1
|
Mao L, Liu A, Zhang X. Effects of Intermittent Fasting on Female Reproductive Function: A Review of Animal and Human Studies. Curr Nutr Rep 2024; 13:786-799. [PMID: 39320714 DOI: 10.1007/s13668-024-00569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
PURPOSE OF REVIEW Intermittent fasting has gained significant attention, yet a comprehensive understanding of its impact on female reproductive health is lacking. This review aims to fill this gap by examining various intermittent fasting regimens and their effects on female reproductive function, along with potential mechanisms. RECENT FINDINGS In healthy non-overweight/obese or pregnant animal models, alternate-day fasting (ADF) and an 8-h time-restricted feeding (TRF) window may have adverse effects on reproductive function. However, these regimens show potential to mitigate negative consequences induced by a high-fat diet (HFD) or environmental exposure. A 10-h TRF demonstrates benefits in improving fertility in both normal-weight and HFD-fed animal models. In women with overweight/obesity or polycystic ovary syndrome (PCOS), the 5:2 diet and TRF significantly reduce the free androgen index while elevating sex hormone binding globulin, promising improvements in menstrual regulation. For pregnant Muslim women, available data do not strongly indicate adverse effects of Ramadan fasting on preterm delivery, but potential downsides to maternal weight gain, neonatal birthweight, and long-term offspring health need consideration. Factors linking intermittent fasting to female reproductive health include the circadian clock, gut microbiota, metabolic regulators, and modifiable lifestyles. Drawing definitive conclusions remains challenging in this evolving area. Nonetheless, our findings underscore the potential utility of intermittent fasting regimens as a therapeutic approach for addressing menstruation irregularities and infertility in women with obesity and PCOS. On the other hand, pregnant women should remain cognizant of potential risks associated with intermittent fasting practices.
Collapse
Affiliation(s)
- Lei Mao
- Department of Women's Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Aixia Liu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| | - Xiaohui Zhang
- Department of Women's Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
2
|
Inia JA, Attema J, de Ruiter C, Menke AL, Caspers MPM, Verschuren L, Wilson M, Arlantico A, Brightbill HD, Jukema JW, van den Hoek AM, Princen HMG, Chen MZ, Morrison MC. Therapeutic effects of FGF21 mimetic bFKB1 on MASH and atherosclerosis in Ldlr-/-.Leiden mice. FASEB J 2024; 38:e70087. [PMID: 39463193 DOI: 10.1096/fj.202401397r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/29/2024]
Abstract
Fibroblast growth factor 21 (FGF21) is a promising target for treatment of obesity-associated diseases including metabolic dysfunction-associated steatohepatitis (MASH) and atherosclerosis. We evaluated the effects of the bispecific anti-FGF21-β klotho (KLB) agonist antibody bFKB1 in a preclinical model of MASH and atherosclerosis. Low-density lipoprotein receptor knockout (Ldlr-/-).Leiden mice received a high-fat diet for 20 weeks, followed by treatment with an isotype control antibody or bFKB1 for 12 weeks. Effects on plasma risk markers and (histo)pathology of liver, adipose tissue, and heart were evaluated alongside hepatic transcriptomics analysis. bFKB1 lowered body weight (-21%) and adipose tissue mass (-22%) without reducing food intake. The treatment also improved plasma insulin (-80%), cholesterol (-48%), triglycerides (-76%), alanine transaminase (ALT: -79%), and liver weight (-43%). Hepatic steatosis and inflammation were strongly reduced (macrovesicular steatosis -34%; microvesicular steatosis -100%; inflammation -74%) and while the total amount of fibrosis was not affected, bFKB1 did decrease new collagen formation (-49%). Correspondingly, hepatic transcriptomics and pathway analysis revealed the mechanistic background underlying these histological improvements, demonstrating broad inactivation of inflammatory and profibrotic transcriptional programs by bFKB1. In epididymal white adipose tissue, bFKB1 reduced adipocyte size (-16%) and inflammation (-52%) and induced browning, signified by increased uncoupling protein-1 (UCP1) protein expression (8.5-fold increase). In the vasculature, bFKB1 had anti-atherogenic effects, lowering total atherosclerotic lesion area (-38%). bFKB1 has strong beneficial metabolic effects associated with a reduction in hepatic steatosis, inflammation, and atherosclerosis. Analysis of new collagen formation and profibrotic transcriptional programs indicate that bFKB1 treatment may have antifibrotic potential in a longer treatment duration as well.
Collapse
Affiliation(s)
- José A Inia
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, The Netherlands
| | - Joline Attema
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Christa de Ruiter
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Aswin L Menke
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, TNO, Leiden, The Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, TNO, Leiden, The Netherlands
| | - Maria Wilson
- Genentech Inc., South San Francisco, California, USA
| | - Alexander Arlantico
- Translational Immunology, Genentech Inc., South San Francisco, California, USA
| | - Hans D Brightbill
- Translational Immunology, Genentech Inc., South San Francisco, California, USA
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Hans M G Princen
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Mark Z Chen
- Translational Immunology, Genentech Inc., South San Francisco, California, USA
| | - Martine C Morrison
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| |
Collapse
|
3
|
Lee B, Jo D, Park J, Kim OY, Song J. Gut microbiota and their relationship with circulating adipokines in an acute hepatic encephalopathy mouse model induced by surgical bile duct ligation. Heliyon 2024; 10:e38534. [PMID: 39391493 PMCID: PMC11466606 DOI: 10.1016/j.heliyon.2024.e38534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Background and aims Various studies have shown the importance of the gut microbiota in human health. However, little is known about gut microbiome patterns and their effect on circulating adipo-myokine levels in hepatic encephalopathy (HE). We investigated the relationship between the gut microbiota and adipo-myokine levels using a mouse model of HE induced by surgical bile duct ligation (BDL). Methods and results Wild-type C57BL/6J mice were subjected to sham surgery or BDL. Severe body weight loss, suppressed feed intake, and liver failure were observed in BDL mice compared with sham control mice. Additionally, changes in gut microbial communities and serum adipo-myokine levels were noted in BDL mice. In the BDL mouse gut, we identified 15 differentially abundant taxa including the phylum Verrucomicrobiota, the classes Actinomycetes and Verrucomicrobiae, the order Verrucomicrobiales, the families Akkermansiaceae, Bacteroidaceae, Rikenellaceae, and Oscillospiraceae, the genera Alistipes, Akkermansia, Muribaculum, and Phocaeicola, and the species Akkermansia muciniphila, Alistipes okayasuensis, and Muribaculum gordoncarteri by LEfSe analysis (LDA score≥4.0). Higher levels of certain adipo-myokines such as BDNF were detected in the serum of BDL mice. Spearman correlation analysis revealed that certain adipo-myokines (e.g., FSTL1) were positively correlated with the class Actinomycetes, the family Rikenellaceae, the genus Alistipes, and the species Alistipes okayasuensis. Interestingly, A. okayasuensis and M. gordoncarteri, recently isolated microbes, showed richness in the gut of BDL mice and demonstrated positive correlations with adipo-myokines such as FGF21. Conclusions Overall, our results suggest that alteration of the gut microbiota in patients with HE may be closely correlated to the levels of adipo-myokines in the blood.
Collapse
Affiliation(s)
- Bokyung Lee
- Department of Food Science and Nutrition, Dong A University, Sahagu, Nakdongdaero 550 beon-gil, 49315, Busan, Republic of Korea
| | - Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Jeollanam-do, Republic of Korea
| | - Jihyun Park
- Department of Health Sciences, Graduate School of Dong-A University, Sahagu, Nakdongdaero 550 beon-gil, 49315, Busan, Republic of Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong A University, Sahagu, Nakdongdaero 550 beon-gil, 49315, Busan, Republic of Korea
- Department of Health Sciences, Graduate School of Dong-A University, Sahagu, Nakdongdaero 550 beon-gil, 49315, Busan, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Jeollanam-do, Republic of Korea
| |
Collapse
|
4
|
Tanbek K, Yılmaz U, Gul M, Koç A, Sandal S. Effects of central FGF21 infusion on the glucose homeostasis in rats (brain-pancreas axis). Arch Physiol Biochem 2024; 130:515-522. [PMID: 36645396 DOI: 10.1080/13813455.2023.2166964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Glucose homeostasis is a physiological process mediated by a variety of hormones. Fibroblast growth factor (FGF) 21 is a protein expressed in the liver, adipose tissue, muscle and pancreas and exerts actions in multiple targets including adipose, liver, pancreas and hypothalamus. The aim of this study was to examine the possible involvement of FGF21 in pancreatic and central control of glucose by measuring reflective changes in the release of insulin and glucagon. METHODS Thirty adult male Wistar Albino rats were divided; Control, PD + aCSF, PD + FGF21 groups (n = 10). Effects of intracerebroventricular (icv) FGF21 administration to pancreatic denervated (PD) rats. Agouti-related protein (AgRP), Pro-opiomelanocortin (POMC) levels and blood glucose homeostasis were investigated. RESULTS Administration of FGF21 to 3rd ventricle increased food consumption but body weight didn't change significantly. AgRP level increased, pancreatic insulin levels increased, and glucagon level decreased. CONCLUSION Central FGF21 administration is effective in regulating blood glucose homeostasis by increasing the amount and efficiency of insulin and changing glucose use.
Collapse
Affiliation(s)
- Kevser Tanbek
- Department of Biochemistry, Inonu University, Malatya, Turkey
- Department of Physiology, Inonu University, Malatya, Turkey
| | - Umit Yılmaz
- Department of Physiology, Inonu University, Malatya, Turkey
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Mehmet Gul
- Department of Histolology and Embriology, Inonu University, Malatya, Turkey
| | - Ahmet Koç
- Department of Medical Genetics, Inonu University, Malatya, Turkey
| | | |
Collapse
|
5
|
Brinker EJ, Hardcastle MR, Dittmer KE, Graff EC. Endocrine fibroblast growth factors in domestic animals. Domest Anim Endocrinol 2024; 89:106872. [PMID: 39059301 DOI: 10.1016/j.domaniend.2024.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Fibroblast growth factors (FGFs) are a group of structurally homologous yet functionally pleiotropic proteins. Canonical and intracellular FGFs have primarily autocrine or paracrine effects. However, the FGF19 subfamily, composed of FGF15/19, FGF21, and FGF23, act as endocrine hormones that regulate bile acid, metabolic, and phosphorus homeostasis, respectively. Current research in human and rodent models demonstrates the potential of these endocrine FGFs to target various diseases, including disorders of inherited hypophosphatemia, chronic liver disease, obesity, and insulin resistance. Many diseases targeted for therapeutic use in humans have pathophysiological overlaps in domestic animals. Despite the potential clinical and economic impact, little is known about endocrine FGFs and their signaling pathways in major domestic animal species compared with humans and laboratory animals. This review aims to describe the physiology of these endocrine FGFs, discuss their current therapeutic use, and summarize the contemporary literature regarding endocrine FGFs in domestic animals, focusing on potential future directions.
Collapse
Affiliation(s)
- Emily J Brinker
- Department of Pathobiology, College of Veterinary Medicine, 166 Greene Hall, Auburn University, AL, USA 36849; Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA, USA 01536
| | - Michael R Hardcastle
- IDEXX Laboratories Pty. Ltd., 20A Maui Street, Pukete, Hamilton 3200, New Zealand
| | - Keren E Dittmer
- School of Veterinary Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Emily C Graff
- Department of Pathobiology, College of Veterinary Medicine, 166 Greene Hall, Auburn University, AL, USA 36849; Scott-Ritchey Research Center, College of Veterinary Medicine, Dr. Auburn University, 1265 HC Morgan, AL, USA 36849.
| |
Collapse
|
6
|
Kim B, Ronaldo R, Kweon BN, Yoon S, Park Y, Baek JH, Lee JM, Hyun CK. Mesenchymal Stem Cell-Derived Exosomes Attenuate Hepatic Steatosis and Insulin Resistance in Diet-Induced Obese Mice by Activating the FGF21-Adiponectin Axis. Int J Mol Sci 2024; 25:10447. [PMID: 39408777 PMCID: PMC11476820 DOI: 10.3390/ijms251910447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Exosomes derived from mesenchymal stem cells have shown promise in treating metabolic disorders, yet their specific mechanisms remain largely unclear. This study investigates the protective effects of exosomes from human umbilical cord Wharton's jelly mesenchymal stem cells (hWJMSCs) against adiposity and insulin resistance in high-fat diet (HFD)-induced obese mice. HFD-fed mice treated with hWJMSC-derived exosomes demonstrated improved gut barrier integrity, which restored immune balance in the liver and adipose tissues by reducing macrophage infiltration and pro-inflammatory cytokine expression. Furthermore, these exosomes normalized lipid metabolism including lipid oxidation and lipogenesis, which alleviate lipotoxicity-induced endoplasmic reticulum (ER) stress, thereby decreasing fat accumulation and chronic tissue inflammation in hepatic and adipose tissues. Notably, hWJMSC-derived exosomes also promoted browning and thermogenic capacity of adipose tissues, which was linked to reduced fibroblast growth factor 21 (FGF21) resistance and increased adiponectin production. This process activated the AMPK-SIRT1-PGC-1α pathway, highlighting the role of the FGF21-adiponectin axis. Our findings elucidate the molecular mechanisms through which hWJMSC-derived exosomes counteract HFD-induced metabolic dysfunctions, supporting their potential as therapeutic agents for metabolic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chang-Kee Hyun
- School of Life Science, Handong Global University, Pohang 37554, Gyungbuk, Republic of Korea
| |
Collapse
|
7
|
Hemat Jouy S, Mohan S, Scichilone G, Mostafa A, Mahmoud AM. Adipokines in the Crosstalk between Adipose Tissues and Other Organs: Implications in Cardiometabolic Diseases. Biomedicines 2024; 12:2129. [PMID: 39335642 PMCID: PMC11428859 DOI: 10.3390/biomedicines12092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Adipose tissue was previously regarded as a dormant organ for lipid storage until the identification of adiponectin and leptin in the early 1990s. This revelation unveiled the dynamic endocrine function of adipose tissue, which has expanded further. Adipose tissue has emerged in recent decades as a multifunctional organ that plays a significant role in energy metabolism and homeostasis. Currently, it is evident that adipose tissue primarily performs its function by secreting a diverse array of signaling molecules known as adipokines. Apart from their pivotal function in energy expenditure and metabolism regulation, these adipokines exert significant influence over a multitude of biological processes, including but not limited to inflammation, thermoregulation, immune response, vascular function, and insulin sensitivity. Adipokines are pivotal in regulating numerous biological processes within adipose tissue and facilitating communication between adipose tissue and various organs, including the brain, gut, pancreas, endothelial cells, liver, muscle, and more. Dysregulated adipokines have been implicated in several metabolic diseases, like obesity and diabetes, as well as cardiovascular diseases. In this article, we attempted to describe the significance of adipokines in developing metabolic and cardiovascular diseases and highlight their role in the crosstalk between adipose tissues and other tissues and organs.
Collapse
Affiliation(s)
- Shaghayegh Hemat Jouy
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Central Tehran Branch, Islamic Azad University, Tehran 14778-93855, Iran;
| | - Sukrutha Mohan
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Giorgia Scichilone
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Amro Mostafa
- Department of Pharmacology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Abeer M. Mahmoud
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Liu J, Chen Y. Cell-cell crosstalk between fat cells and immune cells. Am J Physiol Endocrinol Metab 2024; 327:E371-E383. [PMID: 39082899 DOI: 10.1152/ajpendo.00024.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/06/2024]
Abstract
Obesity is a metabolic disorder with pandemic-like implications, lacking viable pharmaceutical treatments currently. Thermogenic adipose tissues, including brown and beige adipose tissues, play an essential role in regulating systemic energy homeostasis and have emerged as appealing therapeutic targets for the treatment of obesity and obesity-related diseases. The function of adipocytes is subject to complex regulation by a cellular network of immune signaling pathways in response to environmental signals. However, the specific regulatory roles of immune cells in thermogenesis and relevant involving mechanisms are still not well understood. Here, we concentrate on our present knowledge of the interaction between thermogenic adipocytes and immune cells and present an overview of cellular and molecular mechanisms underlying immunometabolism in adipose tissues. We discuss cytokines, especially interleukins, which originate from widely variable sources, and their impacts on the development and function of thermogenic adipocytes. Moreover, we summarize the neuroimmune regulation in heat production and expand a new mode of intercellular communication mediated by mitochondrial transfer. The crosstalk between immune cells and adipocytes achieves adipose tissue homeostasis and systemic energy balance. A deep understanding of this intricate interaction would provide evidence for improving thermogenic efficiency by remodeling the immune microenvironment. Interventions based on these factors show a high potential to prevent adverse metabolic outcomes in patients with obesity.
Collapse
Affiliation(s)
- Jiadai Liu
- Department of Endocrinology, Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Laboratory of Endocrinology and Metabolism, Ministry of Education Key Laboratory of Vascular Aging, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yong Chen
- Department of Endocrinology, Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Laboratory of Endocrinology and Metabolism, Ministry of Education Key Laboratory of Vascular Aging, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, People's Republic of China
| |
Collapse
|
9
|
Kim S, Park DH, Moon S, Gu B, Mantik KEK, Kwak HB, Ryu JK, Kang JH. Ketogenic diet with aerobic exercise can induce fat browning: potential roles of β-hydroxybutyrate. Front Nutr 2024; 11:1443483. [PMID: 39267855 PMCID: PMC11390540 DOI: 10.3389/fnut.2024.1443483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Despite evidence suggesting that metabolic intermediates like β-HB influence white adipose tissue (WAT) metabolism, the precise molecular mechanisms remain unclear. The aim of this study was to investigate the impact of beta-hydroxybutyrate (β-HB) on the fat browning program and to explore the underlying molecular mechanisms using both in vitro and in vivo models. We assessed the effects of β-HB on fat browning in adipocytes using 3T3-L1 cells and rat models. Methods We evaluated the effects of β-HB on fat browning, thermogenesis, lipid accumulation, adipokine expression, and mitochondrial biogenesis by treating mature 3T3-L1 adipocytes with sodium β-HB for 24 h or by continuously exposing preadipocytes to β-HB during the 8-day differentiation process. Male Sprague Dawley rats were divided into control, exercise only (EX), ketogenic diet only (KD), and combined exercise and ketogenic diet (KE) groups for an 8-week intervention involving diet and/or exercise. After intervention, we evaluated WAT histology, plasma lipids and adipokines, and the expression of markers related to fat browning, thermogenesis and mitochondrial biogenesis in WAT of rats. Results In our adipocyte culture experiments, β-HB reduced intracellular lipid accumulation by enhancing lipolysis and stimulated the expression of thermogenic and fat browning genes like uncoupling protein 1 (UCP1), PR domain containing 16 (PRDM16), and adipokines such as fibroblast growth factor 21 (FGF21) and Fibronectin type III domain-containing protein 5 (FDNC5). Additionally, β-HB activated the AMPK-SIRT1-PGC-1α pathway, with UCP1 and PRDM16 upregulation mediated by β-HB intracellular action and SIRT1 activity. In animal experiments, KE group raised β-HB levels, decreasing body weight and blood lipids. KD with EX promoted WAT browning possibly via AMPK-SIRT1-PGC-1α, augmenting PRDM16, UCP1, FGF21, and FNDC5 expression. Conclusion β-HB induction via KD and/or EX shows potential in promoting WAT browning by activating mitochondrial biogenesis, lipolysis, and thermogenesis, suggesting that dietary and physical intervention inducing β-HB may benefit metabolic health.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Dong-Ho Park
- Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Sohee Moon
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Bonsang Gu
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
| | - Keren Esther Kristina Mantik
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
| | - Hyo-Bum Kwak
- Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Ji-Kan Ryu
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
- Department of Urology, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
| |
Collapse
|
10
|
Elmansi AM, Miller RA. Oxidative phosphorylation and fatty acid oxidation in slow-aging mice. Free Radic Biol Med 2024; 224:246-255. [PMID: 39153667 DOI: 10.1016/j.freeradbiomed.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Oxidative metabolism declines with aging in humans leading to multiple metabolic ailments and subsequent inflammation. In mice, there is evidence of age-related suppression of fatty acid oxidation and oxidative phosphorylation in the liver, heart, and muscles. Many interventions that extend healthy lifespan of mice have been developed, including genetic, pharmacological, and dietary interventions. In this article, we review the literature on oxidative metabolism changes in response to those interventions. We also discuss the molecular pathways that mediate those changes, and their potential as targets for future longevity interventions.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Geriatrics Center, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Chau PK, Ryan E, Dalen KT, Haugen F. Timing of acute cold exposure determines UCP1 and FGF21 expression - Possible interactions between the thermal environment, thermoregulatory responses, and peripheral clocks. J Therm Biol 2024; 124:103938. [PMID: 39142264 DOI: 10.1016/j.jtherbio.2024.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/26/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
Thermoregulation is synchronized across the circadian cycle to uphold thermal homeostasis. To test if time-of-day matters for the response to environmental cold exposure, mice were acclimated to thermoneutrality (27 °C) for 2 months were subjected acutely (8 h) to cold ambient conditions (15 °C), whereas controls were maintained at thermoneutral conditions. The thermal exposure was tested in separate groups (N = 8) at three distinct time-of-day periods: in the LIGHT phase (L); the DARK phase (D); and a mix of the two (D + L). The magnitude of UCP1 protein and mRNA induction in brown adipose tissue (BAT) in response to acute cold exposure was time-of-day sensitive, peaking in LIGHT, whereas lower induction levels were observed in D + L, and DARK. Plasma levels of FGF21 were induced 3-fold by acute cold exposure at LIGHT and D + L, compared to the time-matched thermoneutral controls, whereas cold in DARK did not cause a significant increase of FGF21 plasma levels. Cold exposure affected, in BAT, the temporal mRNA expression patterns of core circadian clock components: Bmal1, Clock, Per1, Per3, Cry1, Cry2 Nr1d1, and Nr1d2, but in the liver, none of the transcripts were modified. Behavioral assessment using the Thermal Gradient Test (TGT) showed that acute cold exposure reduced cold sensitivity in D + L, but not in DARK. RNA-seq analyses of somatosensory neurons in DRG highlighted the role of the core circadian components in these cells, as well as transcriptional changes due to acute cold exposure. This elucidates the sensory system as a gauge and potential regulator of thermoregulatory responses based on circadian physiology. In conclusion, acute cold exposure elicits time-of-day specific effects on thermoregulatory pathways, which may involve underlying changes in thermal perception. These results have implications for efforts aimed at reducing risks associated with the organization of shift work in cold environments.
Collapse
Affiliation(s)
- Phong Kt Chau
- Division of Work Psychology and Physiology, National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Elin Ryan
- Division of Work Psychology and Physiology, National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Knut Tomas Dalen
- Department of Nutrition and Norwegian Transgenic Center, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Fred Haugen
- Division of Work Psychology and Physiology, National Institute of Occupational Health (STAMI), Oslo, Norway.
| |
Collapse
|
12
|
Nomura K, Kinoshita S, Mizusaki N, Senga Y, Sasaki T, Kitamura T, Sakaue H, Emi A, Hosooka T, Matsuo M, Okamura H, Amo T, Wolf AM, Kamimura N, Ohta S, Itoh T, Hayashi Y, Kiyonari H, Krook A, Zierath JR, Kasuga M, Ogawa W. Adaptive gene expression of alternative splicing variants of PGC-1α regulates whole-body energy metabolism. Mol Metab 2024; 86:101968. [PMID: 38885788 PMCID: PMC11254180 DOI: 10.1016/j.molmet.2024.101968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
The transcriptional coactivator PGC-1α has been implicated in the regulation of multiple metabolic processes. However, the previously reported metabolic phenotypes of mice deficient in PGC-1α have been inconsistent. PGC-1α exists as multiple isoforms, including variants transcribed from an alternative first exon. We show here that alternative PGC-1α variants are the main entity that increases PGC-1α during exercise. These variants, unlike the canonical isoform of PGC-1α, are robustly upregulated in human skeletal muscle after exercise. Furthermore, the extent of this upregulation correlates with oxygen consumption. Mice lacking these variants manifest impaired energy expenditure during exercise, leading to the development of obesity and hyperinsulinemia. The alternative variants are also upregulated in brown adipose tissue in response to cold exposure, and mice lacking these variants are intolerant of a cold environment. Our findings thus indicate that an increase in PGC-1α expression, attributable mostly to upregulation of alternative variants, is pivotal for adaptive enhancement of energy expenditure and heat production and thereby essential for the regulation of whole-body energy metabolism.
Collapse
Affiliation(s)
- Kazuhiro Nomura
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Shinichi Kinoshita
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Nao Mizusaki
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoko Senga
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Tsutomu Sasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; Diabetes Therapeutics and Research Center, University of Tokushima, Tokushima 770-8503, Japan
| | - Aki Emi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Tetsuya Hosooka
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Masahiro Matsuo
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan; Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8303, Japan
| | - Taku Amo
- Department of Applied Chemistry, National Defense Academy, Yokosuka 239-8686, Japan
| | - Alexander M Wolf
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, Kawasaki 211-8533, Japan
| | - Naomi Kamimura
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, Kawasaki 211-8533, Japan; Laboratory for Clinical Research, Collaborative Research Center, Nippon Medical School, Tokyo 113-8602, Japan
| | - Shigeo Ohta
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, Kawasaki 211-8533, Japan
| | - Tomoo Itoh
- Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoshitake Hayashi
- Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Masato Kasuga
- The Institute of Medical Science, Asahi Life Foundation, Tokyo 100-0005, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| |
Collapse
|
13
|
Feng JN, Jin T. Hepatic function of glucagon-like peptide-1 and its based diabetes drugs. MEDICAL REVIEW (2021) 2024; 4:312-325. [PMID: 39135602 PMCID: PMC11317081 DOI: 10.1515/mr-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/13/2024] [Indexed: 08/15/2024]
Abstract
Incretins are gut-produced peptide-hormones that potentiate insulin secretion, especially after food intake. The concept of incretin was formed more than 100 years ago, even before insulin was isolated and utilized in the treatment of subjects with type 1 diabetes. The first incretin, glucose-dependent insulinotropic polypeptide (GIP), was identified during later 1960's and early 1970's; while the second one, known as glucagon-like peptide-1 (GLP-1), was recognized during 1980's. Today, GLP-1-based therapeutic agents [also known as GLP-1 receptor (GLP-1R) agonists, GLP-1RAs] are among the first line drugs for type 2 diabetes. In addition to serving as incretin, extra-pancreatic functions of GLP-1RAs have been broadly recognized, including those in the liver, despite the absence of GLP-1R in hepatic tissue. The existence of insulin-independent or gut-pancreas-liver axis-independent hepatic function of GLP-1RAs explains why those therapeutic agents are effective in subjects with insulin resistance and their profound effect on lipid homeostasis. Following a brief review on the discovery of GLP-1, we reviewed literature on the exploration of hepatic function of GLP-1 and GLP-1RAs and discussed recent studies on the role of hepatic hormone fibroblast growth factor 21 (FGF21) in mediating function of GLP-1RAs in animal models. This was followed by presenting our perspective views.
Collapse
Affiliation(s)
- Jia Nuo Feng
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Ammatalli NKR, Kuricheti SSSK, Veeramachaneni S, Koo YK, Ramanathan G, Yalamanchi A. A combination of Citrus aurantifolia fruit rind and Theobroma cacao seed extracts supplementation enhances metabolic rates in overweight subjects: a randomized, placebo-controlled, cross-over study. Food Nutr Res 2024; 68:10745. [PMID: 39113917 PMCID: PMC11305151 DOI: 10.29219/fnr.v68.10745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
Background and objective LN19183 is a proprietary, synergistic combination of Citrus aurantifolia fruit rind and Theobroma cacao seed extracts that increased resting energy expenditure (REE) in high-fat diet (HFD)-fed obese rats. The objective of this study was to validate the thermogenic potential of LN19183 in obese Sprague Dawley (SD) rats and to assess its clinical efficacy in a proof-of-concept, randomized, placebo-controlled, cross-over human trial. Methods In the rat study, HFD-fed obese rats were supplemented with either HFD alone or with 45, 90, or 180 mg LN19183 per kg body weight (BW) for 28 days. In the human study, 60 overweight adults (male and female, aged 20-39 years) were randomized. Subjects took LN19183 (450 mg) or a matched placebo capsule on two consecutive days in phases one and two of the study, separated by a 10-day washout period. In each phase, on day 1, REE at pre-dose, 60-, 120-, and 180-min post-dose, and on day 2, metabolic rates at pre-dose and post-dose during and 20 min after exercise were measured using indirect calorimetry. Results In rats, LN19183 significantly increased REE, reduced BW gain and fat masses, and increased fat and carbohydrate metabolism marker proteins including beta 3 adrenergic receptor (β3-AR), phospho-AMP-activated protein kinase (AMPK), glucagon-like peptide-1 receptor (GLP-1R) in the liver, and serum adiponectin levels. Furthermore, LN19183-supplemented human volunteers increased (P < 0.05, vs. placebo) the metabolic rates at rest and with exercise; their fat oxidation was increased (P < 0.05, vs. placebo) at rest and 20 min post-exercise. The groups' systolic and diastolic blood pressure (BP), heart rates (HR), and safety parameters were comparable. Conclusion These observations suggest that LN19183 is a thermogenic botanical composition with no stimulatory effects on BP and HR.
Collapse
Affiliation(s)
| | | | | | - Yean Kyoung Koo
- Department of R&I Center, COSMAXBIO, Seongnam, Republic of Korea
| | - Guru Ramanathan
- Pharmacology-Based Clinical Trials Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Amulya Yalamanchi
- Department of General Medicine, Yalamanchi Hospitals and Research Centre, Vijayawada, India
| |
Collapse
|
15
|
Varghese A, Gusarov I, Gamallo-Lana B, Dolgonos D, Mankan Y, Shamovsky I, Phan M, Jones R, Gomez-Jenkins M, White E, Wang R, Jones D, Papagiannakopoulos T, Pacold ME, Mar AC, Littman DR, Nudler E. Unraveling cysteine deficiency-associated rapid weight loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605703. [PMID: 39131293 PMCID: PMC11312522 DOI: 10.1101/2024.07.30.605703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Forty percent of the US population and 1 in 6 individuals worldwide are obese, and the incidence of this disease is surging globally1,2. Various dietary interventions, including carbohydrate and fat restriction, and more recently amino acid restriction, have been explored to combat this epidemic3-6. We sought to investigate the impact of removing individual amino acids on the weight profiles of mice. Compared to essential amino acid restriction, induction of conditional cysteine restriction resulted in the most dramatic weight loss, amounting to 20% within 3 days and 30% within one week, which was readily reversed. This weight loss occurred despite the presence of substantial cysteine reserves stored in glutathione (GSH) across various tissues7. Further analysis demonstrated that the weight reduction primarily stemmed from an increase in the utilization of fat mass, while locomotion, circadian rhythm and histological appearance of multiple other tissues remained largely unaffected. Cysteine deficiency activated the integrated stress response (ISR) and NRF2-mediated oxidative stress response (OSR), which amplify each other, leading to the induction of GDF15 and FGF21, hormones associated with increased lipolysis, energy homeostasis and food aversion8-10. We additionally observed rapid tissue coenzyme A (CoA) depletion, resulting in energetically inefficient anaerobic glycolysis and TCA cycle, with sustained urinary excretion of pyruvate, orotate, citrate, α-ketoglutarate, nitrogen rich compounds and amino acids. In summary, our investigation highlights that cysteine restriction, by depleting GSH and CoA, exerts a maximal impact on weight loss, metabolism, and stress signaling compared to other amino acid restrictions. These findings may pave the way for innovative strategies for addressing a range of metabolic diseases and the growing obesity crisis.
Collapse
Affiliation(s)
- Alan Varghese
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ivan Gusarov
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Begoña Gamallo-Lana
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Daria Dolgonos
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Yatin Mankan
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ilya Shamovsky
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Mydia Phan
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Rebecca Jones
- Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Maria Gomez-Jenkins
- Rutgers Cancer Institute, Rutgers University, New Brunswick, NJ 08901, USA and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Eileen White
- Rutgers Cancer Institute, Rutgers University, New Brunswick, NJ 08901, USA and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Rui Wang
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Drew Jones
- Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Thales Papagiannakopoulos
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Michael E Pacold
- Department of Radiation Oncology and Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, NY 10016, USA
| | - Adam C Mar
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Dan R Littman
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York, NY 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York, NY 10016, USA
| |
Collapse
|
16
|
Zhao J, Liu X, Yue J, Zhang S, Li L, Wei H. PF-05231023 reduces lipid deposition in apolipoprotein E-deficient mice by inhibiting the expression of lipid synthesis genes. Front Vet Sci 2024; 11:1429639. [PMID: 39144082 PMCID: PMC11322577 DOI: 10.3389/fvets.2024.1429639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/10/2024] [Indexed: 08/16/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a peptide hormone that is primarily expressed and secreted by the liver. The hormone is crucial for regulation of glucose homeostasis, lipid metabolism, and energy balance. Compared with natural FGF21, FGF21 analogs have become drug candidates for the treatment of cardiovascular and metabolic diseases owing to their long half-life and greater stability in vitro. Apolipoprotein E (Apoe)-knockout (Apoe -/-) mice exhibit progressive disruptions in lipid metabolism in vivo and develop further atherosclerosis pathological features owing to Apoe deletion. Therefore, this study used an Apoe -/- mouse model to investigate the effects of a long-acting FGF21 analog (PF-05231023) on lipid metabolism and related parameters. Eighteen Apoe -/- female mice were fed a Western diet equivalent for 12 weeks, and then randomly assigned to intraperitoneally receive either physiological saline (the control group) or 10 mg/kg PF-05231023 (the treatment group) three times a week for seven consecutive weeks. Body composition, glucose tolerance, blood and liver cholesterol, triglyceride levels, liver vacuolization levels, peri-ovarian white adipocyte hypertrophy, aortic atherosclerotic plaque formation, and the expression of genes related to lipid metabolism in adipose tissue were subsequently assessed before and after treatment. The aortic atherosclerotic plaque area was reduced in mice in the PF-05231023 treatment group compared with that in the saline group. Although the effect of PF-05231023 on the plasma biochemical indexes of mice was small, it significantly reduced lipid levels and lipid droplet accumulation in the liver, and reduced adipocyte hypertrophy in white adipose tissue. Transcriptome analysis of adipose tissue showed that PF-05231023 treatment downregulated the expression of lipid synthesis-related genes and inhibited the sterol regulatory element binding transcription factor 1 gene, thereby improving lipid deposition. PF-05231023 effectively improved the lipid metabolism of Apoe -/- mice, demonstrating an anti-atherosclerotic effect and providing a scientific basis and experimental foundation for the clinical treatment of cardiovascular diseases by using long-acting FGF21 analogs.
Collapse
Affiliation(s)
| | | | | | | | - Li Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangdong, China
| | - Hengxi Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangdong, China
| |
Collapse
|
17
|
Cui Y, Auclair H, He R, Zhang Q. GPCR-mediated regulation of beige adipocyte formation: Implications for obesity and metabolic health. Gene 2024; 915:148421. [PMID: 38561165 DOI: 10.1016/j.gene.2024.148421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Obesity and its associated complications pose a significant burden on health. The non-shivering thermogenesis (NST) and metabolic capacity properties of brown adipose tissue (BAT), which are distinct from those of white adipose tissue (WAT), in combating obesity and its related metabolic diseases has been well documented. However, beige adipose tissue, the third and relatively novel type of adipose tissue, which emerges in extensive presence of WAT and shares similar favorable metabolic properties with BAT, has garnered considerable attention in recent years. In this review, we focused on the role of G protein-coupled receptors (GPCRs), the largest receptor family and the most successful class of drug targets in humans, in the induction of beige adipocytes. More importantly, we highlight researchers' clinical treatment attempts to ameliorate obesity and other related metabolic diseases through the formation and activation of beige adipose tissue. In summary, this review provides valuable insights into the formation of beige adipose tissue and the involvement of GPCRs, based on the latest advancements in scientific research.
Collapse
Affiliation(s)
- Yuanxu Cui
- Animal Zoology Department, Kunming Medical University, Kunming, China; Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Hugo Auclair
- Faculty of Medicine, François-Rabelais University, Tours, France
| | - Rong He
- Animal Zoology Department, Kunming Medical University, Kunming, China
| | - Qiang Zhang
- Animal Zoology Department, Kunming Medical University, Kunming, China.
| |
Collapse
|
18
|
Wang Z, Song B, Yao J, Li X, Zhang Y, Tang Z, Yi G. Whole-genome analysis reveals distinct adaptation signatures to diverse environments in Chinese domestic pigs. J Anim Sci Biotechnol 2024; 15:97. [PMID: 38982489 PMCID: PMC11234542 DOI: 10.1186/s40104-024-01053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/20/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Long-term natural and artificial selection has resulted in many genetic footprints within the genomes of pig breeds across distinct agroecological zones. Nevertheless, the mechanisms by which these signatures contribute to phenotypic diversity and facilitate environmental adaptation remain unclear. RESULTS Here, we leveraged whole-genome sequencing data from 82 individuals from 6 domestic pig breeds originating in tropical, high-altitude, and frigid regions. Population genetic analysis suggested that habitat isolation significantly shaped the genetic diversity and contributed to population stratification in local Chinese pig breeds. Analysis of selection signals revealed regions under selection for adaptation in tropical (55.5 Mb), high-altitude (43.6 Mb), and frigid (17.72 Mb) regions. The potential functions of the selective sweep regions were linked to certain complex traits that might play critical roles in different geographic environments, including fat coverage in frigid environments and blood indicators in tropical and high-altitude environments. Candidate genes under selection were significantly enriched in biological pathways involved in environmental adaptation. These pathways included blood circulation, protein degradation, and inflammation for adaptation to tropical environments; heart and lung development, hypoxia response, and DNA damage repair for high-altitude adaptation; and thermogenesis, cold-induced vasodilation (CIVD), and the cell cycle for adaptation to frigid environments. By examining the chromatin state of the selection signatures, we identified the lung and ileum as two candidate functional tissues for environmental adaptation. Finally, we identified a mutation (chr1: G246,175,129A) in the cis-regulatory region of ABCA1 as a plausible promising variant for adaptation to tropical environments. CONCLUSIONS In this study, we conducted a genome-wide exploration of the genetic mechanisms underlying the adaptability of local Chinese pig breeds to tropical, high-altitude, and frigid environments. Our findings shed light on the prominent role of cis-regulatory elements in environmental adaptation in pigs and may serve as a valuable biological model of human plateau-related disorders and cardiovascular diseases.
Collapse
Affiliation(s)
- Zhen Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan, 528226, China
| | - Bangmin Song
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen, 518000, China
| | - Jianyu Yao
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Xingzheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan, 528226, China
| | - Yan Zhang
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan, 528226, China.
- Bama Yao Autonomous County Rural Revitalization Research Institute, Bama, 547500, China.
| | - Guoqiang Yi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan, 528226, China.
- Bama Yao Autonomous County Rural Revitalization Research Institute, Bama, 547500, China.
| |
Collapse
|
19
|
Zhang J, Li Y, Yang L, Ma N, Qian S, Chen Y, Duan Y, Xiang X, He Y. New advances in drug development for metabolic dysfunction-associated diseases and alcohol-associated liver disease. Cell Biosci 2024; 14:90. [PMID: 38971765 PMCID: PMC11227172 DOI: 10.1186/s13578-024-01267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/19/2024] [Indexed: 07/08/2024] Open
Abstract
Metabolic disorders are currently threatening public health worldwide. Discovering new targets and developing promising drugs will reduce the global metabolic-related disease burden. Metabolic disorders primarily consist of lipid and glucose metabolic disorders. Specifically, metabolic dysfunction-associated steatosis liver disease (MASLD) and alcohol-associated liver disease (ALD) are two representative lipid metabolism disorders, while diabetes mellitus is a typical glucose metabolism disorder. In this review, we aimed to summarize the new drug candidates with promising efficacy identified in clinical trials for these diseases. These drug candidates may provide alternatives for patients with metabolic disorders and advance the progress of drug discovery for the large disease burden.
Collapse
Affiliation(s)
- Jinming Zhang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yixin Li
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, Anhui, China
| | - Liu Yang
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ningning Ma
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shengying Qian
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingfen Chen
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, Anhui, China.
| | - Xiaogang Xiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yong He
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
Cho W, Hong M, Mobarak EH, Birdal O, Lim MC, Jung MS, Hong SA, Jeong JH, Jung TW. Madecassoside modulates lipid metabolism in visceral adipocytes: exploring the browning, lipolysis, and lipogenesis mechanisms for potential obesity treatment. J Pharm Pharmacol 2024; 76:834-841. [PMID: 38588466 DOI: 10.1093/jpp/rgae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVES Madecassoside (MA) is a triterpene derived from Centella asiatica that has been recognized for its antioxidant and anti-inflammatory properties in various disease models. However, its direct impact on cultured white adipocytes and the underlying mechanisms, mainly through gene knockdown, have not been thoroughly explored. METHODS Western blot analysis was utilized to assess the expression levels of various proteins, while oil red O staining was used to measure lipid deposition. The adipocyte shapes were confirmed using H&E staining. KEY FINDINGS MA treatment enhanced browning and lipolysis in 3T3-L1 adipocytes and adipose tissue from experimental mice while suppressing lipogenesis. Furthermore, MA treatment increased the expression of PPARα and FGF21 in 3T3-L1 adipocytes as well as the secretion of FGF21 into the culture medium. Knockdown of PPARα or FGF21 using siRNA diminished the effects of MA on lipid metabolism in cultured adipocytes. CONCLUSIONS These findings demonstrate that MA promotes thermogenic browning and lipolysis while inhibiting adipocyte lipogenesis, thus showing the potential for attenuating obesity. The study suggested that MA could be a viable therapeutic approach for treating obesity.
Collapse
Affiliation(s)
- Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Mineui Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Enas H Mobarak
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Oğuzhan Birdal
- Department of Cardiology, Medical Faculty, Atatürk University, Erzurum 25240, Turkey
| | - Min Chan Lim
- College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Min Seok Jung
- College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Soon Auck Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
21
|
Stamou MI, Chiu CJ, Jadhav SV, Lopes VF, Salnikov KB, Plummer L, Lippincott MF, Lee H, Seminara SB, Balasubramanian R. Defective FGFR1 Signaling Disrupts Glucose Regulation: Evidence From Humans With FGFR1 Mutations. J Endocr Soc 2024; 8:bvae118. [PMID: 38957656 PMCID: PMC11216325 DOI: 10.1210/jendso/bvae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 07/04/2024] Open
Abstract
Context Activation of fibroblast growth factor receptor 1 (FGFR1) signaling improves the metabolic health of animals and humans, while inactivation leads to diabetes in mice. Direct human genetic evidence for the role of FGFR1 signaling in human metabolic health has not been fully established. Objective We hypothesized that individuals with naturally occurring FGFR1 variants ("experiments of nature") will display glucose dysregulation. Methods Participants with rare FGFR1 variants and noncarrier controls. Using a recall-by-genotype approach, we examined the β-cell function and insulin sensitivity of 9 individuals with rare FGFR1 deleterious variants compared to 27 noncarrier controls, during a frequently sampled intravenous glucose tolerance test at the Reproductive Endocrine Unit and the Harvard Center for Reproductive Medicine, Massachusetts General Hospital. FGFR1-mutation carriers displayed higher β-cell function in the face of lower insulin sensitivity compared to controls. Conclusion These findings suggest that impaired FGFR1 signaling may contribute to an early insulin resistance phase of diabetes pathogenesis and support the candidacy of the FGFR1 signaling pathway as a therapeutic target for improving the human metabolic health.
Collapse
Affiliation(s)
- Maria I Stamou
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Crystal J Chiu
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shreya V Jadhav
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Vanessa Ferreira Lopes
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kathryn B Salnikov
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lacey Plummer
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Margaret F Lippincott
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hang Lee
- MGH Biostatistics Center and MGH Division of Clinical Research (DCR) Biostatistics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Stephanie B Seminara
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ravikumar Balasubramanian
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
22
|
Davidsen LI, Hagberg CE, Goitea V, Lundby SM, Larsen S, Ebbesen MF, Stanic N, Topel H, Kornfeld JW. Mouse vascularized adipose spheroids: an organotypic model for thermogenic adipocytes. Front Endocrinol (Lausanne) 2024; 15:1396965. [PMID: 38982992 PMCID: PMC11231189 DOI: 10.3389/fendo.2024.1396965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
Adipose tissues, particularly beige and brown adipose tissue, play crucial roles in energy metabolism. Brown adipose tissues' thermogenic capacity and the appearance of beige cells within white adipose tissue have spurred interest in their metabolic impact and therapeutic potential. Brown and beige fat cells, activated by environmental factors like cold exposure or by pharmacology, share metabolic mechanisms that drive non-shivering thermogenesis. Understanding these two cell types requires advanced, yet broadly applicable in vitro models that reflect the complex microenvironment and vasculature of adipose tissues. Here we present mouse vascularized adipose spheroids of the stromal vascular microenvironment from inguinal white adipose tissue, a tissue with 'beiging' capacity in mice and humans. We show that adding a scaffold improves vascular sprouting, enhances spheroid growth, and upregulates adipogenic markers, thus reflecting increased adipocyte maturity. Transcriptional profiling via RNA sequencing revealed distinct metabolic pathways upregulated in our vascularized adipose spheroids, with increased expression of genes involved in glucose metabolism, lipid metabolism, and thermogenesis. Functional assessment demonstrated increased oxygen consumption in vascularized adipose spheroids compared to classical 2D cultures, which was enhanced by β-adrenergic receptor stimulation correlating with elevated β-adrenergic receptor expression. Moreover, stimulation with the naturally occurring adipokine, FGF21, induced Ucp1 mRNA expression in the vascularized adipose spheroids. In conclusion, vascularized inguinal white adipose tissue spheroids provide a physiologically relevant platform to study how the stromal vascular microenvironment shapes adipocyte responses and influence activated thermogenesis in beige adipocytes.
Collapse
Affiliation(s)
- Laura Ingeborg Davidsen
- Functional Genomics and Metabolism Research Unit, Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
| | - Carolina E. Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Victor Goitea
- Functional Genomics and Metabolism Research Unit, Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
- Novo Nordisk Foundation Center for Adipocyte Signaling (ADIPOSIGN), University of Southern Denmark, Odense, Denmark
| | - Stine Meinild Lundby
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Frendø Ebbesen
- Danish Molecular Biomedical Imaging Center (DaMBIC), Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
| | - Natasha Stanic
- Functional Genomics and Metabolism Research Unit, Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
| | - Hande Topel
- Functional Genomics and Metabolism Research Unit, Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
- Novo Nordisk Foundation Center for Adipocyte Signaling (ADIPOSIGN), University of Southern Denmark, Odense, Denmark
| | - Jan-Wilhelm Kornfeld
- Functional Genomics and Metabolism Research Unit, Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
- Novo Nordisk Foundation Center for Adipocyte Signaling (ADIPOSIGN), University of Southern Denmark, Odense, Denmark
| |
Collapse
|
23
|
Wang H, Guo S, Gao H, Ding J, Li H, Kong X, Zhang S, He M, Feng Y, Wu W, Xu K, Chen Y, Zhang H, Liu T, Kong X. Myostatin regulates energy homeostasis through autocrine- and paracrine-mediated microenvironment communication. J Clin Invest 2024; 134:e178303. [PMID: 38889010 PMCID: PMC11324308 DOI: 10.1172/jci178303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/17/2024] [Indexed: 06/20/2024] Open
Abstract
Myostatin (MSTN) has long been recognized as a critical regulator of muscle mass. Recently, there has been increasing interest in its role in metabolism. In our study, we specifically knocked out MSTN in brown adipose tissue (BAT) from mice (MSTNΔUCP1) and found that the mice gained more weight than did controls when fed a high-fat diet, with progressive hepatosteatosis and impaired skeletal muscle activity. RNA-Seq analysis indicated signatures of mitochondrial dysfunction and inflammation in the MSTN-ablated BAT. Further studies demonstrated that Kruppel-like factor 4 (KLF4) was responsible for the metabolic phenotypes observed, whereas fibroblast growth factor 21 (FGF21) contributed to the microenvironment communication between adipocytes and macrophages induced by the loss of MSTN. Moreover, the MSTN/SMAD2/3-p38 signaling pathway mediated the expression of KLF4 and FGF21 in adipocytes. In summary, our findings suggest that brown adipocyte-derived MSTN regulated BAT thermogenesis via autocrine and paracrine effects on adipocytes or macrophages, ultimately regulating systemic energy homeostasis.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Shanshan Guo
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Huanqing Gao
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiyang Ding
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Hongyun Li
- Department of Sports Medicine and Arthroscopy Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingyu Kong
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Shuang Zhang
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Muyang He
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yonghao Feng
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Wei Wu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Kexin Xu
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yuxuan Chen
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Hanyin Zhang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xingxing Kong
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Boychenko S, Egorova VS, Brovin A, Egorov AD. White-to-Beige and Back: Adipocyte Conversion and Transcriptional Reprogramming. Pharmaceuticals (Basel) 2024; 17:790. [PMID: 38931457 PMCID: PMC11206576 DOI: 10.3390/ph17060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Obesity has become a pandemic, as currently more than half a billion people worldwide are obese. The etiology of obesity is multifactorial, and combines a contribution of hereditary and behavioral factors, such as nutritional inadequacy, along with the influences of environment and reduced physical activity. Two types of adipose tissue widely known are white and brown. While white adipose tissue functions predominantly as a key energy storage, brown adipose tissue has a greater mass of mitochondria and expresses the uncoupling protein 1 (UCP1) gene, which allows thermogenesis and rapid catabolism. Even though white and brown adipocytes are of different origin, activation of the brown adipocyte differentiation program in white adipose tissue cells forces them to transdifferentiate into "beige" adipocytes, characterized by thermogenesis and intensive lipolysis. Nowadays, researchers in the field of small molecule medicinal chemistry and gene therapy are making efforts to develop new drugs that effectively overcome insulin resistance and counteract obesity. Here, we discuss various aspects of white-to-beige conversion, adipose tissue catabolic re-activation, and non-shivering thermogenesis.
Collapse
Affiliation(s)
- Stanislav Boychenko
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Vera S. Egorova
- Biotechnology Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia
| | - Andrew Brovin
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Alexander D. Egorov
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| |
Collapse
|
25
|
Basu R, Elmendorf AJ, Lorentz B, Mahler CA, Lazzaro O, App B, Zhou S, Yamamoto Y, Suber M, Wann JC, Roh HC, Sheets PL, Johnson TS, Flak JN. Ventromedial hypothalamic nucleus subset stimulates tissue thermogenesis via preoptic area outputs. Mol Metab 2024; 84:101951. [PMID: 38729241 PMCID: PMC11112375 DOI: 10.1016/j.molmet.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/20/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE Hypothalamic signals potently stimulate energy expenditure by engaging peripheral mechanisms to restore energy homeostasis. Previous studies have identified several critical hypothalamic sites (e.g. preoptic area (POA) and ventromedial hypothalamic nucleus (VMN)) that could be part of an interconnected neurocircuit that controls tissue thermogenesis and essential for body weight control. However, the key neurocircuit that can stimulate energy expenditure has not yet been established. METHODS Here, we investigated the downstream mechanisms by which VMN neurons stimulate adipose tissue thermogenesis. We manipulated subsets of VMN neurons acutely as well as chronically and studied its effect on tissue thermogenesis and body weight control, using Sf1Cre and Adcyap1Cre mice and measured physiological parameters under both high-fat diet and standard chow diet conditions. To determine the node efferent to these VMN neurons, that is involved in modulating energy expenditure, we employed electrophysiology and optogenetics experiments combined with measurements using tissue-implantable temperature microchips. RESULTS Activation of the VMN neurons that express the steroidogenic factor 1 (Sf1; VMNSf1 neurons) reduced body weight, adiposity and increased energy expenditure in diet-induced obese mice. This function is likely mediated, at least in part, by the release of the pituitary adenylate cyclase-activating polypeptide (PACAP; encoded by the Adcyap1 gene) by the VMN neurons, since we previously demonstrated that PACAP, at the VMN, plays a key role in energy expenditure control. Thus, we then shifted focus to the subpopulation of VMNSf1 neurons that contain the neuropeptide PACAP (VMNPACAP neurons). Since the VMN neurons do not directly project to the peripheral tissues, we traced the location of the VMNPACAP neurons' efferents. We identified that VMNPACAP neurons project to and activate neurons in the caudal regions of the POA whereby these projections stimulate tissue thermogenesis in brown and beige adipose tissue. We demonstrated that selective activation of caudal POA projections from VMNPACAP neurons induces tissue thermogenesis, most potently in negative energy balance and activating these projections lead to some similar, but mostly unique, patterns of gene expression in brown and beige tissue. Finally, we demonstrated that the activation of the VMNPACAP neurons' efferents that lie at the caudal POA are necessary for inducing tissue thermogenesis in brown and beige adipose tissue. CONCLUSIONS These data indicate that VMNPACAP connections with the caudal POA neurons impact adipose tissue function and are important for induction of tissue thermogenesis. Our data suggests that the VMNPACAP → caudal POA neurocircuit and its components are critical for controlling energy balance by activating energy expenditure and body weight control.
Collapse
Affiliation(s)
- Rashmita Basu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Andrew J Elmendorf
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Betty Lorentz
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Connor A Mahler
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Olivia Lazzaro
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Britany App
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Shudi Zhou
- Department of Medical Neuroscience, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yura Yamamoto
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Mya Suber
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Jamie C Wann
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hyun Cheol Roh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Patrick L Sheets
- Department of Medical Neuroscience, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Travis S Johnson
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA; Melvin and Bren Simon Comprehensive Cancer Centre, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jonathan N Flak
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA.
| |
Collapse
|
26
|
Nikolic I, Ruiz-Garrido I, Crespo M, Romero-Becerra R, Leiva-Vega L, Mora A, León M, Rodríguez E, Leiva M, Plata-Gómez AB, Alvarez Flores MB, Torres JL, Hernández-Cosido L, López JA, Vázquez J, Efeyan A, Martin P, Marcos M, Sabio G. Lack of p38 activation in T cells increases IL-35 and protects against obesity by promoting thermogenesis. EMBO Rep 2024; 25:2635-2661. [PMID: 38730210 PMCID: PMC11169359 DOI: 10.1038/s44319-024-00149-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Obesity is characterized by low-grade inflammation, energy imbalance and impaired thermogenesis. The role of regulatory T cells (Treg) in inflammation-mediated maladaptive thermogenesis is not well established. Here, we find that the p38 pathway is a key regulator of T cell-mediated adipose tissue (AT) inflammation and browning. Mice with T cells specifically lacking the p38 activators MKK3/6 are protected against diet-induced obesity, leading to an improved metabolic profile, increased browning, and enhanced thermogenesis. We identify IL-35 as a driver of adipocyte thermogenic program through the ATF2/UCP1/FGF21 pathway. IL-35 limits CD8+ T cell infiltration and inflammation in AT. Interestingly, we find that IL-35 levels are reduced in visceral fat from obese patients. Mechanistically, we demonstrate that p38 controls the expression of IL-35 in human and mouse Treg cells through mTOR pathway activation. Our findings highlight p38 signaling as a molecular orchestrator of AT T cell accumulation and function.
Collapse
Affiliation(s)
- Ivana Nikolic
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.
| | - Irene Ruiz-Garrido
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - María Crespo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | | | - Luis Leiva-Vega
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | - Marta León
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Elena Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | - Magdalena Leiva
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Ana Belén Plata-Gómez
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | | | - Jorge L Torres
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Department of Medicine, University of Salamanca, Salamanca, 37007, Spain
- Complejo Asistencial de Zamora, Zamora, 49022, Spain
| | - Lourdes Hernández-Cosido
- Bariatric Surgery Unit, Department of General Surgery, University Hospital of Salamanca, Department of Surgery, University of Salamanca, Salamanca, 37007, Spain
| | - Juan Antonio López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, 28029, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, 28029, Spain
| | - Alejo Efeyan
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | - Pilar Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, 28029, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Department of Medicine, University of Salamanca, Salamanca, 37007, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain.
| |
Collapse
|
27
|
Da W, Chen Q, Shen B. The current insights of mitochondrial hormesis in the occurrence and treatment of bone and cartilage degeneration. Biol Res 2024; 57:37. [PMID: 38824571 PMCID: PMC11143644 DOI: 10.1186/s40659-024-00494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/03/2024] [Indexed: 06/03/2024] Open
Abstract
It is widely acknowledged that aging, mitochondrial dysfunction, and cellular phenotypic abnormalities are intricately associated with the degeneration of bone and cartilage. Consequently, gaining a comprehensive understanding of the regulatory patterns governing mitochondrial function and its underlying mechanisms holds promise for mitigating the progression of osteoarthritis, intervertebral disc degeneration, and osteoporosis. Mitochondrial hormesis, referred to as mitohormesis, represents a cellular adaptive stress response mechanism wherein mitochondria restore homeostasis and augment resistance capabilities against stimuli by generating reactive oxygen species (ROS), orchestrating unfolded protein reactions (UPRmt), inducing mitochondrial-derived peptides (MDP), instigating mitochondrial dynamic changes, and activating mitophagy, all prompted by low doses of stressors. The varying nature, intensity, and duration of stimulus sources elicit divergent degrees of mitochondrial stress responses, subsequently activating one or more signaling pathways to initiate mitohormesis. This review focuses specifically on the effector molecules and regulatory networks associated with mitohormesis, while also scrutinizing extant mechanisms of mitochondrial dysfunction contributing to bone and cartilage degeneration through oxidative stress damage. Additionally, it underscores the potential of mechanical stimulation, intermittent dietary restrictions, hypoxic preconditioning, and low-dose toxic compounds to trigger mitohormesis, thereby alleviating bone and cartilage degeneration.
Collapse
Affiliation(s)
- Wacili Da
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Quan Chen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bin Shen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
28
|
Ruswandi YAR, Lesmana R, Rosdianto AM, Gunadi JW, Goenawan H, Zulhendri F. Understanding the Roles of Selenium on Thyroid Hormone-Induced Thermogenesis in Adipose Tissue. Biol Trace Elem Res 2024; 202:2419-2441. [PMID: 37758980 DOI: 10.1007/s12011-023-03854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Brown adipose tissue (BAT) and white adipose tissue (WAT) are known to regulate lipid metabolism. A lower amount of BAT compared to WAT, along with adipose tissue dysfunction, can result in obesity. Studies have shown that selenium supplementation protects against adipocyte dysfunction, decreases WAT triglycerides, and increases BAT triiodothyronine (T3). In this review, we discuss the relationship between selenium and lipid metabolism regulation through selenoprotein deiodinases and the role of deiodinases and thyroid hormones in the induction of adipose tissue thermogenesis. Upon 22 studies included in our review, we found that studies investigating the relationship between selenium and deiodinases demonstrated that selenium supplementation affects the iodothyronine deiodinase 2 (DIO2) protein and the expression of its associated gene, DIO2, proportionally. However, its effect on DIO1 is inconsistent while its effect on DIO3 activity is not detected. Studies have shown that the activity of deiodinases especially DIO2 protein and DIO2 gene expression is increased along with other browning markers upon white adipose tissue browning induction. Studies showed that thermogenesis is stimulated by the thyroid hormone T3 as its activity is correlated to the expression of other thermogenesis markers. A proposed mechanism of thermogenesis induction in selenium supplementation is by autophagy control. However, more studies are needed to establish the role of T3 and autophagy in adipose tissue thermogenesis, especially, since some studies have shown that thermogenesis can function even when T3 activity is lacking and studies related to autophagy in adipose tissue thermogenesis have contradictory results.
Collapse
Affiliation(s)
- Yasmin Anissa R Ruswandi
- Graduate School of Master Program in Anti-Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Kabupaten Sumedang, West Java, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, West Java, 45363, Indonesia.
| | - Aziiz Mardanarian Rosdianto
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, West Java, 45363, Indonesia
- Veterinary Medicine Study Program, Faculty of Medicine, Universitas Padjadjaran, Kabupaten Sumedang, West Java, Indonesia
| | - Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Hanna Goenawan
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, West Java, 45363, Indonesia
| | - Felix Zulhendri
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Kabupaten Sumedang, West Java, Indonesia
- Kebun Efi, Kabanjahe, 22171, North Sumatra, Indonesia
| |
Collapse
|
29
|
Murthy VL, Mosley JD, Perry AS, Jacobs DR, Tanriverdi K, Zhao S, Sawicki KT, Carnethon M, Wilkins JT, Nayor M, Das S, Abel ED, Freedman JE, Clish CB, Shah RV. Metabolic liability for weight gain in early adulthood. Cell Rep Med 2024; 5:101548. [PMID: 38703763 PMCID: PMC11148768 DOI: 10.1016/j.xcrm.2024.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/27/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
While weight gain is associated with a host of chronic illnesses, efforts in obesity have relied on single "snapshots" of body mass index (BMI) to guide genetic and molecular discovery. Here, we study >2,000 young adults with metabolomics and proteomics to identify a metabolic liability to weight gain in early adulthood. Using longitudinal regression and penalized regression, we identify a metabolic signature for weight liability, associated with a 2.6% (2.0%-3.2%, p = 7.5 × 10-19) gain in BMI over ≈20 years per SD higher score, after comprehensive adjustment. Identified molecules specified mechanisms of weight gain, including hunger and appetite regulation, energy expenditure, gut microbial metabolism, and host interaction with external exposure. Integration of longitudinal and concurrent measures in regression with Mendelian randomization highlights the complexity of metabolic regulation of weight gain, suggesting caution in interpretation of epidemiologic or genetic effect estimates traditionally used in metabolic research.
Collapse
Affiliation(s)
- Venkatesh L Murthy
- Division of Cardiovascular Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Jonathan D Mosley
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Andrew S Perry
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Kahraman Tanriverdi
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shilin Zhao
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | - Matthew Nayor
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Saumya Das
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jane E Freedman
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Clary B Clish
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ravi V Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
30
|
Zhong H, Zhang X, Wu Y, Li L, Zhang Z, Chi X, Cui X, Ji C. The dairy-derived peptide Miltin exerts anti-obesity effects by increasing adipocyte thermogenesis. Food Funct 2024; 15:5300-5314. [PMID: 38669145 DOI: 10.1039/d3fo05704f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Growing research has highlighted that the consumption of dairy products improves the metabolic health in obese individuals by functioning as regulatory modulators. However, the molecular basis of this effect remains largely unknown. Herein, we report a dairy-derived peptide, which we named Miltin, that activates the thermogenesis of brown adipocytes and increases white adipocyte browning. Previously, Miltin was merely identified for its antioxidant capacity, although it is commonly present in different dairy products. In this study, we revealed the effect of Miltin in modulating adipose thermogenesis and further explored its potential in treating obesity through in vivo and in vitro strategies. The administration of Miltin in mice fed with a high-fat diet resulted in enhanced thermogenesis, improved glucose homeostasis, and reduced body mass and lipid accumulation, indicating the anti-obesity effect of Miltin. Genomic analysis revealed that Miltin modulates thermogenesis by inducing the activation of the MAPK signaling pathway by preferentially interacting with GADD45γ to promote its stability. Together, our findings indicate that Miltin's role in initiating the thermogenesis of adipocytes makes it a potential anti-obesity therapy for future development.
Collapse
Affiliation(s)
- Hong Zhong
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Mochou Road, Nanjing, China.
| | - Xiaoxiao Zhang
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Mochou Road, Nanjing, China.
| | - Yangyang Wu
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Mochou Road, Nanjing, China.
| | - Lu Li
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Mochou Road, Nanjing, China.
| | - Zhuo Zhang
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Mochou Road, Nanjing, China.
| | - Xia Chi
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Mochou Road, Nanjing, China.
| | - Xianwei Cui
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Mochou Road, Nanjing, China.
| | - Chenbo Ji
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Mochou Road, Nanjing, China.
| |
Collapse
|
31
|
Chand S, Tripathi AS, Dewani AP, Sheikh NWA. Molecular targets for management of diabetes: Remodelling of white adipose to brown adipose tissue. Life Sci 2024; 345:122607. [PMID: 38583857 DOI: 10.1016/j.lfs.2024.122607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Diabetes mellitus is a disorder characterised metabolic dysfunction that results in elevated glucose level in the bloodstream. Diabetes is of two types, type1 and type 2 diabetes. Obesity is considered as one of the major reasons intended for incidence of diabetes hence it turns out to be essential to study about the adipose tissue which is responsible for fat storage in body. Adipose tissues play significant role in maintaining the balance between energy stabilization and homeostasis. The three forms of adipose tissue are - White adipose tissue (WAT), Brown adipose tissue (BAT) and Beige adipose tissue (intermediate form). The amount of BAT gets reduced, and WAT starts to increase with the age. WAT when exposed to certain stimuli gets converted to BAT by the help of certain transcriptional regulators. The browning of WAT has been a matter of study to treat the metabolic disorders and to initiate the expenditure of energy. The three main regulators responsible for the browning of WAT are PRDM16, PPARγ and PGC-1α via various cellular and molecular mechanism. Presented review article includes the detailed elaborative aspect of genes and proteins involved in conversion of WAT to BAT.
Collapse
Affiliation(s)
- Shushmita Chand
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Alok Shiomurti Tripathi
- Department of Pharmacology, ERA College of Pharmacy, ERA University, Lucknow, Uttar Pradesh, India.
| | - Anil P Dewani
- Department of Pharmacology, P. Wadhwani College of Pharmacy, Yavatmal, Maharashtra, India
| | | |
Collapse
|
32
|
Guan H, Xiao L, Hao K, Zhang Q, Wu D, Geng Z, Duan B, Dai H, Xu R, Feng X. SLC25A28 Overexpression Promotes Adipogenesis by Reducing ATGL. J Diabetes Res 2024; 2024:5511454. [PMID: 38736904 PMCID: PMC11088465 DOI: 10.1155/2024/5511454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 05/14/2024] Open
Abstract
Adipose tissue dysfunction is seen among obese and type 2 diabetic individuals. Adipocyte proliferation and hypertrophy are the root causes of adipose tissue expansion. Solute carrier family 25 member 28 (SLC25A28) is an iron transporter in the inner mitochondrial membrane. This study is aimed at validating the involvement of SLC25A28 in adipose accumulation by tail vein injection of adenovirus (Ad)-SLC25A28 and Ad-green fluorescent protein viral particles into C57BL/6J mice. After 16 weeks, the body weight of the mice was measured. Subsequently, morphological analysis was performed to establish a high-fat diet (HFD)-induced model. SLC25A28 overexpression accelerated lipid accumulation in white and brown adipose tissue (BAT), enhanced body weight, reduced serum triglyceride (TG), and impaired serum glucose tolerance. The protein expression level of lipogenesis, lipolysis, and serum adipose secretion hormone was evaluated by western blotting. The results showed that adipose TG lipase (ATGL) protein expression was reduced significantly in white and BAT after overexpression SLC25A28 compared to the control group. Moreover, SLC25A28 overexpression inhibited the BAT formation by downregulating UCP-1 and the mitochondrial biosynthesis marker PGC-1α. Serum adiponectin protein expression was unregulated, which was consistent with the expression in inguinal white adipose tissue (iWAT). Remarkably, serum fibroblast growth factor (FGF21) protein expression was negatively related to the expansion of adipose tissue after administrated by Ad-SLC25A28. Data from the current study indicate that SLC25A28 overexpression promotes diet-induced obesity and accelerates lipid accumulation by regulating hormone secretion and inhibiting lipolysis in adipose tissue.
Collapse
Affiliation(s)
- Hua Guan
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi, China
| | - Lin Xiao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi, China
| | - Kaikai Hao
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Qiang Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Dongliang Wu
- Department of Cardiology, Xianyang Hospital of Yan'an University, Xianyang 712000, China
| | - Zhanyi Geng
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi, China
| | - Bowen Duan
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi, China
| | - Hui Dai
- Department of Clinical Medicine, Gansu Medical College, Pingliang 744000, China
| | - Ruifen Xu
- Department of Anesthesiology, Shaanxi Provincial Peoples Hospital, Xi'an 710068, China
| | - Xuyang Feng
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
- Department of Neurology, Xianyang Hospital of Yan'an University, Xianyang 712000, China
| |
Collapse
|
33
|
Di Maio G, Alessio N, Ambrosino A, Al Sammarraie SHA, Monda M, Di Bernardo G. Irisin influences the in vitro differentiation of human mesenchymal stromal cells, promoting a tendency toward beiging adipogenesis. J Cell Biochem 2024; 125:e30565. [PMID: 38591469 DOI: 10.1002/jcb.30565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/10/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
Mammals exhibit two distinct types of adipose depots: white adipose tissue (WAT) and brown adipose tissue (BAT). While WAT primarily functions as a site for energy storage, BAT serves as a thermogenic tissue that utilizes energy and glucose consumption to regulate core body temperature. Under specific stimuli such as exercise, cold exposure, and drug treatment, white adipocytes possess a remarkable ability to undergo transdifferentiation into brown-like cells known as beige adipocytes. This transformation process, known as the "browning of WAT," leads to the acquisition of new morphological and physiological characteristics by white adipocytes. We investigated the potential role of Irisin, a 12 kDa myokine that is secreted in mice and humans by skeletal muscle after physical activity, in inducing the browning process in mesenchymal stromal cells (MSCs). A subset of the MSCs possesses the remarkable capability to differentiate into different cell types such as adipocytes, osteocytes, and chondrocytes. Consequently, comprehending the effects of Irisin on MSC biology becomes a crucial factor in investigating antiobesity medications. In our study, the primary objective is to evaluate the impact of Irisin on various cell types engaged in distinct stages of the differentiation process, including stem cells, committed precursors, and preadipocytes. By analyzing the effects of Irisin on these specific cell populations, our aim is to gain a comprehensive understanding of its influence throughout the entire differentiation process, rather than solely concentrating on the final differentiated cells. This approach enables us to obtain insights into the broader effects of Irisin on the cellular dynamics and mechanisms involved in adipogenesis.
Collapse
Affiliation(s)
- Girolamo Di Maio
- Human Physiology and Unit of Dietetic and Sports Medicine Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Nicola Alessio
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Alessia Ambrosino
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Sura H A Al Sammarraie
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Marcellino Monda
- Human Physiology and Unit of Dietetic and Sports Medicine Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovanni Di Bernardo
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
Li S, Zou T, Chen J, Li J, You J. Fibroblast growth factor 21: An emerging pleiotropic regulator of lipid metabolism and the metabolic network. Genes Dis 2024; 11:101064. [PMID: 38292170 PMCID: PMC10825286 DOI: 10.1016/j.gendis.2023.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/20/2023] [Accepted: 06/27/2023] [Indexed: 02/01/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) was originally identified as an important metabolic regulator which plays a crucial physiological role in regulating a variety of metabolic parameters through the metabolic network. As a novel multifunctional endocrine growth factor, the role of FGF21 in the metabolic network warrants extensive exploration. This insight was obtained from the observation that the FGF21-dependent mechanism that regulates lipid metabolism, glycogen transformation, and biological effectiveness occurs through the coordinated participation of the liver, adipose tissue, central nervous system, and sympathetic nerves. This review focuses on the role of FGF21-uncoupling protein 1 (UCP1) signaling in lipid metabolism and how FGF21 alleviates non-alcoholic fatty liver disease (NAFLD). Additionally, this review reveals the mechanism by which FGF21 governs glucolipid metabolism. Recent research on the role of FGF21 in the metabolic network has mostly focused on the crucial pathway of glucolipid metabolism. FGF21 has been shown to have multiple regulatory roles in the metabolic network. Since an adequate understanding of the concrete regulatory pathways of FGF21 in the metabolic network has not been attained, this review sheds new light on the metabolic mechanisms of FGF21, explores how FGF21 engages different tissues and organs, and lays a theoretical foundation for future in-depth research on FGF21-targeted treatment of metabolic diseases.
Collapse
Affiliation(s)
| | | | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jiaming Li
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| |
Collapse
|
35
|
Zhao Z, Liu S, Qian B, Zhou L, Shi J, Liu J, Xu L, Yang Z. CMKLR1 senses chemerin/resolvin E1 to control adipose thermogenesis and modulate metabolic homeostasis. FUNDAMENTAL RESEARCH 2024; 4:575-588. [PMID: 38933207 PMCID: PMC11197767 DOI: 10.1016/j.fmre.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/01/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
Induction of beige fat for thermogenesis is a potential therapy to improve homeostasis against obesity. β3-adrenoceptor (β3-AR), a type of G protein-coupled receptor (GPCR), is believed to mediate the thermogenesis of brown fat in mice. However, β3-AR has low expression in human adipose tissue, precluding its activation as a standalone clinical modality. This study aimed at identifying a potential GPCR target to induce beige fat. We found that chemerin chemokine-like receptor 1 (CMKLR1), one of the novel GPCRs, mediated the development of beige fat via its two ligands, chemerin and resolvin E1 (RvE1). The RvE1 levels were decreased in the obese mice, and RvE1 treatment led to a substantial improvement in obese features and augmented beige fat markers. Inversely, despite sharing the same receptor as RvE1, the chemerin levels were increased in obesogenic conditions, and chemerin treatment led to an augmented obese phenotype and a decline of beige fat markers. Moreover, RvE1 and chemerin induced or restrained the development of beige fat, respectively, via the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway. We further showed that RvE1 and chemerin regulated mTORC1 signaling differentially by forming hydrogen bonds with different binding sites of CMKLR1. In conclusion, our study showed that RvE1 and chemerin affected metabolic homeostasis differentially, suggesting that selectively modulating CMKLR1 may be a potential therapeutic target for restoring metabolic homeostasis.
Collapse
Affiliation(s)
- Zewei Zhao
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University; Shenzhen, Guangdong 518107, China
| | - Siqi Liu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University; Shenzhen, Guangdong 518107, China
| | - Bingxiu Qian
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University; Shenzhen, Guangdong 518107, China
| | - Lin Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University; Guangzhou, Guangdong 510080, China
| | - Jianglin Shi
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University; Shenzhen, Guangdong 518107, China
| | - Junxi Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University; Guangzhou, Guangdong 510080, China
| | - Lin Xu
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhonghan Yang
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University; Shenzhen, Guangdong 518107, China
| |
Collapse
|
36
|
Shin J, Lee Y, Ju SH, Jung YJ, Sim D, Lee SJ. Unveiling the Potential of Natural Compounds: A Comprehensive Review on Adipose Thermogenesis Modulation. Int J Mol Sci 2024; 25:4915. [PMID: 38732127 PMCID: PMC11084502 DOI: 10.3390/ijms25094915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The process of adipocyte browning has recently emerged as a novel therapeutic target for combating obesity and obesity-related diseases. Non-shivering thermogenesis is the process of biological heat production in mammals and is primarily mediated via brown adipose tissue (BAT). The recruitment and activation of BAT can be induced through chemical drugs and nutrients, with subsequent beneficial health effects through the utilization of carbohydrates and fats to generate heat to maintain body temperature. However, since potent drugs may show adverse side effects, nutritional or natural substances could be safe and effective as potential adipocyte browning agents. This review aims to provide an extensive overview of the natural food compounds that have been shown to activate brown adipocytes in humans, animals, and in cultured cells. In addition, some key genetic and molecular targets and the mechanisms of action of these natural compounds reported to have therapeutic potential to combat obesity are discussed.
Collapse
Affiliation(s)
- Jaeeun Shin
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Yeonho Lee
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Seong Hun Ju
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Young Jae Jung
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Daehyeon Sim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Sung-Joon Lee
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
- Interdisciplinary Program in Precision Public Health, BK21 Four Institute of Precision Public Health, Korea University, Seoul 02846, Republic of Korea
| |
Collapse
|
37
|
Zeng B, Shen Q, Wang B, Tang X, Jiang J, Zheng Y, Huang H, Zhuo W, Wang W, Gao Y, Li X, Wang S, Li W, Qian G, Qin J, Hou M, Lv H. Spexin ameliorated obesity-related metabolic disorders through promoting white adipose browning mediated by JAK2-STAT3 pathway. Nutr Metab (Lond) 2024; 21:22. [PMID: 38658956 PMCID: PMC11040786 DOI: 10.1186/s12986-024-00790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/13/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Spexin, a 14 amino acid peptide, has been reported to regulate obesity and its associated complications. However, little is known about the underlying molecular mechanism. Therefore, this study aimed to investigate the effects of spexin on obesity and explore the detailed molecular mechanisms in vivo and in vitro. METHODS Male C57BL/6J mice were fed a high-fat diet (HFD) for 12 weeks to induce obesity, and mice fed a standard fat diet were used as controls. Then, these mice were treated with SPX or Vehicle by intraperitoneal injection for an additional 12 weeks, respectively. The metabolic profile, fat-browning specific markers and mitochondrial contents were detected. In vitro, 3T3-L1 cells were used to investigate the molecular mechanisms. RESULTS After 12 weeks of treatment, SPX significantly decreased body weight, serum lipid levels, and improved insulin sensitivity in HFD-induced obese mice. Moreover, SPX was found to promote oxygen consumption in HFD mice, and it increased mitochondrial content as well as the expression of brown-specific markers in white adipose tissue (WAT) of HFD mice. These results were consistent with the increase in mitochondrial content and the expression of brown-specific markers in 3T3-L1 mature adipocytes. Of note, the spexin-mediated beneficial pro-browning actions were abolished by the JAK2/STAT3 pathway antagonists in mature 3T3-L1 cells. CONCLUSIONS These data indicate that spexin ameliorates obesity-induced metabolic disorders by improving WAT browning via activation of the JAK2/STAT3 signaling pathway. Therefore, SPX may serve as a new therapeutic candidate for treating obesity.
Collapse
Affiliation(s)
- Bihe Zeng
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
- Department of Pediatrics, Affiliated Huai'an Hospital of Xuzhou Medical University, 223002, Huai'an, China
| | - Qin Shen
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Bo Wang
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Xuan Tang
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Jiaqi Jiang
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Yiming Zheng
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Hongbiao Huang
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Wenyu Zhuo
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Wang Wang
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Yang Gao
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Xuan Li
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Shuhui Wang
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Wenjie Li
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Guanghui Qian
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Jie Qin
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Miao Hou
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China.
| | - Haitao Lv
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China.
| |
Collapse
|
38
|
Cui A, Xue Y, Su W, Lin J, Liu Y, Cai G, Wan Q, Jiang Y, Ding D, Zheng Z, Wei S, Li W, Shen J, Wen J, Huang M, Zhao J, Zhang X, Zhao Y, Li H, Ying H, Zhang H, Bi Y, Chen Y, Xu A, Xu Y, Li Y. Glucose regulation of adipose tissue browning by CBP/p300- and HDAC3-mediated reversible acetylation of CREBZF. Proc Natl Acad Sci U S A 2024; 121:e2318935121. [PMID: 38588421 PMCID: PMC11032498 DOI: 10.1073/pnas.2318935121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.
Collapse
Affiliation(s)
- Aoyuan Cui
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yaqian Xue
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Weitong Su
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Jing Lin
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yuxiao Liu
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Genxiang Cai
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Qin Wan
- Department of Endocrinology and Metabolism, Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Yang Jiang
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin300457, China
| | - Dong Ding
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Zengpeng Zheng
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Shuang Wei
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Wenjing Li
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Jiaxin Shen
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Jian Wen
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
- Department of General Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Mengyao Huang
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Jiuxiang Zhao
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai200031, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, Shanghai200233, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, Shanghai200233, China
| | - Hong Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai200031, China
| | - Hao Ying
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Haibing Zhang
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing210008, China
| | - Yan Chen
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Yu Li
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| |
Collapse
|
39
|
Chu Y, Gui S, Zheng Y, Zhao J, Zhao Y, Li Y, Chen X. The natural compounds, Magnolol or Honokiol, promote adipose tissue browning and resist obesity through modulating PPARα/γ activity. Eur J Pharmacol 2024; 969:176438. [PMID: 38402928 DOI: 10.1016/j.ejphar.2024.176438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely associated with the body's energy metabolism. A potential strategy to regulate energy metabolism, combat obesity, and reduce NAFLD is by enhancing adipocyte thermogenesis and increasing energy expenditure. In this study, our objective was to examine the effects of phenolic extracts derived from Magnolia officinalis on the regulation of NAFLD. Specifically, we investigated the impact of Magnolol or Honokiol treatment on high-fat diet (HFD)-induced obese C57BL6/J male mice. Firstly, we monitored energy metabolism, dissected tissues, and analyzed tissue sections. Additionally, we conducted experiments on HepG2 and primary adipocytes to gain insights into the roles of Magnolol or Honokiol. To further understand the effects of these compounds on related signaling pathways and marker genes, we performed molecular docking, dual-luciferase assays, and interfered with target genes. Our findings revealed that Magnolol or Honokiol activate the peroxisome proliferator activated receptor alpha (PPARα) signaling pathway, leading to the alleviation of NAFLD. This activation promotes fatty acid oxidation, reduces lipogenesis, and enhances the expression and secretion of FGF21. Notably, Fibroblast growth factor 21 (FGF21), secreted by the liver, plays a crucial role in improving communication between the liver and adipocytes while also promoting the browning of adipose tissue. Additionally, Magnolol or Honokiol activate the peroxisome proliferator activated receptor gamma (PPARγ) signaling pathway, resulting in increased uncoupling protein 1 (UCP1) expression, heightened heat production in adipose tissue, and anti-obesity. Therefore, Magnolol or Honokiol alleviate NAFLD, promote adipose tissue browning and resist obesity through dual activation of PPARα/γ.
Collapse
Affiliation(s)
- Yi Chu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sisi Gui
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yazhen Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingwu Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaxiang Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingying Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaodong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
40
|
Guo W, Cao H, Shen Y, Li W, Wang W, Cheng L, Cai M, Xu F. Role of liver FGF21-KLB signaling in ketogenic diet-induced amelioration of hepatic steatosis. Nutr Diabetes 2024; 14:18. [PMID: 38609395 PMCID: PMC11014968 DOI: 10.1038/s41387-024-00277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The effectiveness of ketogenic diet (KD) in ameliorating fatty liver has been established, although its mechanism is under investigation. Fibroblast growth factor 21 (FGF21) positively regulates obesity-associated metabolic disorders and is elevated by KD. FGF21 conventionally initiates its intracellular signaling via receptor β-klotho (KLB). However, the mechanistic role of FGF21-KLB signaling for KD-ameliorated fatty liver remains unknown. This study aimed to delineate the critical role of FGF21 signaling in the ameliorative effects of KD on hepatic steatosis. METHODS Eight-week-old C57BL/6 J mice were fed a chow diet (CD), a high-fat diet (HFD), or a KD for 16 weeks. Adeno-associated virus-mediated liver-specific KLB knockdown mice and control mice were fed a KD for 16 weeks. Phenotypic assessments were conducted during and after the intervention. We investigated the mechanism underlying KD-alleviated hepatic steatosis using multi-omics and validated the expression of key genes. RESULTS KD improved hepatic steatosis by upregulating fatty acid oxidation and downregulating lipogenesis. Transcriptional analysis revealed that KD dramatically activated FGF21 pathway, including KLB and fibroblast growth factor receptor 1 (FGFR1). Impairing liver FGF21 signaling via KLB knockdown diminished the beneficial effects of KD on ameliorating fatty liver, insulin resistance, and regulating lipid metabolism. CONCLUSION KD demonstrates beneficial effects on diet-induced metabolic disorders, particularly on hepatic steatosis. Liver FGF21-KLB signaling plays a critical role in the KD-induced amelioration of hepatic steatosis.
Collapse
Affiliation(s)
- Wanrong Guo
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Medical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huanyi Cao
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
- Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wuguo Li
- Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lidan Cheng
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mengyin Cai
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fen Xu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China.
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
41
|
Mallardo M, Daniele A, Musumeci G, Nigro E. A Narrative Review on Adipose Tissue and Overtraining: Shedding Light on the Interplay among Adipokines, Exercise and Overtraining. Int J Mol Sci 2024; 25:4089. [PMID: 38612899 PMCID: PMC11012884 DOI: 10.3390/ijms25074089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Lifestyle factors, particularly physical inactivity, are closely linked to the onset of numerous metabolic diseases. Adipose tissue (AT) has been extensively studied for various metabolic diseases such as obesity, type 2 diabetes, and immune system dysregulation due to its role in energy metabolism and regulation of inflammation. Physical activity is increasingly recognized as a powerful non-pharmacological tool for the treatment of various disorders, as it helps to improve metabolic, immune, and inflammatory functions. However, chronic excessive training has been associated with increased inflammatory markers and oxidative stress, so much so that excessive training overload, combined with inadequate recovery, can lead to the development of overtraining syndrome (OTS). OTS negatively impacts an athlete's performance capabilities and significantly affects both physical health and mental well-being. However, diagnosing OTS remains challenging as the contributing factors, signs/symptoms, and underlying maladaptive mechanisms are individualized, sport-specific, and unclear. Therefore, identifying potential biomarkers that could assist in preventing and/or diagnosing OTS is an important objective. In this review, we focus on the possibility that the endocrine functions of AT may have significant implications in the etiopathogenesis of OTS. During physical exercise, AT responds dynamically, undergoing remodeling of endocrine functions that influence the production of adipokines involved in regulating major energy and inflammatory processes. In this scenario, we will discuss exercise about its effects on AT activity and metabolism and its relevance to the prevention and/or development of OTS. Furthermore, we will highlight adipokines as potential markers for diagnosing OTS.
Collapse
Affiliation(s)
- Marta Mallardo
- Department of Molecular and Biotechnological Medicine, University of Naples “Federico II”, 80131 Naples, Italy;
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy;
| | - Aurora Daniele
- Department of Molecular and Biotechnological Medicine, University of Naples “Federico II”, 80131 Naples, Italy;
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy;
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
- Research Center on Motor Activities (CRAM), University of Catania, 95123 Catania, Italy
| | - Ersilia Nigro
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy;
- Department of Pharmaceutical, Biological, Environmental Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via G. Vivaldi 42, 81100 Caserta, Italy
| |
Collapse
|
42
|
Zhao JY, Zhou LJ, Ma KL, Hao R, Li M. MHO or MUO? White adipose tissue remodeling. Obes Rev 2024; 25:e13691. [PMID: 38186200 DOI: 10.1111/obr.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 01/09/2024]
Abstract
In this review, we delve into the intricate relationship between white adipose tissue (WAT) remodeling and metabolic aspects in obesity, with a specific focus on individuals with metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO). WAT is a highly heterogeneous, plastic, and dynamically secreting endocrine and immune organ. WAT remodeling plays a crucial role in metabolic health, involving expansion mode, microenvironment, phenotype, and distribution. In individuals with MHO, WAT remodeling is beneficial, reducing ectopic fat deposition and insulin resistance (IR) through mechanisms like increased adipocyte hyperplasia, anti-inflammatory microenvironment, appropriate extracellular matrix (ECM) remodeling, appropriate vascularization, enhanced WAT browning, and subcutaneous adipose tissue (SWAT) deposition. Conversely, for those with MUO, WAT remodeling leads to ectopic fat deposition and IR, causing metabolic dysregulation. This process involves adipocyte hypertrophy, disrupted vascularization, heightened pro-inflammatory microenvironment, enhanced brown adipose tissue (BAT) whitening, and accumulation of visceral adipose tissue (VWAT) deposition. The review underscores the pivotal importance of intervening in WAT remodeling to hinder the transition from MHO to MUO. This insight is valuable for tailoring personalized and effective management strategies for patients with obesity in clinical practice.
Collapse
Affiliation(s)
- Jing Yi Zhao
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Juan Zhou
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Le Ma
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Hao
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
43
|
Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord 2024; 25:279-308. [PMID: 38051471 PMCID: PMC10942928 DOI: 10.1007/s11154-023-09850-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.
Collapse
Affiliation(s)
- Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Frank Gieseler
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
44
|
Negroiu CE, Tudoraşcu RI, Beznă MC, Ungureanu AI, Honţaru SO, Dănoiu S. The role of FGF21 in the interplay between obesity and non-alcoholic fatty liver disease: a narrative review. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:159-172. [PMID: 39020530 PMCID: PMC11384831 DOI: 10.47162/rjme.65.2.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Obesity poses a significant and escalating challenge in contemporary society, increasing the risk of developing various metabolic disorders such as dyslipidemia, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), type 2 diabetes, and certain types of cancer. The current array of therapeutic interventions for obesity remains insufficient, prompting a pressing demand for novel and more effective treatments. In response, scientific attention has turned to the fibroblast growth factor 21 (FGF21) due to its remarkable and diverse impacts on lipid, carbohydrate, and energy metabolism. This comprehensive review aims to delve into the multifaceted aspects of FGF21, encompassing its discovery, synthesis, functional roles, and potential as a biomarker and therapeutic agent, with a specific focus on its implications for NAFLD.
Collapse
Affiliation(s)
- Cristina Elena Negroiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, Romania; ; Department of Health Care and Physiotherapy, Faculty of Sciences, Physical Education and Informatics, University Center of Piteşti, National University for Science and Technology Politehnica, Bucharest, Romania;
| | | | | | | | | | | |
Collapse
|
45
|
Diaz-Castro J, Reyes-Olavarría D, Toledano JM, Puche-Juarez M, Garcia-Vega JE, Ochoa JJ, Moreno-Fernandez J. Assessment of muscle endocrine function and inflammatory signalling in male school children following a physical activity programme. Clin Nutr 2024; 43:936-942. [PMID: 38422951 DOI: 10.1016/j.clnu.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND & AIMS Regular and planned physical activity can diminish the risk of numerous illnesses. However, school children and teenagers often exercise intermittently and for brief periods, restricting potential benefits. Furthermore, previous studies mainly focused on body composition, without providing molecular mechanisms elucidating the role of physical activity in muscle tissue and inflammatory signalling. The objective of this study was to determine the effect of a vigorous physical activity intervention on endocrine muscle function and cytokine output in children. METHODS 103 boys were divided into two groups: control (n = 51, did not perform additional physical activity) and exercise (n = 52, performed vigorous physical activity). Body composition measurements, endocrine muscle function and inflammatory signalling biomarkers were assessed at enrolment and after 6 months of intervention. RESULTS No statistical significance was found for fractalkine, oncostatin, EGF, TNF-α and eotaxin. However, LIF, FBAP3, IL-6, FGF21 and IL-15 increased in the exercise group at the end of the protocol, though myostatin got decreased. In contrast, IFN-γ was increased in the exercise group at the beginning and end of the exercise protocol, IL-10 was also increased in this group, IL-1α decreased in the exercise group before and after the exercise protocol, and IP-10 and MCP-1 also decreased in the exercise group. CONCLUSION It can be affirmed that a physical activity programme for boys was shown to produce changes in body composition (decreased fat mass, increased lean mass) and in markers of endocrine muscle function and cytokine release. It is possible that these changes, if sustained, could reduce the risk of chronic disease.
Collapse
Affiliation(s)
- Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| | - Daniela Reyes-Olavarría
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain; Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain; Department of Physical Education, Sport, and Recreation, Universidad de La Frontera, Temuco 4780000, Chile
| | - Juan M Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain; Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain.
| | - María Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain; Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain.
| | - Jose Eulogio Garcia-Vega
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain; Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Julio J Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain.
| |
Collapse
|
46
|
Wei W, Yu S, Zeng H, Tan W, Hu M, Huang J, Li X, Mao L. Docosahexaenoic and Eicosapentaenoic Acids Promote the Accumulation of Browning-Related Myokines via Calcium Signaling in Insulin-Resistant Mice. J Nutr 2024; 154:1271-1281. [PMID: 38367811 DOI: 10.1016/j.tjnut.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Myokines have a prominent effect on improving insulin resistance (IR) by inducing browning of white adipose tissue (WAT). Although docosahexaenoic acids (DHA) and eicosapentaenoic acids (EPA) play roles in improving IR and stimulating browning, whether they mediate myokines directly remains unknown. OBJECTIVE This study aims to investigate the effects of DHA and EPA on browning-related myokines under IR and clarify the mechanism via Ca2+ signaling. METHODS The expression and secretion levels of myokines in IR mice and IR myotubes were detected after DHA/EPA treatment. The crosstalk between myotubes and adipocytes was evaluated through a method in which IR adipocytes were treated with the culture medium supernatant of myotubes treated with DHA/EPA. The expression of browning markers in the WAT of IR mice and adipocytes was determined. A calcium chelator was used to determine whether DHA and EPA regulate myokine production through a calcium ion-dependent pathway. RESULTS In vivo experiments: 3:1 and 1:3 DHA/EPA promoted the mRNA levels of Irisin, IL-6, IL-15, and FGF21 in skeletal muscle, stimulated WAT browning, reduced lipid accumulation; 3:1 DHA/EPA upregulated the serum concentration of Irisin; 1:3 DHA/EPA upregulated the serum concentrations of Irisin, IL-6, and FGF21. In vitro experiments: the levels of Irisin and IL-6 in C2C12 myotubes and their medium supernatant were significantly elevated in the 3:1 and 1:3 groups and the upregulation of browning markers and reduction in fat accumulation were observed in adipocytes treated with the medium supernatant of C2C12 myotubes in the 3:1 and 1:3 groups. However, the above phenomena disappeared when Ca2+ signaling was inhibited. CONCLUSIONS Treatment with DHA and EPA at composition ratios of 3:1 and 1:3 induces browning of WAT in IR mice, which is likely related to the promotion of the accumulation of myokines, especially Irisin and IL-6, via Ca2+ signaling.
Collapse
Affiliation(s)
- Wenting Wei
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China; Department of Nutriology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Siyan Yu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Huanting Zeng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Weifeng Tan
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Manjiang Hu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Jie Huang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Xudong Li
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Limei Mao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
47
|
Kowald A, Palmer D, Secci R, Fuellen G. Healthy Aging in Times of Extreme Temperatures: Biomedical Approaches. Aging Dis 2024; 15:601-611. [PMID: 37450930 PMCID: PMC10917539 DOI: 10.14336/ad.2023.0619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Climate extremes and rising energy prices present interconnected global health risks. Technical solutions can be supplemented with biomedical approaches to promote healthy longevity in hot and cold conditions. In summer, reducing basal metabolic rate through mild caloric restriction or CR mimetics, such as resveratrol, can potentially be used to lower body temperature. In winter, activating brown adipose tissue (BAT) for non-shivering thermogenesis and improved metabolic health can help adaptation to colder environments. Catechins found in green tea and in other food could be alternatives to drugs for these purposes. This review examines and discusses the biomedical evidence supporting the use of CR mimetics and BAT activators for health benefits amid increasingly extreme temperatures.
Collapse
Affiliation(s)
- Axel Kowald
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Daniel Palmer
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Riccardo Secci
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Georg Fuellen
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
- Interdisziplinäre Fakultät, Department AGIS (Altern des Individuums und der Gesellschaft), Universität Rostock, Germany.
- School of Medicine, University College Dublin, Ireland.
| |
Collapse
|
48
|
Negroiu CE, Tudorașcu I, Bezna CM, Godeanu S, Diaconu M, Danoiu R, Danoiu S. Beyond the Cold: Activating Brown Adipose Tissue as an Approach to Combat Obesity. J Clin Med 2024; 13:1973. [PMID: 38610736 PMCID: PMC11012454 DOI: 10.3390/jcm13071973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
With a dramatic increase in the number of obese and overweight people, there is a great need for new anti-obesity therapies. With the discovery of the functionality of brown adipose tissue in adults and the observation of beige fat cells among white fat cells, scientists are looking for substances and methods to increase the activity of these cells. We aimed to describe how scientists have concluded that brown adipose tissue is also present and active in adults, to describe where in the human body these deposits of brown adipose tissue are, to summarize the origin of both brown fat cells and beige fat cells, and, last but not least, to list some of the substances and methods classified as BAT promotion agents with their benefits and side effects. We summarized these findings based on the original literature and reviews in the field, emphasizing the discovery, function, and origins of brown adipose tissue, BAT promotion agents, and batokines. Only studies written in English and with a satisfying rating were identified from electronic searches of PubMed.
Collapse
Affiliation(s)
- Cristina Elena Negroiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.M.B.); (S.D.)
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Iulia Tudorașcu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.M.B.); (S.D.)
| | - Cristina Maria Bezna
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.M.B.); (S.D.)
| | - Sanziana Godeanu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Marina Diaconu
- Department of Radiology, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania;
| | - Raluca Danoiu
- Department of Social Sciences and Humanities, University of Craiova, 200585 Craiova, Romania;
| | - Suzana Danoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.M.B.); (S.D.)
| |
Collapse
|
49
|
Stanic S, Bardova K, Janovska P, Rossmeisl M, Kopecky J, Zouhar P. Prolonged FGF21 treatment increases energy expenditure and induces weight loss in obese mice independently of UCP1 and adrenergic signaling. Biochem Pharmacol 2024; 221:116042. [PMID: 38325495 DOI: 10.1016/j.bcp.2024.116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/22/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Fibroblast growth factor 21 (FGF21) reduces body weight, which was attributed to induced energy expenditure (EE). Conflicting data have been published on the role of uncoupling protein 1 (UCP1) in this effect. Therefore, we aimed to revisit the thermoregulatory effects of FGF21 and their implications for body weight regulation. We found that an 8-day treatment with FGF21 lowers body weight to similar extent in both wildtype (WT) and UCP1-deficient (KO) mice fed high-fat diet. In WT mice, this effect is solely due to increased EE, associated with a strong activation of UCP1 and with excess heat dissipated through the tail. This thermogenesis takes place in the interscapular region and can be attenuated by a β-adrenergic inhibitor propranolol. In KO mice, FGF21-induced weight loss correlates with a modest increase in EE, which is independent of adrenergic signaling, and with a reduced energy intake. Interestingly, the gene expression profile of interscapular brown adipose tissue (but not subcutaneous white adipose tissue) of KO mice is massively affected by FGF21, as shown by increased expression of genes encoding triacylglycerol/free fatty acid cycle enzymes. Thus, FGF21 elicits central thermogenic and pyretic effects followed by a concomitant increase in EE and body temperature, respectively. The associated weight loss is strongly dependent on UCP1-based thermogenesis. However, in the absence of UCP1, alternative mechanisms of energy dissipation may contribute, possibly based on futile triacylglycerol/free fatty acid cycling in brown adipose tissue and reduced food intake.
Collapse
Affiliation(s)
- Sara Stanic
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic; Faculty of Science, Charles University in Prague, Vinicna 7, Prague 128 44, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Petr Zouhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic.
| |
Collapse
|
50
|
Kundimi S, Chinta G, Alluri KV, Golakoti T, Veeramachaneni S, Ramanathan G, Sengupta K. A Synergistic Botanical Composition Increases Resting Energy Expenditure and Reduces Adiposity in High-Fat Diet-Fed Rats. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:286-295. [PMID: 38015050 DOI: 10.1080/27697061.2023.2280777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVE An imbalance between dietary energy intake and energy expenditure may result in body fat gain or obesity. Increasing resting energy expenditure (REE) is an attractive strategy for managing body fat gain. The objective of the current study was to generate proof-of-concept data on a synergistic composition (LN19183) of Citrus aurantifolia fruit rind (CA) and Theobroma cacao seed (TC) extracts to increase REE and reduce body fat gain in a high-fat diet (HFD)-fed rats. METHOD In in vitro cell-based experiments, CA, TC, or LN19183 were tested for fibroblast growth factor 21 (FGF-21) production from 3T3-L1 mouse adipocytes. Uncoupling protein 1 (UCP-1) and beta3-adrenergic receptor (β3-AR) protein expressions in LN19183-treated 3T3-L1 lysates were also tested. The 56-day in vivo study in male Sprague Dawley (SD) rats (age: 12-14 weeks; body weight [b.w.]: 115-197 g) contained 2 phases of 28 days each of induction and supplementation. Seven rats received a regular rodent diet (RD) over 56 days. In the induction phase, 21 rats received HFD; in the supplementation phase, the obese rats (n = 7) received either HFD alone or in concurrence with a daily oral dose of either 100 or 250 mg/kg b.w. of LN19183 for 28 days. RESULTS In 3T3-L1 adipocytes, LN19183 synergistically increased FGF-21 production and dose-dependently increased β3-AR and UCP-1 protein expression. In HFD-fed rats, both doses of LN19183 supplementation significantly (p < 0.05) decreased the body weight gain, total fat mass, and liver weight and increased (p < 0.05) REE. High-dose LN19183 also significantly (p < 0.05) increased fat oxidation and UCP-1 protein expression in white fat tissue and reduced liver triglyceride (TG) level. LN19183-supplemented groups substantially reduced serum TG and glucose levels compared to the HFD rats. CONCLUSIONS LN19183 reduces body fat mass and weight gain via increased REE and fat oxidation in HFD-fed obese rats.
Collapse
Affiliation(s)
- Sreenath Kundimi
- Department of Cell and Molecular Biology, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| | - Gopichand Chinta
- Department of Medical Affairs, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| | - Krishnaraju Venkata Alluri
- Department of Pharmacology and Clinical Research, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| | - Trimurtulu Golakoti
- Department of Phytochemistry, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| | | | - Guru Ramanathan
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Krishanu Sengupta
- Department of Cell and Molecular Biology, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| |
Collapse
|