1
|
Ushida T, Nosaka R, Nakatochi M, Kobayashi Y, Tano S, Fuma K, Matsuo S, Imai K, Sato Y, Hayakawa M, Kajiyama H, Kotani T. Effect of chorioamnionitis on postnatal growth in very preterm infants: a population-based study in Japan. Arch Gynecol Obstet 2025; 311:1321-1330. [PMID: 39354115 PMCID: PMC12033191 DOI: 10.1007/s00404-024-07757-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/21/2024] [Indexed: 10/03/2024]
Abstract
PURPOSE There is growing evidence that preterm infants born to mothers with chorioamnionitis (CAM) have increased risk of various neonatal morbidities and long-term neurological disorders; however, the effect of CAM on postnatal growth remains insufficiently investigated. This study evaluated the effect of histological CAM on postnatal growth trajectories in very preterm infants using a nationwide neonatal database in Japan. METHOD A multicenter retrospective study was conducted using clinical data of 4220 preterm neonates who weighed ≤ 1500 g and were born at < 32 weeks of gestation between 2003-2017 (CAM group: n = 2110; non-CAM group: n = 2110). Z-scores for height and weight were evaluated at birth and 3 years of age. Univariable and multivariable analyses were conducted to evaluate the effect of histological CAM on ΔZ-scores of height and weight during the first three years with a stratification by infant sex and the stage of histological CAM. RESULTS Multivariable analyses showed that histological CAM was associated with accelerated postnatal increase (ΔZ-score) in weight (β coefficient [95% confidence interval]; 0.10 [0.00 to 0.20]), but not in height among females (0.06 [- 0.04 to 0.15]) and not in height and weight among males (0.04 [- 0.04 to 0.12] and 0.02 [- 0.07 to 0.11], respectively). An interaction analysis demonstrated no significant difference in the effect of histological CAM on the ΔZ-scores of height and weight during the first three years between male and female infants (height, p = 0.81; weight p = 0.25). CONCLUSIONS Intrauterine exposure to maternal CAM contributes to accelerated postnatal weight gain in female preterm infants during the first three years.
Collapse
Affiliation(s)
- Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
- Division of Reproduction and Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan.
| | - Rena Nosaka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
- Anne Women's Clinic, Nagoya, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yumiko Kobayashi
- Data Science Division, Data Coordinating Center, Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Sho Tano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuya Fuma
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Seiko Matsuo
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
- Division of Reproduction and Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
2
|
Armario A, Nadal R, Fuentes S, Visa J, Belda X, Serrano S, Labad J. Prenatal immune activation in rats and adult exposure to inescapable shocks reveal sex-dependent effects on fear conditioning that might be relevant for schizophrenia. Psychiatry Res 2024; 342:116219. [PMID: 39388806 DOI: 10.1016/j.psychres.2024.116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
Prenatal infection is considered a relevant factor for neurodevelopmental alterations and psychiatric diseases. Administration of bacterial and viral components during pregnancy in rodents results in maternal immune activation (MIA), leading to schizophrenia-like neurochemical and behavioral changes. Despite some evidence for abnormal fear conditioning in schizophrenia, only a few animal studies have focused on this issue. Therefore, we addressed the impact of the administration of the viral mimetic polyI:C to pregnant Long-Evans rats on the adult offspring response to inescapable shocks (IS) and contextual fear conditioning. In males, polyI:C induced a greater endocrine (plasma ACTH) response to IS and both polyI:C and IS enhanced fear conditioning and generalization to a completely different novel environment (hole-board), with no additive effects, probably due to a ceiling effect. In contrast, a modest impact of polyI:C and a lower impact of IS on contextual fear conditioning and generalization was observed in females. Thus, the present results demonstrate that polyI:C dramatically affected fear response to IS in adult males and support the hypothesis that males are more sensitive than females to this treatment. This model might allow to explore neurobiological mechanisms underlying abnormal responsiveness to fear conditioning and stressors in schizophrenia.
Collapse
Affiliation(s)
- Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, Faculty of Biosciences, Department of Cellular Biology, Physiology and Imunology, Universitat Autònoma de Barcelona, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain.
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Deparment of Psychobiology and Methodology of Health Sciences, Faculty of Psychology, Universitat Autònoma de Barcelona, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain
| | - Silvia Fuentes
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Deparment of Psychobiology and Methodology of Health Sciences, Faculty of Psychology, Universitat Autònoma de Barcelona, Spain
| | - Joan Visa
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - Xavier Belda
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, Faculty of Biosciences, Department of Cellular Biology, Physiology and Imunology, Universitat Autònoma de Barcelona, Spain
| | - Sara Serrano
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, Faculty of Biosciences, Department of Cellular Biology, Physiology and Imunology, Universitat Autònoma de Barcelona, Spain
| | - Javier Labad
- Department of Mental Health and Addictions, Consorci Sanitari del Maresme, Mataró, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain
| |
Collapse
|
3
|
Hofsink N, Groenink L, Plösch T. The fetal programming effect of maternal immune activation (MIA) on the offspring's immune system. Semin Immunopathol 2024; 46:14. [PMID: 39212791 PMCID: PMC11364800 DOI: 10.1007/s00281-024-01023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The first 1000 days of life is a critical period of development in which adverse circumstances can have long-term consequences for the child's health. Maternal immune activation is associated with increased risk of neurodevelopmental disorders in the child. Aberrant immune responses have been reported in individuals with neurodevelopmental disorders. Moreover, lasting effects of maternal immune activation on the offspring's immune system have been reported. Taken together, this indicates that the effect of maternal immune activation is not limited to the central nervous system. Here, we explore the impact of maternal immune activation on the immune system of the offspring. We first describe the development of the immune system and provide an overview of reported alterations in the cytokine profiles, immune cell profiles, immune cell function, and immune induction in pre-clinical models. Additionally, we highlight recent research on the impact of maternal COVID-19 exposure on the neonatal immune system and the potential health consequences for the child. Our review shows that maternal immune activation alters the offspring's immune system under certain conditions, but the reported effects are conflicting and inconsistent. In general, epigenetic modifications are considered the mechanism for fetal programming. The available data was insufficient to identify specific pathways that may contribute to immune programming. As a consequence of the COVID-19 pandemic, more research now focuses on the possible health effects of maternal immune activation on the offspring. Future research addressing the offspring's immune response to maternal immune activation can elucidate specific pathways that contribute to fetal immune programming and the long-term health effects for the offspring.
Collapse
Affiliation(s)
- Naomi Hofsink
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Lucianne Groenink
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Carl von Ossietzky Universität Oldenburg School VI - School of Medicine and Health Sciences, Department of Paediatrics, Section of Neonatology, and Research Centre Neurosensory Science, Oldenburg, Germany
| |
Collapse
|
4
|
Korhonen L, Paul ER, Wåhlén K, Haring L, Vasar E, Vaheri A, Lindholm D. Multivariate analyses of immune markers reveal increases in plasma EN-RAGE in first-episode psychosis patients. Transl Psychiatry 2023; 13:326. [PMID: 37863883 PMCID: PMC10589203 DOI: 10.1038/s41398-023-02627-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023] Open
Abstract
Immune cells and cytokines are largely recognized as significant factors in the pathophysiology of neuropsychiatric disorders. The possible role of other blood cells such as leukocytes in events of acute psychosis is in contrast only emerging. To study blood-born markers in acute psychosis we here evaluated plasma proteins in drug-naive first-episode psychosis (FEP) patients and healthy controls using a multiplex proximity extension assay technique. We analyzed a panel of 92 immune markers and plasma samples from 60 FEP patients and 50 controls and evaluated the changes obtained using multivariate statistical methods followed by protein pathway analyses. Data showed that 11 proteins are significantly different between FEP patients and healthy controls We observed increases in pro-inflammatory proteins such as interleukin-6, oncostatin-M, and transforming growth factor-alpha in FEP patients compared with controls. Likewise, the extracellular newly identified RAGE-binding protein (EN-RAGE) that regulates the expression of various cytokines was also elevated in the plasma of FEP patients. The results indicate that neutrophil-derived EN-RAGE could play an important role during the early phase of acute psychosis by stimulating cytokines and the immune response targeting thereby likely also the brain vasculature.
Collapse
Affiliation(s)
- Laura Korhonen
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Biochemical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Department of Child and Adolescent Psychiatry, Linköping University, Linköping, Sweden Region Östergötland, Linköping, Sweden
| | - Elisabeth R Paul
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Karin Wåhlén
- Pain and Rehabilitation Center, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Liina Haring
- Institute of Clinical Medicine University of Tartu; Psychiatry Clinic of Tartu University Hospital, Tartu, Estonia
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, Tartu, 50411, Estonia
| | - Antti Vaheri
- Department of Virology, Medicum, University of Helsinki, 00290, Helsinki, Finland
| | - Dan Lindholm
- Department of Biochemical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden.
- Department of Biochemistry and Developmental Biology, Medicum, University of Helsinki, PO Box 63, FI-00014, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, FI-00290, Helsinki, Finland.
| |
Collapse
|
5
|
Santoni M, Sagheddu C, Serra V, Mostallino R, Castelli MP, Pisano F, Scherma M, Fadda P, Muntoni AL, Zamberletti E, Rubino T, Melis M, Pistis M. Maternal immune activation impairs endocannabinoid signaling in the mesolimbic system of adolescent male offspring. Brain Behav Immun 2023; 109:271-284. [PMID: 36746342 DOI: 10.1016/j.bbi.2023.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/09/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
Prenatal infections can increase the risk of developing psychiatric disorders such as schizophrenia in the offspring, especially when combined with other postnatal insults. Here, we tested, in a rat model of prenatal immune challenge by the viral mimic polyriboinosinic-polyribocytidilic acid, whether maternal immune activation (MIA) affects the endocannabinoid system and endocannabinoid-mediated modulation of dopamine functions. Experiments were performed during adolescence to assess i) the behavioral endophenotype (locomotor activity, plus maze, prepulse inhibition of startle reflex); ii) the locomotor activity in response to Δ9-Tetrahydrocannabinol (THC) and iii) the properties of ventral tegmental area (VTA) dopamine neurons in vivo and their response to THC; iv) endocannabinoid-mediated synaptic plasticity in VTA dopamine neurons; v) the expression of cannabinoid receptors and enzymes involved in endocannabinoid synthesis and catabolism in mesolimbic structures and vi) MIA-induced neuroinflammatory scenario evaluated by measurements of levels of cytokine and neuroinflammation markers. We revealed that MIA offspring displayed an altered locomotor activity in response to THC, a higher bursting activity of VTA dopamine neurons and a lack of response to cumulative doses of THC. Consistently, MIA adolescence offspring showed an enhanced 2-arachidonoylglycerol-mediated synaptic plasticity and decreased monoacylglycerol lipase activity in mesolimbic structures. Moreover, they displayed a higher expression of cyclooxygenase 2 (COX-2) and ionized calcium-binding adaptor molecule 1 (IBA-1), associated with latent inflammation and persistent microglia activity. In conclusion, we unveiled neurobiological mechanisms whereby inflammation caused by MIA influences the proper development of endocannabinoid signaling that negatively impacts the dopamine system, eventually leading to psychotic-like symptoms in adulthood.
Collapse
Affiliation(s)
- Michele Santoni
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Claudia Sagheddu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Valeria Serra
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Rafaela Mostallino
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Maria Paola Castelli
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Francesco Pisano
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Maria Scherma
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy
| | - Erica Zamberletti
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
| | - Miriam Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy; Unit of Clinical Pharmacology, University Hospital, Cagliari, Italy.
| |
Collapse
|
6
|
Karanikas E. The immune-stress/endocrine-redox-metabolic nature of psychosis' etiopathology; focus on the intersystemic pathways interactions. Neurosci Lett 2023; 794:137011. [PMID: 36513162 DOI: 10.1016/j.neulet.2022.137011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
The evidence supporting the involvement of a number of systems in the neurobiological etiopathology of psychosis has recently grown exponentially. Indeed, the focus of research has changed from measuring solely neurotransmitters to estimating parameters from fields like immunity, stress/endocrine, redox, and metabolism. Yet, little is known regarding the exact role of each one of these fields on the formation of not only the brain neuropathological substrate in psychosis but also the associated general systemic pathology, in terms of causality directions. Research has shown deviations in the levels and/or function of basic effector molecules of the aforementioned fields namely cytokines, pro-/anti- oxidants, glucocorticoids, catecholamines, glucose, and lipids metabolites as well as kynurenines, in psychosis. Yet the evidence regarding their impact on neurotransmitters is minimal and the findings concerning these systems' interactions in the psychotic context are even more dispersed. The present review aims to draw holistically the frame of the hitherto known "players" in the field of psychosis' cellular pathobiology, with a particular focus on their in-between interactions.
Collapse
Affiliation(s)
- Evangelos Karanikas
- Department of Psychiatry, 424 General Military Hospital, Thessaloniki, Greece.
| |
Collapse
|
7
|
Distinct effects of interleukin-6 and interferon-γ on differentiating human cortical neurons. Brain Behav Immun 2022; 103:97-108. [PMID: 35429607 PMCID: PMC9278892 DOI: 10.1016/j.bbi.2022.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/29/2022] [Accepted: 04/10/2022] [Indexed: 01/17/2023] Open
Abstract
Translational evidence suggests that cytokines involved in maternal immune activation (MIA), such as interleukin-6 (IL-6) and interferon-γ (IFN-γ), can cross the placenta, injure fetal brain, and predispose to neuropsychiatric disorders. To elaborate developmental neuronal sequelae of MIA, we differentiated human pluripotent stem cells to cortical neurons over a two-month period, exposing them to IL-6 or IFN-γ. IL-6 impacted expression of genes regulating extracellular matrix, actin cytoskeleton and TGF-β signaling while IFN-γ impacted genes regulating antigen processing, major histocompatibility complex and endoplasmic reticulum biology. IL-6, but not IFN-γ, altered mitochondrial respiration while IFN-γ, but not IL-6, induced reduction in dendritic spine density. Pre-treatment with folic acid, which has known neuroprotective and anti-inflammatory properties, ameliorated IL-6 effects on mitochondrial respiration and IFN-γ effects on dendritic spine density. These findings suggest distinct mechanisms for how fetal IL-6 and IFN-γ exposure influence risk for neuropsychiatric disorders, and how folic acid can mitigate such risk.
Collapse
|
8
|
Choy KHC, Luo JK, Wannan CMJ, Laskaris L, Merritt A, Syeda WT, Sexton PM, Christopoulos A, Pantelis C, Nithianantharajah J. Cognitive behavioral markers of neurodevelopmental trajectories in rodents. Transl Psychiatry 2021; 11:556. [PMID: 34718322 PMCID: PMC8557208 DOI: 10.1038/s41398-021-01662-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Between adolescence and adulthood, the brain critically undergoes maturation and refinement of synaptic and neural circuits that shape cognitive processing. Adolescence also represents a vulnerable period for the onset of symptoms in neurodevelopmental psychiatric disorders. Despite the wide use of rodent models to unravel neurobiological mechanisms underlying neurodevelopmental disorders, there is a surprising paucity of rigorous studies focusing on normal cognitive-developmental trajectories in such models. Here, we sought to behaviorally capture maturational changes in cognitive trajectories during adolescence and into adulthood in male and female mice using distinct behavioral paradigms. C57 BL/6J mice (4.5, 6, and 12 weeks of age) were assessed on three behavioral paradigms: drug-induced locomotor hyperactivity, prepulse inhibition, and a novel validated version of a visuospatial paired-associate learning touchscreen task. We show that the normal maturational trajectories of behavioral performance on these paradigms are dissociable. Responses in drug-induced locomotor hyperactivity and prepulse inhibition both displayed a 'U-shaped' developmental trajectory; lower during mid-adolescence relative to early adolescence and adulthood. In contrast, visuospatial learning and memory, memory retention, and response times indicative of motivational processing progressively improved with age. Our study offers a framework to investigate how insults at different developmental stages might perturb normal trajectories in cognitive development. We provide a brain maturational approach to understand resilience factors of brain plasticity in the face of adversity and to examine pharmacological and non-pharmacological interventions directed at ameliorating or rescuing perturbed trajectories in neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- K. H. Christopher Choy
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC Australia
| | - Jiaqi K. Luo
- grid.418025.a0000 0004 0606 5526The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Florey Neuroscience, University of Melbourne, Melbourne, VIC Australia
| | - Cassandra M. J. Wannan
- grid.1008.90000 0001 2179 088XMelbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, VIC Australia
| | - Liliana Laskaris
- grid.1008.90000 0001 2179 088XMelbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, VIC Australia
| | - Antonia Merritt
- grid.1008.90000 0001 2179 088XMelbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, VIC Australia
| | - Warda T. Syeda
- grid.1008.90000 0001 2179 088XMelbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, VIC Australia
| | - Patrick M. Sexton
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia. .,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.
| | - Christos Pantelis
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia. .,Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia.
| | - Jess Nithianantharajah
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia. .,Department of Florey Neuroscience, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Haddad FL, Lu L, Baines KJ, Schmid S. Sensory filtering disruption caused by poly I:C - Timing of exposure and other experimental considerations. Brain Behav Immun Health 2021; 9:100156. [PMID: 34589898 PMCID: PMC8474281 DOI: 10.1016/j.bbih.2020.100156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023] Open
Abstract
Maternal immune activation (MIA) in response to infection during pregnancy has been linked through various epidemiological and preclinical studies to an increased risk of neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia in exposed offspring. Sensory filtering disruptions occur in both of these disorders and are typically measured using the acoustic startle response in both humans and rodents. Our study focuses on characterizing the baseline reactivity, habituation and prepulse inhibition (PPI) of the acoustic startle response following exposure to MIA. We induced MIA using polyinosinic: polycytidylic acid (poly I:C) at gestational day (GD) 9.5 or 14.5, and we tested sensory filtering phenotypes in adolescent and adult offspring. Our results show that startle reactivity was robustly increased in adult GD9.5 but not GD14.5 poly I:C offspring. In contrast to some previous studies, we found no consistent changes in short-term habituation, long-term habituation or prepulse inhibition of startle. Our study highlights the importance of MIA exposure timing and discusses sensory filtering phenotypes as they relate to ASD, schizophrenia and the poly I:C MIA model. Moreover, we analyze and discuss the potential impact of between- and within-litter variability on behavioural findings in poly I:C studies.
Collapse
Affiliation(s)
- Faraj L Haddad
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, Canada
| | - Lu Lu
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, Canada.,Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Kelly J Baines
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, Canada
| | - Susanne Schmid
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, Canada
| |
Collapse
|
10
|
Hameete BC, Fernández-Calleja JM, de Groot MW, Oppewal TR, Tiemessen MM, Hogenkamp A, de Vries RB, Groenink L. The poly(I:C)-induced maternal immune activation model; a systematic review and meta-analysis of cytokine levels in the offspring. Brain Behav Immun Health 2021; 11:100192. [PMID: 34589729 PMCID: PMC8474626 DOI: 10.1016/j.bbih.2020.100192] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
The maternal polyinosinic:polycytidylic acid (poly(I:C)) animal model is frequently used to study how maternal immune activation may impact neuro development in the offspring. Here, we present the first systematic review and meta-analysis on the effects of maternal poly(I:C) injection on immune mediators in the offspring and provide an openly accessible systematic map of the data including methodological characteristics. Pubmed and EMBASE were searched for relevant publications, yielding 45 unique papers that met inclusion criteria. We extracted data on immune outcomes and methodological characteristics, and assessed the risk of bias. The descriptive summary showed that most studies reported an absence of effect, with an equal number of studies reporting an increase or decrease in the immune mediator being studied. Meta-analysis showed increased IL-6 concentrations in the offspring of poly(I:C) exposed mothers. This effect appeared larger prenatally than post-weaning. Furthermore, poly(I:C) administration during mid-gestation was associated with higher IL-6 concentrations in the offspring. Maternal poly(I:C) induced changes in IL-1β, Il-10 and TNF-α concentrations were small and could not be associated with age of offspring, gestational period or sampling location. Finally, quality of reporting of potential measures to minimize bias was low, which stresses the importance of adherence to publication guidelines. Since neurodevelopmental disorders in humans tend to be associated with lifelong changes in cytokine concentrations, the absence of these effects as identified in this systematic review may suggest that combining the model with other etiological factors in future studies may provide further insight in the mechanisms through which maternal immune activation affects neurodevelopment. Long-term effects of maternal poly(I:C) on immune mediators in the offspring appear limited. Prenatal measurements and mid gestation poly(I:C) injection are associated with increases in IL-6 concentrations. Variety in methodological conduct hampers identification of key elements that affect cytokine concentrations. The quality of reporting of potential measures to minimize bias is poor.
Collapse
Affiliation(s)
- Bart C. Hameete
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
| | - José M.S. Fernández-Calleja
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
| | - Martje W.G.D.M. de Groot
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
| | - Titia Rixt Oppewal
- University College Utrecht (UCU), Campusplein 1, Utrecht, 3584 ED, the Netherlands
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, the Netherlands
| | - Machteld M. Tiemessen
- Research & Innovation, GCoE Immunology, Danone Nutricia Research, Uppsalalaan 12, Utrecht, 3584 CT, the Netherlands
| | - Astrid Hogenkamp
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
| | - Rob B.M. de Vries
- SYstematic Review Center for Laboratory (Animal) Experimentation, Department for Health Evidence, Radboud University Medical Center, Geert Grooteplein zuid 10, Nijmegen, 6525 GA, the Netherlands
| | - Lucianne Groenink
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
- Corresponding author.
| |
Collapse
|
11
|
Reyes-Lagos JJ, Abarca-Castro EA, Echeverría JC, Mendieta-Zerón H, Vargas-Caraveo A, Pacheco-López G. A Translational Perspective of Maternal Immune Activation by SARS-CoV-2 on the Potential Prenatal Origin of Neurodevelopmental Disorders: The Role of the Cholinergic Anti-inflammatory Pathway. Front Psychol 2021; 12:614451. [PMID: 33868085 PMCID: PMC8044741 DOI: 10.3389/fpsyg.2021.614451] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
The emergent Coronavirus Disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) could produce a maternal immune activation (MIA) via the inflammatory response during gestation that may impair fetal neurodevelopment and lead to postnatal and adulthood mental illness and behavioral dysfunctions. However, so far, limited evidence exists regarding long-term physiological, immunological, and neurodevelopmental modifications produced by the SARS-CoV-2 in the human maternal-fetal binomial and, particularly, in the offspring. Relevant findings derived from epidemiological and preclinical models show that a MIA is indeed linked to an increased risk of neurodevelopmental disorders in the offspring. We hypothesize that a gestational infection triggered by SARS-CoV-2 increases the risks leading to neurodevelopmental disorders of the newborn, which can affect childhood and the long-term quality of life. In particular, disruption of either the maternal or the fetal cholinergic anti-inflammatory pathway (CAP) could cause or exacerbate the severity of COVID-19 in the maternal-fetal binomial. From a translational perspective, in this paper, we discuss the possible manifestation of a MIA by SARS-CoV-2 and the subsequent neurodevelopmental disorders considering the role of the fetal-maternal cytokine cross-talk and the CAP. Specifically, we highlight the urgent need of preclinical studies as well as multicenter and international databanks of maternal-fetal psychophysiological data obtained pre-, during, and post-infection by SARS-CoV-2 from pregnant women and their offspring.
Collapse
Affiliation(s)
| | - Eric Alonso Abarca-Castro
- Multidisciplinary Research Center in Education (CIME), Autonomous University of the State of Mexico (UAEMex), Toluca, Mexico
| | - Juan Carlos Echeverría
- Basic Sciences and Engineering Division, Campus Iztapalapa, Metropolitan Autonomous University (UAM), Mexico City, Mexico
| | - Hugo Mendieta-Zerón
- Faculty of Medicine, Autonomous University of the State of Mexico (UAEMex), Toluca, Mexico
- Health Institute of the State of Mexico (ISEM), “Mónica Pretelini Sáenz” Maternal-Perinatal Hospital, Toluca, Mexico
| | - Alejandra Vargas-Caraveo
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomous University (UAM), Lerma, Mexico
| | - Gustavo Pacheco-López
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomous University (UAM), Lerma, Mexico
| |
Collapse
|
12
|
Cytokine changes associated with the maternal immune activation (MIA) model of autism: A penalized regression approach. PLoS One 2020; 15:e0231609. [PMID: 32760152 PMCID: PMC7410235 DOI: 10.1371/journal.pone.0231609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/22/2020] [Indexed: 01/01/2023] Open
Abstract
Maternal immune activation (MIA) during pregnancy induces a cytokine storm that alters neurodevelopment and behavior in the progeny. In humans, MIA increases the odds of developing neuropsychiatric disorders such as autism spectrum disorder (ASD). In mice, MIA can be induced by injecting the viral mimic polyinosinic:polycytidylic acid (poly(I:C)) to pregnant dams. Although the murine model of MIA has been extensively studied, it is not clear whether MIA results in cytokine changes in the progeny at early postnatal stages. Further, the murine model of MIA suffers from a lack of reproducibility and high inter-individual variability. Multivariable (MV) statistical analysis is widely used in human studies to control for confounders and covariates such as sex, age and exposure to environmental factors. We therefore reasoned that animal studies in general and studies on the MIA model in particular could benefit from MV analyses to account for complex phenotype interactions and high inter-individual variability. Here, we used MV statistical analysis to identify cytokines associated with MIA after adjustment for covariates. Besides confirming the association between previously described variables and MIA, we identified new cytokines that could play a role in behavioural alterations in the progeny during the early postnatal period.
Collapse
|
13
|
De Sousa RAL, Improta-Caria AC, Jesus-Silva FMD, Magalhães CODE, Freitas DA, Lacerda ACR, Mendonça VA, Cassilhas RC, Leite HR. High-intensity resistance training induces changes in cognitive function, but not in locomotor activity or anxious behavior in rats induced to type 2 diabetes. Physiol Behav 2020; 223:112998. [PMID: 32505787 DOI: 10.1016/j.physbeh.2020.112998] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 03/12/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
Type 2 diabetes (T2D) is a metabolic disorder that can lead to cognitive decline through impairment of insulin signaling. Resistance training, a type of physical exercise, is a non-pharmacological approach used to improve insulin resistance in T2D. The aim of our study was to evaluate the effects of high-intensity resistance training (HIRT) over cognitive function, locomotor activity, and anxious behavior in rats induced to T2D. Thirty young adult male wistar rats were distributed into 3 groups (n = 10): Control; dexamethasone (D); and dexamethasone + exercise (DE), that performed the HIRT during 4 weeks. Blood glucose, water intake, and total body fat were measured. Locomotor activity, and anxious behavior where evaluated through the open field task. Cognitive function was assessed through the novel object recognition task. Insulin resistance and neuronal death were evaluated through western blot analysis. Rats induced to T2D had higher blood glucose levels, and consumed more water when compared to control group, but DE had better blood glucose levels than D. Total body fat was reduced in DE compared to D. Locomotor activity, and anxious behavior were not significantly altered. T2D rats which performed HIRT maintained cognitive function, while those induced to T2D that did not exercise developed cognitive decline. DE group showed a reduction in the inhibition of the activation of hippocampal IRS-1 and higher expression of GSk3β phosphorylated in serine compared to D group, revealing insulin signaling impairment, and neuronal death were identified in the hippocampus of D group. Lifestyle intervention through the regular practice of HIRT plays a fundamental role in the treatment of T2D preventing cognitive decline.
Collapse
Affiliation(s)
- Ricardo Augusto Leoni De Sousa
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF), UFVJM, Sociedade Brasileira de Fisiologia, Diamantina, MG, Brazil.
| | | | | | - Caique Olegário Diniz E Magalhães
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF), UFVJM, Sociedade Brasileira de Fisiologia, Diamantina, MG, Brazil
| | - Daniel Almeida Freitas
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF), UFVJM, Sociedade Brasileira de Fisiologia, Diamantina, MG, Brazil
| | - Ana Cristina Rodrigues Lacerda
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF), UFVJM, Sociedade Brasileira de Fisiologia, Diamantina, MG, Brazil
| | - Vanessa Amaral Mendonça
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF), UFVJM, Sociedade Brasileira de Fisiologia, Diamantina, MG, Brazil
| | - Ricardo Cardoso Cassilhas
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF), UFVJM, Sociedade Brasileira de Fisiologia, Diamantina, MG, Brazil
| | - Hércules Ribeiro Leite
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF), UFVJM, Sociedade Brasileira de Fisiologia, Diamantina, MG, Brazil
| |
Collapse
|
14
|
Haddad FL, Patel SV, Schmid S. Maternal Immune Activation by Poly I:C as a preclinical Model for Neurodevelopmental Disorders: A focus on Autism and Schizophrenia. Neurosci Biobehav Rev 2020; 113:546-567. [PMID: 32320814 DOI: 10.1016/j.neubiorev.2020.04.012] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 01/28/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Maternal immune activation (MIA) in response to a viral infection during early and mid-gestation has been linked through various epidemiological studies to a higher risk for the child to develop autism or schizophrenia-related symptoms.. This has led to the establishment of the pathogen-free poly I:C-induced MIA animal model for neurodevelopmental disorders, which shows relatively high construct and face validity. Depending on the experimental variables, particularly the timing of poly I:C administration, different behavioural and molecular phenotypes have been described that relate to specific symptoms of neurodevelopmental disorders such as autism spectrum disorder and/or schizophrenia. We here review and summarize epidemiological evidence for the effects of maternal infection and immune activation, as well as major findings in different poly I:C MIA models with a focus on poly I:C exposure timing, behavioural and molecular changes in the offspring, and characteristics of the model that relate it to autism spectrum disorder and schizophrenia.
Collapse
Affiliation(s)
- Faraj L Haddad
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| | - Salonee V Patel
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| | - Susanne Schmid
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
15
|
Sarker G, Litwan K, Kastli R, Peleg-Raibstein D. Maternal overnutrition during critical developmental periods leads to different health adversities in the offspring: relevance of obesity, addiction and schizophrenia. Sci Rep 2019; 9:17322. [PMID: 31754139 PMCID: PMC6872534 DOI: 10.1038/s41598-019-53652-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
Maternal overnutrition during sensitive periods of early development increases the risk for obesity and neuropsychiatric disorders later in life. However, it still remains unclear during which phases of early development the offspring is more vulnerable. Here, we investigate the effects of maternal high-fat diet (MHFD) at different stages of pre- or postnatal development and characterize the behavioral, neurochemical and metabolic phenotypes. We observe that MHFD exposure at pre-conception has no deleterious effects on the behavioral and metabolic state of the offspring. Late gestational HFD exposure leads to more prominent addictive-like behaviors with reduced striatal dopamine levels compared to early gestational HFD. Conversely, offspring exposed to MHFD during lactation display the metabolic syndrome and schizophrenia-like phenotype. The latter, is manifested by impaired sensory motor gating, and latent inhibition as well as enhanced sensitivity to amphetamine. These effects are accompanied by higher striatal dopamine levels. Together, our data suggest that MHFD exposure during specific stages of development leads to distinct neuropathological alterations that determine the severity and nature of poor health outcome in adulthood, which may provide insight in identifying effective strategies for early intervention.
Collapse
Affiliation(s)
- Gitalee Sarker
- Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, 8603, Switzerland.,Department of Physiology, Anatomy and Genetics University of Oxford, Sherrington Building, Parks Road, OX1 3PT, Oxford, United Kingdom
| | - Kathrin Litwan
- Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, 8603, Switzerland
| | - Rahel Kastli
- Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, 8603, Switzerland
| | - Daria Peleg-Raibstein
- Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, 8603, Switzerland.
| |
Collapse
|
16
|
Osborne AL, Solowij N, Babic I, Lum JS, Huang XF, Newell KA, Weston-Green K. Cannabidiol improves behavioural and neurochemical deficits in adult female offspring of the maternal immune activation (poly I:C) model of neurodevelopmental disorders. Brain Behav Immun 2019; 81:574-587. [PMID: 31326506 DOI: 10.1016/j.bbi.2019.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
Cognitive impairment is a major source of disability in schizophrenia and current antipsychotic drugs (APDs) have minimal efficacy for this symptom domain. Cannabidiol (CBD), the major non-intoxicating component of Cannabis sativa L., exhibits antipsychotic and neuroprotective properties. We recently reported the effects of CBD on cognition in male offspring of a maternal immune activation (polyinosinic-polycytidilic acid (poly I:C)) model relevant to the aetiology of schizophrenia; however, the effects of CBD treatment in females are unknown. Sex differences are observed in the onset of schizophrenia symptoms and response to APD treatment. Furthermore, the endogenous cannabinoid system, a direct target of CBD, is sexually dimorphic in humans and rodents. Therefore, the present work aimed to assess the therapeutic impact of CBD treatment on behaviour and neurochemical signalling markers in female poly I:C offspring. Time-mated pregnant Sprague-Dawley rats (n = 16) were administered poly I:C (4 mg/kg; i.v.) or saline (control) on gestational day 15. From postnatal day 56, female offspring received CBD (10 mg/kg, i.p.) or vehicle treatment for approximately 3 weeks. Following 2 weeks of CBD treatment, offspring underwent behavioural testing, including the novel object recognition, rewarded alternation T-maze and social interaction tests to assess recognition memory, working memory and sociability, respectively. After 3 weeks of CBD treatment, the prefrontal cortex (PFC) and hippocampus (HPC) were collected to assess effects on endocannabinoid, glutamatergic and gamma-aminobutyric acid (GABA) signalling markers. CBD attenuated poly I:C-induced deficits in recognition memory, social interaction and glutamatergic N-methyl-d-aspartate receptor (NMDAR) binding in the PFC of poly I:C offspring. Working memory performance was similar between treatment groups. CBD also increased glutamate decarboxylase 67, the rate-limiting enzyme that converts glutamate to GABA, and parvalbumin protein levels in the HPC. In contrast to the CBD treatment effects observed in poly I:C offspring, CBD administration to control rats reduced social interaction, cannabinoid CB1 receptor and NMDAR binding density in the PFC, suggesting that CBD administration to healthy rats may have negative consequences on social behaviour and brain maturation in adulthood. Overall, the findings of this study support the therapeutic benefits of CBD on recognition memory and sociability in female poly I:C offspring, and provide insight into the neurochemical changes that may underlie the therapeutic benefits of CBD in the poly I:C model.
Collapse
Affiliation(s)
- Ashleigh L Osborne
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nadia Solowij
- School of Psychology, Faculty of Social Sciences, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Ilijana Babic
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra and Shoalhaven Local Health District, Wollongong, NSW 2500, Australia
| | - Jeremy S Lum
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Kelly A Newell
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Katrina Weston-Green
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
17
|
Langhans W. Serendipity and spontaneity - Critical components in 40 years of academia. Physiol Behav 2019; 204:76-85. [PMID: 30753847 DOI: 10.1016/j.physbeh.2019.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 10/27/2022]
Abstract
I was flattered and felt tremendously honored to receive the 2018 Distinguished Career Award (DCA) from SSIB, the society that I always considered my scientific home, my family. Preparing the award lecture, I reflected about defining features of my career. This paper summarizes this very personal retrospective. As you will read, serendipity and more or less spontaneous decisions; i.e., some luck to be in the right place at the right time, and spontaneity to grab an opportunity when it presented itself, played a major role, and not necessarily a thorough analysis of my life situation at various junctions of my career path. Luck also often had the name of a fantastic tutor or mentor, or came in the form of enlightening discussions with a friend. Science is teamwork, which emphasizes how important collaborators, post-docs, students and technicians are. Although deep thinking was not necessarily crucial for my career path, a thorough examination is of course necessary when analyzing data, which were often most important when they did not confirm my hypothesis. Science is also hard work considering how much time one spends, but it never seemed like work to me because I had always this desire to find out how things in the organism work, and I always felt privileged to be able to pursue my "hobby" and even get a decent pay for it. In short, being a scientist is probably one of the most rewarding professional activities that life can offer.
Collapse
Affiliation(s)
- Wolfgang Langhans
- Physiology and Behavior Laboratory, Department of Health Sciences and Technology, ETH Zurich, Schorenstr. 16, 8603 Schwerzenbach, Switzerland.
| |
Collapse
|
18
|
Fang X, Wang Y, Chen Y, Ren J, Zhang C. Association between IL-6 and metabolic syndrome in schizophrenia patients treated with second-generation antipsychotics. Neuropsychiatr Dis Treat 2019; 15:2161-2170. [PMID: 31534339 PMCID: PMC6681158 DOI: 10.2147/ndt.s202159] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Second-generation antipsychotics (SGAs) have a high risk of causing metabolic syndrome (MetS). There is accumulating evidence supporting the fact that the activation of inflammatory pathway contributes to the development of MetS and further aggravates cognitive impairment. This study aimed to investigate the relationship between interleukin-6 (IL-6), cognitive function, and MetS in schizophrenia patients treated with SGAs. METHODS One hundred and seventy-four patients with schizophrenia using SGAs were divided into MetS and non-MetS group, based on the criteria of the National Cholesterol Education Program's Adult Treatment Panel III. Cognitive function was measured using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). A total of 138 patients and 29 healthy controls were examined in the plasma IL-6 levels. RESULTS The prevalence of MetS in schizophrenia patients treated with SGAs was 33% in this study. There were no significant differences in cognitive functions (both RBANS total score and subscale score) between MetS and non-Mets patients (P>0.05). Patients with MetS had higher plasma levels of IL-6 compared to non-MetS patients (P=0.019). However, such difference was only found in male patients (male: P=0.012; female: P=0.513). The partial correlational analysis further showed that IL-6 levels were notably negative related to the HDL levels in male schizophrenia patients after age, years of education, body mass index (BMI), age of onset, total disease course, and equal dose of olanzapine were controlled (male: P=0.009; female: P=0.450). In addition, the multiple regression analysis (stepwise model) performed in the male patient subgroup showed that IL-6 (beta =-0.283, t=-2.492, P=0.015) was an independent contributor to the HDL levels. However, the IL-6 was not an independent contributor to the HDL levels in female patients. CONCLUSION Our findings provide evidence suggesting that the immune-inflammatory effect of IL-6 on SGAs-induced MetS may be in a gender manner.
Collapse
Affiliation(s)
- Xinyu Fang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yewei Wang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yan Chen
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Juanjuan Ren
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
19
|
Bergdolt L, Dunaevsky A. Brain changes in a maternal immune activation model of neurodevelopmental brain disorders. Prog Neurobiol 2018; 175:1-19. [PMID: 30590095 DOI: 10.1016/j.pneurobio.2018.12.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022]
Abstract
The developing brain is sensitive to a variety of insults. Epidemiological studies have identified prenatal exposure to infection as a risk factor for a range of neurological disorders, including autism spectrum disorder and schizophrenia. Animal models corroborate this association and have been used to probe the contribution of gene-environment interactions to the etiology of neurodevelopmental disorders. Here we review the behavior and brain phenotypes that have been characterized in MIA offspring, including the studies that have looked at the interaction between maternal immune activation and genetic risk factors for autism spectrum disorder or schizophrenia. These phenotypes include behaviors relevant to autism, schizophrenia, and other neurological disorders, alterations in brain anatomy, and structural and functional neuronal impairments. The link between maternal infection and these phenotypic changes is not fully understood, but there is increasing evidence that maternal immune activation induces prolonged immune alterations in the offspring's brain which could underlie epigenetic alterations which in turn may mediate the behavior and brain changes. These concepts will be discussed followed by a summary of the pharmacological interventions that have been tested in the maternal immune activation model.
Collapse
Affiliation(s)
- Lara Bergdolt
- University of Nebraska Medical Center, Neurological Sciences, 985960 Nebraska Medical Center, 68105, Omaha, NE, United States
| | - Anna Dunaevsky
- University of Nebraska Medical Center, Neurological Sciences, 985960 Nebraska Medical Center, 68105, Omaha, NE, United States.
| |
Collapse
|
20
|
Burdick Sanchez NC, Carroll JA, Arthingon JD, Lancaster PA. Exposure to lipopolysaccharide in utero alters the postnatal metabolic response in heifers. J Anim Sci 2018; 95:5176-5183. [PMID: 29293779 DOI: 10.2527/jas2016.0885] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was designed to determine the effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal metabolic response to an LPS challenge in beef heifers. Pregnant, crossbred cows ( = 50) were assigned to a prenatal immune stimulation (PIS; = 25; administered 0.1 µg/kg BW LPS subcutaneously 233 ± 15d of gestation) or saline treatment group (Control; = 25). Birth and weaning BW of calves were collected. There was not (> 0.05) a treatment × gender interaction for birth weight or 205-d adjusted weaning BW. Treatment did not affect (> 0.05) birth BW, but steers and heifers of PIS cows had greater ( < 0.02) 205-d adjusted weaning BW than offspring from Control cows. From the 2 prenatal treatment groups, heifer calves ( = 12 PIS, 11 Control) were identified at weaning (238 ± 15 d of age) to subsequently receive an LPS challenge. On d 0, heifers were fitted with indwelling jugular catheters and were moved into individual pens. On d 1, heifers (fed at 0600 h) were challenged i.v. with LPS (0.5 µg/kg BW) at 0 h (1000 h). Blood samples were collected at 30-min intervals from -2 to 8 h and again at 24 h relative to the LPS challenge. There was a treatment × time interaction ( < 0.01) for cortisol; PIS heifers had greater cortisol from 4 to 6.5 h post-LPS challenge ( < 0.001). There was a treatment × time interaction ( = 0.04) for serum glucose such that glucose was greater ( = 0.01) in PIS than Control heifers at 0.5 h, but was greater in Control than PIS heifers at 2, 4.5, and 7 h post-LPS challenge. This resulted in overall time ( < 0.01) and treatment ( < 0.01) effects such that Control heifers had greater glucose concentrations than PIS heifers. There was a tendency ( = 0.10) for a treatment × time interaction for serum NEFA, such that NEFA was greater in Control than PIS heifers at -2, -1.5, and 7 h relative to the LPS challenge ( ≤ 0.02). Also, there were time ( < 0.01) and treatment effects ( < 0.01) for NEFA with Control heifers having greater NEFA than PIS heifers. Serum BUN was affected by a treatment × time interaction ( < 0.01). Concentrations of BUN were greater in PIS heifers from -1.5 to -1 h, 1 to 2 h, at 4 h, and from 5 to 24 h relative to the LPS challenge. These results demonstrate postnatal growth and the metabolic responses of weaned beef calves can be significantly altered with a single exposure to LPS in utero.
Collapse
|
21
|
Richetto J, Polesel M, Weber-Stadlbauer U. Effects of light and dark phase testing on the investigation of behavioural paradigms in mice: Relevance for behavioural neuroscience. Pharmacol Biochem Behav 2018; 178:19-29. [PMID: 29782942 DOI: 10.1016/j.pbb.2018.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/07/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023]
Abstract
Different timing and light phases are critical factors in behavioural neuroscience, which can greatly affect the experimental outcomes of the performed tests. Despite the fact that time of testing is one of the most common factors that varies across behavioural laboratories, knowledge about the consequences of testing time on behavioural readouts is limited. Thus, in this study we systematically assessed the effect of this factor on the readout of a variety of elementary and recurrent behavioural paradigms in C57Bl/6 mice. Furthermore, we investigated potential neuronal correlates of this phenomenon by analysing how testing time influences the expression pattern of genes relevant for neuronal activation functions and the control of brain circadian rhythms. We show that animals tested in the light phase display reduced social approach behaviour and sensorimotor gating and increased locomotor activity, whereas anxiety-related behaviour and working memory are not affected. In addition, animals tested in the light phase also exhibit increased locomotor response to systemic amphetamine treatment, which is paralleled by alterations in the expression patterns of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the Nucleus Accumbens (NAc) and/or Midbrain (Mid). Lastly, we observed that neuronal activation, indexed by the gene expression levels of cFos, was increased in the NAc and Mid of animals tested during the light phase. Our data thus suggest that daily alterations in gene expression in mesolimbic brain structures might be involved in the different behavioural responses of mice tested in the light- versus the dark-phase. At the same time, our study adds further weight to the notion that the specific timing of testing can indeed strongly affect the readout of a given test. As comparison and reproducibility of findings is pivotal in science, experimental protocols should be clarified in detail to allow appropriate data comparison across different laboratories.
Collapse
Affiliation(s)
- Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.
| | | | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| |
Collapse
|
22
|
Minichino A, Ando' A, Francesconi M, Salatino A, Delle Chiaie R, Cadenhead K. Investigating the link between drug-naive first episode psychoses (FEPs), weight gain abnormalities and brain structural damages: Relevance and implications for therapy. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:9-22. [PMID: 28363765 DOI: 10.1016/j.pnpbp.2017.03.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
Evidence suggests that obesity and overweight may be associated with severe brain structural abnormalities and poor cognitive and functional outcomes in the general population. Despite these observations and the high prevalence of weight gain abnormalities in patients with psychosis spectrum disorders (PSDs), no studies have investigated the impact that these metabolic disturbances may have on brain structures and development in the earliest stages of PSDs. In the present review we shed light on the association between weight gain and brain structural abnormalities that may affect the course of illness in drug-naïve FEPs. Given the lack of studies directly investigating this issue, we firstly identified and critically evaluated the literature assessing weight gain abnormalities and gray or white matter (GM, WM) volumes (either globally or in specific regions of interest) in otherwise healthy obese/overweight adolescents and young adults. We then compared the results of this systematic review with those of two recent meta-analysis investigating GM and WM abnormalities in drug-naïve FEPs. Weight gain in otherwise healthy subjects was consistently associated with frontal and temporal GM atrophy and with reduced integrity of WM in the corpus callosum. Of relevance, all these brain regions are affected in drug-naïve FEPs, and their integrity is associated with clinical, cognitive and functional outcomes. The underlying mechanisms that may explain the association between weight gain, adiposity, and brain damage in both healthy subjects and drug-naïve FEPs are widely discussed. On the basis of this knowledge, we tried: a) to deduce an integrative model for the development of obesity in psychosis spectrum disorders; b) to identify the key vulnerability factors underlying the association between weight gain and psychosis; c) to provide information on new potential targets of intervention.
Collapse
Affiliation(s)
- Amedeo Minichino
- Department of Neurology and Psychiatry, Sapienza University of Rome, Italy; Department of Psychiatry, UCSD, La Jolla, CA, United States.
| | - Agata Ando'
- Department of Psychology, University of Turin, Italy
| | - Marta Francesconi
- Department of Neurology and Psychiatry, Sapienza University of Rome, Italy; Department of Psychiatry, UCSD, La Jolla, CA, United States
| | | | | | | |
Collapse
|
23
|
Maternal Immune Activation Causes Behavioral Impairments and Altered Cerebellar Cytokine and Synaptic Protein Expression. Neuropsychopharmacology 2017; 42:1435-1446. [PMID: 28102228 PMCID: PMC5436129 DOI: 10.1038/npp.2017.7] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 12/21/2016] [Accepted: 01/02/2017] [Indexed: 01/10/2023]
Abstract
Emerging epidemiology studies indicate that maternal immune activation (MIA) resulting from inflammatory stimuli such as viral or bacterial infections during pregnancy serves as a risk factor for multiple neurodevelopmental disorders including autism spectrum disorders and schizophrenia. Although alterations in the cortex and hippocampus of MIA offspring have been described, less evidence exists on the impact on the cerebellum. Here, we report altered expression of cytokines and chemokines in the cerebellum of MIA offspring, including increase in the neuroinflammatory cytokine TNFα and its receptor TNFR1. We also report reduced expression of the synaptic organizing proteins cerebellin-1 and GluRδ2. These synaptic protein alterations are associated with a deficit in the ability of cerebellar neurons to form synapses and an increased number of dendritic spines that are not in contact with a presynaptic terminal. These impairments are likely contributing to the behavioral deficits in the MIA exposed offspring.
Collapse
|
24
|
Garcia-Rizo C, Fernandez-Egea E, Oliveira C, Meseguer A, Cabrera B, Mezquida G, Bioque M, Penades R, Parellada E, Bernardo M, Kirkpatrick B. Metabolic syndrome or glucose challenge in first episode of psychosis? Eur Psychiatry 2017; 41:42-46. [DOI: 10.1016/j.eurpsy.2016.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 12/22/2022] Open
Abstract
AbstractPatients with schizophrenia exhibit a reduced life expectancy. Although unhealthy lifestyle or suicide risk plays a role, the main causes are diverse medical conditions such as cardiovascular diseases, type 2 diabetes mellitus and metabolic syndrome. Albeit pharmacological secondary side effects might also trigger previous conditions, studies in naïve patients reflect diverse anomalies at the onset. Patients with a first episode of psychosis, display a wide scope of metabolic abnormalities, ranging from normality till pathological values depending on the parameters studied. We attempted to evaluate the metabolic syndrome and glycemic homeostasis in a subset of antipsychotic-naïve patients with a first episode of non-affective psychosis. Patients (n = 84) showed a similar prevalence of metabolic syndrome compared with a matched control sample (n = 98) (6% vs 4%, P = 0.562), while glucose homeostasis values differed significantly (14% vs. 5%, P = 0.034). Our results suggest that metabolic syndrome is not a useful clinical condition to be evaluated in patients before pharmacological treatment. Abnormal glycemic homeostasis at the onset of the disease requires specific diagnostic tools and preventive measures in order to avoid future cardiovascular events. New strategies must be implemented in order to evaluate the cardiovascular risk and subsequent morbidity in patients at the onset of the disease.
Collapse
|
25
|
Dieset I, Andreassen OA, Haukvik UK. Somatic Comorbidity in Schizophrenia: Some Possible Biological Mechanisms Across the Life Span. Schizophr Bull 2016; 42:1316-1319. [PMID: 27033328 PMCID: PMC5049521 DOI: 10.1093/schbul/sbw028] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Schizophrenia is associated with decreased life expectancy (15-25 y) compared to the general population, with comorbid somatic diseases and in particular cardiovascular diseases being a major cause. Life style and medication probably account for much of the increased mortality risk due to somatic diseases in schizophrenia, but the evidence implicating biological pathways potentially affecting both body and brain is increasing. This includes overlapping genes between schizophrenia and somatic diseases, prenatal risk factors such as hypoxia and infections, and increased cardiovascular disease risk in drug-naïve patients at illness onset. Although environmental bias increases throughout the disease course, there are also some studies on chronic schizophrenia and postmortem brain samples that warrant further attention. In the following, we will attempt to move beyond environmental impact and explore some of the shared pathophysiological mechanisms potentially underlying both schizophrenia and somatic diseases.
Collapse
Affiliation(s)
- Ingrid Dieset
- NORMENT K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; NORMENT and K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway;
| | - Ole A Andreassen
- NORMENT K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; NORMENT and K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Unn K Haukvik
- Department of Adult Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, Ostfold Hospital Trust, Fredrikstad, Norway
| |
Collapse
|
26
|
Yu HR, Tain YL, Sheen JM, Tiao MM, Chen CC, Kuo HC, Hung PL, Hsieh KS, Huang LT. Prenatal Dexamethasone and Postnatal High-Fat Diet Decrease Interferon Gamma Production through an Age-Dependent Histone Modification in Male Sprague-Dawley Rats. Int J Mol Sci 2016; 17:ijms17101610. [PMID: 27669212 PMCID: PMC5085643 DOI: 10.3390/ijms17101610] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/11/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023] Open
Abstract
Overexposure to prenatal glucocorticoid (GC) disturbs hypothalamic-pituitary-adrenocortical axis-associated neuroendocrine metabolism and susceptibility to metabolic syndrome. A high-fat (HF) diet is a major environmental factor that can cause metabolic syndrome. We aimed to investigate whether prenatal GC plus a postnatal HF diet could alter immune programming in rat offspring. Pregnant Sprague-Dawley rats were given intraperitoneal injections of dexamethasone or saline at 14-21 days of gestation. Male offspring were then divided into four groups: vehicle, prenatal dexamethasone exposure, postnatal HF diet (VHF), and prenatal dexamethasone exposure plus a postnatal HF diet (DHF). The rats were sacrificed and adaptive immune function was evaluated. Compared to the vehicle, the DHF group had lower interferon gamma (IFN-γ) production by splenocytes at postnatal day 120. Decreases in H3K9 acetylation and H3K36me3 levels at the IFN-γ promoter correlated with decreased IFN-γ production. The impaired IFN-γ production and aberrant site-specific histone modification at the IFN-γ promoter by prenatal dexamethasone treatment plus a postnatal HF diet resulted in resilience at postnatal day 180. Prenatal dexamethasone and a postnatal HF diet decreased IFN-γ production through a site-specific and an age-dependent histone modification. These findings suggest a mechanism by which prenatal exposure to GC and a postnatal environment exert effects on fetal immunity programming.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - You-Lin Tain
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Mao-Meng Tiao
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Chih-Cheng Chen
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Ho-Chang Kuo
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Pi-Lien Hung
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Kai-Sheng Hsieh
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Li-Tung Huang
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
27
|
Giovanoli S, Weber-Stadlbauer U, Schedlowski M, Meyer U, Engler H. Prenatal immune activation causes hippocampal synaptic deficits in the absence of overt microglia anomalies. Brain Behav Immun 2016; 55:25-38. [PMID: 26408796 DOI: 10.1016/j.bbi.2015.09.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 12/11/2022] Open
Abstract
Prenatal exposure to infectious or inflammatory insults can increase the risk of developing neuropsychiatric disorder in later life, including schizophrenia, bipolar disorder, and autism. These brain disorders are also characterized by pre- and postsynaptic deficits. Using a well-established mouse model of maternal exposure to the viral mimetic polyriboinosinic-polyribocytidilic acid [poly(I:C)], we examined whether prenatal immune activation might cause synaptic deficits in the hippocampal formation of pubescent and adult offspring. Based on the widely appreciated role of microglia in synaptic pruning, we further explored possible associations between synaptic deficits and microglia anomalies in offspring of poly(I:C)-exposed and control mothers. We found that prenatal immune activation induced an adult onset of presynaptic hippocampal deficits (as evaluated by synaptophysin and bassoon density). The early-life insult further caused postsynaptic hippocampal deficits in pubescence (as evaluated by PSD95 and SynGAP density), some of which persisted into adulthood. In contrast, prenatal immune activation did not change microglia (or astrocyte) density, nor did it alter their activation phenotypes. The prenatal manipulation did also not cause signs of persistent systemic inflammation. Despite the absence of overt glial anomalies or systemic inflammation, adult offspring exposed to prenatal immune activation displayed increased hippocampal IL-1β levels. Taken together, our findings demonstrate that age-dependent synaptic deficits and abnormal pro-inflammatory cytokine expression can occur during postnatal brain maturation in the absence of microglial anomalies or systemic inflammation.
Collapse
Affiliation(s)
- Sandra Giovanoli
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Ulrike Weber-Stadlbauer
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland; Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Urs Meyer
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland; Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
28
|
Garcia-Rizo C, Kirkpatrick B, Fernandez-Egea E, Oliveira C, Bernardo M. Abnormal glycemic homeostasis at the onset of serious mental illnesses: A common pathway. Psychoneuroendocrinology 2016; 67:70-5. [PMID: 26878465 PMCID: PMC4844848 DOI: 10.1016/j.psyneuen.2016.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Patients with serious mental illnesses exhibit a reduced lifespan compared with the general population, a finding that can not solely rely on high suicide risk, low access to medical care and unhealthy lifestyle. The main causes of death are medical related pathologies such as type 2 diabetes mellitus and cardiovascular disease; however pharmacological treatment might play a role. MATERIAL AND METHODS We compared a two hour glucose load in naïve patients at the onset of a serious mental illness (N=102) (84 patients with a first episode of schizophrenia and related disorders, 6 with a first episode of bipolar I disorder and 12 with a first episode of major depression disorder) with another psychiatric diagnose, adjustment disorder (N=17) and matched controls (N=98). RESULTS Young patients with serious mental illness showed an increased two hour glucose load compared with adjustment disorder and the control group. Mean two hour glucose values [±standard deviation] were: for schizophrenia and related disorders 106.51mg/dL [±32.0], for bipolar disorder 118.33mg/dL [±34.3], for major depressive disorder 107.42mg/dL [±34.5], for adjustment disorder 79.06mg/dL[±24.4] and for the control group 82.11mg/dL [±23.3] (p<0.001). CONCLUSIONS Our results reflect an abnormal metabolic pathway at the onset of the disease before any pharmacological treatment or other confounding factors might have taken place. Our results suggest a similar glycemic pathway in serious mental illnesses and the subsequent need of primary and secondary prevention strategies.
Collapse
Affiliation(s)
- Clemente Garcia-Rizo
- Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic, Barcelona, Spain; Institute of Biomedical Research Agusti Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
| | - Brian Kirkpatrick
- Department of Psychiatry and Behavioral Sciences, University of Nevada School of Medicine, Reno, NV, USA
| | - Emilio Fernandez-Egea
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, CB2 0QQ Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Huntingdon PE29 3RJ, UK
| | - Cristina Oliveira
- Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic, Barcelona, Spain
| | - Miquel Bernardo
- Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic, Barcelona, Spain; Institute of Biomedical Research Agusti Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Department of Psychiatry and Clinical Psychobiology, University of Barcelona Barcelona, Spain
| |
Collapse
|
29
|
Weiser MJ, Mucha B, Denheyer H, Atkinson D, Schanz N, Vassiliou E, Benno RH. Dietary docosahexaenoic acid alleviates autistic-like behaviors resulting from maternal immune activation in mice. Prostaglandins Leukot Essent Fatty Acids 2016; 106:27-37. [PMID: 26703213 DOI: 10.1016/j.plefa.2015.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
The prevalence of autism spectrum disorders over the last several decades has risen at an alarming rate. Factors such as broadened clinical definitions and increased parental age only partially account for this precipitous increase, suggesting that recent changes in environmental factors may also be responsible. One such factor could be the dramatic decrease in consumption of anti-inflammatory dietary omega-3 (n-3) polyunsaturated fatty acids (PUFAs) relative to the amount of pro-inflammatory omega-6 (n-6) PUFAs and saturated fats in the Western diet. Docosahexaenoic acid (DHA) is the principle n-3 PUFA found in neural tissue and is important for optimal brain development, especially during late gestation when DHA rapidly and preferentially accumulates in the brain. In this study, we tested whether supplementation of a low n-3 PUFA diet with DHA throughout development could improve measures related to autism in a mouse model of maternal immune activation. We found that dietary DHA protected offspring from the deleterious effects of gestational exposure to the viral mimetic polyriboinosinic-polyribocytidilic acid on behavioral measures of autism and subsequent adulthood immune system reactivity. These data suggest that elevated dietary levels of DHA, especially during pregnancy and nursing, may help protect normal neurodevelopment from the potentially adverse consequences of environmental insults like maternal infection.
Collapse
Affiliation(s)
- Michael J Weiser
- DSM Nutritional Products, Human Nutrition and Health, Boulder, CO, United States.
| | - Brittany Mucha
- William Paterson University, Dept. of Biology, Wayne, NJ, United States
| | - Heather Denheyer
- William Paterson University, Dept. of Biology, Wayne, NJ, United States
| | - Devon Atkinson
- William Paterson University, Dept. of Biology, Wayne, NJ, United States
| | - Norman Schanz
- William Paterson University, Dept. of Biology, Wayne, NJ, United States
| | - Evros Vassiliou
- Kean University, Dept. of Biological Sciences, Union, NJ, United States
| | - Robert H Benno
- William Paterson University, Dept. of Biology, Wayne, NJ, United States
| |
Collapse
|
30
|
Manitz MP, Plümper J, Demir S, Ahrens M, Eßlinger M, Wachholz S, Eisenacher M, Juckel G, Friebe A. Flow cytometric characterization of microglia in the offspring of PolyI:C treated mice. Brain Res 2016; 1636:172-182. [PMID: 26872595 DOI: 10.1016/j.brainres.2016.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/16/2015] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
The neuropathology of schizophrenia has been reported to be closely associated with microglial activation. In a previous study, using the prenatal PolyI:C schizophrenia animal model, we showed an increase in cell numbers and a reduction in microglial branching in 30-day-old PolyI:C descendants, which suggests that there is microglial activation during adolescence. To provide more information about the activation state, we aimed to examine the expression levels of Iba1, which was reported to be up-regulated in activated microglia. We used a flow cytometric approach and investigated CD11b and CD45, two additional markers for the identification of microglial cells. We demonstrated that intracellular staining against Iba1 can be used as a reliable flow cytometric method for identification of microglial cells. Prenatal PolyI:C treatment had long-term effects on CD11b and CD45 expression. It also resulted in a trend towards increased Iba1 expression. Imbalance in CD11b, CD45, and Iba1 expression might contribute to impaired synaptic surveillance and enhanced activation/inflammatory activity of microglia in adult offspring.
Collapse
Affiliation(s)
- Marie Pierre Manitz
- Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany.
| | - Jennifer Plümper
- Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany
| | - Seray Demir
- Department of Neuroimmunology, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany.
| | - Maike Ahrens
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany.
| | - Manuela Eßlinger
- Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany.
| | - Simone Wachholz
- Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany.
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany.
| | - Georg Juckel
- Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany.
| | - Astrid Friebe
- Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany.
| |
Collapse
|
31
|
Landek-Salgado MA, Faust TE, Sawa A. Molecular substrates of schizophrenia: homeostatic signaling to connectivity. Mol Psychiatry 2016; 21:10-28. [PMID: 26390828 PMCID: PMC4684728 DOI: 10.1038/mp.2015.141] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SZ) is a devastating psychiatric condition affecting numerous brain systems. Recent studies have identified genetic factors that confer an increased risk of SZ and participate in the disease etiopathogenesis. In parallel to such bottom-up approaches, other studies have extensively reported biological changes in patients by brain imaging, neurochemical and pharmacological approaches. This review highlights the molecular substrates identified through studies with SZ patients, namely those using top-down approaches, while also referring to the fruitful outcomes of recent genetic studies. We have subclassified the molecular substrates by system, focusing on elements of neurotransmission, targets in white matter-associated connectivity, immune/inflammatory and oxidative stress-related substrates, and molecules in endocrine and metabolic cascades. We further touch on cross-talk among these systems and comment on the utility of animal models in charting the developmental progression and interaction of these substrates. Based on this comprehensive information, we propose a framework for SZ research based on the hypothesis of an imbalance in homeostatic signaling from immune/inflammatory, oxidative stress, endocrine and metabolic cascades that, at least in part, underlies deficits in neural connectivity relevant to SZ. Thus, this review aims to provide information that is translationally useful and complementary to pathogenic hypotheses that have emerged from genetic studies. Based on such advances in SZ research, it is highly expected that we will discover biomarkers that may help in the early intervention, diagnosis or treatment of SZ.
Collapse
Affiliation(s)
- M A Landek-Salgado
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - T E Faust
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neuroscience, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
32
|
Flinkkilä E, Keski-Rahkonen A, Marttunen M, Raevuori A. Prenatal Inflammation, Infections and Mental Disorders. Psychopathology 2016; 49:317-333. [PMID: 27529630 DOI: 10.1159/000448054] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/25/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The objective of this descriptive review is to summarize the current scientific evidence on the effect of prenatal exposure to maternal infection and immune response on the offspring's risk for mental disorders (schizophrenia spectrum disorders, autism spectrum disorders, attention-deficit hyperactivity disorder, anorexia nervosa, and mood disorders). SAMPLING AND METHODS Studies were searched from PubMed and Ovid MEDLINE (R) databases with the following keywords: 'prenatal exposure delayed effects' and 'infection', and 'inflammation' and 'mental disorders'. A comprehensive manual search, including a search from the reference list of included articles, was also performed. RESULTS Prenatal exposure to maternal influenza appears to increase the offspring's risk for schizophrenia spectrum disorders, although studies are not fully consistent. Prenatal exposure to maternal fever and elevated cytokine levels seems to be related to the elevated risk for autism spectrum disorders in the offspring. No replicated findings of an association between prenatal infectious exposure and other mental disorders exist. CONCLUSIONS Evidence for the effect of prenatal exposure to maternal infection on risk for mental disorders exists for several different infections, suggesting that common factors occurring in infections (e.g. elevated cytokine levels and fever), rather than the infectious agent itself, might be the underlying factor in increasing the risk for mental disorders. Additionally, it is likely that genetic liability to these disorders operates in conjunction with the exposure. Therefore, genetically sensitive study designs are needed in future studies.
Collapse
Affiliation(s)
- Eerika Flinkkilä
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
33
|
Abstract
Both genetic and environmental factors are thought to contribute to neurodevelopmental and neuropsychiatric disorders with maternal immune activation (MIA) being a risk factor for both autism spectrum disorders and schizophrenia. Although MIA mouse offspring exhibit behavioral impairments, the synaptic alterations in vivo that mediate these behaviors are not known. Here we employed in vivo multiphoton imaging to determine that in the cortex of young MIA offspring there is a reduction in number and turnover rates of dendritic spines, sites of majority of excitatory synaptic inputs. Significantly, spine impairments persisted into adulthood and correlated with increased repetitive behavior, an ASD relevant behavioral phenotype. Structural analysis of synaptic inputs revealed a reorganization of presynaptic inputs with a larger proportion of spines being contacted by both excitatory and inhibitory presynaptic terminals. These structural impairments were accompanied by altered excitatory and inhibitory synaptic transmission. Finally, we report that a postnatal treatment of MIA offspring with the anti-inflammatory drug ibudilast, prevented both synaptic and behavioral impairments. Our results suggest that a possible altered inflammatory state associated with maternal immune activation results in impaired synaptic development that persists into adulthood but which can be prevented with early anti-inflammatory treatment.
Collapse
|
34
|
Labouesse MA, Langhans W, Meyer U. Long-term pathological consequences of prenatal infection: beyond brain disorders. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1-R12. [DOI: 10.1152/ajpregu.00087.2015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/21/2015] [Indexed: 12/24/2022]
Abstract
Prenatal immunological adversities such as maternal infection have been widely acknowledged to contribute to an increased risk of neurodevelopmental brain disorders. In recent years, epidemiological and experimental evidence has accumulated to suggest that prenatal exposure to immune challenges can also negatively affect various physiological and metabolic functions beyond those typically associated with primary defects in CNS development. These peripheral changes include excessive accumulation of adipose tissue and increased body weight, impaired glycemic regulation and insulin resistance, altered myeloid lineage development, increased gut permeability, hyperpurinergia, and changes in microbiota composition. Experimental work in animal models further suggests that at least some of these peripheral abnormalities could directly contribute to CNS dysfunctions, so that normalization of peripheral pathologies could lead to an amelioration of behavioral deficits. Hence, seemingly unrelated central and peripheral effects of prenatal infection could represent interrelated pathological entities that emerge in response to a common developmental stressor. Targeting peripheral abnormalities may thus represent a valuable strategy to improve the wide spectrum of behavioral abnormalities that can emerge in subjects with prenatal infection histories.
Collapse
Affiliation(s)
| | | | - Urs Meyer
- Physiology and Behavior Laboratory, ETH Zurich, Switzerland
| |
Collapse
|
35
|
Leza JC, García-Bueno B, Bioque M, Arango C, Parellada M, Do K, O'Donnell P, Bernardo M. Inflammation in schizophrenia: A question of balance. Neurosci Biobehav Rev 2015; 55:612-26. [PMID: 26092265 DOI: 10.1016/j.neubiorev.2015.05.014] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/22/2015] [Accepted: 05/18/2015] [Indexed: 02/08/2023]
Abstract
In the past decade, there has been renewed interest in immune/inflammatory changes and their associated oxidative/nitrosative consequences as key pathophysiological mechanisms in schizophrenia and related disorders. Both brain cell components (microglia, astrocytes, and neurons) and peripheral immune cells have been implicated in inflammation and the resulting oxidative/nitrosative stress (O&NS) in schizophrenia. Furthermore, down-regulation of endogenous antioxidant and anti-inflammatory mechanisms has been identified in biological samples from patients, although the degree and progression of the inflammatory process and the nature of its self-regulatory mechanisms vary from early onset to full-blown disease. This review focuses on the interactions between inflammation and O&NS, their damaging consequences for brain cells in schizophrenia, the possible origins of inflammation and increased O&NS in the disorder, and current pharmacological strategies to deal with these processes (mainly treatments with anti-inflammatory or antioxidant drugs as add-ons to antipsychotics).
Collapse
Affiliation(s)
- Juan C Leza
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Complutense University, Madrid, Spain; Department of Pharmacology, Faculty of Medicine, Complutense University, Madrid, Spain; Instituto de Investigación Sanitaria (IIS) Hospital 12 de Octubre (i+12), Madrid, Spain.
| | - Borja García-Bueno
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Complutense University, Madrid, Spain; Department of Pharmacology, Faculty of Medicine, Complutense University, Madrid, Spain; Instituto de Investigación Sanitaria (IIS) Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Miquel Bioque
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Complutense University, Madrid, Spain; Barcelona Clínic Schizophrenia Unit, Hospital Clínic Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Celso Arango
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Complutense University, Madrid, Spain; Department of Psychiatry, Faculty of Medicine, Complutense University, Madrid, Spain; Child and Adolescent Psychiatry Department, IIS Hospital Gregorio Marañón (IISGM), Madrid, Spain
| | - Mara Parellada
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Complutense University, Madrid, Spain; Department of Psychiatry, Faculty of Medicine, Complutense University, Madrid, Spain; Child and Adolescent Psychiatry Department, IIS Hospital Gregorio Marañón (IISGM), Madrid, Spain
| | - Kim Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Miguel Bernardo
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Complutense University, Madrid, Spain; Barcelona Clínic Schizophrenia Unit, Hospital Clínic Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| |
Collapse
|
36
|
Jasoni CL, Sanders TR, Kim DW. Do all roads lead to Rome? The role of neuro-immune interactions before birth in the programming of offspring obesity. Front Neurosci 2015; 8:455. [PMID: 25691854 PMCID: PMC4315034 DOI: 10.3389/fnins.2014.00455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
The functions of the nervous system can be powerfully modulated by the immune system. Although traditionally considered to be quite separate, neuro-immune interactions are increasingly recognized as critical for both normal and pathological nervous system function in the adult. However, a growing body of information supports a critical role for neuro-immune interactions before birth, particularly in the prenatal programming of later-life neurobehavioral disease risk. This review will focus on maternal obesity, as it represents an environment of pathological immune system function during pregnancy that elevates offspring neurobehavioral disease risk. We will first delineate the normal role of the immune system during pregnancy, including the role of the placenta as both a barrier and relayer of inflammatory information between the maternal and fetal environments. This will be followed by the current exciting findings of how immuno-modulatory molecules may elevate offspring risk of neurobehavioral disease by altering brain development and, consequently, later life function. Finally, by drawing parallels with pregnancy complications other than obesity, we will suggest that aberrant immune activation, irrespective of its origin, may lead to neuro-immune interactions that otherwise would not exist in the developing brain. These interactions could conceivably derail normal brain development and/or later life function, and thereby elevate risk for obesity and other neurobehavioral disorders later in the offspring's life.
Collapse
Affiliation(s)
- Christine L Jasoni
- Department of Anatomy, Centre for Neuroendocrinology, Gravida: National Centre for Growth and Development, University of Otago Dunedin, New Zealand
| | - Tessa R Sanders
- Department of Anatomy, Centre for Neuroendocrinology, Gravida: National Centre for Growth and Development, University of Otago Dunedin, New Zealand
| | - Dong Won Kim
- Department of Anatomy, Centre for Neuroendocrinology, Gravida: National Centre for Growth and Development, University of Otago Dunedin, New Zealand
| |
Collapse
|
37
|
Effect of maternal immune activation on the kynurenine pathway in preadolescent rat offspring and on MK801-induced hyperlocomotion in adulthood: amelioration by COX-2 inhibition. Brain Behav Immun 2014; 41:173-81. [PMID: 24878170 DOI: 10.1016/j.bbi.2014.05.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/01/2014] [Accepted: 05/19/2014] [Indexed: 11/22/2022] Open
Abstract
Infections during pregnancy and subsequent maternal immune activation (MIA) increase risk for schizophrenia in offspring. The progeny of rodents injected with the viral infection mimic polyI:C during gestation display brain and behavioural abnormalities but the underlying mechanisms are unknown. Since the blood kynurenine pathway (KP) of tryptophan degradation impacts brain function and is strongly regulated by the immune system, we tested if KP changes occur in polyI:C offspring at preadolescence. We also tested whether MK801-induced hyperlocomotion, a behaviour characteristic of adult polyI:C offspring, is prevented by adolescent treatment with celecoxib, a COX-2 inhibitor that impacts the KP. Pregnant rats were treated with polyI:C (4mg/kg, i.v.) or vehicle on gestational day 19. Serum levels of KP metabolites were measured in offspring of polyI:C or vehicle treated dams at postnatal day (PND) 31-33 using HPLC/GCMS. Additional polyI:C or vehicle exposed offspring were given celecoxib or vehicle between PND 35 and 46 and tested with MK801 (0.3mg/kg) in adulthood (PND>90). Prenatal polyI:C resulted in increases in the serum KP neurotoxic metabolite quinolinic acid at PND 31-33 (105%, p=0.014). In contrast, the neuroprotective kynurenic acid and its precursor kynurenine were significantly decreased (28% p=0.027, and 31% p=0.033, respectively). Picolinic acid, another neuroprotective KP metabolite, was increased (31%, p=0.014). Adolescent treatment with celecoxib (2.5 and 5mg/kg/day, i.p.) prevented the development of MK801-induced hyperlocomotion in adult polyI:C offspring. Our study reveals the blood KP as a potential mechanism by which MIA interferes with postnatal brain maturation and associated behavioural disturbances and emphasises the preventative potential of inflammation targeting drugs.
Collapse
|
38
|
Refining and integrating schizophrenia pathophysiology – Relevance of the allostatic load concept. Neurosci Biobehav Rev 2014; 45:183-201. [DOI: 10.1016/j.neubiorev.2014.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 04/02/2014] [Accepted: 06/09/2014] [Indexed: 12/20/2022]
|
39
|
Sanders TR, Kim DW, Glendining KA, Jasoni CL. Maternal obesity and IL-6 lead to aberrant developmental gene expression and deregulated neurite growth in the fetal arcuate nucleus. Endocrinology 2014; 155:2566-77. [PMID: 24773340 DOI: 10.1210/en.2013-1968] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Maternal obesity during pregnancy increases the risk of obesity in the offspring. Several observations have pointed to a causative role for the proinflammatory cytokine IL-6, but whether it is present in the fetal circulation and how it acts on the developing fetus are unclear. We first observed that postnatal day 0 offspring from obese mothers had significantly reduced neuropeptide Y (NPY) innervation of the paraventricular nucleus (PVN) compared with that for offspring of normal-weight controls. Thus, the growth of NPY neurites from the arcuate nucleus (ARC) was impaired in the fetal brain by maternal obesity. The neurite growth regulator, Netrin-1, was expressed in the ARC and PVN and along the pathway between the two at gestational day (GD) 17.5 in normal animals, making it likely to be involved in the development of NPY ARC-PVN projections. In addition, the expression of Dcc and Unc5d, receptors for Netrin-1, were altered in the GD17.5 ARC in obese but not normal weight pregnancies. Thus, this important developmental pathway is perturbed by maternal obesity and may explain the defect in NPY innervation of the PVN that occurs in fetuses developing in obese mothers. To investigate whether IL-6 may play a role in these developmental changes, we found first that IL-6 was significantly elevated in the fetal and maternal circulation in pregnancies of obese mice compared with those of normal-weight mice. In addition, treatment of GD17.5 ARC tissue with IL-6 in vitro significantly reduced ARC neurite outgrowth and altered developmental gene expression similar to maternal obesity in vivo. These findings demonstrate that maternal obesity may alter the way in which fetal ARC NPY neurons respond to key developmental signals that regulate normal prenatal neural connectivity and suggest a causative role for elevated IL-6 in these changes.
Collapse
Affiliation(s)
- Tessa R Sanders
- Centre for Neuroendocrinology, Gravida: National Research Centre for Growth and Development, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| | | | | | | |
Collapse
|
40
|
Naviaux JC, Schuchbauer MA, Li K, Wang L, Risbrough VB, Powell SB, Naviaux RK. Reversal of autism-like behaviors and metabolism in adult mice with single-dose antipurinergic therapy. Transl Psychiatry 2014; 4:e400. [PMID: 24937094 PMCID: PMC4080315 DOI: 10.1038/tp.2014.33] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/14/2014] [Accepted: 04/16/2014] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASDs) now affect 1-2% of the children born in the United States. Hundreds of genetic, metabolic and environmental factors are known to increase the risk of ASD. Similar factors are known to influence the risk of schizophrenia and bipolar disorder; however, a unifying mechanistic explanation has remained elusive. Here we used the maternal immune activation (MIA) mouse model of neurodevelopmental and neuropsychiatric disorders to study the effects of a single dose of the antipurinergic drug suramin on the behavior and metabolism of adult animals. We found that disturbances in social behavior, novelty preference and metabolism are not permanent but are treatable with antipurinergic therapy (APT) in this model of ASD and schizophrenia. A single dose of suramin (20 mg kg(-1) intraperitoneally (i.p.)) given to 6-month-old adults restored normal social behavior, novelty preference and metabolism. Comprehensive metabolomic analysis identified purine metabolism as the key regulatory pathway. Correction of purine metabolism normalized 17 of 18 metabolic pathways that were disturbed in the MIA model. Two days after treatment, the suramin concentration in the plasma and brainstem was 7.64 μM pmol μl(-1) (±0.50) and 5.15 pmol mg(-1) (±0.49), respectively. These data show good uptake of suramin into the central nervous system at the level of the brainstem. Most of the improvements associated with APT were lost after 5 weeks of drug washout, consistent with the 1-week plasma half-life of suramin in mice. Our results show that purine metabolism is a master regulator of behavior and metabolism in the MIA model, and that single-dose APT with suramin acutely reverses these abnormalities, even in adults.
Collapse
Affiliation(s)
- J C Naviaux
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - M A Schuchbauer
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - K Li
- The Mitochondrial and Metabolic Disease Center, University of California San Diego School of Medicine, San Diego, CA, USA,Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - L Wang
- The Mitochondrial and Metabolic Disease Center, University of California San Diego School of Medicine, San Diego, CA, USA,Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - V B Risbrough
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, USA,Veterans Affairs Center for Excellence in Stress and Mental Health (CESAMH), La Jolla, CA, USA
| | - S B Powell
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - R K Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California San Diego School of Medicine, San Diego, CA, USA,Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA,Veterans Affairs Center for Excellence in Stress and Mental Health (CESAMH), La Jolla, CA, USA,Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA,Department of Pathology, University of California San Diego School of Medicine, La Jolla, CA, USA,Departments of Medicine, Pediatrics, and Pathology, University of California San Diego School of Medicine, 214 Dickinson Street, Building CTF, Room C102, San Diego, CA 92103-8467, USA. E-mail:
| |
Collapse
|
41
|
Yoshimi N, Futamura T, Hashimoto K. Prenatal immune activation and subsequent peripubertal stress as a new model of schizophrenia. Expert Rev Neurother 2013; 13:747-50. [PMID: 23898846 DOI: 10.1586/14737175.2013.811191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidemiological studies show that maternal viral infection during pregnancy plays a key role in the etiology of neurodevelopmental disorders, such as schizophrenia and autism. Prenatal maternal immune activation and peripubertal psychological stress are key environmental risk factors for neurodevelopmental disorders. Viral mimic polyriboinosinic-polyribocytidylic acid is known to act as a Toll-like receptor-3 agonist. Polyriboinosinic-polyribocytidylic acid has been typically used to establish this rodent model of prenatal immune activation. Recently, Giovanoli et al. reported on a new neurodevelopmental model of schizophrenia based on combined prenatal immune activation and peripubertal stress. In this report, we place these findings into context and discuss their significance.
Collapse
Affiliation(s)
- Noriko Yoshimi
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | | | | |
Collapse
|
42
|
Labouesse MA, Stadlbauer U, Langhans W, Meyer U. Chronic high fat diet consumption impairs sensorimotor gating in mice. Psychoneuroendocrinology 2013; 38:2562-74. [PMID: 23850224 DOI: 10.1016/j.psyneuen.2013.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 12/29/2022]
Abstract
Chronic intake of high fat diets (HFD) has been long recognized to induce neuronal adaptations and impair elementary cognitive functions. Yet, the consequences of chronic HFD consumption on central information processing remain elusive. The present study thus explored the impact of chronic HFD consumption on pre-attentive central information processing using the paradigm of prepulse inhibition (PPI) of the acoustic startle reflex in mice. Animals were fed an experimental diet with 60% of its calories derived from fat, and were compared to control low fat diet (LFD, 10% calories from fat) fed animals. A first experimental series demonstrated that adult mice exposed to chronic HFD throughout adolescent development displayed significant deficits in PPI compared to LFD-fed mice. Identical chronic HFD treatment further led to presynaptic dopaminergic abnormalities in the form of increased tyrosine hydroxylase density in the nucleus accumbens core and shell subregions. Moreover, we found that tyrosine hydroxylase density in the nucleus accumbens shell negatively correlated with the mean PPI scores, suggesting a potential contribution of the accumbal dopamine system to HFD-induced PPI deficits. This impression was further supported by an additional series of experiments showing that the HFD-induced attenuation of PPI can be mitigated by systemic administration of the dopamine receptor antagonist haloperidol. Finally, HFD feeding was sufficient to disrupt PPI when its exposure was restricted to the peripubertal period, whilst the same manipulation failed to affect PPI when limited to adulthood. In conclusion, our findings emphasize that pre-attentive information processing as assessed by the PPI paradigm is highly sensitive to nutritional factors in the form of chronic HFD consumption, especially when initiated during peripubertal maturation. It is likely that the disrupting effects of HFD on sensorimotor gating involve, at least in part, dopaminergic mechanisms.
Collapse
Affiliation(s)
- Marie A Labouesse
- Physiology and Behavior Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Brian Kirkpatrick
- *To whom correspondence should be addressed; Department of Psychiatry and Health Behavior, Georgia Regents University, 997 Saint Sebastian Way, Augusta, Georgia 30912, US; tel: +1-706-721-4445, fax: +1-706-721-1793, e-mail:
| | | |
Collapse
|
44
|
Carter CJ. Susceptibility genes are enriched in those of the herpes simplex virus 1/host interactome in psychiatric and neurological disorders. Pathog Dis 2013; 69:240-61. [PMID: 23913659 DOI: 10.1111/2049-632x.12077] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 07/11/2013] [Accepted: 07/24/2013] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) can promote beta-amyloid deposition and tau phosphorylation, demyelination or cognitive deficits relevant to Alzheimer's disease or multiple sclerosis and to many neuropsychiatric disorders with which it has been implicated. A seroprevalence much higher than disease incidence has called into question any primary causal role. However, as also the case with risk-promoting polymorphisms (also present in control populations), any causal effects are likely to be conditional. During its life cycle, the virus binds to many proteins and modifies the expression of multiple genes creating a host/pathogen interactome involving 1347 host genes. This data set is heavily enriched in the susceptibility genes for multiple sclerosis (P = 1.3E-99) > Alzheimer's disease > schizophrenia > Parkinsonism > depression > bipolar disorder > childhood obesity > chronic fatigue > autism > and anorexia (P = 0.047) but not attention deficit hyperactivity disorder, a relationship maintained for genome-wide association study data sets in multiple sclerosis and Alzheimer's disease. Overlapping susceptibility gene/interactome data sets disrupt signalling networks relevant to each disease, suggesting that disease susceptibility genes may filter the attentions of the pathogen towards particular pathways and pathologies. In this way, the same pathogen could contribute to multiple diseases in a gene-dependent manner and condition the risk-promoting effects of the genes whose function it disrupts.
Collapse
|
45
|
Carter CJ. Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive Toxoplasma gondii Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological Disorders. J Pathog 2013; 2013:965046. [PMID: 23533776 PMCID: PMC3603208 DOI: 10.1155/2013/965046] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/18/2012] [Accepted: 09/10/2012] [Indexed: 01/04/2023] Open
Abstract
Toxoplasma gondii is not only implicated in schizophrenia and related disorders, but also in Alzheimer's or Parkinson's disease, cancer, cardiac myopathies, and autoimmune disorders. During its life cycle, the pathogen interacts with ~3000 host genes or proteins. Susceptibility genes for multiple sclerosis, Alzheimer's disease, schizophrenia, bipolar disorder, depression, childhood obesity, Parkinson's disease, attention deficit hyperactivity disorder (P from 8.01E - 05 (ADHD) to 1.22E - 71) (multiple sclerosis), and autism (P = 0.013), but not anorexia or chronic fatigue are highly enriched in the human arm of this interactome and 18 (ADHD) to 33% (MS) of the susceptibility genes relate to it. The signalling pathways involved in the susceptibility gene/interactome overlaps are relatively specific and relevant to each disease suggesting a means whereby susceptibility genes could orient the attentions of a single pathogen towards disruption of the specific pathways that together contribute (positively or negatively) to the endophenotypes of different diseases. Conditional protein knockdown, orchestrated by T. gondii proteins or antibodies binding to those of the host (pathogen derived autoimmunity) and metabolite exchange, may contribute to this disruption. Susceptibility genes may thus be related to the causes and influencers of disease, rather than (and as well as) to the disease itself.
Collapse
Affiliation(s)
- C. J. Carter
- Polygenic Pathways, Flat 2, 40 Baldslow Road, Hastings, East Sussex TN34 2EY, UK
| |
Collapse
|
46
|
Schwartzer JJ, Careaga M, Onore CE, Rushakoff JA, Berman RF, Ashwood P. Maternal immune activation and strain specific interactions in the development of autism-like behaviors in mice. Transl Psychiatry 2013; 3:e240. [PMID: 23481627 PMCID: PMC3625915 DOI: 10.1038/tp.2013.16] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is becoming increasingly apparent that the causes of autism spectrum disorders (ASD) are due to both genetic and environmental factors. Animal studies provide important translational models for elucidating specific genetic or environmental factors that contribute to ASD-related behavioral deficits. For example, mouse research has demonstrated a link between maternal immune activation and the expression of ASD-like behaviors. Although these studies have provided insights into the potential causes of ASD, they are limited in their ability to model the important interactions between genetic variability and environmental insults. This is of particular concern given the broad spectrum of severity observed in the human population, suggesting that subpopulations may be more susceptible to the adverse effects of particular environmental insults. It is hypothesized that the severity of effects of maternal immune activation on ASD-like phenotypes is influenced by the genetic background in mice. To test this, pregnant dams of two inbred strains (that is, C57BL/6J and BTBR T(+)tf/J) were exposed to the viral mimic polyinosinic-polycytidylic acid (polyI:C), and their offspring were tested for the presence and severity of ASD-like behaviors. To identify differences in immune system regulation, spleens were processed and measured for alterations in induced cytokine responses. Strain-treatment interactions were observed in social approach, ultrasonic vocalization, repetitive grooming and marble burying behaviors. Interestingly, persistent dysregulation of adaptive immune system function was only observed in BTBR mice. Data suggest that behavioral and immunological effects of maternal immune activation are strain-dependent in mice.
Collapse
Affiliation(s)
- J J Schwartzer
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA 95618, USA.
| | - M Careaga
- The M.I.N.D. Institute, University of California, Davis, CA, USA,Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| | - C E Onore
- The M.I.N.D. Institute, University of California, Davis, CA, USA,Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| | - J A Rushakoff
- Department of Neurological Surgery, University of California, Davis. One Shields Avenue, Davis, CA, USA
| | - R F Berman
- The M.I.N.D. Institute, University of California, Davis, CA, USA,Department of Neurological Surgery, University of California, Davis. One Shields Avenue, Davis, CA, USA
| | - P Ashwood
- The M.I.N.D. Institute, University of California, Davis, CA, USA,Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| |
Collapse
|
47
|
Chew LJ, Fusar-Poli P, Schmitz T. Oligodendroglial alterations and the role of microglia in white matter injury: relevance to schizophrenia. Dev Neurosci 2013; 35:102-29. [PMID: 23446060 PMCID: PMC4531048 DOI: 10.1159/000346157] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/07/2012] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a chronic and debilitating mental illness characterized by a broad range of abnormal behaviors, including delusions and hallucinations, impaired cognitive function, as well as mood disturbances and social withdrawal. Due to the heterogeneous nature of the disease, the causes of schizophrenia are very complex; its etiology is believed to involve multiple brain regions and the connections between them, and includes alterations in both gray and white matter regions. The onset of symptoms varies with age and severity, and there is some debate over a degenerative or developmental etiology. Longitudinal magnetic resonance imaging studies have detected progressive gray matter loss in the first years of disease, suggesting neurodegeneration; but there is also increasing recognition of a temporal association between clinical complications at birth and disease onset that supports a neurodevelopmental origin. Presently, neuronal abnormalities in schizophrenia are better understood than alterations in myelin-producing cells of the brain, the oligodendrocytes, which are the predominant constituents of white matter structures. Proper white matter development and its structural integrity critically impacts brain connectivity, which affects sensorimotor coordination and cognitive ability. Evidence of defective white matter growth and compromised white matter integrity has been found in individuals at high risk of psychosis, and decreased numbers of mature oligodendrocytes are detected in schizophrenia patients. Inflammatory markers, including proinflammatory cytokines and chemokines, are also associated with psychosis. A relationship between risk of psychosis, white matter defects and prenatal inflammation is being established. Animal models of perinatal brain injury are successful in producing white matter damage in the brain, typified by hypomyelination and/or dysmyelination, impaired motor coordination and prepulse inhibition of the acoustic startle reflex, recapitulating structural and functional characteristics observed in schizophrenia. In addition, elevated expression of inflammation-related genes in brain tissue and increased production of cytokines by blood cells from patients with schizophrenia indicate immunological dysfunction and abnormal inflammatory responses, which are also important underlying features in experimental models. Microglia, resident immune defenders of the central nervous system, play important roles in the development and protection of neural cells, but can contribute to injury under pathological conditions. This article discusses oligodendroglial changes in schizophrenia and focuses on microglial activity in the context of the disease, in neonatal brain injury and in various experimental models of white matter damage. These include disorders associated with premature birth, and animal models of perinatal bacterial and viral infection, oxygen deprivation (hypoxia) and excess (hyperoxia), and elevated systemic proinflammatory cytokine levels. We briefly review the effects of treatment with antipsychotic and anti-inflammatory agents in models of perinatal brain injury, and comment on the therapeutic potential of these strategies. By understanding the neurobiological basis of oligodendroglial abnormalities in schizophrenia, it is hoped that patients will benefit from the availability of targeted and more efficacious treatment options.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| | | | | |
Collapse
|
48
|
Connor CM, Dincer A, Straubhaar J, Houston IB, Akbarian S, Akbarian S. Maternal immune activation alters behavior in adult offspring, with subtle changes in the cortical transcriptome and epigenome. Schizophr Res 2012; 140:175-84. [PMID: 22804924 PMCID: PMC3568668 DOI: 10.1016/j.schres.2012.06.037] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 01/27/2023]
Abstract
Maternal immune activation during prenatal development, including treatment with the viral RNA mimic, polyriboinosinic-polyribocytidilic acid (poly IC), serves as a widely used animal model to induce behavioral deficits reminiscent of schizophrenia and related disease. Here, we report that massive cytokine activation after a single dose of poly IC in the prenatal period is associated with lasting working memory deficits in adult offspring. To explore whether dysregulated gene expression in cerebral cortex, contributes to cognitive dysfunction, we profiled the cortical transcriptome, and in addition, mapped the genome-wide distribution of trimethylated histone H3-lysine 4 (H3K4me3), an epigenetic mark sharply regulated at the 5' end of transcriptional units. However, deep sequencing-based H3K4me3 mapping and mRNA profiling by microarray did not reveal significant alterations in mature cerebral cortex after poly IC exposure at embryonic days E17.5 or E12.5. At a small set of genes (including suppressor of cytokine signaling Socs3), H3K4me3 was sensitive to activation of cytokine signaling in primary cultures from fetal forebrain but adult cortex of saline- and poly IC-exposed mice did not show significant differences. A limited set of transcription start sites (TSS), including Disrupted-in-Schizophrenia 1 (Disc1), a schizophrenia risk gene often implicated in gene-environment interaction models, showed altered H3K4me3 after prenatal poly IC but none of these differences survived after correcting for multiple comparisons. We conclude that prenatal poly IC is associated with cognitive deficits later in life, but without robust alterations in epigenetic regulation of gene expression in the cerebral cortex.
Collapse
Affiliation(s)
- Caroline M Connor
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester MA 01604
| | - Aslihan Dincer
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester MA 01604
| | - Juerg Straubhaar
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester MA 01604
| | - Isaac B Houston
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester MA 01604
| | - Schahram Akbarian
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester MA 01604
| | | |
Collapse
|