The New Zealand Institute for Plant and Food Research Limited (PFR), 0294 Kerikeri, New Zealand;
| |
Collapse
|
26
|
Kroll CK, Brenner WG. Cytokinin Signaling Downstream of the His-Asp Phosphorelay Network: Cytokinin-Regulated Genes and Their Functions. FRONTIERS IN PLANT SCIENCE 2020; 11:604489. [PMID: 33329676 PMCID: PMC7718014 DOI: 10.3389/fpls.2020.604489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/26/2020] [Indexed: 05/17/2023]
Abstract
The plant hormone cytokinin, existing in several molecular forms, is perceived by membrane-localized histidine kinases. The signal is transduced to transcription factors of the type-B response regulator family localized in the nucleus by a multi-step histidine-aspartate phosphorelay network employing histidine phosphotransmitters as shuttle proteins across the nuclear envelope. The type-B response regulators activate a number of primary response genes, some of which trigger in turn further signaling events and the expression of secondary response genes. Most genes activated in both rounds of transcription were identified with high confidence using different transcriptomic toolkits and meta analyses of multiple individual published datasets. In this review, we attempt to summarize the existing knowledge about the primary and secondary cytokinin response genes in order to try connecting gene expression with the multitude of effects that cytokinin exerts within the plant body and throughout the lifespan of a plant.
Collapse
|
27
|
Bertheloot J, Barbier F, Boudon F, Perez-Garcia MD, Péron T, Citerne S, Dun E, Beveridge C, Godin C, Sakr S. Sugar availability suppresses the auxin-induced strigolactone pathway to promote bud outgrowth. THE NEW PHYTOLOGIST 2020; 225:866-879. [PMID: 31529696 DOI: 10.1111/nph.16201] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/09/2019] [Indexed: 05/21/2023]
Abstract
Apical dominance occurs when the growing shoot tip inhibits the outgrowth of axillary buds. Apically-derived auxin in the nodal stem indirectly inhibits bud outgrowth via cytokinins and strigolactones. Recently, sugar deprivation was found to contribute to this phenomenon. Using rose and pea, we investigated whether sugar availability interacts with auxin in bud outgrowth control, and the role of cytokinins and strigolactones, in vitro and in planta. We show that sucrose antagonises auxin's effect on bud outgrowth, in a dose-dependent and coupled manner. Sucrose also suppresses strigolactone inhibition of outgrowth and the rms3 strigolactone-perception mutant is less affected by reducing sucrose supply. However, sucrose does not interfere with the regulation of cytokinin levels by auxin and stimulates outgrowth even with optimal cytokinin supply. These observations were assembled into a computational model in which sucrose represses bud response to strigolactones, largely independently of cytokinin levels. It quantitatively captures our observed dose-dependent sucrose-hormones effects on bud outgrowth and allows us to express outgrowth response to various combinations of auxin and sucrose levels as a simple quantitative law. This study places sugars in the bud outgrowth regulatory network and paves the way for a better understanding of branching plasticity in response to environmental and genotypic factors.
Collapse
Affiliation(s)
- Jessica Bertheloot
- IRHS, INRA, Agrocampus-Ouest, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - François Barbier
- IRHS, INRA, Agrocampus-Ouest, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Frédéric Boudon
- CIRAD, UMR AGAP & Univ. Montpellier, Avenue Agropolis, TA A-108/01, F-34398, Montpellier, France
| | | | - Thomas Péron
- IRHS, INRA, Agrocampus-Ouest, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin Centre de Versailles-Grignon (IJPB), INRA, Agro-ParisTech, CNRS, Versailles, France
| | - Elizabeth Dun
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christine Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Inria, F-69342, Lyon, France
| | - Soulaiman Sakr
- IRHS, INRA, Agrocampus-Ouest, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| |
Collapse
|
28
|
Li YM, Forney C, Bondada B, Leng F, Xie ZS. The Molecular Regulation of Carbon Sink Strength in Grapevine ( Vitis vinifera L.). FRONTIERS IN PLANT SCIENCE 2020; 11:606918. [PMID: 33505415 PMCID: PMC7829256 DOI: 10.3389/fpls.2020.606918] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/08/2020] [Indexed: 05/17/2023]
Abstract
Sink organs, the net receivers of resources from source tissues, provide food and energy for humans. Crops yield and quality are improved by increased sink strength and source activity, which are affected by many factors, including sugars and hormones. With the growing global population, it is necessary to increase photosynthesis into crop biomass and yield on a per plant basis by enhancing sink strength. Sugar translocation and accumulation are the major determinants of sink strength, so understanding molecular mechanisms and sugar allocation regulation are conducive to develop biotechnology to enhance sink strength. Grapevine (Vitis vinifera L.) is an excellent model to study the sink strength mechanism and regulation for perennial fruit crops, which export sucrose from leaves and accumulates high concentrations of hexoses in the vacuoles of fruit mesocarp cells. Here recent advances of this topic in grape are updated and discussed, including the molecular biology of sink strength, including sugar transportation and accumulation, the genes involved in sugar mobilization and their regulation of sugar and other regulators, and the effects of hormones on sink size and sink activity. Finally, a molecular basis model of the regulation of sugar accumulation in the grape is proposed.
Collapse
Affiliation(s)
- You-Mei Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Charles Forney
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS, Canada
| | - Bhaskar Bondada
- Wine Science Center, Washington State University, Richland, WA, United States
| | - Feng Leng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhao-Sen Xie
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- *Correspondence: Zhao-Sen Xie,
| |
Collapse
|
29
|
Bryksová M, Hybenová A, Hernándiz AE, Novák O, Pěnčík A, Spíchal L, De Diego N, Doležal K. Hormopriming to Mitigate Abiotic Stress Effects: A Case Study of N 9-Substituted Cytokinin Derivatives With a Fluorinated Carbohydrate Moiety. FRONTIERS IN PLANT SCIENCE 2020; 11:599228. [PMID: 33362831 PMCID: PMC7758400 DOI: 10.3389/fpls.2020.599228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/16/2020] [Indexed: 05/02/2023]
Abstract
Drought and salinity reduce seed germination, seedling emergence, and early seedling establishment, affect plant metabolism, and hence, reduce crop yield. Development of technologies that can increase plant tolerance of these challenging growth conditions is a major current interest among plant scientists and breeders. Seed priming has become established as one of the practical approaches that can alleviate the negative impact of many environmental stresses and improve the germination and overall performance of crops. Hormopriming using different plant growth regulators has been widely demonstrated as effective, but information about using cytokinins (CKs) as priming agents is limited to only a few studies using kinetin or 6-benzylaminopurine (BAP). Moreover, the mode of action of these compounds in improving seed and plant fitness through priming has not yet been studied. For many years, BAP has been one of the CKs most commonly applied exogenously to plants to delay senescence and reduce the impact of stress. However, rapid endogenous N 9-glucosylation of BAP can result in negative effects. This can be suppressed by hydroxylation of the benzyl ring or by appropriate N 9 purine substitution. Replacement of the 2' or 3' hydroxyl groups of a nucleoside with a fluorine atom has shown promising results in drug research and biochemistry as a means of enhancing biological activity and increasing chemical or metabolic stability. Here, we show that the application of this chemical modification in four new N 9-substituted CK derivatives with a fluorinated carbohydrate moiety improved the antisenescence properties of CKs. Besides, detailed phenotypical analysis of the growth and development of Arabidopsis plants primed with the new CK analogs over a broad concentration range and under various environmental conditions revealed that they improve growth regulation and antistress activity. Seed priming with, for example, 6-(3-hydroxybenzylamino)-2'-deoxy-2'-fluoro-9-(β)-D-arabinofuranosylpurine promoted plant growth under control conditions and alleviated the negative effects of the salt and osmotic stress. The mode of action of this hormopriming and its effect on plant metabolism were further analyzed through quantification of the endogenous levels of phytohormones such as CKs, auxins and abscisic acid, and the results are discussed.
Collapse
Affiliation(s)
- Magdaléna Bryksová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Andrea Hybenová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Alba E. Hernándiz
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Ondřej Novák
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czechia
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czechia
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
- *Correspondence: Nuria De Diego,
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czechia
| |
Collapse
|
30
|
Silva-Navas J, Conesa CM, Saez A, Navarro-Neila S, Garcia-Mina JM, Zamarreño AM, Baigorri R, Swarup R, Del Pozo JC. Role of cis-zeatin in root responses to phosphate starvation. THE NEW PHYTOLOGIST 2019; 224:242-257. [PMID: 31230346 DOI: 10.1111/nph.16020] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/15/2019] [Indexed: 05/02/2023]
Abstract
Phosphate (Pi) is an essential nutrient for all organisms. Roots are underground organs, but the majority of the root biology studies have been done on root systems growing in the presence of light. Root illumination alters the Pi starvation response (PSR) at different intensities. Thus, we have analyzed morphological, transcriptional and physiological responses to Pi starvation in dark-grown roots. We have identified new genes and pathways regulated by Pi starvation that were not described previously. We also show that Pi-starved plants increase the cis-zeatin (cZ) : trans-zeatin (tZ) ratio. Transcriptomic analyses show that tZ preferentially represses cell cycle and PSR genes, whereas cZ induces genes involved in cell and root hair elongation and differentiation. In fact, cZ-treated seedlings show longer root system as well as longer root hairs compared with tZ-treated seedlings, increasing the total absorbing surface. Mutants with low cZ concentrations do not allocate free Pi in roots during Pi starvation. We propose that Pi-starved plants increase the cZ : tZ ratio to maintain basal cytokinin responses and allocate Pi in the root system to sustain its growth. Therefore, cZ acts as a PSR hormone that stimulates root and root hair elongation to enlarge the root absorbing surface and to increase Pi concentrations in roots.
Collapse
Affiliation(s)
- Javier Silva-Navas
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, ZIP 28223, Madrid, Spain
| | - Carlos M Conesa
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, ZIP 28223, Madrid, Spain
| | - Angela Saez
- Centro de Investigación en Producción Animal y Vegetal (CIPAV), Timac Agro Int-Roullier Group, Polígono Arazuri-Orcoyen, C/C n Degrees 32, ZIP 31160, Orcoyen, Spain
| | - Sara Navarro-Neila
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, ZIP 28223, Madrid, Spain
| | - Jose M Garcia-Mina
- Environmental Biology Department, University of Navarra, Pamplona, ZIP 31009, Navarra, Spain
| | - Angel M Zamarreño
- Environmental Biology Department, University of Navarra, Pamplona, ZIP 31009, Navarra, Spain
| | - Roberto Baigorri
- Centro de Investigación en Producción Animal y Vegetal (CIPAV), Timac Agro Int-Roullier Group, Polígono Arazuri-Orcoyen, C/C n Degrees 32, ZIP 31160, Orcoyen, Spain
| | - Ranjan Swarup
- Plant & Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
- Centre for Plant Integrative Biology (CPIB), University of Nottingham, Nottingham, LE12 5RD, UK
| | - Juan C Del Pozo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, ZIP 28223, Madrid, Spain
| |
Collapse
|
31
|
The Artificial Promoter rMdAG2I Confers Flower-specific Activity in Malus. Int J Mol Sci 2019; 20:ijms20184551. [PMID: 31540316 PMCID: PMC6770772 DOI: 10.3390/ijms20184551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic modifications of floral organs are important in the breeding of Malus species. Flower-specific promoters can be used to improve floral organs specifically, without affecting vegetative organs, and therefore developing such promoters is highly desirable. Here, we characterized two paralogs of the Arabidopsis thaliana gene AGAMOUS (AG) from Malus domestica (apple): MdAG1 and MdAG2. We then isolated the second-intron sequences for both genes, and created four artificial promoters by fusing each intron sequence to a minimal 35S promoter sequence in both the forward and reverse directions. When transferred into tobacco (Nicotiana benthamiana) by Agrobacterium tumefaciens-mediated stable transformation, one promoter, rMdAG2I, exhibited activity specifically in flowers, whereas the other three also showed detectable activity in vegetative organs. A test of the four promoters’ activities in the ornamental species Malus micromalus by Agrobacterium-mediated transient transformation showed that, as in tobacco, only rMdAG2I exhibited a flower-specific expression pattern. Through particle bombardment transformation, we demonstrated that rMdAG2I also had flower-specific activity in the apple cultivar ‘Golden Delicious’. The flower-specific promoter rMdAG2I, derived from M. domestica, thus has great potential for use in improving the floral characteristics of ornamental plants, especially the Malus species.
Collapse
|
32
|
Specificity of expression of TaCKX family genes in developing plants of wheat and their co-operation within and among organs. PLoS One 2019; 14:e0214239. [PMID: 30969991 PMCID: PMC6457499 DOI: 10.1371/journal.pone.0214239] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/08/2019] [Indexed: 12/20/2022] Open
Abstract
Multigene families of CKX genes encode cytokinin oxidase/dehydrogenase proteins (CKX), which regulate cytokinin content in organs of developing plants. It has already been documented that some of them play important roles in plant productivity. The presented research is the first step of comprehensive characterization of the bread wheat TaCKX gene family with the goal to select genes determining yield-related traits. The specificity of expression patterns of fifteen formerly annotated members of the TaCKX family was tested in different organs during wheat development. Based on this, the genes were assigned to four groups: TaCKX10, TaCKX5 and TaCKX4, highly specific to leaves; TaCKX3, TaCKX6 and TaCKX11, expressed in various levels through all the organs tested; TaCKX1, TaCKX2.3, TaCKX2.2, TaCKX2.1, TaCKX2.4 and TaCKX2.5 specific to developing spikes and inflorescences; TaCKX9, TaCKX8 and TaCKX7, highly specific to roots. Amplification products of tested genes were mapped to the chromosomes of the A, B or D genome using T. aestivum Ensembl Plants. Based on analysis of TaCKX transcripts as well as encoded amino acids in T. aestivum and Hordeum vulgare the number of CKX genes in wheat was limited to 11 and new numbering of selected TaCKX genes was proposed. Moreover, we found that there were developmental differences in expression of TaCKX in the first and the second spike and expression of some of the genes was daily time dependent. A very high and significant correlation was found between expression levels of TaCKX7 and TaCKX9, genes specific to seedling roots, TaCKX1, TaCKX2.1 and TaCKX2.2, specific to developing spikes, and the group of TaCKX3, 4, 5, 6, 10 and 11, highly expressed in leaves and other organs. The genes also co-operated among organs and were included in two groups representing younger or maturating stages of developing plants. The first group was represented by seedling roots, leaves from 4-week old plants, inflorescences and 0 DAP spikes; the second by developing spikes, 0 DAP, 7 DAP and 14 DAP. The key genes which might determine yield-related traits are indicated and their possible roles in breeding strategies are discussed.
Collapse
|
33
|
Skalák J, Vercruyssen L, Claeys H, Hradilová J, Černý M, Novák O, Plačková L, Saiz-Fernández I, Skaláková P, Coppens F, Dhondt S, Koukalová Š, Zouhar J, Inzé D, Brzobohatý B. Multifaceted activity of cytokinin in leaf development shapes its size and structure in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:805-824. [PMID: 30748050 DOI: 10.1111/tpj.14285] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/05/2019] [Accepted: 01/10/2019] [Indexed: 05/20/2023]
Abstract
The phytohormone cytokinin has been shown to affect many aspects of plant development ranging from the regulation of the shoot apical meristem to leaf senescence. However, some studies have reported contradictory effects of cytokinin on leaf physiology. Therefore cytokinin treatments cause both chlorosis and increased greening and both lead to decrease or increase in cell size. To elucidate this multifaceted role of cytokinin in leaf development, we have employed a system of temporal controls over the cytokinin pool and investigated the consequences of modulated cytokinin levels in the third leaf of Arabidopsis. We show that, at the cell proliferation phase, cytokinin is needed to maintain cell proliferation by blocking the transition to cell expansion and the onset of photosynthesis. Transcriptome profiling revealed regulation by cytokinin of a gene suite previously shown to affect cell proliferation and expansion and thereby a molecular mechanism by which cytokinin modulates a molecular network underlying the cellular responses. During the cell expansion phase, cytokinin stimulates cell expansion and differentiation. Consequently, a cytokinin excess at the cell expansion phase results in an increased leaf and rosette size fueled by higher cell expansion rate, yielding higher shoot biomass. Proteome profiling revealed the stimulation of primary metabolism by cytokinin, in line with an increased sugar content that is expected to increase turgor pressure, representing the driving force of cell expansion. Therefore, the developmental timing of cytokinin content fluctuations, together with a tight control of primary metabolism, is a key factor mediating transitions from cell proliferation to cell expansion in leaves.
Collapse
Affiliation(s)
- Jan Skalák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Liesbeth Vercruyssen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Hannes Claeys
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Jana Hradilová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Lenka Plačková
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Iñigo Saiz-Fernández
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Patricie Skaláková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Frederik Coppens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Stijn Dhondt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Šárka Koukalová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Jan Zouhar
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265, Brno, Czech Republic
| |
Collapse
|
34
|
Roka L, Koudounas K, Daras G, Zoidakis J, Vlahou A, Kalaitzis P, Hatzopoulos P. Proteome of olive non-glandular trichomes reveals protective protein network against (a)biotic challenge. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:210-218. [PMID: 30286324 DOI: 10.1016/j.jplph.2018.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Olive is one of the most important fruit crop trees in the history of Mediterranean because of the high quality oil. Olive oil has a well-balanced fatty acid composition along with biophenols, which make it exceptional in human diet and provide an exceptional value to the olive oil. Leaf non-glandular peltate trichomes are specialized cell types representing a protective barrier against acute environmental conditions. To characterize the proteome of this highly differentiated cell type, we performed a comparative proteomic analysis among isolated trichomes and trichome-less leaves. Proteins were separated and identified using the 2-DE MALDI-TOF/MS method. A number of enzymes involved in abiotic and biotic stress responses are present and may be responsible for the adaptation to prolonged adverse environmental conditions. The results show that this highly differentiated cell type is physiologically active fulfilling the demands of the trichomes in furnishing the leaf with a highly protective mechanism.
Collapse
Affiliation(s)
- Loukia Roka
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | | | - Gerasimos Daras
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Jerome Zoidakis
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Antonia Vlahou
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Panagiotis Kalaitzis
- Horticultural Genetics, Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | | |
Collapse
|
35
|
He Q, Yang L, Hu W, Zhang J, Xing Y. Overexpression of an auxin receptor OsAFB6 significantly enhanced grain yield by increasing cytokinin and decreasing auxin concentrations in rice panicle. Sci Rep 2018; 8:14051. [PMID: 30232356 PMCID: PMC6145926 DOI: 10.1038/s41598-018-32450-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/19/2018] [Indexed: 11/26/2022] Open
Abstract
Auxin plays critical roles in many developmental processes of plants. The auxin signaling pathway is a series of plant responses to auxin stimuli. However, the functions of many genes in this pathway are still obscure. As auxin receptors, TIR/AFB family genes encode F-Box proteins that directly bind auxin and then transduce the stimulus through the signaling pathway. In this paper, we generated an overexpression line of Auxin-signaling F-Box 6 (OsAFB6) in rice, which largely delayed heading, greatly increased spikelets per panicle and primary branch number and ultimately enhanced grain yield by 50%. OsAFB6 is preferentially expressed in young tissues with stronger meristem activities and suppresses flowering by upregulating OsRR1 and downregulating Ehd1 expression levels. Overexpression of OsAFB6 delayed heading, increased cytokinin (CK) by suppressing the expression level of Gn1a and simultaneously decreased the IAA concentration in the young panicle, which promoted inflorescence meristem development and resulted in large panicles with more spikelets per panicle, primary branches and increased grain yield. It would be a beneficial strategy to generate lines with varied expression levels of OsAFB6 to breed high-yielding cultivars for specific regions that can fully utilize the local sunlight and temperature resources.
Collapse
Affiliation(s)
- Qin He
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Lin Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Wei Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Jia Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
36
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 57:2367-2379. [PMID: 30149541 DOI: 10.1093/pcp/pcw157] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/07/2018] [Accepted: 09/05/2016] [Indexed: 05/25/2023] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
37
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 19:ijms19092506. [PMID: 30149541 PMCID: PMC6165531 DOI: 10.3390/ijms19092506] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
38
|
Ren Y, Chen Y, An J, Zhao Z, Zhang G, Wang Y, Wang W. Wheat expansin gene TaEXPA2 is involved in conferring plant tolerance to Cd toxicity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:245-256. [PMID: 29576078 DOI: 10.1016/j.plantsci.2018.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) is a severe and toxic heavy metal pollutant that affects plant growth and development. In this study, we found that the expression of an expansin gene, TaEXPA2, was upregulated in wheat leaves under CdCl2 toxicity. We characterized the involvement of TaEXPA2 in conferring Cd tolerance. Tobacco plants overexpressing TaEXPA2 showed higher germination rate, root elongation, and biomass accumulation compared to the wild-type (WT) plants upon CdCl2 treatment. The improved photosynthetic parameters and lesser cellular damage in transgenic plants exposed to Cd compared to that in the WT plants suggest that TaEXPA2 overexpression improves Cd tolerance in plants. Furthermore, we noticed that Cd was efficiently effluxed out of the cytoplasm in the transgenic plants owing to the enhanced activities of H+-ATPase, V-ATPase, and PPase, which helped in conferring Cd tolerance. Moreover, Cd concentration and ROS accumulation were lower in the transgenic plants than in WT plants as a consequence of enhanced antioxidant enzyme activities in the former. In addition, atexpa2, an Arabidopsis mutant, exhibited lower biomass and shorter primary root compared to its WT under Cd toxicity; however, the phenotype was recovered upon expression of TaEXPA2 in these mutants. Our results demonstrate that TaEXPA2 confers tolerance to Cd toxicity. The changed absorption/transportation of Cd and the antioxidative capacity may be involved in the improved tolerance of the transgenic plants with overexpression of TaEXPA2 to CdCl2 toxicity.
Collapse
Affiliation(s)
- Yuanqing Ren
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Yanhui Chen
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China; Research Institute of Pomology of Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, PR China
| | - Jie An
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Zhongxian Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Guangqiang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Yong Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China.
| |
Collapse
|
39
|
Joshi R, Sahoo KK, Tripathi AK, Kumar R, Gupta BK, Pareek A, Singla-Pareek SL. Knockdown of an inflorescence meristem-specific cytokinin oxidase - OsCKX2 in rice reduces yield penalty under salinity stress condition. PLANT, CELL & ENVIRONMENT 2018; 41:936-946. [PMID: 28337744 DOI: 10.1111/pce.12947] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/14/2017] [Accepted: 02/19/2017] [Indexed: 05/04/2023]
Abstract
Cytokinins play a significant role in determining grain yield in plants. Cytokinin oxidases catalyse irreversible degradation of cytokinins and hence modulate cellular cytokinin levels. Here, we studied the role of an inflorescence meristem-specific rice cytokinin oxidase - OsCKX2 - in reducing yield penalty under salinity stress conditions. We utilized an RNAi-based approach to study the function of OsCKX2 in maintaining grain yield under salinity stress condition. Ultra-performance liquid chromatography-based estimation revealed a significant increase in cytokinins in the inflorescence meristem of OsCKX2-knockdown plants. To determine if there exists a correlation between OsCKX2 levels and yield under salinity stress condition, we assessed the growth, physiology and grain yield of OsCKX2-knockdown plants vis-à-vis the wild type. OsCKX2-knockdown plants showed better vegetative growth, higher relative water content and photosynthetic efficiency and reduced electrolyte leakage as compared with the wild type under salinity stress. Importantly, we found a negative correlation between OsCKX2 expression and plant productivity as evident by assessment of agronomical parameters such as panicle branching, filled grains per plant and harvest index both under control and salinity stress conditions. These results suggest that OsCKX2, via controlling cytokinin levels, regulates floral primordial activity modulating rice grain yield under normal as well as abiotic stress conditions.
Collapse
Affiliation(s)
- Rohit Joshi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Khirod Kumar Sahoo
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Amit Kumar Tripathi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Ritesh Kumar
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Brijesh Kumar Gupta
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| |
Collapse
|
40
|
Bystrova EI, Zhukovskaya NV, Ivanov VB. Dependence of Root Cell Growth and Division on Root Diameter. Russ J Dev Biol 2018. [DOI: 10.1134/s1062360418020029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Samea-Andabjadid S, Ghassemi-Golezani K, Nasrollahzadeh S, Najafi N. Exogenous salicylic acid and cytokinin alter sugar accumulation, antioxidants and membrane stability of faba bean. ACTA BIOLOGICA HUNGARICA 2018; 69:86-96. [PMID: 29575914 DOI: 10.1556/018.68.2018.1.7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This research was conducted in a greenhouse to evaluate the effects of exogenous application of salicylic acid (SA) (1 mM) and 6-benzylaminopurine (BAP) (50 μM) on physiological performance of faba bean (Vicia faba) under different levels of NaCl salinity (0, 4, 8 and 12 dS/m). The experiment was arranged as factorial on the bases of randomized complete block design in three replications. Leaf Na+ content, root and leaf soluble sugars, antioxidant enzymes activities such as catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD) and lipid peroxidation increased, but K+, K+/Na+ and membrane stability index (MSI) decreased as a result of salt stress. However, foliar sprays of BAP and particularly SA reduced Na+ content and lipid peroxidation, while enhanced the K+ content, K+/Na+, soluble sugars, antioxidant enzymes activities and MSI under different levels of salinity. It was, therefore, concluded that exogenous application of these growth regulators (GR) can considerably improve salt tolerance and physiological performance of faba bean.
Collapse
Affiliation(s)
- Samira Samea-Andabjadid
- Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Kazem Ghassemi-Golezani
- Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Safar Nasrollahzadeh
- Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Nosratollah Najafi
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
42
|
Zheng X, Zhao Y, Shan D, Shi K, Wang L, Li Q, Wang N, Zhou J, Yao J, Xue Y, Fang S, Chu J, Guo Y, Kong J. MdWRKY9 overexpression confers intensive dwarfing in the M26 rootstock of apple by directly inhibiting brassinosteroid synthetase MdDWF4 expression. THE NEW PHYTOLOGIST 2018; 217:1086-1098. [PMID: 29165808 DOI: 10.1111/nph.14891] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/12/2017] [Indexed: 05/07/2023]
Abstract
Dwarfing rootstocks enable high-density planting and are therefore highly desirable in modern apple (Malus domestica) production. M26 is a semi-dwarfing rootstock that is used worldwide, but identifying intensive dwarfing rootstock is a major goal of apple breeding programs. Herein, we show that MdWRKY9 mediates dwarfing by directly inhibiting the transcription of the brassinosteroid (BR) rate-limiting synthetase MdDWF4 and reducing BR production. We found that the transcriptional factor MdWRKY9 is highly expressed in all tested dwarfing rootstocks. Transgenic lines of M26 rootstock overexpressing MdWRKY9 exhibit further dwarfing, which resulted from the reduced BR levels and was reversed via exogenous brassinolide treatment. Both an in vivo chromatin immunoprecipitation (ChIP) analysis and an in vitro electrophoretic mobility shift assay (EMSA) indicated that MdWRKY9 binds to the promoter of MdDWF4. Furthermore, MdWRKY9 repressed MdDWF4 expression in stable transgenic apple plants as determined by quantitative PCR. In addition, RNA-interfered expression of MdWRKY9 in transiently transformed apple calli led to a significant increase of MdDWF4, suggesting MdWRKY9 plays a critical role in regulating the expression of MdDWF4. We report a novel dwarfing mechanism in perennial woody plants that involves WRKY-controlled BR production, and present a new dwarfing M26 rootstock for potential applications in apple production.
Collapse
Affiliation(s)
- Xiaodong Zheng
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yu Zhao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Dongqian Shan
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kun Shi
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lin Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qingtian Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Na Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jingzhe Zhou
- Beijing Soil and Fertilizer Work Station, Beijing, 100029, China
| | - Junzhu Yao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yuan Xue
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuang Fang
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Guo
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jin Kong
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
43
|
Simerský R, Chamrád I, Kania J, Strnad M, Šebela M, Lenobel R. Chemical proteomic analysis of 6-benzylaminopurine molecular partners in wheat grains. PLANT CELL REPORTS 2017; 36:1561-1570. [PMID: 28688084 DOI: 10.1007/s00299-017-2174-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
An affinity-based chemical proteomic technique enabled direct identification of BAP-interacting proteins in wheat, including the well-known cytokinin-binder, cytokinin-binding protein 1. In this work, we show the development of a chemical proteomic technique for the identification of proteins binding to natural aromatic cytokinins (CKs). 6-benzylaminopurine (BAP) and documented CK-binder, wheat germ-allocated cytokinin-binding protein 1 (CBP-1), were suggested as an ideal proof-of concept affinity pair. Therefore, wheat grains were chosen as a model plant material. The BAP affinity beads were prepared by the immobilization of synthesized BAP-derived ligand to a commercial, pre-activated resin and used to isolate target proteins. The proteomic analysis of complex plant extracts is often complicated by the presence of highly abundant background proteins; in this case, the omnipresent alpha-amylase inhibitors (AAIs). To cope with this problem, we included SDS-PAGE, in-gel trypsin digestion and fraction pooling prior to shotgun analysis, which brought about an obvious drop in the signals belonging to the obstructing proteins. This was accompanied by a sharp increase in the number of identified BAP targets in comparison to a conventional in-solution digestion approach. To distinguish specific CK-binding proteins from those having a general affinity for nucleotide-like compounds, competitive pull-downs with natural nucleotides and free BAP were included in every affinity experiment. By this approach, we were able to identify a group of BAP-interacting proteins, which were subsequently found to be related to biological processes affected by CKs. Moreover, the selected affinity enrichment strategy was verified by the detection of the aforementioned CK-interacting protein, CBP-1. We propose that the developed method represents a promising tool for appealing research of as yet unknown CK molecular partners in plants.
Collapse
Affiliation(s)
- Radim Simerský
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 241/27, 783 71, Olomouc, Czech Republic
| | - Ivo Chamrád
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 241/27, 783 71, Olomouc, Czech Republic.
| | - Jindřich Kania
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 241/27, 783 71, Olomouc, Czech Republic
- R&D, Production, Polypure AS, Oslo Research Park, Gaustadallen 21, 0349, Oslo, Norway
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 241/27, 783 71, Olomouc, Czech Republic
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 241/27, 783 71, Olomouc, Czech Republic
| | - René Lenobel
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 241/27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
44
|
Albrecht T, Argueso CT. Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth-defence trade-off. ANNALS OF BOTANY 2017; 119:725-735. [PMID: 27864225 PMCID: PMC5379597 DOI: 10.1093/aob/mcw211] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/28/2016] [Accepted: 08/31/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Perception and activation of plant immunity require a remarkable level of signalling plasticity and control. In Arabidopsis and other plant species, constitutive defence activation leads to resistance to a broad spectrum of biotrophic pathogens, but also frequently to stunted growth and reduced seed set. Plant hormones are important integrators of the physiological responses that influence the outcome of plant-pathogen interactions. SCOPE We review the mechanisms by which the plant hormone cytokinin regulates both plant growth and response to pathogens, and how cytokinins may connect these two processes, ultimately affecting the growth trade-offs observed in plant immunity.
Collapse
Affiliation(s)
| | - Cristiana T. Argueso
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
45
|
Bartrina I, Jensen H, Novák O, Strnad M, Werner T, Schmülling T. Gain-of-Function Mutants of the Cytokinin Receptors AHK2 and AHK3 Regulate Plant Organ Size, Flowering Time and Plant Longevity. PLANT PHYSIOLOGY 2017; 173:1783-1797. [PMID: 28096190 PMCID: PMC5338655 DOI: 10.1104/pp.16.01903] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/09/2017] [Indexed: 05/21/2023]
Abstract
The phytohormone cytokinin is a regulator of numerous processes in plants. In Arabidopsis (Arabidopsis thaliana), the cytokinin signal is perceived by three membrane-located receptors named ARABIDOPSIS HISTIDINE KINASE2 (AHK2), AHK3, and AHK4/CRE1. How the signal is transmitted across the membrane is an entirely unknown process. The three receptors have been shown to operate mostly in a redundant fashion, and very few specific roles have been attributed to single receptors. Using a forward genetic approach, we isolated constitutively active gain-of-function variants of the AHK2 and AHK3 genes, named repressor of cytokinin deficiency2 (rock2) and rock3, respectively. It is hypothesized that the structural changes caused by these mutations in the sensory and adjacent transmembrane domains emulate the structural changes caused by cytokinin binding, resulting in domain motion propagating the signal across the membrane. Detailed analysis of lines carrying rock2 and rock3 alleles revealed how plants respond to locally enhanced cytokinin signaling. Early flowering time, a prolonged reproductive growth phase, and, thereby, increased seed yield suggest that cytokinin regulates various aspects of reproductive growth. In particular, it counteracts the global proliferative arrest, a correlative inhibition of maternal growth by seeds, an as yet unknown activity of the hormone.
Collapse
Affiliation(s)
- Isabel Bartrina
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany (I.B., H.J., T.W., T.S.)
- Laboratory of Growth Regulators, Palacký University, and Institute of Experimental Botany, ASCR, CZ-78371 Olomouc, Slechtitelu 11, Czech Republic (O.N., M.S.); and
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria (T.W.)
| | - Helen Jensen
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany (I.B., H.J., T.W., T.S.)
- Laboratory of Growth Regulators, Palacký University, and Institute of Experimental Botany, ASCR, CZ-78371 Olomouc, Slechtitelu 11, Czech Republic (O.N., M.S.); and
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria (T.W.)
| | - Ondřej Novák
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany (I.B., H.J., T.W., T.S.)
- Laboratory of Growth Regulators, Palacký University, and Institute of Experimental Botany, ASCR, CZ-78371 Olomouc, Slechtitelu 11, Czech Republic (O.N., M.S.); and
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria (T.W.)
| | - Miroslav Strnad
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany (I.B., H.J., T.W., T.S.)
- Laboratory of Growth Regulators, Palacký University, and Institute of Experimental Botany, ASCR, CZ-78371 Olomouc, Slechtitelu 11, Czech Republic (O.N., M.S.); and
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria (T.W.)
| | - Tomáš Werner
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany (I.B., H.J., T.W., T.S.);
- Laboratory of Growth Regulators, Palacký University, and Institute of Experimental Botany, ASCR, CZ-78371 Olomouc, Slechtitelu 11, Czech Republic (O.N., M.S.); and
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria (T.W.)
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany (I.B., H.J., T.W., T.S.);
- Laboratory of Growth Regulators, Palacký University, and Institute of Experimental Botany, ASCR, CZ-78371 Olomouc, Slechtitelu 11, Czech Republic (O.N., M.S.); and
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria (T.W.)
| |
Collapse
|
46
|
Guo Q, Turnbull MH, Song J, Roche J, Novak O, Späth J, Jameson PE, Love J. Depletion of carbohydrate reserves limits nitrate uptake during early regrowth in Lolium perenne L. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1569-1583. [PMID: 28379423 PMCID: PMC5444434 DOI: 10.1093/jxb/erx056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The mechanisms linking C/N balance to N uptake and assimilation are central to plant responses to changing soil nutrient levels. Defoliation and subsequent regrowth of grasses both impact C partitioning, thereby creating a significant point of interaction with soil N availability. Using defoliation as an experimental treatment, we investigated the dynamic relationships between plant carbohydrate status and NO3--responsive uptake systems, transporter gene expression, and nitrate assimilation in Lolium perenne L. High- and low-affinity NO3- uptake was reduced in an N-dependent manner in response to a rapid and large shift in carbohydrate remobilization triggered by defoliation. This reduction in NO3- uptake was rescued by an exogenous glucose supplement, confirming the carbohydrate dependence of NO3- uptake. The regulation of NO3- uptake in response to the perturbation of the plant C/N ratio was associated with changes in expression of putative high- and low-affinity NO3- transporters. Furthermore, NO3- assimilation appears to be regulated by the C-N status of the plant, implying a mechanism that signals the availability of C metabolites for NO3- uptake and assimilation at the whole-plant level. We also show that cytokinins may be involved in the regulation of N acquisition and assimilation in response to the changing plant C/N ratio.
Collapse
Affiliation(s)
- Qianqian Guo
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Matthew Hamish Turnbull
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Jiancheng Song
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
- School of Life Sciences, Yantai University, Yantai 264005, China
| | - Jessica Roche
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Ondrej Novak
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS & Faculty of Science of Palacký University, Šlechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Jana Späth
- Swedish Metabolomics Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences KBC, Umeå University, Linnéus väg 6, SE-90183 Umeå, Sweden
| | - Paula Elizabeth Jameson
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Jonathan Love
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| |
Collapse
|
47
|
Adam N, Erler T, Kallenbach M, Kaltenpoth M, Kunert G, Baldwin IT, Schuman MC. Sex ratio of mirid populations shifts in response to hostplant co-infestation or altered cytokinin signaling . JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:44-59. [PMID: 27862998 PMCID: PMC5234700 DOI: 10.1111/jipb.12507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/08/2016] [Indexed: 05/11/2023]
Abstract
Herbivore species sharing a host plant often compete. In this study, we show that host plant-mediated interaction between two insect herbivores - a generalist and a specialist - results in a sex ratio shift of the specialist's offspring. We studied demographic parameters of the specialist Tupiocoris notatus (Hemiptera: Miridae) when co-infesting the host plant Nicotiana attenuata (Solanaceae) with the generalist leafhopper Empoasca sp. (Hemiptera: Cicadellidae). We show that the usually female-biased sex ratio of T. notatus shifts toward a higher male proportion in the offspring on plants co-infested by Empoasca sp. This sex ratio change did not occur after oviposition, nor is it due differential mortality of female and male nymphs. Based on pyrosequencing and PCR of bacterial 16S rRNA amplicons, we concluded that sex ratio shifts were unlikely to be due to infection with Wolbachia or other known sex ratio-distorting endosymbionts. Finally, we used transgenic lines of N. attenuata to evaluate if the sex ratio shift could be mediated by changes in general or specialized host plant metabolites. We found that the sex ratio shift occurred on plants deficient in two cytokinin receptors (irCHK2/3). Thus, cytokinin-regulated traits can alter the offspring sex ratio of the specialist T. notatus.
Collapse
Affiliation(s)
- Nora Adam
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Theresa Erler
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Mario Kallenbach
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Martin Kaltenpoth
- Max Planck Research Group Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Grit Kunert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
48
|
Foster TM, McAtee PA, Waite CN, Boldingh HL, McGhie TK. Apple dwarfing rootstocks exhibit an imbalance in carbohydrate allocation and reduced cell growth and metabolism. HORTICULTURE RESEARCH 2017; 4:17009. [PMID: 28435686 PMCID: PMC5381684 DOI: 10.1038/hortres.2017.9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 05/09/2023]
Abstract
Apple dwarfing rootstocks cause earlier shoot termination and reduced root and shoot mass. To identify physiological factors responsible for rootstock-induced growth restriction, we compared vascular-enriched gene expression between two dwarfing rootstocks ('M27' and 'M9') and the vigorous rootstock 'M793' using RNA sequencing and quantitative reverse transcriptase PCR. Differentially expressed genes common to both dwarfing rootstocks belonged to five main biological processes: (1) primary metabolism, (2) cell wall synthesis and modification, (3) secondary metabolism, (4) hormone signalling and response and (5) redox homeostasis. Genes promoting the biosynthesis of amino acids, lipids and cell walls were downregulated in dwarfing rootstocks, whereas genes promoting the breakdown of these compounds were upregulated. The only exception to this trend was the upregulation of starch synthesis genes in dwarfing rootstocks. Non-structural carbohydrate analysis demonstrated that starch concentrations in 'M9' roots, stems and grafted 'Royal Gala' ('RG') scions were double that of equivalent tissues from 'RG' homo-grafted trees ('RG'/'RG'). Fructose and glucose concentrations were much lower in all three tissues of the 'RG'/'M9' trees. Together, these data indicate that dwarfing rootstocks are in a state of sugar depletion and reduced cellular activity despite having large starch reserves. Another significant finding was the over-accumulation of flavonoids and the downregulation of auxin influx transporters MdAUX1 and MdLAX2 in dwarfing rootstocks. We propose that both factors reduce polar auxin transport. The results of this study contribute novel information about the physiological state of dwarfing rootstocks.
Collapse
Affiliation(s)
- Toshi M Foster
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4474, New Zealand
- ()
| | - Peter A McAtee
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Chethi N Waite
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4474, New Zealand
| | - Helen L Boldingh
- The New Zealand Institute for Plant and Food Research Limited, Hamilton 3240, New Zealand
| | - Tony K McGhie
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4474, New Zealand
| |
Collapse
|
49
|
Jameson PE, Dhandapani P, Novak O, Song J. Cytokinins and Expression of SWEET, SUT, CWINV and AAP Genes Increase as Pea Seeds Germinate. Int J Mol Sci 2016; 17:E2013. [PMID: 27916945 PMCID: PMC5187813 DOI: 10.3390/ijms17122013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 02/06/2023] Open
Abstract
Transporter genes and cytokinins are key targets for crop improvement. These genes are active during the development of the seed and its establishment as a strong sink. However, during germination, the seed transitions to being a source for the developing root and shoot. To determine if the sucrose transporter (SUT), amino acid permease (AAP), Sugar Will Eventually be Exported Transporter (SWEET), cell wall invertase (CWINV), cytokinin biosynthesis (IPT), activation (LOG) and degradation (CKX) gene family members are involved in both the sink and source activities of seeds, we used RT-qPCR to determine the expression of multiple gene family members, and LC-MS/MS to ascertain endogenous cytokinin levels in germinating Pisum sativum L. We show that genes that are actively expressed when the seed is a strong sink during its development, are also expressed when the seed is in the reverse role of being an active source during germination and early seedling growth. Cytokinins were detected in the imbibing seeds and were actively biosynthesised during germination. We conclude that, when the above gene family members are targeted for seed yield improvement, a downstream effect on subsequent seed germination or seedling vigour must be taken into consideration.
Collapse
Affiliation(s)
- Paula E Jameson
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| | - Pragatheswari Dhandapani
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| | - Ondrej Novak
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS & Faculty of Science of Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Jiancheng Song
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
- School of Life Sciences, Yantai University, Yantai 264005, China.
| |
Collapse
|
50
|
Sánchez-López ÁM, Baslam M, De Diego N, Muñoz FJ, Bahaji A, Almagro G, Ricarte-Bermejo A, García-Gómez P, Li J, Humplík JF, Novák O, Spíchal L, Doležal K, Baroja-Fernández E, Pozueta-Romero J. Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action. PLANT, CELL & ENVIRONMENT 2016; 39:2592-2608. [PMID: 27092473 DOI: 10.1111/pce.12759] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 05/21/2023]
Abstract
It is known that volatile emissions from some beneficial rhizosphere microorganisms promote plant growth. Here we show that volatile compounds (VCs) emitted by phylogenetically diverse rhizosphere and non-rhizhosphere bacteria and fungi (including plant pathogens and microbes that do not normally interact mutualistically with plants) promote growth and flowering of various plant species, including crops. In Arabidopsis plants exposed to VCs emitted by the phytopathogen Alternaria alternata, changes included enhancement of photosynthesis and accumulation of high levels of cytokinins (CKs) and sugars. Evidence obtained using transgenic Arabidopsis plants with altered CK status show that CKs play essential roles in this phenomenon, because growth and flowering responses to the VCs were reduced in mutants with CK-deficiency (35S:AtCKX1) or low receptor sensitivity (ahk2/3). Further, we demonstrate that the plant responses to fungal VCs are light-dependent. Transcriptomic analyses of Arabidopsis leaves exposed to A. alternata VCs revealed changes in the expression of light- and CK-responsive genes involved in photosynthesis, growth and flowering. Notably, many genes differentially expressed in plants treated with fungal VCs were also differentially expressed in plants exposed to VCs emitted by the plant growth promoting rhizobacterium Bacillus subtilis GB03, suggesting that plants react to microbial VCs through highly conserved regulatory mechanisms.
Collapse
Affiliation(s)
- Ángela María Sánchez-López
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Marouane Baslam
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Adriana Ricarte-Bermejo
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Pablo García-Gómez
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Jun Li
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
- College of Agronomy and Plant Protection, Qingdao Agricultural University, 266109, Qingdao, China
| | - Jan F Humplík
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University and Institute of Experimental Botany ASCR, Olomouc, CZ-78371, Czech Republic
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University and Institute of Experimental Botany ASCR, Olomouc, CZ-78371, Czech Republic
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| |
Collapse
|