1
|
Du S, Guo Y, Li Q, Hu X, Tian Y, Cheng B, Wang S, Wang Z, Ren R, Wang Z. Transcriptome analysis of the genes and regulators involving in vitamin E biosynthesis in Elaeagnus mollis diels. PLANT MOLECULAR BIOLOGY 2024; 114:112. [PMID: 39414639 DOI: 10.1007/s11103-024-01507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/22/2024] [Indexed: 10/18/2024]
Abstract
Elaeagnus mollis is an important newly developing woody oil plant species and the vitamin E (VitE) content in its kernel oil is relatively high. In the present study, the VitE component content and functional genes involving in VitE biosynthesis in E. mollis kernel at different developmental stage were investigated. The VitE content increased with kernel development, reaching up to ~ 7.96 mg/g oil in kernel mature stage. The content of tocopherol was much higher than that of tocotrienol and γ-tocopherol became the dominant component. E. mollis kernel extracts had relatively strong antioxidant capacity. We identified 17 genes (16 VTEs and 1 homogentisic acid geranylgeranyl transferase (HGGT)) directly involving in VitE biosynthesis in RNA-Seq data. Phylogenetic and qRT-PCR results indicated that the annotation and reliability of the RNA-Seq were accurate. Transient overexpression of EmVTE3 and EmWRKY13 in tobacoo leaves increased and decreased the VitE content to 192.18 and 118.29 µg/g, respectively. Weighted gene co-expression analysis elucidated that the blue module showed significant correlation with tocopherol content. Co-expression network analysis revealed that 2-methyl-6-phytobenzoquinone methyltransferase (MPBQ-MT/VTE3) played a vital role and EmWRKY13 may be a key negative regulator in E. mollis VitE biosynthesis. This study not only revealed the traditional VitE biosynthesis pathway in E. mollis, but also set a solid foundation for future genetic breeding of this species.
Collapse
Affiliation(s)
- Shuhui Du
- College of Forestry, Shanxi Agricultural University, Jinzhong, China.
| | - Yuanting Guo
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Qianqian Li
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Xiaoyan Hu
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Yang Tian
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Baochang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Shengji Wang
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Zhiling Wang
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Ruifen Ren
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Zhaoshan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.
| |
Collapse
|
2
|
Qin P, Chen P, Zhou Y, Zhang W, Zhang Y, Xu J, Gan L, Liu Y, Romer J, Dörmann P, Cahoon EB, Zhang C. Vitamin E biofortification: enhancement of seed tocopherol concentrations by altered chlorophyll metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1344095. [PMID: 38469330 PMCID: PMC10925712 DOI: 10.3389/fpls.2024.1344095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
Homogentisate Phytyltransferase (HPT) catalyzes condensation of homogentisate (HGA) and phytyl diphosphate (PDP) to produce tocopherols, but can also synthesize tocotrienols using geranylgeranyl diphosphate (GGDP) in plants engineered for deregulated HGA synthesis. In contrast to prior tocotrienol biofortification efforts, engineering enhanced tocopherol concentrations in green oilseeds has proven more challenging due to the integral role of chlorophyll metabolism in supplying the PDP substrate. This study show that RNAi suppression of CHLSYN coupled with HPT overexpression increases tocopherol concentrations by >two-fold in Arabidopsis seeds. We obtained additional increases in seed tocopherol concentrations by engineering increased HGA production via overexpression of bacterial TyrA that encodes chorismate mutase/prephenate dehydrogenase activities. In overexpression lines, seed tocopherol concentrations increased nearly three-fold, and resulted in modest tocotrienol accumulation. We further increased total tocochromanol concentrations by enhancing production of HGA and GGDP by overexpression of the gene for hydroxyphenylpyruvate dioxygenase (HPPD). This shifted metabolism towards increased amounts of tocotrienols relative to tocopherols, which was reflected in corresponding increases in ratios of GGDP/PDP in these seeds. Overall, our results provide a theoretical basis for genetic improvement of total tocopherol concentrations in green oilseeds (e.g., rapeseed, soybean) through strategies that include seed-suppression of CHLSYN coupled with increased HGA production.
Collapse
Affiliation(s)
- Ping Qin
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Peng Chen
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuanwei Zhou
- Yichang Academy of Agricultural Science, Ministry of Agriculture and rural areas, Yichang, Hubei, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunyun Zhang
- Industrial Crops Institute of Yunnan Academy of Agricultural Sciences, Ministry of Agriculture and rural areas, Kunming, China
| | - Jingjing Xu
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lu Gan
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Yingnan Liu
- Lincang Agricultural Technology Extension Center, Lincang, Yunnan, China
| | - Jill Romer
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Edgar B. Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Zeng Z, Jia Y, Huang X, Chen Z, Xiang T, Han N, Bian H, Li C. Transcriptional and protein structural characterization of homogentisate phytyltransferase genes in barley, wheat, and oat. BMC PLANT BIOLOGY 2023; 23:528. [PMID: 37904113 PMCID: PMC10617047 DOI: 10.1186/s12870-023-04535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Homogentisate phytyltransferase (HPT) is the critical enzyme for the biosynthesis of tocopherols (vitamin E), which are the major lipid-soluble antioxidants and help plants adapt to various stress conditions. HPT is generally strictly conserved in various plant genomes; however, a divergent lineage HPT2 was identified recently in some Triticeae species. The molecular function and transcriptional profiles of HPT2 remain to be characterized. RESULTS In this study, we performed comprehensive transcriptome data mining of HPT1 and HPT2 in different tissues and stages of barley (Hordeum vulgare), wheat (Triticum aestivum), and oat (Avena sativa), followed by qRT-PCR experiments on HPT1 and HPT2 in different tissues of barley and wheat. We found that the common HPT1 genes (HvHPT1, TaHPT1s, and AsHPT1s) displayed a conserved transcriptional pattern in the three target species and were universally transcribed in various tissues, with a notable preference in leaf. In contrast, HPT2 genes (HvHPT2, TaHPT2, and AsHPT2) were specifically transcribed in spike (developmentally up-regulated) and shoot apex tissues, displaying a divergent tissue-specific pattern. Cis-regulatory elements prediction in the promoter region identified common factors related to light-, plant hormone-, low temperature-, drought- and defense- responses in both HPT1s and HPT2s. We observed the transcriptional up-regulation of HvHPT1 and HvHPT2 under various stress conditions, supporting their conserved function in environmental adaption. We detected a clear, relaxed selection pressure in the HPT2 lineage, consistent with the predicted evolution pattern following gene duplication. Protein structural modelling and substrate docking analyses identified putative catalytic amino acid residues for HvHPT1 and HvHPT2, which are strictly conserved and consistent with their function in vitamin E biosynthesis. CONCLUSIONS We confirmed the presence of two lineages of HPT in Triticeae and Aveninae, including hexaploid oat, and characterized their transcriptional profiles based on transcriptome and qRT-PCR data. HPT1s were ubiquitously transcribed in various tissues, whilst HPT2s were highly expressed in specific stages and tissue. The active transcription of HPT2s, together with its conserved cis-elements and protein structural features, support HPT2s' role in tocopherol production in Triticeae. This study is the first protein structural analysis on the membrane-bound plant HPTs and provides valuable insights into its catalytic mechanism.
Collapse
Affiliation(s)
- Zhanghui Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, 311121, China
| | - Yong Jia
- Western Crops Genetic Alliance, Murdoch University, Murdoch, WA, 6150, Australia
- State Agricultural Biotechnology Centre (SABC), College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia
| | - Xiaoping Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhehao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Taihe Xiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ning Han
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongwu Bian
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chengdao Li
- Western Crops Genetic Alliance, Murdoch University, Murdoch, WA, 6150, Australia.
- State Agricultural Biotechnology Centre (SABC), College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia.
- Department of Primary Industry and Regional Development, Government of Western Australia, South Perth, WA, 6155, Australia.
| |
Collapse
|
4
|
Deng M, Chen H, Zhang W, Cahoon EB, Zhou Y, Zhang C. Genetic improvement of tocotrienol content enhances the oxidative stability of canola oil. FRONTIERS IN PLANT SCIENCE 2023; 14:1247781. [PMID: 37790787 PMCID: PMC10543761 DOI: 10.3389/fpls.2023.1247781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/18/2023] [Indexed: 10/05/2023]
Abstract
Background Tocotrienols and tocopherols, which are synthesized in plastids of plant cells with similar functionalities, comprise vitamin E to serve as a potent lipid-soluble antioxidant in plants. The synthesis of tocopherols involves the condensation of homogentisic acid (HGA) and phytyl diphosphate (PDP) under the catalysis of homogentisate phytyltransferase (HPT). Tocotrienol synthesis is initiated by the condensation of HGA and geranylgeranyl diphosphate (GGDP) mediated by homogentisate geranylgeranyl transferase (HGGT). As one of the most important oil crops, canola seed is regarded as an ideal plant to efficiently improve the production of vitamin E tocochromanols through genetic engineering approaches. However, only a modest increase in tocopherol content has been achieved in canola seed to date. Methods In this study, we transformed barley HGGT (HvHGGT) into canola to improve total tocochromanol content in canola seeds. Results and discussion The results showed that the total tocochromanol content in the transgenic canola seeds could be maximally increased by fourfold relative to that in wild-type canola seeds. Notably, no negative impact on important agronomic traits was observed in transgenic canola plants, indicating great application potential of the HvHGGT gene in enhancing tocochromanol content in canola in the future. Moreover, the oil extracted from the transgenic canola seeds exhibited significantly enhanced oxidative stability under high temperature in addition to the increase in total tocochromanol content, demonstrating multiple desirable properties of HvHGGT.
Collapse
Affiliation(s)
- Min Deng
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Chen
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhang
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Yongming Zhou
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyu Zhang
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Konda AR, Gelli M, Pedersen C, Cahoon RE, Zhang C, Obata T, Cahoon EB. Vitamin E biofortification: Maximizing oilseed tocotrienol and total vitamin E tocochromanol production by use of metabolic bypass combinations. Metab Eng 2023; 79:66-77. [PMID: 37429412 DOI: 10.1016/j.ymben.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023]
Abstract
Vitamin E tocochromanols are generated in plants by prenylation of homogentisate using geranylgeranyl diphosphate (GGDP) for tocotrienol biosynthesis and phytyl diphosphate (PDP) for tocopherol biosynthesis. Homogentisate geranylgeranyl transferase (HGGT), which uses GGDP for prenylation, is a proven target for oilseed tocochromanol biofortification that effectively bypasses the chlorophyll-linked pathway that limits PDP for vitamin E biosynthesis. In this report, we explored the feasibility of maximizing tocochromanol production in the oilseed crop camelina (Camelina sativa) by combining seed-specific HGGT expression with increased biosynthesis and/or reduced homogentisate catabolism. Plastid-targeted Escherichia coli TyrA-encoded chorismate mutase/prephenate dehydrogenase and Arabidopsis hydroxyphenylpyruvate dioxygenase (HPPD) cDNA were co-expressed in seeds to bypass feedback-regulated steps and increase flux into homogentisate biosynthesis. Homogentisate catabolism was also suppressed by seed-specific RNAi of the gene for homogentisate oxygenase (HGO), which initiates homogentisate degradation. In the absence of HGGT expression, tocochromanols were increased by ∼2.5-fold with HPPD/TyrA co-expression, and ∼1.4-fold with HGO suppression compared to levels in non-transformed seeds. No further increase in tocochromanols was observed in HPPD/TyrA lines with the addition of HGO RNAi. HGGT expression alone increased tocochromanol concentrations in seeds by ∼four-fold to ≤1400 μg/g seed weight. When combined with HPPD/TyrA co-expression, we obtained an additional three-fold increase in tocochromanol concentrations indicating that homogentisate concentrations limit HGGT's capacity for maximal tocochromanol production. The addition of HGO RNAi further increased tocochromanol concentrations to 5000 μg/g seed weight, an unprecedented tocochromanol concentration in an engineered oilseed. Metabolomic data obtained from engineered seeds provide insights into phenotypic changes associated with "extreme" tocochromanol production.
Collapse
Affiliation(s)
- Anji Reddy Konda
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588 USA; USA
| | - Malleswari Gelli
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Connor Pedersen
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588 USA; USA
| | - Rebecca E Cahoon
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588 USA; USA
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Toshihiro Obata
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588 USA; USA
| | - Edgar B Cahoon
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588 USA; USA.
| |
Collapse
|
6
|
Rodrigues JS, Bourgade B, Galle KR, Lindberg P. Mapping competitive pathways to terpenoid biosynthesis in Synechocystis sp. PCC 6803 using an antisense RNA synthetic tool. Microb Cell Fact 2023; 22:35. [PMID: 36823631 PMCID: PMC9951418 DOI: 10.1186/s12934-023-02040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Synechocystis sp. PCC 6803 utilizes pyruvate and glyceraldehyde 3-phosphate via the methylerythritol 4-phosphate (MEP) pathway for the biosynthesis of terpenoids. Considering the deep connection of the MEP pathway to the central carbon metabolism, and the low carbon partitioning towards terpenoid biosynthesis, significant changes in the metabolic network are required to increase cyanobacterial production of terpenoids. RESULTS We used the Hfq-MicC antisense RNA regulatory tool, under control of the nickel-inducible PnrsB promoter, to target 12 different genes involved in terpenoid biosynthesis, central carbon metabolism, amino acid biosynthesis and ATP production, and evaluated the changes in the performance of an isoprene-producing cyanobacterial strain. Six candidate targets showed a positive effect on isoprene production: three genes involved in terpenoid biosynthesis (crtE, chlP and thiG), two involved in amino acid biosynthesis (ilvG and ccmA) and one involved in sugar catabolism (gpi). The same strategy was applied to interfere with different parts of the terpenoid biosynthetic pathway in a bisabolene-producing strain. Increased bisabolene production was observed not only when interfering with chlorophyll a biosynthesis, but also with carotenogenesis. CONCLUSIONS We demonstrated that the Hfq-MicC synthetic tool can be used to evaluate the effects of gene knockdown on heterologous terpenoid production, despite the need for further optimization of the technique. Possible targets for future engineering of Synechocystis aiming at improved terpenoid microbial production were identified.
Collapse
Affiliation(s)
- João S. Rodrigues
- grid.8993.b0000 0004 1936 9457Department of Chemistry – Ångström, Uppsala University, Uppsala, Sweden
| | - Barbara Bourgade
- grid.8993.b0000 0004 1936 9457Department of Chemistry – Ångström, Uppsala University, Uppsala, Sweden
| | - Karen R. Galle
- grid.8993.b0000 0004 1936 9457Department of Chemistry – Ångström, Uppsala University, Uppsala, Sweden ,grid.5808.50000 0001 1503 7226Faculty of Sciences, University of Porto, Porto, Portugal
| | - Pia Lindberg
- Department of Chemistry - Ångström, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Niu Y, Zhang Q, Wang J, Li Y, Wang X, Bao Y. Vitamin E synthesis and response in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:994058. [PMID: 36186013 PMCID: PMC9515888 DOI: 10.3389/fpls.2022.994058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Vitamin E, also known as tocochromanol, is a lipid-soluble antioxidant that can only be produced by photosynthetic organisms in nature. Vitamin E is not only essential in human diets, but also required for plant environment adaptions. To synthesize vitamin E, specific prenyl groups needs to be incorporated with homogentisate as the first step of reaction. After decades of studies, an almost complete roadmap has been revealed for tocochromanol biosynthesis pathway. However, chlorophyll-derived prenyl precursors for synthesizing tocochromanols are still a mystery. In recent years, by employing forward genetic screening and genome-wide-association approaches, significant achievements were acquired in studying vitamin E. In this review, by summarizing the recent progresses in vitamin E, we provide to date the most updated whole view of vitamin E biosynthesis pathway. Also, we discussed about the role of vitamin E in plants stress response and its potential as signaling molecules.
Collapse
Affiliation(s)
- Yue Niu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaojiao Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjie Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Bao
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
de Kok NAW, Driessen AJM. The catalytic and structural basis of archaeal glycerophospholipid biosynthesis. Extremophiles 2022; 26:29. [PMID: 35976526 PMCID: PMC9385802 DOI: 10.1007/s00792-022-01277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022]
Abstract
Archaeal glycerophospholipids are the main constituents of the cytoplasmic membrane in the archaeal domain of life and fundamentally differ in chemical composition compared to bacterial phospholipids. They consist of isoprenyl chains ether-bonded to glycerol-1-phosphate. In contrast, bacterial glycerophospholipids are composed of fatty acyl chains ester-bonded to glycerol-3-phosphate. This largely domain-distinguishing feature has been termed the “lipid-divide”. The chemical composition of archaeal membranes contributes to the ability of archaea to survive and thrive in extreme environments. However, ether-bonded glycerophospholipids are not only limited to extremophiles and found also in mesophilic archaea. Resolving the structural basis of glycerophospholipid biosynthesis is a key objective to provide insights in the early evolution of membrane formation and to deepen our understanding of the molecular basis of extremophilicity. Many of the glycerophospholipid enzymes are either integral membrane proteins or membrane-associated, and hence are intrinsically difficult to study structurally. However, in recent years, the crystal structures of several key enzymes have been solved, while unresolved enzymatic steps in the archaeal glycerophospholipid biosynthetic pathway have been clarified providing further insights in the lipid-divide and the evolution of early life.
Collapse
Affiliation(s)
- Niels A W de Kok
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
9
|
Sidibé A, Charles MT, Lucier JF, Xu Y, Beaulieu C. Preharvest UV-C Hormesis Induces Key Genes Associated With Homeostasis, Growth and Defense in Lettuce Inoculated With Xanthomonas campestris pv. vitians. FRONTIERS IN PLANT SCIENCE 2022; 12:793989. [PMID: 35111177 PMCID: PMC8801786 DOI: 10.3389/fpls.2021.793989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Preharvest application of hormetic doses of ultraviolet-C (UV-C) generates beneficial effects in plants. In this study, within 1 week, four UV-C treatments of 0.4 kJ/m2 were applied to 3-week-old lettuce seedlings. The leaves were inoculated with a virulent strain of Xanthomonas campestris pv. vitians (Xcv) 48 h after the last UV-C application. The extent of the disease was tracked over time and a transcriptomic analysis was performed on lettuce leaf samples. Samples of lettuce leaves, from both control and treated groups, were taken at two different times corresponding to T2, 48 h after the last UV-C treatment and T3, 24 h after inoculation (i.e., 72 h after the last UV-C treatment). A significant decrease in disease severity between the UV-C treated lettuce and the control was observed on days 4, 8, and 14 after pathogen inoculation. Data from the transcriptomic study revealed, that in response to the effect of UV-C alone and/or UV-C + Xcv, a total of 3828 genes were differentially regulated with fold change (|log2-FC|) > 1.5 and false discovery rate (FDR) < 0.05. Among these, of the 2270 genes of known function 1556 were upregulated and 714 were downregulated. A total of 10 candidate genes were verified by qPCR and were generally consistent with the transcriptomic results. The differentially expressed genes observed in lettuce under the conditions of the present study were associated with 14 different biological processes in the plant. These genes are involved in a series of metabolic pathways associated with the ability of lettuce treated with hormetic doses of UV-C to resume normal growth and to defend themselves against potential stressors. The results indicate that the hormetic dose of UV-C applied preharvest on lettuce in this study, can be considered as an eustress that does not interfere with the ability of the treated plants to carry on a set of key physiological processes namely: homeostasis, growth and defense.
Collapse
Affiliation(s)
- Amadou Sidibé
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Marie Thérèse Charles
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | | | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou, China
| | - Carole Beaulieu
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
10
|
Rey F, Zacarias L, Rodrigo MJ. Regulation of Tocopherol Biosynthesis During Fruit Maturation of Different Citrus Species. FRONTIERS IN PLANT SCIENCE 2021; 12:743993. [PMID: 34691122 PMCID: PMC8526796 DOI: 10.3389/fpls.2021.743993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/17/2021] [Indexed: 05/04/2023]
Abstract
Tocopherols are plant-derived isoprenoids with vitamin E activity, which are involved in diverse physiological processes in plants. Although their biosynthesis has been extensively investigated in model plants, their synthesis in important fruit crops as Citrus has scarcely been studied. Therefore, the aim of this work was to initiate a physiological and molecular characterization of tocopherol synthesis and accumulation in Citrus fruits during maturation. For that purpose, we selected fruit of the four main commercial species: grapefruit (Citrus paradisi), lemon (Citrus limon), sweet orange (Citrus sinensis), and mandarin (Citrus clementina), and analyzed tocopherol content and the expression profile of 14 genes involved in tocopherol synthesis during fruit maturation in both the flavedo and pulp. The selected genes covered the pathways supplying the tocopherol precursors homogentisate (HGA) (TAT1 and HPPD) and phytyl pyrophosphate (PPP) (VTE5, VTE6, DXS1 and 2, GGPPS1 and 6, and GGDR) and the tocopherol-core pathway (VTE2, VTE3a, VTE3b, VTE1, and VTE4). Tocopherols accumulated mainly as α- and γ-tocopherol, and α-tocopherol was the predominant form in both tissues. Moreover, differences were detected between tissues, among maturation stages and genotypes. Contents were higher in the flavedo than in the pulp during maturation, and while they increased in the flavedo they decreased or were maintained in the pulp. Among genotypes, mature fruit of lemon accumulated the highest tocopherol content in both the flavedo and the pulp, whereas mandarin fruit accumulated the lowest concentrations, and grapefruit and orange had intermediate levels. Higher concentrations in the flavedo were associated with a higher expression of all the genes evaluated, and different genes are suitable candidates to explain the temporal changes in each tissue: (1) in the flavedo, the increase in tocopherols was concomitant with the up-regulation of TAT1 and VTE4, involved in the supply of HGA and the shift of γ- into α-tocopherol, respectively; and (2) in the pulp, changes paralleled the expression of VTE6, DXS2, and GGDR, which regulate PPP availability. Also, certain genes (i.e., VTE6, DXS2, and GGDR) were co-regulated and shared a similar pattern during maturation in both tissues, suggesting they are developmentally modulated.
Collapse
Affiliation(s)
| | | | - María Jesús Rodrigo
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
11
|
Kausar H, Ambrin G, Okla MK, Alamri SA, Soufan WH, Ibrahim EI, Abdel-Maksoud MA, Ahmad A. FRET-Based Genetically Encoded Nanosensor for Real-Time Monitoring of the Flux of α-Tocopherol in Living Cells. ACS OMEGA 2021; 6:9020-9027. [PMID: 33842772 PMCID: PMC8028167 DOI: 10.1021/acsomega.1c00041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/12/2021] [Indexed: 05/31/2023]
Abstract
Vitamin E plays an exemplary role in living organisms. α-Tocopherol is the most superior and active form of naturally occurring vitamin E that meets the requirements of human beings as it possesses the α-tocopherol transfer protein (α-TTP). α-Tocopherol deficiency can lead to severe anemia, certain cancers, several neurodegenerative and cardiovascular diseases, and most importantly male infertility. As a result of the depletion of its natural sources, researchers have tried to employ metabolic engineering to enhance α-tocopherol production to meet the human consumption demand. However, the metabolic engineering approach relies on the metabolic flux of a metabolite in its biosynthetic pathway. Analysis of the metabolic flux of a metabolite needs a method that can monitor the α-tocopherol level in living cells. This study was undertaken to construct a FRET (fluorescence resonance energy transfer)-based nanosensor for monitoring the α-tocopherol flux in prokaryotic and eukaryotic living cells. The human α-TTP was sandwiched between a pair of FRET fluorophores to construct the nanosensor, which was denoted as FLIP-α (the fluorescence indicator for α-tocopherol). FLIP-α showed excellence in monitoring the α-tocopherol flux with high specificity. The sensor was examined for its pH stability for physiological applications, where it shows no pH hindrance to its activity. The calculated affinity of this nanosensor was 100 μM. It monitored the real-time flux of α-tocopherol in bacterial and yeast cells, proving its biocompatibility in monitoring the α-tocopherol dynamics in living cells. Being noninvasive, FLIP-α provides high temporal and spatial resolutions, which holds an indispensable significance in bioimaging metabolic pathways that are highly compartmentalized.
Collapse
Affiliation(s)
- Habiba Kausar
- Department
of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Ghazala Ambrin
- Department
of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad K. Okla
- Department
of Botany, College of Science, King Saud
University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Saud A. Alamri
- Department
of Botany, College of Science, King Saud
University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Walid H. Soufan
- Department
of Plant Production, Faculty of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Kingdom
of Saudi Arabia
| | - Eid I. Ibrahim
- Department
of Plant Production, Faculty of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Kingdom
of Saudi Arabia
| | - Mostafa A. Abdel-Maksoud
- Department
of Zoology, Faculty of Science, King Saud
University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Altaf Ahmad
- Department
of Botany, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
12
|
Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci Rep 2021; 40:222317. [PMID: 32149336 PMCID: PMC7133116 DOI: 10.1042/bsr20193325] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Cyanobacteria are key organisms in the global ecosystem, useful models for studying metabolic and physiological processes conserved in photosynthetic organisms, and potential renewable platforms for production of chemicals. Characterizing cyanobacterial metabolism and physiology is key to understanding their role in the environment and unlocking their potential for biotechnology applications. Many aspects of cyanobacterial biology differ from heterotrophic bacteria. For example, most cyanobacteria incorporate a series of internal thylakoid membranes where both oxygenic photosynthesis and respiration occur, while CO2 fixation takes place in specialized compartments termed carboxysomes. In this review, we provide a comprehensive summary of our knowledge on cyanobacterial physiology and the pathways in Synechocystis sp. PCC 6803 (Synechocystis) involved in biosynthesis of sugar-based metabolites, amino acids, nucleotides, lipids, cofactors, vitamins, isoprenoids, pigments and cell wall components, in addition to the proteins involved in metabolite transport. While some pathways are conserved between model cyanobacteria, such as Synechocystis, and model heterotrophic bacteria like Escherichia coli, many enzymes and/or pathways involved in the biosynthesis of key metabolites in cyanobacteria have not been completely characterized. These include pathways required for biosynthesis of chorismate and membrane lipids, nucleotides, several amino acids, vitamins and cofactors, and isoprenoids such as plastoquinone, carotenoids, and tocopherols. Moreover, our understanding of photorespiration, lipopolysaccharide assembly and transport, and degradation of lipids, sucrose, most vitamins and amino acids, and haem, is incomplete. We discuss tools that may aid our understanding of cyanobacterial metabolism, notably CyanoSource, a barcoded library of targeted Synechocystis mutants, which will significantly accelerate characterization of individual proteins.
Collapse
|
13
|
Hoecker N, Hennecke Y, Schrott S, Marino G, Schmidt SB, Leister D, Schneider A. Gene Replacement in Arabidopsis Reveals Manganese Transport as an Ancient Feature of Human, Plant and Cyanobacterial UPF0016 Proteins. FRONTIERS IN PLANT SCIENCE 2021; 12:697848. [PMID: 34194462 PMCID: PMC8236900 DOI: 10.3389/fpls.2021.697848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/20/2021] [Indexed: 05/08/2023]
Abstract
The protein family 0016 (UPF0016) is conserved through evolution, and the few members characterized share a function in Mn2+ transport. So far, little is known about the history of these proteins in Eukaryotes. In Arabidopsis thaliana five such proteins, comprising four different subcellular localizations including chloroplasts, have been described, whereas non-photosynthetic Eukaryotes have only one. We used a phylogenetic approach to classify the eukaryotic proteins into two subgroups and performed gene-replacement studies to investigate UPF0016 genes of various origins. Replaceability can be scored readily in the Arabidopsis UPF0016 transporter mutant pam71, which exhibits a functional deficiency in photosystem II. The N-terminal region of the Arabidopsis PAM71 was used to direct selected proteins to chloroplast membranes. Transgenic pam71 lines overexpressing the closest plant homolog (CMT1), human TMEM165 or cyanobacterial MNX successfully restored photosystem II efficiency, manganese binding to photosystem II complexes and consequently plant growth rate and biomass production. Thus AtCMT1, HsTMEM165, and SynMNX can operate in the thylakoid membrane and substitute for PAM71 in a non-native environment, indicating that the manganese transport function of UPF0016 proteins is an ancient feature of the family. We propose that the two chloroplast-localized UPF0016 proteins, CMT1 and PAM71, in plants originated from the cyanobacterial endosymbiont that gave rise to the organelle.
Collapse
Affiliation(s)
- Natalie Hoecker
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Yvonne Hennecke
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Simon Schrott
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Giada Marino
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Massenspektrometrie von Biomolekülen an der LMU (MSBioLMU), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Sidsel Birkelund Schmidt
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Dario Leister
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Anja Schneider
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
- *Correspondence: Anja Schneider,
| |
Collapse
|
14
|
Mahalingam R, Sallam AH, Steffenson BJ, Fiedler JD, Walling JG. Genome-wide association analysis of natural variation in seed tocochromanols of barley. THE PLANT GENOME 2020; 13:e20039. [PMID: 33217201 DOI: 10.1002/tpg2.20039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Tocochromanols (tocols for short), commonly called Vitamin E, are lipid-soluble plant antioxidants vital for regulating lipid peroxidation in chloroplasts and seeds. Barley (Hordeum vulgare L.) seeds contain all eight different isoforms of tocols; however, the extent of natural variation in their composition and their underlying genetic basis is not known. Tocol levels in barley seeds were quantified in diverse H. vulgare panels comprising 297 wild lines from a diversity panel and 160 cultivated spring-type accessions from the mini-core panel representing the genetic diversity of the USDA barley germplasm collection. Significant differences were observed in the concentration of tocols between the two panels. To identify the genes associated with tocols, genome-wide association analysis was conducted with single nucleotide polymorphisms (SNPs) from Illumina arrays for the mini-core panel and genotyping-by-sequencing for the wild barley panel. Forty unique SNPs in the wild barley and 27 SNPs in the mini-core panel were significantly associated with various tocols. Marker-trait associations (MTAs) were identified on chromosomes 1, 6, and 7 for key genes in the tocol biosynthesis pathway, which have also been reported in other studies. Several novel MTAs were identified on chromosomes 2, 3, 4 and 5 and were found to be in proximity to genes involved in the generation of precursor metabolites required for tocol biosynthesis. This study provides a valuable resource for barley breeding programs targeting specific isoforms of seed tocols and for investigating the physiological roles of these metabolites in seed longevity, dormancy, and germination.
Collapse
Affiliation(s)
| | - Ahmad H Sallam
- Department of Plant Pathology, Univ. of Minnesota, St. Paul, MN, 55108, USA
| | - Brian J Steffenson
- Department of Plant Pathology, Univ. of Minnesota, St. Paul, MN, 55108, USA
| | - Jason D Fiedler
- USDA-ARS, Cereal Crops Research Unit, 1616 Albrecht Blvd, Fargo, ND, 58102, USA
| | - Jason G Walling
- USDA-ARS, Cereal Crops Research Unit, 502 Walnut Street, Madison, WI, 53726, USA
| |
Collapse
|
15
|
Zeng Z, Han N, Liu C, Buerte B, Zhou C, Chen J, Wang M, Zhang Y, Tang Y, Zhu M, Wang J, Yang Y, Bian H. Functional dissection of HGGT and HPT in barley vitamin E biosynthesis via CRISPR/Cas9-enabled genome editing. ANNALS OF BOTANY 2020; 126:929-942. [PMID: 32575125 PMCID: PMC7539355 DOI: 10.1093/aob/mcaa115] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/18/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Vitamin E (tocochromanol) is a lipid-soluble antioxidant and an essential nutrient for human health. Among cereal crops, barley (Hordeum vulgare) contains a high level of vitamin E, which includes both tocopherols and tocotrienols. Although the vitamin E biosynthetic pathway has been characterized in dicots, such as Arabidopsis, which only accumulate tocopherols, knowledge regarding vitamin E biosynthesis in monocots is limited because of the lack of functional mutants. This study aimed to obtain gene knockout mutants to elucidate the genetic control of vitamin E composition in barley. METHODS Targeted knockout mutations of HvHPT and HvHGGT in barley were created with CRISPR/Cas9-enabled genome editing. High-performance liquid chromatography (HPLC) was performed to analyse the content of tocochromanol isomers in transgene-free homozygous Hvhpt and Hvhggt mutants. KEY RESULTS Mutagenesis efficiency among T0 regenerated plantlets was 50-65 % as a result of two simultaneously expressed guide RNAs targeting each gene; most of the mutations were stably inherited by the next generation. The transgene-free homozygous mutants of Hvhpt and Hvhggt exhibited decreased grain size and weight, and the HvHGGT mutation led to a shrunken phenotype and significantly lower total starch content in grains. HPLC analysis revealed that targeted mutation of HvHPT significantly reduced the content of both tocopherols and tocotrienols, whereas mutations in HvHGGT completely blocked tocotrienol biosynthesis in barley grains. Transient overexpression of an HvHPT homologue in tobacco leaves significantly increased the production of γ- and δ-tocopherols, which may partly explain why targeted mutation of HvHPT in barley grains did not eliminate tocopherol production. CONCLUSIONS Our results functionally validated that HvHGGT is the only committed gene for the production of tocotrienols, whereas HvHPT is partly responsible for tocopherol biosynthesis in barley.
Collapse
Affiliation(s)
- Zhanghui Zeng
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ning Han
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Cuicui Liu
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - B Buerte
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chenlu Zhou
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jianshu Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Mengyao Wang
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yuhong Zhang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Yawei Tang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Muyuan Zhu
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Junhui Wang
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yinong Yang
- Department of Plant Pathology and Environment Microbiology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Hongwu Bian
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
- For correspondence. E-mail
| |
Collapse
|
16
|
de Bruijn WJC, Levisson M, Beekwilder J, van Berkel WJH, Vincken JP. Plant Aromatic Prenyltransferases: Tools for Microbial Cell Factories. Trends Biotechnol 2020; 38:917-934. [PMID: 32299631 DOI: 10.1016/j.tibtech.2020.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 01/09/2023]
Abstract
In plants, prenylation of aromatic compounds, such as (iso)flavonoids and stilbenoids, by membrane-bound prenyltransferases (PTs), is an essential step in the biosynthesis of many bioactive compounds. Prenylated aromatic compounds have various health-beneficial properties that are interesting for industrial applications, but their exploitation is limited due to their low abundance in nature. Harnessing plant aromatic PTs for prenylation in microbial cell factories may be a sustainable and economically viable alternative. Limitations in prenylated aromatic compound production have been identified, including availability of prenyl donor substrate. In this review, we summarize the current knowledge about plant aromatic PTs and discuss promising strategies towards the optimized production of prenylated aromatic compounds by microbial cell factories.
Collapse
Affiliation(s)
- Wouter J C de Bruijn
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, Netherlands
| | - Mark Levisson
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, Netherlands
| | - Jules Beekwilder
- Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, Netherlands
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, Netherlands.
| |
Collapse
|
17
|
Luo T, Xia W, Gong S, Mason AS, Li Z, Liu R, Dou Y, Tang W, Fan H, Zhang C, Xiao Y. Identifying Vitamin E Biosynthesis Genes in Elaeis guineensis by Genome-Wide Association Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:678-685. [PMID: 31858793 DOI: 10.1021/acs.jafc.9b03832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Elaeis guineensis is a tropical oil crop and has the highest oil yield per unit area. Palm oil has high palmitic acid content and is also rich in vitamins, including vitamin E. We conducted genome-wide association studies in a diversity panel of 161 E. guineensis accessions to identify single-nucleotide polymorphisms (SNPs) linked with vitamin E and validated candidate genes in these marker-associated intervals. Based on the SNPs reported in our previous research, 47 SNP markers were detected to be significantly associated with the variation of tocopherol and tocotrienol content at a cutoff P value of 6.3 × 10-7. A total of 656 candidate genes in the flanking regions of the 47 SNPs were identified, followed by pathway enrichment analysis. Of these candidate genes, EgHGGT (homogentisate geranylgeranyl transferase) involved in the biosynthesis of tocotrienols had a higher expression level in the mesocarp compared to other tissues. Expression of the EgHGGT gene was positively correlated with the variation in α-tocotrienol content. Induced overexpression of the gene in Arabidopsis caused a significant increase in vitamin E content and production of α-tocotrienols compared to wild Arabidopsis.
Collapse
Affiliation(s)
- Tingting Luo
- National Research Center of Rapeseed Engineering and Technology, College of Plant Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Wei Xia
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops , Hainan University , Haikou 570228 , P.R China
| | - Shufang Gong
- Coconut Research Institute , Chinese Academy of Tropical Agricultural Sciences , Wenchang 571339 , P.R. China
| | - Annaliese S Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition , Justus Liebig University Giessen , Heinrich-Buff-Ring 26-32 , Giessen 35392i , Germany
| | - Zhiying Li
- Coconut Research Institute , Chinese Academy of Tropical Agricultural Sciences , Wenchang 571339 , P.R. China
- Hainan Key Laboratory for Biosafe Monitoring and Molecular Breeding in Off-Season Reproduction Region , Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences , Haikou 571101 , China
| | - Rui Liu
- Coconut Research Institute , Chinese Academy of Tropical Agricultural Sciences , Wenchang 571339 , P.R. China
| | - Yajing Dou
- Coconut Research Institute , Chinese Academy of Tropical Agricultural Sciences , Wenchang 571339 , P.R. China
| | - Wenqi Tang
- Coconut Research Institute , Chinese Academy of Tropical Agricultural Sciences , Wenchang 571339 , P.R. China
| | - Haikuo Fan
- Coconut Research Institute , Chinese Academy of Tropical Agricultural Sciences , Wenchang 571339 , P.R. China
| | - Chunyu Zhang
- National Research Center of Rapeseed Engineering and Technology, College of Plant Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Yong Xiao
- Coconut Research Institute , Chinese Academy of Tropical Agricultural Sciences , Wenchang 571339 , P.R. China
- Hainan Key Laboratory for Biosafe Monitoring and Molecular Breeding in Off-Season Reproduction Region , Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences , Haikou 571101 , China
| |
Collapse
|
18
|
Ali E, Hassan Z, Irfan M, Hussain S, Rehman HU, Shah JM, Shahzad AN, Ali M, Alkahtani S, Abdel-Daim MM, Bukhari SAH, Ali S. Indigenous Tocopherol Improves Tolerance of Oilseed Rape to Cadmium Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:547133. [PMID: 33193479 PMCID: PMC7644955 DOI: 10.3389/fpls.2020.547133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/17/2020] [Indexed: 05/20/2023]
Abstract
Two oilseed rape genotypes (Jiu-Er-13XI and Zheyou-50), differing in seed oil content, were subjected to cadmium (Cd) stress in hydroponic experiment. Genotypic differences were observed in terms of tolerance to Cd exposure. Cd treatment negatively affected both genotypes, but the effects were more devastating in Jiu-Er-13XI (low seed oil content) than in Zheyou-50 (high seed oil content). Jiu-Er-13XI accumulated more reactive oxygen species (ROS), which destroyed chloroplast structure and decreased photosynthetic pigments, than Zheyou-50. Total fatty acids, especially 18:2 and 18:3, severely decreased as suggested by increase in MDA content. Roots and shoots of Jiu-Er-13XI plants accumulated more Cd content, while less amount of tocopherol (Toc) was observed under Cd stress, than Zheyou-50. Conversely, Zheyou-50 was less affected by Cd stress than its counterpart. It accumulated comparatively less amount of Cd in roots and shoots, along with reduced accumulation of malondialdehyde (MDA) and ROS under Cd stress, than Jiu-Er-13XI. Further, the level of Toc, especially α-Tocopherol, was much higher in Zheyou-50 than in Jiu-Er-13XI, which was also supported by high expression of Toc biosynthesis genes in Zheyou-50 during early hours. Toc not only restricted the absorption of Cd by roots and its translocation to shoot but also scavenged the ROS generated during oxidative stresses. The low level of MDA shows that polyunsaturated fatty acids in chloroplast membranes remained intact. In the present study the tolerance of Zheyou-50 to Cd stress, over Jiu-Er-13XI, is attributed to the activities of Toc. This study shows that plants with high seed oil content are tolerant to Cd stress due to high production of Toc.
Collapse
Affiliation(s)
- Essa Ali
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Zeshan Hassan
- College of Agriculture, Bahauddin Zakariya University, Layyah, Pakistan
| | - Muhammad Irfan
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Shabir Hussain
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Haseeb-ur- Rehman
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | | | | | - Murtaza Ali
- Department of Basic Sciences and Humanities, University of Engineering and Technology, Mardan, Pakistan
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Syed Asad Hussain Bukhari
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
- *Correspondence: Syed Asad Hussain Bukhari,
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Shafaqat Ali,
| |
Collapse
|
19
|
Zhu C, Miller M, Lusskin N, Mahlich Y, Wang Y, Zeng Z, Bromberg Y. Fingerprinting cities: differentiating subway microbiome functionality. Biol Direct 2019; 14:19. [PMID: 31666099 PMCID: PMC6822482 DOI: 10.1186/s13062-019-0252-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 10/02/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Accumulating evidence suggests that the human microbiome impacts individual and public health. City subway systems are human-dense environments, where passengers often exchange microbes. The MetaSUB project participants collected samples from subway surfaces in different cities and performed metagenomic sequencing. Previous studies focused on taxonomic composition of these microbiomes and no explicit functional analysis had been done till now. RESULTS As a part of the 2018 CAMDA challenge, we functionally profiled the available ~ 400 subway metagenomes and built predictor for city origin. In cross-validation, our model reached 81% accuracy when only the top-ranked city assignment was considered and 95% accuracy if the second city was taken into account as well. Notably, this performance was only achievable if the similarity of distribution of cities in the training and testing sets was similar. To assure that our methods are applicable without such biased assumptions we balanced our training data to account for all represented cities equally well. After balancing, the performance of our method was slightly lower (76/94%, respectively, for one or two top ranked cities), but still consistently high. Here we attained an added benefit of independence of training set city representation. In testing, our unbalanced model thus reached (an over-estimated) performance of 90/97%, while our balanced model was at a more reliable 63/90% accuracy. While, by definition of our model, we were not able to predict the microbiome origins previously unseen, our balanced model correctly judged them to be NOT-from-training-cities over 80% of the time. Our function-based outlook on microbiomes also allowed us to note similarities between both regionally close and far-away cities. Curiously, we identified the depletion in mycobacterial functions as a signature of cities in New Zealand, while photosynthesis related functions fingerprinted New York, Porto and Tokyo. CONCLUSIONS We demonstrated the power of our high-speed function annotation method, mi-faser, by analysing ~ 400 shotgun metagenomes in 2 days, with the results recapitulating functional signals of different city subway microbiomes. We also showed the importance of balanced data in avoiding over-estimated performance. Our results revealed similarities between both geographically close (Ofa and Ilorin) and distant (Boston and Porto, Lisbon and New York) city subway microbiomes. The photosynthesis related functional signatures of NYC were previously unseen in taxonomy studies, highlighting the strength of functional analysis.
Collapse
Affiliation(s)
- Chengsheng Zhu
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ, 08873, USA.
| | - Maximilian Miller
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ, 08873, USA
- Computational Biology & Bioinformatics - i12 Informatics, Technical University of Munich (TUM), Boltzmannstrasse 3, 85748, Garching/Munich, Germany
- TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), Technische Universität München, 85748, Garching/Munich, Germany
| | - Nick Lusskin
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ, 08873, USA
| | - Yannick Mahlich
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ, 08873, USA
- Computational Biology & Bioinformatics - i12 Informatics, Technical University of Munich (TUM), Boltzmannstrasse 3, 85748, Garching/Munich, Germany
- TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), Technische Universität München, 85748, Garching/Munich, Germany
- Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 2 a, 85748, Garching, Germany
| | - Yanran Wang
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ, 08873, USA
| | - Zishuo Zeng
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ, 08873, USA
| | - Yana Bromberg
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ, 08873, USA.
- Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 2 a, 85748, Garching, Germany.
| |
Collapse
|
20
|
Rea KA, Casaretto JA, Al-Abdul-Wahid MS, Sukumaran A, Geddes-McAlister J, Rothstein SJ, Akhtar TA. Biosynthesis of cannflavins A and B from Cannabis sativa L. PHYTOCHEMISTRY 2019; 164:162-171. [PMID: 31151063 DOI: 10.1016/j.phytochem.2019.05.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 04/19/2019] [Accepted: 05/10/2019] [Indexed: 05/18/2023]
Abstract
In addition to the psychoactive constituents that are typically associated with Cannabis sativa L., there exist numerous other specialized metabolites in this plant that are believed to contribute to its medicinal versatility. This study focused on two such compounds, known as cannflavin A and cannflavin B. These prenylated flavonoids specifically accumulate in C. sativa and are known to exhibit potent anti-inflammatory activity in various animal cell models. However, almost nothing is known about their biosynthesis. Using a combination of phylogenomic and biochemical approaches, an aromatic prenyltransferase from C. sativa (CsPT3) was identified that catalyzes the regiospecific addition of either geranyl diphosphate (GPP) or dimethylallyl diphosphate (DMAPP) to the methylated flavone, chrysoeriol, to produce cannflavins A and B, respectively. Further evidence is presented for an O-methyltransferase (CsOMT21) encoded within the C. sativa genome that specifically converts the widespread plant flavone known as luteolin to chrysoeriol, both of which accumulate in C. sativa. These results therefore imply the following reaction sequence for cannflavins A and B biosynthesis: luteolin ► chrysoeriol ► cannflavin A and cannflavin B. Taken together, the identification of these two unique enzymes represent a branch point from the general flavonoid pathway in C. sativa and offer a tractable route towards metabolic engineering strategies that are designed to produce these two medicinally relevant Cannabis compounds.
Collapse
Affiliation(s)
- Kevin A Rea
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - José A Casaretto
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | - Arjun Sukumaran
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Steven J Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Tariq A Akhtar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
21
|
Schuy C, Groth J, Ammon A, Eydam J, Baier S, Schweizer G, Hanemann A, Herz M, Voll LM, Sonnewald U. Deciphering the genetic basis for vitamin E accumulation in leaves and grains of different barley accessions. Sci Rep 2019; 9:9470. [PMID: 31263124 PMCID: PMC6602966 DOI: 10.1038/s41598-019-45572-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 06/04/2019] [Indexed: 01/22/2023] Open
Abstract
Tocopherols and tocotrienols, commonly referred to as vitamin E, are essential compounds in food and feed. Due to their lipophilic nature they protect biomembranes by preventing the propagation of lipid-peroxidation especially during oxidative stress. Since their synthesis is restricted to photosynthetic organisms, plant-derived products are the major source of natural vitamin E. In the present study the genetic basis for high vitamin E accumulation in leaves and grains of different barley (Hordeum vulgare L.) accessions was uncovered. A genome wide association study (GWAS) allowed the identification of two genes located on chromosome 7H, homogentisate phytyltransferase (HPT-7H) and homogentisate geranylgeranyltransferase (HGGT) that code for key enzymes controlling the accumulation of tocopherols in leaves and tocotrienols in grains, respectively. Transcript profiling showed a correlation between HPT-7H expression and vitamin E content in leaves. Allele sequencing allowed to decipher the allelic variation of HPT-7H and HGGT genes corresponding to high and low vitamin E contents in the respective tissues. Using the obtained sequence information molecular markers have been developed which can be used to assist smart breeding of high vitamin E barley varieties. This will facilitate the selection of genotypes more tolerant to oxidative stress and producing high-quality grains.
Collapse
Affiliation(s)
- Christian Schuy
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany.
| | - Jennifer Groth
- Institut für Pflanzenbau und Pflanzenzüchtung, Bavarian State Research Center for Agriculture, Am Gereuth 8, D-85354, Freising, Germany
| | - Alexandra Ammon
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | - Julia Eydam
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | - Steffen Baier
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
- Saatzucht Josef Breun GmbH & Co. KG, Amselweg 1, D-91074, Herzogenaurach, Germany
| | - Günther Schweizer
- Institut für Pflanzenbau und Pflanzenzüchtung, Bavarian State Research Center for Agriculture, Am Gereuth 8, D-85354, Freising, Germany
| | - Anja Hanemann
- Saatzucht Josef Breun GmbH & Co. KG, Amselweg 1, D-91074, Herzogenaurach, Germany
| | - Markus Herz
- Institut für Pflanzenbau und Pflanzenzüchtung, Bavarian State Research Center for Agriculture, Am Gereuth 8, D-85354, Freising, Germany
| | - Lars M Voll
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
- Division of Plant Physiology, Department Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043, Marburg, Germany
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| |
Collapse
|
22
|
Kusano H, Li H, Minami H, Kato Y, Tabata H, Yazaki K. Evolutionary Developments in Plant Specialized Metabolism, Exemplified by Two Transferase Families. FRONTIERS IN PLANT SCIENCE 2019; 10:794. [PMID: 31293605 PMCID: PMC6603238 DOI: 10.3389/fpls.2019.00794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/31/2019] [Indexed: 05/23/2023]
Abstract
Plant specialized metabolism emerged from the land colonization by ancient plants, becoming diversified along with plant evolution. To date, more than 1 million metabolites have been predicted to exist in the plant kingdom, and their metabolic processes have been revealed on the molecular level. Previous studies have reported that rates of evolution are greater for genes involved in plant specialized metabolism than in primary metabolism. This perspective introduces topics on the enigmatic molecular evolution of some plant specialized metabolic processes. Two transferase families, BAHD acyltransferases and aromatic prenyltransferases, which are involved in the biosynthesis of paclitaxel and meroterpenes, respectively, have shown apparent expansion. The latter family has been shown to beinvolved in the biosynthesis of a variety of aromatic substances, including prenylated coumarins in citrus plants and shikonin in Lithospermum erythrorhizon. These genes have evolved in the development of each special subfamily within the plant lineage. The broadness of substrate specificity and the exon-intron structure of their genes may provide hints to explain the evolutionary process underlying chemodiversity in plants.
Collapse
Affiliation(s)
- Hiroaki Kusano
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Hao Li
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Hiroshi Minami
- Life Science Center, Hokkaido Mitsui Chemicals, Sunagawa, Japan
| | - Yoshihiro Kato
- Life Science Center, Hokkaido Mitsui Chemicals, Sunagawa, Japan
| | - Homare Tabata
- Life Science Center, Hokkaido Mitsui Chemicals, Sunagawa, Japan
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
Bencke-Malato M, De Souza AP, Ribeiro-Alves M, Schmitz JF, Buckeridge MS, Alves-Ferreira M. Short-term responses of soybean roots to individual and combinatorial effects of elevated [CO 2] and water deficit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:283-296. [PMID: 30824006 DOI: 10.1016/j.plantsci.2018.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/14/2018] [Accepted: 12/18/2018] [Indexed: 05/15/2023]
Abstract
Climate change increasingly threatens plant growth and productivity. Soybean (Glycine max) is one of the most important crops in the world. Although its responses to increased atmospheric carbon dioxide concentration ([CO2]) have been previously studied, root molecular responses to elevated [CO2] (E[CO2]) or the combination/interaction of E[CO2] and water deficit remain unexamined. In this study, we evaluated the individual and combinatory effects of E[CO2] and water deficit on the physiology and root molecular responses in soybean. Plants growing under E[CO2] exhibited increased photosynthesis that resulted in a higher biomass, plant height, and leaf area. E[CO2] decreased the transcripts levels of genes involved in iron uptake and transport, antioxidant activity, secondary metabolism and defense, and stress responses in roots. When plants grown under E[CO2] are treated with instantaneous water deficit, E[CO2] reverted the expression of water deficit-induced genes related to stress, defense, transport and nutrient deficiency. Furthermore, the interaction of both treatments uniquely affected the expression of genes. Both physiological and transcriptomic analyses demonstrated that E[CO2] may mitigate the negative effects of water deficit on the soybean roots. In addition, the identification of genes that are modulated by the interaction of E[CO2] and water deficit suggests an emergent response that is triggered only under this specific condition.
Collapse
Affiliation(s)
- Marta Bencke-Malato
- Departamento de Genética, Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biologia, s/n Prédio do CCS, 2° andar-sala 93, Rio de Janeiro, RJ, 219410-970, Brazil.
| | - Amanda Pereira De Souza
- Departamento de Botânica, Universidade de São Paulo (USP), Instituto de Biociências, Rua do Matão, 277, sala 122, Cidade Universitária - Butantã, São Paulo, SP, 05508-090, Brazil.
| | - Marcelo Ribeiro-Alves
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz -(FIOCRUZ) Av. Brasil, 4365-Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil.
| | - Jacqueline Flores Schmitz
- Departamento de Genética, Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biologia, s/n Prédio do CCS, 2° andar-sala 93, Rio de Janeiro, RJ, 219410-970, Brazil.
| | - Marcos Silveira Buckeridge
- Departamento de Botânica, Universidade de São Paulo (USP), Instituto de Biociências, Rua do Matão, 277, sala 122, Cidade Universitária - Butantã, São Paulo, SP, 05508-090, Brazil.
| | - Marcio Alves-Ferreira
- Departamento de Genética, Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biologia, s/n Prédio do CCS, 2° andar-sala 93, Rio de Janeiro, RJ, 219410-970, Brazil.
| |
Collapse
|
24
|
Lou H, Ding M, Wu J, Zhang F, Chen W, Yang Y, Suo J, Yu W, Xu C, Song L. Full-Length Transcriptome Analysis of the Genes Involved in Tocopherol Biosynthesis in Torreya grandis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1877-1888. [PMID: 30735036 DOI: 10.1021/acs.jafc.8b06138] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The seeds of Torreya grandis (Cephalotaxaceae) are rich in tocopherols, which are essential components of the human diet as a result of their function in scavenging reactive oxygen and free radicals. Different T. grandis cultivars (10 cultivars selected in this study were researched, and their information is shown in Table S1 of the Supporting Information) vary enormously in their tocopherol contents (0.28-11.98 mg/100 g). However, little is known about the molecular basis and regulatory mechanisms of tocopherol biosynthesis in T. grandis kernels. Here, we applied single-molecule real-time (SMRT) sequencing to T. grandis (X08 cultivar) for the first time and obtained a total of 97 211 full-length transcripts. We proposed the biosynthetic pathway of tocopherol and identified eight full-length transcripts encoding enzymes potentially involved in tocopherol biosynthesis in T. grandis. The results of the correlation analysis between the tocopherol content and gene expression level in the 10 selected cultivars and different kernel developmental stages of the X08 cultivar suggested that homogentisate phytyltransferase coding gene ( TgVTE2b) and γ-tocopherol methyltransferase coding gene ( TgVTE4) may be key players in tocopherol accumulation in the kernels of T. grandis. Subcellular localization assays showed that both TgVTE2b and TgVTE4 were localized to the chloroplast. We also identified candidate regulatory genes similar to WRI1 and DGAT1 in Arabidopsis that may be involved in the regulation of tocopherol biosynthesis. Our findings provide valuable genetic information for T. grandis using full-length transcriptomic analysis, elucidating the candidate genes and key regulatory genes involved in tocopherol biosynthesis. This information will be critical for further molecular-assisted screening and breeding of T. grandis genotypes with high tocopherol contents.
Collapse
|
25
|
Kempinski C, Chappell J. Engineering triterpene metabolism in the oilseed of Arabidopsis thaliana. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:386-396. [PMID: 29979486 PMCID: PMC6335079 DOI: 10.1111/pbi.12984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/21/2018] [Accepted: 06/27/2018] [Indexed: 05/13/2023]
Abstract
Squalene and botryococcene are linear, hydrocarbon triterpenes that have industrial and medicinal values. While natural sources for these compounds exist, there is a pressing need for robust, renewable production platforms. Oilseeds are an excellent target for heterologous production because of their roles as natural storage repositories and their capacity to produce precursors from photosynthetically-derived carbon. We generated transgenic Arabidopsis thaliana plants using a variety of engineering strategies (subcellular targeting and gene stacking) to assess the potential for oilseeds to produce these two compounds. Constructs used seed-specific promoters and evaluated expression of a triterpene synthase alone and in conjunction with a farnesyl diphosphate synthase (FPS) plus 1-deoxyxylulose 5-phosphate synthase (DXS). Constructs directing biosynthesis to the cytosol to harness isoprenoid precursors from the mevalonic acid (MVA) pathway were compared to those directing biosynthesis to the plastid compartment diverting precursors from the methylerythritol phosphate (MEP) pathway. On average, the highest accumulation for both compounds was achieved by targeting the triterpene synthase, FPS and DXS to the plastid (526.84 μg/g seed for botryococcene and 227.30 μg/g seed for squalene). Interestingly, a higher level accumulation of botryococcene (a non-native compound) was observed when the biosynthetic enzymes were targeted to the cytosol (>1000 μg/g seed in one line), but not squalene (natively produced in the cytosol). Not only do these results indicate the potential of engineering triterpene accumulation in oilseeds, but they also uncover some the unique regulatory mechanisms controlling triterpene metabolism in different cellular compartments of seeds.
Collapse
Affiliation(s)
- Chase Kempinski
- Plant Biology ProgramUniversity of KentuckyLexingtonKYUSA
- Department of Pharmaceutical SciencesUniversity of KentuckyLexingtonKYUSA
| | - Joe Chappell
- Plant Biology ProgramUniversity of KentuckyLexingtonKYUSA
- Department of Pharmaceutical SciencesUniversity of KentuckyLexingtonKYUSA
| |
Collapse
|
26
|
Sathish S, Preethy KS, Venkatesh R, Sathishkumar R. Rapid enhancement of α-tocopherol content in Nicotiana benthamiana by transient expression of Arabidopsis thaliana Tocopherol cyclase and Homogentisate phytyl transferase genes. 3 Biotech 2018; 8:485. [PMID: 30498659 DOI: 10.1007/s13205-018-1496-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022] Open
Abstract
Agrobacterium-mediated transient gene expression have become a method of choice over stable plant genetic transformation. Tocopherols are a family of vitamin E compounds, which are categorized along with tocotrienols occurring naturally in vegetable oils, nuts and leafy green vegetables. This is the first report involving AtTC and AtHPT transient expression in Nicotiana benthamiana and this system can be used efficiently for large scale production of vitamin E. Agroinfiltration studies were carried out in N.benthamiana for the expression of Arabidopsis thaliana (At) genes encoding homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC) individually and in combination (HPT + TC). The transgene presence was analyzed by reverse transcription PCR, which showed the presence of both the vitamin E biosynthetic pathway genes. The gene expression analysis was carried out by (reverse transcription quantitative real-time polymerase chain reaction) RT-qPCR and α-tocopherol content was quantified using high performance liquid chromatography (HPLC). The relative gene expression analysis by RT-qPCR confirmed an increased expression pattern where TC + HPT combination recorded the highest of 231 fold, followed by TC gene with 186 fold, whereas the HPT gene recorded 178 fold. The α-tocopherol content in leaves expressing HPT, TC, and HPT + TC was increased by 4.2, 5.9 and 11.3 fold, respectively, as compared to the control. These results indicate that the transient expression of HPT and TC genes has enhanced the vitamin E levels and stable expression of both A. thaliana genes could be an efficient strategy to enhance vitamin E biosynthesis in agricultural crop breeding.
Collapse
Affiliation(s)
- Sundararajan Sathish
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046 India
| | - Kuppuraj Sree Preethy
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046 India
| | - Rajendran Venkatesh
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046 India
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046 India
| |
Collapse
|
27
|
Gantait S, Mondal S. Transgenic approaches for genetic improvement in groundnut ( Arachis hypogaea L.) against major biotic and abiotic stress factors. J Genet Eng Biotechnol 2018; 16:537-544. [PMID: 30733771 PMCID: PMC6354002 DOI: 10.1016/j.jgeb.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/17/2018] [Accepted: 08/29/2018] [Indexed: 01/11/2023]
Abstract
Cultivated groundnut (Arachis hypogaea L.) is considered as one of the primary oilseed crops and a major fodder for cattle industry in most of the developing countries, owing to its rich source of protein. It is due to its geocarpic nature of growth that the overall yield performance of groundnut is hindered by several biotic and abiotic stress factors. Multidimensional attempts were undertaken to combat these factors by developing superior groundnut varieties, modified with integral mechanism of tolerance/resistance; however this approach proved to be futile, owing to inferior pod and kernel quality. As a superior alternative, biotechnological intervention like transformation of foreign genes, either directly (biolistic) or via Agrobacterium, significantly aided in the development of advanced groundnut genotypes equipped with integral resistance against stresses and enhanced yield attributing traits. Several genes triggered by biotic and abiotic stresses, were detected and some of them were cloned and transformed as major parts of transgenic programmes. Application of modern molecular biological techniques, in designing biotic and abiotic stress tolerant/resistant groundnut varieties that exhibited mechanisms of resistance, relied on the expression of specific genes associated to particular stress. The genetically transformed stress tolerant groundnut varieties possess the potential to be employed as donor parents in traditional breeding programmes for developing varieties that are resilient to fungal, bacterial, and viral diseases, as well as to draught and salinity. The present review emphasizes on the retrospect and prospect of genetic transformation tools, implemented for the enhancement of groundnut varieties against key biotic and abiotic stress factors.
Collapse
Affiliation(s)
- Saikat Gantait
- All India Coordinated Research Project on Groundnut, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal 741235, India
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252, India
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra, India
| |
Collapse
|
28
|
Siles L, Alegre L, González-Solís A, Cahoon EB, Munné-Bosch S. Transcriptional Regulation of Vitamin E Biosynthesis during Germination of Dwarf Fan Palm Seeds. PLANT & CELL PHYSIOLOGY 2018; 59:2490-2501. [PMID: 30137562 DOI: 10.1093/pcp/pcy170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/11/2018] [Indexed: 06/08/2023]
Abstract
Vitamin E, a potent antioxidant either presents in the form of tocopherols and/or tocotrienols depending on the plant species, tissue and developmental stage, plays a major role in protecting lipids from oxidation in seeds. Unlike tocopherols, which have a more universal distribution, the occurrence of tocotrienols is limited primarily to monocot seeds. Dwarf fan palm (Chamaerops humilis var. humilis) seeds accumulate tocotrienols in quiescent and dormant seeds, while tocopherols are de novo synthesized during germination. Here, we aimed to elucidate whether tocopherol biosynthesis is regulated at the transcriptional level during germination in this species. We identified and quantified the expression levels of five genes involved in vitamin E biosynthesis, including TYROSINE AMINOTRANSFERASE (ChTAT), HOMOGENTISATE PHYTYLTRANSFERASE (ChHPT), HOMOGENTISATE GERANYLGERANYL TRANSFERASE (ChHGGT), TOCOPHEROL CYCLASE (ChTC) and TOCOPHEROL γ-METHYLTRANSFERASE (Chγ-TMT). Furthermore, we evaluated to what extent variations in the endogenous contents of hormones and hydrogen peroxide (H2O2) correlated with transcriptional regulation. Results showed an increase of ChTAT and ChHPT levels during seed germination, which correlated with an increase of jasmonic acid (JA), gibberellin4 (GA4), and H2O2 contents, while ChHGGT and Chγ-TMT expression levels decreased, thus clearly indicating vitamin E biosynthesis is diverted to tocopherols rather than to tocotrienols. Exogenous application of jasmonic acid increased tocopherol, but not tocotrienol content, thus confirming its regulatory role in vitamin E biosynthesis during seed germination. It is concluded that the biosynthesis of vitamin E is regulated at the transcriptional level during germination in dwarf fan palm seeds, with ChHPT playing a key role in the diversion of the vitamin E pathway towards tocopherols instead of tocotrienols.
Collapse
Affiliation(s)
- Laura Siles
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Leonor Alegre
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Ariadna González-Solís
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Hunter CT, Saunders JW, Magallanes-Lundback M, Christensen SA, Willett D, Stinard PS, Li QB, Lee K, DellaPenna D, Koch KE. Maize w3 disrupts homogentisate solanesyl transferase (ZmHst) and reveals a plastoquinone-9 independent path for phytoene desaturation and tocopherol accumulation in kernels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:799-813. [PMID: 29315977 DOI: 10.1111/tpj.13821] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Maize white seedling 3 (w3) has been used to study carotenoid deficiency for almost 100 years, although the molecular basis of the mutation has remained unknown. Here we show that the w3 phenotype is caused by disruption of the maize gene for homogentisate solanesyl transferase (HST), which catalyzes the first and committed step in plastoquinone-9 (PQ-9) biosynthesis in the plastid. The resulting PQ-9 deficiency prohibits photosynthetic electron transfer and eliminates PQ-9 as an oxidant in the enzymatic desaturation of phytoene during carotenoid synthesis. As a result, light-grown w3 seedlings are albino, deficient in colored carotenoids and accumulate high levels of phytoene. However, despite the absence of PQ-9 for phytoene desaturation, dark-grown w3 seedlings can produce abscisic acid (ABA) and homozygous w3 kernels accumulate sufficient carotenoids to generate ABA needed for seed maturation. The presence of ABA and low levels of carotenoids in w3 nulls indicates that phytoene desaturase is able to use an alternate oxidant cofactor, albeit less efficiently than PQ-9. The observation that tocopherols and tocotrienols are modestly affected in w3 embryos and unaffected in w3 endosperm indicates that, unlike leaves, grain tissues deficient in PQ-9 are not subject to severe photo-oxidative stress. In addition to identifying the molecular basis for the maize w3 mutant, we: (1) show that low levels of phytoene desaturation can occur in w3 seedlings in the absence of PQ-9; and (2) demonstrate that PQ-9 and carotenoids are not required for vitamin E accumulation.
Collapse
Affiliation(s)
- Charles T Hunter
- USDA-ARS, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Dr, Gainesville, FL 32608, USA
| | - Jonathan W Saunders
- University of Florida, Horticultural Sciences, 2550 Hull Rd, Gainesville, FL 32611, USA
| | - Maria Magallanes-Lundback
- Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824, USA
| | - Shawn A Christensen
- USDA-ARS, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Dr, Gainesville, FL 32608, USA
| | - Denis Willett
- USDA-ARS, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Dr, Gainesville, FL 32608, USA
| | - Philip S Stinard
- USDA-ARS, Maize Genetics Stock Center, 1102 S. Goodwin Ave, Urbana, IL 61801, USA
| | - Qin-Bao Li
- USDA-ARS, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Dr, Gainesville, FL 32608, USA
| | - Kwanghee Lee
- University of Connecticut, Plant Science and Landscape Architecture, 1376 Storrs Rd, Storrs, CT 06269, USA
| | - Dean DellaPenna
- Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824, USA
| | - Karen E Koch
- University of Florida, Horticultural Sciences, 2550 Hull Rd, Gainesville, FL 32611, USA
| |
Collapse
|
30
|
Kimura E, Abe T, Murata K, Kimura T, Otoki Y, Yoshida T, Miyazawa T, Nakagawa K. Identification of OsGGR2, a second geranylgeranyl reductase involved in α-tocopherol synthesis in rice. Sci Rep 2018; 8:1870. [PMID: 29382838 PMCID: PMC5789843 DOI: 10.1038/s41598-018-19527-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022] Open
Abstract
Tocopherol (Toc) and tocotrienol (T3) are abundant in rice bran. Geranylgeranyl reductase (GGR) is an essential enzyme for Toc production that catalyzes the reduction of geranylgeranyl pyrophosphate and geranylgeranyl-chlorophyll. However, we found that a rice mutant line with inactivated Os02g0744900 (OsGGR1/LYL1/OsChl P) gene produces Toc, suggesting that rice plants may carry another enzyme with GGR activity. Using an RNA-mediated interference technique, we demonstrated that the Os01g0265000 ("OsGGR2") gene product has GGR activity. This result supports the existence of two GGR genes (OsGGR1 and OsGGR2) in rice, in contrast to Arabidopsis thaliana (thale cress) and cyanobacterium Synechocystis that each have only one GGR gene. We also produced rice callus with inactivated OsGGR1 and OsGGR2 that produced T3 but not Toc. Such rice callus could be used as a resource for production of pure T3 for nutraceutical applications.
Collapse
Affiliation(s)
- Eiichi Kimura
- National Agricultural Research Center for Tohoku Region, NARO, Morioka, Iwate, 020-0198, Japan
| | - Takumi Abe
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980 - 0845, Japan
| | - Kazumasa Murata
- Agricultural Research Institute, Toyama Prefectural Agricultural, Forestry and Fisheries Research Center, Toyama, Toyama, 939-8153, Japan
| | - Toshiyuki Kimura
- Division of Food Function Research, Food Research Institute, NARO, Tsukuba, Ibaraki, 305-8642, Japan
| | - Yurika Otoki
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980 - 0845, Japan
| | - Taiji Yoshida
- National Agricultural Research Center for Tohoku Region, NARO, Morioka, Iwate, 020-0198, Japan
| | - Teruo Miyazawa
- Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980 - 0845, Japan.
| |
Collapse
|
31
|
Mène-Saffrané L. Vitamin E Biosynthesis and Its Regulation in Plants. Antioxidants (Basel) 2017; 7:E2. [PMID: 29295607 PMCID: PMC5789312 DOI: 10.3390/antiox7010002] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022] Open
Abstract
Vitamin E is one of the 13 vitamins that are essential to animals that do not produce them. To date, six natural organic compounds belonging to the chemical family of tocochromanols-four tocopherols and two tocotrienols-have been demonstrated as exhibiting vitamin E activity in animals. Edible plant-derived products, notably seed oils, are the main sources of vitamin E in the human diet. Although this vitamin is readily available, independent nutritional surveys have shown that human populations do not consume enough vitamin E, and suffer from mild to severe deficiency. Tocochromanols are mostly produced by plants, algae, and some cyanobacteria. Tocochromanol metabolism has been mainly studied in higher plants that produce tocopherols, tocotrienols, plastochromanol-8, and tocomonoenols. In contrast to the tocochromanol biosynthetic pathways that are well characterized, our understanding of the physiological and molecular mechanisms regulating tocochromanol biosynthesis is in its infancy. Although it is known that tocochromanol biosynthesis is strongly conditioned by the availability in homogentisate and polyprenyl pyrophosphate, its polar and lipophilic biosynthetic precursors, respectively, the mechanisms regulating their biosyntheses are barely known. This review summarizes our current knowledge of tocochromanol biosynthesis in plants, and highlights future challenges regarding the understanding of its regulation.
Collapse
Affiliation(s)
- Laurent Mène-Saffrané
- Department of Biology, University of Fribourg, Chemin du Musée, 10, 1700 Fribourg, Switzerland.
| |
Collapse
|
32
|
T V, Bansal N, Kumari K, Prashat G R, Sreevathsa R, Krishnan V, Kumari S, Dahuja A, Lal SK, Sachdev A, Praveen S. Comparative Analysis of Tocopherol Biosynthesis Genes and Its Transcriptional Regulation in Soybean Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11054-11064. [PMID: 29121768 DOI: 10.1021/acs.jafc.7b03448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tocopherols composed of four isoforms (α, β, γ, and δ) and its biosynthesis comprises of three pathways: methylerythritol 4-phosphate (MEP), shikimate (SK) and tocopherol-core pathways regulated by 25 enzymes. To understand pathway regulatory mechanism at transcriptional level, gene expression profile of tocopherol-biosynthesis genes in two soybean genotypes was carried out, the results showed significantly differential expression of 5 genes: 1-deoxy-d-xylulose-5-P-reductoisomerase (DXR), geranyl geranyl reductase (GGDR) from MEP, arogenate dehydrogenase (TyrA), tyrosine aminotransferase (TAT) from SK and γ-tocopherol methyl transferase 3 (γ-TMT3) from tocopherol-core pathways. Expression data were further analyzed for total tocopherol (T-toc) and α-tocopherol (α-toc) content by coregulation network and gene clustering approaches, the results showed least and strong association of γ-TMT3/tocopherol cyclase (TC) and DXR/DXS, respectively, with gene clusters of tocopherol biosynthesis suggested the specific role of γ-TMT3/TC in determining tocopherol accumulation and intricacy of DXR/DXS genes in coordinating precursor pathways toward tocopherol biosynthesis in soybean seeds. Thus, the present study provides insight into the major role of these genes regulating the tocopherol synthesis in soybean seeds.
Collapse
Affiliation(s)
- Vinutha T
- Division of Biochemistry, IARI , New Delhi 110012, India
| | - Navita Bansal
- Division of Biochemistry, IARI , New Delhi 110012, India
| | | | | | - Rohini Sreevathsa
- National Research Centre on Plant Biotechnology , New Delhi 110012, India
| | - Veda Krishnan
- Division of Biochemistry, IARI , New Delhi 110012, India
| | - Sweta Kumari
- Division of Biochemistry, IARI , New Delhi 110012, India
| | - Anil Dahuja
- Division of Biochemistry, IARI , New Delhi 110012, India
| | - S K Lal
- Division of Genetics, IARI , New Delhi 110012, India
| | | | - Shelly Praveen
- Division of Biochemistry, IARI , New Delhi 110012, India
| |
Collapse
|
33
|
Tewari K, Dahuja A, Sachdev A, Kumar V, Ali K, Kumar A, Kumari S. Molecular cloning, heterologous expression and functional characterization of gamma tocopherol methyl transferase (γ-TMT) from Glycine max. Protein Expr Purif 2017; 140:81-89. [PMID: 28811265 DOI: 10.1016/j.pep.2017.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/09/2017] [Accepted: 08/10/2017] [Indexed: 11/30/2022]
Abstract
γ-Tocopherol methyltransferase (γ-TMT) (EC 2.1.1.95) is the last enzyme in the tocopherol biosynthetic pathway and it catalyzes the conversion of γ-tocopherol into α-tocopherol, the nutritionally significant and most bioactive form of vitamin E. Although the γ-TMT gene has been successfully overexpressed in many crops to enhance their α-tocopherol content but still only few attempts have been made to uncover its structural, functional and regulation aspects at protein level. In this study, we have cloned the complete 909bp coding sequence of Glycine max γ-TMT (Gm γ-TMT) gene that encodes the corresponding protein comprising of 302 amino acid residues. The deduced Gm γ-TMT protein showed 74-87% sequence identity with other characterized plant γ-TMTs. Gm γ-TMT belongs to Class I Methyl Transferases that have a Rossmann-like fold which consists of a seven-stranded β sheet joined by α helices. Heterologous expression of Gm γ-TMT in pET29a expression vector under the control of bacteriophage T7 promoter produced a 37.9 kDa recombinant Gm γ-TMT protein with histidine hexamer tag at its C-terminus. The expression of recombinant Gm γ-TMT protein was confirmed by western blotting using anti-His antibody. The recombinant protein was purified by Ni2+-NTA column chromatography. The purified protein showed SAM dependent methyltransferase activity. The α-tocopherol produced in the in-vitro reaction catalyzed by the purified enzyme was detected using reverse phase HPLC. This study has laid the foundation to unveil the biochemical understanding of Gm γ-TMT enzyme which can be further explored by studying its kinetic behaviour, substrate specificity and its interaction with other biomolecules.
Collapse
Affiliation(s)
- Kalpana Tewari
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India; Basic Sciences Division, Indian Institute of Pulses Research, Kanpur, U.P., India.
| | - Anil Dahuja
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | - Archana Sachdev
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | - Vaibhav Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India; Basic Sciences Division, Indian Institute of Pulses Research, Kanpur, U.P., India
| | - Kishwar Ali
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | - Amresh Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | - Sweta Kumari
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
34
|
Fritsche S, Wang X, Jung C. Recent Advances in our Understanding of Tocopherol Biosynthesis in Plants: An Overview of Key Genes, Functions, and Breeding of Vitamin E Improved Crops. Antioxidants (Basel) 2017; 6:E99. [PMID: 29194404 PMCID: PMC5745509 DOI: 10.3390/antiox6040099] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 12/17/2022] Open
Abstract
Tocopherols, together with tocotrienols and plastochromanols belong to a group of lipophilic compounds also called tocochromanols or vitamin E. Considered to be one of the most powerful antioxidants, tocochromanols are solely synthesized by photosynthetic organisms including plants, algae, and cyanobacteria and, therefore, are an essential component in the human diet. Tocochromanols potent antioxidative properties are due to their ability to interact with polyunsaturated acyl groups and scavenge lipid peroxyl radicals and quench reactive oxygen species (ROS), thus protecting fatty acids from lipid peroxidation. In the plant model species Arabidopsis thaliana, the required genes for tocopherol biosynthesis and functional roles of tocopherols were elucidated in mutant and transgenic plants. Recent research efforts have led to new outcomes for the vitamin E biosynthetic and related pathways, and new possible alternatives for the biofortification of important crops have been suggested. Here, we review 30 years of research on tocopherols in model and crop species, with emphasis on the improvement of vitamin E content using transgenic approaches and classical breeding. We will discuss future prospects to further improve the nutritional value of our food.
Collapse
Affiliation(s)
- Steffi Fritsche
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany.
| | - Xingxing Wang
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany.
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany.
| |
Collapse
|
35
|
Ndikuryayo F, Moosavi B, Yang WC, Yang GF. 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors: From Chemical Biology to Agrochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8523-8537. [PMID: 28903556 DOI: 10.1021/acs.jafc.7b03851] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The development of new herbicides is receiving considerable attention to control weed biotypes resistant to current herbicides. Consequently, new enzymes are always desired as targets for herbicide discovery. 4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is an enzyme engaged in photosynthetic activity and catalyzes the transformation of 4-hydroxyphenylpyruvic acid (HPPA) into homogentisic acid (HGA). HPPD inhibitors constitute a promising area of discovery and development of innovative herbicides with some advantages, including excellent crop selectivity, low application rates, and broad-spectrum weed control. HPPD inhibitors have been investigated for agrochemical interests, and some of them have already been commercialized as herbicides. In this review, we mainly focus on the chemical biology of HPPD, discovery of new potential inhibitors, and strategies for engineering transgenic crops resistant to current HPPD-inhibiting herbicides. The conclusion raises some relevant gaps for future research directions.
Collapse
Affiliation(s)
- Ferdinand Ndikuryayo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Behrooz Moosavi
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 30071, P. R. China
| |
Collapse
|
36
|
Diepenbrock CH, Kandianis CB, Lipka AE, Magallanes-Lundback M, Vaillancourt B, Góngora-Castillo E, Wallace JG, Cepela J, Mesberg A, Bradbury PJ, Ilut DC, Mateos-Hernandez M, Hamilton J, Owens BF, Tiede T, Buckler ES, Rocheford T, Buell CR, Gore MA, DellaPenna D. Novel Loci Underlie Natural Variation in Vitamin E Levels in Maize Grain. THE PLANT CELL 2017; 29:2374-2392. [PMID: 28970338 PMCID: PMC5774569 DOI: 10.1105/tpc.17.00475] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/23/2017] [Accepted: 09/29/2017] [Indexed: 05/19/2023]
Abstract
Tocopherols, tocotrienols, and plastochromanols (collectively termed tocochromanols) are lipid-soluble antioxidants synthesized by all plants. Their dietary intake, primarily from seed oils, provides vitamin E and other health benefits. Tocochromanol biosynthesis has been dissected in the dicot Arabidopsis thaliana, which has green, photosynthetic seeds, but our understanding of tocochromanol accumulation in major crops, whose seeds are nonphotosynthetic, remains limited. To understand the genetic control of tocochromanols in grain, we conducted a joint linkage and genome-wide association study in the 5000-line U.S. maize (Zea mays) nested association mapping panel. Fifty-two quantitative trait loci for individual and total tocochromanols were identified, and of the 14 resolved to individual genes, six encode novel activities affecting tocochromanols in plants. These include two chlorophyll biosynthetic enzymes that explain the majority of tocopherol variation, which was not predicted given that, like most major cereal crops, maize grain is nonphotosynthetic. This comprehensive assessment of natural variation in vitamin E levels in maize establishes the foundation for improving tocochromanol and vitamin E content in seeds of maize and other major cereal crops.
Collapse
Affiliation(s)
- Christine H Diepenbrock
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Catherine B Kandianis
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Alexander E Lipka
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
| | - Maria Magallanes-Lundback
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Elsa Góngora-Castillo
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Jason G Wallace
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
| | - Jason Cepela
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Alex Mesberg
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Peter J Bradbury
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - Daniel C Ilut
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | | | - John Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Brenda F Owens
- Department of Agronomy, Purdue University, West Lafayette, IN 47907
| | - Tyler Tiede
- Department of Agronomy, Purdue University, West Lafayette, IN 47907
| | - Edward S Buckler
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | | | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Dean DellaPenna
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
37
|
Kim EH, Lee DW, Lee KR, Jung SJ, Jeon JS, Kim HU. Conserved Function of Fibrillin5 in the Plastoquinone-9 Biosynthetic Pathway in Arabidopsis and Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1197. [PMID: 28751900 PMCID: PMC5507956 DOI: 10.3389/fpls.2017.01197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/23/2017] [Indexed: 06/02/2023]
Abstract
Plastoquinone-9 (PQ-9) is essential for plant growth and development. Recently, we found that fibrillin5 (FBN5), a plastid lipid binding protein, is an essential structural component of the PQ-9 biosynthetic pathway in Arabidopsis. To investigate the functional conservation of FBN5 in monocots and eudicots, we identified OsFBN5, the Arabidopsis FBN5 (AtFBN5) ortholog in rice (Oryza sativa). Homozygous Osfbn5-1 and Osfbn5-2 Tos17 insertion null mutants were smaller than wild type (WT) plants when grown on Murashige and Skoog (MS) medium and died quickly when transplanted to soil in a greenhouse. They accumulated significantly less PQ-9 than WT plants, whereas chlorophyll and carotenoid contents were only mildly affected. The reduced PQ-9 content of the mutants was consistent with their lower maximum photosynthetic efficiency, especially under high light. Overexpression of OsFBN5 complemented the seedling lethal phenotype of the Arabidopsis fbn5-1 mutant and restored PQ-9 and PC-8 (plastochromanol-8) to levels comparable to those in WT Arabidopsis plants. Protein interaction experiments in yeast and mesophyll cells confirmed that OsFBN5 interacts with the rice solanesyl diphosphate synthase OsSPS2 and also with Arabidopsis AtSPS1 and AtSPS2. Our data thus indicate that OsFBN5 is the functional equivalent of AtFBN5 and also suggest that the SPSs-FBN5 complex for synthesis of the solanesyl diphosphate tail in PQ-9 is well conserved in Arabidopsis and rice.
Collapse
Affiliation(s)
- Eun-Ha Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development AdministrationJeonju, South Korea
| | - Dae-Woo Lee
- Graduate School of Biotechnology, Kyung Hee UniversityYongin, South Korea
| | - Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development AdministrationJeonju, South Korea
| | - Su-Jin Jung
- Graduate School of Biotechnology, Kyung Hee UniversityYongin, South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology, Kyung Hee UniversityYongin, South Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong UniversitySeoul, South Korea
| |
Collapse
|
38
|
Chen J, Liu C, Shi B, Chai Y, Han N, Zhu M, Bian H. Overexpression of HvHGGT Enhances Tocotrienol Levels and Antioxidant Activity in Barley. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5181-5187. [PMID: 28581741 DOI: 10.1021/acs.jafc.7b00439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Vitamin E is a potent lipid-soluble antioxidant and essential nutrient for human health. Tocotrienols are the major form of vitamin E in seeds of most monocots. It has been known that homogentisate geranylgeranyl transferase (HGGT) catalyzes the committed step of tocotrienol biosynthesis. In the present study, we generated transgenic barley overexpressing HvHGGT under endogenous D-Hordein promoter (proHor). Overexpression of HvHGGT increased seed size and seed weight in transgenic barley. Notably, total tocotrienol content increased by 10-15% in seeds of transgenic lines, due to the increased levels of δ-, β-, and γ-tocotrienol, but not α-tocotrienol. Total tocopherol content decreased by 14-18% in transgenic lines, compared to wild type. The antioxidant activity of seeds was determined by using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), and lipid peroxidation assays. Compared to wild type, radical scavenging activity of seed extracts was enhanced by 17-18% in transgenic lines. Meanwhile, the lipid peroxidation level was decreased by about 20% in transgenic barley seeds. Taken together, overexpression of HvHGGT enhanced the tocotrienol levels and antioxidant capacity in barley seeds.
Collapse
Affiliation(s)
- Jianshu Chen
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University , Hangzhou, China , 310058
- College of Pharmaceutical Science, Zhejiang University of Technology , Hangzhou, China , 310014
| | - Cuicui Liu
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University , Hangzhou, China , 310058
| | - Bo Shi
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University , Hangzhou, China , 310058
| | - Yuqiong Chai
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University , Hangzhou, China , 310058
| | - Ning Han
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University , Hangzhou, China , 310058
| | - Muyuan Zhu
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University , Hangzhou, China , 310058
| | - Hongwu Bian
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University , Hangzhou, China , 310058
| |
Collapse
|
39
|
Mène-Saffrané L, Pellaud S. Current strategies for vitamin E biofortification of crops. Curr Opin Biotechnol 2017; 44:189-197. [DOI: 10.1016/j.copbio.2017.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 01/23/2023]
|
40
|
Carrera CS, Seguin P. Factors Affecting Tocopherol Concentrations in Soybean Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9465-9474. [PMID: 27797523 DOI: 10.1021/acs.jafc.6b03902] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Soybean seeds contain several health-beneficial compounds, including tocopherols, which are used by the nutraceutical and functional food industries. Soybean tocopherol concentrations are, however, highly variable. Large differences observed in tocopherol concentrations among soybean genotypes together with the relatively simple biosynthetic pathway involving few genes support the feasibility of selecting for high-tocopherol soybean. Tocopherol concentrations are also highly influenced by environmental factors and field management. Temperature during seed filling and soil moisture appear to be the main factors affecting tocopherol concentrations; other factors such as soil fertility and solar radiation also affect concentrations and composition. Field management decisions including seeding date, row spacing, irrigation, and fertilization also affect tocopherols. Knowledge of factors affecting soybean tocopherols is essential to develop management strategies that will lead to the production of seeds with consistent target concentrations that will meet the needs of the nutraceutical and functional food industries.
Collapse
Affiliation(s)
- Constanza S Carrera
- Department of Plant Science, McGill University , Macdonald Campus, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
- Instituto de Fisiologı́a y Recursos Genéticos Vegetales (IFRGV), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnologı́a Agropecuaria (INTA) , Camino a 60 Cuadras Km 5 1/2, X5020 ICA Córdoba, Argentina
- Consejo Nacional de Investigaciones Cientı́ficas y Técnicas , Córdoba, Argentina
| | - Philippe Seguin
- Department of Plant Science, McGill University , Macdonald Campus, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
41
|
Sekine D, Murata K, Kimura T, Nakagawa K, Miyazawa T. Identification of a Genetic Factor Required for High γ-Isoform Concentration in Rice Vitamin E. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9368-9373. [PMID: 27960280 DOI: 10.1021/acs.jafc.6b04801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The γ-isoforms of tocopherols (Tc) and tocotrienols (T3) possess high biological activities in comparison to the α-isoforms. The concentrations of Tc and T3 isoforms in rice (Oriza sativa) was cultivar-dependent. Using chromosome segment substitution lines (CSSLs) and near isogenic lines (NILs) of indica cultivar "Kasalath" in a japonica cultivar "Koshihikari" genetic background, the Kasalath genomic segment on chromosome 2 was determined to be responsible for the high γ-isoform concentration: γ-tocopherol methyltransferase (γ-TMT) was identified as a candidate gene. An amino acid substitution in the coding region and several nucleotide polymorphisms, including an insertion of 10 base pairs in the promoter region, were identified. Gene expression analysis revealed that low expression levels of the γ-TMT gene in Kasalath were not associated with the γ-isoform concentration. Genetic variations in the coding region of the γ-TMT gene may play a major role in determining the γ-isoform concentration. This information could be used to breed rice with a high γ-isoform content.
Collapse
Affiliation(s)
- Daisuke Sekine
- Agricultural Experiment Station, Toyama Agricultural Research Center , Toyama, Toyama 939-8153, Japan
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University , Kanazawa, Ishikawa 920-1192, Japan
| | - Kazumasa Murata
- Agricultural Experiment Station, Toyama Agricultural Research Center , Toyama, Toyama 939-8153, Japan
| | - Toshiyuki Kimura
- Food Research Institute, National Agriculture and Food Research Organization (NARO) , Tsukuba, Ibaraki 305-8642, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University , Sendai, Miyagi 981-8555, Japan
| | - Teruo Miyazawa
- Food and Biotechnology Innovation Project, New Industry Creation Science Hatchery Center (NICHe), Tohoku University , Sendai, Miyagi 980-8579, Japan
- Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University , Sendai, Miyagi 981-8555, Japan
| |
Collapse
|
42
|
Yang Y, Ke N, Liu S, Li W. Methods for Structural and Functional Analyses of Intramembrane Prenyltransferases in the UbiA Superfamily. Methods Enzymol 2016; 584:309-347. [PMID: 28065269 DOI: 10.1016/bs.mie.2016.10.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The UbiA superfamily is a group of intramembrane prenyltransferases that generate lipophilic compounds essential in biological membranes. These compounds, which include various quinones, hemes, chlorophylls, and vitamin E, participate in electron transport and function as antioxidants, as well as acting as structural lipids of microbial cell walls and membranes. Prenyltransferases producing these compounds are involved in important physiological processes and human diseases. These UbiA superfamily members differ significantly in their enzymatic activities and substrate selectivities. This chapter describes examples of methods that can be used to group these intramembrane enzymes, analyze their activity, and screen and crystallize homolog proteins for structure determination. Recent structures of two archaeal homologs are compared with structures of soluble prenyltransferases to show distinct mechanisms used by the UbiA superfamily to control enzymatic activity in membranes.
Collapse
Affiliation(s)
- Y Yang
- Washington University School of Medicine, St. Louis, MO, United States
| | - N Ke
- New England Biolabs, Ipswich, MA, United States
| | - S Liu
- Washington University School of Medicine, St. Louis, MO, United States
| | - W Li
- Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
43
|
Stacey MG, Cahoon RE, Nguyen HT, Cui Y, Sato S, Nguyen CT, Phoka N, Clark KM, Liang Y, Forrester J, Batek J, Do PT, Sleper DA, Clemente TE, Cahoon EB, Stacey G. Identification of Homogentisate Dioxygenase as a Target for Vitamin E Biofortification in Oilseeds. PLANT PHYSIOLOGY 2016; 172:1506-1518. [PMID: 27660165 PMCID: PMC5100773 DOI: 10.1104/pp.16.00941] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/17/2016] [Indexed: 05/20/2023]
Abstract
Soybean (Glycine max) is a major plant source of protein and oil and produces important secondary metabolites beneficial for human health. As a tool for gene function discovery and improvement of this important crop, a mutant population was generated using fast neutron irradiation. Visual screening of mutagenized seeds identified a mutant line, designated MO12, which produced brown seeds as opposed to the yellow seeds produced by the unmodified Williams 82 parental cultivar. Using forward genetic methods combined with comparative genome hybridization analysis, we were able to establish that deletion of the GmHGO1 gene is the genetic basis of the brown seeded phenotype exhibited by the MO12 mutant line. GmHGO1 encodes a homogentisate dioxygenase (HGO), which catalyzes the committed enzymatic step in homogentisate catabolism. This report describes to our knowledge the first functional characterization of a plant HGO gene, defects of which are linked to the human genetic disease alkaptonuria. We show that reduced homogentisate catabolism in a soybean HGO mutant is an effective strategy for enhancing the production of lipid-soluble antioxidants such as vitamin E, as well as tolerance to herbicides that target pathways associated with homogentisate metabolism. Furthermore, this work demonstrates the utility of fast neutron mutagenesis in identifying novel genes that contribute to soybean agronomic traits.
Collapse
Affiliation(s)
- Minviluz G Stacey
- Division of Plant Sciences (M.G.S., Y.C., C.T.N., K.M.C., Y.L., J.B., P.T.D., D.A.S., G.S.), Division of Biochemistry (G.S.), and DNA Core Facility (J.F.), University of Missouri, Columbia, Missouri 65211; and
- Department of Biochemistry (R.E.C., N.P., E.B.C.) and Department of Agronomy and Horticulture (H.T.N., S.S., T.E.C.), Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Rebecca E Cahoon
- Division of Plant Sciences (M.G.S., Y.C., C.T.N., K.M.C., Y.L., J.B., P.T.D., D.A.S., G.S.), Division of Biochemistry (G.S.), and DNA Core Facility (J.F.), University of Missouri, Columbia, Missouri 65211; and
- Department of Biochemistry (R.E.C., N.P., E.B.C.) and Department of Agronomy and Horticulture (H.T.N., S.S., T.E.C.), Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Hanh T Nguyen
- Division of Plant Sciences (M.G.S., Y.C., C.T.N., K.M.C., Y.L., J.B., P.T.D., D.A.S., G.S.), Division of Biochemistry (G.S.), and DNA Core Facility (J.F.), University of Missouri, Columbia, Missouri 65211; and
- Department of Biochemistry (R.E.C., N.P., E.B.C.) and Department of Agronomy and Horticulture (H.T.N., S.S., T.E.C.), Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Yaya Cui
- Division of Plant Sciences (M.G.S., Y.C., C.T.N., K.M.C., Y.L., J.B., P.T.D., D.A.S., G.S.), Division of Biochemistry (G.S.), and DNA Core Facility (J.F.), University of Missouri, Columbia, Missouri 65211; and
- Department of Biochemistry (R.E.C., N.P., E.B.C.) and Department of Agronomy and Horticulture (H.T.N., S.S., T.E.C.), Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Shirley Sato
- Division of Plant Sciences (M.G.S., Y.C., C.T.N., K.M.C., Y.L., J.B., P.T.D., D.A.S., G.S.), Division of Biochemistry (G.S.), and DNA Core Facility (J.F.), University of Missouri, Columbia, Missouri 65211; and
- Department of Biochemistry (R.E.C., N.P., E.B.C.) and Department of Agronomy and Horticulture (H.T.N., S.S., T.E.C.), Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Cuong T Nguyen
- Division of Plant Sciences (M.G.S., Y.C., C.T.N., K.M.C., Y.L., J.B., P.T.D., D.A.S., G.S.), Division of Biochemistry (G.S.), and DNA Core Facility (J.F.), University of Missouri, Columbia, Missouri 65211; and
- Department of Biochemistry (R.E.C., N.P., E.B.C.) and Department of Agronomy and Horticulture (H.T.N., S.S., T.E.C.), Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Nongnat Phoka
- Division of Plant Sciences (M.G.S., Y.C., C.T.N., K.M.C., Y.L., J.B., P.T.D., D.A.S., G.S.), Division of Biochemistry (G.S.), and DNA Core Facility (J.F.), University of Missouri, Columbia, Missouri 65211; and
- Department of Biochemistry (R.E.C., N.P., E.B.C.) and Department of Agronomy and Horticulture (H.T.N., S.S., T.E.C.), Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Kerry M Clark
- Division of Plant Sciences (M.G.S., Y.C., C.T.N., K.M.C., Y.L., J.B., P.T.D., D.A.S., G.S.), Division of Biochemistry (G.S.), and DNA Core Facility (J.F.), University of Missouri, Columbia, Missouri 65211; and
- Department of Biochemistry (R.E.C., N.P., E.B.C.) and Department of Agronomy and Horticulture (H.T.N., S.S., T.E.C.), Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Yan Liang
- Division of Plant Sciences (M.G.S., Y.C., C.T.N., K.M.C., Y.L., J.B., P.T.D., D.A.S., G.S.), Division of Biochemistry (G.S.), and DNA Core Facility (J.F.), University of Missouri, Columbia, Missouri 65211; and
- Department of Biochemistry (R.E.C., N.P., E.B.C.) and Department of Agronomy and Horticulture (H.T.N., S.S., T.E.C.), Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Joe Forrester
- Division of Plant Sciences (M.G.S., Y.C., C.T.N., K.M.C., Y.L., J.B., P.T.D., D.A.S., G.S.), Division of Biochemistry (G.S.), and DNA Core Facility (J.F.), University of Missouri, Columbia, Missouri 65211; and
- Department of Biochemistry (R.E.C., N.P., E.B.C.) and Department of Agronomy and Horticulture (H.T.N., S.S., T.E.C.), Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Josef Batek
- Division of Plant Sciences (M.G.S., Y.C., C.T.N., K.M.C., Y.L., J.B., P.T.D., D.A.S., G.S.), Division of Biochemistry (G.S.), and DNA Core Facility (J.F.), University of Missouri, Columbia, Missouri 65211; and
- Department of Biochemistry (R.E.C., N.P., E.B.C.) and Department of Agronomy and Horticulture (H.T.N., S.S., T.E.C.), Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Phat Tien Do
- Division of Plant Sciences (M.G.S., Y.C., C.T.N., K.M.C., Y.L., J.B., P.T.D., D.A.S., G.S.), Division of Biochemistry (G.S.), and DNA Core Facility (J.F.), University of Missouri, Columbia, Missouri 65211; and
- Department of Biochemistry (R.E.C., N.P., E.B.C.) and Department of Agronomy and Horticulture (H.T.N., S.S., T.E.C.), Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - David A Sleper
- Division of Plant Sciences (M.G.S., Y.C., C.T.N., K.M.C., Y.L., J.B., P.T.D., D.A.S., G.S.), Division of Biochemistry (G.S.), and DNA Core Facility (J.F.), University of Missouri, Columbia, Missouri 65211; and
- Department of Biochemistry (R.E.C., N.P., E.B.C.) and Department of Agronomy and Horticulture (H.T.N., S.S., T.E.C.), Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Thomas E Clemente
- Division of Plant Sciences (M.G.S., Y.C., C.T.N., K.M.C., Y.L., J.B., P.T.D., D.A.S., G.S.), Division of Biochemistry (G.S.), and DNA Core Facility (J.F.), University of Missouri, Columbia, Missouri 65211; and
- Department of Biochemistry (R.E.C., N.P., E.B.C.) and Department of Agronomy and Horticulture (H.T.N., S.S., T.E.C.), Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Edgar B Cahoon
- Division of Plant Sciences (M.G.S., Y.C., C.T.N., K.M.C., Y.L., J.B., P.T.D., D.A.S., G.S.), Division of Biochemistry (G.S.), and DNA Core Facility (J.F.), University of Missouri, Columbia, Missouri 65211; and
- Department of Biochemistry (R.E.C., N.P., E.B.C.) and Department of Agronomy and Horticulture (H.T.N., S.S., T.E.C.), Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Gary Stacey
- Division of Plant Sciences (M.G.S., Y.C., C.T.N., K.M.C., Y.L., J.B., P.T.D., D.A.S., G.S.), Division of Biochemistry (G.S.), and DNA Core Facility (J.F.), University of Missouri, Columbia, Missouri 65211; and
- Department of Biochemistry (R.E.C., N.P., E.B.C.) and Department of Agronomy and Horticulture (H.T.N., S.S., T.E.C.), Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| |
Collapse
|
44
|
Kong SL, Abdullah SNA, Ho CL, Amiruddin MD. Molecular cloning, gene expression profiling and in silico sequence analysis of vitamin E biosynthetic genes from the oil palm. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2016.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Tang Y, Fu X, Shen Q, Tang K. Roles of MPBQ-MT in Promoting α/γ-Tocopherol Production and Photosynthesis under High Light in Lettuce. PLoS One 2016; 11:e0148490. [PMID: 26867015 PMCID: PMC4750918 DOI: 10.1371/journal.pone.0148490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 01/19/2016] [Indexed: 11/27/2022] Open
Abstract
2-methyl-6-phytyl-1, 4-benzoquinol methyltransferase (MPBQ-MT) is a vital enzyme catalyzing a key methylation step in both α/γ-tocopherol and plastoquinone biosynthetic pathway. In this study, the gene encoding MPBQ-MT was isolated from lettuce (Lactuca sativa) by rapid amplification of cDNA ends (RACE), named LsMT. Overexpression of LsMT in lettuce brought about a significant increase of α- and γ-tocopherol contents with a reduction of phylloquinone (vitamin K1) content, suggesting a competition for a common substrate phytyl diphosphate (PDP) between the two biosynthetic pathways. Besides, overexpression of LsMT significantly increased plastoquinone (PQ) level. The increase of tocopherol and plastoquinone levels by LsMT overexpression conduced to the improvement of plants' tolerance and photosynthesis under high light stress, by directing excessive light energy toward photosynthetic production rather than toward generation of more photooxidative damage. These findings suggest that the role and function of MPBQ-MT can be further explored for enhancing vitamin E value, strengthening photosynthesis and phototolerance under high light in plants.
Collapse
Affiliation(s)
- Yueli Tang
- Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xueqing Fu
- Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Shen
- Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kexuan Tang
- Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
46
|
Liu M, Lu S. Plastoquinone and Ubiquinone in Plants: Biosynthesis, Physiological Function and Metabolic Engineering. FRONTIERS IN PLANT SCIENCE 2016; 7:1898. [PMID: 28018418 PMCID: PMC5159609 DOI: 10.3389/fpls.2016.01898] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/30/2016] [Indexed: 05/04/2023]
Abstract
Plastoquinone (PQ) and ubiquinone (UQ) are two important prenylquinones, functioning as electron transporters in the electron transport chain of oxygenic photosynthesis and the aerobic respiratory chain, respectively, and play indispensable roles in plant growth and development through participating in the biosynthesis and metabolism of important chemical compounds, acting as antioxidants, being involved in plant response to stress, and regulating gene expression and cell signal transduction. UQ, particularly UQ10, has also been widely used in people's life. It is effective in treating cardiovascular diseases, chronic gingivitis and periodontitis, and shows favorable impact on cancer treatment and human reproductive health. PQ and UQ are made up of an active benzoquinone ring attached to a polyisoprenoid side chain. Biosynthesis of PQ and UQ is very complicated with more than thirty five enzymes involved. Their synthetic pathways can be generally divided into two stages. The first stage leads to the biosynthesis of precursors of benzene quinone ring and prenyl side chain. The benzene quinone ring for UQ is synthesized from tyrosine or phenylalanine, whereas the ring for PQ is derived from tyrosine. The prenyl side chains of PQ and UQ are derived from glyceraldehyde 3-phosphate and pyruvate through the 2-C-methyl-D-erythritol 4-phosphate pathway and/or acetyl-CoA and acetoacetyl-CoA through the mevalonate pathway. The second stage includes the condensation of ring and side chain and subsequent modification. Homogentisate solanesyltransferase, 4-hydroxybenzoate polyprenyl diphosphate transferase and a series of benzene quinone ring modification enzymes are involved in this stage. PQ exists in plants, while UQ widely presents in plants, animals and microbes. Many enzymes and their encoding genes involved in PQ and UQ biosynthesis have been intensively studied recently. Metabolic engineering of UQ10 in plants, such as rice and tobacco, has also been tested. In this review, we summarize and discuss recent research progresses in the biosynthetic pathways of PQ and UQ and enzymes and their encoding genes involved in side chain elongation and in the second stage of PQ and UQ biosynthesis. Physiological functions of PQ and UQ played in plants as well as the practical application and metabolic engineering of PQ and UQ are also included.
Collapse
|
47
|
Chen Z, Gallie DR. Ethylene Regulates Energy-Dependent Non-Photochemical Quenching in Arabidopsis through Repression of the Xanthophyll Cycle. PLoS One 2015; 10:e0144209. [PMID: 26630486 PMCID: PMC4667945 DOI: 10.1371/journal.pone.0144209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/13/2015] [Indexed: 11/20/2022] Open
Abstract
Energy-dependent (qE) non-photochemical quenching (NPQ) thermally dissipates excess absorbed light energy as a protective mechanism to prevent the over reduction of photosystem II and the generation of reactive oxygen species (ROS). The xanthophyll cycle, induced when the level of absorbed light energy exceeds the capacity of photochemistry, contributes to qE. In this work, we show that ethylene regulates the xanthophyll cycle in Arabidopsis. Analysis of eto1-1, exhibiting increased ethylene production, and ctr1-3, exhibiting constitutive ethylene response, revealed defects in NPQ resulting from impaired de-epoxidation of violaxanthin by violaxanthin de-epoxidase (VDE) encoded by NPQ1. Elevated ethylene signaling reduced the level of active VDE through decreased NPQ1 promoter activity and impaired VDE activation resulting from a lower transthylakoid membrane pH gradient. Increasing the concentration of CO2 partially corrected the ethylene-mediated defects in NPQ and photosynthesis, indicating that changes in ethylene signaling affect stromal CO2 solubility. Increasing VDE expression in eto1-1 and ctr1-3 restored light-activated de-epoxidation and qE, reduced superoxide production and reduced photoinhibition. Restoring VDE activity significantly reversed the small growth phenotype of eto1-1 and ctr1-3 without altering ethylene production or ethylene responses. Our results demonstrate that ethylene increases ROS production and photosensitivity in response to high light and the associated reduced plant stature is partially reversed by increasing VDE activity.
Collapse
Affiliation(s)
- Zhong Chen
- Department of Biochemistry, University of California, Riverside, California, United States of America
| | - Daniel R. Gallie
- Department of Biochemistry, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Vom Dorp K, Hölzl G, Plohmann C, Eisenhut M, Abraham M, Weber APM, Hanson AD, Dörmann P. Remobilization of Phytol from Chlorophyll Degradation Is Essential for Tocopherol Synthesis and Growth of Arabidopsis. THE PLANT CELL 2015; 27:2846-59. [PMID: 26452599 PMCID: PMC4682318 DOI: 10.1105/tpc.15.00395] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/08/2015] [Accepted: 09/17/2015] [Indexed: 05/18/2023]
Abstract
Phytol from chlorophyll degradation can be phosphorylated to phytyl-phosphate and phytyl-diphosphate, the substrate for tocopherol (vitamin E) synthesis. A candidate for the phytyl-phosphate kinase from Arabidopsis thaliana (At1g78620) was identified via a phylogeny-based approach. This gene was designated VITAMIN E DEFICIENT6 (VTE6) because the leaves of the Arabidopsis vte6 mutants are tocopherol deficient. The vte6 mutant plants are incapable of photoautotrophic growth. Phytol and phytyl-phosphate accumulate, and the phytyl-diphosphate content is strongly decreased in vte6 leaves. Phytol feeding and enzyme assays with Arabidopsis and recombinant Escherichia coli cells demonstrated that VTE6 has phytyl-P kinase activity. Overexpression of VTE6 resulted in increased phytyl-diphosphate and tocopherol contents in seeds, indicating that VTE6 encodes phytyl-phosphate kinase. The severe growth retardation of vte6 mutants was partially rescued by introducing the phytol kinase mutation vte5. Double mutant plants (vte5 vte6) are tocopherol deficient and contain more chlorophyll, but reduced amounts of phytol and phytyl-phosphate compared with vte6 mutants, suggesting that phytol or phytyl-phosphate are detrimental to plant growth. Therefore, VTE6 represents the missing phytyl-phosphate kinase, linking phytol release from chlorophyll with tocopherol synthesis. Moreover, tocopherol synthesis in leaves depends on phytol derived from chlorophyll, not on de novo synthesis of phytyl-diphosphate from geranylgeranyl-diphosphate.
Collapse
Affiliation(s)
- Katharina Vom Dorp
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany
| | - Georg Hölzl
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany
| | - Christian Plohmann
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS) Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Marion Eisenhut
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS) Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Marion Abraham
- Leibniz Institute for Baltic Sea Research, 18119 Rostock, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS) Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
49
|
Gálvez-Valdivieso G, Cardeñosa R, Pineda M, Aguilar M. Homogentisate phytyltransferase from the unicellular green alga Chlamydomonas reinhardtii. JOURNAL OF PLANT PHYSIOLOGY 2015; 188:80-88. [PMID: 26454640 DOI: 10.1016/j.jplph.2015.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/30/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
Homogentisate phytyltransferase (HPT) (EC 2.5.1.-) catalyzes the first committed step of tocopherol biosynthesis in all photosynthetic organisms. This paper presents the molecular characterization and expression analysis of HPT1 gene, and a study on the accumulation of tocopherols under different environmental conditions in the unicellular green alga Chlamydomonas reinhardtii. The Chlamydomonas HPT1 protein conserves all the prenylphosphate- and divalent cation-binding sites that are found in polyprenyltransferases and all the amino acids that are essential for its catalytic activity. Its hydrophobicity profile confirms that HPT is a membrane-bound protein. Chlamydomonas genomic DNA analysis suggests that HPT is encoded by a single gene, HPT1, whose promoter region contains multiple motifs related to regulation by jasmonate, abscisic acid, low temperature and light, and an ATCTA motif presents in genes involved in tocopherol biosynthesis and some photosynthesis-related genes. Expression analysis revealed that HPT1 is strongly regulated by dark and low-temperature. Under the same treatments, α-tocopherol increased in cultures exposed to darkness or heat, whereas γ-tocopherol did it in low temperature. The regulatory expression pattern of HPT1 and the changes of tocopherol abundance support the idea that different tocopherols play specific functions, and suggest a role for γ-tocopherol in the adaptation to growth under low-temperature.
Collapse
Affiliation(s)
- Gregorio Gálvez-Valdivieso
- Departamento de Botánica, Ecología y Fisiología Vegetal, Instituto Andaluz de Biotecnología and Campus Agroalimentario de Excelencia Internacional ceiA3, Campus de Rabanales, Edif. C-4, 3ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Rosa Cardeñosa
- Departamento de Botánica, Ecología y Fisiología Vegetal, Instituto Andaluz de Biotecnología and Campus Agroalimentario de Excelencia Internacional ceiA3, Campus de Rabanales, Edif. C-4, 3ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Manuel Pineda
- Departamento de Botánica, Ecología y Fisiología Vegetal, Instituto Andaluz de Biotecnología and Campus Agroalimentario de Excelencia Internacional ceiA3, Campus de Rabanales, Edif. C-4, 3ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Miguel Aguilar
- Departamento de Botánica, Ecología y Fisiología Vegetal, Instituto Andaluz de Biotecnología and Campus Agroalimentario de Excelencia Internacional ceiA3, Campus de Rabanales, Edif. C-4, 3ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
50
|
Zhang C, Zhang W, Ren G, Li D, Cahoon RE, Chen M, Zhou Y, Yu B, Cahoon EB. Chlorophyll Synthase under Epigenetic Surveillance Is Critical for Vitamin E Synthesis, and Altered Expression Affects Tocopherol Levels in Arabidopsis. PLANT PHYSIOLOGY 2015; 168:1503-11. [PMID: 26048882 PMCID: PMC4528762 DOI: 10.1104/pp.15.00594] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/04/2015] [Indexed: 05/07/2023]
Abstract
Chlorophyll synthase catalyzes the final step in chlorophyll biosynthesis: the esterification of chlorophyllide with either geranylgeranyl diphosphate or phytyl diphosphate (PDP). Recent studies have pointed to the involvement of chlorophyll-linked reduction of geranylgeranyl by geranylgeranyl reductase as a major pathway for the synthesis of the PDP precursor of tocopherols. This indirect pathway of PDP synthesis suggests a key role of chlorophyll synthase in tocopherol production to generate the geranylgeranyl-chlorophyll substrate for geranylgeranyl reductase. In this study, contributions of chlorophyll synthase to tocopherol formation in Arabidopsis (Arabidopsis thaliana) were explored by disrupting and altering expression of the corresponding gene CHLOROPHYLL SYNTHASE (CHLSYN; At3g51820). Leaves from the homozygous chlysyn1-1 null mutant were nearly devoid of tocopherols, whereas seeds contained only approximately 25% of wild-type tocopherol levels. Leaves of RNA interference lines with partial suppression of CHLSYN displayed marked reductions in chlorophyll but up to a 2-fold increase in tocopherol concentrations. Cauliflower mosaic virus35S-mediated overexpression of CHLSYN unexpectedly caused a cosuppression phenotype at high frequencies accompanied by strongly reduced chlorophyll content and increased tocopherol levels. This phenotype and the associated detection of CHLSYN-derived small interfering RNAs were reversed with CHLSYN overexpression in rna-directed rna polymerase6 (rdr6), which is defective in RNA-dependent RNA polymerase6, a key enzyme in sense transgene-induced small interfering RNA production. CHLSYN overexpression in rdr6 had little effect on chlorophyll content but resulted in up to a 30% reduction in tocopherol levels in leaves. These findings show that altered CHLSYN expression impacts tocopherol levels and also, show a strong epigenetic surveillance of CHLSYN to control chlorophyll and tocopherol synthesis.
Collapse
Affiliation(s)
- Chunyu Zhang
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China (C.Z., W.Z., D.L., Y.Z., E.B.C.);Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture, Wuhan 430070, China (C.Z., W.Z., D.L., Y.Z.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (C.Z., G.R., R.E.C., M.C., B.Y., E.B.C.)
| | - Wei Zhang
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China (C.Z., W.Z., D.L., Y.Z., E.B.C.);Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture, Wuhan 430070, China (C.Z., W.Z., D.L., Y.Z.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (C.Z., G.R., R.E.C., M.C., B.Y., E.B.C.)
| | - Guodong Ren
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China (C.Z., W.Z., D.L., Y.Z., E.B.C.);Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture, Wuhan 430070, China (C.Z., W.Z., D.L., Y.Z.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (C.Z., G.R., R.E.C., M.C., B.Y., E.B.C.)
| | - Delin Li
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China (C.Z., W.Z., D.L., Y.Z., E.B.C.);Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture, Wuhan 430070, China (C.Z., W.Z., D.L., Y.Z.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (C.Z., G.R., R.E.C., M.C., B.Y., E.B.C.)
| | - Rebecca E Cahoon
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China (C.Z., W.Z., D.L., Y.Z., E.B.C.);Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture, Wuhan 430070, China (C.Z., W.Z., D.L., Y.Z.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (C.Z., G.R., R.E.C., M.C., B.Y., E.B.C.)
| | - Ming Chen
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China (C.Z., W.Z., D.L., Y.Z., E.B.C.);Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture, Wuhan 430070, China (C.Z., W.Z., D.L., Y.Z.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (C.Z., G.R., R.E.C., M.C., B.Y., E.B.C.)
| | - Yongming Zhou
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China (C.Z., W.Z., D.L., Y.Z., E.B.C.);Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture, Wuhan 430070, China (C.Z., W.Z., D.L., Y.Z.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (C.Z., G.R., R.E.C., M.C., B.Y., E.B.C.)
| | - Bin Yu
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China (C.Z., W.Z., D.L., Y.Z., E.B.C.);Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture, Wuhan 430070, China (C.Z., W.Z., D.L., Y.Z.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (C.Z., G.R., R.E.C., M.C., B.Y., E.B.C.)
| | - Edgar B Cahoon
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China (C.Z., W.Z., D.L., Y.Z., E.B.C.);Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture, Wuhan 430070, China (C.Z., W.Z., D.L., Y.Z.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (C.Z., G.R., R.E.C., M.C., B.Y., E.B.C.)
| |
Collapse
|