1
|
Nicotra D, Mosca A, Dimaria G, Massimino ME, Di Stabile M, La Bella E, Ghadamgahi F, Puglisi I, Vetukuri RR, Catara V. Mitigating Water Stress in Plants with Beneficial Bacteria: Effects on Growth and Rhizosphere Bacterial Communities. Int J Mol Sci 2025; 26:1467. [PMID: 40003931 PMCID: PMC11855071 DOI: 10.3390/ijms26041467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Climate change has reshaped global weather patterns and intensified extreme events, with drought and soil salinity negatively impacting the yield and quality of crop production. To mitigate the detrimental effects of drought stress, the introduction of beneficial plant growth-promoting rhizobacteria (PGPR) has proven to be a promising approach. In this study, we evaluated a synthetic microbial community (SynCom) comprising bacterial strains belonging to the species Bacillus velezensis, Pseudomonas simiae, P. salmasensis, Glutamicibacter halophytocola, and Leclercia sp., which have been demonstrated to promote tomato growth both individually and collectively. The SynCom and most of its individual bacterial strains were shown to mitigate the detrimental effects of polyethylene glycol (PEG)-induced drought stress in vitro in Arabidopsis thaliana seedlings, either by reducing alterations in xylem elements or promoting the formation of new xylem strands. In a greenhouse trial, soil drenching with the SynCom and two individual strains, B. velezensis PSE31B and P. salmasensis POE54, improved the water stress response in soilless-grown tomato plants under a 40% reduced irrigation regime. Additionally, bacterial treatments positively influenced the diversity of rhizosphere bacterial communities, with distinct changes in bacterial composition, which suggest a treatment-specific interplay between the introduced strains and the native microbiome. These findings highlight the potential of microbial consortia and individual PGPR strains as sustainable tools to improve plant resilience to abiotic stresses.
Collapse
Affiliation(s)
- Daniele Nicotra
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (D.N.); (A.M.); (G.D.); (M.E.M.); (M.D.S.); (E.L.B.); (I.P.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Alexandros Mosca
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (D.N.); (A.M.); (G.D.); (M.E.M.); (M.D.S.); (E.L.B.); (I.P.)
| | - Giulio Dimaria
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (D.N.); (A.M.); (G.D.); (M.E.M.); (M.D.S.); (E.L.B.); (I.P.)
| | - Maria Elena Massimino
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (D.N.); (A.M.); (G.D.); (M.E.M.); (M.D.S.); (E.L.B.); (I.P.)
| | - Massimiliano Di Stabile
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (D.N.); (A.M.); (G.D.); (M.E.M.); (M.D.S.); (E.L.B.); (I.P.)
| | - Emanuele La Bella
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (D.N.); (A.M.); (G.D.); (M.E.M.); (M.D.S.); (E.L.B.); (I.P.)
| | - Farideh Ghadamgahi
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden;
| | - Ivana Puglisi
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (D.N.); (A.M.); (G.D.); (M.E.M.); (M.D.S.); (E.L.B.); (I.P.)
| | - Ramesh Raju Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden;
| | - Vittoria Catara
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (D.N.); (A.M.); (G.D.); (M.E.M.); (M.D.S.); (E.L.B.); (I.P.)
| |
Collapse
|
2
|
Héreil A, Guillaume M, Duboscq R, Carretero Y, Pelpoir E, Bitton F, Giraud C, Karlova R, Testerink C, Stevens R, Causse M. Characterisation of a major QTL for sodium accumulation in tomato grown in high salinity. PLANT, CELL & ENVIRONMENT 2024; 47:5089-5103. [PMID: 39148196 DOI: 10.1111/pce.15082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
Soil salinity is a serious concern for tomato culture, affecting both yield and quality parameters. Although some genes involved in tomato salt tolerance have been identified, their genetic diversity has been rarely studied. In the present study, we assessed salt tolerance-related traits at juvenile and adult stages in a large core collection and identified salt tolerance quantitative trait loci (QTLs) by genome-wide association study (GWAS). The results suggested that a major QTL is involved in leaf sodium accumulation at both physiological stages. We were able to identify the underlying candidate gene, coding for a well-known sodium transporter, called SlHKT1.2. We showed that an eQTL for the expression of this gene in roots colocalized with the above ground sodium content QTL. A polymorphism putatively responsible for its variation was identified in the gene promoter. Finally, to extend the applicability of these results, we carried out the same analysis on a test-cross panel composed of the core collection crossed with a distant line. The results indicated that the identified QTL retained its functional impact even in a hybrid genetic context: this paves the way for its use in breeding programs aimed at improving salinity tolerance in tomato cultivars.
Collapse
Affiliation(s)
- A Héreil
- UR1052 GAFL, INRAE, Montfavet, France
| | - M Guillaume
- GAUTIER Semences, Route d'Avignon, Eyragues, France
| | - R Duboscq
- UR1052 GAFL, INRAE, Montfavet, France
| | | | - E Pelpoir
- UR1052 GAFL, INRAE, Montfavet, France
| | - F Bitton
- UR1052 GAFL, INRAE, Montfavet, France
| | - C Giraud
- UE A2M, INRAE, Montfavet, France
| | - R Karlova
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | - C Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | - R Stevens
- UR1052 GAFL, INRAE, Montfavet, France
| | - M Causse
- UR1052 GAFL, INRAE, Montfavet, France
| |
Collapse
|
3
|
Desaint H, Héreil A, Belinchon-Moreno J, Carretero Y, Pelpoir E, Pascal M, Brault M, Dumont D, Lecompte F, Laugier P, Duboscq R, Bitton F, Grumic M, Giraud C, Ferrante P, Giuliano G, Sunseri F, Causse M. Integration of QTL and transcriptome approaches for the identification of genes involved in tomato response to nitrogen deficiency. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5880-5896. [PMID: 38869971 DOI: 10.1093/jxb/erae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/12/2024] [Indexed: 06/15/2024]
Abstract
Optimizing plant nitrogen (N) usage and inhibiting N leaching loss in the soil-crop system is crucial to maintaining crop yield and reducing environmental pollution. This study aimed at identifying quantitative trait loci (QTLs) and differentially expressed genes (DEGs) between two N treatments in order to list candidate genes related to nitrogen-related contrasting traits in tomato varieties. We characterized a genetic diversity core-collection (CC) and a multi-parental advanced generation intercross (MAGIC) tomato population grown in a greenhouse under two nitrogen levels and assessed several N-related traits and mapped QTLs. Transcriptome response under the two N conditions was also investigated through RNA sequencing of fruit and leaves in four parents of the MAGIC population. Significant differences in response to N input reduction were observed at the phenotypic level for biomass and N-related traits. Twenty-seven QTLs were detected for three target traits (leaf N content, leaf nitrogen balance index, and petiole NO3- content), 10 and six in the low and high N condition, respectively, while 19 QTLs were identified for plasticity traits. At the transcriptome level, 4752 and 2405 DEGs were detected between the two N conditions in leaves and fruits, respectively, among which 3628 (50.6%) in leaves and 1717 (71.4%) in fruit were genotype specific. When considering all the genotypes, 1677 DEGs were shared between organs or tissues. Finally, we integrated DEG and QTL analyses to identify the most promising candidate genes. The results highlighted a complex genetic architecture of N homeostasis in tomato and novel putative genes useful for breeding tomato varieties requiring less N input.
Collapse
Affiliation(s)
| | | | | | | | | | - Michel Pascal
- INRAE, UR407, Pathologie Végétale, 84143 Montfavet, France
| | | | | | | | | | | | | | | | | | - Paola Ferrante
- Italian National Agency for New technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Res Ctr, Via Anguillarese 301, 00123 Rome, Italy
| | - Giovanni Giuliano
- Italian National Agency for New technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Res Ctr, Via Anguillarese 301, 00123 Rome, Italy
| | | | | |
Collapse
|
4
|
Zhao Y, Wang T, Wan S, Tong Y, Wei Y, Li P, Hu N, Liu Y, Chen H, Pan X, Zhang B, Peng R, Hu S. Genome-wide identification and functional analysis of the SiCIN gene family in foxtail millet (Setaria italica L.). Gene 2024; 921:148499. [PMID: 38718970 DOI: 10.1016/j.gene.2024.148499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
Cell wall invertase (CIN) is a vital member of plant invertase (INV) and plays a key role in the breakdown of sucrose. This enzyme facilitates the hydrolysis of sucrose into glucose and fructose, which is crucial for various aspects of plant growth and development. However, the function of CIN genes in foxtail millet (Setaria italica) is less studied. In this research, we used the blast-p of NCBI and TBtools for bidirectional comparison, and a total of 13 CIN genes (named SiCINs) were identified from foxtail millet by using Arabidopsis and rice CIN sequences as reference sequences. The phylogenetic tree analysis revealed that the CIN genes can be categorized into three subfamilies: group 1, group 2, and group 3. Furthermore, upon conducting chromosomal localization analysis, it was observed that the 13 SiCINs were distributed unevenly across five chromosomes. Cis-acting elements of SiCIN genes can be classified into three categories: plant growth and development, stress response, and hormone response. The largest number of cis-acting elements were those related to light response (G-box) and the cis-acting elements related to seed-specific regulation (RY-element). qRT-PCR analysis further confirmed that the expression of SiCIN7 and SiCIN8 in the grain was higher than that in any other tissues. The overexpression of SiCIN7 in Arabidopsis improved the grain size and thousand-grain weight, suggesting that SiCIN7 could positively regulate grain development. Our findings will help to further understand the grain-filling mechanism of SiCIN and elucidate the biological mechanism underlying the grain development of SiCIN.
Collapse
Affiliation(s)
- Yongqing Zhao
- College of Agricultural, Tarim University, Alar 843300, Xinjiang, China; College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China; Key Laboratory of Genetic Improvement and Efficient Production for Specialty Crops in Arid Southern Xinjiang of Xinjiang Corp, China
| | - Tao Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Sumei Wan
- College of Agricultural, Tarim University, Alar 843300, Xinjiang, China; Key Laboratory of Genetic Improvement and Efficient Production for Specialty Crops in Arid Southern Xinjiang of Xinjiang Corp, China
| | - Yan Tong
- Anyang Academy of Agriculture Sciences, Anyang 455000, Henan, China
| | - Yangyang Wei
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Pengtao Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Nan Hu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Yuling Liu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Hongqi Chen
- Anyang Academy of Agriculture Sciences, Anyang 455000, Henan, China
| | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, NC 27858, United States
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, United States.
| | - Renhai Peng
- College of Agricultural, Tarim University, Alar 843300, Xinjiang, China; College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China; Key Laboratory of Genetic Improvement and Efficient Production for Specialty Crops in Arid Southern Xinjiang of Xinjiang Corp, China.
| | - Shoulin Hu
- College of Agricultural, Tarim University, Alar 843300, Xinjiang, China; Key Laboratory of Genetic Improvement and Efficient Production for Specialty Crops in Arid Southern Xinjiang of Xinjiang Corp, China.
| |
Collapse
|
5
|
Laurençon M, Legrix J, Wagner MH, Demilly D, Baron C, Rolland S, Ducournau S, Laperche A, Nesi N. Genomic and phenomic predictions help capture low-effect alleles promoting seed germination in oilseed rape in addition to QTL analyses. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:156. [PMID: 38858297 PMCID: PMC11164772 DOI: 10.1007/s00122-024-04659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
KEY MESSAGE Phenomic prediction implemented on a large diversity set can efficiently predict seed germination, capture low-effect favorable alleles that are not revealed by GWAS and identify promising genetic resources. Oilseed rape faces many challenges, especially at the beginning of its developmental cycle. Achieving rapid and uniform seed germination could help to ensure a successful establishment and therefore enabling the crop to compete with weeds and tolerate stresses during the earliest developmental stages. The polygenic nature of seed germination was highlighted in several studies, and more knowledge is needed about low- to moderate-effect underlying loci in order to enhance seed germination effectively by improving the genetic background and incorporating favorable alleles. A total of 17 QTL were detected for seed germination-related traits, for which the favorable alleles often corresponded to the most frequent alleles in the panel. Genomic and phenomic predictions methods provided moderate-to-high predictive abilities, demonstrating the ability to capture small additive and non-additive effects for seed germination. This study also showed that phenomic prediction estimated phenotypic values closer to phenotypic values than GEBV. Finally, as the predictive ability of phenomic prediction was less influenced by the genetic structure of the panel, it is worth using this prediction method to characterize genetic resources, particularly with a view to design prebreeding populations.
Collapse
Affiliation(s)
- Marianne Laurençon
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France
| | - Julie Legrix
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France
| | - Marie-Hélène Wagner
- Groupe d'Etude et de Contrôle des Variétés Et des Semences (GEVES), 49070, Beaucouzé, France
| | - Didier Demilly
- Groupe d'Etude et de Contrôle des Variétés Et des Semences (GEVES), 49070, Beaucouzé, France
| | - Cécile Baron
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France
| | - Sophie Rolland
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France
| | - Sylvie Ducournau
- Groupe d'Etude et de Contrôle des Variétés Et des Semences (GEVES), 49070, Beaucouzé, France
| | - Anne Laperche
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France.
| | - Nathalie Nesi
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France
| |
Collapse
|
6
|
Cao P, Yang J, Xia L, Zhang Z, Wu Z, Hao Y, Liu P, Wang C, Li C, Yang J, Lai J, Li X, Deng M, Wang S. Two gene clusters and their positive regulator SlMYB13 that have undergone domestication-associated negative selection control phenolamide accumulation and drought tolerance in tomato. MOLECULAR PLANT 2024; 17:579-597. [PMID: 38327054 DOI: 10.1016/j.molp.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/01/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Among plant metabolites, phenolamides, which are conjugates of hydroxycinnamic acid derivatives and polyamines, play important roles in plant adaptation to abiotic and biotic stresses. However, the molecular mechanisms underlying phenolamide metabolism and regulation as well as the effects of domestication and breeding on phenolamide diversity in tomato remain largely unclear. In this study, we performed a metabolite-based genome-wide association study and identified two biosynthetic gene clusters (BGC7 and BGC11) containing 12 genes involved in phenolamide metabolism, including four biosynthesis genes (two 4CL genes, one C3H gene, and one CPA gene), seven decoration genes (five AT genes and two UGT genes), and one transport protein gene (DTX29). Using gene co-expression network analysis we further discovered that SlMYB13 positively regulates the expression of two gene clusters, thereby promoting phenolamide accumulation. Genetic and physiological analyses showed that BGC7, BGC11 and SlMYB13 enhance drought tolerance by enhancing scavenging of reactive oxygen species and increasing abscisic acid content in tomato. Natural variation analysis suggested that BGC7, BGC11 and SlMYB13 were negatively selected during tomato domestication and improvement, leading to reduced phenolamide content and drought tolerance of cultivated tomato. Collectively, our study discovers a key mechanism of phenolamide biosynthesis and regulation in tomato and reveals that crop domestication and improvement shapes metabolic diversity to affect plant environmental adaptation.
Collapse
Affiliation(s)
- Peng Cao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 572208, China
| | - Jun Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 572208, China.
| | - Linghao Xia
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Zhonghui Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Zeyong Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Yingchen Hao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Penghui Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Chao Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Chun Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Jie Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Jun Lai
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Xianggui Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Meng Deng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Shouchuang Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 572208, China.
| |
Collapse
|
7
|
Sterken MG, Nijveen H, van Zanten M, Jiménez-Gómez JM, Geshnizjani N, Willems LAJ, Rienstra J, Hilhorst HWM, Ligterink W, Snoek BL. Plasticity of maternal environment-dependent expression-QTLs of tomato seeds. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:28. [PMID: 36810666 PMCID: PMC9944408 DOI: 10.1007/s00122-023-04322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 10/27/2022] [Indexed: 06/18/2023]
Abstract
Seeds are essential for plant reproduction, survival, and dispersal. Germination ability and successful establishment of young seedlings strongly depend on seed quality and on environmental factors such as nutrient availability. In tomato (Solanum lycopersicum) and many other species, seed quality and seedling establishment characteristics are determined by genetic variation, as well as the maternal environment in which the seeds develop and mature. The genetic contribution to variation in seed and seedling quality traits and environmental responsiveness can be estimated at transcriptome level in the dry seed by mapping genomic loci that affect gene expression (expression QTLs) in contrasting maternal environments. In this study, we applied RNA-sequencing to construct a linkage map and measure gene expression of seeds of a tomato recombinant inbred line (RIL) population derived from a cross between S. lycopersicum (cv. Moneymaker) and S. pimpinellifolium (G1.1554). The seeds matured on plants cultivated under different nutritional environments, i.e., on high phosphorus or low nitrogen. The obtained single-nucleotide polymorphisms (SNPs) were subsequently used to construct a genetic map. We show how the genetic landscape of plasticity in gene regulation in dry seeds is affected by the maternal nutrient environment. The combined information on natural genetic variation mediating (variation in) responsiveness to the environment may contribute to knowledge-based breeding programs aiming to develop crop cultivars that are resilient to stressful environments.
Collapse
Affiliation(s)
- Mark G. Sterken
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Harm Nijveen
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
- Laboratory of Bioinformatics, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Martijn van Zanten
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jose M. Jiménez-Gómez
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Nafiseh Geshnizjani
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Leo A. J. Willems
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Juriaan Rienstra
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Henk W. M. Hilhorst
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Wilco Ligterink
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Basten L. Snoek
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
- Theoretical Biology and Bioinformatics, Institute of Biodynamics and Biocomplexity, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
8
|
Egea I, Estrada Y, Faura C, Egea-Fernández JM, Bolarin MC, Flores FB. Salt-tolerant alternative crops as sources of quality food to mitigate the negative impact of salinity on agricultural production. FRONTIERS IN PLANT SCIENCE 2023; 14:1092885. [PMID: 36818835 PMCID: PMC9935836 DOI: 10.3389/fpls.2023.1092885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
An increase of abiotic stress tolerance and nutritive value of foods is currently a priority because of climate change and rising world population. Among abiotic stresses, salt stress is one of the main problems in agriculture. Mounting urbanization and industrialization, and increasing global food demand, are pressing farmers to make use of marginal lands affected by salinity and low-quality saline water. In that situation, one of the most promising approaches is searching for new sources of genetic variation like salt-tolerant alternative crops or underexploited crops. They are generally less efficient than cultivated crops in optimal conditions due to lower yield but represent an alternative in stressful growth conditions. In this review, we summarize the advances achieved in research on underexploited species differing in their genetic nature. First, we highlight advances in research on salt tolerance of traditional varieties of tomato or landraces; varieties selected and developed by smallholder farmers for adaptation to their local environments showing specific attractive fruit quality traits. We remark advances attained in screening a collection of tomato traditional varieties gathered in Spanish Southeast, a very productive region which environment is extremely stressing. Second, we explore the opportunities of exploiting the natural variation of halophytes, in particular quinoa and amaranth. The adaptation of both species in stressful growth conditions is becoming an increasingly important issue, especially for their cultivation in arid and semiarid areas prone to be affected by salinity. Here we present a project developed in Spanish Southeast, where quinoa and amaranth varieties are being adapted for their culture under abiotic stress targeting high quality grain.
Collapse
Affiliation(s)
- Isabel Egea
- Department Of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Universidad de Murcia, Murcia, Spain
| | - Yanira Estrada
- Department Of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Universidad de Murcia, Murcia, Spain
| | - Celia Faura
- Department Of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Universidad de Murcia, Murcia, Spain
| | | | - Maria C. Bolarin
- Department Of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Universidad de Murcia, Murcia, Spain
| | - Francisco B. Flores
- Department Of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Universidad de Murcia, Murcia, Spain
| |
Collapse
|
9
|
Kim YX, Son SY, Lee S, Lee Y, Sung J, Lee CH. Effects of limited water supply on metabolite composition in tomato fruits ( Solanum lycopersicum L.) in two soils with different nutrient conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:983725. [PMID: 36161007 PMCID: PMC9492987 DOI: 10.3389/fpls.2022.983725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Effect of water supply to metabolites in tomato fruit was compared in two soils with different nutrient conditions, i.e., either limited or excess. Two types of soil nutrient condition, type A: nutrient-limited and type B: nutrient-excess, were prepared as follows; type A is a low nutrient-containing soil without a replenishment of starved nitrogen and phosphorous, type B is a high nutrient-containing soil exceeding the recommended fertilization. Soil water was adjusted either at -30 kPa (sufficient) or -80 kPa (limited). For harvested tomato fruits, we examined primary and secondary metabolites using non-targeted mass spectrometry based metabolomics. The fruit production and leaf SPAD were greatly dependent on soil nutrient levels, by contrast, the level of lycopene remained unchanged by different levels of water and nutrient supply. The perturbation of metabolites by water supply was clear in the nutrient-excess soil. In particular, limited water supply strongly decreased primary metabolites including sugars and amino acids. We demonstrated that water stress differently shifted primary metabolites of tomato fruits in two soils with different nutrient conditions via non-targeted mass spectrometry-based metabolomics. In conclusion, we suggest that the limited water supply in soils with surplus nutrient is not a recommendable way for tomato 'cv. Super Dotaerang' production if fruit nutritional quality such as sugars and amino acids is in the consideration, although there was no disadvantage in fruit yield.
Collapse
Affiliation(s)
- Yangmin X. Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Su Young Son
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Seulbi Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Yejin Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Jwakyung Sung
- Department of Crop Science, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju, South Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul, South Korea
| |
Collapse
|
10
|
Drought tolerance improvement in Solanum lycopersicum: an insight into "OMICS" approaches and genome editing. 3 Biotech 2022; 12:63. [PMID: 35186660 PMCID: PMC8825918 DOI: 10.1007/s13205-022-03132-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
Solanum lycopersicum (tomato) is an internationally acclaimed vegetable crop that is grown worldwide. However, drought stress is one of the most critical challenges for tomato production, and it is a crucial task for agricultural biotechnology to produce drought-resistant cultivars. Although breeders have done a lot of work on the tomato to boost quality and quantity of production and enhance resistance to biotic and abiotic stresses, conventional tomato breeding approaches have been limited to improving drought tolerance because of the intricacy of drought traits. Many efforts have been made to better understand the mechanisms involved in adaptation and tolerance to drought stress in tomatoes throughout the years. "Omics" techniques, such as genomics, transcriptomics, proteomics, and metabolomics in combination with modern sequencing technologies, have tremendously aided the discovery of drought-responsive genes. In addition, the availability of biotechnological tools, such as plant transformation and the recently developed genome editing system for tomatoes, has opened up wider opportunities for validating the function of drought-responsive genes and the generation of drought-tolerant varieties. This review highlighted the recent progresses for tomatoes improvement against drought stress through "omics" and "multi-omics" technologies including genetic engineering. We have also discussed the roles of non-coding RNAs and genome editing techniques for drought stress tolerance improvement in tomatoes.
Collapse
|
11
|
Salinier J, Lefebvre V, Besombes D, Burck H, Causse M, Daunay MC, Dogimont C, Goussopoulos J, Gros C, Maisonneuve B, McLeod L, Tobal F, Stevens R. The INRAE Centre for Vegetable Germplasm: Geographically and Phenotypically Diverse Collections and Their Use in Genetics and Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030347. [PMID: 35161327 PMCID: PMC8838894 DOI: 10.3390/plants11030347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 05/14/2023]
Abstract
The French National Research Institute for Agriculture, Food and the Environment (INRAE) conserves and distributes five vegetable collections as seeds: the aubergine* (in this article the word aubergine refers to eggplant), pepper, tomato, melon and lettuce collections, together with their wild or cultivated relatives, are conserved in Avignon, France. Accessions from the collections have geographically diverse origins, are generally well-described and fixed for traits of agronomic or scientific interest and have available passport data. In addition to currently conserving over 10,000 accessions (between 900 and 3000 accessions per crop), the centre maintains scientific collections such as core collections and bi- or multi-parental populations, which have also been genotyped with SNP markers. Each collection has its own merits and highlights, which are discussed in this review: the aubergine collection is a rich source of crop wild relatives of Solanum; the pepper, melon and lettuce collections have been screened for resistance to plant pathogens, including viruses, fungi, oomycetes and insects; and the tomato collection has been at the heart of genome-wide association studies for fruit quality traits and environmental stress tolerance.
Collapse
|
12
|
Gojon A, Nussaume L, Luu DT, Murchie EH, Baekelandt A, Rodrigues Saltenis VL, Cohan J, Desnos T, Inzé D, Ferguson JN, Guiderdonni E, Krapp A, Klein Lankhorst R, Maurel C, Rouached H, Parry MAJ, Pribil M, Scharff LB, Nacry P. Approaches and determinants to sustainably improve crop production. Food Energy Secur 2022. [DOI: 10.1002/fes3.369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Alain Gojon
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
| | - Laurent Nussaume
- UMR7265 Laboratoire de Biologie du Développement des Plantes Service de Biologie Végétale et de Microbiologie Environnementales Institut de Biologie Environnementale et Biotechnologie CNRS‐CEA‐Université Aix‐Marseille Saint‐Paul‐lez‐Durance France
| | - Doan T. Luu
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
| | - Erik H. Murchie
- School of Biosciences University of Nottingham Loughborough UK
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | | | | | - Thierry Desnos
- UMR7265 Laboratoire de Biologie du Développement des Plantes Service de Biologie Végétale et de Microbiologie Environnementales Institut de Biologie Environnementale et Biotechnologie CNRS‐CEA‐Université Aix‐Marseille Saint‐Paul‐lez‐Durance France
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - John N. Ferguson
- School of Biosciences University of Nottingham Loughborough UK
- Department of Plant Sciences University of Cambridge Cambridge UK
| | | | - Anne Krapp
- Institut Jean‐Pierre Bourgin INRAE AgroParisTech Université Paris‐Saclay Versailles France
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | | | - Hatem Rouached
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
- Department of Plant, Soil, and Microbial Sciences Michigan State University East Lansing Michigan USA
| | | | - Mathias Pribil
- Department of Plant and Environmental Sciences Copenhagen Plant Science Centre University of Copenhagen Frederiksberg Denmark
| | - Lars B. Scharff
- Department of Plant and Environmental Sciences Copenhagen Plant Science Centre University of Copenhagen Frederiksberg Denmark
| | - Philippe Nacry
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
| |
Collapse
|
13
|
Escobar Rodríguez C, Novak J, Buchholz F, Uetz P, Bragagna L, Gumze M, Antonielli L, Mitter B. The Bacterial Microbiome of the Tomato Fruit Is Highly Dependent on the Cultivation Approach and Correlates With Flavor Chemistry. FRONTIERS IN PLANT SCIENCE 2021; 12:775722. [PMID: 35003161 PMCID: PMC8740158 DOI: 10.3389/fpls.2021.775722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
The modes of interactions between plants and plant-associated microbiota are manifold, and secondary metabolites often play a central role in plant-microbe interactions. Abiotic and biotic (including both plant pathogens and endophytes) stress can affect the composition and concentration of secondary plant metabolites, and thus have an influence on chemical compounds that make up for the taste and aroma of fruit. While the role of microbiota in growth and health of plants is widely acknowledged, relatively little is known about the possible effect of microorganisms on the quality of fruit of plants they are colonizing. In this work, tomato (Solanum lycopersicum L.) plants of five different cultivars were grown in soil and in hydroponics to investigate the impact of the cultivation method on the flavor of fruit, and to assess whether variations in their chemical composition are attributable to shifts in bacterial microbiota. Ripe fruit were harvested and used for bacterial community analysis and for the analysis of tomato volatiles, sugars and acids, all contributing to flavor. Fruit grown in soil showed significantly higher sugar content, whereas tomatoes from plants under hydroponic conditions had significantly higher levels of organic acids. In contrast, aroma profiles of fruit were shaped by the tomato cultivars, rather than the cultivation method. In terms of bacterial communities, the cultivation method significantly defined the community composition in all cultivars, with the bacterial communities in hydroponic tomatoes being more variable that those in tomatoes grown in soil. Bacterial indicator species in soil-grown tomatoes correlated with higher concentrations of volatiles described to be perceived as "green" or "pungent." A soil-grown specific reproducibly occurring ASV (amplicon sequence variants) classified as Bacillus detected solely in "Solarino" tomatoes, which were the sweetest among all cultivars, correlated with the amount of aroma-relevant volatiles as well as of fructose and glucose in the fruit. In contrast, indicator bacterial species in hydroponic-derived tomatoes correlated with aroma compounds with "sweet" and "floral" notes and showed negative correlations with glucose concentrations in fruit. Overall, our results point toward a microbiota-related accumulation of flavor and aroma compounds in tomato fruit, which is strongly dependent on the cultivation substrate and approach.
Collapse
Affiliation(s)
- Carolina Escobar Rodríguez
- FFoQSI GmbH – Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Johannes Novak
- Institute of Applied Botany and Pharmacognosy (IAB), Veterinary University of Vienna, Vienna, Austria
| | - Franziska Buchholz
- FFoQSI GmbH – Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Pia Uetz
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Laura Bragagna
- FFoQSI GmbH – Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Marija Gumze
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Livio Antonielli
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Birgit Mitter
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
14
|
Tripodi P, Soler S, Campanelli G, Díez MJ, Esposito S, Sestili S, Figàs MR, Leteo F, Casanova C, Platani C, Soler E, Bertone A, Pereira-Dias L, Palma D, Burguet R, Pepe A, Rosa-Martínez E, Prohens J, Cardi T. Genome wide association mapping for agronomic, fruit quality, and root architectural traits in tomato under organic farming conditions. BMC PLANT BIOLOGY 2021; 21:481. [PMID: 34686145 PMCID: PMC8532347 DOI: 10.1186/s12870-021-03271-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/11/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Opportunity and challenges of the agriculture scenario of the next decades will face increasing demand for secure food through approaches able to minimize the input to cultivations. Large panels of tomato varieties represent a valuable resource of traits of interest under sustainable cultivation systems and for genome-wide association studies (GWAS). For mapping loci controlling the variation of agronomic, fruit quality, and root architecture traits, we used a heterogeneous set of 244 traditional and improved tomato accessions grown under organic field trials. Here we report comprehensive phenotyping and GWAS using over 37,300 SNPs obtained through double digest restriction-site associated DNA (dd-RADseq). RESULTS A wide range of phenotypic diversity was observed in the studied collection, with highly significant differences encountered for most traits. A variable level of heritability was observed with values up to 69% for morphological traits while, among agronomic ones, fruit weight showed values above 80%. Genotype by environment analysis highlighted the strongest genotypic effect for aboveground traits compared to root architecture, suggesting that the hypogeal part of tomato plants has been a minor objective for breeding activities. GWAS was performed by a compressed mixed linear model leading to 59 significantly associated loci, allowing the identification of novel genes related to flower and fruit characteristics. Most genomic associations fell into the region surrounding SUN, OVATE, and MYB gene families. Six flower and fruit traits were associated with a single member of the SUN family (SLSUN31) on chromosome 11, in a region involved in the increase of fruit weight, locules number, and fruit fasciation. Furthermore, additional candidate genes for soluble solids content, fruit colour and shape were found near previously reported chromosomal regions, indicating the presence of synergic and multiple linked genes underlying the variation of these traits. CONCLUSIONS Results of this study give new hints on the genetic basis of traits in underexplored germplasm grown under organic conditions, providing a framework for the development of markers linked to candidate genes of interest to be used in genomics-assisted breeding in tomato, in particular under low-input and organic cultivation conditions.
Collapse
Affiliation(s)
- Pasquale Tripodi
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Cavalleggeri 25, 84098, Pontecagnano Faiano, SA, Italy.
| | - Salvador Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Gabriele Campanelli
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - María José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Salvatore Esposito
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Cavalleggeri 25, 84098, Pontecagnano Faiano, SA, Italy
| | - Sara Sestili
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Maria R Figàs
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Fabrizio Leteo
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Cristina Casanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Cristiano Platani
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Elena Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Aldo Bertone
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Leandro Pereira-Dias
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Daniela Palma
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Resurrección Burguet
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Andrea Pepe
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Elena Rosa-Martínez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Teodoro Cardi
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Cavalleggeri 25, 84098, Pontecagnano Faiano, SA, Italy
| |
Collapse
|
15
|
Breeding Tomato Hybrids for Flavour: Comparison of GWAS Results Obtained on Lines and F1 Hybrids. Genes (Basel) 2021; 12:genes12091443. [PMID: 34573425 PMCID: PMC8469758 DOI: 10.3390/genes12091443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Tomato flavour is an important goal for breeders. Volatile organic compounds (VOCs) are major determinants of tomato flavour. Although most tomato varieties for fresh market are F1 hybrids, most studies on the genetic control of flavour-related traits are performed on lines. We quantified 46 VOCs in a panel of 121 small fruited lines and in a test cross panel of 165 hybrids (the previous panel plus 44 elite cherry tomato lines crossed with a common line). High and consistent heritabilities were assessed for most VOCs in the two panels, and 65% of VOC contents were strongly correlated between lines and hybrids. Additivity was observed for most VOCs. We performed genome wide association studies (GWAS) on the two panels separately, along with a third GWAS on the test cross subset carrying only F1 hybrids corresponding to the line panel. We identified 205, 183 and 138 associations, respectively. We identified numerous overlapping associations for VOCs belonging to the same metabolic pathway within each panel; we focused on seven chromosome regions with clusters of associations simultaneously involved in several key VOCs for tomato aroma. The study highlighted the benefit of testcross panels to create tasty F1 hybrid varieties.
Collapse
|
16
|
Bineau E, Diouf I, Carretero Y, Duboscq R, Bitton F, Djari A, Zouine M, Causse M. Genetic diversity of tomato response to heat stress at the QTL and transcriptome levels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1213-1227. [PMID: 34160103 DOI: 10.1111/tpj.15379] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 05/15/2023]
Abstract
Tomato is a widely cultivated crop, which can grow in many environments. However, temperature above 30°C impairs its reproduction, subsequently impacting fruit yield. We assessed the impact of high-temperature stress (HS) in two tomato experimental populations, a multi-parental advanced generation intercross (MAGIC) population and a core-collection (CC) of small-fruited tomato accessions. Both populations were evaluated for 11 traits related to yield components, phenology and fruit quality in optimal and HS conditions. HS significantly impacted all traits in both populations, but a few genotypes with stable yield under HS were identified. A plasticity index was computed for each individual to measure the extent of the heat impact for each trait. Quantitative trait loci (QTL) were detected in control and HS conditions as well as for plasticity index. Linkage and genome-wide association analyses in the MAGIC and CC populations identified a total of 98 and 166 QTLs, respectively. Taking the two populations together, 69 plasticity QTLs (pQTLs) were involved in tomato heat response for 11 traits. The transcriptome changes in the ovary of six genotypes with contrasted responses to HS were studied, and 837 genes differentially expressed according to the conditions were detected. Combined with previous transcriptome studies, these results were used to propose candidate genes for HS response QTLs.
Collapse
Affiliation(s)
- Estelle Bineau
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, Domaine Saint Maurice, 67 Allée des Chênes, CS60094, Montfavet, 84143, France
- GAUTIER Semences, route d'Avignon, Eyragues, 13630, France
| | - Isidore Diouf
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, Domaine Saint Maurice, 67 Allée des Chênes, CS60094, Montfavet, 84143, France
| | - Yolande Carretero
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, Domaine Saint Maurice, 67 Allée des Chênes, CS60094, Montfavet, 84143, France
| | - Renaud Duboscq
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, Domaine Saint Maurice, 67 Allée des Chênes, CS60094, Montfavet, 84143, France
| | - Frédérique Bitton
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, Domaine Saint Maurice, 67 Allée des Chênes, CS60094, Montfavet, 84143, France
| | - Anis Djari
- Laboratory of Genomics and Biotechnology of Fruit, University of Toulouse, INPT, Avenue de l'Agrobiopole BP 32607, Castanet-Tolosan, F-31326, France
- UMR990 Génomique et Biotechnologie des Fruits, INRAE, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | - Mohamed Zouine
- Laboratory of Genomics and Biotechnology of Fruit, University of Toulouse, INPT, Avenue de l'Agrobiopole BP 32607, Castanet-Tolosan, F-31326, France
- UMR990 Génomique et Biotechnologie des Fruits, INRAE, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | - Mathilde Causse
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, Domaine Saint Maurice, 67 Allée des Chênes, CS60094, Montfavet, 84143, France
| |
Collapse
|
17
|
Almeida J, Perez-Fons L, Fraser PD. A transcriptomic, metabolomic and cellular approach to the physiological adaptation of tomato fruit to high temperature. PLANT, CELL & ENVIRONMENT 2021; 44:2211-2229. [PMID: 32691430 DOI: 10.1111/pce.13854] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/02/2020] [Accepted: 07/12/2020] [Indexed: 05/21/2023]
Abstract
High temperatures can negatively influence plant growth and development. Besides yield, the effects of heat stress on fruit quality traits remain poorly characterised. In tomato, insights into how fruits regulate cellular metabolism in response to heat stress could contribute to the development of heat-tolerant varieties, without detrimental effects on quality. In the present study, the changes occurring in wild type tomato fruits after exposure to transient heat stress have been elucidated at the transcriptome, cellular and metabolite level. An impact on fruit quality was evident as nutritional attributes changed in response to heat stress. Fruit carotenogenesis was affected, predominantly at the stage of phytoene formation, although altered desaturation/isomerisation arose during the transient exposure to high temperatures. Plastidial isoprenoid compounds showed subtle alterations in their distribution within chromoplast sub-compartments. Metabolite profiling suggests limited effects on primary/intermediary metabolism but lipid remodelling was evident. The heat-induced molecular signatures included the accumulation of sucrose and triacylglycerols, and a decrease in the degree of membrane lipid unsaturation, which influenced the volatile profile. Collectively, these data provide valuable insights into the underlying biochemical and molecular adaptation of fruit to heat stress and will impact on our ability to develop future climate resilient tomato varieties.
Collapse
Affiliation(s)
- Juliana Almeida
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Laura Perez-Fons
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Paul D Fraser
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| |
Collapse
|
18
|
Burgos E, Belen De Luca M, Diouf I, de Haro LA, Albert E, Sauvage C, Tao ZJ, Bermudez L, Asís R, Nesi AN, Matringe M, Bréhélin C, Guiraud T, Ferrand C, Atienza I, Jorly J, Mauxion JP, Baldet P, Fernie AR, Quadrana L, Rothan C, Causse M, Carrari F. Validated MAGIC and GWAS population mapping reveals the link between vitamin E content and natural variation in chorismate metabolism in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:907-923. [PMID: 33179365 DOI: 10.1111/tpj.15077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/27/2020] [Indexed: 05/21/2023]
Abstract
Tocochromanols constitute the different forms of vitamin E (VTE), essential components of the human diet, and display a high membrane protectant activity. By combining interval mapping and genome-wide association studies (GWAS), we unveiled the genetic determinants of tocochromanol accumulation in tomato (Solanum lycopersicum) fruits. To enhance the nutritional value of this highly consumed vegetable, we dissected the natural intraspecific variability of tocochromanols in tomato fruits and genetically engineered their biosynthetic pathway. These analyses allowed the identification of a total of 25 quantitative trait loci interspersed across the genome pinpointing the chorismate-tyrosine pathway as a regulatory hub controlling the supply of the aromatic head group for tocochromanol biosynthesis. To validate the link between the chorismate-tyrosine pathway and VTE, we engineered tomato plants to bypass the pathway at the arogenate branch point. Transgenic tomatoes showed moderate increments in tocopherols (up to approximately 20%) and a massive accumulation of tocotrienols (up to approximately 3400%). Gene expression analyses of these plants reveal a trade-off between VTE and natural variation in chorismate metabolism explained by transcriptional reprogramming of specific structural genes of the pathway. By restoring the accumulation of alpha-tocotrienols (α-t3) in fruits, the plants produced here are of high pharmacological and nutritional interest.
Collapse
Affiliation(s)
- Estanislao Burgos
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
| | - Maria Belen De Luca
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
| | - Isidore Diouf
- INRAE, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, 67 Allée des Chênes, Domaine Saint Maurice CS60094, Montfavet, 84143, France
| | - Luis A de Haro
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
| | - Elise Albert
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | | | - Zhao J Tao
- INRAE, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, 67 Allée des Chênes, Domaine Saint Maurice CS60094, Montfavet, 84143, France
| | - Luisa Bermudez
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, and Consejo Nacional de Investigaciones Científicas y Técnicas, PO Box 25, Castelar, B1712WAA, Argentina
- Facultad de Agronomía, Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ramon Asís
- CIBICI, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CC, 5000, Argentina
| | - Adriano N Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Michel Matringe
- Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherche 5168 CNRS-CEA-INRAE, Université Joseph Fourier, CEA Grenoble, PCV, Grenoble Cedex 9, Grenoble, 38054, France
| | - Claire Bréhélin
- Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherche 5168 CNRS-CEA-INRAE, Université Joseph Fourier, CEA Grenoble, PCV, Grenoble Cedex 9, Grenoble, 38054, France
| | - Thomas Guiraud
- Univ. Bordeaux, Biologie du Fruit et Pathologie, INRAE, Villenave d'OrnoF-33140, Villenave d'Ornon Cedex, UMR 1332, France
| | - Carine Ferrand
- Univ. Bordeaux, Biologie du Fruit et Pathologie, INRAE, Villenave d'OrnoF-33140, Villenave d'Ornon Cedex, UMR 1332, France
| | - Isabelle Atienza
- Univ. Bordeaux, Biologie du Fruit et Pathologie, INRAE, Villenave d'OrnoF-33140, Villenave d'Ornon Cedex, UMR 1332, France
| | - Joana Jorly
- Univ. Bordeaux, Biologie du Fruit et Pathologie, INRAE, Villenave d'OrnoF-33140, Villenave d'Ornon Cedex, UMR 1332, France
| | - Jean P Mauxion
- Univ. Bordeaux, Biologie du Fruit et Pathologie, INRAE, Villenave d'OrnoF-33140, Villenave d'Ornon Cedex, UMR 1332, France
| | - Pierre Baldet
- Univ. Bordeaux, Biologie du Fruit et Pathologie, INRAE, Villenave d'OrnoF-33140, Villenave d'Ornon Cedex, UMR 1332, France
| | - Alisdair R Fernie
- Institute of Molecular Plant Physiology, Max-Planck, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
| | - Leandro Quadrana
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, F-75005, France
| | - Christophe Rothan
- Univ. Bordeaux, Biologie du Fruit et Pathologie, INRAE, Villenave d'OrnoF-33140, Villenave d'Ornon Cedex, UMR 1332, France
| | - Mathilde Causse
- INRAE, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, 67 Allée des Chênes, Domaine Saint Maurice CS60094, Montfavet, 84143, France
| | - Fernando Carrari
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
- Facultad de Agronomía, Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
19
|
Meza SLR, Egea I, Massaretto IL, Morales B, Purgatto E, Egea-Fernández JM, Bolarin MC, Flores FB. Traditional Tomato Varieties Improve Fruit Quality Without Affecting Fruit Yield Under Moderate Salt Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:587754. [PMID: 33304365 PMCID: PMC7701295 DOI: 10.3389/fpls.2020.587754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/14/2020] [Indexed: 05/24/2023]
Abstract
Identification of tomato varieties able to exhibit higher accumulation of primary and secondary metabolites in their fruits is currently a main objective in tomato breeding. One tool to improve fruit quality is to cultivate the plants under salt stress, although improvement of fruit quality is generally accompanied by productivity losses. However, it is very interesting to implement strategies aiming at enhancing fruit quality of tomato by means of growing plants in moderate salt stress that allows for a sustainable fruit yield. The traditional tomato varieties adapted to the Mediterranean environmental constraints may be very attractive plant materials to achieve this goal, given the wide range of fruit quality traits because of their genetic diversity. Here, agronomic responses and fruit quality traits, including primary and secondary metabolites, were analyzed in fruits of two Mediterranean traditional tomato varieties named "Tomate Pimiento" ("TP") and "Muchamiel Aperado" ("MA") because of the pepper and pear shape of their fruits, using as reference the commercial cultivar "Moneymaker" ("MM"). Plants were grown without salt (control) and with moderate salt stress (50 mM NaCl), which did not affect fruit yield in any variety. "TP" is of great interest because of its high soluble solids content (SSC) in control, which is even higher in salt, whereas "MA" is very attractive because of its high Brix yield index (SSC × fruit yield), used as overall fruit quality measure. Similitude between both traditional varieties were found for primary metabolism, as they significantly increased sucrose contents compared with "MM" in red ripe fruits from plants in control and, especially, salt stress conditions. The most remarkable difference was the high constitutive levels of total amino acids in "TP" fruits, including the three major free amino acids found in tomato fruit, GABA, glutamate, and glutamine, which even increased under salinity. Regarding secondary metabolites, the most interesting change induced by salinity was the increase in α-tocopherol found in red ripe fruits of both "TP" and "MA." These results reveal the interest of traditional varieties as sources of genetic variation in breeding because of their improvement of tomato fruit quality without production losses under moderate salt stress.
Collapse
Affiliation(s)
- Silvia L. R. Meza
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia, Spain
- Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, São Paulo, Brazil
| | - Isabel Egea
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia, Spain
| | - Isabel L. Massaretto
- Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, São Paulo, Brazil
| | - Belén Morales
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia, Spain
| | - Eduardo Purgatto
- Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, São Paulo, Brazil
| | | | - María C. Bolarin
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia, Spain
| | - Francisco B. Flores
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia, Spain
| |
Collapse
|
20
|
Harnessing High-throughput Phenotyping and Genotyping for Enhanced Drought Tolerance in Crop Plants. J Biotechnol 2020; 324:248-260. [PMID: 33186658 DOI: 10.1016/j.jbiotec.2020.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/28/2020] [Accepted: 11/08/2020] [Indexed: 12/17/2022]
Abstract
Development of drought-tolerant cultivars is one of the challenging tasks for the plant breeders due to its complex inheritance and polygenic regulation. Evaluating genetic material for drought tolerance is a complex process due to its spatiotemporal interactions with environmental factors. The conventional breeding approaches are costly, lengthy, and inefficient to achieve the expected gain in drought tolerance. In this regard, genomics-assisted breeding (GAB) offers promise to develop cultivars with improved drought tolerance in a more efficient, quicker, and cost-effective manner. The success of GAB depends upon the precision in marker-trait association and estimation of genomic estimated breeding values (GEBVs), which mostly depends on coverage and precision of genotyping and phenotyping. A wide gap between the discovery and practical use of quantitative trait loci (QTL) for crop improvement has been observed for many important agronomical traits. Such a limitation could be due to the low accuracy in QTL detection, mainly resulting from low marker density and manually collected phenotypes of complex agronomic traits. Increasing marker density using the high-throughput genotyping (HTG), and accurate and precise phenotyping using high-throughput digital phenotyping (HTP) platforms can improve the precision and power of QTL detection. Therefore, both HTG and HTP can enhance the practical utility of GAB along with a faster characterization of germplasm and breeding material. In the present review, we discussed how the recent innovations in HTG and HTP would assist in the breeding of improved drought-tolerant varieties. We have also discussed strategies, tools, and analytical advances made on the HTG and HTP along with their pros and cons.
Collapse
|
21
|
Analysis of wild tomato introgression lines elucidates the genetic basis of transcriptome and metabolome variation underlying fruit traits and pathogen response. Nat Genet 2020; 52:1111-1121. [PMID: 32989321 DOI: 10.1038/s41588-020-0690-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Wild tomato species represent a rich gene pool for numerous desirable traits lost during domestication. Here, we exploited an introgression population representing wild desert-adapted species and a domesticated cultivar to establish the genetic basis of gene expression and chemical variation accompanying the transfer of wild-species-associated fruit traits. Transcriptome and metabolome analysis of 580 lines coupled to pathogen sensitivity assays resulted in the identification of genomic loci associated with levels of hundreds of transcripts and metabolites. These associations occurred in hotspots representing coordinated perturbation of metabolic pathways and ripening-related processes. Here, we identify components of the Solanum alkaloid pathway, as well as genes and metabolites involved in pathogen defense and linking fungal resistance with changes in the fruit ripening regulatory network. Our results outline a framework for understanding metabolism and pathogen resistance during tomato fruit ripening and provide insights into key fruit quality traits.
Collapse
|
22
|
Diouf I, Derivot L, Koussevitzky S, Carretero Y, Bitton F, Moreau L, Causse M. Genetic basis of phenotypic plasticity and genotype × environment interactions in a multi-parental tomato population. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5365-5376. [PMID: 32474596 PMCID: PMC7501811 DOI: 10.1093/jxb/eraa265] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/25/2020] [Indexed: 05/25/2023]
Abstract
Deciphering the genetic basis of phenotypic plasticity and genotype × environment interactions (G×E) is of primary importance for plant breeding in the context of global climate change. Tomato (Solanum lycopersicum) is a widely cultivated crop that can grow in different geographical habitats and that displays a great capacity for expressing phenotypic plasticity. We used a multi-parental advanced generation intercross (MAGIC) tomato population to explore G×E and plasticity for multiple traits measured in a multi-environment trial (MET) comprising optimal cultural conditions together with water deficit, salinity, and heat stress over 12 environments. Substantial G×E was observed for all the traits measured. Different plasticity parameters were estimated by employing Finlay-Wilkinson and factorial regression models and these were used together with genotypic means for quantitative trait loci (QTL) mapping analyses. In addition, mixed linear models were also used to investigate the presence of QTL × environment interactions. The results highlighted a complex genetic architecture of tomato plasticity and G×E. Candidate genes that might be involved in the occurrence of G×E are proposed, paving the way for functional characterization of stress response genes in tomato and for breeding climate-adapted cultivars.
Collapse
Affiliation(s)
| | | | | | | | | | - Laurence Moreau
- UMR GQE-Le Moulon, INRA, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | | |
Collapse
|
23
|
Integration of QTL, Transcriptome and Polymorphism Studies Reveals Candidate Genes for Water Stress Response in Tomato. Genes (Basel) 2020; 11:genes11080900. [PMID: 32784535 PMCID: PMC7465520 DOI: 10.3390/genes11080900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/22/2022] Open
Abstract
Water deficit (WD) leads to significant phenotypic changes in crops resulting from complex stress regulation mechanisms involving responses at the physiological, biochemical and molecular levels. Tomato growth and fruit quality have been shown to be significantly affected by WD stress. Understanding the molecular mechanism underlying response to WD is crucial to develop tomato cultivars with relatively high performance under low watering conditions. Transcriptome response to WD was investigated through the RNA sequencing of fruit and leaves in eight accessions grown under two irrigation conditions, in order to get insight into the complex genetic regulation of WD response in tomato. Significant differences in genotype WD response were first observed at the phenotypic level for fruit composition and plant development traits. At the transcriptome level, a total of 14,065 differentially expressed genes (DEGs) in response to WD were detected, among which 7393 (53%) and 11,059 (79%) were genotype- and organ-specific, respectively. Water deficit induced transcriptome variations much stronger in leaves than in fruit. A significant effect of the genetic background on expression variation was observed compared to the WD effect, along with the presence of a set of genes showing a significant genotype × watering regime interaction. Integrating the DEGs with previously identified WD response quantitative trait loci (QTLs) mapped in a multi-parental population derived from the crossing of the eight genotypes narrowed the candidate gene lists to within the confidence intervals surrounding the QTLs. The results present valuable resources for further study to decipher the genetic determinants of tomato response to WD.
Collapse
|
24
|
Zhao J, Li H, Yin Y, An W, Qin X, Wang Y, Fan Y, Li Y, Cao Y. Fruit ripening in Lycium barbarum and Lycium ruthenicum is associated with distinct gene expression patterns. FEBS Open Bio 2020; 10:1550-1567. [PMID: 32533890 PMCID: PMC7396440 DOI: 10.1002/2211-5463.12910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/27/2020] [Accepted: 06/07/2020] [Indexed: 11/06/2022] Open
Abstract
Goji berries have been used as food and medicine for millennia. Due to their high morphological similarity, fruits of two distinct species belonging to the family Solanaceae, Lycium barbarum (LB) and Lycium chinense (Chinese boxthorn), are usually marketed together as goji berries, but nearly 90% of all commercially available goji berries belong to the former species. A third closely related species, a wild perennial thorny shrub native to north‐western China, Lycium ruthenicum (LR; known as Russian box thorn, and its fruit as black wolfberry), has become a popular choice for combating soil desertification and for alleviating soil salinity/alkalinity due to its high resistance to the harsh environment of saline deserts. Despite the phylogenetic closeness of LB and LR, their fruits are very different. To identify the genes involved in these distinct phenotypes, here we studied expression patterns of 22 transcriptional regulators that may be crucial drivers of these differences during five developmental stages. BAM1 may contribute to higher sugar content in LB. High expression of BFRUCT in ripe LR is likely to be an evolutionary adaptation to fruit ripening in an arid environment. Two arogenate dehydratase paralogues, CHS and LDOX, are probably crucial elements of the mechanism by which LR accumulates much higher levels of anthocyanin. DXS2 (carotenoid accumulation in LB) and CCD4 (carotenoid degradation in ripe LR fruit) may be crucial drivers behind the much higher content of carotenoids in LB. EIL3 and ERF5 are two transcription factors that may contribute to the higher abiotic stress resilience of LR. GATA22‐like appears to have more important roles in growth than ripening in LB fruit and vice versa in LR. HAT5‐like exhibited opposite temporal patterns in two fruits: high in the 1st stage in LB and high in the 5th stage in LR. PED1 was expressed at a much lower level in LR. Finally, we hypothesise that the poorly functionally characterised SCL32 gene may play a part in the increased resistance to environmental stress of LR. We suggest that BAM1, BFRUCT, EIL3, ERF5, ADT paralogues (for functional redundancy), PED1, GATA22‐like, HAT5‐like and SCL32 warrant further functional studies.
Collapse
Affiliation(s)
- Jianhua Zhao
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Haoxia Li
- Desertification Control Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yue Yin
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Wei An
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Xiaoya Qin
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Yajun Wang
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Yunfang Fan
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Yanlong Li
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Youlong Cao
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| |
Collapse
|
25
|
Gürbüz Çolak N, Eken NT, Ülger M, Frary A, Doğanlar S. Mapping of quantitative trait loci for antioxidant molecules in tomato fruit: Carotenoids, vitamins C and E, glutathione and phenolic acids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110393. [PMID: 32005398 DOI: 10.1016/j.plantsci.2019.110393] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/06/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
The nutritional value of a crop lies not only in its protein, lipid, and sugar content but also involves compounds such as the antioxidants lycopene, β-carotene and vitamin C. In the present study, wild tomato Solanum pimpinellifolium LA 1589 was assessed for its potential to improve antioxidant content. This wild species was found to be a good source of alleles for increasing β-carotene, lycopene, vitamin C and vitamin E contents in cultivated tomato. Characterization of an LA 1589 interspecific inbred backcross line (IBL) mapping population revealed many individuals with transgressive segregation for the antioxidants confirming the usefulness of this wild species for breeding of these traits. Molecular markers were used to identify QTLs for the metabolites in the IBL population. In total, 64 QTLs were identified for the antioxidants and their locations were compared to the map positions of previously identified QTLs for confirmation. Four (57 %) of the carotenoid QTLs, four (36 %) of the vitamin QTLs, and 11 (25 %) of the phenolic acid QTLs were supported by previous studies. Furthermore, several potential candidate genes were identified for vitamins C and E and phenolic acids loci. These candidate genes might be used as markers in breeding programs to increase tomato's antioxidant content.
Collapse
Affiliation(s)
- Nergiz Gürbüz Çolak
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir 35430, Turkey
| | - Neslihan Tek Eken
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir 35430, Turkey
| | | | - Anne Frary
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir 35430, Turkey
| | - Sami Doğanlar
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir 35430, Turkey.
| |
Collapse
|
26
|
Hou X, Zhang W, Du T, Kang S, Davies WJ. Responses of water accumulation and solute metabolism in tomato fruit to water scarcity and implications for main fruit quality variables. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1249-1264. [PMID: 31750924 PMCID: PMC7242001 DOI: 10.1093/jxb/erz526] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/20/2019] [Indexed: 05/10/2023]
Abstract
Fruit is important for human health, and applying deficit irrigation in fruit production is a strategy to regulate fruit quality and support environmental sustainability. Responses of different fruit quality variables to deficit irrigation have been widely documented, and much progress has been made in understanding the mechanisms of these responses. We review the effects of water shortage on fruit water accumulation considering water transport from the parent plant into the fruit determined by hydraulic properties of the pathway (including xylem water transport and transmembrane water transport regulated by aquaporins) and the driving force for water movement. We discuss water relations and solute metabolism that affect the main fruit quality variables (e.g. size, flavour, nutrition, and firmness) at the cellular level under water shortage. We also summarize the most recent advances in the understanding of responses of the main fruit quality variables to water shortage, considering the effects of variety, the severity of water deficit imposed, and the developmental stage of the fruit. We finally identify knowledge gaps and suggest avenues for future research. This review provides new insights into the stress physiology of fleshy fruit, which will be beneficial for the sustainable production of high-quality fruit under deficit irrigation.
Collapse
Affiliation(s)
- Xuemin Hou
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
| | - Wendong Zhang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
| | - Taisheng Du
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
| | - William J Davies
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, UK
| |
Collapse
|
27
|
Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, Martinez JP, Lutts S. Tomato Fruit Development and Metabolism. FRONTIERS IN PLANT SCIENCE 2019; 10:1554. [PMID: 31850035 PMCID: PMC6895250 DOI: 10.3389/fpls.2019.01554] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 05/20/2023]
Abstract
Tomato (Solanum lycopersicum L.) belongs to the Solanaceae family and is the second most important fruit or vegetable crop next to potato (Solanum tuberosum L.). It is cultivated for fresh fruit and processed products. Tomatoes contain many health-promoting compounds including vitamins, carotenoids, and phenolic compounds. In addition to its economic and nutritional importance, tomatoes have become the model for the study of fleshy fruit development. Tomato is a climacteric fruit and dramatic metabolic changes occur during its fruit development. In this review, we provide an overview of our current understanding of tomato fruit metabolism. We begin by detailing the genetic and hormonal control of fruit development and ripening, after which we document the primary metabolism of tomato fruits, with a special focus on sugar, organic acid, and amino acid metabolism. Links between primary and secondary metabolic pathways are further highlighted by the importance of pigments, flavonoids, and volatiles for tomato fruit quality. Finally, as tomato plants are sensitive to several abiotic stresses, we briefly summarize the effects of adverse environmental conditions on tomato fruit metabolism and quality.
Collapse
Affiliation(s)
- Muriel Quinet
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Fernando J. Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Rémi Blanchard-Gros
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Servane Bigot
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
28
|
Genome Wide Association Study of Karnal Bunt Resistance in a Wheat Germplasm Collection from Afghanistan. Int J Mol Sci 2019; 20:ijms20133124. [PMID: 31247965 PMCID: PMC6651844 DOI: 10.3390/ijms20133124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 01/22/2023] Open
Abstract
Karnal bunt disease of wheat, caused by the fungus Neovossia indica, is one of the most important challenges to the grain industry as it affects the grain quality and also restricts the international movement of infected grain. It is a seed-, soil- and airborne disease with limited effect of chemical control. Currently, this disease is contained through the deployment of host resistance but further improvement is limited as only a few genotypes have been found to carry partial resistance. To identify genomic regions responsible for resistance in a set of 339 wheat accessions, genome-wide association study (GWAS) was undertaken using the DArTSeq® technology, in which 18 genomic regions for Karnal bunt resistance were identified, explaining 5–20% of the phenotypic variation. The identified quantitative trait loci (QTL) on chromosome 2BL showed consistently significant effects across all four experiments, whereas another QTL on 5BL was significant in three experiments. Additional QTLs were mapped on chromosomes 1DL, 2DL, 4AL, 5AS, 6BL, 6BS, 7BS and 7DL that have not been mapped previously, and on chromosomes 4B, 5AL, 5BL and 6BS, which have been reported in previous studies. Germplasm with less than 1% Karnal bunt infection have been identified and can be used for resistance breeding. The SNP markers linked to the genomic regions conferring resistance to Karnal bunt could be used to improve Karnal bunt resistance through marker-assisted selection.
Collapse
|
29
|
Unravelling the Complex Genetics of Karnal Bunt ( Tilletia indica) Resistance in Common Wheat ( Triticum aestivum) by Genetic Linkage and Genome-Wide Association Analyses. G3-GENES GENOMES GENETICS 2019; 9:1437-1447. [PMID: 30824480 PMCID: PMC6505162 DOI: 10.1534/g3.119.400103] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Karnal bunt caused by Tilletia indica Mitra [syn. Neovossia indica (Mitra) Mundkur] is a significant biosecurity concern for wheat-exporting countries that are free of the disease. It is a seed-, soil-and air-borne disease with no effective chemical control measures. The current study used data from multi-year field experiments of two bi-parental populations and a genome-wide association (GWA) mapping panel to unravel the genetic basis for resistance in common wheat. Broad-sense heritability for Karnal bunt resistance in the populations varied from 0.52 in the WH542×HD29 population, to 0.61 in the WH542×W485 cross and 0.71 in a GWAS panel. Quantitative trait locus (QTL) analysis with seven years of phenotypic data identified a major locus on chromosome 3B (R2 = 27.8%) and a minor locus on chromosome 1A (R2 = 12.2%), in the WH542×HD29 population, with both parents contributing the high-value alleles. A major locus (R2 = 27.8%) and seven minor loci (R2 = 4.4–15.8%) were detected in the WH542×W485 population. GWA mapping validated QTL regions in the bi-parent populations, but also identified novel loci not previously associated with Karnal bunt resistance. Meta-QTL analysis aligned the results from this study with those reported in wheat over the last two decades. Two major clusters were detected, the first on chromosome 4B, which clustered with Qkb.ksu-4B, QKb.cimmyt-4BL, Qkb.cim-4BL, and the second on chromosome 3B, which clustered with Qkb.cnl-3B, QKb.cimmyt-3BS and Qkb.cim-3BS1. The results provide definitive chromosomal assignments for QTL/genes controlling Karnal bunt resistance in common wheat, and will be useful in pre-emptive breeding against the pathogen in wheat-producing areas that are free of the disease.
Collapse
|
30
|
Omrani M, Roth M, Roch G, Blanc A, Morris CE, Audergon JM. Genome-wide association multi-locus and multi-variate linear mixed models reveal two linked loci with major effects on partial resistance of apricot to bacterial canker. BMC PLANT BIOLOGY 2019; 19:31. [PMID: 30665361 PMCID: PMC6341767 DOI: 10.1186/s12870-019-1631-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/04/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Diseases caused by Pseudomonas syringae (Ps) are recognized as the most damaging factors in fruit trees with a significant economic and sanitary impact on crops. Among them, bacterial canker of apricot is exceedingly difficult to control due to a lack of efficient prophylactic measures. Several sources of partial resistance have been identified among genetic resources but the underlying genetic pattern has not been elucidated thus far. In this study, we phenotyped bacterial canker susceptibility in an apricot core-collection of 73 accessions over 4 years by measuring canker and superficial browning lengths issued from artificial inoculations in the orchard. In order to investigate the genetic architecture of partial resistance, we performed a genome-wide association study using best linear unbiased predictors on genetic (G) and genetic x year (G × Y) interaction effects extracted from linear mixed models. Using a set of 63,236 single-nucleotide polymorphism markers genotyped in the germplasm over the whole genome, multi-locus and multi-variate mixed models aimed at mapping the resistance while controlling for relatedness between individuals. RESULTS We detected 11 significant associations over 7 candidate loci linked to disease resistance under the two most severe years. Colocalizations between G and G × Y terms indicated a modulation on allelic effect depending on environmental conditions. Among the candidate loci, two loci on chromosomes 5 and 6 had a high impact on both canker length and superficial browning, explaining 41 and 26% of the total phenotypic variance, respectively. We found unexpected long-range linkage disequilibrium (LD) between these two markers revealing an inter-chromosomal LD block linking the two underlying genes. This result supports the hypothesis of a co-adaptation effect due to selection through population demography. Candidate genes annotations suggest a functional pathway involving abscisic acid, a hormone mainly known for mediating abiotic stress responses but also reported as a potential factor in plant-pathogen interactions. CONCLUSIONS Our study contributed to the first detailed characterization of the genetic determinants of partial resistance to bacterial canker in a Rosaceae species. It provided tools for fruit tree breeding by identifying progenitors with favorable haplotypes and by providing major-effect markers for a marker-assisted selection strategy.
Collapse
Affiliation(s)
- Mariem Omrani
- INRA, UR1052 Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
- INRA, UR407 Pathologie Végétale, Centre de Recherche PACA, Montfavet, France
- ENGREF, AgroParisTech, Paris, France
| | - Morgane Roth
- INRA, UR1052 Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
- Present Address: Agroscope, Research Division Plant Breeding, Wädenswil, Switzerland
| | - Guillaume Roch
- INRA, UR1052 Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
- CEP Innovation, Lyon, France
| | - Alain Blanc
- INRA, UR1052 Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
| | - Cindy E. Morris
- INRA, UR407 Pathologie Végétale, Centre de Recherche PACA, Montfavet, France
| | - Jean-Marc Audergon
- INRA, UR1052 Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
| |
Collapse
|
31
|
Rothan C, Diouf I, Causse M. Trait discovery and editing in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:73-90. [PMID: 30417464 DOI: 10.1111/tpj.14152] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Tomato (Solanum lycopersicum), which is used for both processing and fresh markets, is a major crop species that is the top ranked vegetable produced over the world. Tomato is also a model species for research in genetics, fruit development and disease resistance. Genetic resources available in public repositories comprise the 12 wild related species and thousands of landraces, modern cultivars and mutants. In addition, high quality genome sequences are available for cultivated tomato and for several wild relatives, hundreds of accessions have been sequenced, and databases gathering sequence data together with genetic and phenotypic data are accessible to the tomato community. Major breeding goals are productivity, resistance to biotic and abiotic stresses, and fruit sensorial and nutritional quality. New traits, including resistance to various biotic and abiotic stresses and root architecture, are increasingly being studied. Several major mutations and quantitative trait loci (QTLs) underlying traits of interest in tomato have been uncovered to date and, thanks to new populations and advances in sequencing technologies, the pace of trait discovery has considerably accelerated. In recent years, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing (GE) already proved its remarkable efficiency in tomato for engineering favorable alleles and for creating new genetic diversity by gene disruption, gene replacement, and precise base editing. Here, we provide insight into the major tomato traits and underlying causal genetic variations discovered so far and review the existing genetic resources and most recent strategies for trait discovery in tomato. Furthermore, we explore the opportunities offered by CRISPR/Cas9 and their exploitation for trait editing in tomato.
Collapse
Affiliation(s)
- Christophe Rothan
- INRA and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France
| | - Isidore Diouf
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, CS60094, F-84143, Montfavet, France
| | - Mathilde Causse
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, CS60094, F-84143, Montfavet, France
| |
Collapse
|
32
|
Albert E, Duboscq R, Latreille M, Santoni S, Beukers M, Bouchet JP, Bitton F, Gricourt J, Poncet C, Gautier V, Jiménez-Gómez JM, Rigaill G, Causse M. Allele-specific expression and genetic determinants of transcriptomic variations in response to mild water deficit in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:635-650. [PMID: 30079488 DOI: 10.1111/tpj.14057] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Characterizing the natural diversity of gene expression across environments is an important step in understanding how genotype-by-environment interactions shape phenotypes. Here, we analyzed the impact of water deficit onto gene expression levels in tomato at the genome-wide scale. We sequenced the transcriptome of growing leaves and fruit pericarps at cell expansion stage in a cherry and a large fruited accession and their F1 hybrid grown under two watering regimes. Gene expression levels were steadily affected by the genotype and the watering regime. Whereas phenotypes showed mostly additive inheritance, ~80% of the genes displayed non-additive inheritance. By comparing allele-specific expression (ASE) in the F1 hybrid to the allelic expression in both parental lines, respectively, 3005 genes in leaf and 2857 genes in fruit deviated from 1:1 ratio independently of the watering regime. Among these genes, ~55% were controlled by cis factors, ~25% by trans factors and ~20% by a combination of both types of factors. A total of 328 genes in leaf and 113 in fruit exhibited significant ASE-by-watering regime interaction, among which ~80% presented trans-by-watering regime interaction, suggesting a response to water deficit mediated through a majority of trans-acting loci in tomato. We cross-validated the expression levels of 274 transcripts in fruit and leaves of 124 recombinant inbred lines (RILs) and identified 163 expression quantitative trait loci (eQTLs) mostly confirming the divergences identified by ASE. Combining phenotypic and expression data, we observed a complex network of variation between genes encoding enzymes involved in the sugar metabolism.
Collapse
Affiliation(s)
- Elise Albert
- INRA, UR1052, Centre de Recherche PACA, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Renaud Duboscq
- INRA, UR1052, Centre de Recherche PACA, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Muriel Latreille
- INRA, UMR1334, Amélioration génétique et Adaptation des Plantes, Montpellier SupAgro-INRA-IRD-UMII, 2 Place Pierre Viala, Montpellier, 34060, France
| | - Sylvain Santoni
- INRA, UMR1334, Amélioration génétique et Adaptation des Plantes, Montpellier SupAgro-INRA-IRD-UMII, 2 Place Pierre Viala, Montpellier, 34060, France
| | - Matthieu Beukers
- INRA, UR1052, Centre de Recherche PACA, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Jean-Paul Bouchet
- INRA, UR1052, Centre de Recherche PACA, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Fréderique Bitton
- INRA, UR1052, Centre de Recherche PACA, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Justine Gricourt
- INRA, UR1052, Centre de Recherche PACA, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Charles Poncet
- INRA, UMR1095, Génétique Diversité et Ecophysiologie des Céréales, 5 Chemin de Beaulieu, Clermont-Ferrand, 63039, France
| | - Véronique Gautier
- INRA, UMR1095, Génétique Diversité et Ecophysiologie des Céréales, 5 Chemin de Beaulieu, Clermont-Ferrand, 63039, France
| | - José M Jiménez-Gómez
- INRA, UMR1318, Institut Jean-Pierre Bourgin, AgroParisTech-INRA-CNRS, Route de Saint Cyr, Versailles, 78026, France
| | - Guillem Rigaill
- INRA, UMR8071, Laboratoire de Mathématiques et Modélisation d'Evry, Université d'Evry Val d'Essonne, ENSIIE-INRA-CNRS, Évry, 91037, France
| | - Mathilde Causse
- INRA, UR1052, Centre de Recherche PACA, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| |
Collapse
|
33
|
Patil PG, Bohra A, Satheesh NSJ, Dubey J, Pandey P, Dutta D, Singh F, Singh IP, Singh NP. Validation of QTLs for plant ideotype, earliness and growth habit traits in pigeonpea ( Cajanus cajan Millsp.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:1245-1259. [PMID: 30425438 PMCID: PMC6214447 DOI: 10.1007/s12298-018-0584-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 07/07/2018] [Accepted: 07/17/2018] [Indexed: 06/09/2023]
Abstract
Pigeonpea productivity is greatly constrained by poor plant ideotype of existing Indian cultivars. Enhancing pigeonpea yield demands a renewed focus on restructuring the ideal plant type by using more efficient approaches like genomic tools. Therefore, the present study aims to identify and validate a set of QTLs/gene(s) presumably associated with various plant ideotype traits in pigeonpea. A total of 133 pigeonpea germplasms were evaluated along with four checks in the augmented design for various ideotype traits i.e. initiation of flowering (IF), days to 50% flowering (DFF), days to maturity (DM), plant height (PH), primary branches (PB), seeds per pod (SP) and pod length (PL). We observed significant genetic diversity in the germplasm lines for these traits. The genetic control of IF, DFF, DM and PH renders these traits suitable for detection of marker trait associations. By using residual maximum likelihood algorithm, we obtained appropriate variance-covariance structures for modeling heterogeneity, correlation of genetic effects and non-genetic residual effects. The estimates of genetic correlations indicated a strong association among earliness traits. The best linear unbiased prediction values were calculated for individual traits, and association analysis was performed in a panel of 95 diverse genotypes with 19 genic SSRs. Out of five QTL-flanking SSRs used here for validation, only ASSR295 could show significant association with FDR and Bonferroni corrections, and accounted for 15.4% IF, 14.2% DFF and 16.2% DM of phenotypic variance (PV). Remaining SSR markers (ASSR1486, ASSR206 and ASSR408) could not qualify false discovery rate (FDR) and Bonferroni criteria, hence declared as false positives. Additionally, we identified two highly significant SSR markers, ASSR8 and ASSR390 on LG 1 and LG 2, respectively. The SSR marker ASSR8 explained up to 22 and 11% PV for earliness traits and PB respectively, whereas ASSR390 controlled up to 17% PV for earliness traits. The validation and identification of new QTLs in pigeonpea across diverse genetic backgrounds brightens the prospects for marker-assisted selection to improve yield gains in pigeonpea.
Collapse
Affiliation(s)
- Prakash G. Patil
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
- Present Address: ICAR-National Research Centre on Pomegranate, Solapur, 413 255 India
| | - Abhishek Bohra
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Naik S. J. Satheesh
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Jyotirmay Dubey
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Praveen Pandey
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Dibendu Dutta
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Farindra Singh
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - I. P. Singh
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - N. P. Singh
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| |
Collapse
|
34
|
Beauvoit B, Belouah I, Bertin N, Cakpo CB, Colombié S, Dai Z, Gautier H, Génard M, Moing A, Roch L, Vercambre G, Gibon Y. Putting primary metabolism into perspective to obtain better fruits. ANNALS OF BOTANY 2018; 122:1-21. [PMID: 29718072 PMCID: PMC6025238 DOI: 10.1093/aob/mcy057] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/29/2017] [Indexed: 05/18/2023]
Abstract
Background One of the key goals of fruit biology is to understand the factors that influence fruit growth and quality, ultimately with a view to manipulating them for improvement of fruit traits. Scope Primary metabolism, which is not only essential for growth but is also a major component of fruit quality, is an obvious target for improvement. However, metabolism is a moving target that undergoes marked changes throughout fruit growth and ripening. Conclusions Agricultural practice and breeding have successfully improved fruit metabolic traits, but both face the complexity of the interplay between development, metabolism and the environment. Thus, more fundamental knowledge is needed to identify further strategies for the manipulation of fruit metabolism. Nearly two decades of post-genomics approaches involving transcriptomics, proteomics and/or metabolomics have generated a lot of information about the behaviour of fruit metabolic networks. Today, the emergence of modelling tools is providing the opportunity to turn this information into a mechanistic understanding of fruits, and ultimately to design better fruits. Since high-quality data are a key requirement in modelling, a range of must-have parameters and variables is proposed.
Collapse
Affiliation(s)
| | - Isma Belouah
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | | | - Sophie Colombié
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Zhanwu Dai
- UMR 1287 EGFV, INRA, Univ. Bordeaux, Bordeaux Sci Agro, F-Villenave d’Ornon, France
| | | | | | - Annick Moing
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Léa Roch
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | - Yves Gibon
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
35
|
Diouf IA, Derivot L, Bitton F, Pascual L, Causse M. Water Deficit and Salinity Stress Reveal Many Specific QTL for Plant Growth and Fruit Quality Traits in Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:279. [PMID: 29559986 PMCID: PMC5845638 DOI: 10.3389/fpls.2018.00279] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/19/2018] [Indexed: 05/20/2023]
Abstract
Quality is a key trait in plant breeding, especially for fruit and vegetables. Quality involves several polygenic components, often influenced by environmental conditions with variable levels of genotype × environment interaction that must be considered in breeding strategies aiming to improve quality. In order to assess the impact of water deficit and salinity on tomato fruit quality, we evaluated a multi-parent advanced generation intercross (MAGIC) tomato population in contrasted environmental conditions over 2 years, one year in control vs. drought condition and the other in control vs. salt condition. Overall 250 individual lines from the MAGIC population-derived from eight parental lines covering a large diversity in cultivated tomato-were used to identify QTL in both experiments for fruit quality and yield component traits (fruit weight, number of fruit, Soluble Solid Content, firmness), phenology traits (time to flower and ripe) and a vegetative trait, leaf length. All the traits showed a large genotype variation (33-86% of total phenotypic variation) in both experiments and high heritability whatever the year or treatment. Significant genotype × treatment interactions were detected for five of the seven traits over the 2 years of experiments. QTL were mapped using 1,345 SNP markers. A total of 54 QTL were found among which 15 revealed genotype × environment interactions and 65% (35 QTL) were treatment specific. Confidence intervals of the QTL were projected on the genome physical map and allowed identifying regions carrying QTL co-localizations, suggesting pleiotropic regulation. We then applied a strategy for candidate gene detection based on the high resolution mapping offered by the MAGIC population, the allelic effect of each parental line at the QTL and the sequence information of the eight parental lines.
Collapse
Affiliation(s)
- Isidore A. Diouf
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
| | | | - Frédérique Bitton
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
| | - Laura Pascual
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
| | - Mathilde Causse
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
- *Correspondence: Mathilde Causse
| |
Collapse
|
36
|
Liu M, Yu H, Zhao G, Huang Q, Lu Y, Ouyang B. Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing. BMC Genomics 2017; 18:481. [PMID: 28651543 PMCID: PMC5485680 DOI: 10.1186/s12864-017-3869-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Abiotic stresses cause severe loss of crop production. Among them, drought is one of the most frequent environmental stresses, which limits crop growth, development and productivity. Plant drought tolerance is fine-tuned by a complex gene regulatory network. Understanding the molecular regulation of this polygenic trait is crucial for the eventual success to improve plant yield and quality. Recent studies have demonstrated that microRNAs play critical roles in plant drought tolerance. However, little is known about the microRNA in drought response of the model plant tomato. Here, we described the profiling of drought-responsive microRNA and mRNA in tomato using high-throughput next-generation sequencing. RESULTS Drought stress was applied on the seedlings of M82, a drought-sensitive cultivated tomato genotype, and IL9-1, a drought-tolerant introgression line derived from the stress-resistant wild species Solanum pennellii LA0716 and M82. Under drought, IL9-1 performed superior than M82 regarding survival rate, H2O2 elimination and leaf turgor maintenance. A total of four small RNA and eight mRNA libraries were constructed and sequenced using Illumina sequencing technology. 105 conserved and 179 novel microRNAs were identified, among them, 54 and 98 were differentially expressed upon drought stress, respectively. The majority of the differentially-expressed conserved microRNAs was up-regulated in IL9-1 whereas down-regulated in M82. Under drought stress, 2714 and 1161 genes were found to be differentially expressed in M82 and IL9-1, respectively, and many of their homologues are involved in plant stress, such as genes encoding transcription factor and protein kinase. Various pathways involved in abiotic stress were revealed by Gene Ontology and pathway analysis. The mRNA sequencing results indicated that most of the target genes were regulated by their corresponding microRNAs, which suggested that microRNAs may play essential roles in the drought tolerance of tomato. CONCLUSION In this study, numerous microRNAs and mRNAs involved in the drought response of tomato were identified using high-throughput sequencing, which will provide new insights into the complex regulatory network of plant adaption to drought stress. This work will also help to exploit new players functioning in plant drought-stress tolerance.
Collapse
Affiliation(s)
- Minmin Liu
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| | - Gangjun Zhao
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| | - Qiufeng Huang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| | - Yongen Lu
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|