1
|
Lutter F, Brenner W, Krajinski-Barth F, Safavi-Rizi V. Nitric oxide and cytokinin cross-talk and their role in plant hypoxia response. PLANT SIGNALING & BEHAVIOR 2024; 19:2329841. [PMID: 38521996 PMCID: PMC10962617 DOI: 10.1080/15592324.2024.2329841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
Nitric oxide (NO) and cytokinins (CKs) are known for their crucial contributions to plant development, growth, senescence, and stress response. Despite the importance of both signals in stress responses, their interaction remains largely unexplored. The interplay between NO and CKs emerges as particularly significant not only regarding plant growth and development but also in addressing plant stress response, particularly in the context of extreme weather events leading to yield loss. In this review, we summarize NO and CKs metabolism and signaling. Additionally, we emphasize the crosstalk between NO and CKs, underscoring its potential impact on stress response, with a focus on hypoxia tolerance. Finally, we address the most urgent questions that demand answers and offer recommendations for future research endeavors.
Collapse
Affiliation(s)
- Felix Lutter
- Institute of Biology, Department of General and Applied Botany, University of Leipzig, Leipzig, Germany
| | - Wolfram Brenner
- Institute of Biology, Department of General and Applied Botany, University of Leipzig, Leipzig, Germany
| | - Franziska Krajinski-Barth
- Institute of Biology, Department of General and Applied Botany, University of Leipzig, Leipzig, Germany
| | - Vajiheh Safavi-Rizi
- Institute of Biology, Department of General and Applied Botany, University of Leipzig, Leipzig, Germany
- Institute of Biology, Department of Plant physiology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
Li ZA, Fahad M, Li WC, Tariq L, Liu MM, Liu YN, Wang TX. Comparative Analysis of Phytohormone Biosynthesis Genes Responses to Long-Term High Light in Tolerant and Sensitive Wheat Cultivars. PLANTS (BASEL, SWITZERLAND) 2024; 13:2628. [PMID: 39339602 PMCID: PMC11435395 DOI: 10.3390/plants13182628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Phytohormones are vital for developmental processes, from organ initiation to senescence, and are key regulators of growth, development, and photosynthesis. In natural environments, plants often experience high light (HL) intensities coupled with elevated temperatures, which pose significant threats to agricultural production. However, the response of phytohormone-related genes to long-term HL exposure remains unclear. Here, we examined the expression levels of genes involved in the biosynthesis of ten phytohormones, including gibberellins, cytokinins, salicylic acid, jasmonic acid, abscisic acid, brassinosteroids, indole-3-acetic acid, strigolactones, nitric oxide, and ethylene, in two winter wheat cultivars, Xiaoyan 54 (XY54, HL tolerant) and Jing 411 (J411, HL sensitive), when transferred from low light to HL for 2-8 days. Under HL, most genes were markedly inhibited, while a few, such as TaGA2ox, TaAAO3, TaLOG1, and TaPAL2, were induced in both varieties. Interestingly, TaGA2ox2 and TaAAO3 expression positively correlated with sugar content but negatively with chlorophyll content and TaAGP expression. In addition, we observed that both varieties experienced a sharp decline in chlorophyll content and photosynthesis performance after prolonged HL exposure, with J411 showing significantly more sensitivity than XY54. Hierarchical clustering analysis classified the phytohormone genes into the following three groups: Group 1 included six genes highly expressed in J411; Group 2 contained 25 genes drastically suppressed by HL in both varieties; and Group 3 contained three genes highly expressed in XY54. Notably, abscisic acid (ABA), and jasmonic acid (JA) biosynthesis genes and their content were significantly higher, while gibberellins (GA) content was lower in XY54 than J411. Together, these results suggest that the differential expression and content of GA, ABA, and JA play crucial roles in the contrasting responses of tolerant and sensitive wheat cultivars to leaf senescence induced by long-term HL. This study enhances our understanding of the mechanisms underlying HL tolerance in wheat and can guide the development of more resilient wheat varieties.
Collapse
Affiliation(s)
- Zhi-Ang Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Muhammad Fahad
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wan-Chang Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Leeza Tariq
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Miao-Miao Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Ya-Nan Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Tai-Xia Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
3
|
Mughal N, Shoaib N, Chen J, Li Y, He Y, Fu M, Li X, He Y, Guo J, Deng J, Yang W, Liu J. Adaptive roles of cytokinins in enhancing plant resilience and yield against environmental stressors. CHEMOSPHERE 2024; 364:143189. [PMID: 39191348 DOI: 10.1016/j.chemosphere.2024.143189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/03/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
Innovative agricultural strategies are essential for addressing the urgent challenge of food security in light of climate change, population growth, and various environmental stressors. Cytokinins (CKs) play a pivotal role in enhancing plant resilience and productivity. These compounds, which include isoprenoid and aromatic types, are synthesized through pathways involving key enzymes such as isopentenyl transferase and cytokinin oxidase. Under abiotic stress conditions, CKs regulate critical physiological processes by improving photosynthetic efficiency, enhancing antioxidant enzyme activity, and optimizing root architecture. They also reduce the levels of reactive oxygen species and malondialdehyde, resulting in improved plant performance and yield. CKs interact intricately with other phytohormones, including abscisic acid, ethylene, salicylic acid, and jasmonic acid, to modulate stress-responsive pathways. This hormonal cross-talk is vital for finely tuning plant responses to stress. Additionally, CKs influence nutrient uptake and enhance responses to heavy metal stress, thereby bolstering overall plant resilience. The application of CKs helps plants maintain higher chlorophyll levels, boost antioxidant systems, and promote root and shoot growth. The strategic utilization of CKs presents an adaptive approach for developing robust crops capable of withstanding diverse environmental stressors, thus contributing to sustainable agricultural practices and global food security. Ongoing research into the mechanisms of CK action and their interactions with other hormones is essential for maximizing their agricultural potential. This underscores the necessity for continued innovation and research in agricultural practices, in alignment with global goals of sustainable productivity and food security.
Collapse
Affiliation(s)
- Nishbah Mughal
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Noman Shoaib
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jianhua Chen
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Li
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuhong He
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Man Fu
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xingyun Li
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanyuan He
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinya Guo
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Juncai Deng
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wenyu Yang
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiang Liu
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China; College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
4
|
Kudoyarova G. Special Issue "Phytohormones: Important Participators in Plant Growth and Development". Int J Mol Sci 2024; 25:1380. [PMID: 38338660 PMCID: PMC10855094 DOI: 10.3390/ijms25031380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The articles published in the IJMS Special Issue "Phytohormones" are devoted to various aspects of hormonal control of plant growth and development promoting adaptation to normal and stress conditions [...].
Collapse
Affiliation(s)
- Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Pr. Octyabrya, 69, 450054 Ufa, Russia
| |
Collapse
|
5
|
Li L, Zhang X, Ding F, Hou J, Wang J, Luo R, Mao W, Li X, Zhu H, Yang L, Li Y, Hu J. Genome-wide identification of the melon (Cucumis melo L.) response regulator gene family and functional analysis of CmRR6 and CmPRR3 in response to cold stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154160. [PMID: 38147808 DOI: 10.1016/j.jplph.2023.154160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
The response regulator (RR) gene family play crucial roles in cytokinin signal transduction, plant development, and resistance to abiotic stress. However, there are no reports on the identification and functional characterization of RR genes in melon. In this study, a total of 18 CmRRs were identified and classified into type A, type B, and clock PRRs, based on phylogenetic analysis. Most of the CmRRs displayed tissue-specific expression patterns, and some were induced by cold stress according to two RNA-seq datasets. The expression patterns of CmRR2/6/11/15 and CmPRR2/3 under cold treatment were confirmed by qRT-PCR. Subcellular localization assays indicated that CmRR6 and CmPRR3 were primarily localized in the nucleus and chloroplast. Furthermore, when either CmRR6 or CmPRR3 were silenced using tobacco ringspot virus (TRSV), the cold tolerance of the virus-induced gene silencing (VIGS) melon plants were significantly enhanced, as evidenced by measurements of chlorophyll fluorescence, ion leakage, reactive oxygen, proline, and malondialdehyde levels. Additionally, the expression levels of CmCBF1, CmCBF2, and CmCBF3 were significantly increased in CmRR6-silenced and CmPRR3-silenced plants under cold treatment. Our findings suggest that CmRRs contribute to cold stress responses and provide new insights for further pursuing the molecular mechanisms underlying CmRRs-mediated cold tolerance in melon.
Collapse
Affiliation(s)
- Lili Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuyue Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fei Ding
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Juan Hou
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, 450046, China
| | - Jiyu Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Renren Luo
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenwen Mao
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, 450046, China
| | - Xiang Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Pingan Avenue 218, Zhengdong New District, Zhengzhou, 450046, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Pingan Avenue 218, Zhengdong New District, Zhengzhou, 450046, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Pingan Avenue 218, Zhengdong New District, Zhengzhou, 450046, China
| | - Ying Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Jianbin Hu
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, 450046, China.
| |
Collapse
|
6
|
Fgaier S, Aarrouf J, Lopez-Lauri F, Lizzi Y, Poiroux F, Urban L. Effect of high salinity and of priming of non-germinated seeds by UV-C light on photosynthesis of lettuce plants grown in a controlled soilless system. FRONTIERS IN PLANT SCIENCE 2023; 14:1198685. [PMID: 37469782 PMCID: PMC10352585 DOI: 10.3389/fpls.2023.1198685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023]
Abstract
High salinity results in a decrease in plant photosynthesis and crop productivity. The aim of the present study was to evaluate the effect of UV-C priming treatments of lettuce seeds on photosynthesis of plants grown at high salinity. Non-primed and primed seeds were grown in an hydroponic system, with a standard nutrient solution, either supplemented with 100 mM NaCl (high salinity), or not (control). Considering that leaf and root K+ concentrations remained constant and that chlorophyll fluorescence parameters and root growth were not affected negatively in the high salinity treatment, we conclude that the latter was at the origin of a moderate stress only. A substantial decrease in leaf net photosynthetic assimilation (Anet) was however observed as a consequence of stomatal and non-stomatal limitations in the high salinity treatment. This decrease in Anet translated into a decrease in growth parameters; it may be attributed partially to the high salinity-associated increase in leaf concentration in abscisic acid and decrease in stomatal conductance. Priming by UV-C light resulted in an increase in total photosynthetic electron transport rate and Anet in the leaves of plants grown at high salinity. The increase of the latter translated into a moderate increase in growth parameters. It is hypothesized that the positive effect of UV-C priming on Anet and growth of the aerial part of lettuce plants grown at high salinity, is mainly due to its stimulating effect on leaf concentration in salicylic acid. Even though leaf cytokinins' concentration was higher in plants from primed seeds, maintenance of the cytokinins-to-abscisic acid ratio also supports the idea that UV-C priming resulted in protection of plants exposed to high salinity.
Collapse
Affiliation(s)
- Salah Fgaier
- Unité Propre de Recherche Innovante, Equipe de Recherche et d'Innovations Thématiques (ERIT) Plant Science, Interactions and Innovation, Avignon Université, Avignon, France
- Nova Genetic, Zone Anjou Actiparc de Jumelles, Longué-Jumelles, France
| | - Jawad Aarrouf
- Unité Propre de Recherche Innovante, Equipe de Recherche et d'Innovations Thématiques (ERIT) Plant Science, Interactions and Innovation, Avignon Université, Avignon, France
| | - Félicie Lopez-Lauri
- Unité Propre de Recherche Innovante, Equipe de Recherche et d'Innovations Thématiques (ERIT) Plant Science, Interactions and Innovation, Avignon Université, Avignon, France
| | - Yves Lizzi
- Unité Propre de Recherche Innovante, Equipe de Recherche et d'Innovations Thématiques (ERIT) Plant Science, Interactions and Innovation, Avignon Université, Avignon, France
| | - Florine Poiroux
- Nova Genetic, Zone Anjou Actiparc de Jumelles, Longué-Jumelles, France
| | - Laurent Urban
- Unité Propre de Recherche Innovante, Equipe de Recherche et d'Innovations Thématiques (ERIT) Plant Science, Interactions and Innovation, Avignon Université, Avignon, France
| |
Collapse
|
7
|
Sharma N, Nagar S, Thakur M, Suriyakumar P, Kataria S, Shanker A, Landi M, Anand A. Photosystems under high light stress: throwing light on mechanism and adaptation. PHOTOSYNTHETICA 2023; 61:250-263. [PMID: 39650670 PMCID: PMC11515824 DOI: 10.32615/ps.2023.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/15/2023] [Indexed: 12/11/2024]
Abstract
High light stress decreases the photosynthetic rate in plants due to photooxidative damage to photosynthetic apparatus, photoinhibition of PSII, and/or damage to PSI. The dissipation of excess energy by nonphotochemical quenching and degradation of the D1 protein of PSII and its repair cycle help against photooxidative damage. Light stress also activates stress-responsive nuclear genes through the accumulation of phosphonucleotide-3'-phosphoadenosine-5'-phosphate, methylerythritol cyclodiphosphate, and reactive oxygen species which comprise the chloroplast retrograde signaling pathway. Additionally, hormones, such as abscisic acid, cytokinin, brassinosteroids, and gibberellins, play a role in acclimation to light fluctuations. Several alternate electron flow mechanisms, which offset the excess of electrons, include activation of plastid or plastoquinol terminal oxidase, cytochrome b 6/f complex, cyclic electron flow through PSI, Mehler ascorbate peroxidase pathway or water-water cycle, mitochondrial alternative oxidase pathway, and photorespiration. In this review, we provided insights into high light stress-mediated damage to photosynthetic apparatus and strategies to mitigate the damage by decreasing antennae size, enhancing NPQ through the introduction of mutants, expression of algal proteins to improve photosynthetic rates and engineering ATP synthase.
Collapse
Affiliation(s)
- N. Sharma
- Department of Basic Sciences, College of Forestry, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, 173230 Solan, India
| | - S. Nagar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, 110012 New Delhi, India
| | - M. Thakur
- Department of Basic Sciences, College of Horticulture and Forestry, Dr. Y.S. Parmar University of Horticulture and Forestry, Neri, 177001 Hamirpur, India
| | - P. Suriyakumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, 110012 New Delhi, India
| | - S. Kataria
- School of Biochemistry, Devi Ahilya University, 452001 Indore, Madhya Pradesh, India
| | - A.K. Shanker
- Division of Crop Sciences, Central Research Institute for Dryland Agriculture, Hyderabad, Telangana, India
| | - M. Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - A. Anand
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, 110012 New Delhi, India
| |
Collapse
|
8
|
Mei W, Chen W, Wang Y, Liu Z, Dong Y, Zhang G, Deng H, Liu X, Lu X, Wang F, Chen G, Tang W, Xiao Y. Exogenous Kinetin Modulates ROS Homeostasis to Affect Heat Tolerance in Rice Seedlings. Int J Mol Sci 2023; 24:ijms24076252. [PMID: 37047228 PMCID: PMC10093947 DOI: 10.3390/ijms24076252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Heat stress caused by rapidly changing climate warming has become a serious threat to crop growth worldwide. Exogenous cytokinin (CK) kinetin (KT) has been shown to have positive effects in improving salt and drought tolerance in plants. However, the mechanism of KT in heat tolerance in rice is poorly understood. Here, we found that exogenously adequate application of KT improved the heat stress tolerance of rice seedlings, with the best effect observed when the application concentration was 10−9 M. In addition, exogenous application of 10−9 M KT promoted the expression of CK-responsive OsRR genes, reduced membrane damage and reactive oxygen species (ROS) accumulation in rice, and increased the activity of antioxidant enzymes. Meanwhile, exogenous 10−9 M KT treatment significantly enhanced the expression of antioxidant enzymes, heat activation, and defense-related genes. In conclusion, exogenous KT treatment regulates heat tolerance in rice seedlings by modulating the dynamic balance of ROS in plants under heat stress.
Collapse
|
9
|
Nisler J, Kučerová Z, Koprna R, Sobotka R, Slivková J, Rossall S, Špundová M, Husičková A, Pilný J, Tarkowská D, Novák O, Škrabišová M, Strnad M. Urea derivative MTU improves stress tolerance and yield in wheat by promoting cyclic electron flow around PSI. FRONTIERS IN PLANT SCIENCE 2023; 14:1131326. [PMID: 36959950 PMCID: PMC10028069 DOI: 10.3389/fpls.2023.1131326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Increasing crop productivity under optimal conditions and mitigating yield losses under stressful conditions is a major challenge in contemporary agriculture. We have recently identified an effective anti-senescence compound (MTU, [1-(2-methoxyethyl)-3-(1,2,3-thiadiazol-5yl)urea]) in in vitro studies. Here, we show that MTU delayed both age- and stress-induced senescence of wheat plants (Triticum aestivum L.) by enhancing the abundance of PSI supercomplex with LHCa antennae (PSI-LHCa) and promoting the cyclic electron flow (CEF) around PSI. We suppose that this rarely-observed phenomenon blocks the disintegration of photosynthetic apparatus and maintains its activity as was reflected by the faster growth rate of wheat in optimal conditions and under drought and heat stress. Our multiyear field trial analysis further shows that the treatment with 0.4 g ha-1 of MTU enhanced average grain yields of field-grown wheat and barley (Hordeum vulgare L.) by 5-8%. Interestingly, the analysis of gene expression and hormone profiling confirms that MTU acts without the involvement of cytokinins or other phytohormones. Moreover, MTU appears to be the only chemical reported to date to affect PSI stability and activity. Our results indicate a central role of PSI and CEF in the onset of senescence with implications in yield management at least for cereal species.
Collapse
Affiliation(s)
- Jaroslav Nisler
- Isotope Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Kučerová
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Radoslav Koprna
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Roman Sobotka
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia
| | - Jana Slivková
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Stephen Rossall
- School of Biosciences, Nottingham University, Loughborough, United Kingdom
| | - Martina Špundová
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Alexandra Husičková
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Jan Pilný
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Olomouc, Czechia
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Olomouc, Czechia
| | - Mária Škrabišová
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Olomouc, Czechia
| |
Collapse
|
10
|
Cytokinin Modulates Responses to Phytomelatonin in Arabidopsis thaliana under High Light Stress. Int J Mol Sci 2023; 24:ijms24010738. [PMID: 36614184 PMCID: PMC9821067 DOI: 10.3390/ijms24010738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Fine-tuned interactions between melatonin (MT) and hormones affected by environmental inputs are crucial for plant growth. Under high light (HL) conditions, melatonin reduced photodamage in Arabidopsis thaliana and contributed to the restoration of the expression of the cytokinin (CK) synthesis genes IPT3, IPT5 and LOG7 and genes for CK signal transduction AHK2,3 and ARR 1, 4, 5 and 12 which were downregulated by stress. However, CK signaling mutants displayed no significant changes in the expression of CK genes following HL + MT treatment, implying that a fully functional cytokinin signaling pathway is a prerequisite for MT-CK interactions. In turn, cytokinin treatment increased the expression of the key melatonin synthesis gene ASMT under both moderate and HL in wild-type plants. This upregulation was further accentuated in the ipt3,5,7 mutant which is highly sensitive to CK. In this mutant, in addition to ASMT, the melatonin synthesis genes SNAT and COMT, as well as the putative signaling genes CAND2 and GPA1, displayed elevated transcript levels. The results of the study suggest that melatonin acts synergistically with CK to cope with HL stress through melatonin-associated activation or repression of the respective hormonal genes.
Collapse
|
11
|
Jindal S, Kerchev P, Berka M, Černý M, Botta HK, Laxmi A, Brzobohatý B. Type-A response regulators negatively mediate heat stress response by altering redox homeostasis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:968139. [PMID: 36212299 PMCID: PMC9539118 DOI: 10.3389/fpls.2022.968139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Besides the long-standing role of cytokinins (CKs) as growth regulators, their current positioning at the interface of development and stress responses is coming into recognition. The current evidence suggests the notion that CKs are involved in heat stress response (HSR), however, the role of CK signaling components is still elusive. In this study, we have identified a role of the CK signaling components type-A Arabidopsis response regulators (ARRs) in HSR in Arabidopsis. The mutants of multiple type-A ARR genes exhibit improved basal and acquired thermotolerance and, altered response to oxidative stress in our physiological analyses. Through proteomics profiling, we show that the type-A arr mutants experience a 'stress-primed' state enabling them to respond more efficiently upon exposure to real stress stimuli. A substantial number of proteins that are involved in the heat-acclimatization process such as the proteins related to cellular redox status and heat shock, are already altered in the type-A arr mutants without a prior exposure to stress conditions. The metabolomics analyses further reveal that the mutants accumulate higher amounts of α-and γ-tocopherols, which are important antioxidants for protection against oxidative damage. Collectively, our results suggest that the type-A ARRs play an important role in heat stress response by affecting the redox homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Sunita Jindal
- Department of Molecular Biology and Radiobiology, Mendel University in Brno, Brno, Czechia
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Mendel University in Brno, Brno, Czechia
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Mendel University in Brno, Brno, Czechia
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Mendel University in Brno, Brno, Czechia
| | | | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi, India
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
12
|
Mandal S, Ghorai M, Anand U, Samanta D, Kant N, Mishra T, Rahman MH, Jha NK, Jha SK, Lal MK, Tiwari RK, Kumar M, Radha, Prasanth DA, Mane AB, Gopalakrishnan AV, Biswas P, Proćków J, Dey A. Cytokinin and abiotic stress tolerance -What has been accomplished and the way forward? Front Genet 2022; 13:943025. [PMID: 36017502 PMCID: PMC9395584 DOI: 10.3389/fgene.2022.943025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022] Open
Abstract
More than a half-century has passed since it was discovered that phytohormone cytokinin (CK) is essential to drive cytokinesis and proliferation in plant tissue culture. Thereafter, cytokinin has emerged as the primary regulator of the plant cell cycle and numerous developmental processes. Lately, a growing body of evidence suggests that cytokinin has a role in mitigating both abiotic and biotic stress. Cytokinin is essential to defend plants against excessive light exposure and a unique kind of abiotic stress generated by an altered photoperiod. Secondly, cytokinin also exhibits multi-stress resilience under changing environments. Furthermore, cytokinin homeostasis is also affected by several forms of stress. Therefore, the diverse roles of cytokinin in reaction to stress, as well as its interactions with other hormones, are discussed in detail. When it comes to agriculture, understanding the functioning processes of cytokinins under changing environmental conditions can assist in utilizing the phytohormone, to increase productivity. Through this review, we briefly describe the biological role of cytokinin in enhancing the performance of plants growth under abiotic challenges as well as the probable mechanisms underpinning cytokinin-induced stress tolerance. In addition, the article lays forth a strategy for using biotechnological tools to modify genes in the cytokinin pathway to engineer abiotic stress tolerance in plants. The information presented here will assist in better understanding the function of cytokinin in plants and their effective investigation in the cropping system.
Collapse
Affiliation(s)
- Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Uttpal Anand
- CytoGene Research & Development LLP, Barabanki, Uttar Pradesh, India
| | - Dipu Samanta
- Department of Botany, Dr. Kanailal Bhattacharyya College, Howrah, West Bengal, India
| | - Nishi Kant
- School of Health and Allied Science, ARKA Jain University, Jamshedpur, Jharkhand, India
| | - Tulika Mishra
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, South Korea
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rahul Kumar Tiwari
- Division of Crop Physiology, Biochemistry and Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | | | - Abhijit Bhagwan Mane
- Department of Zoology, Dr. Patangrao Kadam Mahavidhyalaya (affiliated to Shivaji University Kolhapur), Ramanandnagar (Burli), Sangli, Maharashtra, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Protha Biswas
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
13
|
Cortleven A, Roeber VM, Frank M, Bertels J, Lortzing V, Beemster GTS, Schmülling T. Photoperiod Stress in Arabidopsis thaliana Induces a Transcriptional Response Resembling That of Pathogen Infection. FRONTIERS IN PLANT SCIENCE 2022; 13:838284. [PMID: 35646013 PMCID: PMC9134115 DOI: 10.3389/fpls.2022.838284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 06/15/2023]
Abstract
Plants are exposed to regular diurnal rhythms of light and dark. Changes in the photoperiod by the prolongation of the light period cause photoperiod stress in short day-adapted Arabidopsis thaliana. Here, we report on the transcriptional response to photoperiod stress of wild-type A. thaliana and photoperiod stress-sensitive cytokinin signaling and clock mutants and identify a core set of photoperiod stress-responsive genes. Photoperiod stress caused altered expression of numerous reactive oxygen species (ROS)-related genes. Photoperiod stress-sensitive mutants displayed similar, but stronger transcriptomic changes than wild-type plants. The alterations showed a strong overlap with those occurring in response to ozone stress, pathogen attack and flagellin peptide (flg22)-induced PAMP triggered immunity (PTI), which have in common the induction of an apoplastic oxidative burst. Interestingly, photoperiod stress triggers transcriptional changes in jasmonic acid (JA) and salicylic acid (SA) biosynthesis and signaling and results in increased JA, SA and camalexin levels. These responses are typically observed after pathogen infections. Consequently, photoperiod stress increased the resistance of Arabidopsis plants to a subsequent infection by Pseudomonas syringae pv. tomato DC3000. In summary, we show that photoperiod stress causes transcriptional reprogramming resembling plant pathogen defense responses and induces systemic acquired resistance (SAR) in the absence of a pathogen.
Collapse
Affiliation(s)
- Anne Cortleven
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
| | - Venja M. Roeber
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
| | - Manuel Frank
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jonas Bertels
- Laboratory for Integrated Molecular Plant Physiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Vivien Lortzing
- Institute of Biology/Applied Zoology—Animal Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Gerrit T. S. Beemster
- Laboratory for Integrated Molecular Plant Physiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Thomas Schmülling
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
14
|
Hai X, Mi J, Zhao B, Zhang B, Zhao Z, Liu J. Foliar Application of Spermidine Reduced the Negative Effects of Salt Stress on Oat Seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:846280. [PMID: 35519821 PMCID: PMC9062738 DOI: 10.3389/fpls.2022.846280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The effects of foliar application of spermidine (Spd) on the physiological aspects of salt-stressed oat seedlings were studied under greenhouse conditions. At the seedling stage, the salt-sensitive variety, namely, Caoyou 1 and the salt-tolerant variety, namely, Baiyan 2 were treated with 70 and 100 mM of salt, followed by the foliar application of 0.75 mM Spd or distilled water. Results showed that Spd application increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and reduced the rate of O2 ⋅- production and the accumulation of H2O2 and malondialdehyde (MDA). In addition, it increased the level of zeatin riboside (ZR) and the content of endogenous polyamines. The application of Spd increased the contents of soluble sugar, soluble protein, and free proline and helped maintain the osmotic balance of oat leaves. At the same time, foliar Spd treatment helped in maintaining the ion nutrition balance. Specifically, it reduced the content of Na+ and thereby stabilized the ratio of Na+/K+, Na+/Ca2+, and Na+/Mg2+. The effects of Spd application were more obvious for the salt-sensitive cultivar Caoyou 1 and under the lighter 70 mM salt stress.
Collapse
Affiliation(s)
- Xia Hai
- Science Innovation Team of Oats, Inner Mongolia Agricultural University, Hohhot, China
| | - Junzhen Mi
- Science Innovation Team of Oats, Inner Mongolia Agricultural University, Hohhot, China
| | - Baoping Zhao
- Science Innovation Team of Oats, Inner Mongolia Agricultural University, Hohhot, China
| | - Biru Zhang
- Science Innovation Team of Oats, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhou Zhao
- College of Life Science, Chifeng University, Chifeng, China
| | - Jinghui Liu
- Science Innovation Team of Oats, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
15
|
Frank M, Cortleven A, Pěnčík A, Novak O, Schmülling T. The Photoperiod Stress Response in Arabidopsis thaliana Depends on Auxin Acting as an Antagonist to the Protectant Cytokinin. Int J Mol Sci 2022; 23:2936. [PMID: 35328357 PMCID: PMC8955046 DOI: 10.3390/ijms23062936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Fluctuating environmental conditions trigger adaptive responses in plants, which are regulated by phytohormones. During photoperiod stress caused by a prolongation of the light period, cytokinin (CK) has a protective function. Auxin often acts as an antagonist of CK in developmental processes and stress responses. Here, we investigated the regulation of the photoperiod stress response in Arabidopsis thaliana by auxin and its interaction with CK. Transcriptome analysis revealed an altered transcript abundance of numerous auxin metabolism and signaling genes after photoperiod stress treatment. The changes appeared earlier and were stronger in the photoperiod-stress-sensitive CK receptor mutant arabidopsis histidine kinase 2 (ahk2),3 compared to wild-type plants. The concentrations of indole-3-acetic acid (IAA), IAA-Glc and IAA-Asp increased in both genotypes, but the increases were more pronounced in ahk2,3. Genetic analysis revealed that the gain-of-function YUCCA 1 (YUC1) mutant, yuc1D, displayed an increased photoperiod stress sensitivity. In contrast, a loss of the auxin receptors TRANSPORT-INHIBITOR-RESISTANT 1 (TIR1), AUXIN SIGNALING F-BOX 2 (AFB2) and AFB3 in wild-type and ahk2,3 background caused a reduced photoperiod stress response. Overall, this study revealed that auxin promotes response to photoperiod stress antagonizing the protective CK.
Collapse
Affiliation(s)
- Manuel Frank
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, D-14195 Berlin, Germany; (M.F.); (A.C.)
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, D-14195 Berlin, Germany; (M.F.); (A.C.)
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (A.P.); (O.N.)
| | - Ondrej Novak
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (A.P.); (O.N.)
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, D-14195 Berlin, Germany; (M.F.); (A.C.)
| |
Collapse
|
16
|
Sameena PP, Kalaji HM, Żuk-Gołaszewska K, Horaczek T, Sierka E, Puthur JT. 6-Benzylaminopurine Alleviates the Impact of Cu 2+ Toxicity on Photosynthetic Performance of Ricinus communis L. Seedlings. Int J Mol Sci 2021; 22:ijms222413349. [PMID: 34948146 PMCID: PMC8709281 DOI: 10.3390/ijms222413349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/12/2023] Open
Abstract
Copper (Cu) is an essential element involved in various metabolic processes in plants, but at concentrations above the threshold level, it becomes a potential stress factor. The effects of two different cytokinins, kinetin (KIN) and 6-benzylaminopurine (BAP), on chlorophyll a fluorescence parameters, stomatal responses and antioxidation mechanisms in castor (Ricinus communis L.) under Cu2+ toxicity was investigated. Ricinus communis plants were exposed to 80 and 160 μM CuSO4 added to the growth medium. Foliar spraying of 15 μM KIN and BAP was carried out on these seedlings. The application of these cytokinins enhanced the tissue water status, chlorophyll contents, stomatal opening and photosynthetic efficiency in the castor plants subjected to Cu2+ stress. The fluorescence parameters, such as Fm, Fv/Fo, Sm, photochemical and non-photochemical quantum yields, energy absorbed, energy trapped and electron transport per cross-sections, were more efficiently modulated by BAP application than KIN under Cu2+ toxicity. There was also effective alleviation of reactive oxygen species by enzymatic and non-enzymatic antioxidation systems, reducing the membrane lipid peroxidation, which brought about a relative enhancement in the membrane stability index. Of the various treatments, 80 µM CuSO4 + BAP recorded the highest increase in photosynthetic efficiency compared to other cytokinin treatments. Therefore, it can be concluded that BAP could effectively alleviate the detrimental effects of Cu2+toxicity in cotyledonary leaves of R. communis by effectively modulating stomatal responses and antioxidation mechanisms, thereby enhancing the photosynthetic apparatus’ functioning.
Collapse
Affiliation(s)
- Puthukkolli P. Sameena
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Calicut University P.O., Malappuram 673635, Kerala, India;
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 02-776 Warsaw, Poland;
| | - Krystyna Żuk-Gołaszewska
- Department of Agrotechnology and Agribusiness, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 8, 10-719 Olsztyn, Poland;
| | - Tomasz Horaczek
- Institute of Technology and Life Sciences—National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland;
| | - Edyta Sierka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska, 40-032 Katowice, Poland;
| | - Jos T. Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Calicut University P.O., Malappuram 673635, Kerala, India;
- Correspondence: ; Tel.: +91-94-4750-7845
| |
Collapse
|
17
|
Yan Z, Wang J, Wang F, Xie C, Lv B, Yu Z, Dai S, Liu X, Xia G, Tian H, Li C, Ding Z. MPK3/6-induced degradation of ARR1/10/12 promotes salt tolerance in Arabidopsis. EMBO Rep 2021; 22:e52457. [PMID: 34402578 DOI: 10.15252/embr.202152457] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/18/2021] [Accepted: 07/30/2021] [Indexed: 11/09/2022] Open
Abstract
Cytokinins are phytohormones that regulate plant development, growth, and responses to stress. In particular, cytokinin has been reported to negatively regulate plant adaptation to high salinity; however, the molecular mechanisms that counteract cytokinin signaling and enable salt tolerance are not fully understood. Here, we provide evidence that salt stress induces the degradation of the cytokinin signaling components Arabidopsis (Arabidopisis thaliana) response regulator 1 (ARR1), ARR10 and ARR12. Furthermore, the stress-activated mitogen-activated protein kinase 3 (MPK3) and MPK6 interact with and phosphorylate ARR1/10/12 to promote their degradation in response to salt stress. As expected, salt tolerance is decreased in the mpk3/6 double mutant, but enhanced upon ectopic MPK3/MPK6 activation in an MKK5DD line. Importantly, salt hypersensitivity phenotypes of the mpk3/6 line were significantly alleviated by mutation of ARR1/12. The above results indicate that MPK3/6 enhance salt tolerance in part via their negative regulation of ARR1/10/12 protein stability. Thus, our work reveals a new molecular mechanism underlying salt-induced stress adaptation and the inhibition of plant growth, via enhanced degradation of cytokinin signaling components.
Collapse
Affiliation(s)
- Zhenwei Yan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Fengxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Chuantian Xie
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Bingsheng Lv
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Zipeng Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xia Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-huai River Plain, Ministry of Agriculture, Jinan, China
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Cuiling Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
18
|
Ramireddy E, Nelissen H, Leuendorf JE, Van Lijsebettens M, Inzé D, Schmülling T. Root engineering in maize by increasing cytokinin degradation causes enhanced root growth and leaf mineral enrichment. PLANT MOLECULAR BIOLOGY 2021; 106:555-567. [PMID: 34275101 PMCID: PMC8338857 DOI: 10.1007/s11103-021-01173-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 05/12/2023]
Abstract
Root-specific expression of a cytokinin-degrading CKX gene in maize roots causes formation of a larger root system leading to higher element content in shoot organs. The size and architecture of the root system is functionally relevant for the access to water and soil nutrients. A great number of mostly unknown genes are involved in regulating root architecture complicating targeted breeding of plants with a larger root system. Here, we have explored whether root-specific degradation of the hormone cytokinin, which is a negative regulator of root growth, can be used to genetically engineer maize (Zea mays L.) plants with a larger root system. Root-specific expression of a CYTOKININ OXIDASE/DEHYDROGENASE (CKX) gene of Arabidopsis caused the formation of up to 46% more root dry weight while shoot growth of these transgenic lines was similar as in non-transgenic control plants. The concentration of several elements, in particular of those with low soil mobility (K, P, Mo, Zn), was increased in leaves of transgenic lines. In kernels, the changes in concentration of most elements were less pronounced, but the concentrations of Cu, Mn and Zn were significantly increased in at least one of the three independent lines. Our data illustrate the potential of an increased root system as part of efforts towards achieving biofortification. Taken together, this work has shown that root-specific expression of a CKX gene can be used to engineer the root system of maize and alter shoot element composition.
Collapse
Affiliation(s)
- Eswarayya Ramireddy
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany.
- Biology Division, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, Andhra Pradesh, India.
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Jan Erik Leuendorf
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany.
| |
Collapse
|
19
|
Leuendorf JE, Schmülling T. Meeting at the DNA: Specifying Cytokinin Responses through Transcription Factor Complex Formation. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10071458. [PMID: 34371661 PMCID: PMC8309282 DOI: 10.3390/plants10071458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 05/10/2023]
Abstract
Cytokinin is a plant hormone regulating numerous biological processes. Its diverse functions are realized through the expression control of specific target genes. The transcription of the immediate early cytokinin target genes is regulated by type-B response regulator proteins (RRBs), which are transcription factors (TFs) of the Myb family. RRB activity is controlled by phosphorylation and protein degradation. Here, we focus on another step of regulation, the interaction of RRBs among each other or with other TFs to form active or repressive TF complexes. Several examples in Arabidopsis thaliana illustrate that RRBs form homodimers or complexes with other TFs to specify the cytokinin response. This increases the variability of the output response and provides opportunities of crosstalk between the cytokinin signaling pathway and other cellular signaling pathways. We propose that a targeted approach is required to uncover the full extent and impact of RRB interaction with other TFs.
Collapse
|
20
|
Bashri G, Singh S, Prasad SM, Ansari MJ, Usmani S, Alfarraj S, Alharbi SA, Brestic M. Kinetin mitigates Cd-induced damagesto growth, photosynthesis and PS II photochemistry of Trigonella seedlings by up-regulating ascorbate-glutathione cycle. PLoS One 2021; 16:e0249230. [PMID: 34157031 PMCID: PMC8219128 DOI: 10.1371/journal.pone.0249230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/14/2021] [Indexed: 12/13/2022] Open
Abstract
Cytokinins (CKs) plays a key role in plant adaptation over a range of different stress conditions. Here, we analyze the effects of a cytokinin (i.e., kinetin, KN) on the growth, photosynthesis (rate of O2 evolution), PS II photochemistry and AsA-GSH cycle in Trigonella seedlings grown under cadmium (Cd) stress. Trigonella seeds were sown in soil amended with 0, 3 and 9 mg Cd kg-1 soil, and after 15 days resultant seedlings were sprayed with three doses of KN, i.e.,10 μM (low, KNL), 50 μM (medium, KNM) and 100 μM (high, KNH); subsequent experiments were performed after 15 days of KN application, i.e., 30 days after sowing. Cadmium toxicity induced oxidative damage as shown by decreased seedling growth and photosynthetic pigment production (Chl a, Chl b and Car), rates of O2-evolution, and photochemistry of PS II of Trigonella seedlings, all accompanied by an increase in H2O2 accumulation. Supplementation with doses of KN at KNL and KNM significantly improved the growth and photosynthetic activity by reducing H2O2 accumulation through the up-regulation AsA-GSH cycle. Notably, KNL and KNM doses stimulated the rate of enzyme activities of APX, GR and DHAR, involved in the AsA-GSH cycle thereby efficiently regulates the level of AsA and GSH in Trigonella grown under Cd stress. The study concludes that KN can mitigate the damaging effects of Cd stress on plant growth by maintaining the redox status (>ratios: AsA/DHA and GSH/GSSG) of cells through the regulation of AsA-GSH cycle at 10 and 50 μM KN under Cd stress conditions. At 100 μM KN, the down-regulation of AsA-GSH cycle did not support the growth and PS II activity of the test seedlings.
Collapse
Affiliation(s)
- Gausiya Bashri
- Department of Botany, Ranjan Plant Physiology and Biochemistry Laboratory, University of Allahabad, Allahabad, India
- * E-mail: (GB); (SMP); (MJA)
| | - Shikha Singh
- Department of Botany, Ranjan Plant Physiology and Biochemistry Laboratory, University of Allahabad, Allahabad, India
| | - Sheo Mohan Prasad
- Department of Botany, Ranjan Plant Physiology and Biochemistry Laboratory, University of Allahabad, Allahabad, India
- * E-mail: (GB); (SMP); (MJA)
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, India
- * E-mail: (GB); (SMP); (MJA)
| | - Salma Usmani
- Department of Biochemistry, D.K.M College for Women (Autonomous), Vellore, India
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
21
|
Hoang XLT, Prerostova S, Thu NBA, Thao NP, Vankova R, Tran LSP. Histidine Kinases: Diverse Functions in Plant Development and Responses to Environmental Conditions. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:297-323. [PMID: 34143645 DOI: 10.1146/annurev-arplant-080720-093057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The two-component system (TCS), which is one of the most evolutionarily conserved signaling pathway systems, has been known to regulate multiple biological activities and environmental responses in plants. Significant progress has been made in characterizing the biological functions of the TCS components, including signal receptor histidine kinase (HK) proteins, signal transducer histidine-containing phosphotransfer proteins, and effector response regulator proteins. In this review, our scope is focused on the diverse structure, subcellular localization, and interactions of the HK proteins, as well as their signaling functions during development and environmental responses across different plant species. Based on data collected from scientific studies, knowledge about acting mechanisms and regulatory roles of HK proteins is presented. This comprehensive summary ofthe HK-related network provides a panorama of sophisticated modulating activities of HK members and gaps in understanding these activities, as well as the basis for developing biotechnological strategies to enhance the quality of crop plants.
Collapse
Affiliation(s)
- Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - Nguyen Binh Anh Thu
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79409, USA;
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
22
|
Chuong NN, Hoang XLT, Nghia DHT, Nguyen NC, Thao DTT, Tran TB, Ngoc TTM, Thu NBA, Nguyen QT, Thao NP. Ectopic expression of GmHP08 enhances resistance of transgenic Arabidopsis toward drought stress. PLANT CELL REPORTS 2021; 40:819-834. [PMID: 33725150 DOI: 10.1007/s00299-021-02677-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Ectopic expression of Glycine max two-component system member GmHP08 in Arabidopsis enhanced drought tolerance of transgenic plants, possibly via ABA-dependent pathways. Phosphorelay by two-component system (TCS) is a signal transduction mechanism which has been evolutionarily conserved in both prokaryotic and eukaryotic organisms. Previous studies have provided lines of evidence on the involvement of TCS genes in plant perception and responses to environmental stimuli. In this research, drought-associated functions of GmHP08, a TCS member from soybean (Glycine max L.), were investigated via its ectopic expression in Arabidopsis system. Results from the drought survival assay showed that GmHP08-transgenic plants exhibited higher survival rates compared with their wild-type (WT) counterparts, indicating better drought resistance of the former group. Analyses revealed that the transgenic plants outperformed the WT in various regards, i.e. capability of water retention, prevention of hydrogen peroxide accumulation and enhancement of antioxidant enzymatic activities under water-deficit conditions. Additionally, the expression of stress-marker genes, especially antioxidant enzyme-encoding genes, in the transgenic plants were found greater than that of the WT plants. In contrary, the expression of SAG13 gene, one of the senescence-associated genes, and of several abscisic acid (ABA)-related genes was repressed. Data from this study also revealed that the ectopic expression lines at germination and early seedling development stages were hypersensitive to exogenous ABA treatment. Taken together, our results demonstrated that GmHP08 could play an important role in mediating plant response to drought, possibly via an ABA-dependent manner.
Collapse
Affiliation(s)
- Nguyen Nguyen Chuong
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Duong Hoang Trong Nghia
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Nguyen Cao Nguyen
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Dau Thi Thanh Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Tram Bao Tran
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Tran Thi My Ngoc
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Nguyen Binh Anh Thu
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Quang Thien Nguyen
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam.
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam.
| |
Collapse
|
23
|
Müller M, Munné-Bosch S. Hormonal impact on photosynthesis and photoprotection in plants. PLANT PHYSIOLOGY 2021; 185:1500-1522. [PMID: 33793915 PMCID: PMC8133604 DOI: 10.1093/plphys/kiaa119] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 05/19/2023]
Abstract
Photosynthesis is not only essential for plants, but it also sustains life on Earth. Phytohormones play crucial roles in developmental processes, from organ initiation to senescence, due to their role as growth and developmental regulators, as well as their central role in the regulation of photosynthesis. Furthermore, phytohormones play a major role in photoprotection of the photosynthetic apparatus under stress conditions. Here, in addition to discussing our current knowledge on the role of the phytohormones auxin, cytokinins, gibberellins, and strigolactones in promoting photosynthesis, we will also highlight the role of abscisic acid beyond stomatal closure in modulating photosynthesis and photoprotection under various stress conditions through crosstalk with ethylene, salicylates, jasmonates, and brassinosteroids. Furthermore, the role of phytohormones in controlling the production and scavenging of photosynthesis-derived reactive oxygen species, the duration and extent of photo-oxidative stress and redox signaling under stress conditions will be discussed in detail. Hormones have a significant impact on the regulation of photosynthetic processes in plants under both optimal and stress conditions, with hormonal interactions, complementation, and crosstalk being important in the spatiotemporal and integrative regulation of photosynthetic processes during organ development at the whole-plant level.
Collapse
Affiliation(s)
- Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Author for communication:
| |
Collapse
|
24
|
Muhammad I, Shalmani A, Ali M, Yang QH, Ahmad H, Li FB. Mechanisms Regulating the Dynamics of Photosynthesis Under Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 11:615942. [PMID: 33584756 PMCID: PMC7876081 DOI: 10.3389/fpls.2020.615942] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/28/2020] [Indexed: 05/02/2023]
Abstract
Photosynthesis sustains plant life on earth and is indispensable for plant growth and development. Factors such as unfavorable environmental conditions, stress regulatory networks, and plant biochemical processes limits the photosynthetic efficiency of plants and thereby threaten food security worldwide. Although numerous physiological approaches have been used to assess the performance of key photosynthetic components and their stress responses, though, these approaches are not extensive enough and do not favor strategic improvement of photosynthesis under abiotic stresses. The decline in photosynthetic capacity of plants due to these stresses is directly associated with reduction in yield. Therefore, a detailed information of the plant responses and better understanding of the photosynthetic machinery could help in developing new crop plants with higher yield even under stressed environments. Interestingly, cracking of signaling and metabolic pathways, identification of some key regulatory elements, characterization of potential genes, and phytohormone responses to abiotic factors have advanced our knowledge related to photosynthesis. However, our understanding of dynamic modulation of photosynthesis under dramatically fluctuating natural environments remains limited. Here, we provide a detailed overview of the research conducted on photosynthesis to date, and highlight the abiotic stress factors (heat, salinity, drought, high light, and heavy metal) that limit the performance of the photosynthetic machinery. Further, we reviewed the role of transcription factor genes and various enzymes involved in the process of photosynthesis under abiotic stresses. Finally, we discussed the recent progress in the field of biodegradable compounds, such as chitosan and humic acid, and the effect of melatonin (bio-stimulant) on photosynthetic activity. Based on our gathered researched data set, the logical concept of photosynthetic regulation under abiotic stresses along with improvement strategies will expand and surely accelerate the development of stress tolerance mechanisms, wider adaptability, higher survival rate, and yield potential of plant species.
Collapse
Affiliation(s)
- Izhar Muhammad
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Muhammad Ali
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Qing-Hua Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Husain Ahmad
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Feng Bai Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
25
|
Werner S, Bartrina I, Novák O, Strnad M, Werner T, Schmülling T. The Cytokinin Status of the Epidermis Regulates Aspects of Vegetative and Reproductive Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:613488. [PMID: 33732273 PMCID: PMC7959818 DOI: 10.3389/fpls.2021.613488] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/13/2021] [Indexed: 05/14/2023]
Abstract
The epidermal cell layer of plants has important functions in regulating plant growth and development. We have studied the impact of an altered epidermal cytokinin metabolism on Arabidopsis shoot development. Increased epidermal cytokinin synthesis or breakdown was achieved through expression of the cytokinin synthesis gene LOG4 and the cytokinin-degrading CKX1 gene, respectively, under the control of the epidermis-specific AtML1 promoter. During vegetative growth, increased epidermal cytokinin production caused an increased size of the shoot apical meristem and promoted earlier flowering. Leaves became larger and the shoots showed an earlier juvenile-to-adult transition. An increased cytokinin breakdown had the opposite effect on these phenotypic traits indicating that epidermal cytokinin metabolism can be a factor regulating these aspects of shoot development. The phenotypic consequences of abbreviated cytokinin signaling in the epidermis achieved through expression of the ARR1-SRDX repressor were generally milder or even absent indicating that the epidermal cytokinin acts, at least in part, cell non-autonomously. Enhanced epidermal cytokinin synthesis delayed cell differentiation during leaf development leading to an increased cell proliferation and leaf growth. Genetic analysis showed that this cytokinin activity was mediated mainly by the AHK3 receptor and the transcription factor ARR1. We also demonstrate that epidermal cytokinin promotes leaf growth in a largely cell-autonomous fashion. Increased cytokinin synthesis in the outer layer of reproductive tissues and in the placenta enhanced ovule formation by the placenta and caused the formation of larger siliques. This led to a higher number of seeds in larger pods resulting in an increased seed yield per plant. Collectively, the results provide evidence that the cytokinin metabolism in the epidermis is a relevant parameter determining vegetative and reproductive plant growth and development.
Collapse
Affiliation(s)
- Sören Werner
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Isabel Bartrina
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
- Institute of Biology, NAWI Graz, University of Graz, Graz, Austria
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czechia
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czechia
| | - Tomáš Werner
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
- Institute of Biology, NAWI Graz, University of Graz, Graz, Austria
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
- *Correspondence: Thomas Schmülling,
| |
Collapse
|
26
|
Skalak J, Nicolas KL, Vankova R, Hejatko J. Signal Integration in Plant Abiotic Stress Responses via Multistep Phosphorelay Signaling. FRONTIERS IN PLANT SCIENCE 2021; 12:644823. [PMID: 33679861 PMCID: PMC7925916 DOI: 10.3389/fpls.2021.644823] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/26/2021] [Indexed: 05/02/2023]
Abstract
Plants growing in any particular geographical location are exposed to variable and diverse environmental conditions throughout their lifespan. The multifactorial environmental pressure resulted into evolution of plant adaptation and survival strategies requiring ability to integrate multiple signals that combine to yield specific responses. These adaptive responses enable plants to maintain their growth and development while acquiring tolerance to a variety of environmental conditions. An essential signaling cascade that incorporates a wide range of exogenous as well as endogenous stimuli is multistep phosphorelay (MSP). MSP mediates the signaling of essential plant hormones that balance growth, development, and environmental adaptation. Nevertheless, the mechanisms by which specific signals are recognized by a commonly-occurring pathway are not yet clearly understood. Here we summarize our knowledge on the latest model of multistep phosphorelay signaling in plants and the molecular mechanisms underlying the integration of multiple inputs including both hormonal (cytokinins, ethylene and abscisic acid) and environmental (light and temperature) signals into a common pathway. We provide an overview of abiotic stress responses mediated via MSP signaling that are both hormone-dependent and independent. We highlight the mutual interactions of key players such as sensor kinases of various substrate specificities including their downstream targets. These constitute a tightly interconnected signaling network, enabling timely adaptation by the plant to an ever-changing environment. Finally, we propose possible future directions in stress-oriented research on MSP signaling and highlight its potential importance for targeted crop breeding.
Collapse
Affiliation(s)
- Jan Skalak
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Katrina Leslie Nicolas
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
- *Correspondence: Jan Hejatko,
| |
Collapse
|
27
|
Zhang L, Wu S, Chang X, Wang X, Zhao Y, Xia Y, Trigiano RN, Jiao Y, Chen F. The ancient wave of polyploidization events in flowering plants and their facilitated adaptation to environmental stress. PLANT, CELL & ENVIRONMENT 2020; 43:2847-2856. [PMID: 33001478 DOI: 10.1111/pce.13898] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 05/24/2023]
Abstract
Flowering plants, or angiosperms, consist of more than 300,000 species, far more than any other land plant lineages. The accumulated evidence indicates that multiple ancient polyploidy events occurred around 100 to 120 million years ago during the Cretaceous and drove the early diversification of four major clades of angiosperms: gamma whole-genome triplication in the common ancestor of core eudicots, tau whole-genome duplication during the early diversification of monocots, lambda whole-genome duplication during the early diversification of magnoliids, and pi whole-genome duplication in the Nymphaeales lineage. These four polyploidy events have played essential roles in the adaptive evolution and diversification of major clades of flowering plants. Here, we specifically review the current understanding of this wave of ancient whole-genome duplications and their evolutionary significance. Notably, although these ancient whole-genome duplications occurred independently, they have contributed to the expansion of many stress-related genes (e.g., heat shock transcription factors and Arabidopsis response regulators),and these genes could have been selected for by global environmental changes in the Cretaceous. Therefore, this ancient wave of paleopolyploidy events could have significantly contributed to the adaptation of angiosperms to environmental changes, and potentially promoted the wide diversification of flowering plants.
Collapse
Affiliation(s)
- Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shengdan Wu
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| | - Xiaojun Chang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunpeng Zhao
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Robert N Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
28
|
D'Alessandro S, Beaugelin I, Havaux M. Tanned or Sunburned: How Excessive Light Triggers Plant Cell Death. MOLECULAR PLANT 2020; 13:1545-1555. [PMID: 32992028 DOI: 10.1016/j.molp.2020.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/23/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Plants often encounter light intensities exceeding the capacity of photosynthesis (excessive light) mainly due to biotic and abiotic factors, which lower CO2 fixation and reduce light energy sinks. Under excessive light, the photosynthetic electron transport chain generates damaging molecules, hence leading to photooxidative stress and eventually to cell death. In this review, we summarize the mechanisms linking the excessive absorption of light energy in chloroplasts to programmed cell death in plant leaves. We highlight the importance of reactive carbonyl species generated by lipid photooxidation, their detoxification, and the integrating role of the endoplasmic reticulum in the adoption of phototolerance or cell-death pathways. Finally, we invite the scientific community to standardize the conditions of excessive light treatments.
Collapse
Affiliation(s)
- Stefano D'Alessandro
- Aix-Marseille University, CEA, CNRS, UMR7265, BIAM, Institute of Biosciences and Biotechnologies of Aix Marseille, 13108 Saint-Paul-lez-Durance, France.
| | - Inès Beaugelin
- Singapore-CEA Alliance for Research in Circular Economy (SCARCE), School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore 637459, Republic of Singapore
| | - Michel Havaux
- Aix-Marseille University, CEA, CNRS, UMR7265, BIAM, Institute of Biosciences and Biotechnologies of Aix Marseille, 13108 Saint-Paul-lez-Durance, France.
| |
Collapse
|
29
|
Frank M, Cortleven A, Novák O, Schmülling T. Root-derived trans-zeatin cytokinin protects Arabidopsis plants against photoperiod stress. PLANT, CELL & ENVIRONMENT 2020; 43:2637-2649. [PMID: 32716064 DOI: 10.1111/pce.13860] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/15/2020] [Indexed: 05/20/2023]
Abstract
Recently, a novel type of abiotic stress caused by a prolongation of the light period-coined photoperiod stress-has been described in Arabidopsis. During the night after the prolongation of the light period, stress and cell death marker genes are induced. The next day, strongly stressed plants display a reduced photosynthetic efficiency and leaf cells eventually enter programmed cell death. The phytohormone cytokinin (CK) acts as a negative regulator of this photoperiod stress syndrome. In this study, we show that Arabidopsis wild-type plants increase the CK concentration in response to photoperiod stress. Analysis of cytokinin synthesis and transport mutants revealed that root-derived trans-zeatin (tZ)-type CKs protect against photoperiod stress. The CK signalling proteins ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 2 (AHP2), AHP3 and AHP5 and transcription factors ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2), ARR10 and ARR12 are required for the protective activity of CK. Analysis of higher order B-type arr mutants suggested that a complex regulatory circuit exists in which the loss of ARR10 or ARR12 can rescue the arr2 phenotype. Together the results revealed the role of root-derived CK acting in the shoot through the two-component signalling system to protect from the negative consequences of strong photoperiod stress.
Collapse
Affiliation(s)
- Manuel Frank
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
30
|
The Anti-Senescence Activity of Cytokinin Arabinosides in Wheat and Arabidopsis Is Negatively Correlated with Ethylene Production. Int J Mol Sci 2020; 21:ijms21218109. [PMID: 33143091 PMCID: PMC7662598 DOI: 10.3390/ijms21218109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/29/2022] Open
Abstract
Leaf senescence, accompanied by chlorophyll breakdown, chloroplast degradation and inhibition of photosynthesis, can be suppressed by an exogenous application of cytokinins. Two aromatic cytokinin arabinosides (6-benzylamino-9-β-d-arabinofuranosylpurines; BAPAs), 3-hydroxy- (3OHBAPA) and 3-methoxy- (3MeOBAPA) derivatives, have recently been found to possess high anti-senescence activity. Interestingly, their effect on the maintenance of chlorophyll content and maximal quantum yield of photosystem II (PSII) in detached dark-adapted leaves differed quantitatively in wheat (Triticum aestivum L. cv. Aranka) and Arabidopsis (Arabidopsisthaliana L. (Col-0)). In this work, we have found that the anti-senescence effects of 3OHBAPA and 3MeOBAPA in wheat and Arabidopsis also differ in other parameters, including the maintenance of carotenoid content and chloroplasts, rate of reduction of primary electron acceptor of PSII (QA) as well as electron transport behind QA, and partitioning of absorbed light energy in light-adapted leaves. In wheat, 3OHBAPA had a higher protective effect than 3MeOBAPA, whereas in Arabidopsis, 3MeOBAPA was the more efficient derivative. We have found that the different anti-senescent activity of 3OHBAPA and 3MeOBAPA was coupled to different ethylene production in the treated leaves: the lower the ethylene production, the higher the anti-senescence activity. 3OHBAPA and 3MeOBAPA also efficiently protected the senescing leaves of wheat and Arabidopsis against oxidative damage induced by both H2O2 and high-light treatment, which could also be connected with the low level of ethylene production.
Collapse
|
31
|
Abuelsoud W, Cortleven A, Schmülling T. Photoperiod stress induces an oxidative burst-like response and is associated with increased apoplastic peroxidase and decreased catalase activities. JOURNAL OF PLANT PHYSIOLOGY 2020; 253:153252. [PMID: 32949889 DOI: 10.1016/j.jplph.2020.153252] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 05/18/2023]
Abstract
Periodic changes of light and dark regulate numerous processes in plants. Recently, a novel type of stress caused by an extended light period has been described in Arabidopsis thaliana and was named photoperiod stress. Although photoperiod stress causes the induction of numerous stress response genes of which many are indicators of oxidative stress, the exact timing and mechanisms involved in dealing with this stress have not yet been investigated. We describe the response of the cellular redox system in wild-type Arabidopsis, the photoperiod stress sensitive cytokinin receptor mutant ahk2 ahk3 and the clock mutant cca1 lhy. Photoperiod stress caused several changes in the ROS scavenging system including a reduction of the ascorbic acid (AsA) redox status and strong peroxide formation during the night following the extended photoperiod. The changes were associated with reduced catalase (CAT) and increased apoplastic peroxidase (PRX) activities. Consistently, the expression of the apoplastic PRX genes PRX4, PRX33, PRX34 and PRX71 was strongly induced by photoperiod stress. We show that extending the light period by only few hours causes a stress response during the following night suggesting that the photoperiod stress response might occur in a natural setting.
Collapse
Affiliation(s)
- Walid Abuelsoud
- Institute of Biology, Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany; Botany and Microbiology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.
| | - Anne Cortleven
- Institute of Biology, Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany.
| | - Thomas Schmülling
- Institute of Biology, Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany.
| |
Collapse
|
32
|
Baslam M, Mitsui T, Hodges M, Priesack E, Herritt MT, Aranjuelo I, Sanz-Sáez Á. Photosynthesis in a Changing Global Climate: Scaling Up and Scaling Down in Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:882. [PMID: 32733499 PMCID: PMC7357547 DOI: 10.3389/fpls.2020.00882] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/29/2020] [Indexed: 05/06/2023]
Abstract
Photosynthesis is the major process leading to primary production in the Biosphere. There is a total of 7000bn tons of CO2 in the atmosphere and photosynthesis fixes more than 100bn tons annually. The CO2 assimilated by the photosynthetic apparatus is the basis of crop production and, therefore, of animal and human food. This has led to a renewed interest in photosynthesis as a target to increase plant production and there is now increasing evidence showing that the strategy of improving photosynthetic traits can increase plant yield. However, photosynthesis and the photosynthetic apparatus are both conditioned by environmental variables such as water availability, temperature, [CO2], salinity, and ozone. The "omics" revolution has allowed a better understanding of the genetic mechanisms regulating stress responses including the identification of genes and proteins involved in the regulation, acclimation, and adaptation of processes that impact photosynthesis. The development of novel non-destructive high-throughput phenotyping techniques has been important to monitor crop photosynthetic responses to changing environmental conditions. This wealth of data is being incorporated into new modeling algorithms to predict plant growth and development under specific environmental constraints. This review gives a multi-perspective description of the impact of changing environmental conditions on photosynthetic performance and consequently plant growth by briefly highlighting how major technological advances including omics, high-throughput photosynthetic measurements, metabolic engineering, and whole plant photosynthetic modeling have helped to improve our understanding of how the photosynthetic machinery can be modified by different abiotic stresses and thus impact crop production.
Collapse
Affiliation(s)
- Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Michael Hodges
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université Paris-Saclay, Université Evry, Université Paris Diderot, Paris, France
| | - Eckart Priesack
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthew T. Herritt
- USDA-ARS Plant Physiology and Genetics Research, US Arid-Land Agricultural Research Center, Maricopa, AZ, United States
| | - Iker Aranjuelo
- Agrobiotechnology Institute (IdAB-CSIC), Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, Mutilva, Spain
| | - Álvaro Sanz-Sáez
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
33
|
Pavlíková D, Zemanová V, Pavlík M, Dobrev PI, Hnilička F, Motyka V. Response of cytokinins and nitrogen metabolism in the fronds of Pteris sp. under arsenic stress. PLoS One 2020; 15:e0233055. [PMID: 32413087 PMCID: PMC7228123 DOI: 10.1371/journal.pone.0233055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Given the close relationship between cytokinins (CKs), photosynthesis and nitrogen metabolism, this study assessed the effect of arsenic (As) contamination on these metabolic components in the As-hyperaccumulators Pteris cretica L. var. Albo-lineata (Pc-A) and var. Parkerii (Pc-P) as well as the As-non-hyperaccumulator Pteris straminea Mett. ex Baker (Ps). The ferns were cultivated in a pot experiment for 23 weeks in soil spiked with As at the levels 20 and 100 mg·kg-1. For the purpose of this study, the CKs were placed into five functionally different groups according to their structure and physiological roles: bioactive forms (bCKs; CK free bases); inactive or weakly active forms (dCKs; CK N-glucosides); transport forms (tCKs; CK ribosides); storage forms (sCKs; O-glucosides); and primary products of CK biosynthesis (ppbCKs; CK nucleotides). An important finding was higher CKs total content, accumulation of sCKs and reduction of dCKs in As-hyperaccumulators in contrast to non-hyperaccumulator ferns. A significant depletion of C resources was confirmed in ferns, especially Ps, which was determined by measuring the photosynthetic rate and chlorophyll fluorescence. A fluorescence decrease signified a reduction in the C/N ratio, inducing an increase of bioactive CKs forms in Pc-P and Ps. The impact of As on N utilization was significant in As-hyperaccumulators. The glutamic acid/glutamine ratio, an indicator of primary N assimilation, diminished in all ferns with increased As level in the soil. In conclusion, the results indicate a large phenotypic diversity of Pteris species to As and suggest that the CKs composition and the glutamic acid/glutamine ratio can be used as a tool to diagnose As stress in plants.
Collapse
Affiliation(s)
- Daniela Pavlíková
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Veronika Zemanová
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
- Isotope Laboratory, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Pavlík
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
- Isotope Laboratory, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - František Hnilička
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Václav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
34
|
Fan L, Tang J, Zhang D, Ma M, Wang Y, Han Y. Investigations on the phytotoxicity of perfluorooctanoic acid in Arabidopsis thaliana. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1131-1143. [PMID: 31820230 DOI: 10.1007/s11356-019-07018-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Environmental contamination by perfluorooctanoic acid (PFOA) has raised concerns for years. Yet, little information on its phytotoxic effects and underlying mechanisms in higher plants is available. To this end, comparative analyses of the responses to PFOA exposure between shoots and roots in the model plant species Arabidopsis thaliana were performed at the physiological and molecular levels. Our results showed that PFOA exposure reduced Arabidopsis biomass in a dose-related manner, and shoot growth was more sensitive to PFOA than root growth. Consistently, PFOA accumulation and the levels of several metal elements, including Zn, Ca, Cu, and K, in addition to Fe, were more substantially affected in the shoots than in the roots. Transcriptomic analysis further showed that the shoot transcriptional profile was distinguishable from that of roots upon PFOA exposure. Nevertheless, some overlapping genes were present between the shoots and roots, mainly including transporter genes, Fe-deficiency-responsive genes, and oxidative stress-related genes. More importantly, a comparative analysis of ROS-associated genes in combination with other oxidative stress assays pointed out that PFOA triggered certain oxidative stress-associated events more strongly in shoots than in roots. Overall, the results demonstrated that PFOA exposure caused alterations in PFOA distribution, metal element balance, reconfiguration of transcriptomes, and induction of oxidative stress in a tissue-dependent manner in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Lingling Fan
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Jie Tang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China
- Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Danfeng Zhang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Mingyue Ma
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Yu Wang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Yi Han
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, Anhui, China.
| |
Collapse
|
35
|
New Insights into Multistep-Phosphorelay (MSP)/ Two-Component System (TCS) Regulation: Are Plants and Bacteria that Different? PLANTS 2019; 8:plants8120590. [PMID: 31835810 PMCID: PMC6963811 DOI: 10.3390/plants8120590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/27/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022]
Abstract
The Arabidopsis multistep-phosphorelay (MSP) is a signaling mechanism based on a phosphorelay that involves three different types of proteins: Histidine kinases, phosphotransfer proteins, and response regulators. Its bacterial equivalent, the two-component system (TCS), is the most predominant device for signal transduction in prokaryotes. The TCS has been extensively studied and is thus generally well-understood. In contrast, the MSP in plants was first described in 1993. Although great advances have been made, MSP is far from being completely comprehended. Focusing on the model organism Arabidopsis thaliana, this review summarized recent studies that have revealed many similarities with bacterial TCSs regarding how TCS/MSP signaling is regulated by protein phosphorylation and dephosphorylation, protein degradation, and dimerization. Thus, comparison with better-understood bacterial systems might be relevant for an improved study of the Arabidopsis MSP.
Collapse
|
36
|
Pérez-Llorca M, Casadesús A, Munné-Bosch S, Müller M. Contrasting patterns of hormonal and photoprotective isoprenoids in response to stress in Cistus albidus during a Mediterranean winter. PLANTA 2019; 250:1409-1422. [PMID: 31286198 DOI: 10.1007/s00425-019-03234-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/03/2019] [Indexed: 06/09/2023]
Abstract
Seasonal accumulation of hormonal and photoprotective isoprenoids, particularly α-tocopherol, carotenoids and abscisic acid, indicate their important role in protecting Cistus albidus plants from environmental stress during a Mediterranean winter. The high diurnal amounts of α-tocopherol and xanthophylls 3 h before maximum light intensity suggest a photoprotective response against the prevailing diurnal changes. The timing to modulate acclimatory/defense responses under changing environmental conditions is one of the most critical points for plant fitness and stress tolerance. Here, we report seasonal and diurnal changes in the contents of isoprenoids originated from the methylerythritol phosphate pathway, including chlorophylls, carotenoids, tocochromanols, and phytohormones (abscisic acid, cytokinins, and gibberellins) in C. albidus during a Mediterranean winter. Plants were subjected not only to typically low winter temperatures but also to drought, as shown by a mean plant water status of 54% during the experimental period. The maximum PSII efficiency, however, remained consistently high (Fv/Fm > 0.8), proving that C. albidus had efficient mechanisms to tolerate combined stress conditions during winter. While seasonal α-tocopherol contents remained high (200-300 µg/g DW) during the experimental period, carotenoid contents increased during winter attaining maximum levels in February (minimum air temperature ≤ 5 °C for 13 days). Following the initial transient increases of bioactive trans-zeatin (about fivefold) during winter, the increased abscisic acid contents proved its important role during abiotic stress tolerance. Diurnal amounts of α-tocopherol and xanthophylls, particularly lutein, zeaxanthin and neoxanthin including the de-epoxidation state, reached maximum levels as early as 2 h after dawn, when solar intensity was 68% lower than the maximum solar radiation at noon. It is concluded that (1) given their proven antioxidant properties, both α-tocopherol and carotenoids seem to play a crucial role protecting the photosynthetic apparatus under severe stress conditions; (2) high seasonal amounts of abscisic acid indicate its important role in abiotic stress tolerance within plant hormones, although under specific environmental conditions, accumulation of bioactive cytokinins appears to be involved to enhance stress tolerance; (3) the concerted diurnal adjustment of α-tocopherol and xanthophylls as early as 3 h before maximum light intensity suggests that plants anticipated the predictable diurnal changes in the environment to protect the photosynthetic apparatus.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Biodiversity Research Institute, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Andrea Casadesús
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Biodiversity Research Institute, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
37
|
Bychkov I, Kudryakova N, Andreeva A, Pojidaeva E, Kusnetsov V. Melatonin modifies the expression of the genes for nuclear- and plastid-encoded chloroplast proteins in detached Arabidopsis leaves exposed to photooxidative stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:404-412. [PMID: 31629225 DOI: 10.1016/j.plaphy.2019.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Melatonin, a potent regulator during plant development and stress responses, affects diverse plastid-related processes. However, its role in the regulation of plastid gene expression is largely unknown. In this study, exogenous melatonin was shown to reduce the negative influence of excess light by increasing the efficiency of the photosystems and rearranging the expression of chloroplast- and nuclear-encoded genes in detached Arabidopsis leaves. The positive effects of melatonin predominantly occurred at lower concentrations, while high doses had an inhibitory effect. The impact of melatonin was not straightforward. It mainly influenced the expression of the genes encoding the chloroplast transcription machinery and housekeeping genes involved in maintaining transcriptional activity and the functional state of chloroplasts. Despite the fact that melatonin treatment improved photosynthetic parameters, the levels of photosynthesis gene transcripts and photosynthetic proteins remained practically unaltered suggesting that melatonin impact on photosynthetic apparatus which would allow the balancing of chloroplast functions with stress responses is highly complicated.
Collapse
Affiliation(s)
- Ivan Bychkov
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| | - Natalia Kudryakova
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| | - Aleksandra Andreeva
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| | - Elena Pojidaeva
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| | - Victor Kusnetsov
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| |
Collapse
|
38
|
Hilker M, Schmülling T. Stress priming, memory, and signalling in plants. PLANT, CELL & ENVIRONMENT 2019; 42:753-761. [PMID: 30779228 DOI: 10.1111/pce.13526] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants need to cope with changing environmental conditions, be it variable light or temperature, different availability of water or nutrients, or attack by pathogens or insects. Some of these changing conditions can become stressful and require strong countermeasures to ensure plant survival. Plants have evolved numerous distinct sensing and signalling mechanisms to perceive and respond appropriately to a variety of stresses. Because of the unpredictable nature of numerous stresses, resource-saving stress response mechanisms are inducible and become activated only upon a stress experience. Furthermore, plants have evolved mechanisms by which they can remember past stress events and prime their responses in order to react more rapidly or more strongly to recurrent stress. Research over the last decade has revealed mechanisms of this information storage and retrieval, which include epigenetic regulation, transcriptional priming, primed conformation of proteins, or specific hormonal or metabolic signatures. There is also increasing understanding of the ecological constraints and relevance of stress priming and memory. This special issue presents research articles and reviews addressing various aspects of this exciting and growing field of research. Here, we introduce the topic by referring to the articles published in this issue, and we outline open questions and future directions of research.
Collapse
Affiliation(s)
- Monika Hilker
- Dahlem Centre of Plant Sciences (DCPS), Institute of Biology/Applied Zoology & Ecology, Freie Universität Berlin, D-14163, Berlin, Germany
| | - Thomas Schmülling
- Dahlem Centre of Plant Sciences (DCPS), Institute of Biology/Applied Genetics, Freie Universität Berlin, D-14195, Berlin, Germany
| |
Collapse
|
39
|
Cortleven A, Leuendorf JE, Frank M, Pezzetta D, Bolt S, Schmülling T. Cytokinin action in response to abiotic and biotic stresses in plants. PLANT, CELL & ENVIRONMENT 2019; 42:998-1018. [PMID: 30488464 DOI: 10.1111/pce.13494] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 05/20/2023]
Abstract
The phytohormone cytokinin was originally discovered as a regulator of cell division. Later, it was described to be involved in regulating numerous processes in plant growth and development including meristem activity, tissue patterning, and organ size. More recently, diverse functions for cytokinin in the response to abiotic and biotic stresses have been reported. Cytokinin is required for the defence against high light stress and to protect plants from a novel type of abiotic stress caused by an altered photoperiod. Additionally, cytokinin has a role in the response to temperature, drought, osmotic, salt, and nutrient stress. Similarly, the full response to certain plant pathogens and herbivores requires a functional cytokinin signalling pathway. Conversely, different types of stress impact cytokinin homeostasis. The diverse functions of cytokinin in responses to stress and crosstalk with other hormones are described. Its emerging roles as a priming agent and as a regulator of growth-defence trade-offs are discussed.
Collapse
Affiliation(s)
- Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Jan Erik Leuendorf
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Manuel Frank
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Daniela Pezzetta
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Sylvia Bolt
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| |
Collapse
|
40
|
Wallmeroth N, Jeschke D, Slane D, Nägele J, Veerabagu M, Mira-Rodado V, Berendzen KW. ARR22 overexpression can suppress plant Two-Component Regulatory Systems. PLoS One 2019; 14:e0212056. [PMID: 30742656 PMCID: PMC6370222 DOI: 10.1371/journal.pone.0212056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/26/2019] [Indexed: 12/13/2022] Open
Abstract
In plants, several developmental processes are co-coordinated by cytokinins via phosphorylation dependent processes of the Two-Component System (TCS). An outstanding challenge is to track phosphorelay flow from cytokinin perception to its molecular outputs, of which gene activation plays a major role. To address this issue, a kinetic-based reporter system was expounded to track TCS phosphorelay activity in vivo that can distinguish between basal and cytokinin dependent effects of overexpressed TCS members. The TCS phosphorelay can be positively activated by cytokinin and inhibited by pharmaceuticals or naturally interfering components. In this case we took advantage of the phosphohistidine-phosphatase Arabidopsis Response Regulator (ARR) 22 and investigated its phosphocompetition with other TCS members in regulating promoters of ARR5 and WUS in Arabidopsis thaliana cell culture protoplasts. In congruency with the proposed function of ARR22, overexpression of ARR22 blocked the activation of all B-type ARRs in this study in a TCS dependent manner. Furthermore, this effect could not be mimicked by A-type response regulator overexpression or compensated by AHP overexpression. Compared to other reporter assays, ours mimicked effects previously observed only in transgenic plants for all of the TCS proteins studied, suggesting that it is possible to expose phosphocompetition. Thus, our approach can be used to investigate gene signaling networks involving the TCS by leveraging ARR22 as a TCS inhibitor along with B-type ARR overexpression.
Collapse
Affiliation(s)
- Niklas Wallmeroth
- Department of Plant Physiology at the Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Daniel Jeschke
- Department of Plant Physiology at the Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Daniel Slane
- Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Janine Nägele
- Department of Plant Physiology at the Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Manikandan Veerabagu
- Department of Plant Physiology at the Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Virtudes Mira-Rodado
- Department of Plant Physiology at the Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Kenneth Wayne Berendzen
- Department of Plant Physiology at the Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
- Department of the Central Facilities at Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
41
|
Cortleven A, Ehret S, Schmülling T, Johansson H. Ethylene-independent promotion of photomorphogenesis in the dark by cytokinin requires COP1 and the CDD complex. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:165-178. [PMID: 30272197 PMCID: PMC6305196 DOI: 10.1093/jxb/ery344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/26/2018] [Indexed: 05/23/2023]
Abstract
The transition of skotomorphogenesis to photomorphogenesis is induced by the perception of light, and is characterized by the inhibition of hypocotyl elongation and opening of cotyledons. Although it is known that the plant hormone cytokinin inhibits hypocotyl elongation in dark-grown Arabidopsis plants when applied in high concentrations, it is unclear to what extent this response is the result of cytokinin alone or cytokinin-induced ethylene production. Here, we show that cytokinin-induced inhibition of hypocotyl elongation is largely independent of ethylene and suggest a close connection between the cytokinin two-component system and the light-signaling networks. We show that this cytokinin signal is mainly mediated through the cytokinin receptor ARABIDOPSIS HISTIDINE KINASE3 and the ARABIDOPSIS RESPONSE REGULATOR1 in combination with ARR12. Interestingly, mutation of CONSTITUTIVELY PHOTOMORPOGENIC1 (COP1), DE-ETIOLATED1, and CYTOKININ INSENSITIVE4/COP10 renders plants insensitive to cytokinin, and these factors are indispensable for the transcriptional response during cytokinin-induced de-etiolation, indicating that a functional light-signaling pathway is essential for this cytokinin response. In addition, the effect of cytokinin on hypocotyl elongation is strongly dependent on the light conditions, with higher light intensities causing a switch in the response to cytokinin from an inhibitor to a promoter of hypocotyl elongation.
Collapse
Affiliation(s)
- Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Stephanie Ehret
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Henrik Johansson
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
42
|
Akram W, Aslam H, Ahmad SR, Anjum T, Yasin NA, Khan WU, Ahmad A, Guo J, Wu T, Luo W, Li G. Bacillus megaterium strain A12 ameliorates salinity stress in tomato plants through multiple mechanisms. JOURNAL OF PLANT INTERACTIONS 2019; 14:506-518. [DOI: 10.1080/17429145.2019.1662497] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/21/2019] [Indexed: 06/16/2023]
Affiliation(s)
- Waheed Akram
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Hina Aslam
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Tehmina Anjum
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Nasim Ahmad Yasin
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Waheed Ullah Khan
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Aqeel Ahmad
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Juxian Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Tingquan Wu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Wenlong Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| |
Collapse
|
43
|
Hönig M, Plíhalová L, Husičková A, Nisler J, Doležal K. Role of Cytokinins in Senescence, Antioxidant Defence and Photosynthesis. Int J Mol Sci 2018; 19:E4045. [PMID: 30558142 PMCID: PMC6321018 DOI: 10.3390/ijms19124045] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 01/13/2023] Open
Abstract
Cytokinins modulate a number of important developmental processes, including the last phase of leaf development, known as senescence, which is associated with chlorophyll breakdown, photosynthetic apparatus disintegration and oxidative damage. There is ample evidence that cytokinins can slow down all these senescence-accompanying changes. Here, we review relationships between the various mechanisms of action of these regulatory molecules. We highlight their connection to photosynthesis, the pivotal process that generates assimilates, however may also lead to oxidative damage. Thus, we also focus on cytokinin induction of protective responses against oxidative damage. Activation of antioxidative enzymes in senescing tissues is described as well as changes in the levels of naturally occurring antioxidative compounds, such as phenolic acids and flavonoids, in plant explants. The main goal of this review is to show how the biological activities of cytokinins may be related to their chemical structure. New links between molecular aspects of natural cytokinins and their synthetic derivatives with antisenescent properties are described. Structural motifs in cytokinin molecules that may explain why these molecules play such a significant regulatory role are outlined.
Collapse
Affiliation(s)
- Martin Hönig
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Lucie Plíhalová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Alexandra Husičková
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Jaroslav Nisler
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
44
|
Nisler J, Zatloukal M, Sobotka R, Pilný J, Zdvihalová B, Novák O, Strnad M, Spíchal L. New Urea Derivatives Are Effective Anti-senescence Compounds Acting Most Likely via a Cytokinin-Independent Mechanism. FRONTIERS IN PLANT SCIENCE 2018; 9:1225. [PMID: 30271413 PMCID: PMC6142817 DOI: 10.3389/fpls.2018.01225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Stress-induced senescence is a global agro-economic problem. Cytokinins are considered to be key plant anti-senescence hormones, but despite this practical function their use in agriculture is limited because cytokinins also inhibit root growth and development. We explored new cytokinin analogs by synthesizing a series of 1,2,3-thiadiazol-5-yl urea derivatives. The most potent compound, 1-(2-methoxy-ethyl)-3-1,2,3-thiadiazol-5-yl urea (ASES - Anti-Senescence Substance), strongly inhibited dark-induced senescence in leaves of wheat (Triticum aestivum L.) and Arabidopsis thaliana. The inhibitory effect of ASES on wheat leaf senescence was, to the best of our knowledge, the strongest of any known natural or synthetic compound. In vivo, ASES also improved the salt tolerance of young wheat plants. Interestingly, ASES did not affect root development of wheat and Arabidopsis, and molecular and classical cytokinin bioassays demonstrated that ASES exhibits very low cytokinin activity. A proteomic analysis of the ASES-treated leaves further revealed that the senescence-induced degradation of photosystem II had been very effectively blocked. Taken together, our results including data from cytokinin content analysis demonstrate that ASES delays leaf senescence by mechanism(s) different from those of cytokinins and, more effectively. No such substance has yet been described in the literature, which makes ASES an interesting tool for research of photosynthesis regulation. Its simple synthesis and high efficiency predetermine ASES to become also a potent plant stress protectant in biotechnology and agricultural industries.
Collapse
Affiliation(s)
- Jaroslav Nisler
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Olomouc, Czechia
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czechia
| | - Marek Zatloukal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czechia
| | - Roman Sobotka
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, Třeboň, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Jan Pilný
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, Třeboň, Czechia
| | - Barbora Zdvihalová
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, Třeboň, Czechia
| | - Ondrej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Olomouc, Czechia
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Olomouc, Czechia
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czechia
| |
Collapse
|
45
|
Ahanger MA, Alyemeni MN, Wijaya L, Alamri SA, Alam P, Ashraf M, Ahmad P. Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system. PLoS One 2018; 13:e0202175. [PMID: 30180173 PMCID: PMC6122799 DOI: 10.1371/journal.pone.0202175] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023] Open
Abstract
The protective role of exogenously applied kinetin (10 μM KN, a cytokinin) against the adverse effects caused by NaCl-induced (150 mM) stress in Solanum lycopersicum was investigated. Application of KN significantly enhanced growth and biomass production of normally grown plants (non-stressed) and also mitigated the adverse effect of NaCl on stressed plants to a considerable extent. Among the examined parameters, chlorophyll and carotenoid contents, photosynthetic parameters, components of the antioxidant system (both enzymatic and non-enzymatic), osmotica accumulation, and mineral uptake exhibited a significant increase following the application of KN. Furthermore, KN application reduced the generation of reactive free radical hydrogen peroxide, coupled with a significant reduction in lipid peroxidation and an increase in membrane stability. The activities of antioxidant enzymes, and glyoxylase system were found to be promoted in plants exposed to NaCl, and the activities were further promoted by KN application, thereby protecting S. lycopersicum plants against NaCl-induced oxidative damage. Further strengthening of the antioxidant system in KN supplied plants was ascribed to regulation of ascorbate-glutathione cycle, phenols and flavonoids in them. The levels of proline and glycine betaine increased considerably in KN-treated plants, thereby maintaining relative water content. Moreover, exogenous KN application reduced the inhibitory effects of NaCl on K+ and Ca2+ uptake, which resulted in a considerable reduction in tissue Na+/K+ ratio.
Collapse
Affiliation(s)
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Leonard Wijaya
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud A. Alamri
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Pravej Alam
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia (KSA)
| | - Muhammad Ashraf
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- International Centre for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
46
|
Gu J, Li Z, Mao Y, Struik PC, Zhang H, Liu L, Wang Z, Yang J. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:320-331. [PMID: 30080619 DOI: 10.1016/j.plantsci.2018.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 05/03/2023]
Abstract
Nitrogen is an essential, often limiting, factor in plant growth and development. To regulate growth under limited nitrogen supply, plants sense the internal and external nitrogen status, and coordinate various metabolic processes and developmental programs accordingly. This coordination requires the transmission of various signaling molecules that move across the entire plant. Cytokinins, phytohormones derived from adenine and synthesized in various parts of the plant, are considered major local and long-distance messengers. Cytokinin metabolism and signaling are closely associated with nitrogen availability. They are systemically transported via the vasculature from plant roots to shoots, and vice versa, thereby coordinating shoot and root development. Tight linkage exists between the nitrogen signaling network and cytokinins during diverse developmental and physiological processes. However, the cytokinin-nitrogen interactions and the communication systems involved in sensing rhizospheric nitrogen status and in regulating canopy development remain obscure. We review current knowledge on cytokinin biosynthesis, transport and signaling, nitrogen acquisition, metabolism and signaling, and their interactive roles in regulating root-shoot morphological and physiological characteristics. We also discuss the role of spatio-temporal regulation of cytokinins in enhancing beneficial crop traits of yield and nitrogen use efficiency.
Collapse
Affiliation(s)
- Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhikang Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yiqi Mao
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Paul C Struik
- Centre for Crop Systems Analysis, Department of Plant Science, Wageningen University, PO Box 430, Wageningen, 6700 AK, The Netherlands
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
47
|
Pavlů J, Novák J, Koukalová V, Luklová M, Brzobohatý B, Černý M. Cytokinin at the Crossroads of Abiotic Stress Signalling Pathways. Int J Mol Sci 2018; 19:ijms19082450. [PMID: 30126242 PMCID: PMC6121657 DOI: 10.3390/ijms19082450] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/13/2023] Open
Abstract
Cytokinin is a multifaceted plant hormone that plays major roles not only in diverse plant growth and development processes, but also stress responses. We summarize knowledge of the roles of its metabolism, transport, and signalling in responses to changes in levels of both macronutrients (nitrogen, phosphorus, potassium, sulphur) and micronutrients (boron, iron, silicon, selenium). We comment on cytokinin's effects on plants' xenobiotic resistance, and its interactions with light, temperature, drought, and salinity signals. Further, we have compiled a list of abiotic stress-related genes and demonstrate that their expression patterns overlap with those of cytokinin metabolism and signalling genes.
Collapse
Affiliation(s)
- Jaroslav Pavlů
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Vladěna Koukalová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Markéta Luklová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- Institute of Biophysics AS CR, 612 00 Brno, Czech Republic.
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- Phytophthora Research Centre, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| |
Collapse
|
48
|
Janečková H, Husičková A, Ferretti U, Prčina M, Pilařová E, Plačková L, Pospíšil P, Doležal K, Špundová M. The interplay between cytokinins and light during senescence in detached Arabidopsis leaves. PLANT, CELL & ENVIRONMENT 2018; 41:1870-1885. [PMID: 29744884 DOI: 10.1111/pce.13329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 05/06/2023]
Abstract
Light and cytokinins are known to be the key players in the regulation of plant senescence. In detached leaves, the retarding effect of light on senescence is well described; however, it is not clear to what extent is this effect connected with changes in endogenous cytokinin levels. We have performed a detailed analysis of changes in endogenous content of 29 cytokinin forms in detached leaves of Arabidopsis thaliana (wild-type and 3 cytokinin receptor double mutants). Leaves were kept under different light conditions, and changes in cytokinin content were correlated with changes in chlorophyll content, efficiency of photosystem II photochemistry, and lipid peroxidation. In leaves kept in darkness, we have observed decreased content of the most abundant cytokinin free bases and ribosides, but the content of cis-zeatin increased, which indicates the role of this cytokinin in the maintenance of basal leaf viability. Our findings underscore the importance of light conditions on the content of specific cytokinins, especially N6 -(Δ2 -isopentenyl)adenine. On the basis of our results, we present a scheme summarizing the contribution of the main active forms of cytokinins, cytokinin receptors, and light to senescence regulation. We conclude that light can compensate the disrupted cytokinin signalling in detached leaves.
Collapse
Affiliation(s)
- Helena Janečková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Alexandra Husičková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Ursula Ferretti
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Maroš Prčina
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Eva Pilařová
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, 78371, Olomouc, Czech Republic
| | - Lenka Plačková
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, 78371, Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Pavel Pospíšil
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Karel Doležal
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, 78371, Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Martina Špundová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| |
Collapse
|
49
|
Li L, Gu W, Li J, Li C, Xie T, Qu D, Meng Y, Li C, Wei S. Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:35-55. [PMID: 29793181 DOI: 10.1016/j.plaphy.2018.05.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 05/21/2023]
Abstract
Drought stress (DS) is a major environmental factor limiting plant growth and crop productivity worldwide. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to DS. The effects of exogenous Spd on plant growth, photosynthetic performance, and chloroplast ultrastructure as well as changes in endogenous polyamines (PAs) and phytohormones were investigate in DS-resistant (Xianyu 335) and DS-sensitive (Fenghe 1) maize seedlings under well-watered and DS treatments. Exogenous Spd alleviated the stress-induced reduction in growth, photosynthetic pigment content, photosynthesis rate (Pn) and photochemical quenching (qP) parameters, including the maximum photochemistry efficiency of photosystem II (PSII) (Fv/Fm), PSII operating efficiency (ФPSII), and qP coefficient. Exogenous Spd further enhanced stress-induced elevation in non-photochemical quenching (NPQ) and the de-epoxidation state of the xanthophyll cycle (DEPS). Microscopic analysis revealed that seedlings displayed a more ordered arrangement of chloroplast ultrastructure upon Spd application during DS. Exogenous Spd increased the endogenous PA concentrations in the stressed plants. Additionally, exogenous Spd increased indoleacetic acid (IAA), zeatin riboside (ZR) and gibberellin A3 (GA3) and decreased salicylic acid (SA) and jasmonate (JA) concentrations under DS. These results indicate that exogenous Spd can alleviate the growth inhibition and damage to the structure and function of the photosynthetic apparatus caused by DS and that this alleviation may be associated with changes in endogenous PAs and phytohormones. This study contributes to advances in the knowledge of Spd-induced drought tolerance.
Collapse
Affiliation(s)
- Lijie Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Wanrong Gu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Jing Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Congfeng Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10081, China
| | - Tenglong Xie
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Danyang Qu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Yao Meng
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150038, Heilongjiang, China
| | - Caifeng Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Shi Wei
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| |
Collapse
|
50
|
The interplay between light, plant growth regulators and elicitors on growth and secondary metabolism in cell cultures of Fagonia indica. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:153-160. [DOI: 10.1016/j.jphotobiol.2018.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 11/18/2022]
|