1
|
Fröhlich E. Local and systemic effects of microplastic particles through cell damage, release of chemicals and drugs, dysbiosis, and interference with the absorption of nutrients. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:315-344. [PMID: 39324551 DOI: 10.1080/10937404.2024.2406192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Microplastic particles (MPs) have been detected in a variety of environmental samples, including soil, water, food, and air. Cellular studies and animal exposures reported that exposure to MPs composed of different polymers might result in adverse effects at the portal of entry (local) or throughout the body (systemic). The most relevant routes of particle uptake into the body are oral and respiratory exposure. This review describes the various processes that may contribute to the adverse effects of MPs. Only MPs up to 5 µm were found to cross epithelial barriers to a significant extent. However, MPs may also exert a detrimental impact on human health by acting at the epithelial barrier and within the lumen of the orogastrointestinal and respiratory tract. The potential for adverse effects on human health resulting from the leaching, sorption, and desorption of chemicals, as well as the impact of MPs on nutritional status and dysbiosis, are reviewed. In vitro models are suggested as a means of (1) assessing permeation, (2) determining adverse effects on cells of the epithelial barrier, (3) examining influence of digestive fluids on leaching, desorption, and particle properties, and (4) role of microbiota-epithelial cell interactions. The contribution of these mechanisms to human health depends upon exposure levels, which unfortunately have been estimated very differently.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| |
Collapse
|
2
|
Qiu H, Liu J, Wu Q, Ong H, Zhang Y, Huang X, Yuan T, Zheng R, Deng H, Wang W, Kong W, Wang X, Wang D, Yang Q. An in vitro study of the impact of IL-17A and IL-22 on ciliogenesis in nasal polyps epithelium via the Hippo-YAP pathway. J Allergy Clin Immunol 2024; 154:1180-1194. [PMID: 39033934 DOI: 10.1016/j.jaci.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Cilia loss and impaired motile ciliary functions are among the typical pathological features of chronic rhinosinusitis with nasal polyps (CRSwNP). IL17A and IL22 are the canonical cytokines of type 3 inflammation, exhibiting similar functional effects on epithelial cells. In this study, we sought to examine the effects of IL17A and IL22 on ciliated cells and investigate the potential involvement of Hippo-YAP signaling in their influence on ciliogenesis. METHODS We assessed both the mRNA and protein expression levels of IL17A and IL22 in nasal tissues obtained from patients with CRSwNP and compared them to those from healthy controls. To further explore the impact of IL17A and IL22, we established a primary human nasal epithelial cell model using different concentrations (2 ng/mL, 10 ng/mL, 50 ng/mL) for a duration of 28 days in an air-liquid interface culture. Additionally, we employed the inhibitor verteporfin to investigate whether IL17A and IL22 exert their effects on ciliated cells via the Hippo-YAP pathway. RESULTS The mRNA and protein levels of IL17A and IL22 in CRSwNP were significantly higher than those in healthy controls, revealing a robust correlation between IL17A and IL22. YAP was highly expressed in the nucleus of ciliated cells in CRSwNP and displayed a positive correlation with clinical symptoms. Both IL17A and IL22 were found to reduce the number of ciliated cells. IL17A, but not IL22, suppressed ciliogenesis by disrupting the proper development and docking of the basal body of ciliated cells, resulting in motile ciliary dysfunctions. Furthermore, the expression of YAP within the nucleus of ciliated cells gradually declined as these cells reached the final stage of differentiation. However, this process was obstructed by IL17A only. YAP inhibitors, such as verteporfin, markedly reversed the effects of IL17A by increasing the proportion of ciliated cells, suppressing nuclear YAP expression in these cells, and enhancing ciliary beating frequency. CONCLUSIONS Both IL17A and IL22 are overexpressed in nasal epithelium of CRSwNP, which is associated with the impairment of epithelial cell differentiation. Furthermore, IL17A has been shown to exert a disruptive effect on morphogenesis of motile cilia via activation of YAP.
Collapse
Affiliation(s)
- Huijun Qiu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Qingwu Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hsiaohui Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yana Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuekun Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tian Yuan
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiyi Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weihao Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weifeng Kong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinyue Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Deyun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Qintai Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Tu Q, Liu G, Liu X, Zhang J, Xiao W, Lv L, Zhao B. Perspective on using non-human primates in Exposome research. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117199. [PMID: 39426107 DOI: 10.1016/j.ecoenv.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/02/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
The physiological and pathological changes in the human body caused by environmental pressures are collectively referred to as the Exposome. Human society is facing escalating environmental pollution, leading to a rising prevalence of associated diseases, including respiratory diseases, cardiovascular diseases, neurological disorders, reproductive development disorders, among others. Vulnerable populations to the pathogenic effects of environmental pollution include those in the prenatal, infancy, and elderly stages of life. Conducting Exposome mechanistic research and proposing effective health interventions are urgent in addressing the current severe environmental pollution. In this review, we address the core issues and bottlenecks faced by current Exposome research, specifically focusing on the most toxic ultrafine nanoparticles. We summarize multiple research models being used in Exposome research. Especially, we discuss the limitations of rodent animal models in mimicking human physiopathological phenotypes, and prospect advantages and necessity of non-human primates in Exposome research based on their evolutionary relatedness, anatomical and physiological similarities to human. Finally, we declare the initiation of NHPE (Non-Human Primate Exposome) project for conducting Exposome research using non-human primates and provide insights into its feasibility and key areas of focus. SYNOPSIS: Non-human primate models hold unique advantages in human Exposome research.
Collapse
Affiliation(s)
- Qiu Tu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China
| | - Gaojing Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiuyun Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiao Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China
| | - Wenxian Xiao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Longbao Lv
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China.
| | - Bo Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
4
|
Go J, Farhat N, Leingartner K, Insel EI, Momoli F, Carrier R, Krewski D. Review of epidemiological and toxicological studies on health effects from ingestion of asbestos in drinking water. Crit Rev Toxicol 2024:1-39. [PMID: 39436319 DOI: 10.1080/10408444.2024.2399840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 10/23/2024]
Abstract
Asbestos is a group of naturally occurring fibrous minerals that were commonly used in the construction of cement pipes for drinking water distribution systems. These pipes deteriorate and can release asbestos fibers into drinking water, raising concerns about potential risk to human health. The objective of this work was to synthesize human, animal, and in vitro evidence on potential health risks due to ingested asbestos in drinking water and evaluate the weight of evidence (WoE) of human health risk. A systematic review of epidemiological evidence was conducted, along with critical review of animal and in vitro evidence, followed by WoE evaluation that integrated human, animal, and in vitro evidence. The systematic review included 17 human studies with health outcomes mostly related to various cancer sites, with the majority focusing on the gastrointestinal system. The WoE evaluation resulted in very low levels of confidence or insufficient evidence of a health effect for cancers in 15 organ systems and for three non-cancer endpoints. While eight studies reported possible associations with stomach cancer in males, few high-quality studies were available to verify a causal relationship. Based on high-quality animal studies, an increased risk for cancer or non-cancer endpoints was not supported, aligning with findings from human studies. Overall, the currently available body of evidence is insufficient to establish a clear link between asbestos contamination in drinking water and adverse health effects. Due to the lack of both high-quality epidemiological studies and a validated kinetic model for ingested asbestos, additional research on this association is warranted.
Collapse
Affiliation(s)
- Jennifer Go
- Chemical and Product Safety, Risk Sciences International, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Nawal Farhat
- Chemical and Product Safety, Risk Sciences International, Ottawa, ON, Canada
- School of Mathematics and Statistics, Carleton University, Ottawa, ON, Canada
| | | | - Elvin Iscan Insel
- Chemical and Product Safety, Risk Sciences International, Ottawa, ON, Canada
| | - Franco Momoli
- Chemical and Product Safety, Risk Sciences International, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Richard Carrier
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada
| | - Daniel Krewski
- Chemical and Product Safety, Risk Sciences International, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- School of Mathematics and Statistics, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
5
|
Mesas Vaz C, Guembe Mülberger A, Torrent Burgas M. The battle within: how Pseudomonas aeruginosa uses host-pathogen interactions to infect the human lung. Crit Rev Microbiol 2024:1-36. [PMID: 39381985 DOI: 10.1080/1040841x.2024.2407378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Pseudomonas aeruginosa is a versatile Gram-negative pathogen known for its ability to invade the respiratory tract, particularly in cystic fibrosis patients. This review provides a comprehensive analysis of the multifaceted strategies for colonization, virulence, and immune evasion used by P. aeruginosa to infect the host. We explore the extensive protein arsenal of P. aeruginosa, including adhesins, exotoxins, secreted proteases, and type III and VI secretion effectors, detailing their roles in the infective process. We also address the unique challenge of treating diverse lung conditions that provide a natural niche for P. aeruginosa on the airway surface, with a particular focus in cystic fibrosis. The review also discusses the current limitations in treatment options due to antibiotic resistance and highlights promising future approaches that target host-pathogen protein-protein interactions. These approaches include the development of new antimicrobials, anti-attachment therapies, and quorum-sensing inhibition molecules. In summary, this review aims to provide a holistic understanding of the pathogenesis of P. aeruginosa in the respiratory system, offering insights into the underlying molecular mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Mesas Vaz
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba Guembe Mülberger
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marc Torrent Burgas
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
6
|
Iyadorai T, Lim SH, Wong PL, Sii HL, P'ng CK, Ee SS, Tan MP, Hanafi NS, Ng KT, Chook JB, Takebe Y, Chan KG, Singh S, Sam IC, Tee KK. Clinical symptoms, comorbidities and health outcomes among outpatients infected with the common cold coronaviruses versus influenza virus. Virol J 2024; 21:251. [PMID: 39380036 PMCID: PMC11462790 DOI: 10.1186/s12985-024-02524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Common cold coronaviruses (ccCoVs) and influenza virus are common infectious agents causing upper respiratory tract infections (RTIs). However, clinical symptoms, comorbidities, and health effects of ccCoV infection remain understudied. METHODS A retrospective study evaluated 3,935 outpatients with acute upper RTI at a tertiary teaching hospital. The presence of ccCoV and influenza virus was determined by multiplex molecular assay. The demographic, clinical symptoms, and health outcomes were compared between patients with ccCoV (n = 205) and influenza (n = 417) infections. Multivariable logistic regression was employed to evaluate predictors and health outcomes over a one-year follow-up. RESULTS Sore throat, nasal discharge, headache, and myalgia were more predominant in ccCoV infection; fever was common in influenza. Most patients reported moderate symptoms severity (49.8% ccCoV, 56.1% influenza). Subsequent primary care visits with symptoms of RTI within a year were comparable for both infections (27.3% ccCoV vs. 27.6% influenza). However, patients with influenza reported increased primary care visits for non-RTI episodes and all-cause hospital admission. Baseline comorbidities were associated with increased primary care visits with symptoms of RTI in either ccCoV (adjusted odds ratio [aOR] 2.5; 95% confidence interval [CI] 1.1-5.9; P = 0.034) or influenza (OR 1.9; 95% CI 1.1-3.1; P = 0.017) infections, due probably to the dysregulation of the host immune response following acute infections. In patients infected with influenza infection, dyslipidemia was a predictor for subsequent primary care visits with symptoms of RTI (unadjusted OR 1.8; 95% CI 1.0-3.0; P = 0.040). CONCLUSIONS Both influenza and ccCoV infection pose significant disease burden, especially in patients with comorbidities. The management of comorbidities should be prioritized to mitigate poor health outcomes in infected individuals.
Collapse
Affiliation(s)
- Thevambiga Iyadorai
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sin How Lim
- Department of Social and Preventive Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Pui Li Wong
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hoe Leong Sii
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chun Keat P'ng
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Soon Sean Ee
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Maw Pin Tan
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nik Sherina Hanafi
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kim Tien Ng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jack Bee Chook
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Yutaka Takebe
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- AIDS Research Center, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Jeffrey Cheah School of Medicine and Heath Sciences, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sarbhan Singh
- Biomedical Epidemiology Unit, Special Resource Centre, Institute for Medical Research, Ministry of Health, Shah Alam, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
7
|
Haber LT, Bradley MA, Buerger AN, Behrsing H, Burla S, Clapp PW, Dotson S, Fisher C, Genco KR, Kruszewski FH, McCullough SD, Page KE, Patel V, Pechacek N, Roper C, Sharma M, Jarabek AM. New approach methodologies (NAMs) for the in vitro assessment of cleaning products for respiratory irritation: workshop report. FRONTIERS IN TOXICOLOGY 2024; 6:1431790. [PMID: 39439531 PMCID: PMC11493779 DOI: 10.3389/ftox.2024.1431790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
The use of in vitro new approach methodologies (NAMs) to assess respiratory irritation depends on several factors, including the specifics of exposure methods and cell/tissue-based test systems. This topic was examined in the context of human health risk assessment for cleaning products at a 1-day public workshop held on 2 March 2023, organized by the American Cleaning Institute® (ACI). The goals of this workshop were to (1) review in vitro NAMs for evaluation of respiratory irritation, (2) examine different perspectives on current challenges and suggested solutions, and (3) publish a manuscript of the proceedings. Targeted sessions focused on exposure methods, in vitro cell/tissue test systems, and application to human health risk assessment. The importance of characterization of assays and development of reporting standards was noted throughout the workshop. The exposure methods session emphasized that the appropriate exposure system design depends on the purpose of the assessment. This is particularly important given the many dosimetry and technical considerations affecting relevance and translation of results to human exposure scenarios. Discussion in the in vitro cell/tissue test systems session focused on the wide variety of cell systems with varying suitability for evaluating key mechanistic steps, such as molecular initiating events (MIEs) and key events (KEs) likely present in any putative respiratory irritation adverse outcome pathway (AOP). This suggests the opportunity to further develop guidance around in vitro cell/tissue test system endpoint selection, assay design, characterization and validation, and analytics that provide information about a given assay's utility. The session on applications for human health protection emphasized using mechanistic understanding to inform the choice of test systems and integration of NAMs-derived data with other data sources (e.g., physicochemical properties, exposure information, and existing in vivo data) as the basis for in vitro to in vivo extrapolation. In addition, this group noted a need to develop procedures to align NAMs-based points of departure (PODs) and uncertainty factor selection with current human health risk assessment methods, together with consideration of elements unique to in vitro data. Current approaches are described and priorities for future characterization of in vitro NAMs to assess respiratory irritation are noted.
Collapse
Affiliation(s)
- Lynne T. Haber
- Risk Science Center, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Mark A. Bradley
- Risk Science Center, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, United States
| | | | - Holger Behrsing
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD, United States
| | | | - Phillip W. Clapp
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Scott Dotson
- Insight Exposure and Risk Sciences Group, Cincinnati, OH, United States
| | | | | | | | - Shaun D. McCullough
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. EPA, Chapel Hill, NC, United States
| | | | - Vivek Patel
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD, United States
| | | | - Clive Roper
- Roper Toxicology Consulting Limited, Edinburgh, United Kingdom
| | - Monita Sharma
- PETA Science Consortium International e.V, Stuttgart, Germany
| | - Annie M. Jarabek
- Health and Environmental Effects Assessment Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. EPA, Chapel Hill, NC, United States
| |
Collapse
|
8
|
Ji J, Jansen K, Kessler V, Seisenbaeva G, Gerde P, Malmlöf M, Palmberg L, Upadhyay S. Cell line-based in vitro models of normal and chronic bronchitis-like airway mucosa to study the toxic potential of aerosolized palladium nanoparticles. Front Med (Lausanne) 2024; 11:1422792. [PMID: 39440037 PMCID: PMC11493715 DOI: 10.3389/fmed.2024.1422792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Background Physiologically relevant cell line-based models of human airway mucosa are needed to assess nanoparticle-mediated pulmonary toxicity for any xenbiotics expsoure study. Palladium nanoparticles (Pd-NP) originating from catalytic converters in vehicles pose health risks. We aimed to develop in vitro airway models to assess the toxic potential of Pd-NP in normal (Non-CB) and chronic bronchitis-like (CB-like) mucosa models. Methods Bronchial mucosa models were developed using Epithelial cells (16HBE: apical side) co-cultured with fibroblast (basal side) at an air-liquid interface. Furthermore, both Non-CB and CB-like (IL-13 treatment) models with increased numbers of goblet cells were used. The models were exposed to 3 different doses of aerosolized Pd-NP (0.2, 0.3, and 6 μg/cm2) using XposeALI® and clean air as a control. After 24 h of incubation, the expression of inflammatory (IL6, CXCL8, TNFα, and NFKB), oxidative stress (HMOX1, SOD3, GPx, and GSTA1), and tissue injury/repair (MMP9/TIMP1) markers was assessed using qRT-PCR. The secretion of CXCL-8 and the expression of a tissue injury/repair marker (MMP-9) were measured via ELISA. Results Significantly (p < 0.05) increased expressions of CXCL8, IL6, and NFKB were observed at the highest dose of Pd-NP in CB-like models. However, in Non-CB mucosa models, a maximum effect on TNFα and NFKB expression was observed at a medium Pd-NP dose. In Non-CB mucosa models, SOD3 showed a clear dose-dependent response to Pd-NP exposure, while GSTA1 expression was significantly increased (p < 0.05) only at the lowest dose of Pd-NP. The secretion of CXCL-8 increased in a dose-dependent manner in the Non-CB mucosa models following exposure to Pd-NP. In CB-like models, exposure to high concentrations of Pd-NP significantly increased the release of MMP-9 compared to that in other exposure groups. Conclusion The combination of our Non-CB and CB-like mucosa models with the XposeALI® system for aerosolized nanoparticle exposure closely mimics in vivo lung environments and cell-particle interactions. Results from these models, utilizing accessible cell lines, will maximize the reliability of in vitro findings in human health risk assessment.
Collapse
Affiliation(s)
- Jie Ji
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Katja Jansen
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vadim Kessler
- Inorganic Bionanotechnology Unit, Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Gulaim Seisenbaeva
- Inorganic Bionanotechnology Unit, Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Per Gerde
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Inhalation Sciences Sweden AB, Stockholm, Sweden
| | | | - Lena Palmberg
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Swapna Upadhyay
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Yu Y, Lin K, Wu H, Hu M, Yang X, Wang J, Grillari J, Chen J. Targeting senescent cells in aging and COVID-19: from cellular mechanisms to therapeutic opportunities. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:20. [PMID: 39358480 PMCID: PMC11447201 DOI: 10.1186/s13619-024-00201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
The COVID-19 pandemic has caused a global health crisis and significant social economic burden. While most individuals experience mild or non-specific symptoms, elderly individuals are at a higher risk of developing severe symptoms and life-threatening complications. Exploring the key factors associated with clinical severity highlights that key characteristics of aging, such as cellular senescence, immune dysregulation, metabolic alterations, and impaired regenerative potential, contribute to disruption of tissue homeostasis of the lung and worse clinical outcome. Senolytic and senomorphic drugs, which are anti-aging treatments designed to eliminate senescent cells or decrease the associated phenotypes, have shown promise in alleviating age-related dysfunctions and offer a novel approach to treating diseases that share certain aspects of underlying mechanisms with aging, including COVID-19. This review summarizes the current understanding of aging in COVID-19 progression, and highlights recent findings on anti-aging drugs that could be repurposed for COVID-19 treatment to complement existing therapies.
Collapse
Affiliation(s)
- Yuan Yu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaixuan Lin
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Haoyu Wu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Mingli Hu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xuejie Yang
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jie Wang
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU University, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, 1200, Vienna, Austria
| | - Jiekai Chen
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
10
|
Kuruma T, Miyazaki H, Takahashi Y, Arimoto M, Yo K, Ogawa T, Fujimoto Y. A clinical comparative study of an outpatient treatment group and an endoscopic sinus surgery group for maxillary sinus fungus ball. Eur Arch Otorhinolaryngol 2024:10.1007/s00405-024-08994-2. [PMID: 39356354 DOI: 10.1007/s00405-024-08994-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024]
Abstract
PURPOSE This study aimed to clarify the differences in the pathophysiology of maxillary sinus fungus balls (FB) among different case groups and to identify which patients with maxillary sinus FB would be suitable for outpatient procedures. METHODS Thirty-four patients diagnosed with maxillary sinus FB between January 2017 and December 2021 were divided into two groups (O and S). We retrospectively compared the clinical and imaging characteristics, and the treatment outcomes between the groups. Group O comprised 12 patients (13 sides) treated in an outpatient clinic and Group S comprised 15 patients (16 sides) treated with endoscopic sinus surgery (ESS). RESULTS Compared to Group S, Group O had more patients with an enlarged maxillary sinus membranous portion, and shadows indicative of fungal masses (P < 0.01 and P < 0.05, respectively). In particular, the anteroposterior ratio of the open maxillary sinus membranous area was 0.68 ± 0.16 in Group O and 0.5 ± 0.12 in Group S. After surgery, Group O exhibited greater anteroposterior expansion of the maxillary sinus membranous portion compared to Group S (P < 0.01). Additionally, Group O had more patients with shadows in sinuses other than the maxillary sinus (P < 0.01) and medial displacement of the uncinate process (P < 0.01) than Group S. In addition, Group O required fewer procedures and hospital visits than Group S (P < 0.001 and P < 0.01, respectively). CONCLUSIONS Determining the indications for outpatient procedures while considering the pathophysiology of maxillary sinus FB can significantly benefit patients and medical professionals in terms of safety and medical costs.
Collapse
Affiliation(s)
- Tessei Kuruma
- Department of Otorhinolaryngology, Head and Neck Surgery, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute-shi, Aichi, 480-1195, Japan.
| | - Hidetaka Miyazaki
- Department of Oculoplastic, Orbital, and Lacrimal Surgery, Aichi Medical University Hospital, Nagakute, Aichi, Japan
| | - Yasuhiro Takahashi
- Department of Oculoplastic, Orbital, and Lacrimal Surgery, Aichi Medical University Hospital, Nagakute, Aichi, Japan
| | - Mariko Arimoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute-shi, Aichi, 480-1195, Japan
| | - Kinga Yo
- Department of Otorhinolaryngology, Head and Neck Surgery, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute-shi, Aichi, 480-1195, Japan
| | - Tetsuya Ogawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute-shi, Aichi, 480-1195, Japan
| | - Yasushi Fujimoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute-shi, Aichi, 480-1195, Japan
| |
Collapse
|
11
|
Wesselman HM, Arceri L, Nguyen TK, Lara CM, Wingert RA. Genetic mechanisms of multiciliated cell development: from fate choice to differentiation in zebrafish and other models. FEBS J 2024; 291:4159-4192. [PMID: 37997009 DOI: 10.1111/febs.17012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
Multiciliated cells (MCCS) form bundles of cilia and their activities are essential for the proper development and physiology of many organ systems. Not surprisingly, defects in MCCs have profound consequences and are associated with numerous disease states. Here, we discuss the current understanding of MCC formation, with a special focus on the genetic and molecular mechanisms of MCC fate choice and differentiation. Furthermore, we cast a spotlight on the use of zebrafish to study MCC ontogeny and several recent advances made in understanding MCCs using this vertebrate model to delineate mechanisms of MCC emergence in the developing kidney.
Collapse
Affiliation(s)
| | - Liana Arceri
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Caroline M Lara
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, IN, USA
| |
Collapse
|
12
|
Lingamallu SM, Deshpande A, Joy N, Ganeshan K, Ray N, Ladher RK, Taketo MM, Lafkas D, Guha A. Neuroepithelial bodies and terminal bronchioles are niches for distinctive club cells that repair the airways following acute notch inhibition. Cell Rep 2024; 43:114654. [PMID: 39182223 DOI: 10.1016/j.celrep.2024.114654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/05/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024] Open
Abstract
Lower airway club cells (CCs) serve the dual roles of a secretory cell and a stem cell. Here, we probe how the CC fate is regulated. We find that, in response to acute perturbation of Notch signaling, CCs adopt distinct fates. Although the vast majority transdifferentiate into multiciliated cells, a "variant" subpopulation (v-CCs), juxtaposed to neuroepithelial bodies (NEBs; 5%-10%) and located at bronchioalveolar duct junctions (>80%), does not. Instead, v-CCs transition into lineage-ambiguous states but can revert to a CC fate upon restoration of Notch signaling and repopulate the airways with CCs and multiciliated cells. The v-CC response to Notch inhibition is dependent on localized activation of β-catenin in v-CCs. We propose that the CC fate is stabilized by canonical Notch signaling, that airways are susceptible to perturbations to this pathway, and that NEBs/terminal bronchioles comprise niches that modulate CC plasticity via β-catenin activation to facilitate airway repair post Notch inhibition.
Collapse
Affiliation(s)
- Sai Manoz Lingamallu
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore 560065, India; Manipal Academy of Higher Education (MAHE), Madhav Nagar, Manipal 576104, India
| | - Aditya Deshpande
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore 560065, India; The University of Trans-Disciplinary Health Sciences and Technology (TDU), Yelahanka 560064, Bangalore, India
| | - Neenu Joy
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore 560065, India; SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, India
| | - Kirthana Ganeshan
- Immunology Discovery, Genentech Inc., South San Francisco, CA 94080, USA
| | - Neelanjana Ray
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore 560065, India
| | - Rajesh Kumar Ladher
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore 560065, India
| | - Makoto Mark Taketo
- Colon Cancer Project, Kyoto University Hospital-iACT, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Daniel Lafkas
- Immunology, Infectious Diseases, and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center, Basel, Switzerland
| | - Arjun Guha
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore 560065, India.
| |
Collapse
|
13
|
Taylor-Blair HC, Siu ACW, Haysom-McDowell A, Kokkinis S, Bani Saeid A, Chellappan DK, Oliver BGG, Paudel KR, De Rubis G, Dua K. The impact of airborne particulate matter-based pollution on the cellular and molecular mechanisms in chronic obstructive pulmonary disease (COPD). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176413. [PMID: 39322084 DOI: 10.1016/j.scitotenv.2024.176413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Inhalation of particulate matter (PM), one of the many components of air pollution, is associated with the development and exacerbation of chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD). COPD is one of the leading causes of global mortality and morbidity, with a paucity of therapeutic options and a significant contributor to global health expenditure. This review aims to provide a mechanistic understanding of the cellular and molecular pathways that lead to the development of COPD following chronic PM exposure. Our review describes how the inhalation of PM can lead to lung parenchymal destruction and cellular senescence due to chronic pulmonary inflammation and oxidative stress. Following inhalation of PM, significant increases in a range of pro-inflammatory cytokines, mediated by the nuclear factor kappa B pathway are reported. This review also highlights how the inhalation of PM can lead to deleterious chronic oxidative stress persisting in the lung post-exposure. Furthermore, our work summarises how PM inhalation can lead to airway remodelling, with increases in pro-fibrotic cytokines and collagen deposition, typical of COPD. This paper also accentuates the interconnection and possible synergism between the pathophysiological mechanisms leading to COPD. Our work emphasises the serious health consequences of PM exposure on respiratory health. Elucidation of the cellular and molecular mechanisms can provide insight into possible therapeutic options. Finally, this review should serve as a stark reminder of the need for genuine action on air pollution to decrease the associated health burden on our growing global population.
Collapse
Affiliation(s)
- Hudson C Taylor-Blair
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Alexander Chi Wang Siu
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Adam Haysom-McDowell
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ayeh Bani Saeid
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Brian G G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie Park, NSW 2113, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, University of Technology Sydney, School of Life Sciences, Faculty of Science, Ultimo, NSW 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
14
|
Kumar A, Vaiphei KK, Gulbake A. A nanotechnology driven effectual localized lung cancer targeting approaches using tyrosine kinases inhibitors: Recent progress, preclinical assessment, challenges, and future perspectives. Int J Pharm 2024; 666:124745. [PMID: 39321904 DOI: 10.1016/j.ijpharm.2024.124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
The higher incidence and mortality rate among all populations worldwide explains the unmet solutions in the treatment of lung cancer. The evolution of targeted therapies using tyrosine kinase inhibitors (TKI) has encouraged anticancer therapies. However, on-target and off-target effects and the development of drug resistance limited the anticancer potential of such targeted biologics. The advances in nanotechnology-driven-TKI embedded carriers that offered a new path toward lung cancer treatment. It is the inhalation route of administration known for its specific, precise, and efficient drug delivery to the lungs. The development of numerous TKI-nanocarriers through inhalation is proof of TKI growth. The future scopes involve using potential lung cancer biomarkers to achieve localized active cancer-targeting strategies. The adequate knowledge of in vitro absorption models usually helps establish better in vitro - in vivo correlation/extrapolation (IVIVC/E) to successfully evaluate inhalable drugs and drug products. The advanced in vitro and ex vivo lung tissue/ organ models offered better tumor heterogeneity, etiology, and microenvironment heterogeneity. The involvement of lung cancer organoids (LCOs), human organ chip models, and genetically modified mouse models (GEMMs) has resolved the challenges associated with conventional in vitro and in vivo models. To access potential inhalation-based drugtherapies, biological barriers, drug delivery, device-based challenges, and regulatory challenges must be encountered associated with their development. A proper understanding of material toxicity, size-based particle deposition at active disease sites, mucociliary clearance, phagocytosis, and the presence of enzymes and surfactants are required to achieve successful inhalational drug delivery (IDD). This article summarizes the future of lung cancer therapy using targeted drug-mediated inhalation using TKI.
Collapse
Affiliation(s)
- Ankaj Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India
| | - Klaudi K Vaiphei
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India
| | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India.
| |
Collapse
|
15
|
Roe K. The epithelial cell types and their multi-phased defenses against fungi and other pathogens. Clin Chim Acta 2024; 563:119889. [PMID: 39117034 DOI: 10.1016/j.cca.2024.119889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Mucus and its movements are essential to epithelial tissue immune defenses against pathogens, including fungal pathogens, which can infect respiratory, gastrointestinal or the genito-urinary tracts. Several epithelial cell types contribute to their immune defense. This review focuses on the respiratory tract because of its paramount importance, but the observations will apply to epithelial cell defenses of other mucosal tissue, including the gastrointestinal and genito-urinary tracts. Mucus and its movements can enhance or degrade the immune defenses of the respiratory tract, particularly the lungs. The enhancements include inhaled pathogen entrapments, including fungal pathogens, pollutants and particulates, for their removal. The detriments include smaller lung airway obstructions by mucus, impairing the physical removal of pathogens and impairing vital transfers of oxygen and carbon dioxide between the alveolar circulatory system and the pulmonary air. Inflammation, edema and/or alveolar cellular damage can also reduce vital transfers of oxygen and carbon dioxide between the lung alveolar circulatory system and the pulmonary air. Furthermore, respiratory tract defenses are affected by several fatty acid mediators which activate cellular receptors to manipulate neutrophils, macrophages, dendritic cells, various innate lymphoid cells including the natural killer cells, T cells, γδ T cells, mucosal-associated invariant T cells, NKT cells and mast cells. These mediators include the inflammatory and frequently immunosuppressive prostaglandins and leukotrienes, and the special pro-resolving mediators, which normally resolve inflammation and immunosuppression. The total effects on the various epithelial cell and immune cell types, after exposures to pathogens, pollutants or particulates, will determine respiratory tract health or disease.
Collapse
Affiliation(s)
- Kevin Roe
- Retired United States Patent and Trademark Office, San Jose, CA, United States.
| |
Collapse
|
16
|
Ishii H, Yamagishi M, Yajima J. Two Tetrahymena kinesin-9 family members exhibit slow plus-end-directed motility in vitro. Sci Rep 2024; 14:20993. [PMID: 39251704 PMCID: PMC11385561 DOI: 10.1038/s41598-024-71280-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
The kinesin-9 family comprises two subfamilies specific to ciliated eukaryotic cells, and has recently attracted considerable attention because of its importance in ciliary bending and formation. However, only scattered data are available on the motor properties of kinesin-9 family members; these properties have not been compared under identical experimental conditions using kinesin-9 motors from the same species. Here, we report the comprehensive motor properties of two kinesin-9 molecules of Tetrahymena thermophila, TtK9A (Kif9/Klp1 ortholog) and TtK9B1 (Kif6 ortholog), using microtubule-based in vitro assays, including single-motor and multi-motor assays and microtubule-stimulated ATPase assays. Both subfamilies exhibit microtubule plus-end-directed, extremely slow motor activity, both in single and multiple molecules. TtK9A shows lower processivity than TtK9B1. Our findings indicate that the considerable slow movement of kinesin-9 that corresponds to low ATP hydrolysis rates is a common feature of the ciliary kinesin-9 family.
Collapse
Affiliation(s)
- Hiroto Ishii
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
| | - Masahiko Yamagishi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
| | - Junichiro Yajima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.
- Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
17
|
Kang JH, Jeong JH, Kwon YB, Kim YJ, Shin DH, Park YS, Hyun S, Kim DW, Park CW. Mucosal Penetrative Polymeric Micelle Formulations for Insulin Delivery to the Respiratory Tract. Int J Nanomedicine 2024; 19:9195-9211. [PMID: 39267725 PMCID: PMC11390838 DOI: 10.2147/ijn.s474287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Purpose Effective mucosal delivery of drugs continues to pose a significant challenge owing to the formidable barrier presented by the respiratory tract mucus, which efficiently traps and clears foreign particulates. The surface characteristics of micelles dictate their ability to penetrate the respiratory tract mucus. In this study, polymeric micelles loaded with insulin (INS) were modified using mucus-penetrative polymers. Methods We prepared and compared polyethylene glycol (PEG)-coated micelles with micelles where cell-penetrating peptide (CPP) is conjugated to PEG. Systematic investigations of the physicochemical and aerosolization properties, performance, in vitro release, mucus and cell penetration, lung function, and pharmacokinetics/pharmacodynamics (PK/PD) of polymeric micelles were performed to evaluate their interaction with the respiratory tract. Results The nano-micelles, with a particle size of <100 nm, exhibited a sustained-release profile. Interestingly, PEG-coated micelles exhibited higher diffusion and deeper penetration across the mucus layer. In addition, CPP-modified micelles showed enhanced in vitro cell penetration. Finally, in the PK/PD studies, the micellar solution demonstrated higher maximum concentration (Cmax) and AUC0-8h values than subcutaneously administered INS solution, along with a sustained blood glucose-lowering effect that lasted for more than 8 h. Conclusion This study proposes the use of mucus-penetrating micelle formulations as prospective inhalation nano-carriers capable of efficiently transporting peptides to the respiratory tract.
Collapse
Affiliation(s)
- Ji-Hyun Kang
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
- School of Pharmacy, Institute of New Drug Development, and Respiratory Drug Development Research Institute, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jin-Hyuk Jeong
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Yong-Bin Kwon
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Young-Jin Kim
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Yun-Sang Park
- Research & Development Center, P2K Bio, Cheongju, Republic of Korea
| | - Soonsil Hyun
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Dong-Wook Kim
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| |
Collapse
|
18
|
McDonald CA, Langlois RA. Long Story Short: Understanding Isoform-Specific Expression of FAM13A. Am J Respir Cell Mol Biol 2024; 71:257-258. [PMID: 38696272 PMCID: PMC11376243 DOI: 10.1165/rcmb.2024-0166ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 05/04/2024] Open
Affiliation(s)
- Cera A McDonald
- Department of Microbiology and Immunology University of Minnesota Minneapolis, Minnesota
| | - Ryan A Langlois
- Department of Microbiology and Immunology University of Minnesota Minneapolis, Minnesota
| |
Collapse
|
19
|
Lever JEP, Turner KB, Fernandez CM, Leung HM, Hussain SS, Shei RJ, Lin VY, Birket SE, Chu KK, Tearney GJ, Rowe SM, Solomon GM. Metachrony drives effective mucociliary transport via a calcium-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 2024; 327:L282-L292. [PMID: 38860289 PMCID: PMC11444503 DOI: 10.1152/ajplung.00392.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
The mucociliary transport apparatus is critical for maintaining lung health via the coordinated movement of cilia to clear mucus and particulates. A metachronal wave propagates across the epithelium when cilia on adjacent multiciliated cells beat slightly out of phase along the proximal-distal axis of the airways in alignment with anatomically directed mucociliary clearance. We hypothesized that metachrony optimizes mucociliary transport (MCT) and that disruptions of calcium signaling would abolish metachrony and decrease MCT. We imaged bronchi from human explants and ferret tracheae using micro-optical coherence tomography (µOCT) to evaluate airway surface liquid depth (ASL), periciliary liquid depth (PCL), cilia beat frequency (CBF), MCT, and metachrony in situ. We developed statistical models that included covariates of MCT. Ferret tracheae were treated with BAPTA-AM (chelator of intracellular Ca2+), lanthanum chloride (nonpermeable Ca2+ channel competitive antagonist), and repaglinide (inhibitor of calaxin) to test calcium dependence of metachrony. We demonstrated that metachrony contributes to mucociliary transport of human and ferret airways. MCT was augmented in regions of metachrony compared with nonmetachronous regions by 48.1%, P = 0.0009 or 47.5%, P < 0.0020 in humans and ferrets, respectively. PCL and metachrony were independent contributors to MCT rate in humans; ASL, CBF, and metachrony contribute to ferret MCT rates. Metachrony can be disrupted by interference with calcium signaling including intracellular, mechanosensitive channels, and calaxin. Our results support that the presence of metachrony augments MCT in a calcium-dependent mechanism.NEW & NOTEWORTHY We developed a novel imaging-based analysis to detect coordination of ciliary motion and optimal coordination, a process called metachrony. We found that metachrony is key to the optimization of ciliary-mediated mucus transport in both ferret and human tracheal tissue. This process appears to be regulated through calcium-dependent mechanisms. This study demonstrates the capacity to measure a key feature of ciliary coordination that may be important in genetic and acquired disorders of ciliary function.
Collapse
Grants
- F31 HL146083 NHLBI NIH HHS
- 3T32GM008361-30S1 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- 2T32HL105346-11A1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32 GM008361 NIGMS NIH HHS
- Solomon 20Y0 Cystic Fibrosis Foundation (CFF)
- P30 DK072482 NIDDK NIH HHS
- 5F31HL146083-02 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35 HL135816 NHLBI NIH HHS
- K08 HL138153 NHLBI NIH HHS
- 2P30DK072482-12 HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)
- T32 HL105346 NHLBI NIH HHS
- 1K08HL138153-01A1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35 HL135816-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Jacelyn E Peabody Lever
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - K Brett Turner
- Division of Pulmonary Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Courtney M Fernandez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Shah Saddad Hussain
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ren-Jay Shei
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Vivian Y Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Susan E Birket
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kengyeh K Chu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Steven M Rowe
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - George M Solomon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
20
|
Biswas M, Nurunnabi M, Khatun Z. Understanding Mucosal Physiology and Rationale of Formulation Design for Improved Mucosal Immunity. ACS APPLIED BIO MATERIALS 2024; 7:5037-5056. [PMID: 38787767 DOI: 10.1021/acsabm.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The oral and nasal cavities serve as critical gateways for infectious pathogens, with microorganisms primarily gaining entry through these routes. Our first line of defense against these invaders is the mucosal membrane, a protective barrier that shields the body's internal systems from infection while also contributing to vital functions like air and nutrient intake. One of the key features of this mucosal barrier is its ability to protect the physiological system from pathogens. Additionally, mucosal tolerance plays a crucial role in maintaining homeostasis by regulating the pH and water balance within the body. Recognizing the importance of the mucosal barrier, researchers have developed various mucosal formulations to enhance the immune response. Mucosal vaccines, for example, deliver antigens directly to mucosal tissues, triggering local immune stimulation and ultimately inducing systemic immunity. Studies have shown that lipid-based formulations such as liposomes and virosomes can effectively elicit both local and systemic immune responses. Furthermore, mucoadhesive polymeric particles, with their prolonged delivery to target sites, have demonstrated an enhanced immune response. This Review delves into the critical role of material selection and delivery approaches in optimizing mucosal immunity.
Collapse
Affiliation(s)
- Mila Biswas
- Department of Electrical and Computer Engineering, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Zehedina Khatun
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| |
Collapse
|
21
|
Cui Z, Ul Islam T, Wang Y, den Toonder JMJ. Curved Surfaces Induce Metachronal Motion of Microscopic Magnetic Cilia. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38733-38743. [PMID: 38985460 DOI: 10.1021/acsami.4c06884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Cilia are hair-like organelles present on cell surfaces. They often exhibit a collective wave-like motion that can enhance fluid or particle transportation function, known as metachronal motion. Inspired by nature, researchers have developed artificial cilia capable of inducing metachronal motion, especially magnetic actuation. However, current methods remain intricate, requiring either control of the magnetic or geometrical properties of individual cilia or the generation of a complex magnetic field. In this paper, we present a novel elegant method that eliminates these complexities and induces metachronal motion of arrays of identical microscopic magnetic artificial cilia by applying a simple rotating uniform magnetic field. The key idea of our method is to place arrays of cilia on surfaces with a specially designed curvature. This results in consecutive cilia experiencing different magnetic field directions at each point in time, inducing a phase lag in their motion, thereby causing collective wave-like motion. Moreover, by tuning the surface curvature profile, we can achieve diverse metachronal patterns analogous to symplectic and antiplectic metachronal motion observed in nature, and we can even devise novel combinations thereof. Furthermore, we characterize the local flow patterns generated by the motion of the cilia, revealing the formation of vortical patterns. Our novel approach simplifies the realization of miniaturized metachronal motion in microfluidic systems and opens the possibility of controlling flow pattern generation and transportation, opening avenues for applications such as lab-on-a-chip technologies, organ-on-a-chip platforms, and microscopic object propulsion.
Collapse
Affiliation(s)
- Zhiwei Cui
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ Eindhoven, The Netherlands
| | - Tanveer Ul Islam
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ Eindhoven, The Netherlands
| | - Ye Wang
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ Eindhoven, The Netherlands
| | - Jaap M J den Toonder
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ Eindhoven, The Netherlands
| |
Collapse
|
22
|
Padín JF, Pérez-Ortiz JM, Redondo-Calvo FJ. Aprotinin (I): Understanding the Role of Host Proteases in COVID-19 and the Importance of Pharmacologically Regulating Their Function. Int J Mol Sci 2024; 25:7553. [PMID: 39062796 PMCID: PMC11277036 DOI: 10.3390/ijms25147553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Proteases are produced and released in the mucosal cells of the respiratory tract and have important physiological functions, for example, maintaining airway humidification to allow proper gas exchange. The infectious mechanism of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), takes advantage of host proteases in two ways: to change the spatial conformation of the spike (S) protein via endoproteolysis (e.g., transmembrane serine protease type 2 (TMPRSS2)) and as a target to anchor to epithelial cells (e.g., angiotensin-converting enzyme 2 (ACE2)). This infectious process leads to an imbalance in the mucosa between the release and action of proteases versus regulation by anti-proteases, which contributes to the exacerbation of the inflammatory and prothrombotic response in COVID-19. In this article, we describe the most important proteases that are affected in COVID-19, and how their overactivation affects the three main physiological systems in which they participate: the complement system and the kinin-kallikrein system (KKS), which both form part of the contact system of innate immunity, and the renin-angiotensin-aldosterone system (RAAS). We aim to elucidate the pathophysiological bases of COVID-19 in the context of the imbalance between the action of proteases and anti-proteases to understand the mechanism of aprotinin action (a panprotease inhibitor). In a second-part review, titled "Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral Conditions", we explain in depth the pharmacodynamics, pharmacokinetics, toxicity, and use of aprotinin as an antiviral drug.
Collapse
Affiliation(s)
- Juan Fernando Padín
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
| | - José Manuel Pérez-Ortiz
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco Javier Redondo-Calvo
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
- Department of Anaesthesiology and Critical Care Medicine, University General Hospital, 13005 Ciudad Real, Spain
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13005 Ciudad Real, Spain
| |
Collapse
|
23
|
Swart AL, Laventie BJ, Sütterlin R, Junne T, Lauer L, Manfredi P, Jakonia S, Yu X, Karagkiozi E, Okujava R, Jenal U. Pseudomonas aeruginosa breaches respiratory epithelia through goblet cell invasion in a microtissue model. Nat Microbiol 2024; 9:1725-1737. [PMID: 38858595 DOI: 10.1038/s41564-024-01718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/29/2024] [Indexed: 06/12/2024]
Abstract
Pseudomonas aeruginosa, a leading cause of severe hospital-acquired pneumonia, causes infections with up to 50% mortality rates in mechanically ventilated patients. Despite some knowledge of virulence factors involved, it remains unclear how P. aeruginosa disseminates on mucosal surfaces and invades the tissue barrier. Using infection of human respiratory epithelium organoids, here we observed that P. aeruginosa colonization of apical surfaces is promoted by cyclic di-GMP-dependent asymmetric division. Infection with mutant strains revealed that Type 6 Secretion System activities promote preferential invasion of goblet cells. Type 3 Secretion System activity by intracellular bacteria induced goblet cell death and expulsion, leading to epithelial rupture which increased bacterial translocation and dissemination to the basolateral epithelium. These findings show that under physiological conditions, P. aeruginosa uses coordinated activity of a specific combination of virulence factors and behaviours to invade goblet cells and breach the epithelial barrier from within, revealing mechanistic insight into lung infection dynamics.
Collapse
Affiliation(s)
| | | | | | - Tina Junne
- Biozentrum, University of Basel, Basel, Switzerland
| | - Luisa Lauer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Xiao Yu
- Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Evdoxia Karagkiozi
- Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Rusudan Okujava
- Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Urs Jenal
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
24
|
Sher AC, Stacy MR, Reynolds SD, Chiang T. In vivo detection of pulmonary mucociliary clearance: present challenges and future directions. Eur Respir Rev 2024; 33:240073. [PMID: 39293852 PMCID: PMC11409054 DOI: 10.1183/16000617.0073-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/09/2024] [Indexed: 09/20/2024] Open
Abstract
Pulmonary mucociliary clearance (MCC) is an important defence mechanism of the respiratory system and clears pathogens and foreign particles from the airways. Understanding the effect of disease states, drugs, toxins and airway manipulations on MCC could be beneficial in preventing early pulmonary disease and developing new pulmonary therapeutics. This review summarises the current methods and future efforts to detect pulmonary MCC in vivo.
Collapse
Affiliation(s)
- Ada C Sher
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Mitchel R Stacy
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Susan D Reynolds
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Tendy Chiang
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- College of Medicine, The Ohio State University, Columbus, OH, USA
- Department of Otolaryngology, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
25
|
Daniel J, Schönberger Alvarez AA, te Heesen P, Lehrheuer B, Pischinger S, Hollert H, Roß-Nickoll M, Du M. Air-liquid interface exposure of A549 human lung cells to characterize the hazard potential of a gaseous bio-hybrid fuel blend. PLoS One 2024; 19:e0300772. [PMID: 38913629 PMCID: PMC11195957 DOI: 10.1371/journal.pone.0300772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
Gaseous and semi-volatile organic compounds emitted by the transport sector contribute to air pollution and have adverse effects on human health. To reduce harmful effects to the environment as well as to humans, renewable and sustainable bio-hybrid fuels are explored and investigated in the cluster of excellence "The Fuel Science Center" at RWTH Aachen University. However, data on the effects of bio-hybrid fuels on human health is scarce, leaving a data gap regarding their hazard potential. To help close this data gap, this study investigates potential toxic effects of a Ketone-Ester-Alcohol-Alkane (KEAA) fuel blend on A549 human lung cells. Experiments were performed using a commercially available air-liquid interface exposure system which was optimized beforehand. Then, cells were exposed at the air-liquid interface to 50-2000 ppm C3.7 of gaseous KEAA for 1 h. After a 24 h recovery period in the incubator, cells treated with 500 ppm C3.7 KEAA showed significant lower metabolic activity and cells treated with 50, 250, 500 and 1000 ppm C3.7 KEAA showed significant higher cytotoxicity compared to controls. Our data support the international occupational exposure limits of the single KEAA constituents. This finding applies only to the exposure scenario tested in this study and is difficult to extrapolate to the complex in vivo situation.
Collapse
Affiliation(s)
- Jonas Daniel
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | | | - Pia te Heesen
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Bastian Lehrheuer
- TME—Chair of Thermodynamics of Mobile Energy Conversion Systems, RWTH Aachen University, Aachen, Germany
| | - Stefan Pischinger
- TME—Chair of Thermodynamics of Mobile Energy Conversion Systems, RWTH Aachen University, Aachen, Germany
| | - Henner Hollert
- Department Evolutionary Ecology & Environmental Toxicology (E3T), Faculty Biological Sciences (FB15), Goethe University Frankfurt, Frankfurt, Germany
- Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Martina Roß-Nickoll
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Miaomiao Du
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
26
|
Quiles KR, Shao FZ, Johnson WE, Chen F. EPITHELIAL REMODELING AND MICROBIAL DYSBIOSIS IN THE LOWER RESPIRATORY TRACT OF VITAMIN A-DEFICIENT MOUSE LUNGS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600110. [PMID: 38948802 PMCID: PMC11212965 DOI: 10.1101/2024.06.21.600110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The World Health Organization identified vitamin A deficiency (VAD) as a major public health issue in low-income communities and developing countries, while additional studies have shown dietary VAD leads to various lung pathologies. Once believed to be sterile, research now shows that transient microbial communities exist within healthy lungs and are often dysregulated in patients suffering from malnourishment, respiratory infections, and disease. The inability to parse vitamin A-mediated mechanisms from other metabolic mechanisms in humans with pathogenic endotypes, as well as the lack of data investigating how VAD affects the lung microbiome, remains a significant gap in the field. To address this unmet need, we compared molecular, metatranscriptomic, and morphometric data to identify how dietary VAD affects the lung as well as the lung microbiome. Our research shows structural and functional alterations in host-microbe-diet interactions in VAD lungs compared to vitamin A-sufficient (VAS) lungs; these changes are associated with epithelial remodeling, a breakdown in mucociliary clearance, microbial imbalance, and altered microbial colonization patterns after 8 weeks of vitamin A deficient diet. These findings confirm vitamin A is critical for lung homeostasis and provide mechanistic insights that could be valuable for the prevention of respiratory infections and disease.
Collapse
Affiliation(s)
- Kiloni. R. Quiles
- Boston University Pulmonary Allergy, Sleep, and Critical Care Center
| | - Feng-Zhi Shao
- Boston University Pulmonary Allergy, Sleep, and Critical Care Center
| | - W. Evan Johnson
- Rutgers University, New Jersey Medical School, Division of Infectious Disease, Department of Medicine
- Rutgers University, New Jersey Medical School, Center for Data Science
| | - Felicia Chen
- Boston University Pulmonary Allergy, Sleep, and Critical Care Center
| |
Collapse
|
27
|
Kyaw TW, Tsai MK, Wen CP, Shu CC, Su TC, Wu X, Gao W. Impaired lung function and lung cancer risk in 461 183 healthy individuals: a cohort study. BMJ Open Respir Res 2024; 11:e001936. [PMID: 38719501 PMCID: PMC11086288 DOI: 10.1136/bmjresp-2023-001936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/15/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND It has been known that smoking and various lung diseases including lung cancer can cause lung function impairment. However, the impact of different types of lung function impairments, such as preserved ratio impaired spirometry (PRISm) and airflow obstruction (AO), on the incidence and mortality of lung cancer in both general and never-smoker populations remains unclear. We wished to examine the effect of lung function impairments on lung cancer risks. METHODS This was a retrospective cohort study (1 January 1994 to 31 December 2017) of individuals from a health surveillance programme in Taiwan who underwent baseline spirometry tests at the entry point. PRISm was defined as an FEV1/FVC (forced expiratory volume in 1 s/forced vital capacity) ratio >0.7 and FEV1 <0.8, while AO was defined as an FEV1/FVC ratio <0.7. Cox proportional hazards models and cubic spline curves were used to examine the associations between lung function impairments and lung cancer risks. RESULTS The study included 461,183 individuals, of whom 14.3% had PRISm and 7.9% had AO. A total of 4038 cases of lung cancer and 3314 lung cancer-related deaths were identified during the 23 years of follow-up. Individuals with PRISm and AO exhibited a higher risk of lung cancer incidence and mortality compared with those with normal lung function. The adjusted HRs and 95% CIs were 1.14 (1.03 to 1.26) and 1.23 (1.10 to 1.37) in the overall cohort, and 1.08 (0.93 to 1.24), and 1.23 (1.05 to 1.45) in the never-smoker cohort. The risks of both developing and dying of lung cancer increased with the severity levels of lung function impairments and lower FEV1 values. CONCLUSION Impaired lung function is associated with increased risks of developing lung cancer and subsequent mortality. The study highlights the importance of considering lung function in lung cancer screening for better candidate selection.
Collapse
Affiliation(s)
- Thu Win Kyaw
- Global Health and Health Security Program, School of Public Health, Taipei Medical University College of Public Health and Nutrition, Taipei, Taiwan
| | - Min-Kuang Tsai
- Global Health and Health Security Program, School of Public Health, Taipei Medical University College of Public Health and Nutrition, Taipei, Taiwan
| | - Chi Pang Wen
- National Health Research Institutes, Zhunan, Taiwan
| | - Chin-Chung Shu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- National Taiwan University, Taipei, Taiwan
| | - Ta-Chen Su
- Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Xifeng Wu
- School of Public Health, Zhejiang Medical University, Hangzhou, China
| | - Wayne Gao
- Global Health and Health Security Program, School of Public Health, Taipei Medical University College of Public Health and Nutrition, Taipei, Taiwan
| |
Collapse
|
28
|
Abo M, Imamura K, Hosogi S, Kobayashi T, Takeda Y, Kase K, Koba H, Watanabe S, Ohkura N, Hara J, Yano S. Comparing region of interest selection and whole-field analysis for measurement of ciliary beat frequency in high-speed video analysis. Respir Investig 2024; 62:419-425. [PMID: 38489921 DOI: 10.1016/j.resinv.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/05/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Ciliary beat frequency (CBF) is crucial in mucociliary clearance. High-speed video analysis (HSVA) is commonly used to measure CBF but lacks standardization. We compared visual observation and computer-assisted calculation using fast Fourier transformation (FFT) in freshly collected bronchial ciliary epithelial cells and cultured cells. METHODS Bronchial epithelial cells were obtained from 12 patients who required bronchoscopic examination. Eighty-five videos of ciliary movement of freshly collected and cultured cells were recorded and used to calculate CBF using manual observation, region of interest (ROI) selection, and whole-field analysis. RESULTS CBF measured by the ROI selection method strongly correlated with that measured using manual observation, especially in freshly collected cells. However, 27.8% of the manual observation method values were doubled in the ROI selection method, probably because a round trip of cilia was calculated as two cycles and needed to be corrected to 1/2 value. Upon increasing the number of ROIs, the results of the ROI selection method came closer to that of WFA. CONCLUSIONS Computer-assisted calculation using FFT can aid in measuring CBF; however, current methods require visual confirmation. Further automated evaluation techniques are needed to establish more standardized and generalized CBF measurement methods using HSVA.
Collapse
Affiliation(s)
- Miki Abo
- Kanazawa University Health Service Center, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan; Department of Respiratory Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Kousuke Imamura
- Department of Electrical, Information and Communication Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Shigekuni Hosogi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Takafumi Kobayashi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, 920-0934, Japan
| | - Yoshihiro Takeda
- Department of Respiratory Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kazumasa Kase
- Department of Respiratory Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hayato Koba
- Department of Respiratory Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Noriyuki Ohkura
- Department of Respiratory Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Johsuke Hara
- Department of Respiratory Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Seiji Yano
- Department of Respiratory Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan; Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, 920-0934, Japan; Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| |
Collapse
|
29
|
De Rubis G, Paudel KR, Yeung S, Mohamad S, Sudhakar S, Singh SK, Gupta G, Hansbro PM, Chellappan DK, Oliver BGG, Dua K. 18-β-glycyrrhetinic acid-loaded polymeric nanoparticles attenuate cigarette smoke-induced markers of impaired antiviral response in vitro. Pathol Res Pract 2024; 257:155295. [PMID: 38603841 DOI: 10.1016/j.prp.2024.155295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Tobacco smoking is a leading cause of preventable mortality, and it is the major contributor to diseases such as COPD and lung cancer. Cigarette smoke compromises the pulmonary antiviral immune response, increasing susceptibility to viral infections. There is currently no therapy that specifically addresses the problem of impaired antiviral response in cigarette smokers and COPD patients, highlighting the necessity to develop novel treatment strategies. 18-β-glycyrrhetinic acid (18-β-gly) is a phytoceutical derived from licorice with promising anti-inflammatory, antioxidant, and antiviral activities whose clinical application is hampered by poor solubility. This study explores the therapeutic potential of an advanced drug delivery system encapsulating 18-β-gly in poly lactic-co-glycolic acid (PLGA) nanoparticles in addressing the impaired antiviral immunity observed in smokers and COPD patients. Exposure of BCi-NS1.1 human bronchial epithelial cells to cigarette smoke extract (CSE) resulted in reduced expression of critical antiviral chemokines (IP-10, I-TAC, MIP-1α/1β), mimicking what happens in smokers and COPD patients. Treatment with 18-β-gly-PLGA nanoparticles partially restored the expression of these chemokines, demonstrating promising therapeutic impact. The nanoparticles increased IP-10, I-TAC, and MIP-1α/1β levels, exhibiting potential in attenuating the negative effects of cigarette smoke on the antiviral response. This study provides a novel approach to address the impaired antiviral immune response in vulnerable populations, offering a foundation for further investigations and potential therapeutic interventions. Further studies, including a comprehensive in vitro characterization and in vivo testing, are warranted to validate the therapeutic efficacy of 18-β-gly-PLGA nanoparticles in respiratory disorders associated with compromised antiviral immunity.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Siddiq Mohamad
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Swathi Sudhakar
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai, Tamil Nadu 600036, India
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Brian Gregory George Oliver
- School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
30
|
Tran KN, Kwon JH, Kim MK, Nguyen NPK, Yang IJ. Intranasal delivery of herbal medicine for disease treatment: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155484. [PMID: 38442431 DOI: 10.1016/j.phymed.2024.155484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Intranasal administration has been adopted in traditional medicine to facilitate access to the bloodstream and central nervous system (CNS). In modern medicine, nasal drug delivery systems are valuable for disease treatment because of their noninvasiveness, good absorption, and fast-acting effects. OBJECTIVE This study aimed to systematically organize preclinical and clinical studies on intranasal herbal medicines to highlight their potential in drug development. METHODS A comprehensive search for literature until February 2023 was conducted on PubMed and the Web of Science. From the selected publications, we extracted key information, including the types of herbal materials, target diseases, intranasal conditions, methods of toxicity evaluation, main outcomes, and mechanisms of action, and performed quality assessments for each study. RESULTS Of the 45 studies, 13 were clinical and 32 were preclinical; 28 studies used herbal extracts, 9 used prescriptions, and 8 used natural compounds. The target diseases were rhinosinusitis, influenza, fever, stroke, migraine, insomnia, depression, memory disorders, and lung cancer. The common intranasal volumes were 8-50 µl in mice, 20-100 µl in rats, and 100-500 µl in rabbits. Peppermint oil, Ribes nigrum folium, Melia azedarach L., Elaeocarpus sylvestris, Radix Bupleuri, Da Chuan Xiong Fang, Xingnaojing microemulsion, and Ginsenoside Rb1 emerged as potential candidates for rapid intranasal therapy. The in vivo toxicity assessments were based on mortality, body weight, behavioral changes, mucociliary activity, histopathology, and blood tests. Most intranasal treatments were safe, except for Cyclamen europaeum, Jasminum sambac, Punica granatum L., and violet oil, which caused mild adverse effects. At lower doses, intranasal herbal treatments often show greater effects than oral administration. The actions of intranasal herbal medicine mainly involve regulating inflammation and neurotransmission, with the olfactory bulb and anterior cingulate cortex to be relevant brain regions. CONCLUSION Intranasal delivery of herbal materials holds promise for enhancing drug delivery efficacy and reducing treatment duration, offering a potential future perspective for developing intranasal therapies for various diseases.
Collapse
Affiliation(s)
- Khoa Nguyen Tran
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Ji-Hye Kwon
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Min-Kyung Kim
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Nhi Phuc Khanh Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
31
|
Ariolli A, Canè M, Di Fede M, Tavarini S, Taddei AR, Buno KP, Delany I, Rossi Paccani S, Pezzicoli A. Modeling airway persistent infection of Moraxella catarrhalis and nontypeable Haemophilus influenzae by using human in vitro models. Front Cell Infect Microbiol 2024; 14:1397940. [PMID: 38751999 PMCID: PMC11094313 DOI: 10.3389/fcimb.2024.1397940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) are two common respiratory tract pathogens often associated with acute exacerbations in Chronic Obstructive Pulmonary Disease (COPD) as well as with otitis media (OM) in children. Although there is evidence that these pathogens can adopt persistence mechanisms such as biofilm formation, the precise means through which they contribute to disease severity and chronicity remains incompletely understood, posing challenges for their effective eradication. The identification of potential vaccine candidates frequently entails the characterization of the host-pathogen interplay in vitro even though this approach is limited by the fact that conventional models do not permit long term bacterial infections. In the present work, by using air-liquid-interface (ALI) human airway in vitro models, we aimed to recreate COPD-related persistent bacterial infections. In particular, we explored an alternative use of the ALI system consisting in the assembly of an inverted epithelium grown on the basal part of a transwell membrane with the aim to enable the functionality of natural defense mechanisms such as mucociliary clearance and cellular extrusion that are usually hampered during conventional ALI infection experiments. The inversion of the epithelium did not affect tissue differentiation and considerably delayed NTHi or Mcat infection progression, allowing one to monitor host-pathogen interactions for up to three weeks. Notably, the use of these models, coupled with confocal and transmission electron microscopy, revealed unique features associated with NTHi and Mcat infection, highlighting persistence strategies including the formation of intracellular bacterial communities (IBCs) and surface-associated biofilm-like structures. Overall, this study demonstrates the possibility to perform long term host-pathogen investigations in vitro with the aim to define persistence mechanisms adopted by respiratory pathogens and individuate potential new vaccine targets.
Collapse
Affiliation(s)
- Andrea Ariolli
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Martina Canè
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Martina Di Fede
- GlaxoSmithKline Vaccines s.r.l., Preclinical R&D, Siena, Italy
| | - Simona Tavarini
- GlaxoSmithKline Vaccines s.r.l., Preclinical R&D, Siena, Italy
| | - Anna Rita Taddei
- Great Equipment Center-Section of Electron Microscopy, University of Tuscia, Viterbo, Italy
| | - Kevin Pete Buno
- GlaxoSmithKline Vaccines s.r.l., Preclinical R&D, Siena, Italy
| | - Isabel Delany
- GlaxoSmithKline Vaccines s.r.l., Preclinical R&D, Siena, Italy
| | | | | |
Collapse
|
32
|
Marmura MJ. Headaches due to Nasal and Paranasal Sinus Disease. Neurol Clin 2024; 42:e1-e13. [PMID: 39216905 DOI: 10.1016/j.ncl.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Headache and rhinosinusitis are 2 of the most common conditions seen in clinical practice. Consider sinusitis in those with new-onset headache, along with nasal congestion, maxillary tooth discomfort, anosmia, cough, or fever. Most chronic and recurring headaches, especially if migraine features are present, are not due to sinus disease, with the possible exception of rhinogenic headache due to nasal contact points. Nasal endoscopy and neuroimaging with computed tomography or MRI can confirm diagnosis and guide treatment with antibiotics, adjuvant therapies and surgery.
Collapse
Affiliation(s)
- Michael J Marmura
- Department of Neurology, Thomas Jefferson University Hospital, Jefferson Headache Center, 900 Walnut Street #200, Philadelphia, PA 19107, USA.
| |
Collapse
|
33
|
Ouyang X, Reihill JA, Douglas LEJ, Martin SL. Airborne indoor allergen serine proteases and their contribution to sensitisation and activation of innate immunity in allergic airway disease. Eur Respir Rev 2024; 33:230126. [PMID: 38657996 PMCID: PMC11040391 DOI: 10.1183/16000617.0126-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/28/2024] [Indexed: 04/26/2024] Open
Abstract
Common airborne allergens (pollen, animal dander and those from fungi and insects) are the main triggers of type I allergic disorder in the respiratory system and are associated with allergic rhinitis, allergic asthma, as well as immunoglobulin E (IgE)-mediated allergic bronchopulmonary aspergillosis. These allergens promote IgE crosslinking, vasodilation, infiltration of inflammatory cells, mucosal barrier dysfunction, extracellular matrix deposition and smooth muscle spasm, which collectively cause remodelling of the airways. Fungus and insect (house dust mite and cockroaches) indoor allergens are particularly rich in proteases. Indeed, more than 40 different types of aeroallergen proteases, which have both IgE-neutralising and tissue-destructive activities, have been documented in the Allergen Nomenclature database. Of all the inhaled protease allergens, 85% are classed as serine protease activities and include trypsin-like, chymotrypsin-like and collagenolytic serine proteases. In this article, we review and compare the allergenicity and proteolytic effect of allergen serine proteases as listed in the Allergen Nomenclature and MEROPS databases and highlight their contribution to allergic sensitisation, disruption of the epithelial barrier and activation of innate immunity in allergic airways disease. The utility of small-molecule inhibitors of allergen serine proteases as a potential treatment strategy for allergic airways disease will also be discussed.
Collapse
Affiliation(s)
- Xuan Ouyang
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | | | |
Collapse
|
34
|
Ambrogi M, Vezina CM. Roles of airway and intestinal epithelia in responding to pathogens and maintaining tissue homeostasis. Front Cell Infect Microbiol 2024; 14:1346087. [PMID: 38736751 PMCID: PMC11082347 DOI: 10.3389/fcimb.2024.1346087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Epithelial cells form a resilient barrier and orchestrate defensive and reparative mechanisms to maintain tissue stability. This review focuses on gut and airway epithelia, which are positioned where the body interfaces with the outside world. We review the many signaling pathways and mechanisms by which epithelial cells at the interface respond to invading pathogens to mount an innate immune response and initiate adaptive immunity and communicate with other cells, including resident microbiota, to heal damaged tissue and maintain homeostasis. We compare and contrast how airway and gut epithelial cells detect pathogens, release antimicrobial effectors, collaborate with macrophages, Tregs and epithelial stem cells to mount an immune response and orchestrate tissue repair. We also describe advanced research models for studying epithelial communication and behaviors during inflammation, tissue injury and disease.
Collapse
Affiliation(s)
| | - Chad M. Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
35
|
Roth D, Şahin AT, Ling F, Senger CN, Quiroz EJ, Calvert BA, van der Does AM, Güney TG, Tepho N, Glasl S, van Schadewijk A, von Schledorn L, Olmer R, Kanso E, Nawroth JC, Ryan AL. STRUCTURE-FUNCTION RELATIONSHIPS OF MUCOCILIARY CLEARANCE IN HUMAN AIRWAYS. RESEARCH SQUARE 2024:rs.3.rs-4164522. [PMID: 38746209 PMCID: PMC11092836 DOI: 10.21203/rs.3.rs-4164522/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Our study focuses on the intricate connection between tissue-level organization and ciliated organ function in humans, particularly in understanding the morphological organization of airways and their role in mucociliary clearance. Mucociliary clearance is a key mechanical defense mechanism of human airways, and clearance failure is associated with many respiratory diseases, including chronic obstructive pulmonary disease (COPD) and asthma. While single-cell transcriptomics have unveiled the cellular complexity of the human airway epithelium, our understanding of the mechanics that link epithelial structure to clearance function mainly stem from animal models. This reliance on animal data limits crucial insights into human airway barrier function and hampers the human-relevant in vitro modeling of airway diseases. This study, for the first time, maps the distribution of ciliated and secretory cell types along the airway tree in both rats and humans, noting species-specific differences in ciliary function and elucidates structural parameters of airway epithelia that predict clearance function in both native and in vitro tissues alike. By uncovering how tissue organization influences ciliary function, we can better understand disruptions in mucociliary clearance, which could have implications for various ciliated organs beyond the airways.
Collapse
Affiliation(s)
- Doris Roth
- Helmholtz Pioneer Campus, Institute of Biological and Medical Imaging, and Member of the German Lung Research Center (DZL CPC-M), Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, D-81675, Germany
| | - Ayşe Tuğçe Şahin
- Helmholtz Pioneer Campus, Institute of Biological and Medical Imaging, and Member of the German Lung Research Center (DZL CPC-M), Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, D-81675, Germany
| | - Feng Ling
- Helmholtz Pioneer Campus, Institute of Biological and Medical Imaging, and Member of the German Lung Research Center (DZL CPC-M), Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, D-81675, Germany
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Christiana N. Senger
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Erik J. Quiroz
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ben A. Calvert
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Anne M. van der Does
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tankut G. Güney
- Helmholtz Pioneer Campus, Institute of Biological and Medical Imaging, and Member of the German Lung Research Center (DZL CPC-M), Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, D-81675, Germany
| | - Niels Tepho
- Helmholtz Pioneer Campus, Institute of Biological and Medical Imaging, and Member of the German Lung Research Center (DZL CPC-M), Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, D-81675, Germany
| | - Sarah Glasl
- Helmholtz Pioneer Campus, Institute of Biological and Medical Imaging, and Member of the German Lung Research Center (DZL CPC-M), Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, D-81675, Germany
| | - Annemarie van Schadewijk
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Laura von Schledorn
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Hannover, D-30625, Germany
- Biomedical Research in End stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, D-30625, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, D-30625, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Hannover, D-30625, Germany
- Biomedical Research in End stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, D-30625, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, D-30625, Germany
| | - Eva Kanso
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Janna C. Nawroth
- Helmholtz Pioneer Campus, Institute of Biological and Medical Imaging, and Member of the German Lung Research Center (DZL CPC-M), Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, D-81675, Germany
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA 52242, USA
| |
Collapse
|
36
|
Rosales RS, Risco D, García-Nicolás O, Pallarés FJ, Ramírez AS, Poveda JB, Nicholas RAJ, Salguero FJ. Differential Gene Expression in Porcine Lung Compartments after Experimental Infection with Mycoplasma hyopneumoniae. Animals (Basel) 2024; 14:1290. [PMID: 38731294 PMCID: PMC11083927 DOI: 10.3390/ani14091290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/20/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Mycoplasma hyopneumoniae (Mhyo) is the causative agent of porcine enzootic pneumonia (EP), as well as one of the main pathogens involved in the porcine respiratory disease complex. The host-pathogen interaction between Mhyo and infected pigs is complex and not completely understood; however, improving the understanding of these intricacies is essential for the development of effective control strategies of EP. In order to improve our knowledge about this interaction, laser-capture microdissection was used to collect bronchi, bronchi-associated lymphoid tissue, and lung parenchyma from animals infected with different strains of Mhyo, and mRNA expression levels of different molecules involved in Mhyo infection (ICAM1, IL-8, IL-10, IL-23, IFN-α, IFN-γ, TGF-β, and TNF-α) were analyzed by qPCR. In addition, the quantification of Mhyo load in the different lung compartments and the scoring of macroscopic and microscopic lung lesions were also performed. Strain-associated differences in virulence were observed, as well as the presence of significant differences in expression levels of cytokines among lung compartments. IL-8 and IL-10 presented the highest upregulation, with limited differences between strains and lung compartments. IFN-α was strongly downregulated in BALT, implying a relevant role for this cytokine in the immunomodulation associated with Mhyo infections. IL-23 was also upregulated in all lung compartments, suggesting the potential involvement of a Th17-mediated immune response in Mhyo infections. Our findings highlight the relevance of Th1 and Th2 immune response in cases of EP, shedding light on the gene expression levels of key cytokines in the lung of pigs at a microscopic level.
Collapse
Affiliation(s)
- Rubén S. Rosales
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Spain; (R.S.R.); (A.S.R.); (J.B.P.)
| | - David Risco
- Unidad de Histología y Anatomía Patológica, Departamento de Medicina Animal, Veterinary Faculty, University of Extremadura, Avenida de la Universidad, s/n, 10003 Cáceres, Spain
| | - Obdulio García-Nicolás
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Francisco J. Pallarés
- Pathology and Immunology Group (UCO-PIG), Department of Anatomy and Comparative Pathology and Toxicology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus “CeiA3”, 14001 Córdoba, Spain;
| | - Ana S. Ramírez
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Spain; (R.S.R.); (A.S.R.); (J.B.P.)
| | - José B. Poveda
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Spain; (R.S.R.); (A.S.R.); (J.B.P.)
| | | | - Francisco J. Salguero
- School of Veterinary Medicine, University of Surrey, Daphne Jackson Rd, Guildford GU2 7AL, UK;
| |
Collapse
|
37
|
Wu M, Chen JH. CFTR dysfunction leads to defective bacterial eradication on cystic fibrosis airways. Front Physiol 2024; 15:1385661. [PMID: 38699141 PMCID: PMC11063615 DOI: 10.3389/fphys.2024.1385661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel by genetic mutations causes the inherited disease cystic fibrosis (CF). CF lung disease that involves multiple disorders of epithelial function likely results from loss of CFTR function as an anion channel conducting chloride and bicarbonate ions and its function as a cellular regulator modulating the activity of membrane and cytosol proteins. In the absence of CFTR activity, abundant mucus accumulation, bacterial infection and inflammation characterize CF airways, in which inflammation-associated tissue remodeling and damage gradually destroys the lung. Deciphering the link between CFTR dysfunction and bacterial infection in CF airways may reveal the pathogenesis of CF lung disease and guide the development of new treatments. Research efforts towards this goal, including high salt, low volume, airway surface liquid acidosis and abnormal mucus hypotheses are critically reviewed.
Collapse
Affiliation(s)
| | - Jeng-Haur Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
38
|
Yang SK, Kubo S, Black CS, Peri K, Dai D, Legal T, Valente-Paterno M, Gaertig J, Bui KH. Effect of α-tubulin acetylation on the doublet microtubule structure. eLife 2024; 12:RP92219. [PMID: 38598282 PMCID: PMC11006419 DOI: 10.7554/elife.92219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Acetylation of α-tubulin at the lysine 40 residue (αK40) by αTAT1/MEC-17 acetyltransferase modulates microtubule properties and occurs in most eukaryotic cells. Previous literatures suggest that acetylated microtubules are more stable and damage resistant. αK40 acetylation is the only known microtubule luminal post-translational modification site. The luminal location suggests that the modification tunes the lateral interaction of protofilaments inside the microtubule. In this study, we examined the effect of tubulin acetylation on the doublet microtubule (DMT) in the cilia of Tetrahymena thermophila using a combination of cryo-electron microscopy, molecular dynamics, and mass spectrometry. We found that αK40 acetylation exerts a small-scale effect on the DMT structure and stability by influencing the lateral rotational angle. In addition, comparative mass spectrometry revealed a link between αK40 acetylation and phosphorylation in cilia.
Collapse
Affiliation(s)
- Shun Kai Yang
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
| | - Shintaroh Kubo
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
| | | | - Katya Peri
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
| | - Daniel Dai
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
| | - Thibault Legal
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
| | | | - Jacek Gaertig
- Department of Cellular Biology, University of GeorgiaAthensUnited States
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
- Centre de Recherche en Biologie Structurale, McGill UniversityMontréalCanada
| |
Collapse
|
39
|
Ling F, Essock-Burns T, McFall-Ngai M, Katija K, Nawroth JC, Kanso E. Flow Physics Explains Morphological Diversity of Ciliated Organs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.12.528181. [PMID: 38168341 PMCID: PMC10760039 DOI: 10.1101/2023.02.12.528181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Organs that pump fluids by the coordinated beat of motile cilia through the lumen are integral to animal physiology. Such organs include the human airways, brain ventricles, and reproductive tracts. Although cilia organization and duct morphology vary drastically in the animal kingdom, ducts are typically classified as either carpet or flame designs. The reason behind this dichotomy and how duct design relates to fluid pumping remain unclear. Here, we demonstrate that two structural parameters -- lumen diameter and cilia-to-lumen ratio -- organize the observed duct diversity into a continuous spectrum that connects carpets to flames across all animal phyla. Using a unified fluid model, we show that carpet and flame designs maximize flow rate and pressure generation, respectively. We propose that convergence of ciliated organ designs follows functional constraints rather than phylogenetic distance, along with universal design rules for ciliary pumps.
Collapse
|
40
|
Jairaman A, Prakriya M. Calcium Signaling in Airway Epithelial Cells: Current Understanding and Implications for Inflammatory Airway Disease. Arterioscler Thromb Vasc Biol 2024; 44:772-783. [PMID: 38385293 PMCID: PMC11090472 DOI: 10.1161/atvbaha.123.318339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Airway epithelial cells play an indispensable role in protecting the lung from inhaled pathogens and allergens by releasing an array of mediators that orchestrate inflammatory and immune responses when confronted with harmful environmental triggers. While this process is undoubtedly important for containing the effects of various harmful insults, dysregulation of the inflammatory response can cause lung diseases including asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. A key cellular mechanism that underlies the inflammatory responses in the airway is calcium signaling, which stimulates the production and release of chemokines, cytokines, and prostaglandins from the airway epithelium. In this review, we discuss the role of major Ca2+ signaling pathways found in airway epithelial cells and their contributions to airway inflammation, mucociliary clearance, and surfactant production. We highlight the importance of store-operated Ca2+ entry as a major signaling hub in these processes and discuss therapeutic implications of targeting Ca2+ signaling for airway inflammation.
Collapse
Affiliation(s)
- Amit Jairaman
- Department of Physiology and Biophysics, School of Medicine, University of California-Irvine (UCI) (A.J.)
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (M.P.)
| |
Collapse
|
41
|
Huang M, Zheng M, Song Q, Ma X, Zhang Q, Chen H, Jiang G, Zhou S, Chen H, Wang G, Dai C, Li S, Li P, Wang H, Zhang A, Huang Y, Chen J, Gao X. Comparative Proteomics Inspired Self-Stimulated Release Hydrogel Reinforces the Therapeutic Effects of MSC-EVs on Alzheimer's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311420. [PMID: 38157492 DOI: 10.1002/adma.202311420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/10/2023] [Indexed: 01/03/2024]
Abstract
The clinical application of extracellular vesicles (EVs)-based therapeutics continues to be challenging due to their rapid clearance, restricted retention, and low yields. Although hydrogel possesses the ability to impede physiological clearance and increase regional retention, it typically fails to effectively release the incorporated EVs, resulting in reduced accessibility and bioavailability. Here an intelligent hydrogel in which the release of EVs is regulated by the proteins on the EVs membrane is proposed. By utilizing the EVs membrane enzyme to facilitate hydrogel degradation, sustained retention and self-stimulated EVs release can be achieved at the administration site. To achieve this goal, the membrane proteins with matrix degrading activity in the mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are identified using comparative proteomics. After that, a hydrogel comprised of self-assembled peptides that are susceptible to degradation by the membrane enzymes present in MSC-EVs is designed and synthesized. After intranasal administration, this peptide hydrogel facilitates sustained and thermo-sensitive release of MSC-EVs, thereby extending the retention of the MSC-EVs and substantially enhancing their potential for treating Alzheimer's disease. This research presents a comparative proteomics-driven approach to intelligent hydrogel design, which holds the capacity to significantly enhance the applicability of EVs in clinical settings.
Collapse
Affiliation(s)
- Meng Huang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mengna Zheng
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinyi Ma
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Songlei Zhou
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, 2800 Gongwei Road, Shanghai, 201399, China
| | - Hongzhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Gang Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chengxiang Dai
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 102600, China
| | - Suke Li
- Cellular Biomedicine Group Inc, Shanghai, 201210, China
| | - Ping Li
- Cellular Biomedicine Group Inc, Shanghai, 201210, China
| | - Hao Wang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ao Zhang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yukun Huang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Chen
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, 2800 Gongwei Road, Shanghai, 201399, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
42
|
Shaikh SB, Prabhu A, Akarsha B, Rahamathulla MP, Sha M, Bhandary YP. Lung as a target for COVID-19: Mechanistic insights and probable candidate molecules for cure. J Infect Public Health 2024; 17:573-578. [PMID: 38367571 DOI: 10.1016/j.jiph.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/01/2024] [Accepted: 01/21/2024] [Indexed: 02/19/2024] Open
Abstract
Novel coronavirus (SARS nCoV2), belonging to the family coronaviridae, remains a dreadful pathogen affecting the respiratory tract and lungs. COVID-19 declared a global pandemic by WHO, has become a serious cause of concern for clinicians and researchers, who need to understand the significant biology and pathogenicity of this virus to design better treatment modalities. Existing antiretroviral drugs remain partially ineffective in critical subjects with associated co-morbidities. This review provides an insight into the molecular mechanisms by which SARS-CoV2 targets the lungs leading to ARDS in severe cases. This also addresses the possible drug targets and certain anti-inflammatory natural compounds that can be looked upon as promising adjuvant therapeutics for COVID-19.
Collapse
Affiliation(s)
- Sadiya Bi Shaikh
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, Karnataka, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, Karnataka, India
| | - Akarsha B
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, Karnataka, India.
| | - Mohamudha Parveen Rahamathulla
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Kingdom of Saudi Arabia.
| | - Mohemmed Sha
- Department of Software Engineering, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Kingdom of Saudi Arabia
| | | |
Collapse
|
43
|
Pan D, Chung S, Nielsen E, Niederman MS. Aspiration Pneumonia. Semin Respir Crit Care Med 2024; 45:237-245. [PMID: 38211629 DOI: 10.1055/s-0043-1777772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Aspiration pneumonia is a lower respiratory tract infection that results from inhalation of foreign material, often gastric and oropharyngeal contents. It is important to distinguish this from a similar entity, aspiration with chemical pneumonitis, as treatment approaches may differ. An evolving understanding of the human microbiome has shed light on the pathogenesis of aspiration pneumonia, suggesting that dysbiosis, repetitive injury, and inflammatory responses play a role in its development. Risk factors for aspiration events involve a complex interplay of anatomical and physiological dysfunctions in the nervous, gastrointestinal, and pulmonary systems. Current treatment strategies have shifted away from anaerobic organisms as leading pathogens. Prevention of aspiration pneumonia primarily involves addressing oropharyngeal dysphagia, a significant risk factor for aspiration pneumonia, particularly among elderly individuals and those with cognitive and neurodegenerative disorders.
Collapse
Affiliation(s)
- Di Pan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Samuel Chung
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Erik Nielsen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Michael S Niederman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
44
|
Cui Z, Wang Y, den Toonder JMJ. Metachronal Motion of Biological and Artificial Cilia. Biomimetics (Basel) 2024; 9:198. [PMID: 38667209 PMCID: PMC11048255 DOI: 10.3390/biomimetics9040198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Cilia are slender, hair-like cell protrusions that are present ubiquitously in the natural world. They perform essential functions, such as generating fluid flow, propulsion, and feeding, in organisms ranging from protozoa to the human body. The coordinated beating of cilia, which results in wavelike motions known as metachrony, has fascinated researchers for decades for its role in functions such as flow generation and mucus transport. Inspired by nature, researchers have explored diverse materials for the fabrication of artificial cilia and developed several methods to mimic the metachronal motion observed in their biological counterparts. In this review, we will introduce the different types of metachronal motion generated by both biological and artificial cilia, the latter including pneumatically, photonically, electrically, and magnetically driven artificial cilia. Furthermore, we review the possible applications of metachronal motion by artificial cilia, focusing on flow generation, transport of mucus, particles, and droplets, and microrobotic locomotion. The overall aim of this review is to offer a comprehensive overview of the metachronal motions exhibited by diverse artificial cilia and the corresponding practical implementations. Additionally, we identify the potential future directions within this field. These insights present an exciting opportunity for further advancements in this domain.
Collapse
Affiliation(s)
- Zhiwei Cui
- Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (Z.C.); (Y.W.)
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ye Wang
- Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (Z.C.); (Y.W.)
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jaap M. J. den Toonder
- Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (Z.C.); (Y.W.)
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
45
|
Retuerto-Guerrero M, López-Medrano R, de Freitas-González E, Rivero-Lezcano OM. Nontuberculous Mycobacteria, Mucociliary Clearance, and Bronchiectasis. Microorganisms 2024; 12:665. [PMID: 38674609 PMCID: PMC11052484 DOI: 10.3390/microorganisms12040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Nontuberculous mycobacteria (NTM) are environmental and ubiquitous, but only a few species are associated with disease, often presented as nodular/bronchiectatic or cavitary pulmonary forms. Bronchiectasis, airways dilatations characterized by chronic productive cough, is the main presentation of NTM pulmonary disease. The current Cole's vicious circle model for bronchiectasis proposes that it progresses from a damaging insult, such as pneumonia, that affects the respiratory epithelium and compromises mucociliary clearance mechanisms, allowing microorganisms to colonize the airways. An important bronchiectasis risk factor is primary ciliary dyskinesia, but other ciliopathies, such as those associated with connective tissue diseases, also seem to facilitate bronchiectasis, as may occur in Lady Windermere syndrome, caused by M. avium infection. Inhaled NTM may become part of the lung microbiome. If the dose is too large, they may grow excessively as a biofilm and lead to disease. The incidence of NTM pulmonary disease has increased in the last two decades, which may have influenced the parallel increase in bronchiectasis incidence. We propose that ciliary dyskinesia is the main promoter of bronchiectasis, and that the bacteria most frequently involved are NTM. Restoration of ciliary function and impairment of mycobacterial biofilm formation may provide effective therapeutic alternatives to antibiotics.
Collapse
Affiliation(s)
- Miriam Retuerto-Guerrero
- Servicio de Reumatología, Complejo Asistencial Universitario de León, Gerencia Regional de Salud de Castilla y León (SACYL), Altos de Nava, s/n, 24071 León, Spain;
| | - Ramiro López-Medrano
- Servicio de Microbiología Clínica, Complejo Asistencial Universitario de León, Gerencia Regional de Salud de Castilla y León (SACYL), Altos de Nava, s/n, 24071 León, Spain;
| | - Elizabeth de Freitas-González
- Servicio de Neumología, Complejo Asistencial Universitario de León, Gerencia Regional de Salud de Castilla y León (SACYL), Altos de Nava, s/n, 24071 León, Spain;
| | - Octavio Miguel Rivero-Lezcano
- Unidad de Investigación, Complejo Asistencial Universitario de León, Gerencia Regional de Salud de Castilla y León (SACYL), Altos de Nava, s/n, 24071 León, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain
| |
Collapse
|
46
|
Tran TTT, Hung JJ. PTEN decreases NR2F1 expression to inhibit ciliogenesis during EGFR L858R-induced lung cancer progression. Cell Death Dis 2024; 15:225. [PMID: 38499532 PMCID: PMC10948910 DOI: 10.1038/s41419-024-06610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Lung cancer is the major cause of death worldwide. Activation of oncogenes or inhibition of tumor suppressors causes cancer formation. Previous studies have indicated that PTEN, as a tumor suppressor, inhibits cancer formation. In this study, we studied the role of PTEN in EGFRL858R-induced lung cancer in vivo. Interestingly, loss of PTEN increased bronchial cell hyperplasia but decreased alveolar cell hyperplasia in EGFRL858R*PTEN-/--induced lung cancer. Systematic analysis of gene expression by RNA-seq showed that several genes related to ciliogenesis were upregulated in EGFRL858R*PTEN-/--induced lung cancer and subsequently showed that bronchial ciliated cells were hyperplastic. Several critical ciliogenesis-related genes, such as Mucin5A, DNAI2, and DNAI3, were found to be regulated by NR2F1. Next, NR2F1 was found to be inhibited by overexpression of PTEN, indicating that PTEN negatively regulates NR2F1, thereby inhibiting the expression of ciliogenesis-related genes and leading to the inhibition of bronchial cell hyperplasia during EGFRL858R-induced lung cancer progression. In addition, we also found that PTEN decreased AKT phosphorylation in A549, KRAS mutant, and H1299 cells but increased AKT phosphorylation in PC9, EGFRL858R, and H1299L858R cells, suggesting that PTEN may function as a tumor suppressor and an oncogene in lung cancers with KRAS mutation and EGFR mutation, respectively. PTEN acts as a double-edged sword that differentially regulates EGFRL858R-induced lung cancer progression in different genomic backgrounds. Understanding the PTEN in lung cancer with different genetic backgrounds will be beneficial for therapy in the future.
Collapse
Affiliation(s)
- Thi Thanh Truc Tran
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
47
|
Listyoko AS, Okazaki R, Harada T, Inui G, Yamasaki A. Impact of obesity on airway remodeling in asthma: pathophysiological insights and clinical implications. FRONTIERS IN ALLERGY 2024; 5:1365801. [PMID: 38562155 PMCID: PMC10982419 DOI: 10.3389/falgy.2024.1365801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
The prevalence of obesity among asthma patients has surged in recent years, posing a significant risk factor for uncontrolled asthma. Beyond its impact on asthma severity and patients' quality of life, obesity is associated with reduced lung function, increased asthma exacerbations, hospitalizations, heightened airway hyperresponsiveness, and elevated asthma-related mortality. Obesity may lead to metabolic dysfunction and immune dysregulation, fostering chronic inflammation characterized by increased pro-inflammatory mediators and adipocytokines, elevated reactive oxygen species, and reduced antioxidant activity. This chronic inflammation holds the potential to induce airway remodeling in individuals with asthma and obesity. Airway remodeling encompasses structural and pathological changes, involving alterations in the airway's epithelial and subepithelial layers, hyperplasia and hypertrophy of airway smooth muscle, and changes in airway vascularity. In individuals with asthma and obesity, airway remodeling may underlie heightened airway hyperresponsiveness and increased asthma severity, ultimately contributing to the development of persistent airflow limitation, declining lung function, and a potential increase in asthma-related mortality. Despite efforts to address the impact of obesity on asthma outcomes, the intricate mechanisms linking obesity to asthma pathophysiology, particularly concerning airway remodeling, remain incompletely understood. This comprehensive review discusses current research investigating the influence of obesity on airway remodeling, to enhance our understanding of obesity's role in the context of asthma airway remodeling.
Collapse
Affiliation(s)
- Aditya Sri Listyoko
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
- Pulmonology and Respiratory Medicine Department, Faculty of Medicine, Brawijaya University-Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Ryota Okazaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Tomoya Harada
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Genki Inui
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Akira Yamasaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
48
|
Ramananda Y, Naren AP, Arora K. Functional Consequences of CFTR Interactions in Cystic Fibrosis. Int J Mol Sci 2024; 25:3384. [PMID: 38542363 PMCID: PMC10970640 DOI: 10.3390/ijms25063384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 09/01/2024] Open
Abstract
Cystic fibrosis (CF) is a fatal autosomal recessive disorder caused by the loss of function mutations within a single gene for the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). CFTR is a chloride channel that regulates ion and fluid transport across various epithelia. The discovery of CFTR as the CF gene and its cloning in 1989, coupled with extensive research that went into the understanding of the underlying biological mechanisms of CF, have led to the development of revolutionary therapies in CF that we see today. The highly effective modulator therapies have increased the survival rates of CF patients and shifted the epidemiological landscape and disease prognosis. However, the differential effect of modulators among CF patients and the presence of non-responders and ineligible patients underscore the need to develop specialized and customized therapies for a significant number of patients. Recent advances in the understanding of the CFTR structure, its expression, and defined cellular compositions will aid in developing more precise therapies. As the lifespan of CF patients continues to increase, it is becoming critical to clinically address the extra-pulmonary manifestations of CF disease to improve the quality of life of the patients. In-depth analysis of the molecular signature of different CF organs at the transcriptional and post-transcriptional levels is rapidly advancing and will help address the etiological causes and variability of CF among patients and develop precision medicine in CF. In this review, we will provide an overview of CF disease, leading to the discovery and characterization of CFTR and the development of CFTR modulators. The later sections of the review will delve into the key findings derived from single-molecule and single-cell-level analyses of CFTR, followed by an exploration of disease-relevant protein complexes of CFTR that may ultimately define the etiological course of CF disease.
Collapse
Affiliation(s)
- Yashaswini Ramananda
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anjaparavanda P. Naren
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kavisha Arora
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
49
|
Park E, Kim BY, Lee S, Son KH, Bang J, Hong SH, Lee JW, Uhm KO, Kwak HJ, Lim HJ. Diesel exhaust particle exposure exacerbates ciliary and epithelial barrier dysfunction in the multiciliated bronchial epithelium models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116090. [PMID: 38364346 DOI: 10.1016/j.ecoenv.2024.116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Airway epithelium, the first defense barrier of the respiratory system, facilitates mucociliary clearance against inflammatory stimuli, such as pathogens and particulates inhaled into the airway and lung. Inhaled particulate matter 2.5 (PM2.5) can penetrate the alveolar region of the lung, and it can develop and exacerbate respiratory diseases. Although the pathophysiological effects of PM2.5 in the respiratory system are well known, its impact on mucociliary clearance of airway epithelium has yet to be clearly defined. In this study, we used two different 3D in vitro airway models, namely the EpiAirway-full-thickness (FT) model and a normal human bronchial epithelial cell (NHBE)-based air-liquid interface (ALI) system, to investigate the effect of diesel exhaust particles (DEPs) belonging to PM2.5 on mucociliary clearance. RNA-sequencing (RNA-Seq) analyses of EpiAirway-FT exposed to DEPs indicated that DEP-induced differentially expressed genes (DEGs) are related to ciliary and microtubule function and inflammatory-related pathways. The exposure to DEPs significantly decreased the number of ciliated cells and shortened ciliary length. It reduced the expression of cilium-related genes such as acetylated α-tubulin, ARL13B, DNAH5, and DNAL1 in the NHBEs cultured in the ALI system. Furthermore, DEPs significantly increased the expression of MUC5AC, whereas they decreased the expression of epithelial junction proteins, namely, ZO1, Occludin, and E-cadherin. Impairment of mucociliary clearance by DEPs significantly improved the release of epithelial-derived inflammatory and fibrotic mediators such as IL-1β, IL-6, IL-8, GM-CSF, MMP-1, VEGF, and S100A9. Taken together, it can be speculated that DEPs can cause ciliary dysfunction, hyperplasia of goblet cells, and the disruption of the epithelial barrier, resulting in the hyperproduction of lung injury mediators. Our data strongly suggest that PM2.5 exposure is directly associated with ciliary and epithelial barrier dysfunction and may exacerbate lung injury.
Collapse
Affiliation(s)
- Eunsook Park
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Bu-Yeo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, South Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 215565, South Korea
| | - Jihye Bang
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Se Hyang Hong
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Joong Won Lee
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Kyung-Ok Uhm
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Hyun-Jeong Kwak
- Department of Bio and Fermentation Convergence Technology, Kookmin Univerisity, Seonbuk-Gu, Seoul 02707, South Korea
| | - Hyun Joung Lim
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea.
| |
Collapse
|
50
|
Abzhanova A, Berntsen J, Pennington ER, Dailey L, Masood S, George I, Warren N, Martin J, Hays MD, Ghio AJ, Weinstein JP, Kim YH, Puckett E, Samet JM. Monitoring redox stress in human airway epithelial cells exposed to woodsmoke at an air-liquid interface. Part Fibre Toxicol 2024; 21:14. [PMID: 38459567 PMCID: PMC10921608 DOI: 10.1186/s12989-024-00575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
Wildland fires contribute significantly to the ambient air pollution burden worldwide, causing a range of adverse health effects in exposed populations. The toxicity of woodsmoke, a complex mixture of gases, volatile organic compounds, and particulate matter, is commonly studied in vitro using isolated exposures of conventionally cultured lung cells to either resuspended particulate matter or organic solvent extracts of smoke, leading to incomplete toxicity evaluations. This study aimed to improve our understanding of the effects of woodsmoke inhalation by building an advanced in vitro exposure system that emulates human exposure of the airway epithelium. We report the development and characterization of an innovative system that permits live-cell monitoring of the intracellular redox status of differentiated primary human bronchial epithelial cells cultured at an air-liquid interface (pHBEC-ALI) as they are exposed to unfractionated woodsmoke generated in a tube furnace in real time. pHBEC-ALI exposed to freshly generated woodsmoke showed oxidative changes that were dose-dependent and reversible, and not attributable to carbon monoxide exposure. These findings show the utility of this novel system for studying the molecular initiating events underlying woodsmoke-induced toxicity in a physiologically relevant in vitro model, and its potential to provide biological plausibility for risk assessment and public health measures.
Collapse
Affiliation(s)
- Aiman Abzhanova
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Lisa Dailey
- Public Health and Integrated Toxicology Division, EPA Human Studies Facility, Research Triangle Park, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
| | - Syed Masood
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ingrid George
- Public Health and Integrated Toxicology Division, EPA Human Studies Facility, Research Triangle Park, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
| | - Nina Warren
- Public Health and Integrated Toxicology Division, EPA Human Studies Facility, Research Triangle Park, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
| | - Joseph Martin
- Public Health and Integrated Toxicology Division, EPA Human Studies Facility, Research Triangle Park, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
| | - Michael D Hays
- Public Health and Integrated Toxicology Division, EPA Human Studies Facility, Research Triangle Park, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
| | - Andrew J Ghio
- Public Health and Integrated Toxicology Division, EPA Human Studies Facility, Research Triangle Park, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
| | - Jason P Weinstein
- Public Health and Integrated Toxicology Division, EPA Human Studies Facility, Research Triangle Park, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
| | - Yong Ho Kim
- Public Health and Integrated Toxicology Division, EPA Human Studies Facility, Research Triangle Park, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
| | - Earl Puckett
- Public Health and Integrated Toxicology Division, EPA Human Studies Facility, Research Triangle Park, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
| | - James M Samet
- Public Health and Integrated Toxicology Division, EPA Human Studies Facility, Research Triangle Park, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA.
| |
Collapse
|