1
|
Yuan Y, Ma X, Li C, Zhong X, Li Y, Zhao J, Zhang X, Zhou Z. Integration of transcriptome and metabolome reveals key regulatory defense pathways associated with high temperature stress in cucumber (Cucumis sativus L.). BMC PLANT BIOLOGY 2025; 25:6. [PMID: 39748295 PMCID: PMC11694469 DOI: 10.1186/s12870-024-05876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
High temperature stress seriously affects the quality and yield of vegetable crops, especially cucumber (Cucumis sativus L.). However, the metabolic dynamics and gene regulatory network of cucumber in response to high temperature stress remain poorly studied. In this study, we identified a heat-tolerant cucumber Gy14 and a heat-sensitive cucumber 32X. RNA-seq analysis of Gy14 and 32X under high temperature stress showed that some differentially expressed genes (DEGs) were related to the biosynthesis of secondary metabolites. Metabolomic analysis revealed that there were more phenylpropanoids and their downstream derivatives in Gy14 compared to that in 32X under Re_2d condition (2 normal days recovery after heat). Integrated analysis of transcriptome and metabolome revealed that these upregulated genes played a pivotal role in flavonoid biosynthesis. Moreover, high temperature stress significantly induced the expression of the gibberellin (GA) biosynthesis genes and exogenous application of GA3 alleviated the damage of high temperature to cucumber seedlings. Together, these findings provided new insights into the transcriptome response and metabolomic reprogramming of cucumber against high temperature stress.
Collapse
Affiliation(s)
- Yong Yuan
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Xiao Ma
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Chuang Li
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Xitong Zhong
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Yuyan Li
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Jianyu Zhao
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhaoyang Zhou
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Xu C, Song LY, Li J, Zhang LD, Guo ZJ, Ma DN, Dai MJ, Li QH, Liu JY, Zheng HL. MangroveDB: A Comprehensive Online Database for Mangroves Based on Multi-Omics Data. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39660842 DOI: 10.1111/pce.15318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/23/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024]
Abstract
Mangroves are dominant flora of intertidal zones along tropical and subtropical coastline around the world that offer important ecological and economic value. Recently, the genomes of mangroves have been decoded, and massive omics data were generated and deposited in the public databases. Reanalysis of multi-omics data can provide new biological insights excluded in the original studies. However, the requirements for computational resource and lack of bioinformatics skill for experimental researchers limit the effective use of the original data. To fill this gap, we uniformly processed 942 transcriptome data, 386 whole-genome sequencing data, and provided 13 reference genomes and 40 reference transcriptomes for 53 mangroves. Finally, we built an interactive web-based database platform MangroveDB (https://github.com/Jasonxu0109/MangroveDB), which was designed to provide comprehensive gene expression datasets to facilitate their exploration and equipped with several online analysis tools, including principal components analysis, differential gene expression analysis, tissue-specific gene expression analysis, GO and KEGG enrichment analysis. MangroveDB not only provides query functions about genes annotation, but also supports some useful visualization functions for analysis results, such as volcano plot, heatmap, dotplot, PCA plot, bubble plot, population structure, and so on. In conclusion, MangroveDB is a valuable resource for the mangroves research community to efficiently use the massive public omics datasets.
Collapse
Affiliation(s)
- Chaoqun Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ling-Yu Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lu-Dan Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Shanxi, China
| | - Ze-Jun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Dong-Na Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ming-Jin Dai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qing-Hua Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jin-Yu Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Tian Z, Chen B, Sun Y, Sun G, Gao X, Pan Z, Song G, Du X, He S. GhGRF4/GhARF2-GhGASA24 module regulates fiber cell wall thickness by modulating cellulose biosynthesis in upland cotton (Gossypium hirsutum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1842-1856. [PMID: 39427330 DOI: 10.1111/tpj.17083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/03/2024] [Indexed: 10/22/2024]
Abstract
Fiber elongation rate is an essential characteristic of cotton fiber in the textile industry, yet it has been largely overlooked in genetic studies. Gibberellins (GAs) and auxin (IAA) are recognized for their role in directing numerous developmental processes in plants by influencing cell differentiation and elongation. However, the degree to which GA-IAA interaction governs cellular elongation in cotton fiber cells remains to be fully understood. In this study, we identified a causal gene, Gibberellic Acid-Stimulated in Arabidopsis 24 (GhGASA24), that appears to be responsible for fiber elongation rate via regulating fiber cell wall thickness. Subsequent experiments revealed that GhGASA24 influences cell wall formation by promoting the expression of GhCesA8 and GhCesA10. Our findings suggest that Auxin Response Factor 2 (GhARF2) regulates fiber elongation rate by directly binding to the AuxRE elements in GhGASA24 promoter. In addition, we identified Growth Regulation Factor 4 (GhGRF4) as a transcription factor that interacts with GhARF2 to form a heterodimer complex, which also transcriptionally activates GhGASA24. Intriguingly, GhGRF4 regulates GhARF2 expression by directly binding to its promoter, thereby acting as a cascade regulator to enhance the transcriptional levels of GhGASA24. We propose that the GhGRF4/GhARF2-GhGASA24-GhCesAs module may contribute to fiber cell wall thickness by modulating cellulose biosynthesis, and provide a theoretical basis for improvement of fiber quality.
Collapse
Affiliation(s)
- Zailong Tian
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Baojun Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaru Sun
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Gaofei Sun
- School of Computer Science and Information Engineering, Anyang Institute of Technology, Anyang, China
| | - Xu Gao
- National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Guoli Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shoupu He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Luo H, Guan Y, Zhang Z, Zhang Z, Zhang Z, Li H. FveDREB1B improves cold tolerance of woodland strawberry by positively regulating FveSCL23 and FveCHS. PLANT, CELL & ENVIRONMENT 2024; 47:4630-4650. [PMID: 39051467 DOI: 10.1111/pce.15052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Cold stress has seriously inhibited the growth and development of strawberry during production. CBF/DREB1 is a key central transcription factor regulating plant cold tolerance, but its regulatory mechanisms are varied in different plants. Especially in strawberry, the molecular mechanism of CBF/DREB1 regulating cold tolerance is still unclear. In this study, we found that FveDREB1B was most significantly induced by cold stress in CBF/DREB1 family of diploid woodland strawberry. FveDREB1B was localized to the nucleus, and DREB1B sequences were highly conserved in diploid and octoploid strawberry, and even similar in Rosaceae. And FveDREB1B overexpressed strawberry plants showed delayed flowering and increased cold tolerance, while FveDREB1B silenced plants showed early flowering and decreased cold tolerance. Under cold stress, FveDREB1B activated FveSCL23 expression by directly binding to its promoter. Meanwhile, FveDREB1B and FveSCL23 interacted with FveDELLA, respectively. In addition, we also found that FveDREB1B promoted anthocyanin accumulation in strawberry leaves by directly activating FveCHS expression after cold treatment and recovery to 25°C. DREB1B genes were also detected to be highly expressed in cold-tolerant strawberry resources 'Fragaria mandschurica' and 'Fragaria nipponica'. In conclusion, our study reveals the molecular mechanism of FveDREB1B-FveSCL23-FveDELLA module and FveDREB1B-FveCHS module to enhance the cold tolerance of woodland strawberry. It provides a new idea for improving the cold tolerance of cultivated strawberry and evaluating the cold tolerance of strawberry germplasm resources.
Collapse
Affiliation(s)
- He Luo
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yuhan Guan
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhuo Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zihui Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhihong Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - He Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
5
|
Kiger NM, Schroeder SJ. SVALKA: A Long Noncoding Cis-Natural Antisense RNA That Plays a Role in the Regulation of the Cold Response of Arabidopsis thaliana. Noncoding RNA 2024; 10:59. [PMID: 39728604 DOI: 10.3390/ncrna10060059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
RNA plays important roles in the regulation of gene expression in response to environmental stimuli. SVALKA, a long noncoding cis-natural antisense RNA, is a key component of regulating the response to cold temperature in Arabidopsis thaliana. There are three mechanisms through which SVALKA fine tunes the transcriptional response to cold temperatures. SVALKA regulates the expression of the CBF1 (C-Repeat Dehydration Binding Factor 1) transcription factor through a collisional transcription mechanism and a dsRNA and DICER mediated mechanism. SVALKA also interacts with Polycomb Repressor Complex 2 to regulate the histone methylation of CBF3. Both CBF1 and CBF3 are key components of the COLD REGULATED (COR) regulon that direct the plant's response to cold temperature over time, as well as plant drought adaptation, pathogen responses, and growth regulation. The different isoforms of SVALKA and its potential to form dynamic RNA conformations are important features in regulating a complex gene network in concert with several other noncoding RNA. This review will summarize the three mechanisms through which SVALKA participates in gene regulation, describe the ways that dynamic RNA structures support the function of regulatory noncoding RNA, and explore the potential for improving agricultural genetic engineering with a better understanding of the roles of noncoding RNA.
Collapse
Affiliation(s)
- Nicholas M Kiger
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA
| | - Susan J Schroeder
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
6
|
Zhao G, Wei J, Cui J, Li S, Zheng G, Liu Z. Genome-Wide Identification of Freezing-Responsive Genes in a Rapeseed Line NTS57 Tolerant to Low-Temperature. Int J Mol Sci 2024; 25:12491. [PMID: 39684201 DOI: 10.3390/ijms252312491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Winter rapeseed is a high-oil crop that exhibits significant sensitivity to low temperatures, leading to a substantial reduction in production. Hence, it is of great significance to elucidate the genomic genetic mechanism of strong freezing-resistant winter rapeseed to improve their freezing-resistant traits. In this study, global transcriptome expression profiles of the freezing-resistant cultivar NTS57 (NS) under freezing stress were obtained for the years 2015, 2016, and 2017 by RNA sequencing (RNA-seq). Most differentially expressed genes (DEGs) were involved in the plant hormone signal transduction, alpha-linolenic acid metabolism, protein processing, glutathione metabolism, and plant-pathogen interaction pathways. Antioxidant enzyme activities and lipid peroxidation levels were significantly positively and negatively correlated with overwintering rate (OWR), respectively. After freezing treatment, the formation of freezing resistance of NS was attributed to the increase in antioxidant enzyme activities and content of osmotic regulation substances, as well as the decrease in lipid peroxidation level. Furthermore, quantitative reverse transcription polymerase chain reaction (qRT-PCR) and phenotypic verification indicated that heat stress transcription factor A2 (HSFA2) and 17.6 kDa class II heat shock protein (HSP17.6) participated in the response to freezing stress. This study will further refine the regulatory network of plants against freezing stress and help to screen candidate genes for improving plant freezing resistance.
Collapse
Affiliation(s)
- Guodong Zhao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiaping Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Junmei Cui
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Shichang Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Guoqiang Zheng
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Zigang Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
7
|
Wu B, Sun M, Zhong T, Zhang J, Lei T, Yan Y, Chen X, Nan R, Sun F, Zhang C, Xi Y. Genome-wide identification and expression analysis of two-component system genes in switchgrass (Panicum virgatum L.). BMC PLANT BIOLOGY 2024; 24:1014. [PMID: 39465364 PMCID: PMC11520087 DOI: 10.1186/s12870-024-05687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
The two-component system (TCS) consists of histidine kinase (HK), histidine phosphate transfer protein (HP), and response regulatory factor (RR). It is one of the most crucial components of signal transduction in plants, playing a significant role in regulating plant growth, development, and responses to various abiotic stresses. Although TCS genes have been extensively identified in a variety of plants, the genome-wide recognition and examination of TCS in switchgrass remain unreported. Accordingly, this study identified a total of 87 TCS members in the genome of switchgrass, comprising 20 HK(L)s, 10 HPs, and 57 RRs. Detailed analyses were also conducted on their gene structures, conserved domains, and phylogenetic relationships. Moreover, this study analysed the gene expression profiles across diverse organs and investigated their response patterns to adverse environmental stresses. Results revealed that 87 TCS genes were distributed across 18 chromosomes, with uneven distribution. Expansion of these genes in switchgrass was achieved through both fragment and tandem duplication. PvTCS members are relatively conservative in the evolutionary process, but the gene structure varies significantly. Various cis-acting elements, varying in types and amounts, are present in the promoter region of PvTCSs, all related to plant growth, development, and abiotic stress, due to the TCS gene structure. Protein-protein interaction and microRNA prediction suggest complex interactions and transcriptional regulation among TCS members. Additionally, most TCS members are expressed in roots and stems, with some genes showing organ-specific expression at different stages of leaf and inflorescence development. Under conditions of abiotic stress such as drought, low temperature, high temperature, and salt stress, as well as exogenous abscisic acid (ABA), the expression of most TCS genes is either stimulated or inhibited. Our systematic analysis could offer insight into the characterization of the TCS genes, and further the growth of functional studies in switchgrass.
Collapse
Affiliation(s)
- Baolin Wu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Mengyu Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Tao Zhong
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Jiawei Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Tingshu Lei
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yuming Yan
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Xiaohong Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Rui Nan
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Chao Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Sun S, Yang Y, Hao S, Liu Y, Zhang X, Yang P, Zhang X, Luo Y. Comparison of transcriptome and metabolome analysis revealed cold-resistant metabolic pathways in cucumber roots under low-temperature stress in root zone. FRONTIERS IN PLANT SCIENCE 2024; 15:1413716. [PMID: 39315370 PMCID: PMC11416975 DOI: 10.3389/fpls.2024.1413716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/10/2024] [Indexed: 09/25/2024]
Abstract
Introduction Low ground temperature is a major factor limiting overwintering in cucumber cultivation facilities in northern alpine regions. Lower temperatures in the root zone directly affect the physiological function of the root system, which in turn affects the normal physiological activity of plants. However, the importance of the ground temperature in facilities has not attracted sufficient attention. Methods Therefore, this study tested the cucumber variety Jinyou 35 under three root zone temperatures (room temperature, 20-22°C; suboptimal temperature, 13- 15°C; and low temperature, 8-10°C) to investigated possible cold resistance mechanisms in the root of cucumber seedlings through hormone, metabolomics, and transcriptomics analyses. Results and discussion The results showed that cucumber roots were subjected to chilling stress at different temperatures. Hormone analysis indicated that auxin content was highest in the roots. Jasmonic acid and strigolactone participated in the low-temperature stress response. Auxin and jasmonate are key hormones that regulate the response of cucumber roots to low temperatures. Phenolic acid was the most abundant metabolite in cucumber roots under chilling stress. Additionally, triterpenes may play an important role in chilling resistance. Differentially expressed genes and metabolites were significantly enriched in benzoxazinoid biosynthesis in the room temperature vs. suboptimal temperature groups and the room temperature vs. low temperature groups. Most differentially expressed transcription factor genes in AP2/ERF were strongly induced in cucumber roots by both suboptimal and low-temperature stress conditions. These results provide guidance for the cultivation of cucumber in facilities.
Collapse
Affiliation(s)
- Shijun Sun
- Hetao College, Department of Agronomy, Bayannur, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Hetao Green Agricultural Product Safety Production and Warning Control Laboratory, Hetao College, Bayannur, China
| | - Yan Yang
- Urat Middle Banner Green Industry Development Center, Bayannur, China
| | - Shuiyuan Hao
- Hetao College, Department of Agronomy, Bayannur, China
- Hetao Green Agricultural Product Safety Production and Warning Control Laboratory, Hetao College, Bayannur, China
| | - Ye Liu
- Hetao College, Department of Agronomy, Bayannur, China
- Hetao Green Agricultural Product Safety Production and Warning Control Laboratory, Hetao College, Bayannur, China
| | - Xin Zhang
- Hetao College, Department of Agronomy, Bayannur, China
- Hetao Green Agricultural Product Safety Production and Warning Control Laboratory, Hetao College, Bayannur, China
| | - Pudi Yang
- Hetao College, Department of Agronomy, Bayannur, China
- Hetao Green Agricultural Product Safety Production and Warning Control Laboratory, Hetao College, Bayannur, China
| | - Xudong Zhang
- Hetao College, Department of Agronomy, Bayannur, China
- Hetao Green Agricultural Product Safety Production and Warning Control Laboratory, Hetao College, Bayannur, China
| | - Yusong Luo
- Department of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
9
|
Huang X, Zentella R, Park J, Reser L, Bai DL, Ross MM, Shabanowitz J, Hunt DF, Sun TP. Phosphorylation activates master growth regulator DELLA by promoting histone H2A binding at chromatin in Arabidopsis. Nat Commun 2024; 15:7694. [PMID: 39227587 PMCID: PMC11372120 DOI: 10.1038/s41467-024-52033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
DELLA proteins are conserved master growth regulators that play a central role in controlling plant development in response to internal and environmental cues. DELLAs function as transcription regulators, which are recruited to target promoters by binding to transcription factors (TFs) and histone H2A via their GRAS domain. Recent studies showed that DELLA stability is regulated post-translationally via two mechanisms, phytohormone gibberellin-induced polyubiquitination for its rapid degradation, and Small Ubiquitin-like Modifier (SUMO)-conjugation to increase its accumulation. Moreover, DELLA activity is dynamically modulated by two distinct glycosylations: DELLA-TF interactions are enhanced by O-fucosylation, but inhibited by O-linked N-acetylglucosamine (O-GlcNAc) modification. However, the role of DELLA phosphorylation remains unclear as previous studies showing conflicting results ranging from findings that suggest phosphorylation promotes or reduces DELLA degradation to others indicating it has no effect on its stability. Here, we identify phosphorylation sites in REPRESSOR OF ga1-3 (RGA, an AtDELLA) purified from Arabidopsis by mass spectrometry analysis, and show that phosphorylation of two RGA peptides in the PolyS and PolyS/T regions enhances RGA activity by promoting H2A binding and RGA association with target promoters. Notably, phosphorylation does not affect RGA-TF interactions or RGA stability. Our study has uncovered a molecular mechanism of phosphorylation-induced DELLA activity.
Collapse
Affiliation(s)
- Xu Huang
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Rodolfo Zentella
- Department of Biology, Duke University, Durham, NC, 27708, USA
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, NC, 27607, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jeongmoo Park
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Syngenta, Research Triangle Park, NC, 27709, USA
| | - Larry Reser
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Dina L Bai
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Mark M Ross
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
- Department of Pathology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
10
|
Xiao P, Qu J, Wang Y, Fang T, Xiao W, Wang Y, Zhang Y, Khan M, Chen Q, Xu X, Li C, Liu JH. Transcriptome and metabolome atlas reveals contributions of sphingosine and chlorogenic acid to cold tolerance in Citrus. PLANT PHYSIOLOGY 2024; 196:634-650. [PMID: 38875157 DOI: 10.1093/plphys/kiae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 06/16/2024]
Abstract
Citrus is one of the most important fruit crop genera in the world, but many Citrus species are vulnerable to cold stress. Ichang papeda (Citrus ichangensis), a cold-hardy citrus species, holds great potential for identifying valuable metabolites that are critical for cold tolerance in Citrus. However, the metabolic changes and underlying mechanisms that regulate Ichang papeda cold tolerance remain largely unknown. In this study, we compared the metabolomes and transcriptomes of Ichang papeda and HB pummelo (Citrus grandis "Hirado Buntan", a cold-sensitive species) to explore the critical metabolites and genes responsible for cold tolerance. Metabolomic analyses led to the identification of common and genotype-specific metabolites, consistent with transcriptomic alterations. Compared to HB pummelo under cold stress, Ichang papeda accumulated more sugars, flavonoids, and unsaturated fatty acids, which are well-characterized metabolites involved in stress responses. Interestingly, sphingosine and chlorogenic acid substantially accumulated only in Ichang papeda. Knockdown of CiSPT (C. ichangensis serine palmitoyltransferase) and CiHCT2 (C. ichangensis hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyltransferase2), two genes involved in sphingosine and chlorogenic acid biosynthesis, dramatically decreased endogenous sphingosine and chlorogenic acid levels, respectively. This reduction in sphingosine and chlorogenic acid notably compromised the cold tolerance of Ichang papeda, whereas exogenous application of these metabolites increased plant cold tolerance. Taken together, our findings indicate that greater accumulation of a spectrum of metabolites, particularly sphingosine and chlorogenic acid, promotes cold tolerance in cold-tolerant citrus species. These findings broaden our understanding of plant metabolic alterations in response to cold stress and provide valuable targets that can be manipulated to improve Citrus cold tolerance.
Collapse
Affiliation(s)
- Peng Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tian Fang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yilei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Madiha Khan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiyu Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyong Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Chunlong Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
11
|
Ma T, Ma L, Wei R, Xu L, Ma Y, Chen Z, Dang J, Ma S, Li S. Physiology, Biochemistry, and Transcriptomics Jointly Reveal the Phytotoxicity Mechanism of Acetochlor on Pisum sativum L. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2005-2019. [PMID: 38988284 DOI: 10.1002/etc.5936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024]
Abstract
Acetochlor, as a commonly used pre-emergent herbicide, can be toxic to crops and affect production if used improperly. However, the toxic mechanism of acetochlor on plants is not fully understood. The present study used a combination of transcriptomic analysis and physiological measurements to investigate the effects of short-term (15-day) exposure to different concentrations of acetochlor (1, 10, 20 mg/kg) on the morphology, physiology, and transcriptional levels of pea seedlings, aiming to elucidate the toxic response and resistance mechanisms in pea seedlings under herbicide stress. The results showed that the toxicity of acetochlor to pea seedlings was dose-dependent, manifested as dwarfing and stem base browning with increasing concentrations, especially at 10 mg/kg and above. Analysis of the antioxidant system showed that from the 1 mg/kg treatment, malondialdehyde, superoxide dismutase, peroxidase, and glutathione peroxidase in peas increased with increasing concentrations of acetochlor, indicating oxidative damage. Analysis of the glutathione (GSH) metabolism system showed that under 10 mg/kg treatment, the GSH content of pea plants significantly increased, and GSH transferase activity and gene expression were significantly induced, indicating a detoxification response in plants. Transcriptomic analysis showed that after acetochlor treatment, differentially expressed genes in peas were significantly enriched in the phenylpropane metabolic pathway, and the levels of key metabolites (flavonoids and lignin) were increased. In addition, we found that acetochlor-induced dwarfing of pea seedlings may be related to gibberellin signal transduction. Environ Toxicol Chem 2024;43:2005-2019. © 2024 SETAC.
Collapse
Affiliation(s)
- Tingfeng Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Lei Ma
- Agronomy College, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Ruonan Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Ling Xu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Yantong Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Zhen Chen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Junhong Dang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Shaoying Ma
- Laboratory and Practice Base Management Center, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Sheng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
- Agronomy College, Gansu Agricultural University, Lanzhou, People's Republic of China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
| |
Collapse
|
12
|
Pu X, Fu Y, Xu C, Li X, Wang W, De K, Wei X, Yao X. Transcriptomic analyses provide molecular insight into the cold stress response of cold-tolerant alfalfa. BMC PLANT BIOLOGY 2024; 24:741. [PMID: 39095692 PMCID: PMC11297790 DOI: 10.1186/s12870-024-05136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/13/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Daye No.3 is a novel cultivar of alfalfa (Medicago sativa L.) that is well suited for cultivation in high-altitude regions such as the Qinghai‒Tibet Plateau owing to its high yield and notable cold resistance. However, the limited availability of transcriptomic information has hindered our investigation into the potential mechanisms of cold tolerance in this cultivar. Consequently, we conducted de novo transcriptome assembly to overcome this limitation. Subsequently, we compared the patterns of gene expression in Daye No. 3 during cold acclimatization and exposure to cold stress at various time points. RESULTS A total of 15 alfalfa samples were included in the transcriptome assembly, resulting in 141.97 Gb of clean bases. A total of 441 DEGs were induced by cold acclimation, while 4525, 5016, and 8056 DEGs were identified at 12 h, 24 h, and 36 h after prolonged cold stress at 4 °C, respectively. The consistency between the RT‒qPCR and transcriptome data confirmed the accuracy and reliability of the transcriptomic data. KEGG enrichment analysis revealed that many genes related to photosynthesis were enriched under cold stress. STEM analysis demonstrated that genes involved in nitrogen metabolism and the TCA cycle were consistently upregulated under cold stress, while genes associated with photosynthesis, particularly antenna protein genes, were downregulated. PPI network analysis revealed that ubiquitination-related ribosomal proteins act as hub genes in response to cold stress. Additionally, the plant hormone signaling pathway was activated under cold stress, suggesting its vital role in the cold stress response of alfalfa. CONCLUSIONS Ubiquitination-related ribosomal proteins induced by cold acclimation play a crucial role in early cold signal transduction. As hub genes, these ubiquitination-related ribosomal proteins regulate a multitude of downstream genes in response to cold stress. The upregulation of genes related to nitrogen metabolism and the TCA cycle and the activation of the plant hormone signaling pathway contribute to the enhanced cold tolerance of alfalfa.
Collapse
Affiliation(s)
- Xiaojian Pu
- Academy of Animal Husbandry and Veterinary Science, Qinghai University, No.1 Wei'er Road, Biopark, Chengbei District, Xining, Qinghai, 810016, China
| | - Yunjie Fu
- Academy of Animal Husbandry and Veterinary Science, Qinghai University, No.1 Wei'er Road, Biopark, Chengbei District, Xining, Qinghai, 810016, China
| | - Chengti Xu
- Academy of Animal Husbandry and Veterinary Science, Qinghai University, No.1 Wei'er Road, Biopark, Chengbei District, Xining, Qinghai, 810016, China.
| | - Xiuzhang Li
- Academy of Animal Husbandry and Veterinary Science, Qinghai University, No.1 Wei'er Road, Biopark, Chengbei District, Xining, Qinghai, 810016, China.
| | - Wei Wang
- Academy of Animal Husbandry and Veterinary Science, Qinghai University, No.1 Wei'er Road, Biopark, Chengbei District, Xining, Qinghai, 810016, China
| | - Kejia De
- Academy of Animal Husbandry and Veterinary Science, Qinghai University, No.1 Wei'er Road, Biopark, Chengbei District, Xining, Qinghai, 810016, China
| | - Xijie Wei
- Academy of Animal Husbandry and Veterinary Science, Qinghai University, No.1 Wei'er Road, Biopark, Chengbei District, Xining, Qinghai, 810016, China
| | - Xixi Yao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai Province, China
| |
Collapse
|
13
|
Yuan H, Cheng M, Wang R, Wang Z, Fan F, Wang W, Si F, Gao F, Li S. miR396b/GRF6 module contributes to salt tolerance in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2079-2092. [PMID: 38454780 PMCID: PMC11258987 DOI: 10.1111/pbi.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Salinity, as one of the most challenging environmental factors restraining crop growth and yield, poses a severe threat to global food security. To address the rising food demand, it is urgent to develop crop varieties with enhanced yield and greater salt tolerance by delving into genes associated with salt tolerance and high-yield traits. MiR396b/GRF6 module has previously been demonstrated to increase rice yield by shaping the inflorescence architecture. In this study, we revealed that miR396b/GRF6 module can significantly improve salt tolerance of rice. In comparison with the wild type, the survival rate of MIM396 and OE-GRF6 transgenic lines increased by 48.0% and 74.4%, respectively. Concurrent with the increased salt tolerance, the transgenic plants exhibited reduced H2O2 accumulation and elevated activities of ROS-scavenging enzymes (CAT, SOD and POD). Furthermore, we identified ZNF9, a negative regulator of rice salt tolerance, as directly binding to the promoter of miR396b to modulate the expression of miR396b/GRF6. Combined transcriptome and ChIP-seq analysis showed that MYB3R serves as the downstream target of miR396b/GRF6 in response to salt tolerance, and overexpression of MYB3R significantly enhanced salt tolerance. In conclusion, this study elucidated the potential mechanism underlying the response of the miR396b/GRF6 network to salt stress in rice. These findings offer a valuable genetic resource for the molecular breeding of high-yield rice varieties endowed with stronger salt tolerance.
Collapse
Affiliation(s)
- Huanran Yuan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life Sciences, Wuhan UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Mingxing Cheng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life Sciences, Wuhan UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life Sciences, Wuhan UniversityWuhanChina
| | - Zhikai Wang
- College of Life Science, Yangtze UniversityJingzhouChina
| | - Fengfeng Fan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life Sciences, Wuhan UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Wei Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life Sciences, Wuhan UniversityWuhanChina
| | - Fengfeng Si
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life Sciences, Wuhan UniversityWuhanChina
| | - Feng Gao
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life Sciences, Wuhan UniversityWuhanChina
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life Sciences, Wuhan UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| |
Collapse
|
14
|
Li HL, Xu RR, Guo XL, Liu YJ, You CX, Han Y, An JP. The MdNAC72-MdABI5 module acts as an interface integrating jasmonic acid and gibberellin signals and undergoes ubiquitination-dependent degradation regulated by MdSINA2 in apple. THE NEW PHYTOLOGIST 2024; 243:997-1016. [PMID: 38849319 DOI: 10.1111/nph.19888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024]
Abstract
Jasmonic acid (JA) and gibberellin (GA) coordinately regulate plant developmental programs and environmental cue responses. However, the fine regulatory network of the cross-interaction between JA and GA remains largely elusive. In this study, we demonstrate that MdNAC72 together with MdABI5 positively regulates anthocyanin biosynthesis through an exquisite MdNAC72-MdABI5-MdbHLH3 transcriptional cascade in apple. MdNAC72 interacts with MdABI5 to promote the transcriptional activation of MdABI5 on its target gene MdbHLH3 and directly activates the transcription of MdABI5. The MdNAC72-MdABI5 module regulates the integration of JA and GA signals in anthocyanin biosynthesis by combining with JA repressor MdJAZ2 and GA repressor MdRGL2a. MdJAZ2 disrupts the MdNAC72-MdABI5 interaction and attenuates the transcriptional activation of MdABI5 by MdNAC72. MdRGL2a sequesters MdJAZ2 from the MdJAZ2-MdNAC72 protein complex, leading to the release of MdNAC72. The E3 ubiquitin ligase MdSINA2 is responsive to JA and GA signals and promotes ubiquitination-dependent degradation of MdNAC72. The MdNAC72-MdABI5 interface fine-regulates the integration of JA and GA signals at the transcriptional and posttranslational levels by combining MdJAZ2, MdRGL2a, and MdSINA2. In summary, our findings elucidate the fine regulatory network connecting JA and GA signals with MdNAC72-MdABI5 as the core in apple.
Collapse
Affiliation(s)
- Hong-Liang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Rui-Rui Xu
- College of Biology and Oceanography, Weifang University, Weifang, 261061, Shandong, China
| | - Xin-Long Guo
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ya-Jing Liu
- School of Horticulture, Anhui Agricultural University, He-Fei, 230036, Anhui, China
| | - Chun-Xiang You
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| |
Collapse
|
15
|
Lazzara FE, Rodriguez RE, Palatnik JF. Molecular mechanisms regulating GROWTH-REGULATING FACTORS activity in plant growth, development, and environmental responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4360-4372. [PMID: 38666596 DOI: 10.1093/jxb/erae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/24/2024] [Indexed: 07/24/2024]
Abstract
Plants rely on complex regulatory mechanisms to ensure proper growth and development. As plants are sessile organisms, these mechanisms must be flexible enough to adapt to changes in the environment. GROWTH-REGULATING FACTORS (GRFs) are plant-specific transcription factors that act as a central hub controlling plant growth and development, which offer promising biotechnological applications to enhance plant performance. Here, we analyze the complex molecular mechanisms that regulate GRFs activity, and how their natural and synthetic variants can impact on plant growth and development. We describe the biological roles of the GRFs and examine how they regulate gene expression and contribute to the control of organ growth and plant responses to a changing environment. This review focuses on the premise that unlocking the full biotechnological potential of GRFs requires a thorough understanding of the various regulatory layers governing GRF activity, the functional divergence among GRF family members, and the gene networks that they regulate.
Collapse
Affiliation(s)
- Franco E Lazzara
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
| | - Ramiro E Rodriguez
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Sante Fe, 2000, Argentina
| | - Javier F Palatnik
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Sante Fe, 2000, Argentina
| |
Collapse
|
16
|
Chu W, Chang S, Lin J, Zhang C, Li J, Liu X, Liu Z, Liu D, Yang Q, Zhao D, Liu X, Guo W, Xin M, Yao Y, Peng H, Xie C, Ni Z, Sun Q, Hu Z. Methyltransferase TaSAMT1 mediates wheat freezing tolerance by integrating brassinosteroid and salicylic acid signaling. THE PLANT CELL 2024; 36:2607-2628. [PMID: 38537937 PMCID: PMC11218785 DOI: 10.1093/plcell/koae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/23/2024] [Indexed: 07/04/2024]
Abstract
Cold injury is a major environmental stress affecting the growth and yield of crops. Brassinosteroids (BRs) and salicylic acid (SA) play important roles in plant cold tolerance. However, whether or how BR signaling interacts with the SA signaling pathway in response to cold stress is still unknown. Here, we identified an SA methyltransferase, TaSAMT1 that converts SA to methyl SA (MeSA) and confers freezing tolerance in wheat (Triticum aestivum). TaSAMT1 overexpression greatly enhanced wheat freezing tolerance, with plants accumulating more MeSA and less SA, whereas Tasamt1 knockout lines were sensitive to freezing stress and accumulated less MeSA and more SA. Spraying plants with MeSA conferred freezing tolerance to Tasamt1 mutants, but SA did not. We revealed that BRASSINAZOLE-RESISTANT 1 (TaBZR1) directly binds to the TaSAMT1 promoter and induces its transcription. Moreover, TaBZR1 interacts with the histone acetyltransferase TaHAG1, which potentiates TaSAMT1 expression via increased histone acetylation and modulates the SA pathway during freezing stress. Additionally, overexpression of TaBZR1 or TaHAG1 altered TaSAMT1 expression and improved freezing tolerance. Our results demonstrate a key regulatory node that connects the BR and SA pathways in the plant cold stress response. The regulatory factors or genes identified could be effective targets for the genetic improvement of freezing tolerance in crops.
Collapse
Affiliation(s)
- Wei Chu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Shumin Chang
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Jingchen Lin
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Chenji Zhang
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Jinpeng Li
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Xingbei Liu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Zehui Liu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Debiao Liu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Qun Yang
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Danyang Zhao
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Xiaoyu Liu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| |
Collapse
|
17
|
Hao X, Gong Y, Chen S, Ma C, Duanmu H. Genome-Wide Identification of GRAS Transcription Factors and Their Functional Analysis in Salt Stress Response in Sugar Beet. Int J Mol Sci 2024; 25:7132. [PMID: 39000240 PMCID: PMC11241673 DOI: 10.3390/ijms25137132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
GAI-RGA-and-SCR (GRAS) transcription factors can regulate many biological processes such as plant growth and development and stress defense, but there are few related studies in sugar beet. Salt stress can seriously affect the yield and quality of sugar beet (Beta vulgaris). Therefore, this study used bioinformatics methods to identify GRAS transcription factors in sugar beet and analyzed their structural characteristics, evolutionary relationships, regulatory networks and salt stress response patterns. A total of 28 BvGRAS genes were identified in the whole genome of sugar beet, and the sequence composition was relatively conservative. According to the topology of the phylogenetic tree, BvGRAS can be divided into nine subfamilies: LISCL, SHR, PAT1, SCR, SCL3, LAS, SCL4/7, HAM and DELLA. Synteny analysis showed that there were two pairs of fragment replication genes in the BvGRAS gene, indicating that gene replication was not the main source of BvGRAS family members. Regulatory network analysis showed that BvGRAS could participate in the regulation of protein interaction, material transport, redox balance, ion homeostasis, osmotic substance accumulation and plant morphological structure to affect the tolerance of sugar beet to salt stress. Under salt stress, BvGRAS and its target genes showed an up-regulated expression trend. Among them, BvGRAS-15, BvGRAS-19, BvGRAS-20, BvGRAS-21, LOC104892636 and LOC104893770 may be the key genes for sugar beet's salt stress response. In this study, the structural characteristics and biological functions of BvGRAS transcription factors were analyzed, which provided data for the further study of the molecular mechanisms of salt stress and molecular breeding of sugar beet.
Collapse
Affiliation(s)
- Xiaolin Hao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yongyong Gong
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA;
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Huizi Duanmu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
18
|
Shen Y, Li L. Research Overview and Trends of the Effects of Gibberellins (GAs) on Rice Biological Processes: A Bibliometric Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1548. [PMID: 38891356 PMCID: PMC11174460 DOI: 10.3390/plants13111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Rice (Oryza sativa L.) is a vital crop that feeds more than half of the world's population. Gibberellins (GAs), a crucial phytohormone, play a significant role in the growth and development of rice. Since 1985, there has been a notable increase in the number of studies investigating the effects of GA on various biological processes in rice. Nevertheless, conducting scientific and quantitative research on the extensive literature available poses significant challenges, particularly in understanding the development trajectory of the field, examining major contributors, and identifying emerging research trends. The objective of this study is to address these challenges by analyzing global research patterns and trends using bibliometric methods from 1985 to 2024. Through the application of advanced analytical tools, progress in this field is studied in depth and the global research landscape is characterized from multiple dimensions including countries, institutions, authors, and journals. The analysis of 2118 articles extracted and screened from the Web of Science Core dataset shows a steady growth in the number of publications. The research published in China and the USA has significantly advanced the development of the field. In particular, institutions such as the Chinese Academy of Sciences and Nagoya University have shown impressive productivity. Lee In-Jung stands out as the most influential author. The journal Plant Physiology publishes the highest number of articles. The study also provides a thorough examination of current research hotspots, indicating a predominant focus on understanding the role of GAs in the biological processes that regulate diverse rice phenotypes, including plant height, seed dormancy, germination, and stress resistance. By tracing the development characteristics and key points in this area, this study contributes to a quantitative and comprehensive understanding of the impact of GAs on rice.
Collapse
Affiliation(s)
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| |
Collapse
|
19
|
Zhang YL, Wang LY, Yang Y, Zhao X, Zhu HW, You C, Chen N, Wei SJ, Li SF, Gao WJ. Gibberellins regulate masculinization through the SpGAI-SpSTM module in dioecious spinach. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1907-1921. [PMID: 38491869 DOI: 10.1111/tpj.16717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
The sex of dioecious plants is mainly determined by genetic factors, but it can also be converted by environmental cues such as exogenous phytohormones. Gibberellic acids (GAs) are well-known inducers of flowering and sexual development, yet the pathway of gibberellin-induced sex conversion in dioecious spinach (Spinacia oleracea L.) remains elusive. Based on sex detection before and after GA3 application using T11A and SSR19 molecular markers, we confirmed and elevated the masculinization effect of GA on a single female plant through exogenous applications of GA3, showing complete conversion and functional stamens. Silencing of GIBBERELLIC ACID INSENSITIVE (SpGAI), a single DELLA family protein that is a central GA signaling repressor, results in similar masculinization. We also show that SpGAI can physically interact with the spinach KNOX transcription factor SHOOT MERISTEMLESS (SpSTM), which is a homolog of the flower meristem identity regulator STM in Arabidopsis. The silencing of SpSTM also masculinized female flowers in spinach. Furthermore, SpSTM could directly bind the intron of SpPI to repress SpPI expression in developing female flowers. Overall, our results suggest that GA induces a female masculinization process through the SpGAI-SpSTM-SpPI regulatory module in spinach. These insights may help to clarify the molecular mechanism underlying the sex conversion system in dioecious plants while also elucidating the physiological basis for the generation of unisexual flowers so as to establish dioecy in plants.
Collapse
Affiliation(s)
- Yu-Lan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Li-Ying Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yi Yang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Xu Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Hong-Wei Zhu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chen You
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Ning Chen
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shuai-Jie Wei
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
20
|
Hernández-García J, Serrano-Mislata A, Lozano-Quiles M, Úrbez C, Nohales MA, Blanco-Touriñán N, Peng H, Ledesma-Amaro R, Blázquez MA. DELLA proteins recruit the Mediator complex subunit MED15 to coactivate transcription in land plants. Proc Natl Acad Sci U S A 2024; 121:e2319163121. [PMID: 38696472 PMCID: PMC11087773 DOI: 10.1073/pnas.2319163121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/27/2024] [Indexed: 05/04/2024] Open
Abstract
DELLA proteins are negative regulators of the gibberellin response pathway in angiosperms, acting as central hubs that interact with hundreds of transcription factors (TFs) and regulators to modulate their activities. While the mechanism of TF sequestration by DELLAs to prevent DNA binding to downstream targets has been extensively documented, the mechanism that allows them to act as coactivators remains to be understood. Here, we demonstrate that DELLAs directly recruit the Mediator complex to specific loci in Arabidopsis, facilitating transcription. This recruitment involves DELLA amino-terminal domain and the conserved MED15 KIX domain. Accordingly, partial loss of MED15 function mainly disrupted processes known to rely on DELLA coactivation capacity, including cytokinin-dependent regulation of meristem function and skotomorphogenic response, gibberellin metabolism feedback, and flavonol production. We have also found that the single DELLA protein in the liverwort Marchantia polymorpha is capable of recruiting MpMED15 subunits, contributing to transcriptional coactivation. The conservation of Mediator-dependent transcriptional coactivation by DELLA between Arabidopsis and Marchantia implies that this mechanism is intrinsic to the emergence of DELLA in the last common ancestor of land plants.
Collapse
Affiliation(s)
- Jorge Hernández-García
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
- Laboratory of Biochemistry, Wageningen University, Wageningen6703 WE, The Netherlands
| | - Antonio Serrano-Mislata
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
| | - María Lozano-Quiles
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
| | - Cristina Úrbez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
| | - María A. Nohales
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
| | - Noel Blanco-Touriñán
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
| | - Huadong Peng
- Imperial College Centre for Synthetic Biology, Imperial College London, LondonSW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Imperial College London, LondonSW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Miguel A. Blázquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
| |
Collapse
|
21
|
Shani E, Hedden P, Sun TP. Highlights in gibberellin research: A tale of the dwarf and the slender. PLANT PHYSIOLOGY 2024; 195:111-134. [PMID: 38290048 PMCID: PMC11060689 DOI: 10.1093/plphys/kiae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 02/01/2024]
Abstract
It has been almost a century since biologically active gibberellin (GA) was isolated. Here, we give a historical overview of the early efforts in establishing the GA biosynthesis and catabolism pathway, characterizing the enzymes for GA metabolism, and elucidating their corresponding genes. We then highlight more recent studies that have identified the GA receptors and early GA signaling components (DELLA repressors and F-box activators), determined the molecular mechanism of DELLA-mediated transcription reprograming, and revealed how DELLAs integrate multiple signaling pathways to regulate plant vegetative and reproductive development in response to internal and external cues. Finally, we discuss the GA transporters and their roles in GA-mediated plant development.
Collapse
Affiliation(s)
- Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Peter Hedden
- Laboratory of Growth Regulators, Institute of Experimental Botany and Palacky University, 78371 Olomouc, Czech Republic
- Sustainable Soils and Crops, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Tai-ping Sun
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
22
|
Qin L, Tian D, Guo C, Wei L, He Z, Zhou W, Huang Q, Li B, Li C, Jiang M. Discovery of gene regulation mechanisms associated with uniconazole-induced cold tolerance in banana using integrated transcriptome and metabolome analysis. BMC PLANT BIOLOGY 2024; 24:342. [PMID: 38671368 PMCID: PMC11046889 DOI: 10.1186/s12870-024-05027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND The gibberellic acid (GA) inhibitor, uniconazole, is a plant growth regulator commonly used in banana cultivation to promote dwarfing but also enhances the cold resistance in plants. However, the mechanism of this induced cold resistance remains unclear. RESULTS We confirmed that uniconazole induced cold tolerance in bananas and that the activities of Superoxide dismutase and Peroxidase were increased in the uniconazole-treated bananas under cold stress when compared with the control groups. The transcriptome and metabolome of bananas treated with or without uniconazole were analyzed at different time points under cold stress. Compared to the control group, differentially expressed genes (DEGs) between adjacent time points in each uniconazole-treated group were enriched in plant-pathogen interactions, MAPK signaling pathway, and plant hormone signal transduction, which were closely related to stimulus-functional responses. Furthermore, the differentially abundant metabolites (DAMs) between adjacent time points were enriched in flavone and flavonol biosynthesis and linoleic acid metabolism pathways in the uniconazole-treated group than those in the control group. Temporal analysis of DEGs and DAMs in uniconazole-treated and control groups during cold stress showed that the different expression patterns in the two groups were enriched in the linoleic acid metabolism pathway. In addition to strengthening the antioxidant system and complex hormonal changes caused by GA inhibition, an enhanced linoleic acid metabolism can protect cell membrane stability, which may also be an important part of the cold resistance mechanism of uniconazole treatment in banana plants. CONCLUSIONS This study provides information for understanding the mechanisms underlying inducible cold resistance in banana, which will benefit the production of this economically important crop.
Collapse
Affiliation(s)
- Liuyan Qin
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Dandan Tian
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Chenglin Guo
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| | - Liping Wei
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhangfei He
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Wei Zhou
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Quyan Huang
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Baoshen Li
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Chaosheng Li
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Mengyun Jiang
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| |
Collapse
|
23
|
Sang M, Feng P, Chi LP, Zhang W. The biosynthetic logic and enzymatic machinery of approved fungi-derived pharmaceuticals and agricultural biopesticides. Nat Prod Rep 2024; 41:565-603. [PMID: 37990930 DOI: 10.1039/d3np00040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Covering: 2000 to 2023The kingdom Fungi has become a remarkably valuable source of structurally complex natural products (NPs) with diverse bioactivities. Since the revolutionary discovery and application of the antibiotic penicillin from Penicillium, a number of fungi-derived NPs have been developed and approved into pharmaceuticals and pesticide agents using traditional "activity-guided" approaches. Although emerging genome mining algorithms and surrogate expression hosts have brought revolutionary approaches to NP discovery, the time and costs involved in developing these into new drugs can still be prohibitively high. Therefore, it is essential to maximize the utility of existing drugs by rational design and systematic production of new chemical structures based on these drugs by synthetic biology. To this purpose, there have been great advances in characterizing the diversified biosynthetic gene clusters associated with the well-known drugs and in understanding the biosynthesis logic mechanisms and enzymatic transformation processes involved in their production. We describe advances made in the heterogeneous reconstruction of complex NP scaffolds using fungal polyketide synthases (PKSs), non-ribosomal peptide synthetases (NRPSs), PKS/NRPS hybrids, terpenoids, and indole alkaloids and also discuss mechanistic insights into metabolic engineering, pathway reprogramming, and cell factory development. Moreover, we suggest pathways for expanding access to the fungal chemical repertoire by biosynthesis of representative family members via common platform intermediates and through the rational manipulation of natural biosynthetic machineries for drug discovery.
Collapse
Affiliation(s)
- Moli Sang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Peiyuan Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Lu-Ping Chi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
24
|
Nagle MF, Yuan J, Kaur D, Ma C, Peremyslova E, Jiang Y, Goralogia GS, Magnuson A, Li JY, Muchero W, Fuxin L, Strauss SH. Genome-wide association study and network analysis of in vitro transformation in Populus trichocarpa support key roles of diverse phytohormone pathways and cross talk. THE NEW PHYTOLOGIST 2024. [PMID: 38650352 DOI: 10.1111/nph.19737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Wide variation in amenability to transformation and regeneration (TR) among many plant species and genotypes presents a challenge to the use of genetic engineering in research and breeding. To help understand the causes of this variation, we performed association mapping and network analysis using a population of 1204 wild trees of Populus trichocarpa (black cottonwood). To enable precise and high-throughput phenotyping of callus and shoot TR, we developed a computer vision system that cross-referenced complementary red, green, and blue (RGB) and fluorescent-hyperspectral images. We performed association mapping using single-marker and combined variant methods, followed by statistical tests for epistasis and integration of published multi-omic datasets to identify likely regulatory hubs. We report 409 candidate genes implicated by associations within 5 kb of coding sequences, and epistasis tests implicated 81 of these candidate genes as regulators of one another. Gene ontology terms related to protein-protein interactions and transcriptional regulation are overrepresented, among others. In addition to auxin and cytokinin pathways long established as critical to TR, our results highlight the importance of stress and wounding pathways. Potential regulatory hubs of signaling within and across these pathways include GROWTH REGULATORY FACTOR 1 (GRF1), PHOSPHATIDYLINOSITOL 4-KINASE β1 (PI-4Kβ1), and OBF-BINDING PROTEIN 1 (OBP1).
Collapse
Affiliation(s)
- Michael F Nagle
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Jialin Yuan
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Damanpreet Kaur
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Cathleen Ma
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Ekaterina Peremyslova
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Yuan Jiang
- Statistics Department, Oregon State University, Corvallis, OR, 97331, USA
| | - Greg S Goralogia
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Anna Magnuson
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Jia Yi Li
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, 37996, USA
| | - Li Fuxin
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Steven H Strauss
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
25
|
Chen L, Wu X, Zhang M, Yang L, Ji Z, Chen R, Cao Y, Huang J, Duan Q. Genome-Wide Identification of BrCMF Genes in Brassica rapa and Their Expression Analysis under Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:1118. [PMID: 38674527 PMCID: PMC11054530 DOI: 10.3390/plants13081118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
CCT MOTIF FAMILY (CMF) genes belong to the CCT gene family and have been shown to play a role in diverse processes, such as flowering time and yield regulation, as well as responses to abiotic stresses. CMF genes have not yet been identified in Brassica rapa. A total of 25 BrCMF genes were identified in this study, and these genes were distributed across eight chromosomes. Collinearity analysis revealed that B. rapa and Arabidopsis thaliana share many homologous genes, suggesting that these genes have similar functions. According to sequencing analysis of promoters, several elements are involved in regulating the expression of genes that mediate responses to abiotic stresses. Analysis of the tissue-specific expression of BrCMF14 revealed that it is highly expressed in several organs. The expression of BrCMF22 was significantly downregulated under salt stress, while the expression of BrCMF5, BrCMF7, and BrCMF21 was also significantly reduced under cold stress. The expression of BrCMF14 and BrCMF5 was significantly increased under drought stress, and the expression of BrCMF7 was upregulated. Furthermore, protein-protein interaction network analysis revealed that A. thaliana homologs of BrCMF interacted with genes involved in the abiotic stress response. In conclusion, BrCMF5, BrCMF7, BrCMF14, BrCMF21, and BrCMF22 appear to play a role in responses to abiotic stresses. The results of this study will aid future investigations of CCT genes in B. rapa.
Collapse
Affiliation(s)
- Luhan Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| | - Xiaoyu Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| | - Meiqi Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| | - Lin Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| | - Zhaojing Ji
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| | - Rui Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| | - Yunyun Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| | - Jiabao Huang
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| |
Collapse
|
26
|
Zhao X, Wang S, Guo F, Xia P. Genome-wide identification of polyamine metabolism and ethylene synthesis genes in Chenopodium quinoa Willd. and their responses to low-temperature stress. BMC Genomics 2024; 25:370. [PMID: 38627628 PMCID: PMC11020822 DOI: 10.1186/s12864-024-10265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Quinoa (Chenopodium quinoa Willd.) is valued for its nutritional richness. However, pre-harvest sprouting poses a significant threat to yield and grain quality. This study aims to enhance our understanding of pre-harvest sprouting mitigation strategies, specifically through delayed sowing and avoiding rainy seasons during quinoa maturation. The overarching goal is to identify cold-resistant varieties and unravel the molecular mechanisms behind the low-temperature response of quinoa. We employed bioinformatics and genomics tools for a comprehensive genome-wide analysis of polyamines (PAs) and ethylene synthesis gene families in quinoa under low-temperature stress. RESULTS This involved the identification of 37 PA biosynthesis and 30 PA catabolism genes, alongside 227 ethylene synthesis. Structural and phylogenetic analyses showcased conserved patterns, and subcellular localization predictions indicated diverse cellular distributions. The results indicate that the PA metabolism of quinoa is closely linked to ethylene synthesis, with multiple genes showing an upregulation in response to cold stress. However, differential expression within gene families suggests a nuanced regulatory network. CONCLUSIONS Overall, this study contributes valuable insights for the functional characterization of the PA metabolism and ethylene synthesis of quinoa, which emphasize their roles in plant low-temperature tolerance and providing a foundation for future research in this domain.
Collapse
Affiliation(s)
- Xiaoxue Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201, Kunming, China
| | - Shiyu Wang
- College of Horticulture and Landscape, Yunnan Agricultural University, 650201, Kunming, China
| | - Fenggen Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, 650201, Kunming, China.
| | - Pan Xia
- College of Agronomy and Biotechnology, Yunnan Agricultural University, 650201, Kunming, China
| |
Collapse
|
27
|
Zheng XW, Cao XY, Jiang WH, Xu GZ, Liang QZ, Yang ZY. Cryoprotectant-Mediated Cold Stress Mitigation in Litchi Flower Development: Transcriptomic and Metabolomic Perspectives. Metabolites 2024; 14:223. [PMID: 38668352 PMCID: PMC11052034 DOI: 10.3390/metabo14040223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Temperature is vital in plant growth and agricultural fruit production. Litchi chinensis Sonn, commonly known as litchi, is appreciated for its delicious fruit and fragrant blossoms and is susceptible to stress when exposed to low temperatures. This study investigates the effect of two cryoprotectants that counteract cold stress during litchi flowering, identifies the genes that generate the cold resistance induced by the treatments, and hypothesizes the roles of these genes in cold resistance. Whole plants were treated with Bihu and Liangli cryoprotectant solutions to protect inflorescences below 10 °C. The soluble protein, sugar, fructose, sucrose, glucose, and proline contents were measured during inflorescence. Sucrose synthetase, sucrose phosphate synthetase, antioxidant enzymes (SOD, POD, CAT), and MDA were also monitored throughout the flowering stage. Differentially expressed genes (DEGs), gene ontology, and associated KEGG pathways in the transcriptomics study were investigated. There were 1243 DEGs expressed after Bihu treatment and 1340 in the control samples. Signal transduction pathways were associated with 39 genes in the control group and 43 genes in the Bihu treatment group. The discovery of these genes may contribute to further research on cold resistance mechanisms in litchi. The Bihu treatment was related to 422 low-temperature-sensitive differentially accumulated metabolites (DAMs), as opposed to 408 DAMs in the control, mostly associated with lipid metabolism, organic oxidants, and alcohols. Among them, the most significant differentially accumulated metabolites were involved in pathways such as β-alanine metabolism, polycyclic aromatic hydrocarbon biosynthesis, linoleic acid metabolism, and histidine metabolism. These results showed that Bihu treatment could potentially promote these favorable traits and increase fruit productivity compared to the Liangli and control treatments. More genomic research into cold stress is needed to support the findings of this study.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhuan-Ying Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (X.-W.Z.); (X.-Y.C.); (W.-H.J.); (G.-Z.X.); (Q.-Z.L.)
| |
Collapse
|
28
|
Molitor C, Kurowski TJ, Fidalgo de Almeida PM, Kevei Z, Spindlow DJ, Chacko Kaitholil SR, Iheanyichi JU, Prasanna HC, Thompson AJ, Mohareb FR. A chromosome-level genome assembly of Solanum chilense, a tomato wild relative associated with resistance to salinity and drought. FRONTIERS IN PLANT SCIENCE 2024; 15:1342739. [PMID: 38525148 PMCID: PMC10957597 DOI: 10.3389/fpls.2024.1342739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/12/2024] [Indexed: 03/26/2024]
Abstract
Introduction Solanum chilense is a wild relative of tomato reported to exhibit resistance to biotic and abiotic stresses. There is potential to improve tomato cultivars via breeding with wild relatives, a process greatly accelerated by suitable genomic and genetic resources. Methods In this study we generated a high-quality, chromosome-level, de novo assembly for the S. chilense accession LA1972 using a hybrid assembly strategy with ~180 Gbp of Illumina short reads and ~50 Gbp long PacBio reads. Further scaffolding was performed using Bionano optical maps and 10x Chromium reads. Results The resulting sequences were arranged into 12 pseudomolecules using Hi-C sequencing. This resulted in a 901 Mbp assembly, with a completeness of 95%, as determined by Benchmarking with Universal Single-Copy Orthologs (BUSCO). Sequencing of RNA from multiple tissues resulting in ~219 Gbp of reads was used to annotate the genome assembly with an RNA-Seq guided gene prediction, and for a de novo transcriptome assembly. This chromosome-level, high-quality reference genome for S. chilense accession LA1972 will support future breeding efforts for more sustainable tomato production. Discussion Gene sequences related to drought and salt resistance were compared between S. chilense and S. lycopersicum to identify amino acid variations with high potential for functional impact. These variants were subsequently analysed in 84 resequenced tomato lines across 12 different related species to explore the variant distributions. We identified a set of 7 putative impactful amino acid variants some of which may also impact on fruit development for example the ethylene-responsive transcription factor WIN1 and ethylene-insensitive protein 2. These variants could be tested for their ability to confer functional phenotypes to cultivars that have lost these variants.
Collapse
Affiliation(s)
- Corentin Molitor
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | - Tomasz J. Kurowski
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | | | - Zoltan Kevei
- Soil, Agrifood and Biosciences, Cranfield University, Wharley End, United Kingdom
| | - Daniel J. Spindlow
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | - Steffimol R. Chacko Kaitholil
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | - Justice U. Iheanyichi
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | - H. C. Prasanna
- Division of Vegetable Crops, ICAR-Indian Institute of Horticultural Research, Bangalore, India
| | - Andrew J. Thompson
- Soil, Agrifood and Biosciences, Cranfield University, Wharley End, United Kingdom
| | - Fady R. Mohareb
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| |
Collapse
|
29
|
Xian B, Rehmani MS, Fan Y, Luo X, Zhang R, Xu J, Wei S, Wang L, He J, Fu A, Shu K. The ABI4-RGL2 module serves as a double agent to mediate the antagonistic crosstalk between ABA and GA signals. THE NEW PHYTOLOGIST 2024; 241:2464-2479. [PMID: 38287207 DOI: 10.1111/nph.19533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024]
Abstract
Abscisic acid (ABA) and gibberellins (GA) antagonistically mediate several biological processes, including seed germination, but the molecular mechanisms underlying ABA/GA antagonism need further investigation, particularly any role mediated by a transcription factors module. Here, we report that the DELLA protein RGL2, a repressor of GA signaling, specifically interacts with ABI4, an ABA signaling enhancer, to act as a transcription factor complex to mediate ABA/GA antagonism. The rgl2, abi3, abi4 and abi5 mutants rescue the non-germination phenotype of the ga1-t. Further, we demonstrate that RGL2 specifically interacts with ABI4 to form a heterodimer. RGL2 and ABI4 stabilize one another, and GA increases the ABI4-RGL2 module turnover, whereas ABA decreases it. At the transcriptional level, ABI4 enhances the RGL2 expression by directly binding to its promoter via the CCAC cis-element, and RGL2 significantly upregulates the transcriptional activation ability of ABI4 toward its target genes, including ABI5 and RGL2. Abscisic acid promotes whereas GA inhibits the ability of ABI4-RGL2 module to activate transcription, and ultimately ABA and GA antagonize each other. Genetic analysis demonstrated that both ABI4 and RGL2 are essential for the activity of this transcription factor module. These results suggest that the ABI4-RGL2 module mediates ABA/GA antagonism by functioning as a double agent.
Collapse
Affiliation(s)
- Baoshan Xian
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Muhammad Saad Rehmani
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yueni Fan
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Xiaofeng Luo
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Ranran Zhang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Jiahui Xu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Shaowei Wei
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Lei Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Juan He
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Aigen Fu
- Shaanxi Fundamental Science Research Project for Chemistry & Biology, the College of Life Sciences, Northwest University, Xi'an, 710127, China
| | - Kai Shu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| |
Collapse
|
30
|
Lu L, Chen X, Tan Q, Li W, Sun Y, Zhang Z, Song Y, Zeng R. Gibberellin-Mediated Sensitivity of Rice Roots to Aluminum Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:543. [PMID: 38498546 PMCID: PMC10892994 DOI: 10.3390/plants13040543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/20/2024]
Abstract
Aluminum toxicity poses a significant constraint on crop production in acidic soils. While phytohormones are recognized for their pivotal role in mediating plant responses to aluminum stress, the specific involvement of gibberellin (GA) in regulating aluminum tolerance remains unexplored. In this study, we demonstrate that external GA exacerbates the inhibitory impact of aluminum stress on root growth of rice seedlings, concurrently promoting reactive oxygen species (ROS) accumulation. Furthermore, rice plants overexpressing the GA synthesis gene SD1 exhibit enhanced sensitivity to aluminum stress. In contrast, the slr1 gain-of-function mutant, characterized by impeded GA signaling, displays enhanced tolerance to aluminum stress, suggesting the negative regulatory role of GA in rice resistance to aluminum-induced toxicity. We also reveal that GA application suppresses the expression of crucial aluminum tolerance genes in rice, including Al resistance transcription factor 1 (ART1), Nramp aluminum transporter 1 (OsNramp4), and Sensitive to Aluminum 1 (SAL1). Conversely, the slr1 mutant exhibits up-regulated expression of these genes compared to the wild type. In summary, our results shed light on the inhibitory effect of GA in rice resistance to aluminum stress, contributing to a theoretical foundation for unraveling the intricate mechanisms of plant hormones in regulating aluminum tolerance.
Collapse
Affiliation(s)
- Long Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinyan Tan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
| | - Wenqian Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
| | - Yanyan Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
| | - Zaoli Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
31
|
Kalve S, House MA, Tar’an B. Freezing stress response of wild and cultivated chickpeas. FRONTIERS IN PLANT SCIENCE 2024; 14:1310459. [PMID: 38375446 PMCID: PMC10876003 DOI: 10.3389/fpls.2023.1310459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024]
Abstract
Chickpea is an economically and nutritionally important grain legume globally, however, cold stress has adverse effects on its growth. In cold countries, like Canada where the growing season is short, having cold stress-tolerant varieties is crucial. Crop wild relatives of chickpea, especially Cicer reticulatum, can survive in suboptimal environments and are an important resource for crop improvement. In this study, we explored the performance of eleven C. reticulatum wild accessions and two chickpea cultivars, CDC Leader and CDC Consul, together with a cold sensitive check ILC533 under freezing stress. Freezing tolerance was scored based on a 1-9 scale. The wild relatives, particularly Kesen_075 and CudiA_152, had higher frost tolerance compared to the cultivars, which all died after frost treatment. We completed transcriptome analysis via mRNA sequencing to assess changes in gene expression in response to freezing stress and identified 6,184 differentially expressed genes (DEGs) in CDC Consul, and 7,842 DEGs in Kesen_075. GO (gene ontology) analysis of the DEGs revealed that those related to stress responses, endogenous and external stimuli responses, secondary metabolite processes, and photosynthesis were significantly over-represented in CDC Consul, while genes related to endogenous stimulus responses and photosynthesis were significantly over-represented in Kesen_075. These results are consistent with Kesen_075 being more tolerant to freezing stress than CDC Consul. Moreover, our data revealed that the expression of CBF pathway-related genes was impacted during freezing conditions in Kesen_075, and expression of these genes is believed to alleviate the damage caused by freezing stress. We identified genomic regions associated with tolerance to freezing stress in an F2 population derived from a cross between CDC Consul and Kesen_075 using QTL-seq analysis. Eight QTLs (P<0.05) on chromosomes Ca3, Ca4, Ca6, Ca7, Ca8, and two QTLs (P<0.01) on chromosomes Ca4 and Ca8, were associated with tolerance to freezing stress. Interestingly, 58 DEGs co-located within these QTLs. To our knowledge, this is the first study to explore the transcriptome and QTLs associated with freezing tolerance in wild relatives of chickpea under controlled conditions. Altogether, these findings provide comprehensive information that aids in understanding the molecular mechanism of chickpea adaptation to freezing stress and further provides functional candidate genes that can assist in breeding of freezing-stress tolerant varieties.
Collapse
Affiliation(s)
| | | | - Bunyamin Tar’an
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
32
|
Vollmeister E, Phokas A, Meyberg R, Böhm CV, Peter M, Kohnert E, Yuan J, Grosche C, Göttig M, Ullrich KK, Perroud PF, Hiltbrunner A, Kreutz C, Coates JC, Rensing SA. A DELAY OF GERMINATION 1 (DOG1)-like protein regulates spore germination in the moss Physcomitrium patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:909-923. [PMID: 37953711 DOI: 10.1111/tpj.16537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
DELAY OF GERMINATION 1 is a key regulator of dormancy in flowering plants before seed germination. Bryophytes develop haploid spores with an analogous function to seeds. Here, we investigate whether DOG1 function during germination is conserved between bryophytes and flowering plants and analyse the underlying mechanism of DOG1 action in the moss Physcomitrium patens. Phylogenetic and in silico expression analyses were performed to identify and characterise DOG1 domain-containing genes in P. patens. Germination assays were performed to characterise a Ppdog1-like1 mutant, and replacement with AtDOG1 was carried out. Yeast two-hybrid assays were used to test the interaction of the PpDOG1-like protein with DELLA proteins from P. patens and A. thaliana. P. patens possesses nine DOG1 domain-containing genes. The DOG1-like protein PpDOG1-L1 (Pp3c3_9650) interacts with PpDELLAa and PpDELLAb and the A. thaliana DELLA protein AtRGA in yeast. Protein truncations revealed the DOG1 domain as necessary and sufficient for interaction with PpDELLA proteins. Spores of Ppdog1-l1 mutant germinate faster than wild type, but replacement with AtDOG1 reverses this effect. Our data demonstrate a role for the PpDOG1-LIKE1 protein in moss spore germination, possibly alongside PpDELLAs. This suggests a conserved DOG1 domain function in germination, albeit with differential adaptation of regulatory networks in seed and spore germination.
Collapse
Affiliation(s)
- Evelyn Vollmeister
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Alexandros Phokas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Rabea Meyberg
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Clemens V Böhm
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Marlies Peter
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Eva Kohnert
- Institute of Medical Biometry and Statistics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79104, Germany
| | - Jinhong Yuan
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Christopher Grosche
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Marco Göttig
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Kristian K Ullrich
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | | | - Andreas Hiltbrunner
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79104, Germany
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Chen X, Zhang J, Wang S, Cai H, Yang M, Dong Y. Genome-wide molecular evolution analysis of the GRF and GIF gene families in Plantae (Archaeplastida). BMC Genomics 2024; 25:74. [PMID: 38233778 PMCID: PMC10795294 DOI: 10.1186/s12864-024-10006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Plant growth-regulating factors (GRFs) and GRF-interacting factors (GIFs) interact with each other and collectively have important regulatory roles in plant growth, development, and stress responses. Therefore, it is of great significance to explore the systematic evolution of GRF and GIF gene families. However, our knowledge and understanding of the role of GRF and GIF genes during plant evolution has been fragmentary. RESULTS In this study, a large number of genomic and transcriptomic datasets of algae, mosses, ferns, gymnosperms and angiosperms were used to systematically analyze the evolution of GRF and GIF genes during the evolution of plants. The results showed that GRF gene first appeared in the charophyte Klebsormidium nitens, whereas the GIF genes originated relatively early, and these two gene families were mainly expanded by segmental duplication events after plant terrestrialization. During the process of evolution, the protein sequences and functions of GRF and GIF family genes are relatively conservative. As cooperative partner, GRF and GIF genes contain the similar types of cis-acting elements in their promoter regions, which enables them to have similar transcriptional response patterns, and both show higher levels of expression in reproductive organs and tissues and organs with strong capacity for cell division. Based on protein-protein interaction analysis and verification, we found that the GRF-GIF protein partnership began to be established in pteridophytes and is highly conserved across different terrestrial plants. CONCLUSIONS These results provide a foundation for further exploration of the molecular evolution and biological functions of GRF and GIF genes.
Collapse
Affiliation(s)
- Xinghao Chen
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China
| | - Jun Zhang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China
| | - Shijie Wang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China
| | - Hongyu Cai
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China
| | - Minsheng Yang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China.
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China.
| | - Yan Dong
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China.
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China.
| |
Collapse
|
34
|
Fu MK, He YN, Yang XY, Tang X, Wang M, Dai WS. Genome-wide identification of the GRF family in sweet orange (Citrus sinensis) and functional analysis of the CsGRF04 in response to multiple abiotic stresses. BMC Genomics 2024; 25:37. [PMID: 38184538 PMCID: PMC10770916 DOI: 10.1186/s12864-023-09952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Citrus is one of the most valuable fruits worldwide and an economic pillar industry in southern China. Nevertheless, it frequently suffers from undesirable environmental stresses during the growth cycle, which severely restricts the growth, development and yield of citrus. In plants, the growth-regulating factor (GRF) family of transcription factors (TF) is extensively distributed and plays an vital part in plant growth and development, hormone response, as well as stress adaptation. However, the systematic identification and functional analysis of GRF TFs in citrus have not been reported. RESULTS Here, a genome-wide identification of GRF TFs was performed in Citrus sinensis, 9 members of CsGRFs were systematically identified and discovered to be scattered throughout 5 chromosomes. Subsequently, physical and chemical properties, phylogenetic relationships, structural characteristics, gene duplication events, collinearity and cis-elements of promoter were elaborately analyzed. In particular, the expression patterns of the CsGRF genes in response to multiple phytohormone and abiotic stress treatments were investigated. Predicated on this result, CsGRF04, which exhibited the most differential expression pattern under multiple phytohormone and abiotic stress treatments was screened out. Virus-induced gene silencing (VIGS) technology was utilized to obtain gene silenced plants for CsGRF04 successfully. After the three stress treatments of high salinity, low temperature and drought, the CsGRF04-VIGS lines showed significantly reduced resistance to high salinity and low temperature stresses, but extremely increased resistance to drought stress. CONCLUSIONS Taken together, our findings systematically analyzed the genomic characterization of GRF family in Citrus sinensis, and excavated a CsGRF04 with potential functions under multiple abiotic stresses. Our study lay a foundation for further study on the function of CsGRFs in abiotic stress and hormone signaling response.
Collapse
Affiliation(s)
- Ming-Kang Fu
- College of Life Sciences, Gannan Normal University, National Navel Orange Engineering Research Center, Ganzhou, 341000, Jiangxi, China
| | - Ying-Na He
- College of Life Sciences, Gannan Normal University, National Navel Orange Engineering Research Center, Ganzhou, 341000, Jiangxi, China
| | - Xiao-Yue Yang
- College of Life Sciences, Gannan Normal University, National Navel Orange Engineering Research Center, Ganzhou, 341000, Jiangxi, China
| | - Xi Tang
- College of Life Sciences, Gannan Normal University, National Navel Orange Engineering Research Center, Ganzhou, 341000, Jiangxi, China
| | - Min Wang
- College of Life Sciences, Gannan Normal University, National Navel Orange Engineering Research Center, Ganzhou, 341000, Jiangxi, China
| | - Wen-Shan Dai
- College of Life Sciences, Gannan Normal University, National Navel Orange Engineering Research Center, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
35
|
Wang L, Tanveer M, Wang H, Arnao MB. Melatonin as a key regulator in seed germination under abiotic stress. J Pineal Res 2024; 76:e12937. [PMID: 38241678 DOI: 10.1111/jpi.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024]
Abstract
Seed germination (SG) is the first stage in a plant's life and has an immense importance in sustaining crop production. Abiotic stresses reduce SG by increasing the deterioration of seed quality, and reducing germination potential, and seed vigor. Thus, to achieve a sustainable level of crop yield, it is important to improve SG under abiotic stress conditions. Melatonin (MEL) is an important biomolecule that interplays in developmental processes and regulates many adaptive responses in plants, especially under abiotic stresses. Thus, this review specifically summarizes and discusses the mechanistic basis of MEL-mediated SG under abiotic stresses. MEL regulates SG by regulating some stress-specific responses and some common responses. For instance, MEL induced stress specific responses include the regulation of ionic homeostasis, and hydrolysis of storage proteins under salinity stress, regulation of C-repeat binding factors signaling under cold stress, starch metabolism under high temperature and heavy metal stress, and activation of aquaporins and accumulation of osmolytes under drought stress. On other hand, MEL mediated regulation of gibberellins biosynthesis and abscisic acid catabolism, redox homeostasis, and Ca2+ signaling are amongst the common responses. Nonetheless factors such as endogenous MEL contents, plant species, and growth conditions also influence above-mentioned responses. In conclusion, MEL regulates SG under abiotic stress conditions by interacting with different physiological mechanisms.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Mohsin Tanveer
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Hongling Wang
- CAS Research Center for Ecology and Environment of Central Asia, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Marino B Arnao
- Phytohormones & Plant Development Laboratory, Department of Plant Biology (Plant Physiology), University of Murcia, Murcia, Spain
| |
Collapse
|
36
|
Liu Z, Zhang T, Xu R, Liu B, Han Y, Dong W, Xie Q, Tang Z, Lei X, Wang C, Fu Y, Gao C. BpGRP1 acts downstream of BpmiR396c/BpGRF3 to confer salt tolerance in Betula platyphylla. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:131-147. [PMID: 37703500 PMCID: PMC10754015 DOI: 10.1111/pbi.14173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/22/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
Glycine-rich RNA-binding proteins (GRPs) have been implicated in the responses of plants to environmental stresses, but the function of GRP genes involved in salt stress and the underlying mechanism remain unclear. In this study, we identified BpGRP1 (glycine-rich RNA-binding protein), a Betula platyphylla gene that is induced under salt stress. The physiological and molecular responses to salt tolerance were investigated in both BpGRP1-overexpressing and suppressed conditions. BpGRF3 (growth-regulating factor 3) was identified as a regulatory factor upstream of BpGRP1. We demonstrated that overexpression of BpGRF3 significantly increased the salt tolerance of birch, whereas the grf3-1 mutant exhibited the opposite effect. Further analysis revealed that BpGRF3 and its interaction partner, BpSHMT, function upstream of BpGRP1. We demonstrated that BpmiR396c, as an upstream regulator of BpGRF3, could negatively regulate salt tolerance in birch. Furthermore, we uncovered evidence showing that the BpmiR396c/BpGRF3 regulatory module functions in mediating the salt response by regulating the associated physiological pathways. Our results indicate that BpmiR396c regulates the expression of BpGRF3, which plays a role in salt tolerance by targeting BpGRP1.
Collapse
Affiliation(s)
- Zhongyuan Liu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
- College of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbinChina
| | - Tengqian Zhang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Ruiting Xu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Baichao Liu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Yating Han
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Wenfang Dong
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Qingjun Xie
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Zihao Tang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Xiaojin Lei
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Chao Wang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Yujie Fu
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
- College of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbinChina
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| |
Collapse
|
37
|
Kishore Sahoo R, Jeughale KP, Sarkar S, Selvaraj S, Singh NR, Swain N, Balasubramaniasai C, Chidambaranathan P, Katara JL, Nayak AK, Samantaray S. Growing Conditions and Varietal Ecologies Differently Regulates the Growth-regulating-factor (GRFs) Gene Family in Rice. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3697. [PMID: 38827337 PMCID: PMC11139448 DOI: 10.30498/ijb.2024.394984.3697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/31/2023] [Indexed: 06/04/2024]
Abstract
Background Growth-regulating factors (GRFs) are crucial in rice for controlling plant growth and development. Among the rice cultivation practices, aerobic methods are water efficient but result in significant yield reduction relative to non-aerobic cultivation. Therefore, mechanistic insights into aerobic rice cultivation are important for improving the aerobic performance of rice. Objectives This study aimed to examine the evolution of GRFs in different rice species, analyse the phenotypic differences between aerobic and non-aerobic conditions in three rice varieties, and assess the expression of GRFs in these varieties under both aerobic and non-aerobic conditions. Materials and Methods This study comprehensively examined the GRFs gene family in 11 rice species (Oryza barthii, Oryza brachyantha, Oryza glaberrima, Oryza glumipatula, Oryza sativa subsp. indica, Oryza longistaminata, Oryza meridionalis, Oryza nivara, Oryza punctata, Oryza rufipogon, Oryza sativa subsp. japonica) focusing on phylogenetic analysis. Additionally, the expression patterns of 12 GRFs were investigated in three distinct genotypes of O. sativa subsp. indica rice, under both non-aerobic and aerobic conditions. Results Three major phylogenetic clades were formed based on conserved motifs in the 123 GRFs proteins in eleven rice species. Further, novel motifs were identified especially in O. longistaminata indicative of the species level evolutionary differences in rice. Among the trait performance, the number of tillers was reduced by ~ 36% under aerobic conditions, but the reduction was found to be less in CR Dhan 201, an aerobic variety. Besides, three GRFs namely GRF3, GRF4, and GRF7 were found to be distinct in expression between aerobic and non-aerobic conditions. Conclusion Three GRF genes namely GRF3, GRF4, and GRF7 could be associated with the aerobic adaptation in rice.
Collapse
Affiliation(s)
- Raj Kishore Sahoo
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
- Department of Botany, Ravenshaw University, Cuttack, India
| | | | - Suman Sarkar
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | | | | | - Nibedita Swain
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | | | | | - Jawahar Lal Katara
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Amaresh Kumar Nayak
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack, India
| | | |
Collapse
|
38
|
Wu Y, Liu J, Wu H, Zhu Y, Ahmad I, Zhou G. The Roles of Mepiquate Chloride and Melatonin in the Morpho-Physiological Activity of Cotton under Abiotic Stress. Int J Mol Sci 2023; 25:235. [PMID: 38203405 PMCID: PMC10778694 DOI: 10.3390/ijms25010235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Cotton growth and yield are severely affected by abiotic stress worldwide. Mepiquate chloride (MC) and melatonin (MT) enhance crop growth and yield by reducing the negative effects of abiotic stress on various crops. Numerous studies have shown the pivotal role of MC and MT in regulating agricultural growth and yield. Nevertheless, an in-depth review of the prominent performance of these two hormones in controlling plant morpho-physiological activity and yield in cotton under abiotic stress still needs to be documented. This review highlights the effects of MC and MT on cotton morpho-physiological and biochemical activities; their biosynthetic, signaling, and transduction pathways; and yield under abiotic stress. Furthermore, we also describe some genes whose expressions are affected by these hormones when cotton plants are exposed to abiotic stress. The present review demonstrates that MC and MT alleviate the negative effects of abiotic stress in cotton and increase yield by improving its morpho-physiological and biochemical activities, such as cell enlargement; net photosynthesis activity; cytokinin contents; and the expression of antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase. MT delays the expression of NCED1 and NCED2 genes involved in leaf senescence by decreasing the expression of ABA-biosynthesis genes and increasing the expression of the GhYUC5, GhGA3ox2, and GhIPT2 genes involved in indole-3-acetic acid, gibberellin, and cytokinin biosynthesis. Likewise, MC promotes lateral root formation by activating GA20x genes involved in gibberellin catabolism. Overall, MC and MT improve cotton's physiological activity and antioxidant capacity and, as a result, improve the ability of the plant to resist abiotic stress. The main purpose of this review is to present an in-depth analysis of the performance of MC and MT under abiotic stress, which might help to better understand how these two hormones regulate cotton growth and productivity.
Collapse
Affiliation(s)
- Yanqing Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.L.); (H.W.); (Y.Z.)
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Jiao Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.L.); (H.W.); (Y.Z.)
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Hao Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.L.); (H.W.); (Y.Z.)
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yiming Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.L.); (H.W.); (Y.Z.)
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Irshad Ahmad
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.L.); (H.W.); (Y.Z.)
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.L.); (H.W.); (Y.Z.)
| |
Collapse
|
39
|
Guo X, Liang R, Lou S, Hou J, Chen L, Liang X, Feng X, Yao Y, Liu J, Liu H. Natural variation in the SVP contributes to the pleiotropic adaption of Arabidopsis thaliana across contrasted habitats. J Genet Genomics 2023; 50:993-1003. [PMID: 37633338 DOI: 10.1016/j.jgg.2023.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Coordinated plant adaptation involves the interplay of multiple traits driven by habitat-specific selection pressures. Pleiotropic effects, wherein genetic variants of a single gene control multiple traits, can expedite such adaptations. Until present, only a limited number of genes have been reported to exhibit pleiotropy. Here, we create a recombinant inbred line (RIL) population derived from two Arabidopsis thaliana (A. thaliana) ecotypes originating from divergent habitats. Using this RIL population, we identify an allelic variation in a MADS-box transcription factor, SHORT VEGETATIVE PHASE (SVP), which exerts a pleiotropic effect on leaf size and drought-versus-humidity tolerance. Further investigation reveals that a natural null variant of the SVP protein disrupts its normal regulatory interactions with target genes, including GRF3, CYP707A1/3, and AtBG1, leading to increased leaf size, enhanced tolerance to humid conditions, and changes in flowering time of humid conditions in A. thaliana. Remarkably, polymorphic variations in this gene have been traced back to early A. thaliana populations, providing a genetic foundation and plasticity for subsequent colonization of diverse habitats by influencing multiple traits. These findings advance our understanding of how plants rapidly adapt to changing environments by virtue of the pleiotropic effects of individual genes on multiple trait alterations.
Collapse
Affiliation(s)
- Xiang Guo
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ruyun Liang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shangling Lou
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jing Hou
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liyang Chen
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xin Liang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaoqin Feng
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yingjun Yao
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jianquan Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Huanhuan Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
40
|
Zhang M, Li H, Zhu H, Zhao H, Zhang K, Ge W. Molecular Mechanisms of the miR396b- GRF1 Module Underlying Rooting Regulation in Acer rubrum L.. Evol Bioinform Online 2023; 19:11769343231211071. [PMID: 38020534 PMCID: PMC10655668 DOI: 10.1177/11769343231211071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Rooting and root development in Acer rubrum have important effects on overall growth. A. rubrum does not take root easily in natural conditions. In this study, the mechanisms of the miR396b-GRF1 module underlying rooting regulation in A. rubrum were studied. The subcellular localization and transcriptional activation of miR396b and its target gene growth regulating factor 1 (GRF1) were investigated. These experiments showed that GRF1 was localized in the nucleus and had transcriptional activation activity. Functional validation experiments in transgenic plants demonstrated that overexpression of Ar-miR396b inhibited adventitious root growth, whereas overexpression of ArGRF1 increased adventitious root growth. These results help clarify the molecular regulatory mechanisms underlying adventitious root growth in A. rubrum and provide some new insights into the rooting rate in this species.
Collapse
Affiliation(s)
- Manyu Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, People’s Republic of China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, People’s Republic of China
| | - Huiju Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, People’s Republic of China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, People’s Republic of China
| | - Huiyu Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, People’s Republic of China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, People’s Republic of China
| | - Hewen Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, People’s Republic of China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, People’s Republic of China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, People’s Republic of China
| | - Kezhong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, People’s Republic of China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, People’s Republic of China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, People’s Republic of China
| | - Wei Ge
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, People’s Republic of China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, People’s Republic of China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, People’s Republic of China
| |
Collapse
|
41
|
Perez-Garcia P, Pucciariello O, Sanchez-Corrionero A, Cabrera J, Del Barrio C, Del Pozo JC, Perales M, Wabnik K, Moreno-Risueno MA. The cold-induced factor CBF3 mediates root stem cell activity, regeneration, and developmental responses to cold. PLANT COMMUNICATIONS 2023; 4:100737. [PMID: 37865820 PMCID: PMC10721530 DOI: 10.1016/j.xplc.2023.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/01/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Plant growth and development involve the specification and regeneration of stem cell niches (SCNs). Although plants are exposed to disparate environmental conditions, how environmental cues affect developmental programs and stem cells is not well understood. Root stem cells are accommodated in meristems in SCNs around the quiescent center (QC), which maintains their activity. Using a combination of genetics and confocal microscopy to trace morphological defects and correlate them with changes in gene expression and protein levels, we show that the cold-induced transcription factor (TF) C-REPEAT BINDING FACTOR 3 (CBF3), which has previously been associated with cold acclimation, regulates root development, stem cell activity, and regeneration. CBF3 is integrated into the SHORT-ROOT (SHR) regulatory network, forming a feedback loop that maintains SHR expression. CBF3 is primarily expressed in the root endodermis, whereas the CBF3 protein is localized to other meristematic tissues, including root SCNs. Complementation of cbf3-1 using a wild-type CBF3 gene and a CBF3 fusion with reduced mobility show that CBF3 movement capacity is required for SCN patterning and regulates root growth. Notably, cold induces CBF3, affecting QC activity. Furthermore, exposure to moderate cold around 10°C-12°C promotes root regeneration and QC respecification in a CBF3-dependent manner during the recuperation period. By contrast, CBF3 does not appear to regulate stem cell survival, which has been associated with recuperation from more acute cold (∼4°C). We propose a role for CBF3 in mediating the molecular interrelationships among the cold response, stem cell activity, and development.
Collapse
Affiliation(s)
- Pablo Perez-Garcia
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - CSIC (INIA-CSIC)), Madrid, Spain.
| | - Ornella Pucciariello
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - CSIC (INIA-CSIC)), Madrid, Spain
| | - Alvaro Sanchez-Corrionero
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - CSIC (INIA-CSIC)), Madrid, Spain
| | - Javier Cabrera
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - CSIC (INIA-CSIC)), Madrid, Spain
| | - Cristina Del Barrio
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - CSIC (INIA-CSIC)), Madrid, Spain
| | - Juan Carlos Del Pozo
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - CSIC (INIA-CSIC)), Madrid, Spain
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - CSIC (INIA-CSIC)), Madrid, Spain
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - CSIC (INIA-CSIC)), Madrid, Spain
| | - Miguel A Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - CSIC (INIA-CSIC)), Madrid, Spain.
| |
Collapse
|
42
|
Li J, Li Q, Wang W, Zhang X, Chu C, Tang X, Zhu B, Xiong L, Zhao Y, Zhou D. DELLA-mediated gene repression is maintained by chromatin modification in rice. EMBO J 2023; 42:e114220. [PMID: 37691541 PMCID: PMC10620761 DOI: 10.15252/embj.2023114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
DELLA proteins are master regulators of gibberellic acid (GA) signaling through their effects on gene expression. Enhanced DELLA accumulation in rice and wheat varieties has greatly contributed to grain yield increases during the green revolution. However, the molecular basis of DELLA-mediated gene repression remains elusive. In this work, we show that the rice DELLA protein SLENDER RICE1 (SLR1) forms a tripartite complex with Polycomb-repressive complex 2 (PRC2) and the histone deacetylase HDA702 to repress downstream genes by establishing a silent chromatin state. The slr1 mutation and GA signaling resulted in dissociation of PRC2 and HDA702 from GA-inducible genes. Loss-of-function or downregulation of the chromatin regulators impaired SLR1-dependent histone modification and gene repression. Time-resolved analysis of GA signaling revealed that GA-induced transcriptional activation was associated with a rapid increase of H3K9ac followed by H3K27me3 removal. Collectively, these results establish a general epigenetic mechanism for DELLA-mediated gene repression and reveal details of the chromatin dynamics during transcriptional activation stimulated by GA signaling.
Collapse
Affiliation(s)
- Junjie Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Qi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Wentao Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Xinran Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Chen Chu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Xintian Tang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Bo Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Dao‐Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Institute of Plant Science Paris‐Saclay (IPS2), CNRS, INRAEUniversity Paris‐SaclayOrsayFrance
| |
Collapse
|
43
|
Liao Z, Zhang Y, Yu Q, Fang W, Chen M, Li T, Liu Y, Liu Z, Chen L, Yu S, Xia H, Xue HW, Yu H, Luo L. Coordination of growth and drought responses by GA-ABA signaling in rice. THE NEW PHYTOLOGIST 2023; 240:1149-1161. [PMID: 37602953 DOI: 10.1111/nph.19209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
The drought caused by global warming seriously affects the crop growth and agricultural production. Plants have evolved distinct strategies to cope with the drought environment. Under drought stress, energy and resources should be diverted from growth toward stress management. However, the molecular mechanism underlying coordination of growth and drought response remains largely elusive. Here, we discovered that most of the gibberellin (GA) metabolic genes were regulated by water scarcity in rice, leading to the lower GA contents and hence inhibited plant growth. Low GA contents resulted in the accumulation of more GA signaling negative regulator SLENDER RICE 1, which inhibited the degradation of abscisic acid (ABA) receptor PYL10 by competitively binding to the co-activator of anaphase-promoting complex TAD1, resulting in the enhanced ABA response and drought tolerance. These results elucidate the synergistic regulation of crop growth inhibition and promotion of drought tolerance and survival, and provide useful genetic resource in breeding improvement of crop drought resistance.
Collapse
Affiliation(s)
- Zhigang Liao
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Yunchao Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
| | - Qing Yu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weicong Fang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meiyao Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tianfei Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Yi Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Zaochang Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Liang Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Shunwu Yu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Hui Xia
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Hong-Wei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lijun Luo
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| |
Collapse
|
44
|
Zeng H, Xu H, Tan M, Zhang B, Shi H. LESION SIMULATING DISEASE 3 regulates disease resistance via fine-tuning histone acetylation in cassava. PLANT PHYSIOLOGY 2023; 193:2232-2247. [PMID: 37534747 DOI: 10.1093/plphys/kiad441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023]
Abstract
Bacterial blight seriously affects the growth and production of cassava (Manihot esculenta Crantz), but disease resistance genes and the underlying molecular mechanism remain unknown. In this study, we found that LESION SIMULATING DISEASE 3 (MeLSD3) is essential for disease resistance in cassava. MeLSD3 physically interacts with SIRTUIN 1 (MeSRT1), inhibiting MeSRT1-mediated deacetylation modification at the acetylation of histone 3 at K9 (H3K9Ac). This leads to increased H3K9Ac levels and transcriptional activation of SUPPRESSOR OF BIR1 (SOBIR1) and FLAGELLIN-SENSITIVE2 (FLS2) in pattern-triggered immunity, resulting in immune responses in cassava. When MeLSD3 was silenced, the release of MeSRT1 directly decreased H3K9Ac levels and inhibited the transcription of SOBIR1 and FLS2, leading to decreased disease resistance. Notably, DELLA protein GIBBERELLIC ACID INSENSITIVE 1 (MeGAI1) also interacted with MeLSD3, which enhanced the interaction between MeLSD3 and MeSRT1 and further strengthened the inhibition of MeSRT1-mediated deacetylation modification at H3K9Ac of defense genes. In summary, this study illustrates the mechanism by which MeLSD3 interacts with MeSRT1 and MeGAI1, thereby mediating the level of H3K9Ac and the transcription of defense genes and immune responses in cassava.
Collapse
Affiliation(s)
- Hongqiu Zeng
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
- National Key Laboratory for Tropical Crop Breeding, Hainan University, 572025, Sanya, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, Hainan Province, China
| | - Haoran Xu
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Mengting Tan
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Bowen Zhang
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Haitao Shi
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
- National Key Laboratory for Tropical Crop Breeding, Hainan University, 572025, Sanya, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, Hainan Province, China
| |
Collapse
|
45
|
Huang X, Zentella R, Park J, Reser L, Bai DL, Ross MM, Shabanowitz J, Hunt DF, Sun TP. Phosphorylation Promotes DELLA Activity by Enhancing Its Binding to Histone H2A at Target Chromatin in Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561786. [PMID: 37873288 PMCID: PMC10592715 DOI: 10.1101/2023.10.10.561786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
DELLA proteins are conserved master growth regulators that play a central role in controlling plant development in response to internal and environmental cues. DELLAs function as transcription regulators, which are recruited to target promoters by binding to transcription factors (TFs) and histone H2A via its GRAS domain. Recent studies showed that DELLA stability is regulated post-translationally via two mechanisms, phytohormone gibberellin-induced polyubiquitination for its rapid degradation, and Small Ubiquitin-like Modifier (SUMO)- conjugation to alter its accumulation. Moreover, DELLA activity is dynamically modulated by two distinct glycosylations: DELLA-TF interactions are enhanced by O -fucosylation, but inhibited by O -linked N -acetylglucosamine ( O -GlcNAc) modification. However, the role of DELLA phosphorylation remains unclear. Here, we identified phosphorylation sites in REPRESSOR OF ga1-3 (RGA, an AtDELLA) purified from Arabidopsis by tandem mass spectrometry analysis, and showed that phosphorylation of the RGA LKS-peptide in the poly- S/T region enhances RGA-H2A interaction and RGA association with target promoters. Interestingly, phosphorylation does not affect RGA-TF interactions. Our study has uncovered that phosphorylation is a new regulatory mechanism of DELLA activity.
Collapse
|
46
|
Yuan G, Lian Y, Wang J, Yong T, Gao H, Wu H, Yang T, Wang C. AtHSPR functions in gibberellin-mediated primary root growth by interacting with KNAT5 and OFP1 in Arabidopsis. PLANT CELL REPORTS 2023; 42:1629-1649. [PMID: 37597006 DOI: 10.1007/s00299-023-03057-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
KEY MESSAGE AtHSPR forms a complex with KNAT5 and OFP1 to regulate primary root growth through GA-mediated root meristem activity. KNAT5-OFP1 functions as a negative regulator of AtHSPR in response to GA. Plant root growth is modulated by gibberellic acid (GA) signaling and depends on root meristem maintenance. ARABIDOPSIS THALIANA HEAT SHOCK PROTEIN-RELATED (AtHSPR) is a vital regulator of flowering time and salt stress tolerance. However, little is known about the role of AtHSPR in the regulation of primary root growth. Here, we report that athspr mutant exhibits a shorter primary root compared to wild type and that AtHSPR interacts with KNOTTED1-LIKE HOMEOBOX GENE 5 (KNAT5) and OVATE FAMILY PROTEIN 1 (OFP1). Genetic analysis showed that overexpression of KNAT5 or OFP1 caused a defect in primary root growth similar to that of the athspr mutant, but knockout of KNAT5 or OFP1 rescued the short root phenotype in the athspr mutant by altering root meristem activity. Further investigation revealed that KNAT5 interacts with OFP1 and that AtHSPR weakens the inhibition of GIBBERELLIN 20-OXIDASE 1 (GA20ox1) expression by the KNAT5-OFP1 complex. Moreover, root meristem cell proliferation and root elongation in 35S::KNAT5athspr and 35S::OFP1athspr seedlings were hypersensitive to GA3 treatment compared to the athspr mutant. Together, our results demonstrate that the AtHSPR-KNAT5-OFP1 module regulates root growth and development by impacting the expression of GA biosynthetic gene GA20ox1, which could be a way for plants to achieve plasticity in response to the environment.
Collapse
Affiliation(s)
- Guoqiang Yuan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuke Lian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Junmei Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Taibi Yong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huanhuan Gao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Haijun Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tao Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chongying Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
47
|
Huang X, Tian H, Park J, Oh DH, Hu J, Zentella R, Qiao H, Dassanayake M, Sun TP. The master growth regulator DELLA binding to histone H2A is essential for DELLA-mediated global transcription regulation. NATURE PLANTS 2023; 9:1291-1305. [PMID: 37537399 PMCID: PMC10681320 DOI: 10.1038/s41477-023-01477-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
The DELLA genes, also known as 'Green Revolution' genes, encode conserved master growth regulators that control plant development in response to internal and environmental cues. Functioning as nuclear-localized transcription regulators, DELLAs modulate expression of target genes via direct protein-protein interaction of their carboxy-terminal GRAS domain with hundreds of transcription factors (TFs) and epigenetic regulators. However, the molecular mechanism of DELLA-mediated transcription reprogramming remains unclear. Here by characterizing new missense alleles of an Arabidopsis DELLA, repressor of ga1-3 (RGA), and co-immunoprecipitation assays, we show that RGA binds histone H2A via the PFYRE subdomain within its GRAS domain to form a TF-RGA-H2A complex at the target chromatin. Chromatin immunoprecipitation followed by sequencing analysis further shows that this activity is essential for RGA association with its target chromatin globally. Our results indicate that, although DELLAs are recruited to target promoters by binding to TFs via the LHR1 subdomain, DELLA-H2A interaction via the PFYRE subdomain is necessary to stabilize the TF-DELLA-H2A complex at the target chromatin. This study provides insights into the two distinct key modular functions in DELLA for its genome-wide transcription regulation in plants.
Collapse
Affiliation(s)
- Xu Huang
- Department of Biology, Duke University, Durham, NC, USA
| | - Hao Tian
- Department of Biology, Duke University, Durham, NC, USA
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Jeongmoo Park
- Department of Biology, Duke University, Durham, NC, USA
- Syngenta, Research Triangle Park, Raleigh, NC, USA
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Jianhong Hu
- Department of Biology, Duke University, Durham, NC, USA
| | - Rodolfo Zentella
- Department of Biology, Duke University, Durham, NC, USA
- Agricultural Research Service, Plant Science Research Unit, US Department of Agriculture, Raleigh, NC, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | - Hong Qiao
- Institute for Cellular and Molecular Biology and Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
48
|
Cheng Z, Wen S, Wu Y, Shang L, Wu L, Lyu D, Yu H, Wang J, Jian H. Comparatively Evolution and Expression Analysis of GRF Transcription Factor Genes in Seven Plant Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:2790. [PMID: 37570944 PMCID: PMC10421444 DOI: 10.3390/plants12152790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Growth regulatory factors (GRF) are plant-specific transcription factors that play pivotal roles in growth and various abiotic stresses regulation. However, adaptive evolution of GRF gene family in land plants are still being elucidated. Here, we performed the evolutionary and expression analysis of GRF gene family from seven representative species. Extensive phylogenetic analyses and gene structure analysis revealed that the number of genes, QLQ domain and WRC domain identified in higher plants was significantly greater than those identified in lower plants. Besides, dispersed duplication and WGD/segmental duplication effectively promoted expansion of the GRF gene family. The expression patterns of GRF gene family and target genes were found in multiple floral organs and abundant in actively growing tissues. They were also found to be particularly expressed in response to various abiotic stresses, with stress-related elements in promoters, implying potential roles in floral development and abiotic stress. Our analysis in GRF gene family interaction network indicated the similar results that GRFs resist to abiotic stresses with the cooperation of other transcription factors like GIFs. This study provides insights into evolution in the GRF gene family, together with expression patterns valuable for future functional researches of plant abiotic stress biology.
Collapse
Affiliation(s)
- Zhihan Cheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Shiqi Wen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yuke Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Lina Shang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Lin Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
| | - Dianqiu Lyu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
| | - Hongtao Yu
- Suihua Branch of Heilongjiang Academy of Agriculture Sciences, Suihua 152052, China;
| | - Jichun Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
| | - Hongju Jian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
| |
Collapse
|
49
|
Huang J, Zhao X, Bürger M, Chory J, Wang X. The role of ethylene in plant temperature stress response. TRENDS IN PLANT SCIENCE 2023; 28:808-824. [PMID: 37055243 DOI: 10.1016/j.tplants.2023.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 06/17/2023]
Abstract
Temperature influences the seasonal growth and geographical distribution of plants. Heat or cold stress occur when temperatures exceed or fall below the physiological optimum ranges, resulting in detrimental and irreversible damage to plant growth, development, and yield. Ethylene is a gaseous phytohormone with an important role in plant development and multiple stress responses. Recent studies have shown that, in many plant species, both heat and cold stress affect ethylene biosynthesis and signaling pathways. In this review, we summarize recent advances in understanding the role of ethylene in plant temperature stress responses and its crosstalk with other phytohormones. We also discuss potential strategies and knowledge gaps that need to be adopted and filled to develop temperature stress-tolerant crops by optimizing ethylene response.
Collapse
Affiliation(s)
- Jianyan Huang
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Xiaobo Zhao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Marco Bürger
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joanne Chory
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
50
|
Sun Y, Lu Y, Xi H, Geng B, Shi H, Zhao N, Guo Z. Transcriptomic analysis revealed the candidate metabolic pathways and genes associated with cold tolerance in a mutant without anthocyanin accumulation in common vetch (Vicia sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107770. [PMID: 37216823 DOI: 10.1016/j.plaphy.2023.107770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Common vetch (Vicia sativa L.) is a leguminous crop used to feed livestock with vegetative organs or fertilize soils by returning to the field. Survival of fall-seeded plants is often affected by freezing damage during overwintering. This study aims to investigate the transcriptomic profiling in response to cold in a mutant with reduced accumulation of anthocyanins under normal growth and low-temperature conditions for understanding the underlying mechanisms. The mutant had increased cold a tolerance with higher survival rate and biomass during overwintering compared to the wild type, which led to increased forage production. Transcriptomic analysis in combination with qRT-PCR and physiological measurements revealed that reduced anthocyanins accumulation in the mutant resulted from reduced expression of serial genes involving in anthocyanin biosynthesis, which led to the altered metabolism, with an increased accumulation of free amino acids and polyamines. The higher levels of free amino acids and proline in the mutant under low temperature were associated with improved cold tolerance. The altered expression of some genes involved in ABA and GA signaling was also associated with increased cold tolerance in the mutant.
Collapse
Affiliation(s)
- Yanmei Sun
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yiwen Lu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Haojie Xi
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Bohao Geng
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Haifan Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Na Zhao
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|