1
|
Guo H, Guan Z, Liu Y, Chao K, Zhu Q, Zhou Y, Wu H, Pi E, Chen H, Zeng H. Comprehensive identification and expression analyses of sugar transporter genes reveal the role of GmSTP22 in salt stress resistance in soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109095. [PMID: 39255613 DOI: 10.1016/j.plaphy.2024.109095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/02/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
The transport, compartmentation and allocation of sugar are critical for plant growth and development, as well as for stress resistance, but sugar transporter genes have not been comprehensively characterized in soybean. Here, we performed a genome-wide identification and expression analyses of sugar transporter genes in soybean in order to reveal their putative functions. A total of 122 genes encoding sucrose transporters (SUTs) and monosaccharide transporters (MSTs) were identified in soybean. They were classified into 8 subfamilies according to their phylogenetic relationships and their conserved motifs. Comparative genomics analysis indicated that whole genome duplication/segmental duplication and tandem duplication contributed to the expansion of sugar transporter genes in soybean. Expression analysis by retrieving transcriptome datasets suggested that most of these sugar transporter genes were expressed in various tissues, and a number of genes exhibited tissue-specific expression patterns. Several genes including GmSTP21, GmSFP8, and GmPLT5/6/7/8/9 were predominantly expressed in nodules, and GmPLT8 was significantly induced by rhizobia inoculation in root hairs. Transcript profiling and qRT-PCR analyses suggested that half of these sugar transporter genes were significantly induced or repressed under stresses like salt, drought, and cold. In addition, GmSTP22 was found to be localized in the plasma membrane, and its overexpression promoted plant growth and salt tolerance in transgenic Arabidopsis under the supplement with glucose or sucrose. This study provides insights into the evolutionary expansion, expression pattern and functional divergence of sugar transporter gene family, and will enable further understanding of their biological functions in the regulation of growth, yield formation and stress resistance of soybean.
Collapse
Affiliation(s)
- Hang Guo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhengxing Guan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuanyuan Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Kexin Chao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qiuqing Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yi Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Haicheng Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
2
|
Zhang Q, Wang Z, Gao R, Jiang Y. Sugars, Lipids and More: New Insights Into Plant Carbon Sources During Plant-Microbe Interactions. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39465686 DOI: 10.1111/pce.15242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/14/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Heterotrophic microbes rely on host-derived carbon sources for their growth and survival. Depriving pathogens of plant carbon is therefore a promising strategy for protecting plants from disease and reducing yield losses. Importantly, this carbon starvation-mediated resistance is expected to be more broad-spectrum and durable than race-specific R-gene-mediated resistance. Although sugars are well characterized as major carbon sources for bacteria, emerging evidence suggests that plant-derived lipids are likely to be an essential carbon source for some fungal microbes, particularly biotrophs. Here, we comprehensively discuss the dual roles of carbon sources (mainly sugars and lipids) and their transport processes in immune signalling and microbial nutrition. We summarize recent findings revealing the crucial roles of lipids as susceptibility factors at all stages of pathogen infection. In particular, we discuss the potential pathways by which lipids and other plant carbon sources are delivered to biotrophs, including protein-mediated transport, vesicle trafficking and autophagy. Finally, we highlight knowledge gaps and offer suggestions for clarifying the mechanisms that underlie nutrient uptake by biotrophs, providing guidance for future research on the application of carbon starvation-mediated resistance.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Zongqi Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Runjie Gao
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yina Jiang
- School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
3
|
Zhu J, Li T, Ma J, Li W, Zhang H, Nadezhda T, Zhu Y, Dong X, Li C, Fan J. Genome-wide identification and investigation of monosaccharide transporter gene family based on their evolution and expression analysis under abiotic stress and hormone treatments in maize (Zea mays L.). BMC PLANT BIOLOGY 2024; 24:496. [PMID: 38831278 PMCID: PMC11149190 DOI: 10.1186/s12870-024-05186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Monosaccharide transporter (MST) family, as a carrier for monosaccharide transport, plays an important role in carbon partitioning and widely involves in plant growth and development, stress response, and signaling transduction. However, little information on the MST family genes is reported in maize (Zea mays), especially in response to abiotic stresses. In this study, the genome-wide identification of MST family genes was performed in maize. RESULT A total of sixty-six putative members of MST gene family were identified and divided into seven subfamilies (including SPT, PMT, VGT, INT, pGlcT, TMT, and ERD) using bioinformatics approaches, and gene information, phylogenetic tree, chromosomal location, gene structure, motif composition, and cis-acting elements were investigated. Eight tandem and twelve segmental duplication events were identified, which played an important role in the expansion of the ZmMST family. Synteny analysis revealed the evolutionary features of MST genes in three gramineous crop species. The expression analysis indicated that most of the PMT, VGT, and ERD subfamilies members responded to osmotic and cadmium stresses, and some of them were regulated by ABA signaling, while only a few members of other subfamilies responded to stresses. In addition, only five genes were induced by NaCl stress in MST family. CONCLUSION These results serve to understand the evolutionary relationships of the ZmMST family genes and supply some insight into the processes of monosaccharide transport and carbon partitioning on the balance between plant growth and development and stress response in maize.
Collapse
Affiliation(s)
- Jialun Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Tianfeng Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Jing Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Wenyu Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Hanyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Tsyganova Nadezhda
- Saint-Petersburg State Agrarian University, Peterburgskoe shosse, Pushkin, St. Petersburg, 196601, Russia
| | - Yanshu Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning, 110866, China.
| | - Jinjuan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| |
Collapse
|
4
|
Reyer A, Bazihizina N, Jaślan J, Scherzer S, Schäfer N, Jaślan D, Becker D, Müller TD, Pommerrenig B, Neuhaus HE, Marten I, Hedrich R. Sugar beet PMT5a and STP13 carriers suitable for proton-driven plasma membrane sucrose and glucose import in taproots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2219-2232. [PMID: 38602250 DOI: 10.1111/tpj.16740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Sugar beet (Beta vulgaris) is the major sugar-producing crop in Europe and Northern America, as the taproot stores sucrose at a concentration of around 20%. Genome sequence analysis together with biochemical and electrophysiological approaches led to the identification and characterization of the TST sucrose transporter driving vacuolar sugar accumulation in the taproot. However, the sugar transporters mediating sucrose uptake across the plasma membrane of taproot parenchyma cells remained unknown. As with glucose, sucrose stimulation of taproot parenchyma cells caused inward proton fluxes and plasma membrane depolarization, indicating a sugar/proton symport mechanism. To decipher the nature of the corresponding proton-driven sugar transporters, we performed taproot transcriptomic profiling and identified the cold-induced PMT5a and STP13 transporters. When expressed in Xenopus laevis oocytes, BvPMT5a was characterized as a voltage- and H+-driven low-affinity glucose transporter, which does not transport sucrose. In contrast, BvSTP13 operated as a high-affinity H+/sugar symporter, transporting glucose better than sucrose, and being more cold-tolerant than BvPMT5a. Modeling of the BvSTP13 structure with bound mono- and disaccharides suggests plasticity of the binding cleft to accommodate the different saccharides. The identification of BvPMT5a and BvSTP13 as taproot sugar transporters could improve breeding of sugar beet to provide a sustainable energy crop.
Collapse
Affiliation(s)
- Antonella Reyer
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Nadia Bazihizina
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
- Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Florence, 50019, Sesto Fiorentino, Italy
| | - Justyna Jaślan
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Sönke Scherzer
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Nadine Schäfer
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Dawid Jaślan
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilians-Universität, 80336, Munich, Germany
| | - Dirk Becker
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Thomas D Müller
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Benjamin Pommerrenig
- Plant Physiology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, 06484, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Irene Marten
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| |
Collapse
|
5
|
Liu L, Xu S, Tian L, Qin X, Wu G, Jiang H, Chen Y. Functional characterization of polyol/monosaccharide transporter 1 in Lotus japonicus. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154146. [PMID: 38043244 DOI: 10.1016/j.jplph.2023.154146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Polyol/Monosaccharide Transporters (PLTs/PMTs) localized in the plasma membrane have previously been identified in plants. The physiological role and the functional properties of these proteins in legume plants are, however, unclear. Here we describe the functional analysis of LjPLT1, a plasma membrane-localized PLT protein from Lotus japonicus. The LjPLT1 gene was strongly expressed in the vascular tissue of roots, stems and leaves. Expression of the LjPLT1 cDNAs in yeast revealed that the protein functions as a broad-spectrum H+ -symporter for both linear polyols of sorbitol and mannitol, and cyclic polyol myo-inositol. It also catalyzes the transport of different hexoses, including fructose, glucose, galactose and mannose. Overexpression of LjPLT1 (OELjPLT1) results in inhibition of plant growth and a decrease in nodule nitrogenase activity in L. japonicus. The soluble sugars were increased in newly expanded leaves, roots and nodules but decreased in mature leaves in OELjPLT1 plants. In addition, the OELjPLT1 seedlings displayed an increased sensitivity to high content mannitol and boron toxicity, but neither drought nor salinity stresses. Taken together, the present study indicates that the LjPLT1 protein may participate in the translocation of hexoses/polyols to regulate multiple physiological and growth processes in L. japonicus.
Collapse
Affiliation(s)
- Leru Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China; South China National Botanical Garden, Guangzhou, 510650, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Shaoming Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China; South China National Botanical Garden, Guangzhou, 510650, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Lu Tian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Xuelian Qin
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China; South China National Botanical Garden, Guangzhou, 510650, PR China.
| | - Guojiang Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China; South China National Botanical Garden, Guangzhou, 510650, PR China.
| | - Huawu Jiang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China; South China National Botanical Garden, Guangzhou, 510650, PR China.
| | - Yaping Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China; South China National Botanical Garden, Guangzhou, 510650, PR China.
| |
Collapse
|
6
|
O'Banion BS, Jones P, Demetros AA, Kelley BR, Knoor LH, Wagner AS, Chen JG, Muchero W, Reynolds TB, Jacobson D, Lebeis SL. Plant myo-inositol transport influences bacterial colonization phenotypes. Curr Biol 2023; 33:3111-3124.e5. [PMID: 37419115 DOI: 10.1016/j.cub.2023.06.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/14/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
Plant microbiomes are assembled and modified through a complex milieu of biotic and abiotic factors. Despite dynamic and fluctuating contributing variables, specific host metabolites are consistently identified as important mediators of microbial interactions. We combine information from a large-scale metatranscriptomic dataset from natural poplar trees and experimental genetic manipulation assays in seedlings of the model plant Arabidopsis thaliana to converge on a conserved role for transport of the plant metabolite myo-inositol in mediating host-microbe interactions. While microbial catabolism of this compound has been linked to increased host colonization, we identify bacterial phenotypes that occur in both catabolism-dependent and -independent manners, suggesting that myo-inositol may additionally serve as a eukaryotic-derived signaling molecule to modulate microbial activities. Our data suggest host control of this compound and resulting microbial behavior are important mechanisms at play surrounding the host metabolite myo-inositol.
Collapse
Affiliation(s)
- Bridget S O'Banion
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Piet Jones
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - Alexander A Demetros
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Brittni R Kelley
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Leah H Knoor
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Andrew S Wagner
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Sarah L Lebeis
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 38824, USA.
| |
Collapse
|
7
|
Wu Y, Wang S, Du W, Ding Y, Li W, Chen Y, Zheng Z, Wang Y. Sugar transporter ZmSWEET1b is responsible for assimilate allocation and salt stress response in maize. Funct Integr Genomics 2023; 23:137. [PMID: 37093289 DOI: 10.1007/s10142-023-01062-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Sugar efflux transporter SWEET family is involved in multiple biological processes, from nectar secretion, pollen fertility to seed filling. Although roles of SWEETs in abiotic stress adaption have been revealed mainly in reference organism Arabidopsis, cereal crops SWEETs responses to abiotic stimulation remain largely elusive. Here, we report the characterization of maize SWEET family member ZmSWEET1b, with emphasis on its response to salinity stress. ZmSWEET1b is a canonical sugar transporter, characteristic of seven transmembrane helices and plasma membrane localization. ZmSWEET1b and its rice ortholog OsSWEET1b in phylogenetic clade I underwent convergent selection during evolution. Two independent knockout lines were created by the CRISPR/Cas9 method to functionally characterized ZmSWEET1b. Sucrose and fructose contents are significantly decreased in ZmSWEET1b knockout lines. Mature leaves of ZmSWEET1b-edited lines exhibit chlorosis, reminiscent of senescence-like phenotype. Ears and seeds of ZmSWEET1b knockout lines are small. Upon salinity treatment, ZmSWEET1b-edited lines become more wilted. Transcriptional abundance of genes for Na+ efflux from roots to the rhizosphere, including ZmSOS1, ZmH+-ATPASE 2, and ZmH+-ATPASE 8, is decreased in salt-treated ZmSWEET1b knockout lines. These findings indicate that convergently selected sugar transporter ZmSWEET1b is important for maize plant development and responses to salt stress. The manipulation of ZmSWEET1b may represent a feasible way forward in the breeding of salinity tolerant ideotypes through the optimization of assimilate allocation.
Collapse
Affiliation(s)
- Yinting Wu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Shanshan Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Wenhui Du
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yuhang Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Wei Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yudong Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhongtian Zheng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yijun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
8
|
Mokshina N, Panina A, Galinousky D, Sautkina O, Mikshina P. Transcriptome profiling of celery petiole tissues reveals peculiarities of the collenchyma cell wall formation. PLANTA 2022; 257:18. [PMID: 36538078 DOI: 10.1007/s00425-022-04042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Transcriptome and biochemical analyses are applied to individual plant cell types to reveal potential players involved in the molecular machinery of cell wall formation in specialized cells such as collenchyma. Plant collenchyma is a mechanical tissue characterized by an irregular, thickened cell wall and the ability to support cell elongation. The composition of the collenchyma cell wall resembles that of the primary cell wall and includes cellulose, xyloglucan, and pectin; lignin is absent. Thus, the processes associated with the formation of the primary cell wall in the collenchyma can be more pronounced compared to other tissues due to its thickening. Primary cell walls intrinsic to different tissues may differ in structure and composition, which should be reflected at the transcriptomic level. For the first time, we conducted transcriptome profiling of collenchyma strands isolated from young celery petioles and compared them with other tissues, such as parenchyma and vascular bundles. Genes encoding proteins involved in the primary cell wall formation during cell elongation, such as xyloglucan endotransglucosylase/hydrolases, expansins, and leucine-rich repeat proteins, were significantly activated in the collenchyma. As the key players in the transcriptome orchestra of collenchyma, xyloglucan endotransglucosylase/hydrolase transcripts were characterized in more detail, including phylogeny and expression patterns. The comprehensive approach that included transcriptome and biochemical analyses allowed us to reveal peculiarities of collenchyma cell wall formation and modification, matching the abundance of upregulated transcripts and their potential substrates for revealed gene products. As a result, specific isoforms of multigene families were determined for further functional investigation.
Collapse
Affiliation(s)
- Natalia Mokshina
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia.
| | - Anastasia Panina
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
| | - Dmitry Galinousky
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576, CNRS, Université de Lille, 59655, Villeneuve d'Ascq, France
| | - Olga Sautkina
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
| | - Polina Mikshina
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
| |
Collapse
|
9
|
Yang B, Wang J, Yu M, Zhang M, Zhong Y, Wang T, Liu P, Song W, Zhao H, Fastner A, Suter M, Rentsch D, Ludewig U, Jin W, Geiger D, Hedrich R, Braun DM, Koch KE, McCarty DR, Wu WH, Li X, Wang Y, Lai J. The sugar transporter ZmSUGCAR1 of the nitrate transporter 1/peptide transporter family is critical for maize grain filling. THE PLANT CELL 2022; 34:4232-4254. [PMID: 36047828 PMCID: PMC9614462 DOI: 10.1093/plcell/koac256] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/31/2022] [Indexed: 05/07/2023]
Abstract
Maternal-to-filial nutrition transfer is central to grain development and yield. nitrate transporter 1/peptide transporter (NRT1-PTR)-type transporters typically transport nitrate, peptides, and ions. Here, we report the identification of a maize (Zea mays) NRT1-PTR-type transporter that transports sucrose and glucose. The activity of this sugar transporter, named Sucrose and Glucose Carrier 1 (SUGCAR1), was systematically verified by tracer-labeled sugar uptake and serial electrophysiological studies including two-electrode voltage-clamp, non-invasive microelectrode ion flux estimation assays in Xenopus laevis oocytes and patch clamping in HEK293T cells. ZmSUGCAR1 is specifically expressed in the basal endosperm transfer layer and loss-of-function mutation of ZmSUGCAR1 caused significantly decreased sucrose and glucose contents and subsequent shrinkage of maize kernels. Notably, the ZmSUGCAR1 orthologs SbSUGCAR1 (from Sorghum bicolor) and TaSUGCAR1 (from Triticum aestivum) displayed similar sugar transport activities in oocytes, supporting the functional conservation of SUGCAR1 in closely related cereal species. Thus, the discovery of ZmSUGCAR1 uncovers a type of sugar transporter essential for grain development and opens potential avenues for genetic improvement of seed-filling and yield in maize and other grain crops.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB) and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Jing Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB) and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Miao Yu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meiling Zhang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB) and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Yanting Zhong
- The Key Laboratory of Plant–Soil Interactions (MOE), Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tianyi Wang
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Peng Liu
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Weibin Song
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB) and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Haiming Zhao
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB) and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Astrid Fastner
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Marianne Suter
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology (340h), University of Hohenheim, Stuttgart 70593, Germany
| | - Weiwei Jin
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Dietmar Geiger
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute for Biosciences, University of Würzburg, Würzburg 97082, Germany
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute for Biosciences, University of Würzburg, Würzburg 97082, Germany
| | - David M Braun
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, Missouri 65211, USA
| | - Karen E Koch
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Donald R McCarty
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xuexian Li
- The Key Laboratory of Plant–Soil Interactions (MOE), Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB) and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Bhinder G, Sharma S, Kaur H, Akhatar J, Mittal M, Sandhu S. Genomic Regions Associated With Seed Meal Quality Traits in Brassica napus Germplasm. FRONTIERS IN PLANT SCIENCE 2022; 13:882766. [PMID: 35909769 PMCID: PMC9333065 DOI: 10.3389/fpls.2022.882766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
The defatted Brassica napus (rapeseed) meal can be high-protein feed for livestock as the protein value of rapeseed meal is higher than that of the majority of other vegetable proteins. Extensive work has already been carried out on developing canola rapeseed where the focus was on reducing erucic acid and glucosinolate content, with less consideration to other antinutritional factors such as tannin, phytate, sinapine, crude fiber, etc. The presence of these antinutrients limits the use and marketing of rapeseed meals and a significant amount of it goes unused and ends up as waste. We investigated the genetic architecture of crude protein, methionine, tryptophan, total phenols, β-carotene, glucosinolates (GLSs), phytate, tannins, sinapine, and crude fiber content of defatted seed meal samples by conducting a genome-wide association study (GWAS), using a diversity panel comprising 96 B. napus genotypes. Genotyping by sequencing was used to identify 77,889 SNPs, spread over 19 chromosomes. Genetic diversity and phenotypic variations were generally high for the studied traits. A total of eleven genotypes were identified which showed high-quality protein, high antioxidants, and lower amount of antinutrients. A significant negative correlation between protein and limiting amino acids and a significant positive correlation between GLS and phytic acid were observed. General and mixed linear models were used to estimate the association between the SNP markers and the seed quality traits and quantile-quantile (QQ) plots were generated to allow the best-fit algorithm. Annotation of genomic regions around associated SNPs helped to predict various trait-related candidates such as ASP2 and EMB1027 (amino acid biosynthesis); HEMA2, GLU1, and PGM (tryptophan biosynthesis); MS3, CYSD1, and MTO1 (methionine biosynthesis); LYC (β-carotene biosynthesis); HDR and ISPF (MEP pathway); COS1 (riboflavin synthesis); UGT (phenolics biosynthesis); NAC073 (cellulose and hemicellulose biosynthesis); CYT1 (cellulose biosynthesis); BGLU45 and BGLU46 (lignin biosynthesis); SOT12 and UGT88A1 (flavonoid pathway); and CYP79A2, DIN2, and GSTT2 (GLS metabolism), etc. The functional validation of these candidate genes could confirm key seed meal quality genes for germplasm enhancement programs directed at improving protein quality and reducing the antinutritional components in B. napus.
Collapse
Affiliation(s)
| | - Sanjula Sharma
- Oilseeds Section, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | | | - Javed Akhatar
- Oilseeds Section, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | | | | |
Collapse
|
11
|
Zhang C, Chang W, Li X, Yang B, Zhang L, Xiao Z, Li J, Lu K. Transcriptome and Small RNA Sequencing Reveal the Mechanisms Regulating Harvest Index in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:855486. [PMID: 35444672 PMCID: PMC9014204 DOI: 10.3389/fpls.2022.855486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Harvest index (HI), the ratio of harvested seed weight to total aboveground biomass weight, is an economically critical value reflecting the convergence of complex agronomic traits. HI values in rapeseed (Brassica napus) remain much lower than in other major crops, and the underlying regulatory network is largely unknown. In this study, we performed mRNA and small RNA sequencing to reveal the mechanisms shaping HI in B. napus during the seed-filling stage. A total of 8,410 differentially expressed genes (DEGs) between high-HI and low-HI accessions in four tissues (silique pericarp, seed, leaves, and stem) were identified. Combining with co-expression network, 72 gene modules were identified, and a key gene BnaSTY46 was found to participate in retarded establishment of photosynthetic capacity to influence HI. Further research found that the genes involved in circadian rhythms and response to stimulus may play important roles in HI and that their transcript levels were modulated by differentially expressed microRNAs (DEMs), and we identified 903 microRNAs (miRNAs), including 46 known miRNAs and 857 novel miRNAs. Furthermore, transporter activity-related genes were critical to enhancing HI in good cultivation environments. Of 903 miRNAs, we found that the bna-miR396-Bna.A06SRp34a/Bna.A01EMB3119 pair may control the seed development and the accumulation of storage compounds, thus contributing to higher HI. Our findings uncovered the underlying complex regulatory network behind HI and offer potential approaches to rapeseed improvement.
Collapse
Affiliation(s)
- Chao Zhang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Oil Research Institute of Guizhou Province, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Wei Chang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiaodong Li
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bo Yang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Liyuan Zhang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhongchun Xiao
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiana Li
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kun Lu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
12
|
Dominguez PG, Niittylä T. Mobile forms of carbon in trees: metabolism and transport. TREE PHYSIOLOGY 2022; 42:458-487. [PMID: 34542151 PMCID: PMC8919412 DOI: 10.1093/treephys/tpab123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/16/2021] [Accepted: 09/12/2021] [Indexed: 05/26/2023]
Abstract
Plants constitute 80% of the biomass on earth, and almost two-thirds of this biomass is found in wood. Wood formation is a carbon (C)-demanding process and relies on C transport from photosynthetic tissues. Thus, understanding the transport process is of major interest for understanding terrestrial biomass formation. Here, we review the molecules and mechanisms used to transport and allocate C in trees. Sucrose is the major form in which C is transported in plants, and it is found in the phloem sap of all tree species investigated so far. However, in several tree species, sucrose is accompanied by other molecules, notably polyols and the raffinose family of oligosaccharides. We describe the molecules that constitute each of these transport groups, and their distribution across different tree species. Furthermore, we detail the metabolic reactions for their synthesis, the mechanisms by which trees load and unload these compounds in and out of the vascular system, and how they are radially transported in the trunk and finally catabolized during wood formation. We also address a particular C recirculation process between phloem and xylem that occurs in trees during the annual cycle of growth and dormancy. A search of possible evolutionary drivers behind the diversity of C-carrying molecules in trees reveals no consistent differences in C transport mechanisms between angiosperm and gymnosperm trees. Furthermore, the distribution of C forms across species suggests that climate-related environmental factors will not explain the diversity of C transport forms. However, the consideration of C-transport mechanisms in relation to tree-rhizosphere coevolution deserves further attention. To conclude the review, we identify possible future lines of research in this field.
Collapse
Affiliation(s)
- Pia Guadalupe Dominguez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires B1686IGC, Argentina
| | - Totte Niittylä
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| |
Collapse
|
13
|
Ku YS, Cheng SS, Ng MS, Chung G, Lam HM. The Tiny Companion Matters: The Important Role of Protons in Active Transports in Plants. Int J Mol Sci 2022; 23:ijms23052824. [PMID: 35269965 PMCID: PMC8911182 DOI: 10.3390/ijms23052824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/07/2022] Open
Abstract
In plants, the translocation of molecules, such as ions, metabolites, and hormones, between different subcellular compartments or different cells is achieved by transmembrane transporters, which play important roles in growth, development, and adaptation to the environment. To facilitate transport in a specific direction, active transporters that can translocate their substrates against the concentration gradient are needed. Examples of major active transporters in plants include ATP-binding cassette (ABC) transporters, multidrug and toxic compound extrusion (MATE) transporters, monosaccharide transporters (MSTs), sucrose transporters (SUTs), and amino acid transporters. Transport via ABC transporters is driven by ATP. The electrochemical gradient across the membrane energizes these secondary transporters. The pH in each cell and subcellular compartment is tightly regulated and yet highly dynamic, especially when under stress. Here, the effects of cellular and subcellular pH on the activities of ABC transporters, MATE transporters, MSTs, SUTs, and amino acid transporters will be discussed to enhance our understanding of their mechanics. The relation of the altered transporter activities to various biological processes of plants will also be addressed. Although most molecular transport research has focused on the substrate, the role of protons, the tiny counterparts of the substrate, should also not be ignored.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.-S.C.); (M.-S.N.)
- Correspondence: (Y.-S.K.); (H.-M.L.); Tel.: +852-3943-8132 (Y.-S.K.); +852-3943-6336 (H.-M.L.)
| | - Sau-Shan Cheng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.-S.C.); (M.-S.N.)
| | - Ming-Sin Ng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.-S.C.); (M.-S.N.)
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea;
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.-S.C.); (M.-S.N.)
- Correspondence: (Y.-S.K.); (H.-M.L.); Tel.: +852-3943-8132 (Y.-S.K.); +852-3943-6336 (H.-M.L.)
| |
Collapse
|
14
|
Tian L, Liu L, Xu S, Deng R, Wu P, Jiang H, Wu G, Chen Y. A d-pinitol transporter, LjPLT11, regulates plant growth and nodule development in Lotus japonicus. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:351-365. [PMID: 34460912 DOI: 10.1093/jxb/erab402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Polyol transporters have been functionally characterized in yeast and Xenopus laevis oocytes as H+-symporters with broad substrate specificity, but little is known about their physiological roles in planta. To extend this knowledge, we investigated the role of LjPLT11 in Lotus japonicus-Mesorhizobium symbiosis. Functional analyses of LjPLT11 in yeast characterized it as an energy-independent transporter of xylitol, two O-methyl inositols, xylose, and galactose. We showed that LjPLT11 is located on peribacteroid membranes and functions as a facilitative transporter of d-pinitol within infected cells of L. japonicus nodules. Knock-down of LjPLT11 (LjPLT11i) in L. japonicus accelerated plant growth under nitrogen sufficiency, but resulted in abnormal bacteroids with corresponding reductions in nitrogenase activity in nodules and plant growth in the nitrogen-fixing symbiosis. LjPLT11i nodules had higher osmotic pressure in cytosol, and lower osmotic pressure in bacteroids, than wild-type nodules both 3 and 4 weeks after inoculation of Mesorhizobium loti. Levels and distributions of reactive oxygen species were also perturbed in infected cells of 4-week-old nodules in LjPLT11i plants. The results indicate that LjPLT11 plays a key role in adjustment of the levels of its substrate pinitol, and thus maintenance of osmotic balance in infected cells and peribacteroid membrane stability during nodule development.
Collapse
Affiliation(s)
- Lu Tian
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Leru Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaoming Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rufang Deng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Pingzhi Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Huawu Jiang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guojiang Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yaping Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
15
|
Polutchko SK, Stewart JJ, Adams Iii WW, Demmig-Adams B. Photosynthesis and foliar vascular adjustments to growth light intensity in summer annual species with symplastic and apoplastic phloem loading. JOURNAL OF PLANT PHYSIOLOGY 2021; 267:153532. [PMID: 34638004 DOI: 10.1016/j.jplph.2021.153532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Concomitant adjustments in photosynthetic capacity and size, composition, and/or density of minor foliar veins in response to growth environment were previously described primarily for winter annuals that load sugars into foliar phloem apoplastically. Here, common trends, differences associated with phloem-loading mechanism, and species-dependent differences are identified for summer annuals (loading sugars either symplastically [cucumber, pumpkin, and basil] or apoplastically [tomato and sunflower]) that were grown in low and high light. Photosynthetic capacity per leaf area was significantly positively correlated with leaf-level volume of phloem-loading cells (LCs), sugar-export conduits (sieve elements), and water conduits (tracheary elements) irrespective of phloem-loading mechanism. The relative contribution to leaf-level volume of LC numbers versus individual LC size was greater in apoplastic loaders than in symplastic loaders. Species-dependent differences included different vein density within each loading group and either greater or lower numbers of cells per minor vein (especially of tracheary elements in the symplastic loaders basil versus cucumber, respectively), which may be due to genetic adaptation to different environmental conditions. These results indicate considerable plasticity in foliar vascular features in summer annuals as well as some loading-mechanism-dependent trends.
Collapse
Affiliation(s)
- Stephanie K Polutchko
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| | - Jared J Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| | - William W Adams Iii
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
16
|
Wang R, Zhong Y, Liu X, Zhao C, Zhao J, Li M, Ul Hassan M, Yang B, Li D, Liu R, Li X. Cis-regulation of the amino acid transporter genes ZmAAP2 and ZmLHT1 by ZmPHR1 transcription factors in maize ear under phosphate limitation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3846-3863. [PMID: 33765129 DOI: 10.1093/jxb/erab103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus and nitrogen nutrition have profound and complicated innate connections; however, underlying molecular mechanisms are mostly elusive. PHR1 is a master phosphate signaling component, and whether it directly functions in phosphorus-nitrogen crosstalk remains a particularly interesting question. In maize, nitrogen limitation caused tip kernel abortion and ear shortening. By contrast, moderately low phosphate in the field reduced kernels across the ear, maintained ear elongation and significantly lowered concentrations of total free amino acids and soluble proteins 2 weeks after silking. Transcriptome profiling revealed significant enrichment and overall down-regulation of transport genes in ears under low phosphate. Importantly, 313 out of 847 differentially expressed genes harbored PHR1 binding sequences (P1BS) including those controlling amino acid/polyamine transport and metabolism. Specifically, both ZmAAP2 and ZmLHT1 are plasma membrane-localized broad-spectrum amino acid transporters, and ZmPHR1.1 and ZmPHR1.2 were able to bind to P1BS-containing ZmAAP2 and ZmLHT1 and down-regulate their expression in planta. Taken together, the results suggest that prevalence of P1BS elements enables ZmPHR1s to regulate a large number of low phosphate responsive genes. Further, consistent with reduced accumulation of free amino acids, ZmPHR1s down-regulate ZmAAP2 and ZmLHT1 expression as direct linkers of phosphorus and nitrogen nutrition independent of NIGT1 in maize ear under low phosphate.
Collapse
Affiliation(s)
- Ruifeng Wang
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Yanting Zhong
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Xiaoting Liu
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Cheng Zhao
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, ShanghaiChina
| | - Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, BeijingChina
| | - Mengfei Li
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Mahmood Ul Hassan
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Bo Yang
- State Key Laboratory of Plant physiology and Biochemistry and National Centre of Maize Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, BeijingChina
| | - Dongdong Li
- Department of Crop Genomics and Bioinformatics, National Centre of Maize Genetic Improvement, China Agricultural University, BeijingChina
| | - Renyi Liu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agricultural and Forestry University, FuzhouChina
| | - Xuexian Li
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Salam BB, Barbier F, Danieli R, Teper-Bamnolker P, Ziv C, Spíchal L, Aruchamy K, Shnaider Y, Leibman D, Shaya F, Carmeli-Weissberg M, Gal-On A, Jiang J, Ori N, Beveridge C, Eshel D. Sucrose promotes stem branching through cytokinin. PLANT PHYSIOLOGY 2021; 185:1708-1721. [PMID: 33793932 PMCID: PMC8133652 DOI: 10.1093/plphys/kiab003] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/16/2020] [Indexed: 05/23/2023]
Abstract
Shoot branching is an important aspect of plant architecture because it substantially affects plant biology and agricultural performance. Sugars play an important role in the induction of shoot branching in several species, including potato (Solanum tuberosum L.). However, the mechanism by which sugars affect shoot branching remains mostly unknown. In the present study, we addressed this question using sugar-mediated induction of bud outgrowth in potato stems under etiolated conditions. Our results indicate that sucrose feeding to detached stems promotes the accumulation of cytokinin (CK), as well as the expression of vacuolar invertase (VInv), an enzyme that contributes to sugar sink strength. These effects of sucrose were suppressed by CK synthesis and perception inhibitors, while CK supplied to detached stems induced bud outgrowth and VInv activity in the absence of sucrose. CK-induced bud outgrowth was suppressed in vinv mutants, which we generated by genome editing. Altogether, our results identify a branching-promoting module, and suggest that sugar-induced lateral bud outgrowth is in part promoted by the induction of CK-mediated VInv activity.
Collapse
Affiliation(s)
- Bolaji Babajide Salam
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel
| | - Francois Barbier
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia
| | - Raz Danieli
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel
| | | | - Carmit Ziv
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Lukáš Spíchal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University in Olomouc, Czech Republic (L.S.)
| | - Kalaivani Aruchamy
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Yula Shnaider
- Department of Plant Pathology and Weed Research, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Diana Leibman
- Department of Plant Pathology and Weed Research, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Felix Shaya
- Department of Fruit Tree Sciences, The Volcani Center, ARO, Rishon LeZion, Israel
| | | | - Amit Gal-On
- Department of Plant Pathology and Weed Research, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Jiming Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel
| | - Christine Beveridge
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia
| | - Dani Eshel
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel
| |
Collapse
|
18
|
Zhao F, Song P, Zhang X, Li G, Hu P, Aslam A, Zhao X, Zhou H. Identification of candidate genes influencing anthocyanin biosynthesis during the development and ripening of red and white strawberry fruits via comparative transcriptome analysis. PeerJ 2021; 9:e10739. [PMID: 33604178 PMCID: PMC7863778 DOI: 10.7717/peerj.10739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/18/2020] [Indexed: 11/20/2022] Open
Abstract
Strawberries are one of the most economically important berry fruits worldwide and exhibit colours ranging from white to dark red, providing a rich genetic resource for strawberry quality improvement. In the present study, we conducted transcriptome analyses of three strawberry cultivars, namely, 'Benihoppe', 'Xiaobai', and 'Snow White', and compared their gene expression profiles. Among the high-quality sequences, 5,049 and 53,200 differentially expressed genes (DEGs) were obtained when comparing the diploid and octoploid strawberry genomes and analysed to identify anthocyanin-related candidate genes. Sixty-five DEGs in the diploid genome (transcriptome data compared to the diploid strawberry genome) and 317 DEGs in the octoploid genome (transcriptome data compared to the octoploid strawberry genome) were identified among the three cultivars. Among these DEGs, 19 and 70 anthocyanin pathway genes, six and 42 sugar pathway genes, 23 and 101 hormone pathway genes, and 17 and 104 transcription factors in the diploid and octoploid genomes, respectively, correlated positively or negatively with the anthocyanin accumulation observed among the three cultivars. Real-time qPCR analysis of nine candidate genes showed a good correlation with the transcriptome data. For example, the expression of PAL was higher in 'Benihoppe' and 'Xiaobai' than in 'Snow White', consistent with the RNA-seq data. Thus, the RNA-seq data and candidate DEGs identified in the present study provide a sound basis for further studies of strawberry fruit colour formation.
Collapse
Affiliation(s)
- Fengli Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Pan Song
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiangfen Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Gang Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Panpan Hu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ali Aslam
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xia Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Houcheng Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
19
|
Kong W, Sun T, Zhang C, Qiang Y, Li Y. Micro-Evolution Analysis Reveals Diverged Patterns of Polyol Transporters in Seven Gramineae Crops. Front Genet 2020; 11:565. [PMID: 32636871 PMCID: PMC7317338 DOI: 10.3389/fgene.2020.00565] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/11/2020] [Indexed: 01/11/2023] Open
Abstract
Polyol transporters (PLTs), also called polyol/monosaccharide transporters, is of significance in determining plant development and sugar transportation. However, the diverged evolutionary patterns of the PLT gene family in Gramineae crops are still unclear. Here a micro-evolution analysis was performed among the seven Gramineae representative crops using whole-genome sequences, i.e., Brachypodium distachyon (Bd), Hordeum vulgare (Hv), Oryza rufipogon (Or), Oryza sativa (Os), Sorghum bicolor (Sb), Setaria italica (Si), and Zea mays (Zm), leading to the identification of 12, 11, 12, 15, 20, 24, and 20 PLT genes, respectively. In this study, all PLT genes were divided into nine orthogroups (OGs). However, the number of PLT genes and the distribution of PLT OGs were not the same in these seven Gramineae species, and different OGs were also subject to different purification selection pressures. These results indicated that the PLT OGs of the PLT gene family have been expanded or lost unevenly in all tested species. Then, our results of gene duplication events confirmed that gene duplication events promoted the expansion of the PLT gene family in some Gramineous plants, namely, Bd, Or, Os, Si, Sb, and Zm, but the degree of gene family expansion, the type of PLT gene duplication, and the differentiation time of duplicate gene pairs varied greatly among these species. In addition, the sequence alignment and the internal repeat analysis of all PLTs protein sequences implied that the PLT protein sequences may originate from an internal repeat duplication of an ancestral six transmembrane helical units. Besides that, the protein motifs result highlighted that the PLT protein sequences were highly conserved, whereas the functional differentiation of the PLT genes was characterized by different gene structures, upstream elements, as well as co-expression analysis. The gene expression analysis of rice and maize showed that the PLT genes have a wide range of expression patterns, suggesting diverse biological functions. Taken together, our finding provided a perspective on the evolution differences and the functional characterizations of PLT genes in Gramineae representative crops.
Collapse
Affiliation(s)
| | | | | | | | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Komaitis F, Kalliampakou K, Botou M, Nikolaidis M, Kalloniati C, Skliros D, Du B, Rennenberg H, Amoutzias GD, Frillingos S, Flemetakis E. Molecular and physiological characterization of the monosaccharide transporters gene family in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3110-3125. [PMID: 32016431 DOI: 10.1093/jxb/eraa055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Monosaccharide transporters (MSTs) represent key components of the carbon transport and partitioning mechanisms in plants, mediating the cell-to-cell and long-distance distribution of a wide variety of monosaccharides. In this study, we performed a thorough structural, molecular, and physiological characterization of the monosaccharide transporter gene family in the model legume Medicago truncatula. The complete set of MST family members was identified with a novel bioinformatic approach. Prolonged darkness was used as a test condition to identify the relevant transcriptomic and metabolic responses combining MST transcript profiling and metabolomic analysis. Our results suggest that MSTs play a pivotal role in the efficient partitioning and utilization of sugars, and possibly in the mechanisms of carbon remobilization in nodules upon photosynthate-limiting conditions, as nodules are forced to acquire a new role as a source of both C and N.
Collapse
Affiliation(s)
- Fotios Komaitis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Katerina Kalliampakou
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Maria Botou
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Ioannina, Greece
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Chrysanthi Kalloniati
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Baoguo Du
- Institute of Forest Sciences, Faculty of Environment and Natural Resources, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Heinz Rennenberg
- Institute of Forest Sciences, Faculty of Environment and Natural Resources, Albert Ludwig University of Freiburg, Freiburg, Germany
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Grigoris D Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Stathis Frillingos
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Ioannina, Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
21
|
Fang T, Peng Y, Rao Y, Li S, Zeng L. Genome-Wide Identification and Expression Analysis of Sugar Transporter (ST) Gene Family in Longan ( Dimocarpus longan L.). PLANTS 2020; 9:plants9030342. [PMID: 32182715 PMCID: PMC7154848 DOI: 10.3390/plants9030342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/16/2022]
Abstract
Carbohydrates are nutrients and important signal molecules in higher plants. Sugar transporters (ST) play important role not only in long-distance transport of sugar, but also in sugar accumulations in sink cells. Longan (Dimocarpus longan L.) is one of the most important commercial tropical/subtropical evergreen fruit species in Southeast Asia. In this study, a total of 52 longan sugar transporter (DlST) genes were identified and they were divided into eight clades according to phylogenetic analysis. Out of these 52 DlST genes, many plant hormones (e.g., MeJA and gibberellin), abiotic (e.g., cold and drought), and biotic stress responsive element exist in their promoter region. Gene structure analysis exhibited that each of the clades have closely associated gene architectural features based on similar number or length of exons. The numbers of DlSTs, which exhibited alternative splicing (AS) events, in flower bud is more than that in other tissues. Expression profile analysis revealed that ten DlST members may regulate longan flowerbud differentiation. In silico expression profiles in nine longan organs indicated that some DlST genes were tissue specificity and further qRT-PCR analysis suggested that the transcript level of seven DlSTs (DlINT3, DlpGlcT1, DlpGlcT2, DlPLT4, DlSTP1, DlVGT1 and DlVGT2) was consistent with sugar accumulation in fruit, indicating that they might be involved in sugar accumulations during longan fruit development. Our findings will contribute to a better understanding of sugar transporters in woody plant.
Collapse
Affiliation(s)
- Ting Fang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.F.); (Y.P.); (Y.R.); (S.L.)
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan Peng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.F.); (Y.P.); (Y.R.); (S.L.)
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ya Rao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.F.); (Y.P.); (Y.R.); (S.L.)
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shenghao Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.F.); (Y.P.); (Y.R.); (S.L.)
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lihui Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.F.); (Y.P.); (Y.R.); (S.L.)
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: ; Tel./Fax: 86-591-8378-9281
| |
Collapse
|
22
|
Genome-wide identification, expression, and association analysis of the monosaccharide transporter (MST) gene family in peanut ( Arachis hypogaea L.). 3 Biotech 2020; 10:130. [PMID: 32154043 DOI: 10.1007/s13205-020-2123-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/05/2020] [Indexed: 10/25/2022] Open
Abstract
In this study, we reported the genome-wide analysis of the whole sugar transporter gene family of a legume species, peanut (Arachis hypogaea L.), including the chromosome locations, gene structures, phylogeny, expression patterns, as well as comparative genomic analysis with Arabidopsis, rice, grape, and soybean. A total of 76 AhMST genes (AhMST1-76) were identified from the peanut genome and located unevenly in 20 chromosomes. Phylogeny analysis indicated that the AhMSTs can be divided into eight groups including two undefined peanut-specific groups. Transcriptional profiles revealed that many AhMST genes showed tissue-specific expression, the majority of the AhMST genes mainly expressed in sink organs and floral organ of peanut. Chromosome distribution pattern and synteny analysis strongly indicated that genome-wide segmental and tandem duplication contributed to the expansion of peanut MST genes. Four common orthologs (AhMST9, AhMST13, AhMST40, and AhMST43) between peanut and the other four species were identified by comparative genomic analysis, which might play important roles in maintaining the growth and development of plant. Furthermore, four polymorphic sites in AhMST11, AhMST13, and AhMST60 were significantly correlated with hundred pod weight (HPW) and hundred seed weight (HSW) by association analysis. In a word, these results will provide new insights for understanding the functions of AhMST family members to sugar transporting and the potential for yield improvement in peanut.
Collapse
|
23
|
Breia R, Conde A, Pimentel D, Conde C, Fortes AM, Granell A, Gerós H. VvSWEET7 Is a Mono- and Disaccharide Transporter Up-Regulated in Response to Botrytis cinerea Infection in Grape Berries. FRONTIERS IN PLANT SCIENCE 2020; 10:1753. [PMID: 32047506 PMCID: PMC6996298 DOI: 10.3389/fpls.2019.01753] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/13/2019] [Indexed: 05/24/2023]
Abstract
The newly-identified SWEETs are high-capacity, low-affinity sugar transporters with important roles in numerous physiological mechanisms where sugar efflux is critical. SWEETs are desirable targets for manipulation by pathogens and their expression may be transcriptionally reprogrammed during infection. So far, few plant SWEET transporters have been functionally characterized, especially in grapevine. In this study, in the Botrytis-susceptible variety "Trincadeira," we thoroughly analyzed modifications in the gene expression profile of key SWEET genes in Botrytis cinerea-infected grape berries. VvSWEET7 and VvSWEET15 are likely to play an important role during fruit development and Botrytis infection as they are strongly expressed at the green and mature stage, respectively, and were clearly up-regulated in response to infection. Also, B. cinerea infection down-regulated VvSWEET17a expression at the green stage, VvSWEET10 and VvSWEET17d expression at the veraison stage, and VvSWEET11 expression at the mature stage. VvSWEET7 was functionally characterized by heterologous expression in Saccharomyces cerevisiae as a low-affinity, high-capacity glucose and sucrose transporter with a K m of 15.42 mM for glucose and a K m of 40.08 mM for sucrose. VvSWEET7-GFP and VvSWEET15-GFP fusion proteins were transiently expressed in Nicotiana benthamiana epidermal cells and confocal microscopy allowed to observe that both proteins clearly localize to the plasma membrane. In sum, VvSWEETs transporters are important players in sugar mobilization during grape berry development and their expression is transcriptionally reprogrammed in response to Botrytis infection.
Collapse
Affiliation(s)
- Richard Breia
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Diana Pimentel
- University of Lisbon, Lisbon Science Faculty, BioISI, Campo Grande, Lisbon, Portugal
| | - Carlos Conde
- i3S-Institute of Research and Innovation in Health, University of Porto, Porto, Portugal
- IBMC-Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal
| | - Ana Margarida Fortes
- University of Lisbon, Lisbon Science Faculty, BioISI, Campo Grande, Lisbon, Portugal
| | - Antonio Granell
- Institute of Molecular and Cellular Biology of Plants, Spanish National Research Council (CSIC), Polytechnic University of Valencia, Valencia, Spain
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
24
|
Impe D, Reitz J, Köpnick C, Rolletschek H, Börner A, Senula A, Nagel M. Assessment of Pollen Viability for Wheat. FRONTIERS IN PLANT SCIENCE 2020; 10:1588. [PMID: 32038666 PMCID: PMC6987437 DOI: 10.3389/fpls.2019.01588] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/12/2019] [Indexed: 05/15/2023]
Abstract
Wheat sheds tricellular short-lived pollen at maturity. The identification of viable pollen required for high seed set is important for breeders and conservators. The present study aims to evaluate and improve pollen viability tests and to identify factors influencing viability of pollen. In fresh wheat pollen, sucrose was the most abundant soluble sugar (90%). Raffinose was present in minor amounts. However, the analyses of pollen tube growth on 112 liquid and 45 solid media revealed that solid medium with 594 mM raffinose, 0.81 mM H3BO3, 2.04 mM CaCl2 at pH5.8 showed highest pollen germination. Partly or complete substitution of raffinose by sucrose, maltose, or sorbitol reduced in vitro germination of the pollen assuming a higher metabolic efficiency or antioxidant activity of raffinose. In vitro pollen germination varied between 26 lines (P < 0.001); between winter (15.3 ± 8.5%) and spring types (30.2 ± 13.3%) and was highest for the spring wheat TRI 2443 (50.1 ± 20.0%). Alexander staining failed to discriminate between viable, fresh pollen, and non-viable pollen inactivated by ambient storage for >60 min. Viability of fresh wheat pollen assessed by fluorescein diacetate (FDA) staining and impedance flow (IF) cytometry was 79.2 ± 4.2% and 88.1 ± 2.7%, respectively; and, when non-viable, stored pollen was additionally tested, it correlated at r = 0.54 (P < 0.05) and r = 0.67 (P < 0.001) with in vitro germination, respectively. When fresh pollen was used to assess the pollen viability of 19 wheat, 25 rye, 11 barley, and 4 maize lines, correlations were absent and in vitro germination was lower for rye (11.7 ± 8.5%), barley (6.8 ± 4.3%), and maize (2.1 ± 1.8%) pollen compared to wheat. Concluding, FDA staining and IF cytometry are used for a range of pollen species, whereas media for in vitro pollen germination require specific adaptations; in wheat, a solid medium with raffinose was chosen. On adapted media, the pollen tube growth can be exactly analyzed whereas results achieved by FDA staining and IF cytometry are higher and may overestimate pollen tube growth. Hence, as the exact viability and fertilization potential of a larger pollen batch remains elusive, a combination of pollen viability tests may provide reasonable indications of the ability of pollen to germinate and grow.
Collapse
Affiliation(s)
- Daniela Impe
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Janka Reitz
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Claudia Köpnick
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Hardy Rolletschek
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Angelika Senula
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Manuela Nagel
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| |
Collapse
|
25
|
Tang RJ, Luan M, Wang C, Lhamo D, Yang Y, Zhao FG, Lan WZ, Fu AG, Luan S. Plant Membrane Transport Research in the Post-genomic Era. PLANT COMMUNICATIONS 2020; 1:100013. [PMID: 33404541 PMCID: PMC7747983 DOI: 10.1016/j.xplc.2019.100013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/14/2019] [Accepted: 12/06/2019] [Indexed: 05/17/2023]
Abstract
Membrane transport processes are indispensable for many aspects of plant physiology including mineral nutrition, solute storage, cell metabolism, cell signaling, osmoregulation, cell growth, and stress responses. Completion of genome sequencing in diverse plant species and the development of multiple genomic tools have marked a new era in understanding plant membrane transport at the mechanistic level. Genes coding for a galaxy of pumps, channels, and carriers that facilitate various membrane transport processes have been identified while multiple approaches are developed to dissect the physiological roles as well as to define the transport capacities of these transport systems. Furthermore, signaling networks dictating the membrane transport processes are established to fully understand the regulatory mechanisms. Here, we review recent research progress in the discovery and characterization of the components in plant membrane transport that take advantage of plant genomic resources and other experimental tools. We also provide our perspectives for future studies in the field.
Collapse
Affiliation(s)
- Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Mingda Luan
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Dhondup Lhamo
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Yang Yang
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Fu-Geng Zhao
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wen-Zhi Lan
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ai-Gen Fu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Corresponding author
| |
Collapse
|
26
|
Horvath DP, Clay SA, Bruggeman SA, Anderson JV, Chao WS, Yeater K. Varying Weed Densities Alter the Corn Transcriptome, Highlighting a Core Set of Weed-Induced Genes and Processes with Potential for Manipulating Weed Tolerance. THE PLANT GENOME 2019; 12:1-9. [PMID: 33016588 DOI: 10.3835/plantgenome2019.05.0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/06/2019] [Indexed: 06/11/2023]
Abstract
Corn increases the number of differentially expressed genes and the intensity of differential gene expression in response to increasing weed density. Genes associated with kinase signaling and transport functions are upregulated by weeds. Genes associated with protein production are downregulated by weeds. A sugar transporter (PMT5) and NUCLEOREDOXIN 1 are upregulated by weeds under diverse conditions. The phenological responses of corn (Zea mays L.) to competition with increasing densities of winter canola (Brassica napus L.) as the weedy competitor were investigated. Changes in the corn transcriptome resulting from varying weed densities were used to identify genes and processes responsive to competition under controlled conditions where light, nutrients, and water were not limited. Increasing densities of weeds resulted in decreased corn growth and development and increased the number and expression intensity of competition-responsive genes. The physiological processes identified in corn that were consistently induced by competition with weeds included protein synthesis and various transport functions. Likewise, numerous genes involved in these processes, as well as several genes implicated in phytochrome signaling and defense responses, were noted as differentially expressed. The results obtained in this study, conducted under controlled (greenhouse) conditions, were compared with a previously published study where the response of corn to competition with other species was evaluated under field conditions. Approximately one-third of the genes were differentially expressed in response to competition under both field and controlled conditions. These competition-responsive genes represent a resource for investigating the signaling processes by which corn recognizes and responds to competition. These results also highlight specific physiological processes that might be targets for mitigating the response of crops to weeds or other competitive plants under field conditions.
Collapse
Affiliation(s)
- David P Horvath
- USDA-ARS Edward T. Schaffer Agricultural Research Center, Sunflower and Plant Biology Research Unit, 1616 Albrecht Blvd., Fargo, ND, 58102
| | - Sharon A Clay
- Dep. of Agronomy, Horticulture and Plant Science, South Dakota State Univ., P.O. Box 2140C, 245C McFadden Biostress, Brookings, SD, 57007
| | - Stephanie A Bruggeman
- Biology Department, Augustana Univ. SD, 2001 South Summit Avenue, Sioux Falls, SD, 57197
| | - James V Anderson
- USDA-ARS Edward T. Schaffer Agricultural Research Center, Sunflower and Plant Biology Research Unit, 1616 Albrecht Blvd., Fargo, ND, 58102
| | - Wun S Chao
- USDA-ARS Edward T. Schaffer Agricultural Research Center, Sunflower and Plant Biology Research Unit, 1616 Albrecht Blvd., Fargo, ND, 58102
| | - Kathleen Yeater
- Office of the Area Director, 104 Ambrose Hill, Williamsburg, VA, 23185
| |
Collapse
|
27
|
Niño-González M, Novo-Uzal E, Richardson DN, Barros PM, Duque P. More Transporters, More Substrates: The Arabidopsis Major Facilitator Superfamily Revisited. MOLECULAR PLANT 2019; 12:1182-1202. [PMID: 31330327 DOI: 10.1016/j.molp.2019.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 05/20/2023]
Abstract
The Major Facilitator Superfamily (MFS) is ubiquitous in living organisms and represents the largest group of secondary active membrane transporters. In plants, significant research efforts have focused on the role of specific families within the MFS, particularly those transporting macronutrients (C, N, and P) that constitute the vast majority of the members of this superfamily. Other MFS families remain less explored, although a plethora of additional substrates and physiological functions have been uncovered. Nevertheless, the lack of a systematic approach to analyzing the MFS as a whole has obscured the high diversity and versatility of these transporters. Here, we present a phylogenetic analysis of all annotated MFS domain-containing proteins encoded in the Arabidopsis thaliana genome and propose that this superfamily of transporters consists of 218 members, clustered in 22 families. In reviewing the available information regarding the diversity in biological functions and substrates of Arabidopsis MFS members, we provide arguments for intensified research on these membrane transporters to unveil the breadth of their physiological relevance, disclose the molecular mechanisms underlying their mode of action, and explore their biotechnological potential.
Collapse
Affiliation(s)
| | | | | | - Pedro M Barros
- Genomics of Plant Stress Unit, ITQB NOVA - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| |
Collapse
|
28
|
Ho LH, Klemens PAW, Neuhaus HE, Ko HY, Hsieh SY, Guo WJ. SlSWEET1a is involved in glucose import to young leaves in tomato plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3241-3254. [PMID: 30958535 PMCID: PMC6598072 DOI: 10.1093/jxb/erz154] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/20/2019] [Indexed: 05/04/2023]
Abstract
Sugar allocation from source to sink (young) leaves, critical for plant development, relies on activities of plasma membrane sugar transporters. However, the key sugar unloading mechanism to sink leaves remains elusive. SWEET transporters mediate sugar efflux into reproductive sinks; therefore, they are promising candidates for sugar unloading during leaf growth. Transcripts of SlSWEET1a, belonging to clade I of the SWEET family, were markedly more abundant than those of all other 30 SlSWEET genes in young leaves of tomatoes. High expression of SlSWEET1a was also detected in reproductive sinks, such as flowers. SlSWEET1a was dominantly expressed in leaf unloading veins, and the green fluorescent protein (GFP) fusion protein was localized to the plasma membrane using Arabidopsis protoplasts, further implicating this carrier in sugar unloading. In addition, yeast growth assays and radiotracer uptake analyses further demonstrated that SlSWEET1a acted as a low-affinity (Km ~100 mM) glucose-specific carrier with a passive diffusion manner. Finally, virus-induced gene silencing of SlSWEET1a expression reduced hexose accumulation to ~50% in young leaves, with a parallel 2-fold increase in mature leaves. Thus, we propose a novel function for SlSWEET1a in the uptake of glucose into unloading cells as part of the sugar unloading mechanism in sink leaves of tomato.
Collapse
Affiliation(s)
- Li-Hsuan Ho
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Patrick A W Klemens
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, Germany
| | - Han-Yu Ko
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Shu-Ying Hsieh
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Woei-Jiun Guo
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
29
|
Pacini E, Dolferus R. Pollen Developmental Arrest: Maintaining Pollen Fertility in a World With a Changing Climate. FRONTIERS IN PLANT SCIENCE 2019; 10:679. [PMID: 31178886 PMCID: PMC6544056 DOI: 10.3389/fpls.2019.00679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/06/2019] [Indexed: 05/07/2023]
Abstract
During evolution of land plants, the haploid gametophytic stage has been strongly reduced in size and the diploid sporophytic phase has become the dominant growth form. Both male and female gametophytes are parasitic to the sporophyte and reside in separate parts of the flower located either on the same plant or on different plants. For fertilization to occur, bi-cellular or tri-cellular male gametophytes (pollen grains) have to travel to the immobile female gametophyte in the ovary. To survive exposure to a hostile atmosphere, pollen grains are thought to enter a state of complete or partial developmental arrest (DA). DA in pollen is strongly associated with acquisition of desiccation tolerance (DT) to extend pollen viability during air travel, but occurrence of DA in pollen is both species-dependent and at the same time strongly dependent on the reigning environmental conditions at the time of dispersal. Several environmental stresses (heat, drought, cold, humidity) are known to affect pollen production and viability. Climate change is also posing a serious threat to plant reproductive behavior and crop productivity. It is therefore timely to gain a better understanding of how DA and pollen viability are controlled in plants and how pollen viability can be protected to secure crop yields in a changing environment. Here, we provide an overview of how DA and pollen viability are controlled and how the environment affects them. We make emphasis on what is known and areas where a deeper understanding is needed.
Collapse
Affiliation(s)
- Ettore Pacini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Rudy Dolferus
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| |
Collapse
|
30
|
Deng X, An B, Zhong H, Yang J, Kong W, Li Y. A Novel Insight into Functional Divergence of the MST Gene Family in Rice Based on Comprehensive Expression Patterns. Genes (Basel) 2019; 10:genes10030239. [PMID: 30897847 PMCID: PMC6470851 DOI: 10.3390/genes10030239] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 01/18/2023] Open
Abstract
Sugars are critical for plant growth and development as suppliers of carbon and energy, as signal molecules, or as solute molecules for osmotic homeostasis. Monosaccharide transporter (MST) genes are involved in various processes of plant growth and development as well as in response to abiotic stresses. However, the evolution and their roles of MST genes in growth and development and in coping with abiotic stresses in rice are poorly known. Here, we identified 64 MST genes in rice genome, which are classified into seven subfamilies: STP, PLT, AZT, ERD, pGlcT, INT, and XTPH. MST genes are not evenly distributed between chromosomes (Chrs) with a bias to Chr 3, 4, 7, and 11, which could be a result of duplication of fragments harboring MST genes. In total, 12 duplication events were found in the rice MST family, among which, two pairs were derived from fragmental duplications and ten pairs were from tandem duplications. The synonymous and nonsynonymous substitution rates of duplicate gene pairs demonstrated that the MST family was under a strong negative selection during the evolution process. Furthermore, a comprehensive expression analysis conducted in 11 different tissues, three abiotic stresses, five hormone treatments, and three sugar treatments revealed different expression patterns of MST genes and indicated diversified functions of them. Our results suggest that MST genes play important roles not only in various abiotic stresses but also in hormone and sugar responses. The present results will provide a vital insight into the functional divergence of the MST family in the future study.
Collapse
Affiliation(s)
- Xiaolong Deng
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Baoguang An
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Hua Zhong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Jing Yang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Weilong Kong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yangsheng Li
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
31
|
Jiu S, Haider MS, Kurjogi MM, Zhang K, Zhu X, Fang J. Genome-wide Characterization and Expression Analysis of Sugar Transporter Family Genes in Woodland Strawberry. THE PLANT GENOME 2018; 11:170103. [PMID: 30512042 DOI: 10.3835/plantgenome2017.11.0103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In higher plants, sugars are nutrients and important signal molecules. Sugar transporters (STs) facilitate sugar transport across membranes and are associated with loading and unloading of the conducting complex. Strawberry ( Duchesne ex Rozier) is one of the most economically important and widely cultivated fruit crop and a model plant among fleshy fruits worldwide. In this study, 66 woodland strawberry ( L.) ST (FvST) genes were identified and further classified into eight distinct subfamilies in the woodland strawberry genome based on the phylogenetic analysis. In the promoter sequences of FvST gene families, a search for -regulatory elements suggested that some of them might probably be regulated by plant hormones (e.g., salicylic acid, abscisic acid, and auxin), abiotic (e.g., drought, excessive cold, and light), and biotic stress factors. Exon-intron analysis showed that each subfamily manifested closely associated gene architectural features based on similar number or length of exons. Moreover, to comprehend the potential evolution mechanism of FvST gene family, the analysis of genome duplication events was performed. The segmental and tandem duplication analysis elucidated that some of ST genes arose through whole-genome duplication (WGD) or segmental duplication, accompanied by tandem duplications. The expression analysis of 24 FvST genes in vegetative and during fruit development has shown that the expression of several ST genes was tissue and developmental stage specific. Generally, our findings are important in understanding of the allocation of photo assimilates from source to sink cell and provide insights into the genomic organization and expression profiling of FvST gene families in woodland strawberry.
Collapse
|
32
|
Müdsam C, Wollschläger P, Sauer N, Schneider S. Sorting of Arabidopsis NRAMP3 and NRAMP4 depends on adaptor protein complex AP4 and a dileucine-based motif. Traffic 2018; 19:503-521. [PMID: 29573093 DOI: 10.1111/tra.12567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 01/01/2023]
Abstract
Adaptor protein complexes mediate cargo selection and vesicle trafficking to different cellular membranes in all eukaryotic cells. Information on the role of AP4 in plants is still limited. Here, we present the analyses of Arabidopsis thaliana mutants lacking different subunits of AP4. These mutants show abnormalities in their development and in protein sorting. We found that growth of roots and etiolated hypocotyls, as well as male fertility and trichome morphology are disturbed in ap4. Analyses of GFP-fusions transiently expressed in mesophyll protoplasts demonstrated that the tonoplast (TP) proteins MOT2, NRAMP3 and NRAMP4, but not INT1, are partially sorted to the plasma membrane (PM) in the absence of a functional AP4 complex. Moreover, alanine mutagenesis revealed that in wild-type plants, sorting of NRAMP3 and NRAMP4 to the TP requires an N-terminal dileucine-based motif. The NRAMP3 or NRAMP4 N-terminal domain containing the dileucine motif was sufficient to redirect the PM localized INT4 protein to the TP and to confer AP4-dependency on sorting of INT1. Our data show that correct sorting of NRAMP3 and NRAMP4 depends on both, an N-terminal dileucine-based motif as well as AP4.
Collapse
Affiliation(s)
- Christina Müdsam
- Molecular Plant Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Paul Wollschläger
- Molecular Plant Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Norbert Sauer
- Molecular Plant Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sabine Schneider
- Molecular Plant Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
33
|
Rottmann T, Klebl F, Schneider S, Kischka D, Rüscher D, Sauer N, Stadler R. Sugar Transporter STP7 Specificity for l-Arabinose and d-Xylose Contrasts with the Typical Hexose Transporters STP8 and STP12. PLANT PHYSIOLOGY 2018; 176:2330-2350. [PMID: 29311272 PMCID: PMC5841717 DOI: 10.1104/pp.17.01493] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/29/2017] [Indexed: 05/08/2023]
Abstract
The controlled distribution of sugars between assimilate-exporting source tissues and sugar-consuming sink tissues is a key element for plant growth and development. Monosaccharide transporters of the SUGAR TRANSPORT PROTEIN (STP) family contribute to the uptake of sugars into sink cells. Here, we report on the characterization of STP7, STP8, and STP12, three previously uncharacterized members of this family in Arabidopsis (Arabidopsis thaliana). Heterologous expression in yeast (Saccharomyces cerevisiae) revealed that STP8 and STP12 catalyze the high-affinity proton-dependent uptake of glucose and also accept galactose and mannose. STP12 additionally transports xylose. STP8 and STP12 are highly expressed in reproductive organs, where their protein products might contribute to sugar uptake into the pollen tube and the embryo sac. stp8.1 and stp12.1 T-DNA insertion lines developed normally, which may point toward functional redundancy with other STPs. In contrast to all other STPs, STP7 does not transport hexoses but is specific for the pentoses l-arabinose and d-xylose. STP7-promoter-reporter gene plants showed an expression of STP7 especially in tissues with high cell wall turnover, indicating that STP7 might contribute to the uptake and recycling of cell wall sugars. Uptake analyses with radioactive l-arabinose revealed that 11 other STPs are able to transport l-arabinose with high affinity. Hence, functional redundancy might explain the missing-mutant phenotype of two stp7 T-DNA insertion lines. Together, these data complete the characterization of the STP family and present the STPs as new l-arabinose transporters for potential biotechnological applications.
Collapse
Affiliation(s)
- Theresa Rottmann
- Molecular Plant Physiology, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Franz Klebl
- Molecular Plant Physiology, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Sabine Schneider
- Molecular Plant Physiology, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Dominik Kischka
- Molecular Plant Physiology, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - David Rüscher
- Molecular Plant Physiology, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Norbert Sauer
- Molecular Plant Physiology, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Ruth Stadler
- Molecular Plant Physiology, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
34
|
Carly F, Steels S, Telek S, Vandermies M, Nicaud JM, Fickers P. Identification and characterization of EYD1, encoding an erythritol dehydrogenase in Yarrowia lipolytica and its application to bioconvert erythritol into erythrulose. BIORESOURCE TECHNOLOGY 2018; 247:963-969. [PMID: 30060436 DOI: 10.1016/j.biortech.2017.09.168] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/18/2017] [Accepted: 09/23/2017] [Indexed: 05/18/2023]
Abstract
In this study, gene YALI0F01650g has been isolated and characterized. Several experimental evidences suggest that the identified gene, renamed EYD1, encodes an erythritol dehydrogenase. An efficient bioreactor process for the bioconversion of erythritol into erythrulose was also developed. Using constitutive expression of EYD1 in a Y. lipolytica mutant containing a disrupted EYK1 gene, which encodes erythrulose kinase, erythrulose could be synthesized from erythritol at a rate of 0.116g/gDCW.h and with a bioconversion yield of 0.64g/g.
Collapse
Affiliation(s)
- Frédéric Carly
- Unité de Biotechnologies et Bioprocédés, Université Libre de Bruxelles, Belgium
| | - Sébastien Steels
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux Agro-Bio Tech, Belgium
| | - Samuel Telek
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux Agro-Bio Tech, Belgium
| | - Marie Vandermies
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux Agro-Bio Tech, Belgium
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux Agro-Bio Tech, Belgium.
| |
Collapse
|
35
|
Aloui A, Recorbet G, Lemaître-Guillier C, Mounier A, Balliau T, Zivy M, Wipf D, Dumas-Gaudot E. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis. MYCORRHIZA 2018; 28:1-16. [PMID: 28725961 DOI: 10.1007/s00572-017-0789-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
In arbuscular mycorrhizal (AM) roots, the plasma membrane (PM) of the host plant is involved in all developmental stages of the symbiotic interaction, from initial recognition to intracellular accommodation of intra-radical hyphae and arbuscules. Although the role of the PM as the agent for cellular morphogenesis and nutrient exchange is especially accentuated in endosymbiosis, very little is known regarding the PM protein composition of mycorrhizal roots. To obtain a global overview at the proteome level of the host PM proteins as modified by symbiosis, we performed a comparative protein profiling of PM fractions from Medicago truncatula roots either inoculated or not with the AM fungus Rhizophagus irregularis. PM proteins were isolated from root microsomes using an optimized discontinuous sucrose gradient; their subsequent analysis by liquid chromatography followed by mass spectrometry (MS) identified 674 proteins. Cross-species sequence homology searches combined with MS-based quantification clearly confirmed enrichment in PM-associated proteins and depletion of major microsomal contaminants. Changes in protein amounts between the PM proteomes of mycorrhizal and non-mycorrhizal roots were monitored further by spectral counting. This workflow identified a set of 82 mycorrhiza-responsive proteins that provided insights into the plant PM response to mycorrhizal symbiosis. Among them, the association of one third of the mycorrhiza-responsive proteins with detergent-resistant membranes pointed at partitioning to PM microdomains. The PM-associated proteins responsive to mycorrhization also supported host plant control of sugar uptake to limit fungal colonization, and lipid turnover events in the PM fraction of symbiotic roots. Because of the depletion upon symbiosis of proteins mediating the replacement of phospholipids by phosphorus-free lipids in the plasmalemma, we propose a role of phosphate nutrition in the PM composition of mycorrhizal roots.
Collapse
Affiliation(s)
- Achref Aloui
- UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050, Hammam-lif, Tunisia
| | - Ghislaine Recorbet
- UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France.
| | - Christelle Lemaître-Guillier
- UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France
| | - Arnaud Mounier
- UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France
| | - Thierry Balliau
- UMR de Génétique végétale, PAPPSO, Ferme du Moulon, 91190, Gif sur Yvette, France
| | - Michel Zivy
- UMR de Génétique végétale, PAPPSO, Ferme du Moulon, 91190, Gif sur Yvette, France
| | - Daniel Wipf
- UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France
| | - Eliane Dumas-Gaudot
- UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France
| |
Collapse
|
36
|
Borghi M, Fernie AR. Floral Metabolism of Sugars and Amino Acids: Implications for Pollinators' Preferences and Seed and Fruit Set. PLANT PHYSIOLOGY 2017; 175:1510-1524. [PMID: 28986424 PMCID: PMC5717749 DOI: 10.1104/pp.17.01164] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/04/2017] [Indexed: 05/10/2023]
Abstract
New discoveries open up future directions in the study of the primary metabolism of flowers.
Collapse
Affiliation(s)
- Monica Borghi
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
37
|
Tian L, Liu L, Yin Y, Huang M, Chen Y, Xu X, Wu P, Li M, Wu G, Jiang H, Chen Y. Heterogeneity in the expression and subcellular localization of POLYOL/MONOSACCHARIDE TRANSPORTER genes in Lotus japonicus. PLoS One 2017; 12:e0185269. [PMID: 28931056 PMCID: PMC5607196 DOI: 10.1371/journal.pone.0185269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/08/2017] [Indexed: 11/23/2022] Open
Abstract
Polyols can serve as a means for the translocation of carbon skeletons and energy between source and sink organs as well as being osmoprotective solutes and antioxidants which may be involved in the resistance of some plants to biotic and abiotic stresses. Polyol/Monosaccharide transporter (PLT) proteins previously identified in plants are involved in the loading of polyols into the phloem and are reported to be located in the plasma membrane. The functions of PLT proteins in leguminous plants are not yet clear. In this study, a total of 14 putative PLT genes (LjPLT1-14) were identified in the genome of Lotus japonicus and divided into 4 clades based on phylogenetic analysis. Different patterns of expression of LjPLT genes in various tissues were validated by qRT-PCR analysis. Four genes (LjPLT3, 4, 11, and 14) from clade II were expressed at much higher levels in nodule than in other tissues. Moreover, three of these genes (LjPLT3, 4, and 14) showed significantly increased expression in roots after inoculation with Mesorhizobium loti. Three genes (LjPLT1, 3, and 9) responded when salinity and/or osmotic stresses were applied to L. japonicus. Transient expression of GFP-LjPLT fusion constructs in Arabidopsis and Nicotiana benthamiana protoplasts indicated that the LjPLT1, LjPLT6 and LjPLT7 proteins are localized to the plasma membrane, but LjPLT2 (clade IV), LjPLT3, 4, 5 (clade II) and LjPLT8 (clade III) proteins possibly reside in the Golgi apparatus. The results suggest that members of the LjPLT gene family may be involved in different biological processes, several of which may potentially play roles in nodulation in this nitrogen-fixing legume.
Collapse
Affiliation(s)
- Lu Tian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Leru Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Yehu Yin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Mingchao Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Yanbo Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Xinlan Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
| | - Pingzhi Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
| | - Meiru Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
| | - Guojiang Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
| | - Huawu Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
| | - Yaping Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- * E-mail:
| |
Collapse
|
38
|
Li M, Yang Y, Feng F, Zhang B, Chen S, Yang C, Gu L, Wang F, Zhang J, Chen A, Lin W, Chen X, Zhang Z. Differential proteomic analysis of replanted Rehmannia glutinosa roots by iTRAQ reveals molecular mechanisms for formation of replant disease. BMC PLANT BIOLOGY 2017; 17:116. [PMID: 28693420 PMCID: PMC5504617 DOI: 10.1186/s12870-017-1060-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/22/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND The normal growth of Rehmannia glutinosa, a widely used medicinal plant in China, is severely disturbed by replant disease. The formation of replant disease commonly involves interactions among plants, allelochemicals and microbes; however, these relationships remain largely unclear. As a result, no effective measures are currently available to treat replant disease. RESULTS In this study, an integrated R. glutinosa transcriptome was constructed, from which an R. glutinosa protein library was obtained. iTRAQ technology was then used to investigate changes in the proteins in replanted R. glutinosa roots, and the proteins that were expressed in response to replant disease were identified. An integrated R. glutinosa transcriptome from different developmental stages of replanted and normal-growth R. glutinosa produced 65,659 transcripts, which were accurately translated into 47,818 proteins. Using this resource, a set of 189 proteins was found to be significantly differentially expressed between normal-growth and replanted R. glutinosa. Of the proteins that were significantly upregulated in replanted R. glutinosa, most were related to metabolism, immune responses, ROS generation, programmed cell death, ER stress, and lignin synthesis. CONCLUSIONS By integrating these key events and the results of previous studies on replant disease formation, a new picture of the damaging mechanisms that cause replant disease stress emerged. Replant disease altered the metabolic balance of R. glutinosa, activated immune defence systems, increased levels of ROS and antioxidant enzymes, and initiated the processes of cell death and senescence in replanted R. glutinosa. Additionally, lignin deposition in R. glutinosa roots that was caused by replanting significantly inhibited tuberous root formation. These key processes provide important insights into the underlying mechanisms leading to the formation of replant disease and also for the subsequent development of new control measures to improve production and quality of replanted plants.
Collapse
Affiliation(s)
- Mingjie Li
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanhui Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Fajie Feng
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bao Zhang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqiang Chen
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chuyun Yang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Gu
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Junyi Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Aiguo Chen
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Zhongyi Zhang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
39
|
Yang SY, Huang TK, Kuo HF, Chiou TJ. Role of vacuoles in phosphorus storage and remobilization. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3045-3055. [PMID: 28077447 DOI: 10.1093/jxb/erw481] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Vacuoles play a fundamental role in storage and remobilization of various nutrients, including phosphorus (P), an essential element for cell growth and development. Cells acquire P primarily in the form of inorganic orthophosphate (Pi). However, the form of P stored in vacuoles varies by organism and tissue. Algae and yeast store polyphosphates (polyPs), whereas plants store Pi and inositol phosphates (InsPs) in vegetative tissues and seeds, respectively. In this review, we summarize how vacuolar P molecules are stored and reallocated and how these processes are regulated and co-ordinated. The roles of SYG1/PHO81/XPR1 (SPX)-domain-containing membrane proteins in allocating vacuolar P are outlined. We also highlight the importance of vacuolar P in buffering the cytoplasmic Pi concentration to maintain cellular homeostasis when the external P supply fluctuates, and present additional roles for vacuolar polyP and InsP besides being a P reserve. Furthermore, we discuss the possibility of alternative pathways to recycle Pi from other P metabolites in vacuoles. Finally, future perspectives for researching this topic and its potential application in agriculture are proposed.
Collapse
Affiliation(s)
- Shu-Yi Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Teng-Kuei Huang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Hui-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
40
|
Per TS, Khan NA, Reddy PS, Masood A, Hasanuzzaman M, Khan MIR, Anjum NA. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:126-140. [PMID: 28364709 DOI: 10.1016/j.plaphy.2017.03.018] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 03/26/2017] [Accepted: 03/26/2017] [Indexed: 05/21/2023]
Abstract
Major abiotic stress factors such as salt and drought adversely affect important physiological processes and biochemical mechanisms and cause severe loss in crop productivity worldwide. Plants develop various strategies to stand healthy against these stress factors. The accumulation of proline (Pro) is one of the striking metabolic responses of plants to salt and drought stress. Pro biosynthesis and signalling contribute to the redox balance of cell under normal and stressful conditions. However, literature is meager on the sustainable strategies potentially fit for modulating Pro biosynthesis and production in stressed plants. Considering the recent literature, this paper in its first part overviews Pro biosynthesis and transport in plants and also briefly highlights the significance of Pro in plant responses to salt and drought stress. Secondly, this paper discusses mechanisms underlying the regulation of Pro metabolism in salt and drought-exposed plant via phytohormones, mineral nutrients and transgenic approaches. The outcome of the studies may give new opportunities in modulating Pro metabolism for improving plant tolerance to salt and drought stress and benefit sustainable agriculture.
Collapse
Affiliation(s)
- Tasir S Per
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| | - Palakolanu Sudhakar Reddy
- Cell, Molecular Biology and Genetic Engineering Group, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, Telangana, India
| | - Asim Masood
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - M Iqbal R Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; Crop and Environmental Sciences Division, International Rice Research Institute, 4030 Los Banos, Philippines.
| | - Naser A Anjum
- CESAM-Centre for Environmental & Marine Studies and Department of Chemistry, University of Aveiro, 3810-19 Aveiro, Portugal
| |
Collapse
|
41
|
Duplat-Bermúdez L, Ruiz-Medrano R, Landsman D, Mariño-Ramírez L, Xoconostle-Cázares B. Transcriptomic analysis of Arabidopsis overexpressing flowering locus T driven by a meristem-specific promoter that induces early flowering. Gene 2016; 587:120-31. [PMID: 27154816 DOI: 10.1016/j.gene.2016.04.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/18/2016] [Accepted: 04/25/2016] [Indexed: 01/09/2023]
Abstract
Here we analyzed in leaves the effect of FT overexpression driven by meristem-specific KNAT1 gene homolog of Arabidopsis thaliana (Lincoln et al., 1994; Long et al., 1996) on the transcriptomic response during plant development. Our results demonstrated that meristematic FT overexpression generates a phenotype with an early flowering independent of photoperiod when compared with wild type (WT) plants. Arabidopsis FT-overexpressor lines (AtFTOE) did not show significant differences compared with WT lines neither in leaf number nor in rosette diameter up to day 21, when AtFTOE flowered. After this period AtFTOE plants started flower production and no new rosette leaves were produced. Additionally, WT plants continued on vegetative stage up to day 40, producing 12-14 rosette leaves before flowering. Transcriptomic analysis of rosette leaves studied by sequencing Illumina RNA-seq allowed us to determine the differential expression in mature leaf rosette of 3652 genes, being 626 of them up-regulated and 3026 down-regulated. Overexpressed genes related with flowering showed up-regulated transcription factors such as MADS-box that are known as flowering markers in meristem and which overexpression has been related with meristem identity preservation and the transition from vegetative to floral stage. Genes related with sugar transport have shown a higher demand of monosaccharides derived from the hydrolysis of sucrose to glucose and probably fructose, which can also be influenced by reproductive stage of AtFTOE plants.
Collapse
Affiliation(s)
- L Duplat-Bermúdez
- Departamento de Biotecnología y Bioingenieria, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - R Ruiz-Medrano
- Departamento de Biotecnología y Bioingenieria, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - D Landsman
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - L Mariño-Ramírez
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - B Xoconostle-Cázares
- Departamento de Biotecnología y Bioingenieria, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 San Pedro Zacatenco, 07360 Mexico City, Mexico.
| |
Collapse
|
42
|
Avila LM, Cerrudo D, Swanton C, Lukens L. Brevis plant1, a putative inositol polyphosphate 5-phosphatase, is required for internode elongation in maize. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1577-88. [PMID: 26767748 PMCID: PMC4762392 DOI: 10.1093/jxb/erv554] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In maize (Zea mays L.), as in other grass species, stem elongation occurs during growth and most noticeably upon the transition to flowering. Genes that reduce stem elongation have been important to reduce stem breakage, or lodging. Stem elongation has been mediated by dwarf and brachytic/brevis plant mutants that affect giberellic acid and auxin pathways, respectively. Maize brevis plant1 (bv1) mutants, first identified over 80 years ago, strongly resemble brachytic2 mutants that have shortened internodes, short internode cells, and are deficient in auxin transport. Here, we characterized two novel bv1 maize mutants. We found that an inositol polyphosphate 5-phosphatase orthologue of the rice gene dwarf50 was the molecular basis for the bv1 phenotype, implicating auxin-mediated inositol polyphosphate and/or phosphoinositide signalling in stem elongation. We suggest that auxin-mediated internode elongation involves processes that also contribute to stem gravitropism. Genes misregulated in bv1 mutants included genes important for cell wall synthesis, transmembrane transport, and cytoskeletal function. Mutant and wild-type plants were indistinguishable early in development, responded similarly to changes in light quality, had unaltered flowering times, and had normal flower development. These attributes suggest that breeding could utilize bv1 alleles to increase crop grain yields.
Collapse
Affiliation(s)
- Luis M Avila
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Diego Cerrudo
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Clarence Swanton
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Lewis Lukens
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
43
|
Schott S, Valdebenito B, Bustos D, Gomez-Porras JL, Sharma T, Dreyer I. Cooperation through Competition-Dynamics and Microeconomics of a Minimal Nutrient Trade System in Arbuscular Mycorrhizal Symbiosis. FRONTIERS IN PLANT SCIENCE 2016; 7:912. [PMID: 27446142 PMCID: PMC4921476 DOI: 10.3389/fpls.2016.00912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/09/2016] [Indexed: 05/17/2023]
Abstract
In arbuscular mycorrhizal (AM) symbiosis, fungi and plants exchange nutrients (sugars and phosphate, for instance) for reciprocal benefit. Until now it is not clear how this nutrient exchange system works. Here, we used computational cell biology to simulate the dynamics of a network of proton pumps and proton-coupled transporters that are upregulated during AM formation. We show that this minimal network is sufficient to describe accurately and realistically the nutrient trade system. By applying basic principles of microeconomics, we link the biophysics of transmembrane nutrient transport with the ecology of organismic interactions and straightforwardly explain macroscopic scenarios of the relations between plant and AM fungus. This computational cell biology study allows drawing far reaching hypotheses about the mechanism and the regulation of nutrient exchange and proposes that the "cooperation" between plant and fungus can be in fact the result of a competition between both for the same resources in the tiny periarbuscular space. The minimal model presented here may serve as benchmark to evaluate in future the performance of more complex models of AM nutrient exchange. As a first step toward this goal, we included SWEET sugar transporters in the model and show that their co-occurrence with proton-coupled sugar transporters results in a futile carbon cycle at the plant plasma membrane proposing that two different pathways for the same substrate should not be active at the same time.
Collapse
|
44
|
Duan GL, Hu Y, Schneider S, McDermott J, Chen J, Sauer N, Rosen BP, Daus B, Liu Z, Zhu YG. Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds. NATURE PLANTS 2016; 2:15202. [PMID: 27004129 PMCID: PMC4758254 DOI: 10.1038/nplants.2015.202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 11/16/2015] [Indexed: 05/02/2023]
Abstract
Arsenic contamination of groundwater and soils threatens the health of tens of millions of people worldwide. Understanding the way in which arsenic is taken up by crops such as rice, which serve as a significant source of arsenic in the human diet, is therefore important. Membrane transport proteins that catalyse arsenic uptake by roots, and translocation through the xylem to shoots, have been characterized in a number of plants, including rice. The transporters responsible for loading arsenic from the xylem into the phloem and on into the seeds, however, are yet to be identified. Here, we show that transporters responsible for inositol uptake in the phloem in Arabidopsis also transport arsenic. Transformation of Saccharomyces cerevisiae with AtINT2 or AtINT4 led to increased arsenic accumulation and increased sensitivity to arsenite. Expression of AtINT2 in Xenopus laevis oocytes also induced arsenite import. Disruption of AtINT2 or AtINT4 in Arabidopsis thaliana led to a reduction in phloem, silique and seed arsenic concentrations in plants fed with arsenite through the roots, relative to wild-type plants. These plants also exhibited a large drop in silique and seed arsenic concentrations when fed with arsenite through the leaves. We conclude that in Arabidopsis, inositol transporters are responsible for arsenite loading into the phloem, the key source of arsenic in seeds.
Collapse
Affiliation(s)
- Gui-Lan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ying Hu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sabine Schneider
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
- Erlangen Center of Plant Science (ECROPS), Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Joseph McDermott
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
| | - Norbert Sauer
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
- Erlangen Center of Plant Science (ECROPS), Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
| | - Birgit Daus
- Helmholtz Centre for Environmental Research GmbH – UFZ, Department Analytical Chemistry, Permoserstrasse 15/04318 Leipzig/Germany
| | - Zijuan Liu
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Science, Xiamen, China
| |
Collapse
|
45
|
Jauregui I, Aparicio-Tejo PM, Avila C, Rueda-López M, Aranjuelo I. Root and shoot performance of Arabidopsis thaliana exposed to elevated CO2: A physiologic, metabolic and transcriptomic response. JOURNAL OF PLANT PHYSIOLOGY 2015; 189:65-76. [PMID: 26519814 DOI: 10.1016/j.jplph.2015.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/24/2015] [Accepted: 09/03/2015] [Indexed: 05/11/2023]
Abstract
The responsiveness of C3 plants to raised atmospheric [CO2] levels has been frequently described as constrained by photosynthetic downregulation. The main goal of the current study was to characterize the shoot-root relationship and its implications in plant responsiveness under elevated [CO2] conditions. For this purpose, Arabidopsis thaliana plants were exposed to elevated [CO2] (800ppm versus 400ppm [CO2]) and fertilized with a mixed (NH4NO3) nitrogen source. Plant growth, physiology, metabolite and transcriptomic characterizations were carried out at the root and shoot levels. Plant growth under elevated [CO2] conditions was doubled due to increased photosynthetic rates and gas exchange measurements revealed that these plants maintain higher photosynthetic rates over extended periods of time. This positive response of photosynthetic rates to elevated [CO2] was caused by the maintenance of leaf protein and Rubisco concentrations at control levels alongside enhanced energy efficiency. The increased levels of leaf carbohydrates, organic acids and amino acids supported the augmented respiration rates of plants under elevated [CO2]. A transcriptomic analysis allowed the identification of photoassimilate allocation and remobilization as fundamental process used by the plants to maintain the outstanding photosynthetic performance. Moreover, based on the relationship between plant carbon status and hormone functioning, the transcriptomic analyses provided an explanation of why phenology accelerates under elevated [CO2] conditions.
Collapse
Affiliation(s)
- Iván Jauregui
- Dpto Ciencias del Medio Natural, Universidad Pública de Navarra, Campus de Arrosadía, E-31192 Mutilva Baja, Spain; Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, E-31192 Mutilva Baja, Spain.
| | - Pedro M Aparicio-Tejo
- Dpto Ciencias del Medio Natural, Universidad Pública de Navarra, Campus de Arrosadía, E-31192 Mutilva Baja, Spain; Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, E-31192 Mutilva Baja, Spain
| | - Concepción Avila
- Biología Molecular y Bioquímica, Instituto Andaluz de Biología, Unidad Asociada UMA-CSIC, Universidad de Málaga, Campus Universitario de Teatinos, E-29071 Málaga, Spain
| | - Marina Rueda-López
- Biología Molecular y Bioquímica, Instituto Andaluz de Biología, Unidad Asociada UMA-CSIC, Universidad de Málaga, Campus Universitario de Teatinos, E-29071 Málaga, Spain
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, E-31192 Mutilva Baja, Spain; Dpto Biología Vegetal, Universidad del País Vasco, Barrio Sarriena, s/n, E-48940 Leioa, Vizkaia, Spain
| |
Collapse
|
46
|
Li JM, Zheng DM, Li LT, Qiao X, Wei SW, Bai B, Zhang SL, Wu J. Genome-Wide Function, Evolutionary Characterization and Expression Analysis of Sugar Transporter Family Genes in Pear (Pyrus bretschneideri Rehd). PLANT & CELL PHYSIOLOGY 2015; 56:1721-37. [PMID: 26079674 DOI: 10.1093/pcp/pcv090] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 06/10/2015] [Indexed: 05/22/2023]
Abstract
The sugar transporter (ST) plays an important role in plant growth, development and fruit quality. In this study, a total of 75 ST genes were identified in the pear (Pyrus bretschneideri Rehd) genome based on systematic analysis. Furthermore, all ST genes identified were grouped into eight subfamilies according to conserved domains and phylogenetic analysis. Analysis of cis-regulatory element sequences of all ST genes identified the MYBCOREATCYCB1 promoter in sucrose transporter (SUT) and monosaccharide transporter (MST) genes of pear, while in grape it is exclusively found in SUT subfamily members, indicating divergent transcriptional regulation in different species. Gene duplication event analysis indicated that whole-genome duplication (WGD) and segmental duplication play key roles in ST gene amplification, followed by tandem duplication. Estimation of positive selection at codon sites of ST paralog pairs indicated that all plastidic glucose translocator (pGlcT) subfamily members have evolved under positive selection. In addition, the evolutionary history of ST gene duplications indicated that the ST genes have experienced significant expansion in the whole ST gene family after the second WGD, especially after apple and pear divergence. According to the global RNA sequencing results of pear fruit development, gene expression profiling showed the expression of 53 STs. Combined with quantitative real-time PCR (qRT-PCR) analysis, two polyol/monosaccharide transporter (PLT) and three tonoplast monosaccharide transporter (tMT) members were identified as candidate genes, which may play important roles in sugar accumulation during pear fruit development and ripening. Identification of highly expressed STs in fruit is important for finding novel genes contributing to enhanced levels of sugar content in pear fruit.
Collapse
Affiliation(s)
- Jia-Ming Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan-man Zheng
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lei-ting Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Qiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu-wei Wei
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Bai
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-ling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
47
|
Conde A, Regalado A, Rodrigues D, Costa JM, Blumwald E, Chaves MM, Gerós H. Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:889-906. [PMID: 25433029 DOI: 10.1093/jxb/eru446] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Polyols are important metabolites that often function as carbon and energy sources and/or osmoprotective solutes in some plants. In grapevine, and in the grape berry in particular, the molecular aspects of polyol transport and metabolism and their physiological relevance are virtually unknown to date. Here, the biochemical function of a grapevine fruit mesocarp polyol transporter (VvPLT1) was characterized after its heterologous expression in yeast. This H(+)-dependent plasma membrane carrier transports mannitol (K m=5.4mM) and sorbitol (K m=9.5mM) over a broad range of polyols and monosaccharides. Water-deficit stress triggered an increase in the expression of VvPLT1 at the fully mature stage, allowing increased polyol uptake into pulp cells. Plant polyol dehydrogenases are oxireductases that reversibly oxidize polyols into monosaccharides. Mannitol catabolism in grape cells (K m=30.1mM mannitol) and mature berry mesocarps (K m=79mM) was, like sorbitol dehydrogenase activity, strongly inhibited (50-75%) by water-deficit stress. Simultaneously, fructose reduction into polyols via mannitol and sorbitol dehydrogenases was stimulated, contributing to their higher intracellular concentrations in water-deficit stress. Accordingly, the concentrations of mannitol, sorbitol, galactinol, myo-inositol, and dulcitol were significantly higher in berry mesocarps from water-deficit-stressed Tempranillo grapevines. Metabolomic profiling of the berry pulp by GC-TOF-MS also revealed many other changes in its composition induced by water deficit. The impact of polyols on grape berry composition and plant response to water deficit stress, via modifications in polyol transport and metabolism, was analysed by integrating metabolomics with transcriptional analysis and biochemical approaches.
Collapse
Affiliation(s)
- Artur Conde
- Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB-UM), Portugal Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| | - Ana Regalado
- Instituto de Tecnologia Química e Biológica, Apartado 127, 2781-901 Oeiras, Portugal
| | - Diana Rodrigues
- Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| | - J Miguel Costa
- Instituto de Tecnologia Química e Biológica, Apartado 127, 2781-901 Oeiras, Portugal Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Eduardo Blumwald
- Department of Plant Sciences, UC Davis, One Shields Ave, Davis, CA 95616, USA
| | - M Manuela Chaves
- Instituto de Tecnologia Química e Biológica, Apartado 127, 2781-901 Oeiras, Portugal Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Hernâni Gerós
- Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB-UM), Portugal Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
48
|
Reuscher S, Akiyama M, Yasuda T, Makino H, Aoki K, Shibata D, Shiratake K. The sugar transporter inventory of tomato: genome-wide identification and expression analysis. PLANT & CELL PHYSIOLOGY 2014; 55:1123-41. [PMID: 24833026 DOI: 10.1093/pcp/pcu052] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The mobility of sugars between source and sink tissues in plants depends on sugar transport proteins. Studying the corresponding genes allows the manipulation of the sink strength of developing fruits, thereby improving fruit quality for human consumption. Tomato (Solanum lycopersicum) is both a major horticultural crop and a model for the development of fleshy fruits. In this article we provide a comprehensive inventory of tomato sugar transporters, including the SUCROSE TRANSPORTER family, the SUGAR TRANSPORTER PROTEIN family, the SUGAR FACILITATOR PROTEIN family, the POLYOL/MONOSACCHARIDE TRANSPORTER family, the INOSITOL TRANSPORTER family, the PLASTIDIC GLUCOSE TRANSLOCATOR family, the TONOPLAST MONOSACCHARIDE TRANSPORTER family and the VACUOLAR GLUCOSE TRANSPORTER family. Expressed sequence tag (EST) sequencing and phylogenetic analyses established a nomenclature for all analyzed tomato sugar transporters. In total we identified 52 genes in tomato putatively encoding sugar transporters. The expression of 29 sugar transporter genes in vegetative tissues and during fruit development was analyzed. Several sugar transporter genes were expressed in a tissue- or developmental stage-specific manner. This information will be helpful to better understand source to sink movement of photoassimilates in tomato. Identification of fruit-specific sugar transporters might be a first step to find novel genes contributing to tomato fruit sugar accumulation.
Collapse
Affiliation(s)
- Stefan Reuscher
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 JapanThese authors contributed equally to this work
| | - Masahito Akiyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 JapanThese authors contributed equally to this work
| | - Tomohide Yasuda
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| | - Haruko Makino
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Sakai, 599-8531 Japan
| | - Daisuke Shibata
- Kazusa DNA Research Institute, Kazusa-kamatari, Kisarazu, 292-0818 Japan
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| |
Collapse
|
49
|
Remy E, Duque P. Beyond cellular detoxification: a plethora of physiological roles for MDR transporter homologs in plants. Front Physiol 2014; 5:201. [PMID: 24910617 PMCID: PMC4038776 DOI: 10.3389/fphys.2014.00201] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/09/2014] [Indexed: 12/31/2022] Open
Abstract
Higher plants possess a multitude of Multiple Drug Resistance (MDR) transporter homologs that group into three distinct and ubiquitous families—the ATP-Binding Cassette (ABC) superfamily, the Major Facilitator Superfamily (MFS), and the Multidrug And Toxic compound Extrusion (MATE) family. As in other organisms, such as fungi, mammals, and bacteria, MDR transporters make a primary contribution to cellular detoxification processes in plants, mainly through the extrusion of toxic compounds from the cell or their sequestration in the central vacuole. This review aims at summarizing the currently available information on the in vivo roles of MDR transporters in plant systems. Taken together, these data clearly indicate that the biological functions of ABC, MFS, and MATE carriers are not restricted to xenobiotic and metal detoxification. Importantly, the activity of plant MDR transporters also mediates biotic stress resistance and is instrumental in numerous physiological processes essential for optimal plant growth and development, including the regulation of ion homeostasis and polar transport of the phytohormone auxin.
Collapse
Affiliation(s)
- Estelle Remy
- Instituto Gulbenkian de Ciência Oeiras, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência Oeiras, Portugal
| |
Collapse
|
50
|
Ühlken C, Horvath B, Stadler R, Sauer N, Weingartner M. MAIN-LIKE1 is a crucial factor for correct cell division and differentiation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:107-20. [PMID: 24635680 DOI: 10.1111/tpj.12455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/04/2013] [Accepted: 01/17/2014] [Indexed: 05/10/2023]
Abstract
Plant development requires accurate coordination of gene expression, both in actively dividing meristematic cells and differentiated cells. Cell fate establishment and maintenance, among others, are mediated by chromatin organization complexes that determine the stable transcriptional states of specific cell types. Here, we focus on MAIN-LIKE1 (MAIL1), one of three homologs of MAINTENANCE OF MERISTEMS (MAIN), which form a plant-specific gene family in Arabidopsis thaliana. We show that MAIL1 encodes a ubiquitously expressed nuclear protein. A mail1 loss-of-function mutant developed short primary roots, in which the meristematic cells accumulated DNA double-strand breaks and underwent massive cell death. In addition, mail1 mutant showed also cell differentiation defects in root and shoot tissues, and developed disorganized callus-like structures. The genetic interaction between main and mail1 mutants suggests that they act in the same pathway, and that both are essential for maintaining correct cell division acitivity in meristematic cells, while MAIL1 has an additional function in differentiating cells.
Collapse
Affiliation(s)
- Christine Ühlken
- Molekulare Pflanzenphysiologie and Erlangen Center of Plant Science, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91058, Erlangen, Germany
| | | | | | | | | |
Collapse
|