1
|
Liang L, Zhu J, Huang D, Ai S, Xue L, Yin X, Lin-Wang K, Allan A, Chen K, Xu C. Molecular mechanisms underlying natural deficient and ultraviolet-induced accumulation of anthocyanin in the peel of 'Jinxiu' peach. PLANT, CELL & ENVIRONMENT 2024; 47:4833-4848. [PMID: 39101482 DOI: 10.1111/pce.15064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Peach varieties that differ in red coloration due to varied anthocyanin accumulation result from transcriptional regulation by PpMYB10s, a group of specific R2R3 MYBs. Here we investigated the mechanisms driving a lack of anthocyanin in yellow-skinned 'Jinxiu' peach peel, as well as accumulation induced by UV irradiance. It was found that PpMYB10.1, PpMYB10.2 and PpMYB10.3 were positive regulators of anthocyanin accumulation, but the stimulation by PpMYB10.2 was weak. Low expression of PpMYB10.1 causes natural anthocyanin deficiency in 'Jinxiu' peel. However, the promoter sequences of PpMYB10.1 were identical in 'Jinxiu' and a naturally red-coloured peach 'Hujingmilu'. Therefore, potential negative regulator(s) upstream of PpMYB10.1 were explored. A novel R2R3-MYB repressor termed PpMYB80 was identified through comparative transcriptomic analysis and then functionally confirmed via transiently overexpressing and silencing in peach fruit, as well as transformation in tobacco. PpMYB80 directly binds to the promoter of PpMYB10.1 and inhibits its expression, but does not affect PpMYB10.3. In UV-exposed 'Jinxiu' fruit, expression of PpMYB10.3 was upregulated, while PpMYB10.1 remained low and PpMYB80 enhanced, which results in accumulation of anthocyanin in peel. This study revealed a transcriptional cascade involving PpMYB activators and repressors in regulating basal and UV-induced anthocyanin accumulation in peach peel.
Collapse
Affiliation(s)
- Ling Liang
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jiazhen Zhu
- New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Dan Huang
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Shaojie Ai
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Lei Xue
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Xueren Yin
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Kui Lin-Wang
- New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Andrew Allan
- New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zijingang Campus, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Crop Growth and Development, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Changjie Xu
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zijingang Campus, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Crop Growth and Development, Zijingang Campus, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Dai J, Xu Z, Fang Z, Zheng X, Cao L, Kang T, Xu Y, Zhang X, Zhan Q, Wang H, Hu Y, Zhao C. NAC Transcription Factor PpNAP4 Promotes Chlorophyll Degradation and Anthocyanin Synthesis in the Skin of Peach Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19826-19837. [PMID: 39213503 DOI: 10.1021/acs.jafc.4c03924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chlorophyll (Chl) catabolism and anthocyanin synthesis play pivotal roles in determining the final skin color of fruits during maturation. However, in peach (Prunus persica) fruit, the regulatory mechanism governing skin color, especially the Chl catabolism, remains largely elusive. In this study, we identified ten Chl catabolic genes (CCGs), with PpSGR emerging as a key regulator in Chl degradation in peaches. Furthermore, a NAC-like, activated by AP3/P1 (NAP) transcription factor (TF), PpNAP4, was identified as a positive modulator of Chl breakdown. PpNAP4 induced the expression of PpSGR and other CCGs, including PpPPH, PpPAO, and PpTIC55-2, by directly binding to their promoters. Overexpression of PpNAP4 resulted in a heightened expression of these genes and accelerated Chl degradation. Notably, PpNAP4 also positively regulated the expression of PpANS and PpMYB10.1, one key structural gene and a core transcriptional regulator of anthocyanin synthesis, thereby contributing to fruit coloration. In summary, our findings elucidate that PpNAP4 serves as a pivotal regulator in determining the final skin color of peach by orchestrating Chl degradation and anthocyanin accumulation through direct activation of multiple CCGs and anthocyanin related genes.
Collapse
Affiliation(s)
- Jieyu Dai
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Ze Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, P.R. China
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, P.R. China
| | - Zhouheng Fang
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Xuyang Zheng
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Lijun Cao
- Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708, United States
- Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708, United States
| | - Tongyang Kang
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Yuting Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Xingzhen Zhang
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Qianjin Zhan
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Hong Wang
- Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, Anning, Lanzhou 730070, P.R. China
| | - Yanan Hu
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Caiping Zhao
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| |
Collapse
|
3
|
Zhu Y, Wang D, Yan F, Wang L, Wang Y, Li J, Yang X, Gao Z, Liu X, Liu Y, Wang Q. Genome-wide analysis of HD-Zip genes in Sophora alopecuroides and their role in salt stress response. THE PLANT GENOME 2024:e20504. [PMID: 39198230 DOI: 10.1002/tpg2.20504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/30/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024]
Abstract
We aimed to identify HD-Zip (homologous domain leucine zipper) family genes based on the complete Sophora alopecuroides genome sequence. Eighty-six Sophora alopecuroides HD-Zip family (SaHDZ) genes were identified and categorized into four subclasses using phylogenetic analysis. Chromosome localization analysis revealed that these genes were distributed across 18 chromosomes. Gene structure and conserved motif analysis showed high similarity among members of the SaHDZ genes. Prediction analysis revealed 71 cis-acting elements in SaHDZ genes. Transcriptome and quantitative real-time polymerase chain reaction analyses showed that under salt stress, SaHDZ responded positively in S. alopecuroides, and that SaHDZ22 was significantly upregulated afterward. Functional verification experiments revealed that SaHDZ22 overexpression increased the tolerance of Arabidopsis to salt and osmotic stress. Combined with cis-acting element prediction and expression level analysis, HD-Zip family transcription factors may be involved in regulating the balance between plant growth and stress resistance under salt stress by modulating the expression of auxin and abscisic acid signaling pathway genes. The Sophora alopecuroides adenylate kinase protein (SaAKI) and S. alopecuroides tetrapeptide-like repeat protein (SaTPR; pCAMBIA1300-SaTPR-cLUC) expression levels were consistent with those of SaHDZ22, indicating that SaHDZ22 may coordinate with SaAKI and SaTPR to regulate plant salt tolerance. These results lay a foundation in understanding the salt stress response mechanisms of S. alopecuroides and provide a reference for future studies oriented toward exploring plant stress resistance.
Collapse
Affiliation(s)
- Youcheng Zhu
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China
- College of Plant Science, Jilin University, Changchun, China
| | - Di Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Fan Yan
- College of Plant Science, Jilin University, Changchun, China
| | - Le Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Ying Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Jingwen Li
- College of Plant Science, Jilin University, Changchun, China
| | - Xuguang Yang
- College of Plant Science, Jilin University, Changchun, China
| | - Ziwei Gao
- College of Plant Science, Jilin University, Changchun, China
| | - Xu Liu
- College of Plant Science, Jilin University, Changchun, China
| | - Yajing Liu
- College of Plant Science, Jilin University, Changchun, China
| | - Qingyu Wang
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
4
|
Zhang J, Han N, Zhao A, Wang Z, Wang D. ZbMYB111 Expression Positively Regulates ZbUFGT-Mediated Anthocyanin Biosynthesis in Zanthoxylum bungeanum with the Involvement of ZbbHLH2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16941-16954. [PMID: 39024128 DOI: 10.1021/acs.jafc.3c08579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Anthocyanin (ACN)-derived pigmentation in the red Zanthoxylum bungeanum peel is an essential commercial trait. Therefore, exploring the metabolic regulatory networks involved in peel ACN levels in this species is crucial for improving its quality. However, its underlying transcriptional regulatory mechanisms are still unknown. This transcriptomic and bioinformatics study not only discovered a new TF (ZbMYB111) as a potential regulator for ACN biosynthesis in Z. bungeanum peel, but also deciphered the underlying molecular mechanisms of ACN biosynthesis. Overexpression of ZbMYB111 and flavonoid 3-O-glucosyltransferase (ZbUFGT) induced ACN accumulation in both Z. bungeanum peels and callus along with Arabidopsis thaliana and tobacco flowers, whereas their silencing impaired ACN biosynthesis. Therefore, the dual-luciferase reporter, yeast-one-hybrid, and electrophoretic mobility shift assays showed that ZbMYB111 directly interacted with the ZbUFGT promoter to activate its expression. This diverted the secondary metabolism toward the ACN pathway, thereby promoting ACN accumulation.
Collapse
Affiliation(s)
- Jie Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, China
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Nuan Han
- College of Forestry, Northwest A&F University, Yangling 712100, China
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Aiguo Zhao
- College of Forestry, Northwest A&F University, Yangling 712100, China
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Ziyi Wang
- College of Forestry, Northwest A&F University, Yangling 712100, China
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Dongmei Wang
- College of Forestry, Northwest A&F University, Yangling 712100, China
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| |
Collapse
|
5
|
Chachar Z, Lai R, Ahmed N, Lingling M, Chachar S, Paker NP, Qi Y. Cloned genes and genetic regulation of anthocyanin biosynthesis in maize, a comparative review. FRONTIERS IN PLANT SCIENCE 2024; 15:1310634. [PMID: 38328707 PMCID: PMC10847539 DOI: 10.3389/fpls.2024.1310634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Anthocyanins are plant-based pigments that are primarily present in berries, grapes, purple yam, purple corn and black rice. The research on fruit corn with a high anthocyanin content is not sufficiently extensive. Considering its crucial role in nutrition and health it is vital to conduct further studies on how anthocyanin accumulates in fruit corn and to explore its potential for edible and medicinal purposes. Anthocyanin biosynthesis plays an important role in maize stems (corn). Several beneficial compounds, particularly cyanidin-3-O-glucoside, perlagonidin-3-O-glucoside, peonidin 3-O-glucoside, and their malonylated derivatives have been identified. C1, C2, Pl1, Pl2, Sh2, ZmCOP1 and ZmHY5 harbored functional alleles that played a role in the biosynthesis of anthocyanins in maize. The Sh2 gene in maize regulates sugar-to-starch conversion, thereby influencing kernel quality and nutritional content. ZmCOP1 and ZmHY5 are key regulatory genes in maize that control light responses and photomorphogenesis. This review concludes the molecular identification of all the genes encoding structural enzymes of the anthocyanin pathway in maize by describing the cloning and characterization of these genes. Our study presents important new understandings of the molecular processes behind the manufacture of anthocyanins in maize, which will contribute to the development of genetically modified variants of the crop with increased color and possible health advantages.
Collapse
Affiliation(s)
- Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - RuiQiang Lai
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ma Lingling
- College of Agriculture, Jilin Agricultural University, Changchun, Jilin, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | | | - YongWen Qi
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
6
|
Kerr SC, Shehnaz S, Paudel L, Manivannan MS, Shaw LM, Johnson A, Velasquez JTJ, Tanurdžić M, Cazzonelli CI, Varkonyi-Gasic E, Prentis PJ. Advancing tree genomics to future proof next generation orchard production. FRONTIERS IN PLANT SCIENCE 2024; 14:1321555. [PMID: 38312357 PMCID: PMC10834703 DOI: 10.3389/fpls.2023.1321555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024]
Abstract
The challenges facing tree orchard production in the coming years will be largely driven by changes in the climate affecting the sustainability of farming practices in specific geographical regions. Identifying key traits that enable tree crops to modify their growth to varying environmental conditions and taking advantage of new crop improvement opportunities and technologies will ensure the tree crop industry remains viable and profitable into the future. In this review article we 1) outline climate and sustainability challenges relevant to horticultural tree crop industries, 2) describe key tree crop traits targeted for improvement in agroecosystem productivity and resilience to environmental change, and 3) discuss existing and emerging genomic technologies that provide opportunities for industries to future proof the next generation of orchards.
Collapse
Affiliation(s)
- Stephanie C Kerr
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Saiyara Shehnaz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Lucky Paudel
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Mekaladevi S Manivannan
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Lindsay M Shaw
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda Johnson
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Jose Teodoro J Velasquez
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Miloš Tanurdžić
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Peter J Prentis
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
7
|
Ni J, Wang S, Yu W, Liao Y, Pan C, Zhang M, Tao R, Wei J, Gao Y, Wang D, Bai S, Teng Y. The ethylene-responsive transcription factor PpERF9 represses PpRAP2.4 and PpMYB114 via histone deacetylation to inhibit anthocyanin biosynthesis in pear. THE PLANT CELL 2023; 35:2271-2292. [PMID: 36916511 DOI: 10.1093/plcell/koad077] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 05/30/2023]
Abstract
Ethylene induces anthocyanin biosynthesis in most fruits, including apple (Malus domestica) and plum (Prunus spp.). By contrast, ethylene inhibits anthocyanin biosynthesis in pear (Pyrus spp.), but the underlying molecular mechanism remains unclear. In this study, we identified and characterized an ethylene-induced ETHYLENE RESPONSE FACTOR (ERF) transcription factor, PpETHYLENE RESPONSE FACTOR9 (PpERF9), which functions as a transcriptional repressor. Our analyses indicated PpERF9 can directly inhibit expression of the MYB transcription factor gene PpMYB114 by binding to its promoter. Additionally, PpERF9 inhibits the expression of the transcription factor gene PpRELATED TO APETALA2.4 (PpRAP2.4), which activates PpMYB114 expression, by binding to its promoter, thus forming a PpERF9-PpRAP2.4-PpMYB114 regulatory circuit. Furthermore, PpERF9 interacts with the co-repressor PpTOPLESS1 (PpTPL1) via EAR motifs to form a complex that removes the acetyl group on histone H3 and maintains low levels of acetylated H3 in the PpMYB114 and PpRAP2.4 promoter regions. The resulting suppressed expression of these 2 genes leads to decreased anthocyanin biosynthesis in pear. Collectively, these results indicate that ethylene inhibits anthocyanin biosynthesis by a mechanism that involves PpERF9-PpTPL1 complex-mediated histone deacetylation of PpMYB114 and PpRAP2.4. The data presented herein will be useful for clarifying the relationship between chromatin status and hormone signaling, with implications for plant biology research.
Collapse
Affiliation(s)
- Junbei Ni
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
| | - Simai Wang
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
| | - Wenjie Yu
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
| | - Yifei Liao
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya 572000, People's Republic of China
| | - Chen Pan
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya 572000, People's Republic of China
| | - Manman Zhang
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya 572000, People's Republic of China
| | - Ruiyan Tao
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
| | - Jia Wei
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
| | - Yuhao Gao
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
| | - Dongsheng Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China
| | - Songling Bai
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
| | - Yuanwen Teng
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya 572000, People's Republic of China
| |
Collapse
|
8
|
Li R, Yan D, Tan C, Li C, Song M, Zhao Q, Yang Y, Yin W, Liu Z, Ren X, Liu C. Transcriptome and Metabolomics Integrated Analysis Reveals MdMYB94 Associated with Esters Biosynthesis in Apple ( Malus × domestica). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7904-7920. [PMID: 37167631 DOI: 10.1021/acs.jafc.2c07719] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Volatile esters are major aromas contributing to the organoleptic quality of apple fruit. However, the molecular mechanisms underlying the regulation of volatile ester biosynthesis in apple remain elusive. This study investigated the volatile profiles and transcriptomes of 'Qinguan' (QG) apple fruit during development and/or postharvest storage. Although the constitution of volatiles varied widely between the peel and flesh, the volatile profiles of the peel and flesh of ripening QG fruit were dominated by volatile esters. WGCNA results suggested that 19 genes belonging to ester biosynthesis pathways and 11 hub transcription factor genes potentially participated in the biosynthesis and regulation of esters. To figure out key regulators of ester biosynthesis, correlation network analysis, dual-luciferase assays, and yeast one-hybrid assay were conducted and suggested that MdMYB94 trans-activated the MdAAT2 promoter and participated in the regulation of ester biosynthesis. This study provides a framework for understanding ester biosynthesis and regulation in apple.
Collapse
Affiliation(s)
- Rui Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Yan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunyan Tan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cen Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meijie Song
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiqi Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaming Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weijie Yin
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cuihua Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
9
|
Liu S, Wang J, Liu Z, Yang Y, Li X. FtbZIP85 Is Involved in the Accumulation of Proanthocyanidin by Regulating the Transcription of FtDFR in Tartary Buckwheat. Curr Issues Mol Biol 2023; 45:3375-3390. [PMID: 37185745 PMCID: PMC10136674 DOI: 10.3390/cimb45040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/10/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023] Open
Abstract
As a drought-tolerant crop, Tartary buckwheat survives under adverse environmental conditions, including drought stress. Proanthocyanidins (PAs) and anthocyanins are flavonoid compounds, and they participate in the regulation of resistance to both biotic and abiotic stresses by triggering genes' biosynthesis of flavonoids. In this study, a basic leucine zipper, basic leucine zipper 85 (FtbZIP85), which was predominantly expressed in seeds, was isolated from Tartary buckwheat. Our study shows that the expressions of FtDFR, FtbZIP85 and FtSnRK2.6 were tissue-specific and located in both the nucleus and the cytosol. FtbZIP85 could positively regulate PA biosynthesis by binding to the ABA-responsive element (ABRE) in the promoter of dihydroflavonol 4-reductase (FtDFR), which is a key enzyme in the phenylpropanoid biosynthetic pathway. Additionally, FtbZIP85 was also involved in the regulation of PA biosynthesis via interactions with FtSnRK2.6 but not with FtSnRK2.2/2.3. This study reveals that FtbZIP85 is a positive regulator of PA biosynthesis in TB.
Collapse
Affiliation(s)
- Shuangshuang Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Wen C, Zhang Z, Shi Q, Niu R, Duan X, Shen B, Li X. Transcription Factors ZjMYB39 and ZjMYB4 Regulate Farnesyl Diphosphate Synthase- and Squalene Synthase-Mediated Triterpenoid Biosynthesis in Jujube. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4599-4614. [PMID: 36880571 DOI: 10.1021/acs.jafc.2c08679] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Jujube (Ziziphus jujuba Mill.) is rich in valuable bioactive triterpenoids. However, the regulatory mechanism underlying triterpenoid biosynthesis in jujube remains poorly studied. Here, we characterized the triterpenoid content in wild jujube and cultivated jujube. The triterpenoid content was higher in wild jujube than in cultivated jujube, triterpenoids were most abundant in young leaves, buds, and later stages of development. The transcriptome analysis and correlation analysis showed that differentially expressed genes (DEGs) were enriched in the terpenoid synthesis pathways, and triterpenoids content was strongly correlated with farnesyl diphosphate synthase (ZjFPS), squalene synthase (ZjSQS), and transcription factors ZjMYB39 and ZjMYB4 expression. Gene overexpression and silencing analysis indicated that ZjFPS and ZjSQS were key genes in triterpenoid biosynthesis and transcription factors ZjMYB39 and ZjMYB4 regulated triterpenoid biosynthesis. Subcellular localization experiments showed that ZjFPS and ZjSQS were localized to the nucleus and endoplasmic reticulum and ZjMYB39 and ZjMYB4 were localized to the nucleus. Yeast one-hybrid, glucuronidase activity, and dual-luciferase activity assays suggested that ZjMYB39 and ZjMYB4 regulate triterpenoid biosynthesis by directly binding and activating the promoters of ZjFPS and ZjSQS. These findings provide insights into the underlying regulatory network of triterpenoids metabolism in jujube and lay theoretical and practical foundation for molecular breeding.
Collapse
Affiliation(s)
- Cuiping Wen
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Zhong Zhang
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Qianqian Shi
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Runzi Niu
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Xiaoshan Duan
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Bingqi Shen
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Xingang Li
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- College of Horticulture and Forestry, Tarim University, Alar 843300, China
| |
Collapse
|
11
|
Liu Y, Lv G, Yang Y, Ma K, Ren X, Li M, Liu Z. Interaction of AcMADS68 with transcription factors regulates anthocyanin biosynthesis in red-fleshed kiwifruit. HORTICULTURE RESEARCH 2023; 10:uhac252. [PMID: 36751270 PMCID: PMC9896601 DOI: 10.1093/hr/uhac252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/07/2022] [Indexed: 06/18/2023]
Abstract
In red-fleshed kiwifruit, anthocyanin pigmentation is a crucial commercial trait. The MYB-bHLH-WD40 (MBW) complex and other transcription factors regulate its accumulation. Herein, a new SEP gene, AcMADS68, was identified as a regulatory candidate for anthocyanin biosynthesis in the kiwifruit by transcriptome data and bioinformatic analyses. AcMADS68 alone could not induce the accumulation of anthocyanin both in Actinidia arguta fruit and tobacco leaves. However, in combination with AcMYBF110, AcMYB123, and AcbHLH1, AcMADS68 co-overexpression increased anthocyanin biosynthesis, whereas its silencing reduced anthocyanin accumulation. The results of the dual-luciferase reporter, firefly luciferase complementation, yeast two-hybrid and co-immunoprecipitation assays showed that AcMADS68 could interact with both AcMYBF110 and AcMYB123 but not with AcbHLH1, thereby co-regulating anthocyanin biosynthesis by promoting the activation of the target genes, including AcANS, AcF3GT1, and AcGST1. Moreover, AcMADS68 also could activate the promoter of AcbHLH1 surported by dual-luciferase reporter and yeast one-hybrid assays, thereby further amplifying the regulation signals from the MBW complex, thus resulting in enhanced anthocyanin accumulation in the kiwifruit. These findings may facilitate better elucidation of various regulatory mechanisms underlying anthocyanin accumulation and contribute to the quality enhancement of red-fleshed kiwifruit.
Collapse
Affiliation(s)
| | | | - Yaqi Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shannxi, China
| | - Kangxun Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shannxi, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shannxi, China
| | | | | |
Collapse
|
12
|
Ji XL, Zhang M, Wang D, Li Z, Lang S, Song XS. Genome-wide identification of WD40 superfamily in Cerasus humilis and functional characteristics of ChTTG1. Int J Biol Macromol 2023; 225:376-388. [PMID: 36402390 DOI: 10.1016/j.ijbiomac.2022.11.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
The WD40 superfamily plays an important role in a wide range of developmental and physiological processes. It is a large gene family in eukaryotes. Unfortunately, the research on the WD40 superfamily genes in Cerasus humilis has not been reported. 198 ChWD40s were identified and analyzed in the present study, along with evolutionary relationships, gene structure, chromosome distribution, and collinearity. Then, 5 pairs of tandem duplication and 17 pairs of segmental duplication were found. Based on RNA-Seq data analysis, we screened 31 candidate genes whose expression was up-regulated during the four developmental stages of fruit peel. In addition, we also demonstrated that ChWD40-140, namely ChTTG1, located in the nucleus, cytoplasm, and cytomembrane, has transcriptional activation activity and can form homodimers. ChTTG1 is involved in anthocyanin biosynthesis through heterologous overexpression in Arabidopsis. These research results provide a reference for a comprehensive analysis of the functions of WD40 in the future.
Collapse
Affiliation(s)
- Xiao Long Ji
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Mingyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Di Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Zhe Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shaoyu Lang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xing Shun Song
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
13
|
Zhang C, Geng Y, Liu H, Wu M, Bi J, Wang Z, Dong X, Li X. Low-acidity ALUMINUM-DEPENDENT MALATE TRANSPORTER4 genotype determines malate content in cultivated jujube. PLANT PHYSIOLOGY 2023; 191:414-427. [PMID: 36271866 PMCID: PMC9806563 DOI: 10.1093/plphys/kiac491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Jujube (Ziziphus jujuba Mill.), the most economically important fruit tree in Rhamnaceae, was domesticated from sour jujube (Z. jujuba Mill. var. spinosa (Bunge) Hu ex H.F.Chow.). During domestication, fruit sweetness increased and acidity decreased. Reduction in organic acid content is crucial for the increase in sweetness of jujube fruit. In this study, the determination of malate content among 46 sour jujube and 35 cultivated jujube accessions revealed that malate content varied widely in sour jujube (0.90-13.31 mg g-1) but to a lesser extent in cultivated jujube (0.33-2.81 mg g-1). Transcriptome sequencing analysis showed that the expression level of Aluminum-Dependent Malate Transporter 4 (ZjALMT4) was substantially higher in sour jujube than in jujube. Correlation analysis of mRNA abundance and fruit malate content and transient gene overexpression showed that ZjALMT4 participates in malate accumulation. Further sequencing analyses revealed that three genotypes of the W-box in the promoter of ZjALMT4 in sour jujube associated with malate content were detected, and the genotype associated with low malate content was fixed in jujube. Yeast one-hybrid screening showed that ZjWRKY7 binds to the W-box region of the high-acidity genotype in sour jujube, whereas the binding ability was weakened in jujube. Transient dual-luciferase and overexpression analyses showed that ZjWRKY7 directly binds to the promoter of ZjALMT4, activating its transcription, and thereby promoting malate accumulation. These findings provide insights into the mechanism by which ZjALMT4 modulates malate accumulation in sour jujube and jujube. The results are of theoretical and practical importance for the exploitation and domestication of germplasm resources.
Collapse
Affiliation(s)
- Chunmei Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yanqiu Geng
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hanxiao Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Mengjia Wu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jingxin Bi
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | | | | | - Xingang Li
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
14
|
Jiang L, Geng D, Zhi F, Li Z, Yang Y, Wang Y, Shen X, Liu X, Yang Y, Xu Y, Tang Y, Du R, Ma F, Guan Q, Zhang J. A genome-wide association study provides insights into fatty acid synthesis and metabolism in Malus fruits. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7467-7476. [PMID: 36112134 DOI: 10.1093/jxb/erac372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
As a precursor of aromatic compounds, fatty acids play important roles in apple fruit quality; however, the genetic and molecular basis underlying fatty acid synthesis and metabolism is largely unknown. In this study, we conducted a genome-wide association study (GWAS) of seven fatty acids using genomic data of 149 Malus accessions and identified 232 significant signals (-log10P>5) associated with 99 genes from GWAS of four fatty acids across 2 years. Among these, a significant GWAS signal associated with linoleic acid was identified in the transcriptional regulator SUPERMAN-like (SUP) MD13G1209600 at chromosome 13 of M. × domestica. Transient overexpression of MdSUP increased the contents of linoleic and linolenic acids and of three aromatic components in the fruit. Our study provides genetic and molecular information for improving the flavor and nutritional value of apple.
Collapse
Affiliation(s)
- Lijuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Dali Geng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Fang Zhi
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yusen Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yunlong Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xiuyun Liu
- Institute of Vocational Technology, Shanghai 200000, China
| | - Yanqing Yang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yange Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yanlong Tang
- College of Economics and Management, Northwest A&F University, Yangling 712100, China
| | - Rui Du
- College of Innovation and Experiment, Northwest A&F University, Yangling 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Jing Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
15
|
Li F, Fu M, Zhou S, Xie Q, Chen G, Chen X, Hu Z. A tomato HD-zip I transcription factor, VAHOX1, acts as a negative regulator of fruit ripening. HORTICULTURE RESEARCH 2022; 10:uhac236. [PMID: 36643762 PMCID: PMC9832867 DOI: 10.1093/hr/uhac236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
Homeodomain-leucine zipper (HD-Zip) transcription factors are only present in higher plants and are involved in plant development and stress responses. However, our understanding of their participation in the fruit ripening of economical plants, such as tomato (Solanum lycopersicum), remains largely unclear. Here, we report that VAHOX1, a member of the tomato HD-Zip I subfamily, was expressed in all tissues, was highly expressed in breaker+4 fruits, and could be induced by ethylene. RNAi repression of VAHOX1 (VAHOX1-RNAi) resulted in accelerated fruit ripening, enhanced sensitivity to ethylene, and increased total carotenoid content and ethylene production. Conversely, VAHOX1 overexpression (VAHOX1-OE) in tomato had the opposite effect. RNA-Seq results showed that altering VAHOX1 expression affected the transcript accumulation of a series of genes involved in ethylene biosynthesis and signal transduction and cell wall modification. Additionally, a dual-luciferase reporter assay, histochemical analysis of GUS activity and a yeast one-hybrid (Y1H) assay revealed that VAHOX1 could activate the expression of AP2a. Our findings may expand our knowledge about the physiological functions of HD-Zip transcription factors in tomato and highlight the diversities of transcriptional regulation during the fruit ripening process.
Collapse
Affiliation(s)
- Fenfen Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Mengjie Fu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Shengen Zhou
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Xuqing Chen
- Co-corresponding author: Zongli Hu: Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, 400030, China, E-mail: ; Xuqing Chen: Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, 11 Shuguanghuayuan Middle Road, Haidian, Beijing, 100097, China, E-mail:
| | - Zongli Hu
- Co-corresponding author: Zongli Hu: Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, 400030, China, E-mail: ; Xuqing Chen: Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, 11 Shuguanghuayuan Middle Road, Haidian, Beijing, 100097, China, E-mail:
| |
Collapse
|
16
|
Li Y, Yang Z, Zhang Y, Guo J, Liu L, Wang C, Wang B, Han G. The roles of HD-ZIP proteins in plant abiotic stress tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1027071. [PMID: 36311122 PMCID: PMC9598875 DOI: 10.3389/fpls.2022.1027071] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 05/31/2023]
Abstract
Homeodomain leucine zipper (HD-ZIP) proteins are plant-specific transcription factors that contain a homeodomain (HD) and a leucine zipper (LZ) domain. The highly conserved HD binds specifically to DNA and the LZ mediates homodimer or heterodimer formation. HD-ZIP transcription factors control plant growth, development, and responses to abiotic stress by regulating downstream target genes and hormone regulatory pathways. HD-ZIP proteins are divided into four subclasses (I-IV) according to their sequence conservation and function. The genome-wide identification and expression profile analysis of HD-ZIP proteins in model plants such as Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) have improved our understanding of the functions of the different subclasses. In this review, we mainly summarize and discuss the roles of HD-ZIP proteins in plant response to abiotic stresses such as drought, salinity, low temperature, and harmful metals. HD-ZIP proteins mainly mediate plant stress tolerance by regulating the expression of downstream stress-related genes through abscisic acid (ABA) mediated signaling pathways, and also by regulating plant growth and development. This review provides a basis for understanding the roles of HD-ZIP proteins and potential targets for breeding abiotic stress tolerance in plants.
Collapse
|
17
|
Anthocyanin Biosynthesis Induced by MYB Transcription Factors in Plants. Int J Mol Sci 2022; 23:ijms231911701. [PMID: 36233003 PMCID: PMC9570290 DOI: 10.3390/ijms231911701] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Anthocyanins act as polyphenolic pigment that is ubiquitously found in plants. Anthocyanins play a role not only in health-promoting as an antioxidant, but also in protection against all kinds of abiotic and biotic stresses. Most recent studies have found that MYB transcription factors (MYB TFs) could positively or negatively regulate anthocyanin biosynthesis. Understanding the roles of MYB TFs is essential in elucidating how MYB TFs regulate the accumulation of anthocyanin. In the review, we summarized the signaling pathways medicated by MYB TFs during anthocyanin biosynthesis including jasmonic acid (JA) signaling pathway, cytokinins (CKs) signaling pathway, temperature-induced, light signal, 26S proteasome pathway, NAC TFs, and bHLH TFs. Moreover, structural and regulator genes induced by MYB TFs, target genes bound and activated or suppressed by MYB TFs, and crosstalk between MYB TFs and other proteins, were found to be vitally important in the regulation of anthocyanin biosynthesis. In this study, we focus on the recent knowledge concerning the regulator signaling and mechanism of MYB TFs on anthocyanin biosynthesis, covering the signaling pathway, genes expression, and target genes and protein expression.
Collapse
|
18
|
Zhou R, Dong Y, Liu X, Feng S, Wang C, Ma X, Liu J, Liang Q, Bao Y, Xu S, Lang X, Gai S, Yang KQ, Fang H. JrWRKY21 interacts with JrPTI5L to activate the expression of JrPR5L for resistance to Colletotrichum gloeosporioides in walnut. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1152-1166. [PMID: 35765867 DOI: 10.1111/tpj.15883] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Walnut (Juglans regia L.) anthracnose, induced by Colletotrichum gloeosporioides, is a catastrophic disease impacting the walnut industry in China. Although WRKY transcription factors play a key role in plant immunity, the function of the WRKY gene family in walnut resistance to C. gloeosporioides is not clear. Here, through transcriptome sequencing and quantitative real-time polymerase chain reaction (qRT-PCR), we identified a differentially expressed gene, JrWRKY21, that was significantly upregulated upon C. gloeosporioides infection in walnut. JrWRKY21 positively regulated walnut resistance to C. gloeosporioides, as demonstrated by virus-induced gene silencing and transient gene overexpression. Additionally, JrWRKY21 directly interacted with the transcriptional activator of the pathogenesis-related (PR) gene JrPTI5L in vitro and in vivo, and could bind to the W-box in the JrPTI5L promoter for transcriptional activation. Moreover, JrPTI5L could induce the expression of the PR gene JrPR5L through binding to the GCCGAC motif in the promoter. Our data support that JrWRKY21 can indirectly activate the expression of the JrPR5L gene via the WRKY21-PTI5L protein complex to promote resistance against C. gloeosporioides in walnut. The results will enhance our understanding of the mechanism behind walnut disease resistance and facilitate the genetic improvement of walnut by molecular breeding for anthracnose-resistant varieties.
Collapse
Affiliation(s)
- Rui Zhou
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian, Shandong Province, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian, Shandong Province, China
| | - Xia Liu
- Department of Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Shan Feng
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
| | - Xinmei Ma
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
| | - Jianning Liu
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
| | - Qiang Liang
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian, Shandong Province, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian, Shandong Province, China
| | - Yan Bao
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
| | - Shengyi Xu
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
| | - Xinya Lang
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
| | - Shasha Gai
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian, Shandong Province, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian, Shandong Province, China
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Taian, Shandong Province, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian, Shandong Province, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian, Shandong Province, China
| |
Collapse
|
19
|
Yan D, Liu Y, Ren X, Li R, Wang C, Qi Y, Xu J, Liu Z, Ding Y, Liu C. Integration of morphological, physiological and multi-omics analysis reveals a comprehensive mechanism for cuticular wax during development of greasiness in postharvest apples. Food Res Int 2022; 157:111429. [PMID: 35761672 DOI: 10.1016/j.foodres.2022.111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/04/2022]
Abstract
Skin greasiness is a common postharvest disorder of apple (Malus × domestica). However, the molecular mechanism of skin greasiness is unclear. In this study, fruits of 'Golden Delicious' (GD), 'Granny Smith', and 'Fuji' with distinct characteristics of greasiness were used for greasiness scoring, wax morphology, wax metabolite, and RNA-seq analyses. Additionally, GD fruit were treated with 1-methylcyclopropene (1-MCP), which repressed greasiness. A partial least squares discriminant analysis (PLS-DA) revealed that wax esters were the critical wax fraction for skin greasiness. Among these wax esters, liquid linoleate esters of short-chain alcohols (C4-C6) and farnesol showed increased contents with increasing greasiness. Their concentrations were significantly correlated with greasiness score. To identify the genes encoding key enzymes for the synthesis of liquid linoleate esters, a weighted gene co-expression network analysis was conducted. MdDCR1, encoding an acyltransferase (defective in cuticular ridges, DCR), was selected as a candidate gene. MdDCR1 was significantly upregulated in greasy skin, and significantly suppressed by 1-MCP treatment. MdDCR1 silencing suppressed the accumulation of liquid linoleate esters of short-chain alcohols, including butyl linoleate, pentyl linoleate, and hexyl linoleate, in GD skin. These results provide insights into the molecular mechanisms of cuticular wax metabolism related to skin greasiness in apple. Our results show that transcriptional regulation of MdDCR1, encoding an acyltransferase that catalyzes the biosynthesis of liquid linoleate esters of short-chain alcohols (C4-C6) via an independent side branch of the C18:2 CoA pathway, regulates the formation of greasiness.
Collapse
Affiliation(s)
- Dan Yan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanli Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Rui Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Cong Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingwei Qi
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuduan Ding
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Cuihua Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
20
|
Rössner C, Lotz D, Becker A. VIGS Goes Viral: How VIGS Transforms Our Understanding of Plant Science. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:703-728. [PMID: 35138878 DOI: 10.1146/annurev-arplant-102820-020542] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Virus-induced gene silencing (VIGS) has developed into an indispensable approach to gene function analysis in a wide array of species, many of which are not amenable to stable genetic transformation. VIGS utilizes the posttranscriptional gene silencing (PTGS) machinery of plants to restrain viral infections systemically and is used to downregulate the plant's endogenous genes. Here, we review the molecular mechanisms of DNA- and RNA-virus-based VIGS, its inherent connection to PTGS, and what is known about the systemic spread of silencing. Recently, VIGS-based technologies have been expanded to enable not only gene silencing but also overexpression [virus-induced overexpression (VOX)], genome editing [virus-induced genome editing (VIGE)], and host-induced gene silencing (HIGS). These techniques expand the genetic toolbox for nonmodel organisms even more. Further, we illustrate the versatility of VIGS and the methods derived from it in elucidating molecular mechanisms, using tomato fruit ripening and programmed cell death as examples. Finally, we discuss challenges of and future perspectives on the use of VIGS to advance gene function analysis in nonmodel plants in the postgenomic era.
Collapse
Affiliation(s)
- Clemens Rössner
- Institute of Botany, Justus-Liebig University Gießen, Gießen, Germany;
| | - Dominik Lotz
- Institute of Botany, Justus-Liebig University Gießen, Gießen, Germany;
| | - Annette Becker
- Institute of Botany, Justus-Liebig University Gießen, Gießen, Germany;
| |
Collapse
|
21
|
Su M, Wang S, Liu W, Yang M, Zhang Z, Wang N, Chen X. MdJa2 Participates in the Brassinosteroid Signaling Pathway to Regulate the Synthesis of Anthocyanin and Proanthocyanidin in Red-Fleshed Apple. FRONTIERS IN PLANT SCIENCE 2022; 13:830349. [PMID: 35615132 PMCID: PMC9125324 DOI: 10.3389/fpls.2022.830349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Anthocyanin and proanthocyanidin play important roles in plant secondary metabolism. Although previous studies identified many transcription factors involved in anthocyanin and proanthocyanidin synthesis, the effects of MADS-box transcription factors are unclear in apple. Brassinosteroids (BRs) are steroid hormones that affect plant flavonoid biosynthesis, but the underlying regulatory mechanism is not yet well established. In this study, we identified a MADS-box transcription factor, MdJa2, which contained a highly conserved MADS-box domain and belonged to the STMADS11 subfamily. Additionally, MdJa2 was responsive to BR signal, and the overexpression of MdJa2 inhibited the synthesis of anthocyanin and proanthocyanidin. The silencing of MdJa2 in "Orin" calli promoted anthocyanin and proanthocyanidin accumulations. Moreover, MdJa2 interacted with MdBZR1. MdJa2 was revealed to independently regulate anthocyanin and proanthocyanidin synthesis pathways. The MdJa2-MdBZR1 complex enhanced the binding of MdJa2 to the promoters of downstream target genes. Our research provides new insights into how MADS-box transcription factors in the BR signaling pathway control the accumulations of anthocyanin and proanthocyanidin in red-fleshed apple.
Collapse
Affiliation(s)
- Mengyu Su
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| | - Shuo Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| | - Ming Yang
- College of Continuing Education, Shandong Agricultural University, Tai’an, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| |
Collapse
|
22
|
Jia M, Li X, Wang W, Li T, Dai Z, Chen Y, Zhang K, Zhu H, Mao W, Feng Q, Liu L, Yan J, Zhong S, Li B, Jia W. SnRK2 subfamily I protein kinases regulate ethylene biosynthesis by phosphorylating HB transcription factors to induce ACO1 expression in apple. THE NEW PHYTOLOGIST 2022; 234:1262-1277. [PMID: 35182082 PMCID: PMC9314909 DOI: 10.1111/nph.18040] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 05/20/2023]
Abstract
Ethylene (ETH) controls climacteric fruit ripening and can be triggered by osmotic stress. However, the mechanism regulating ETH biosynthesis during fruit ripening and under osmotic stress is largely unknown in apple (Malus domestica). Here, we explored the roles of SnRK2 protein kinases in ETH biosynthesis related to fruit ripening and osmoregulation. We identified the substrates of MdSnRK2-I using phosphorylation analysis techniques. Finally, we identified the MdSnRK2-I-mediated signaling pathway for ETH biosynthesis related to fruit ripening and osmoregulation. The activity of two MdSnRK2-I members, MdSnRK2.4 and MdSnRK2.9, was significantly upregulated during ripening or following mannitol treatment. Overexpression of MdSnRK2-I increased ETH biosynthesis under normal and osmotic conditions in apple fruit. MdSnRK2-I phosphorylated the transcription factors MdHB1 and MdHB2 to enhance their protein stability and transcriptional activity on MdACO1. MdSnRK2-I also interacted with MdACS1 and increased its protein stability through two phosphorylation sites. The increased MdACO1 expression and MdACS1 protein stability resulted in higher ETH production in apple fruit. In addition, heterologous expression of MdSnRK2-I or manipulation of SlSnRK2-I expression in tomato (Solanum lycopersicum) fruit altered fruit ripening and ETH biosynthesis. We established that MdSnRK2-I functions in fruit ripening and osmoregulation, and identified the MdSnRK2-I-mediated signaling pathway controlling ETH biosynthesis.
Collapse
Affiliation(s)
- Meiru Jia
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Xingliang Li
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Wei Wang
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Tianyu Li
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Zhengrong Dai
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Yating Chen
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Kaikai Zhang
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Haocheng Zhu
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Wenwen Mao
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Qianqian Feng
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Liping Liu
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Jiaqi Yan
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Silin Zhong
- School of Life SciencesState Key Laboratory of AgrobiotechnologyChinese University of Hong KongEG12 Science Centre EastHong Kong999077China
| | - Bingbing Li
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Wensuo Jia
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| |
Collapse
|
23
|
Naik J, Misra P, Trivedi PK, Pandey A. Molecular components associated with the regulation of flavonoid biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111196. [PMID: 35193745 DOI: 10.1016/j.plantsci.2022.111196] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Flavonoids exhibit amazing structural diversity and play different roles in plants. Besides, these compounds have been associated with several health benefits in humans. Several exogenous and endogenous cues, for example, light, temperature, nutrient status, and phytohormones have been reported as modulators of biosynthesis and accumulation of flavonoids. Thus, multiple hormones and stress-related signaling pathways are involved in the regulation of gene expression associated with this pathway. The transcriptional regulators belonging to the MYB and bHLH family transcription factors are well documented as the direct regulators of the structural genes associated with flavonoid biosynthesis. Recent studies also suggest that some of these factors are regulated by molecular components involved in stress and hormone signaling pathways. Adapter proteins for transcriptional activation or repression via recruitment of co-activators and co-repressors, respectively, E2 ubiquitin ligases, miRNA processing complex, and DNA methylation/demethylation factors have been recently discovered in various plants to play key roles in fine-tuning flavonoids synthesis. In the present review, we aim to provide comprehensive information about the role of different factors in the regulation of flavonoid biosynthesis. Besides, we describe the potential upstream regulators involved in the regulation of flavonoid biosynthesis within the context of available information. To sum up, the present review furnishes an updated account of signal transduction pathways modulating the biosynthesis of flavonoids.
Collapse
Affiliation(s)
- Jogindra Naik
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Prashant Misra
- Plant Science and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | | | - Ashutosh Pandey
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
24
|
Ding T, Tomes S, Gleave AP, Zhang H, Dare AP, Plunkett B, Espley RV, Luo Z, Zhang R, Allan AC, Zhou Z, Wang H, Wu M, Dong H, Liu C, Liu J, Yan Z, Yao JL. microRNA172 targets APETALA2 to regulate flavonoid biosynthesis in apple (Malus domestica). HORTICULTURE RESEARCH 2022; 9:uhab007. [PMID: 35039839 PMCID: PMC8846330 DOI: 10.1093/hr/uhab007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/18/2022] [Accepted: 10/02/2021] [Indexed: 05/24/2023]
Abstract
MicroRNA172 (miR172) plays a role in regulating a diverse range of plant developmental processes, including flowering, fruit development and nodulation. However, its role in regulating flavonoid biosynthesis is unclear. In this study, we show that transgenic apple plants over-expressing miR172 show a reduction in red coloration and anthocyanin accumulation in various tissue types. This reduction was consistent with decreased expression of APETALA2 homolog MdAP2_1a (a miR172 target gene), MdMYB10, and targets of MdMYB10, as demonstrated by both RNA-seq and qRT-PCR analyses. The positive role of MdAP2_1a in regulating anthocyanin biosynthesis was supported by the enhanced petal anthocyanin accumulation in transgenic tobacco plants overexpressing MdAP2_1a, and by the reduction in anthocyanin accumulation in apple and cherry fruits transfected with an MdAP2_1a virus-induced-gene-silencing construct. We demonstrated that MdAP2_1a could bind directly to the promoter and protein sequences of MdMYB10 in yeast and tobacco, and enhance MdMYB10 promotor activity. In Arabidopsis, over-expression of miR172 reduced flavonoid (including anthocyanins and flavonols) concentration and RNA transcript abundance of flavonoid genes in plantlets cultured on medium containing 7% sucrose. The anthocyanin content and RNA abundance of anthocyanin genes could be partially restored by using a synonymous mutant of MdAP2_1a, which had lost the miR172 target sequences at mRNA level, but not restored by using a WT MdAP2_1a. These results indicate that miR172 inhibits flavonoid biosynthesis through suppressing the expression of an AP2 transcription factor that positively regulates MdMYB10.
Collapse
Affiliation(s)
- Tiyu Ding
- Zhengzhou Fruit Research Institute, Chinese Academy of
Agricultural Sciences, 32 Gangwan Road, Zhengzhou 450009, China
| | - Sumathi Tomes
- The New Zealand Institute for Plant & Food Research
Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Andrew P Gleave
- The New Zealand Institute for Plant & Food Research
Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Hengtao Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of
Agricultural Sciences, 32 Gangwan Road, Zhengzhou 450009, China
| | - Andrew P Dare
- The New Zealand Institute for Plant & Food Research
Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Blue Plunkett
- The New Zealand Institute for Plant & Food Research
Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant & Food Research
Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Zhiwei Luo
- The New Zealand Institute for Plant & Food Research
Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Ruiping Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of
Agricultural Sciences, 32 Gangwan Road, Zhengzhou 450009, China
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research
Limited, Private Bag 92169, Auckland 1142, New Zealand
- School of Biological Sciences, University of
Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Zhe Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of
Agricultural Sciences, 32 Gangwan Road, Zhengzhou 450009, China
| | - Huan Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of
Agricultural Sciences, 32 Gangwan Road, Zhengzhou 450009, China
| | - Mengmeng Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of
Agricultural Sciences, 32 Gangwan Road, Zhengzhou 450009, China
| | - Haiqing Dong
- Zhengzhou Fruit Research Institute, Chinese Academy of
Agricultural Sciences, 32 Gangwan Road, Zhengzhou 450009, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of
Agricultural Sciences, 32 Gangwan Road, Zhengzhou 450009, China
| | - Jihong Liu
- College of Horticulture and Forestry Sciences, Huazhong
Agricultural University, 1 Shizishan Street Wuhan 430070, China
| | - Zhenli Yan
- Zhengzhou Fruit Research Institute, Chinese Academy of
Agricultural Sciences, 32 Gangwan Road, Zhengzhou 450009, China
| | - Jia-Long Yao
- Zhengzhou Fruit Research Institute, Chinese Academy of
Agricultural Sciences, 32 Gangwan Road, Zhengzhou 450009, China
- The New Zealand Institute for Plant & Food Research
Limited, Private Bag 92169, Auckland 1142, New Zealand
| |
Collapse
|
25
|
Schröpfer S, Lempe J, Emeriewen OF, Flachowsky H. Recent Developments and Strategies for the Application of Agrobacterium-Mediated Transformation of Apple Malus × domestica Borkh. FRONTIERS IN PLANT SCIENCE 2022; 13:928292. [PMID: 35845652 PMCID: PMC9280197 DOI: 10.3389/fpls.2022.928292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/08/2022] [Indexed: 05/09/2023]
Abstract
Genetic transformation has become an important tool in plant genome research over the last three decades. This applies not only to model plants such as Arabidopsis thaliana but also increasingly to cultivated plants, where the establishment of transformation methods could still pose many problems. One of such plants is the apple (Malus spp.), the most important fruit of the temperate climate zone. Although the genetic transformation of apple using Agrobacterium tumefaciens has been possible since 1989, only a few research groups worldwide have successfully applied this technology, and efficiency remains poor. Nevertheless, there have been some developments, especially in recent years, which allowed for the expansion of the toolbox of breeders and breeding researchers. This review article attempts to summarize recent developments in the Agrobacterium-mediated transformation strategies of apple. In addition to the use of different tissues and media for transformation, agroinfiltration, as well as pre-transformation with a Baby boom transcription factor are notable successes that have improved transformation efficiency in apple. Further, we highlight targeted gene silencing applications. Besides the classical strategies of RNAi-based silencing by stable transformation with hairpin gene constructs, optimized protocols for virus-induced gene silencing (VIGS) and artificial micro RNAs (amiRNAs) have emerged as powerful technologies for silencing genes of interest. Success has also been achieved in establishing methods for targeted genome editing (GE). For example, it was recently possible for the first time to generate a homohistont GE line into which a biallelic mutation was specifically inserted in a target gene. In addition to these methods, which are primarily aimed at increasing transformation efficiency, improving the precision of genetic modification and reducing the time required, methods are also discussed in which genetically modified plants are used for breeding purposes. In particular, the current state of the rapid crop cycle breeding system and its applications will be presented.
Collapse
|
26
|
Liu Y, Lv G, Chai J, Yang Y, Ma F, Liu Z. The Effect of 1-MCP on the Expression of Carotenoid, Chlorophyll Degradation, and Ethylene Response Factors in 'Qihong' Kiwifruit. Foods 2021; 10:foods10123017. [PMID: 34945569 PMCID: PMC8701096 DOI: 10.3390/foods10123017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
The development of yellow color is an important aspect of fruit quality in yellow fleshed kiwifruit during fruit ripening, and it has a large influence on consumer preference. The yellow color is determined by carotenoid accumulation and chlorophyll degradation and is likely affected by ethylene production. This study investigates the expression of carotenoid, chlorophyll degradation, and ethylene response factors in ‘Qihong’ fruit, which had reached the near ripening stage (firmness ≈ 20 N) and were either left untreated (controls) or treated with 0.5 μL L−1 of 1-MCP for 12 h. Both the accumulation of β-carotene (not lutein) and degradation of chlorophyll a and b increased in response to the 1-MCP treatment, resulting in more yellow colored flesh in the 1-MCP treated fruit with higher carotenoid and lower chlorophyll contents. 1-MCP up-regulated AcLCY-β, AcSGR1, and AcPAO2, but reduced the expression of AcCCD1. These four genes were correlated with the concentrations of β-carotene and the chlorophylls. The expression of three ethylene response factors, including Acc29730, Acc25620, and Acc23763 were delayed and down-regulated in 1-MCP treated fruit, showing the highest correlation with the expression of AcLCY-β, AcSGR1, AcPAO2, and AcCCD1. Dual-Luciferase assays showed that 1-MCP treatment not only eliminated the inhibition of Acc23763 on the promoters of both AcPAO2 and AcLCY-β, but also reduced the activation of Acc29730 and Acc25620 on the AcCCD1 promoter. Our findings indicate that Acc29730, Acc25620, and Acc23763 may play an important role in the response to 1-MCP treatment during the fruit eating ripe stage, which likely altered the promoter activities of carotenoid and chlorophyll-related genes (AcPAO2, AcLCY-β and AcCCD1) to regulate their transcripts, resulting in more yellow color in the fruit flesh of ‘Qihong’.
Collapse
Affiliation(s)
- Yanfei Liu
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
- College of Life Science, Northwest A&F University, Xianyang 712100, China
| | - Guowen Lv
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
| | - Jiaxin Chai
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
| | - Yaqi Yang
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
| | - Fengwang Ma
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
- Correspondence:
| |
Collapse
|
27
|
Liu H, Shu Q, Lin-Wang K, Allan AC, Espley RV, Su J, Pei M, Wu J. The PyPIF5-PymiR156a-PySPL9-PyMYB114/MYB10 module regulates light-induced anthocyanin biosynthesis in red pear. MOLECULAR HORTICULTURE 2021; 1:14. [PMID: 37789406 PMCID: PMC10514999 DOI: 10.1186/s43897-021-00018-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 09/10/2021] [Indexed: 10/05/2023]
Abstract
Some cultivars of pear (Pyrus L.) show attractive red fruit skin due to anthocyanin accumulation. This pigmentation can be affected by environmental conditions, especially light. To explore the light-induced regulation network for anthocyanin biosynthesis and fruit coloration in pear, small RNA libraries and mRNA libraries from fruit skins of 'Yunhongyihao' pear were constructed to compare the difference between bagging and debagging treatments. Analysis of RNA-seq of fruit skins with limited light (bagged) and exposed to light (debagged), showed that PyPIF5 was down-regulated after bag removal. PymiR156a was also differentially expressed between bagged and debagged fruit skins. We found that PyPIF5 negatively regulated PymiR156a expression in bagged fruits by directly binding to the G-box motif in its promoter. In addition, PymiR156a overexpression promoted anthocyanin accumulation in both pear skin and apple calli. We confirmed that PymiR156a mediated the cleavage of PySPL9, and that the target PySPL9 protein could form heterodimers with two key anthocyanin regulators (PyMYB114/PyMYB10). We proposed a new module of PyPIF5-PymiR156a-PySPL9-PyMYB114/MYB10. When the bagged fruits were re-exposed to light, PyPIF5 was down-regulated and its inhibitory effect on PymiR156a was weakened, which leads to degradation of the target PySPL, thus eliminating the blocking effect of PySPL on the formation of the regulatory MYB complexes. Ultimately, this promotes anthocyanin biosynthesis in pear skin.
Collapse
Affiliation(s)
- Hainan Liu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- College of Horticulture and Plant Conservation, Henan University of Science and Technology, Luoyang, 471023, China
| | - Qun Shu
- Institute of Horticulture, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Jun Su
- Institute of Horticulture, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Maosong Pei
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- College of Horticulture and Plant Conservation, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
28
|
He X, Huang R, Liu L, Li Y, Wang W, Xu Q, Yu Y, Zhou T. CsUGT78A15 catalyzes the anthocyanidin 3-O-galactoside biosynthesis in tea plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:738-749. [PMID: 34217130 DOI: 10.1016/j.plaphy.2021.06.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Anthocyanins are a group of natural water-soluble pigments in plants that contribute to the pink-purple color of a range of tissues. Because anthocyanins have various biological activities in human health, there is great research interest in the development of anthocyanin-rich foods and beverages, including purple shoot tea. Anthocyanidin 3-O-galactosides have been identified as one of the main anthocyanin components in purple shoot tea, but the enzyme responsible for their biosynthesis remains unclear. UDP-galactose anthocyanidin 3-O-galactosyltransferase (UA3GalT) is presumed to catalyze the galactosylation of anthocyanidin. Therefore, we assayed the UA3GalT activity in five tea samples with varying degrees of purple color and found that its activity was strongly positively correlated (r = 0.929, p < 0.05) with anthocyanin content. Phylogenetic analysis and sequence alignment suggested that CsUGT78A15 encoded a UA3GalT enzyme. Enzymatic assays indicated that rCsUGT78A15 could catalyze the synthesis of cyanidin 3-O-galactoside and delphinidin 3-O-galactoside using UDP-galactose as a sugar donor, and it showed higher catalytic efficiency towards delphinidin than cyanidin. These results indicate that CsUGT78A15 acts as a UA3GalT in vitro. Subcellular localization showed that CsUGT78A15 was located in the endoplasmic reticulum (ER) and nucleus, consistent with the location of anthocyanin synthesis. Transient overexpression of CsUGT78A15 in the fruit of mature 'Granny Smith' apples showed that the upregulation of CsUGT78A15 promoted cyanidin 3-O-galactoside accumulation in apple skins. These results suggested that CsUGT78A15 could catalyze galactosylation of anthocyanidins in planta. Our findings provide insight into the biosynthesis of anthocyanins in tea plants.
Collapse
Affiliation(s)
- Xuqiu He
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ronghao Huang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lipeng Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yingying Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenzhao Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingshan Xu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tianshan Zhou
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
29
|
LaFountain AM, Yuan YW. Repressors of anthocyanin biosynthesis. THE NEW PHYTOLOGIST 2021; 231:933-949. [PMID: 33864686 PMCID: PMC8764531 DOI: 10.1111/nph.17397] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 05/07/2023]
Abstract
Anthocyanins play a variety of adaptive roles in both vegetative tissues and reproductive organs of plants. The broad functionality of these compounds requires sophisticated regulation of the anthocyanin biosynthesis pathway to allow proper localization, timing, and optimal intensity of pigment deposition. While it is well-established that the committed steps of anthocyanin biosynthesis are activated by a highly conserved MYB-bHLH-WDR (MBW) protein complex in virtually all flowering plants, anthocyanin repression seems to be achieved by a wide variety of protein and small RNA families that function in different tissue types and in response to different developmental, environmental, and hormonal cues. In this review, we survey recent progress in the identification of anthocyanin repressors and the characterization of their molecular mechanisms. We find that these seemingly very different repression modules act through a remarkably similar logic, the so-called 'double-negative logic'. Much of the double-negative regulation of anthocyanin production involves signal-induced degradation or sequestration of the repressors from the MBW protein complex. We discuss the functional and evolutionary advantages of this logic design compared with simple or sequential positive regulation. These advantages provide a plausible explanation as to why plants have evolved so many anthocyanin repressors.
Collapse
Affiliation(s)
- Amy M LaFountain
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT, 06269-3043, USA
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT, 06269-3043, USA
| |
Collapse
|
30
|
Liu G, Li H, Fu D. Applications of virus-induced gene silencing for identification of gene function in fruit. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
With the development of bioinformatics, it is easy to obtain information and data about thousands of genes, but the determination of the functions of these genes depends on methods for rapid and effective functional identification. Virus-induced gene silencing (VIGS) is a mature method of gene functional identification developed over the last 20 years, which has been widely used in many research fields involving many species. Fruit quality formation is a complex biological process, which is closely related to ripening. Here, we review the progress and contribution of VIGS to our understanding of fruit biology and its advantages and disadvantages in determining gene function.
Collapse
|
31
|
Yang X, Wang J, Xia X, Zhang Z, He J, Nong B, Luo T, Feng R, Wu Y, Pan Y, Xiong F, Zeng Y, Chen C, Guo H, Xu Z, Li D, Deng G. OsTTG1, a WD40 repeat gene, regulates anthocyanin biosynthesis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:198-214. [PMID: 33884679 DOI: 10.1111/tpj.15285] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Anthocyanins play an important role in the growth of plants, and are beneficial to human health. In plants, the MYB-bHLH-WD40 (MBW) complex activates the genes for anthocyanin biosynthesis. However, in rice, the WD40 regulators remain to be conclusively identified. Here, a crucial anthocyanin biosynthesis gene was fine mapped to a 43.4-kb genomic region on chromosome 2, and a WD40 gene OsTTG1 (Oryza sativa TRANSPARENT TESTA GLABRA1) was identified as ideal candidate gene. Subsequently, a homozygous mutant (osttg1) generated by CRISPR/Cas9 showed significantly decreased anthocyanin accumulation in various rice organs. OsTTG1 was highly expressed in various rice tissues after germination, and it was affected by light and temperature. OsTTG1 protein was localized to the nucleus, and can physically interact with Kala4, OsC1, OsDFR and Rc. Furthermore, a total of 59 hub transcription factor genes might affect rice anthocyanin biosynthesis, and LOC_Os01g28680 and LOC_Os02g32430 could have functional redundancy with OsTTG1. Phylogenetic analysis indicated that directional selection has driven the evolutionary divergence of the indica and japonica OsTTG1 alleles. Our results suggest that OsTTG1 is a vital regulator of anthocyanin biosynthesis, and an important gene resource for the genetic engineering of anthocyanin biosynthesis in rice and other plants.
Collapse
Affiliation(s)
- Xinghai Yang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Junrui Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, 530007, China
| | - Xiuzhong Xia
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zongqiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jie He
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Baoxuan Nong
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Tongping Luo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Rui Feng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yanyan Wu
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Faqian Xiong
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yu Zeng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Can Chen
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Hui Guo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhijian Xu
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Guofu Deng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| |
Collapse
|
32
|
Wang Y, Huang N, Ye N, Qiu L, Li Y, Ma H. An Efficient Virus-Induced Gene Silencing System for Functional Genomics Research in Walnut ( Juglans regia L.) Fruits. FRONTIERS IN PLANT SCIENCE 2021; 12:661633. [PMID: 34249033 PMCID: PMC8261060 DOI: 10.3389/fpls.2021.661633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
The Persian walnut (Juglans regia L.) is a leading source of woody oil in warm temperate regions and has high nutritional and medicinal values. It also provides both tree nuts and woody products. Nevertheless, incomplete characterization of the walnut genetic system limits the walnut gene function analysis. This study used the tobacco rattle virus (TRV) vector to construct an infectious pTRV-JrPDS recombinant clone. A co-culture inoculation method utilizing Agrobacterium was screened out from four inoculation methods and optimized to set up an efficient virus-induced gene silencing (VIGS) system for J. regia fruit. The optimized VIGS-TRV system induced complete photobleaching phenotype on the walnut fruits of four cultivars, and the JrPDS transcript levels decreased by up to 88% at 8 days post-inoculation (dpi). While those of browning-related J. regia polyphenol oxidase (PPO) genes JrPPO1 and JrPPO2 decreased by 67 and 80% at 8 dpi, respectively, accompanied by a significant reduction in fruit browning phenotype. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis screening and Western Blot showed that the PPO protein levels were significantly reduced. Moreover, a model of TRV-mediated VIGS system for inoculating J. regia fruit with efficient silence efficiency via co-culture was developed. These results indicate that the VIGS-TRV system is an efficient tool for rapid gene function analysis in J. regia fruits.
Collapse
|
33
|
Fang ZZ, Lin-Wang K, Zhou DR, Lin YJ, Jiang CC, Pan SL, Espley RV, Andre CM, Ye XF. Activation of PsMYB10.2 Transcription Causes Anthocyanin Accumulation in Flesh of the Red-Fleshed Mutant of 'Sanyueli' ( Prunus salicina Lindl.). FRONTIERS IN PLANT SCIENCE 2021; 12:680469. [PMID: 34239526 PMCID: PMC8259629 DOI: 10.3389/fpls.2021.680469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/21/2021] [Indexed: 05/31/2023]
Abstract
Plum is one of the most important stone fruits in the world and anthocyanin-rich plums are increasingly popular due to their health-promoting potential. In this study, we investigated the mechanisms of anthocyanin accumulation in the flesh of the red-fleshed mutant of the yellow-fleshed plum 'Sanyueli'. RNA-Seq and qRT-PCR showed that anthocyanin biosynthetic genes and the transcription factor PsMYB10.2 were upregulated in the flesh of the mutant. Functional testing in tobacco leaves indicated that PsMYB10.2 was an anthocyanin pathway activator and can activate the promoter of the anthocyanin biosynthetic genes PsUFGT and PsGST. The role of PsMYB10.2 in anthocyanin accumulation in the flesh of plum was further confirmed by virus-induced gene silencing. These results provide information for further elucidating the underlying mechanisms of anthocyanin accumulation in the flesh of plum and for the breeding of new red-fleshed plum cultivars.
Collapse
Affiliation(s)
- Zhi-Zhen Fang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Dan-Rong Zhou
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yan-Juan Lin
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Cui-Cui Jiang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Shao-Lin Pan
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Christelle M. Andre
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Xin-Fu Ye
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
34
|
Transcriptome Co-Expression Network Analysis Identifies Key Genes and Regulators of Sweet Cherry Anthocyanin Biosynthesis. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7060123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Anthocyanin is the key factor that results in the attractive color of sweet cherry fruits. However, information regarding sweet cherry coloration and the potential mechanisms underlying anthocyanin biosynthesis is limited. In this study, we found that the anthocyanin accumulation varied in sweet cherry flesh and peel, while the anthocyanin content increased sharply in the dark red (DR) stage. Correlations between anthocyanin concentrations and RNA sequencing (RNA-seq), constructed with Weighted Gene Co-Expression Network Analysis (WGCNA), indicated that two structural genes (Pac4CL2, PacANS) and 11 transcription factors (PacbHLH13/74, PacDIV, PacERF109/115, PacGATA8, PacGT2, PacGTE10, PacMYB308, PacPosF21, and PacWRKY7) had similar expression patterns with the changes in anthocyanin content. Additionally, real-time PCR verified all of these gene expression patterns and revealed that PacANS exhibited the highest transcription level. In order to search for potential regulators for anthocyanin biosynthesis, a dual-luciferase assay was performed to investigate the regulatory activities of 11 transcription factors on the PacANS promoter. The results revealed that two novelty bHLHs, PacbHLH13 and PacbHLH74, can trans-activate the PacANS promoter and they might be the candidate genes for regulating anthocyanin synthesis in sweet cherry fruits. The present findings provide a novel viewpoint with regard to anthocyanin biosynthesis mechanisms and the regulatory transcriptional network of fruit coloration in sweet cherries.
Collapse
|
35
|
Metabolomics and transcriptome analysis of the biosynthesis mechanism of flavonoids in the seeds of Euryale ferox Salisb at different developmental stages. Mol Genet Genomics 2021; 296:953-970. [PMID: 34009475 DOI: 10.1007/s00438-021-01790-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 01/16/2023]
Abstract
Flavonoids belong to polyphenolic compounds, which are widely distributed in plants and have rich functions. Euryale ferox Salisb is an important medicinal and edible homologous plant, and flavonoids are its main functional substances. However, the biosynthesis mechanism of flavonoids in E. ferox is still poorly understood. To explore the dynamic changes of flavonoid biosynthesis during the development of E. ferox seeds, the targeted flavonoid metabolome was determined. A total of 129 kinds of flavonoid metabolites were characterized in the seeds of E. ferox, including 11 flavanones, 8 dihydroflavanols, 16 flavanols, 29 flavones, 3 isoflavones, 12 anthocyanins, 29 flavonols, 6 flavonoid carbonosides, 3 chalcones and 13 proanthocyanidins. The relative content of flavonoid metabolites accumulated continuously during the development of E. ferox seeds, and reached the highest at T30. In transcriptome, the expression of key genes in the flavonoid pathway, such as PAL, CHS, F3H, FLS, ANS, was highest in T30, which was consistent with the trend of metabolites. Six candidate transcription factors (R2R3MYBs and bHLHs) may affect the biosynthesis of flavonoids by regulating the expression of structural genes. Furthermore, transcriptome analysis and exogenous ABA and SA treatment demonstrated that ABA (PYR1, PP2Cs, SnRK2s) and SA (NPR1) are involved in the positive regulation of flavonoid biosynthesis. This study clarified the differential changes of flavonoid metabolites during the development of E. ferox seeds, confirmed that ABA and SA promote the synthesis of flavonoids, and found key candidate genes that are involved in the regulation of ABA and SA in the positive regulation of flavonoid biosynthesis.
Collapse
|
36
|
Li WF, Ning GX, Zuo CW, Chu MY, Yang SJ, Ma ZH, Zhou Q, Mao J, Chen BH. MYB_SH[AL]QKY[RF] transcription factors MdLUX and MdPCL-like promote anthocyanin accumulation through DNA hypomethylation and MdF3H activation in apple. TREE PHYSIOLOGY 2021; 41:836-848. [PMID: 33171489 DOI: 10.1093/treephys/tpaa156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/20/2020] [Accepted: 11/08/2020] [Indexed: 05/14/2023]
Abstract
Heritable DNA methylation is a highly conserved epigenetic mark that is important for many biological processes. In a previous transcriptomic study on the fruit skin pigmentation of apple (Malus domestica Borkh.) cv. 'Red Delicious' (G0) and its four continuous-generation bud sport mutants including 'Starking Red' (G1), 'Starkrimson' (G2), 'Campbell Redchief' (G3) and 'Vallee spur' (G4), we identified MYB transcription factors (TFs) MdLUX and MdPCL-like involved in regulating anthocyanin synthesis. However, how these TFs ultimately determine the fruit skin color traits remains elusive. Here, bioinformatics analysis revealed that MdLUX and MdPCL-like contained a well-conserved motif SH[AL]QKY[RF] in their C-terminal region and were located in the nucleus of onion epidermal cells. Overexpression of MdLUX and MdPCL-like in 'Golden Delicious' fruits, 'Gala' calli and Arabidopsis thaliana promoted the accumulation of anthocyanin, whereas MdLUX and MdPCL-like suppression inhibited anthocyanin accumulation in 'Red Fuji' apple fruit skin. Yeast one-hybrid assays revealed that MdLUX and MdPCL-like may bind to the promoter region of the anthocyanin biosynthesis gene MdF3H. Dual-luciferase assays indicated that MdLUX and MdPCL-like activated MdF3H. The whole-genome DNA methylation study revealed that the methylation levels of the mCG context at the upstream (i.e., promoter region) of MdLUX and MdPCL-like were inversely correlated with their mRNA levels and anthocyanin accumulation. Hence, the data suggest that MYB_SH[AL]QKY[RF] TFs MdLUX and MdPCL-like promote anthocyanin biosynthesis in apple fruit skins through the DNA hypomethylation of their promoter regions and the activation of the structural flavonoid gene MdF3H.
Collapse
Affiliation(s)
- Wen-Fang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Gai-Xing Ning
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Cun-Wu Zuo
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Ming-Yu Chu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Shi-Jin Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zong-Huan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Qi Zhou
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Bai-Hong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|
37
|
Liu Y, Ma K, Qi Y, Lv G, Ren X, Liu Z, Ma F. Transcriptional Regulation of Anthocyanin Synthesis by MYB-bHLH-WDR Complexes in Kiwifruit ( Actinidia chinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3677-3691. [PMID: 33749265 DOI: 10.1021/acs.jafc.0c07037] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The anthocyanin synthetic pathway is regulated centrally by an MYB-bHLH-WD40 (MBW) complex. Anthocyanin pigmentation is an important fruit quality trait in red-fleshed kiwifruit; however, the underlying regulatory mechanisms involving the MBW complex are not well understood. In this study, one R2R3MYB (AcMYBF110 expressed in fruit characteristically), one bHLH (AcbHLH1), two upstream regulators of AcbHLH1 (AcbHLH4 and AcbHLH5), and one WDR (AcWDR1) are characterized as being involved in the regulation of anthocyanin synthesis in kiwifruit. AcMYBF110 plays an important role in the regulation of anthocyanin accumulation by specifically activating the promoters of several anthocyanin pathway genes including AcCHS, AcF3'H, AcANS, AcUFGT3a, AcUFGT6b, and AcGST1. Coexpression of AcbHLH1, AcbHLH4, or AcbHLH5 together with AcMYBF110 induces much greater anthocyanin accumulation in both tobacco leaves and in Actinidia arguta fruit compared with AcMYBF110 alone. Moreover, this activation is further enhanced by adding AcWDR1. We found that both AcMYBF110 and AcWDR1 interact with all three AcbHLH factors, while AcMYBF110 also interacts with AcWDR1 to form three different MBW complexes that have different regulatory roles in anthocyanin accumulation of kiwifruit. The AcMYBF110-AcbHLH1-AcWDR1 complex directly targets the promoters of anthocyanin synthetic genes. Other features of the regulatory pathways identified include promotion of AcMYBF110, AcbHLH1,and AcWDR1 activities by this MBW complex, providing for both reinforcement and feedback regulation, whereas the AcMYBF110-AcbHLH4/5-AcWDR1 complex is indirectly involved in the regulation of anthocyanin synthesis by activating the promoters of AcbHLH1 and AcWDR1 to amplify the regulation signals of the first MBW complex.
Collapse
Affiliation(s)
- Yanfei Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
- College of Life Science, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Kangxun Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Yingwei Qi
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610 Guangdong, China
| | - Guowen Lv
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Fengwang Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| |
Collapse
|
38
|
Li Q, Kou M, Li C, Zhang YG. Comparative transcriptome analysis reveals candidate genes involved in anthocyanin biosynthesis in sweetpotato (Ipomoea batatas L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:508-517. [PMID: 33272792 DOI: 10.1016/j.plaphy.2020.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/20/2020] [Indexed: 05/27/2023]
Abstract
Sweetpotato [Ipomoea batatas (L.) Lam] is an economically important crop for fresh and processed consumption and is widely cultivated worldwide, especially in China. Various sweetpotato cultivars with different storage root colors are presently available. The purple-fleshed sweetpotato obtains its color from anthocyanin accumulation in the storage roots, which is beneficial for both plant and human health. To date, the molecular mechanism of this anthocyanin accumulation has not been studied in detail. In our study, three cDNA libraries generated from 'Xuzi8' with dark-purple flesh, 'Xuzi6' with light-purple flesh, and 'Xu28' with white flesh were sequenced utilizing an Illumina HiSeq™ 2500 platform. Corresponding totals of 28,093,466, 29,239,729 and 27,217,440 raw reads were obtained from the three libraries and assembled into 137,625 unigenes with an average length of 481 bp. Moreover, 79,203 unigenes (57.55%) were found to be annotated in several public databases, and 1285 unigenes were differentially expressed among the Xu28 vs Xuzi8, Xu28 vs Xuzi6, and Xuzi6 vs Xuzi8 libraries. After functional category enrichment analysis of differential expression genes (DEGs), 25 genes were selected as the candidate genes related to anthocyanin accumulation. Furthermore, the expression patterns of some selected DEGs were verified by quantitative real-time PCR (qRT-PCR), and the correlation between expression levels of relevant genes involved in anthocyanin biosynthesis and anthocyanin content was determined. Taken together, the results compose a transcriptomic analysis to investigate the differences in purple flesh formation in the storage roots among different sweetpotato varieties, with the notable outcome that several key genes can now be closely linked to anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Qiang Li
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, China.
| | - Meng Kou
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, China
| | - Chen Li
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, China
| | - Yun-Gang Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, China
| |
Collapse
|
39
|
Zhang RX, Zhu WC, Cheng GX, Yu YN, Li QH, Haq SU, Said F, Gong ZH. A novel gene, CaATHB-12, negatively regulates fruit carotenoid content under cold stress in Capsicum annuum. Food Nutr Res 2020; 64:3729. [PMID: 33447178 PMCID: PMC7778427 DOI: 10.29219/fnr.v64.3729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/20/2020] [Accepted: 09/10/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Carotenoids, the secondary metabolites terpenoids, are the largest factors that form the fruit color. Similar to flavonoids, they are not only safe and natural colorants of fruits but also play a role as stress response biomolecules. METHODS To study the contribution of the key genes in carotenoids biosynthesis, fruit-color formation, and in response to cold stress, we characterized the key regulatory factor CaATHB-12 from the HD-ZIP I sub-gene family members in pepper. RESULTS Cold stress enhanced carotenoid accumulation as compared with the normal condition. CaATHB-12 silencing through virus-induced gene silencing changed the fruit color by regulating the carotenoid contents. CaATHB-12 silencing increased the antioxidant enzyme activities in the fruits of pepper, exposed to cold stress, whereas CaATHB-12 overexpression decreased the activities of antioxidant enzymes in the transgenic Arabidopsis lines, exposed to cold stress, suggesting that CaATHB-12 is involved in the regulation of cold stress in the pepper fruits. CONCLUSION Our research will provide insights into the formation of fruit color in pepper and contribution of CaATHB-12 in response to cold stress. Further study should be focused on the interaction between CaATHB-12 and its target gene.
Collapse
Affiliation(s)
- Rui-Xing Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Wen-Chao Zhu
- Guizhou Institute of Pepper, Guiyang, P.R. China
| | - Guo-Xin Cheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Ya-Nan Yu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Quan-Hui Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Fazal Said
- Department of Agriculture, Abdul Wali Khan University, Mardan, Paksitan
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| |
Collapse
|
40
|
Shi Q, Du J, Zhu D, Li X, Li X. Metabolomic and Transcriptomic Analyses of Anthocyanin Biosynthesis Mechanisms in the Color Mutant Ziziphus jujuba cv. Tailihong. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15186-15198. [PMID: 33300333 DOI: 10.1021/acs.jafc.0c05334] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The purplish-red color of "Tailihong" jujube fruit skins is caused primarily by anthocyanin accumulation, but the mechanisms that underlie anthocyanin biosynthesis in jujube fruit have rarely been studied. We performed metabolomic and transcriptomic analyses of jujube fruit skins at different developmental stages and identified a total of 158 flavonoids, among which cyanidin-3-O-rutinoside and peonidin-3,5-O-diglucoside were the primary anthocyanins. During fruit development and maturation, the anthocyanin content was strongly correlated with the expression of ZjANS and ZjUGT79B1, suggesting that these are key genes in the anthocyanin biosynthesis process. Transcriptomic analysis indicated that the transcription factors ZjMYB5, ZjTT8, and ZjWDR3 regulated anthocyanin biosynthesis in jujube fruit skins. Subcellular localization experiments confirmed that ZjANS and ZjUGT79B1 were localized to the nucleus and the endoplasmic reticulum. ZjMYB5 and ZjTT8 were found only in the nucleus, whereas strong fluorescence signals from ZjWDR3 were observed in the nucleus and cytoplasm. Prokaryotic expression and in vitro enzyme activity assays showed that the recombinant ZjANS protein catalyzed the formation of cyanidin from (+)-catechin. Secondary glycosylation by ZjUFGT79B1 modified cyanidin-3-O-glucoside to produce cyanidin-3-O-rutinoside, and ZjCCoAOMT readily catalyzed the production of the methylated anthocyanin peonidin-3,5-O-diglucoside from cyanidin 3,5-O-glucoside. Dual-Luciferase and GUS activity assays showed that the ZjANS and ZjUGT79B1 promoters were activated by ZjMYB5, ZjTT8, and ZjWDR3. All data indicated that these three transcription factors played important roles in anthocyanin biosynthesis in the color mutant Ziziphus jujuba cv. Tailihong, contributing to anthocyanin accumulation by enhancing the expression of ZjANS and ZjUGT79B1.
Collapse
Affiliation(s)
- Qianqian Shi
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Jiangtao Du
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Dajun Zhu
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Xi Li
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Xingang Li
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
- Research Center for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| |
Collapse
|
41
|
Dong Q, Zhao H, Huang Y, Chen Y, Wan M, Zeng Z, Yao P, Li C, Wang X, Chen H, Wu Q. FtMYB18 acts as a negative regulator of anthocyanin/proanthocyanidin biosynthesis in Tartary buckwheat. PLANT MOLECULAR BIOLOGY 2020; 104:309-325. [PMID: 32833148 DOI: 10.1007/s11103-020-01044-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 07/31/2020] [Indexed: 05/22/2023]
Abstract
KEY MESSAGE FtMYB18 plays a role in the repression of anthocyanins and proanthocyanidins accumulation by strongly down-regulating the CHS and DFR genes in Tartary buckwheat, and the C5 motif plays an important role in this process. Anthocyanins and proanthocyanidins (PAs) are important flavonoids in Tartary buckwheat (Fagopyrum tataricum Gaertn.), which provides various vibrant color and stronge abiotic stress resistance. Their synthesis is generally regulated by MYB transcription factors at transcription level. However, the negative regulations of MYB and their effects on flavonol metabolism are poorly understood. A SG4-like MYB subfamily TF, FtMYB18, containing C5 motif was identified from Tartary buckwheat. The expression of FtMYB18 was not only showed a negative correlation with anthocyanins and PAs content but also strongly respond to MeJA and ABA. As far as the transgenic lines with FtMYB18 overexpression, anthocyanins and PAs accumulations were decreased through down-regulating expression levels of NtCHS and NtDFR in tobacco, AtDFR and AtTT12 in Arabidopsis, FtCHS, FtDFR and FtANS in Tartary buckwheat hairy roots, respectively. However, FtMYB18 showed no effect on the FLS gene expression and the metabolites content in flavonol synthesis branch. The further molecular interaction analysis indicated FtMYB18 could mediate the inhibition of anthocyanins and PAs synthesis by forming MBW transcriptional complex with FtTT8 and FtTTG1, or MYB-JAZ complex with FtJAZ1/-3/-4/-7. Importantly, in FtMYB18 mutant lines with C5 motif deletion (FtMYB18-C), both of anthocyanins and PAs accumulations had recovered to the similar level as that in wild type, which was attributed to the weakened MBW complex activity or the deficient molecular interaction between FtMYB18ΔC5 with FtJAZ3/-4. The results showed that FtMYB18 could suppress anthocyanins and PAs synthesis at transcription level through the specific interaction of C5 motif with other proteins in Tartary buckwheat.
Collapse
Affiliation(s)
- Qixin Dong
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Yunji Huang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Ying Chen
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Min Wan
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Zixian Zeng
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Panfeng Yao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Xiaoli Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China.
| |
Collapse
|
42
|
Zhao S, Mi X, Guo R, Xia X, Liu L, An Y, Yan X, Wang S, Guo L, Wei C. The Biosynthesis of Main Taste Compounds Is Coordinately Regulated by miRNAs and Phytohormones in Tea Plant ( Camellia sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6221-6236. [PMID: 32379968 DOI: 10.1021/acs.jafc.0c01833] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Based on the abundance of taste compounds in leaves at different leaf positions on the same shoot, green tea made from one bud and one leaf, or even just one bud, has the best quality. To elucidate the mechanism underlying the regulation of the biosynthesis of these compounds, we profiled the metabolome, transcriptome, sRNA, degradome, and WGCNA using leaves from five leaf positions of shoots. Through this analysis, we found 139 miRNA-target pairs related to taste compound biosynthesis and 96 miRNA-target pairs involved in phytohormone synthesis or signal transduction. Moreover, miR166-HD-ZIP, miR169-NF-YA, IAA, ZA, ABA, and JA were positively related to the accumulation of gallated catechin, caffeine, and theanine. However, miR396-GRF, miR393-bHLH, miR156-SBP, and SA were negatively correlated with these compounds. Among these important pairs, the miR396-GRF and miR156-SBP pairs were further validated by using qRT-PCR, Northern blots, and cotransformation. This is the first report describing that miRNA-TF pairs and phytohormones might synergistically regulate the biosynthesis of taste compounds in the leaves of tea plants.
Collapse
Affiliation(s)
- Shiqi Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, People's Republic of China
| | - Xiaozeng Mi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, People's Republic of China
| | - Rui Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, People's Republic of China
| | - Xiaobo Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, People's Republic of China
| | - Lu Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, People's Republic of China
| | - Yanlin An
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, People's Republic of China
| | - Xiaomei Yan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, People's Republic of China
| | - Shuangshuang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, People's Republic of China
| | - Lingxiao Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, People's Republic of China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, People's Republic of China
| |
Collapse
|
43
|
Zhang Z, Tian C, Zhang Y, Li C, Li X, Yu Q, Wang S, Wang X, Chen X, Feng S. Transcriptomic and metabolomic analysis provides insights into anthocyanin and procyanidin accumulation in pear. BMC PLANT BIOLOGY 2020; 20:129. [PMID: 32220242 PMCID: PMC7099803 DOI: 10.1186/s12870-020-02344-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/17/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Pear is one of the most important fruit crops worldwide. Anthocyanins and procyanidins (PAs) are important secondary metabolites that affect the appearance and nutritive quality of pear. However, few studies have focused on the molecular mechanism underlying anthocyanin and PA accumulation in pear. RESULTS We conducted metabolome and transcriptome analyses to identify candidate genes involved in anthocyanin and PA accumulation in young fruits of the pear cultivar 'Clapp Favorite' (CF) and its red mutation cultivar 'Red Clapp Favorite' (RCF). Gene-metabolite correlation analyses revealed a 'core set' of 20 genes that were strongly correlated with 10 anthocyanin and seven PA metabolites. Of these, PcGSTF12 was confirmed to be involved in anthocyanin and PA accumulation by complementation of the tt19-7 Arabidopsis mutant. Interestingly, PcGSTF12 was found to be responsible for the accumulation of procyanidin A3, but not petunidin 3, 5-diglucoside, opposite to the function of AtGSTs in Arabidopsis. Transformation with PcGSTF12 greatly promoted or repressed genes involved in anthocyanin and PA biosynthesis, regulation, and transport. Electrophoretic mobility shift and luciferase reporter assays confirmed positive regulation of PcGSTF12 by PcMYB114. CONCLUSION These findings identify a core set of genes for anthocyanin and PA accumulation in pear. Of these, PcGSTF12, was confirmed to be involved in anthocyanin and PA accumulation. Our results also identified an important anthocyanin and PA regulation node comprising two core genes, PcGSTF12 and PcMYB114. These results provide novel insights into anthocyanin and PA accumulation in pear and represent a valuable data set to guide future functional studies and pear breeding.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
| | - Changping Tian
- Cherry Research Department, Yantai Agricultural Science and Technology Institute, No.26, West Gangcheng Street, Yan'tai, 265500, China
| | - Ya Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
| | - Chenzhiyu Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
| | - Xi Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
| | - Qiang Yu
- Cherry Research Department, Yantai Agricultural Science and Technology Institute, No.26, West Gangcheng Street, Yan'tai, 265500, China
| | - Shuo Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
| | - Xinyu Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
| | - Shouqian Feng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China.
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China.
| |
Collapse
|
44
|
Zhang S, Chen Y, Zhao L, Li C, Yu J, Li T, Yang W, Zhang S, Su H, Wang L. A novel NAC transcription factor, MdNAC42, regulates anthocyanin accumulation in red-fleshed apple by interacting with MdMYB10. TREE PHYSIOLOGY 2020; 40:413-423. [PMID: 32031661 DOI: 10.1093/treephys/tpaa004] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 12/03/2019] [Accepted: 01/13/2020] [Indexed: 05/02/2023]
Abstract
Anthocyanin pigmentation is an important consumption trait of apple (Malus domestica Borkh.). In this study, we focused on the identification of NAC (NAM, ATAF1/2 and CUC2) proteins involved in the regulation of anthocyanin accumulation in apple flesh. A group of MdNACs was selected for comparison of expression patterns between the white-fleshed cultivar 'Granny Smith' and red-fleshed 'Redlove'. Among them, MdNAC42 was screened, which exhibited a higher expression level in red-fleshed than in white-fleshed fruit, and has a positive correlation with anthocyanin content as fruits ripened. Moreover, overexpression of MdNAC42 in apple calli resulted in the up-regulation of flavonoid pathway genes, including MdCHS, MdCHI, MdF3H, MdDFR, MdANS and MdUFGT, thereby increasing the accumulation of anthocyanins, which confirmed the roles of MdNAC42 in anthocyanin biosynthesis. Notably, MdNAC42 was demonstrated to have an obvious interaction with MdMYB10 either in vitro or in vivo by yeast two-hybrid combined with bimolecular fluorescence complementation, further suggesting that MdNAC42 is an important part of the regulatory network controlling the anthocyanin pigmentation of red-fleshed apples. To the best of our knowledge, this is the first report identifying the MdNAC gene as related to anthocyanin accumulation in red-fleshed apples. This study provides valuable information for improving the regulatory model of anthocyanin biosynthesis in apple fruit.
Collapse
Affiliation(s)
- Shuangyi Zhang
- College of Life Science, Ludong Univeristy, Hongqizhong Road 186, Zhifu District, Yantai, Shandong 264025, P.R. China
| | - Yixi Chen
- College of Agriculture, Ludong Univeristy, Hongqizhong Road 186, Zhifu District, Yantai, Shandong 264025, P.R. China
| | - Lingling Zhao
- Institute of Pomology, Yantai Academy of Agricultural Sciences, Nanshan Road 26, Fushan District, Yantai, Shandong 264025, P.R. China
| | - Chenqi Li
- College of Agriculture, Ludong Univeristy, Hongqizhong Road 186, Zhifu District, Yantai, Shandong 264025, P.R. China
| | - Jingyun Yu
- College of Agriculture, Ludong Univeristy, Hongqizhong Road 186, Zhifu District, Yantai, Shandong 264025, P.R. China
| | - Tongtong Li
- College of Agriculture, Ludong Univeristy, Hongqizhong Road 186, Zhifu District, Yantai, Shandong 264025, P.R. China
| | - Weiyao Yang
- College of Agriculture, Ludong Univeristy, Hongqizhong Road 186, Zhifu District, Yantai, Shandong 264025, P.R. China
| | - Shengnan Zhang
- College of Agriculture, Ludong Univeristy, Hongqizhong Road 186, Zhifu District, Yantai, Shandong 264025, P.R. China
| | - Hongyan Su
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong Unversity, Hongqiroad 186, Zhifu District, Yantai, Shandong 264025, P.R. China
| | - Lei Wang
- College of Life Science, Ludong Univeristy, Hongqizhong Road 186, Zhifu District, Yantai, Shandong 264025, P.R. China
| |
Collapse
|
45
|
Geng Y, Wu M, Zhang C. Sugar Transporter ZjSWEET2.2 Mediates Sugar Loading in Leaves of Ziziphus jujuba Mill. FRONTIERS IN PLANT SCIENCE 2020; 11:1081. [PMID: 32849678 PMCID: PMC7396580 DOI: 10.3389/fpls.2020.01081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/30/2020] [Indexed: 05/11/2023]
Abstract
In plants, sugar transporters play an important role in the allocation of sugars from cells in source organs to cells in sink organs. Hence, an understanding of the molecular basis and regulation of assimilate partitioning by sugar transporters is essential. Leaves are the main source of photosynthetic products. In jujube (Ziziphus jujuba Mill.), the mechanisms regulating initial sugar unloading in leaves are still unclear. In this study, an expression profiling analysis showed that ZjSWEET2.2, encoding a sugar transporter in the SWEET family, is highly expressed in leaves. Over-expression of ZjSWEET2.2 increased carbon fixation in photosynthetic organs. Our analyses showed that ZjSWEET2.2 encodes a plasma membrane-localized sugar transporter protein. Its expression levels were found to be suppressed under drought stress and by high concentrations of exogenous sugars, but increased by low concentrations of exogenous sugars. Finally, DNA sequence analyses revealed several cis-elements related to sugar signaling in the promoter of ZjSWEET2.2. Together, these results suggest that ZjSWEET2.2 functions to mediate photosynthesis by exporting sugars from photosynthetic cells in the leaves, and its gene expression is regulated by sugar signals.
Collapse
|
46
|
Li Y, Zhang S, Dong R, Wang L, Yao J, van Nocker S, Wang X. The grapevine homeobox gene VvHB58 influences seed and fruit development through multiple hormonal signaling pathways. BMC PLANT BIOLOGY 2019; 19:523. [PMID: 31775649 PMCID: PMC6882351 DOI: 10.1186/s12870-019-2144-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/18/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND The homeobox transcription factor has a diversity of functions during plant growth and development process. Previous transcriptome analyses of seed development in grape hybrids suggested that specific homeodomain transcription factors are involved in seed development in seedless cultivars. However, the molecular mechanism of homeobox gene regulating seed development in grape is rarely reported. RESULTS Here, we report that the grapevine VvHB58 gene, encoding a homeodomain-leucine zipper (HD-Zip I) transcription factor, participates in regulating fruit size and seed number. The VvHB58 gene was differentially expressed during seed development between seedless and seeded cultivars. Subcellular localization assays revealed that the VvHB58 protein was located in the nucleus. Transgenic expression of VvHB58 in tomato led to loss of apical dominance, a reduction in fruit pericarp expansion, reduced fruit size and seed number, and larger endosperm cells. Analysis of the cytosine methylation levels within the VvHB58 promoter indicated that the differential expression during seed development between seedless and seeded grapes may be caused by different transcriptional regulatory mechanisms rather than promoter DNA methylation. Measurements of five classic endogenous hormones and expression analysis of hormone-related genes between VvHB58 transgenic and nontransgenic control plants showed that expression of VvHB58 resulted in significant changes in auxin, gibberellin and ethylene signaling pathways. Additionally, several DNA methylation-related genes were expressed differentially during seed development stages in seedless and seeded grapes, suggesting changes in methylation levels during seed development may be associated with seed abortion. CONCLUSION VvHB58 has a potential function in regulating fruit and seed development by impacting multiple hormonal pathways. These results expand understanding of homeodomain transcription factors and potential regulatory mechanism of seed development in grapevine, and provided insights into molecular breeding for grapes.
Collapse
Affiliation(s)
- Yunduan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang China
| | - Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi China
| | - Ruzhuang Dong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi China
| | - Jin Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi China
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI USA
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi China
| |
Collapse
|
47
|
Li C, Zhao M, Ma X, Wen Z, Ying P, Peng M, Ning X, Xia R, Wu H, Li J. The HD-Zip transcription factor LcHB2 regulates litchi fruit abscission through the activation of two cellulase genes. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5189-5203. [PMID: 31173099 PMCID: PMC6793447 DOI: 10.1093/jxb/erz276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 05/30/2019] [Indexed: 05/05/2023]
Abstract
Cellulases play important roles in the shedding of plant organs; however, little is yet known about the functions of cellulase genes during the process of organ abscission. Abnormal fruitlet abscission is a serious problem in the production of litchi (Litchi chinensis), an economically important fruit widely grown in South Asia. In this study, two abscission-accelerating treatments (carbohydrate stress and application of ethephon) were evaluated in litchi fruitlets. Cell wall degradation and cell separation were clearly observed in the abscission zones of treated fruitlets, consistent with enhanced cellulase activities and reduced cellulose contents. The expression of two cellulase genes (LcCEL2 and LcCEL8) was strongly associated with abscission. Floral organs of transgenic Arabidopsis overexpressing LcCEL2 or LcCEL8 showed remarkably precocious abscission. Electrophoretic mobility shift assays and transient expression experiments demonstrated that a novel homeodomain-leucine zipper transcription factor, LcHB2, could directly bind to and activate HD-binding cis-elements in the LcCEL2 and LcCEL8 promoters. Our results provide new information regarding the transcriptional regulation of the cellulase genes responsible for cell wall degradation and cell separation during plant organ shedding, and raise the possibility of future manipulation of litchi fruitlet abscission by modulation of the activities of these two cellulases.
Collapse
Affiliation(s)
- Caiqin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xingshuai Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhenxi Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Peiyuan Ying
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Manjun Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiping Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Correspondence: or
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Correspondence: or
| |
Collapse
|
48
|
Li C, Ma X, Huang X, Wang H, Wu H, Zhao M, Li J. Involvement of HD-ZIP I transcription factors LcHB2 and LcHB3 in fruitlet abscission by promoting transcription of genes related to the biosynthesis of ethylene and ABA in litchi. TREE PHYSIOLOGY 2019; 39:1600-1613. [PMID: 31222320 DOI: 10.1093/treephys/tpz071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/07/2019] [Accepted: 06/11/2019] [Indexed: 05/28/2023]
Abstract
Abnormal fruitlet abscission is a limiting factor in the production of litchi, an economically important fruit in Southern Asia. Both ethylene and abscisic acid (ABA) induce organ abscission in plants. Although ACS/ACO and NCED genes are known to encode key enzymes required for ethylene and ABA biosynthesis, respectively, the transcriptional regulation of these genes is unclear in the process of plant organ shedding. Here, two polygalacturonase (PG) genes (LcPG1 and LcPG2) and two novel homeodomain-leucine zipper I transcription factors genes (LcHB2 and LcHB3) were identified as key genes associated with the fruitlet abscission in litchi. The expression of LcPG1 and LcPG2 was strongly associated with litchi fruitlet abscission, consistent with enhanced PG activity and reduced homogalacturonan content in fruitlet abscission zones (FAZs). The promoter activities of LcPG1/2 were enhanced by ethephon and ABA. In addition, the production of ethylene and ABA in fruitlets was significantly increased during fruit abscission. Consistently, expression of five genes (LcACO2, LcACO3, LcACS1, LcACS4 and LcACS7) related to ethylene biosynthesis and one gene (LcNCED3) related to ABA biosynthesis in FAZs were activated. Further, electrophoretic mobility shift assays and transient expression experiments demonstrated that both LcHB2 and LcHB3 could directly bind to the promoter of LcACO2/3, LcACS1/4/7 and LcNCED3 genes and activate their expression. Collectively, we propose that LcHB2/3 are involved in the litchi fruitlet abscission through positive regulation of ethylene and ABA biosynthesis.
Collapse
Affiliation(s)
- Caiqin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xingshuai Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xuming Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Huicong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
49
|
Liu W, Wang Y, Yu L, Jiang H, Guo Z, Xu H, Jiang S, Fang H, Zhang J, Su M, Zhang Z, Chen X, Chen X, Wang N. MdWRKY11 Participates in Anthocyanin Accumulation in Red-Fleshed Apples by Affecting MYB Transcription Factors and the Photoresponse Factor MdHY5. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8783-8793. [PMID: 31310107 DOI: 10.1021/acs.jafc.9b02920] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Red-fleshed apples are popular as a result of their high anthocyanin content. MdMYB10 and its homologues are known to be important regulators of anthocyanin synthesis in apple, but the roles of other transcription factors are not well-understood. Here, we explored the role of MdWRKY11 in regulating anthocyanin synthesis in apple flesh. Overexpression of MdWRKY11 in apple callus could significantly promote anthocyanin accumulation, and the expression of some MYB transcription factors and structural genes increased significantly. In binding analyses, MdWRKY11 bound to W-box cis-elements in the promoters of MdMYB10, MdMYB11, and MdUFGT. However, MdWRKY11 did not interact with MdMYB10, MdbHLH3, or MdWD40 proteins, the members of the MBW complex. Sequence analyses revealed that another W-box cis-element was present in the promoter of MdHY5 (encoding a photoresponse factor), and MdWRKY11 was able to bind to the promoter of MdHY5 and promote its activity. Our findings clarify the role of MdWRKY11 in anthocyanin synthesis in red-fleshed apple and imply that other novel genes may be involved in anthocyanin synthesis.
Collapse
Affiliation(s)
- Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Yicheng Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Lei Yu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Huiyan Jiang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Zhangwen Guo
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Haifeng Xu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Shenghui Jiang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Hongcheng Fang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Mengyu Su
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Xiaoliu Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| |
Collapse
|
50
|
Liu Y, Qi Y, Zhang A, Wu H, Liu Z, Ren X. Molecular cloning and functional characterization of AcGST1, an anthocyanin-related glutathione S-transferase gene in kiwifruit (Actinidia chinensis). PLANT MOLECULAR BIOLOGY 2019; 100:451-465. [PMID: 31079310 DOI: 10.1007/s11103-019-00870-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/01/2019] [Indexed: 05/11/2023]
Abstract
AcGST1, an anthocyanin-related GST, may functions as a carrier to transport anthocyanins from ER to tonoplast in kiwifruit. It was positively regulated by AcMYBF110 through directly binding to its promoter. Anthocyanins are synthesized in the cytoplasmic surface of the endoplasmic reticulum but accumulate predominantly in the vacuole. Previous studies in model and ornamental plants have suggested that a member of the glutathione S-transferase (GST) gene family is involved in sequestration of anthocyanins into the vacuole. However, little is known about anthocyanin-related GST protein in kiwifruit. Here, four putative AcGSTs were identified from the genome of the red-fleshed Actinidia chinensis cv 'Hongyang'. Expression analyses reveal only the expression of AcGST1 was highly consistent with anthocyanin accumulation. Molecular complementation of Arabidopsis tt19 demonstrates AcGST1 can complement the anthocyanin-less phenotype of tt19. Transient expression in Actinidia arguta fruits further confirms that AcGST1 is functional in anthocyanin accumulation in kiwifruit. In vitro assays show the recombinant AcGST1 increases the water solubility of cyanidin-3-O-galactoside (C3Gal) and cyanidin-3-O-xylo-galactoside (C3XG). We further show that AcGST1 protein is localized not only in the ER but also on the tonoplast, indicating AcGST1 (like AtTT19) may functions as a carrier protein to transport anthocyanins to the tonoplast in kiwifruit. Moreover, the promoter of AcGST1 can be activated by AcMYBF110, based on results from transient dual-luciferase assays and yeast one-hybrid assays. EMSAs show that AcMYBF110 binds directly to CAGTTG and CCGTTG motifs in the AcGST1 promoter. These results indicate that AcMYBF110 plays an important role in transcriptional regulation of AcGST1 and, therefore, in controlling accumulation of anthocyanins in kiwifruit.
Collapse
Affiliation(s)
- Yanfei Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yingwei Qi
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Aling Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanxiao Wu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|