1
|
D’Elia JA, Weinrauch LA. Role of Divalent Cations in Infections in Host-Pathogen Interaction. Int J Mol Sci 2024; 25:9775. [PMID: 39337264 PMCID: PMC11432163 DOI: 10.3390/ijms25189775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
With increasing numbers of patients worldwide diagnosed with diabetes mellitus, renal disease, and iatrogenic immune deficiencies, an increased understanding of the role of electrolyte interactions in mitigating pathogen virulence is necessary. The levels of divalent cations affect host susceptibility and pathogen survival in persons with relative immune insufficiency. For instance, when host cellular levels of calcium are high compared to magnesium, this relationship contributes to insulin resistance and triples the risk of clinical tuberculosis. The movement of divalent cations within intracellular spaces contributes to the host defense, causing apoptosis or autophagy of the pathogen. The control of divalent cation flow is dependent in part upon the mammalian natural resistance-associated macrophage protein (NRAMP) in the host. Survival of pathogens such as M tuberculosis within the bronchoalveolar macrophage is also dependent upon NRAMP. Pathogens evolve mutations to control the movement of calcium through external and internal channels. The host NRAMP as a metal transporter competes for divalent cations with the pathogen NRAMP in M tuberculosis (whether in latent, dormant, or active phase). This review paper summarizes mechanisms of pathogen offense and patient defense using inflow and efflux through divalent cation channels under the influence of parathyroid hormone vitamin D and calcitonin.
Collapse
Affiliation(s)
| | - Larry A. Weinrauch
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
2
|
Huang J, Huang H, Liu M, Yang W, Wang H. Involvement of the TRPV1 receptor and the endocannabinoid system in schizophrenia. Brain Res Bull 2024; 215:111007. [PMID: 38852650 DOI: 10.1016/j.brainresbull.2024.111007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Schizophrenia (SCZ) is a severe mental disorder, but its pathogenesis is still unknown, and its clinical treatment effect is very limited. Transient receptor potential vanilloid 1 (TRPV1) channel and the Endocannabinoid System (ECS)have been confirmed to be involved in the pathogenesis of SCZ, although their actions have not been fully clarified yet. The objective is to examine TRPV1 and ECS expression in the blood of schizophrenia patients and investigate their correlation with disease severity. METHODS This is a cross-sectional investigation. Peripheral blood samples were gathered from normal controls (NC, n=37), as well as individuals with schizophrenia, including first episode (n=30) and recurrent (n=30) cases. We employed western blot and ELISA techniques to quantify TRPV1, cannabinoid receptors 1(CB1), anandamide (AEA), and 2-arachidonoylglycerol (2-AG), and assess the severity of the patient's symptoms by means of the PANSS scale. RESULTS Compared to NC, TRPV1 levels showed a noticeable decrease in both first episode schizophrenia (f-SCZ group) and recurrent schizophrenia (r-SCZ group) subjects. Additionally, CB1 levels appeared increased in f-SCZ group. Furthermore, 2-AG levels were found to be elevated in both f-SCZ group and r-SCZ group compared to NC, whereas AEA levels were decreased in f-SCZ group but increased in r-SCZ group. Moreover, among schizophrenia patients, TRPV1 demonstrated a negative correlation with negative symptoms. Within r-SCZ subjects, CB1 displayed a negative correlation with relapse number, while 2-AG showed a correlation in the opposite direction. CONCLUSIONS This study provides initial clinical evidence of changed TRPV1 expression in schizophrenia, potentially linked to negative symptoms. These results suggest a possible dysfunction of TRPV1 and the endocannabinoid system (ECS), which might offer new avenues for medical interventions.
Collapse
Affiliation(s)
- Junjie Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Moyin Liu
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, Sydney, New South Wales, Australia
| | - Wanlin Yang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
3
|
de Oliveira JRJM, Amorim MA, Oliveira VHDS, Cabrini DDA, Otuki MF, Galindo CM, da Luz BB, Werner MFDP, Calixto JB, André E. Repeated doses of captopril induce airway hyperresponsiveness by modulating the TRPV1 receptor in rats. Pulm Pharmacol Ther 2024; 86:102302. [PMID: 38823475 DOI: 10.1016/j.pupt.2024.102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Although TRPV1 receptors play an essential role in the adverse effects on the airways following captopril treatment, there is no available evidence of their involvement in treatment regimens involving repeated doses of captopril. Comparing the difference in these two treatment regimens is essential since captopril is a continuous-use medication. Thus, this study explored the role of the transient receptor potential vanilloid 1 (TRPV1) in the effects of captopril on rat airways using two treatment regimens. Airway resistance, bronchoalveolar lavage (BAL), and histological and immunohistochemical analyses were conducted in rats administered with single or repeated doses of captopril. This study showed that the hyperresponsiveness to bradykinin and capsaicin in captopril-treated rats was acute. Treatment with the selective B2 antagonist, HOE140 reduced bradykinin hyperresponsiveness and abolished capsaicin exacerbation in single-dose captopril-treated rats. Likewise, degeneration of TRPV1-positive neurones also reduced hyperresponsiveness to bradykinin. Single-dose captopril treatment increased leukocyte infiltration in the BAL when compared with the vehicle and this increase was reduced by TRPV1-positive neurone degeneration. However, when compared with the vehicle treatment, animals treated with repeated doses of captopril showed an increase in leukocyte influx as early as 1 h after the last captopril treatment, but this effect disappeared after 24 h. Additionally, an increase in TRPV1 expression occurred only in animals who received repeated captopril doses and the degeneration of TRPV1-positive neurones attenuated TRPV1 upregulation. In conclusion, these data strongly indicate that a treatment regimen involving multiple doses of captopril not only enhances sensitisation but also upregulates TRPV1 expression. Consequently, targeting TRPV1 could serve as a promising strategy to reduce the negative impact of captopril on the airways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Eunice André
- Department of Pharmacology, Federal University of Paraná, Brazil.
| |
Collapse
|
4
|
Liu Y, Yao X, Zhao W, Xu J, Zhang H, Huang T, Wu C, Yang J, Tang C, Ye Q, Hu W, Wang Q. A comprehensive analysis of TRP-related gene signature, and immune infiltration in patients with colorectal cancer. Discov Oncol 2024; 15:357. [PMID: 39154317 PMCID: PMC11330954 DOI: 10.1007/s12672-024-01227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Transient receptor potential (TRP) channels are involved in the development and progression of tumors. However, their role in colorectal cancer (CRC) remains unclear, and this study aims to investigate the role of TRP-related genes in CRC. METHODS Data was obtained from The Cancer Genome Atlas (TCGA) database, and analyses were conducted on the GSE14333 and GSE38832 datasets to assess the prognosis and mark TRP-related genes (TRGs). Subsequently, clustering analysis and immune infiltration analysis were performed to explore the relevant TRGs. In vitro validation of key TRGs' gene and protein expression was conducted using human colon cancer cells. RESULTS Compared to normal tissues, 8 TRGs were significantly upregulated in CRC, while 11 were downregulated. TRPA1 was identified as a protective prognostic factor, whereas TRPM5 (HR = 1.349), TRPV4 (HR = 1.289), and TRPV3 (HR = 1.442) were identified as prognostic risk factors. Receiver operating characteristic (ROC) curves and Kaplan-Meier (KM) analyses yielded similar results. Additionally, lower expression of TRPA1 and higher expression of TRPV4 and TRPM5 were negatively correlated with patient prognosis, and experimental validation confirmed the underexpression of TRPA1 and overexpression of TRPV4 and TRPM5 in CRC cell lines. CONCLUSION This study identifies a TRP channel-related prognosis in CRC, providing a novel approach to stratifying CRC prognosis.
Collapse
Affiliation(s)
- Yicheng Liu
- Department of Anorectal Surgery, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Xiaobing Yao
- Gastrointestinal surgery, Yueyang hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhao
- Department of Anorectal Surgery, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Jin Xu
- Department of Anorectal Surgery, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Haiyan Zhang
- Department of Anorectal Surgery, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Ting Huang
- Department of Anorectal Surgery, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Chuang Wu
- Department of Anorectal Surgery, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Jiajia Yang
- Department of Anorectal Surgery, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Cheng Tang
- Department of Anorectal Surgery, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Qianqian Ye
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiye Hu
- Department of Liver, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingming Wang
- Department of Anorectal Surgery, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China.
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
5
|
Lu C, Liu Q, Qiao Z, Yang X, Baghani AN, Wang F. High humidity and NO 2 co-exposure exacerbates allergic asthma by increasing oxidative stress, inflammatory and TRP protein expressions in lung tissue. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 353:124127. [PMID: 38759746 DOI: 10.1016/j.envpol.2024.124127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Allergic asthma is a chronic inflammatory airway disease with a high mortality rate and a rapidly increasing prevalence in recent decades that is closely linked to environmental change. Previous research found that high humidity (HH) and the traffic-related air pollutant NO2 both aggregated allergic asthma. Their combined effect and mechanisms on asthma exacerbation, however, are unknown. Our study aims to toxicologically clarify the role of HH (90%) and NO2 (5 ppm) on allergic asthma. Ninety male Balb/c mice were randomly assigned to one of six groups (n = 15 in each): saline control, ovalbumin (OVA)-sensitized, OVA + HH, OVA + NO2, OVA + HH + NO2, and OVA + HH + NO2+Capsazepine (CZP). After 38 days of treatment, the airway function, pathological changes in lung tissue, blood inflammatory cells, and oxidative stress and inflammatory biomarkers were comprehensively assessed. Co-exposure to HH and NO2 exacerbated histopathological changes and airway hyperresponsiveness, increased IgE, oxidative stress markers malonaldehyde (MDA) and allergic asthma-related inflammation markers (IL-1β, TNF-α and IL-17), and upregulated the expressions of the transient receptor potential (TRP) ion channels (TRPA1, TRPV1 and TRPV4). Our findings show that co-exposure to HH and NO2 disrupted the Th1/Th2 immune balance, promoting allergic airway inflammation and asthma susceptibility, and increasing TRPV1 expression, whereas CZP reduced TRPV1 expression and alleviated allergic asthma symptoms. Thus, therapeutic treatments that target the TRPV1 ion channel have the potential to effectively manage allergic asthma.
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha, China; Hunan Provincial Key Laboratory of Low Carbon Healthy Building, Central South University, Changsha, China
| | - Qin Liu
- XiangYa School of Public Health, Central South University, Changsha, China
| | - Zipeng Qiao
- XiangYa School of Public Health, Central South University, Changsha, China
| | - Xu Yang
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Abbas Norouzian Baghani
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Faming Wang
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Iguchi N, Teimouri A, Wilcox DT, Malykhina AP, Cost NG. Lower urinary dysfunction as a long-term effect of childhood vincristine treatment, with potential influences by sex and dose. Sci Rep 2024; 14:15049. [PMID: 38951167 PMCID: PMC11217273 DOI: 10.1038/s41598-024-65313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Vincristine (VCR) is one of the most widely used chemotherapy agents in treating pediatric cancer. Nonetheless, it is known to cause dose-dependent neurotoxicity which can impact virtually every organ system. Despite its widespread use, the precise impact of VCR on the lower urinary tract (LUT) remains inadequately elucidated. Our initial clinical and translational investigations suggest a sex-specific influence of childhood VCR exposure on LUT function. Thus, the current study aimed to investigate the late effects of systemic VCR exposure on LUT physiology and the underlying mechanisms, focusing on dosage and male-sex, employing juvenile CD-1 mice as a model. Male mice subjected to VCR exhibited augmented functional bladder capacity accompanied by frequent non-void contractions during awake cystometry, alongside mast cell accumulation within the bladder, compared to the saline-treated control group. Noteworthy functional changes were observed in bladder strips from the VCR group, including decreased nerve-mediated contraction, heightened contractile responses to cholinergic and purinergic agonists, enhanced responsiveness to histamine-primarily via histamine receptor 1 (Hrh1)-and an augmented relaxation effect with compound 48/80 (a mast cell degranulator), relative to the control group. Significant changes in gene expression levels associated with neuroinflammation and nociception were observed in both the bladder and lumbosacral dorsal root ganglia (Ls-DRG) of the VCR group. These findings suggest that VCR exposure during childhood, particularly in males, triggers neuroimmune responses in the bladder and Ls-DRG, amplifying responsiveness to neurotransmitters in the bladder, thereby contributing to LUT dysfunction characterized by a mixed bladder phenotype as a late effect during survivorship.
Collapse
Affiliation(s)
- Nao Iguchi
- Division of Urology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Ali Teimouri
- Division of Urology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Duncan T Wilcox
- Division of Urology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Department of Urology, Children's Hospital Colorado, 13123 E. 16th Avenue, Aurora, CO, 80045, USA
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Nicholas G Cost
- Division of Urology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
- Department of Urology, Children's Hospital Colorado, 13123 E. 16th Avenue, Aurora, CO, 80045, USA.
- The Surgical Oncology Program, Children's Hospital Colorado, Aurora, CO, 80045, USA.
| |
Collapse
|
7
|
Marshall-Gradisnik S, Martini Sasso E, Eaton-Fitch N, Smith P, Baraniuk JN, Muraki K. Novel characterization of endogenous transient receptor potential melastatin 3 ion channels from Gulf War Illness participants. PLoS One 2024; 19:e0305704. [PMID: 38917121 PMCID: PMC11198784 DOI: 10.1371/journal.pone.0305704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Gulf War Illness (GWI) is a chronic condition characterized by multisystem symptoms that still affect up to one-third of veterans who engaged in combat in the Gulf War three decades ago. The aetiology of GWI is mainly explained by exposure to multiple toxic agents, vaccines, and medications. As there is a significant overlap in symptoms between GWI and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), the objective of this study was to investigate a biomarker widely reported in Natural Killer (NK) cells from ME/CFS patients, the Transient Receptor Potential Melastatin 3 (TRPM3) ion channel. NK cells from 6 healthy controls (HC) and 6 GWI participants were isolated, and TRPM3 function was assessed through whole-cell patch-clamp. As demonstrated by prior studies, NK cells from HC expressed typical TRPM3 function after pharmacomodulation. In contrast, this pilot investigation demonstrates a dysfunctional TRPM3 in NK cells from GWI participants through application of a TRPM3 agonist and confirmed by a TRPM3 antagonist. There was a significant reduction in TRPM3 function from GWI than results measured in HC. This study provides an unprecedented research field to investigate the involvement of TRP ion channels in the pathomechanism and potential medical interventions to improve GWI quality of life.
Collapse
Affiliation(s)
- Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Etianne Martini Sasso
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Natalie Eaton-Fitch
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Peter Smith
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Clinical Medicine, Griffith University, Gold Coast, QLD, Australia
| | - James N. Baraniuk
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Department of Medicine, Georgetown University, Washington, DC, United States of America
| | - Katsuhiko Muraki
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| |
Collapse
|
8
|
Zhang E, Li Z, Dong L, Feng Y, Sun G, Xu X, Wang Z, Cui C, Wang W, Yang J. Exploration of Molecular Mechanisms of Immunity in the Pacific Oyster ( Crassostrea gigas) in Response to Vibrio alginolyticus Invasion. Animals (Basel) 2024; 14:1707. [PMID: 38891754 PMCID: PMC11171025 DOI: 10.3390/ani14111707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Over the years, oysters have faced recurring mass mortality issues during the summer breeding season, with Vibrio infection emerging as a significant contributing factor. Tubules of gill filaments were confirmed to be in the hematopoietic position in Crassostrea gigas, which produce hemocytes with immune defense capabilities. Additionally, the epithelial cells of oyster gills produce immune effectors to defend against pathogens. In light of this, we performed a transcriptome analysis of gill tissues obtained from C. gigas infected with Vibrio alginolyticus for 12 h and 48 h. Through this analysis, we identified 1024 differentially expressed genes (DEGs) at 12 h post-injection and 1079 DEGs at 48 h post-injection. Enrichment analysis of these DEGs revealed a significant association with immune-related Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. To further investigate the immune response, we constructed a protein-protein interaction (PPI) network using the DEGs enriched in immune-associated KEGG pathways. This network provided insights into the interactions and relationships among these genes, shedding light on the underlying mechanisms of the innate immune defense mechanism in oyster gills. To ensure the accuracy of our findings, we validated 16 key genes using quantitative RT-PCR. Overall, this study represents the first exploration of the innate immune defense mechanism in oyster gills using a PPI network approach. The findings provide valuable insights for future research on oyster pathogen control and the development of oysters with enhanced antimicrobial resistance.
Collapse
Affiliation(s)
- Enshuo Zhang
- School of Agriculture, Ludong University, Yantai 264025, China (Z.L.); (X.X.); (C.C.)
| | - Zan Li
- School of Agriculture, Ludong University, Yantai 264025, China (Z.L.); (X.X.); (C.C.)
- Yantai Haiyu Marine Technology Co., Ltd., Yantai 264000, China
| | - Luyao Dong
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai 264025, China (Z.L.); (X.X.); (C.C.)
- Yantai Haiyu Marine Technology Co., Ltd., Yantai 264000, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai 264025, China (Z.L.); (X.X.); (C.C.)
- Yantai Haiyu Marine Technology Co., Ltd., Yantai 264000, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai 264025, China (Z.L.); (X.X.); (C.C.)
- Yantai Haiyu Marine Technology Co., Ltd., Yantai 264000, China
| | - Zhongping Wang
- Yantai Kongtong Island Industrial Co., Ltd., Yantai 264000, China
| | - Cuiju Cui
- School of Agriculture, Ludong University, Yantai 264025, China (Z.L.); (X.X.); (C.C.)
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai 264025, China (Z.L.); (X.X.); (C.C.)
- Yantai Haiyu Marine Technology Co., Ltd., Yantai 264000, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Yantai Kongtong Island Industrial Co., Ltd., Yantai 264000, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai 264025, China (Z.L.); (X.X.); (C.C.)
- Yantai Haiyu Marine Technology Co., Ltd., Yantai 264000, China
- Yantai Kongtong Island Industrial Co., Ltd., Yantai 264000, China
| |
Collapse
|
9
|
Su X, Li T, Zhu X, Zheng P, Pan H, Guo H. Exploring the impact of nonylphenol exposure on Litopenaeus vannamei at the histological and molecular levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116475. [PMID: 38781889 DOI: 10.1016/j.ecoenv.2024.116475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Nonylphenol (NP) is one of the common pollutants in the environment that have toxic effects on aquatic animals. Nevertheless, little is known about the possible toxicity mechanism of NP on the hepatopancreas of Litopenaeus vannamei. In the present study, the detrimental effects of NP on the hepatopancreas of the L. vannamei were explored at the histological and transcriptomic levels. The findings indicated that after NP exposed for 3, 12, and 48 h, the hepatopancreas histology was changed significantly. Transcriptomic analysis showed that a total of 4302, 3651, and 4830 differentially expressed genes (DEGs) were identified at 3, 12, and 48 h following NP exposure. All these DEGs were classified into 12 clusters according to the expression patterns at different time points. GO and KEGG enrichment analyses of DEGs were also performed, immunological, metabolic, and inflammatory related pathways, including arachidonic acid metabolism (ko00590), the PPAR signaling pathway (ko03320), and the regulation of TRP channels by inflammatory mediators (ko04750) were significantly enriched. Six DEGs were selected for validation by quantitative real-time PCR (qRT-PCR) and the results confirmed the reliability of transcriptome data. All results indicated that NP is toxic to L. vannamei by damaging the histopathological structure and disrupting the biological function. The findings would provide a theoretical framework for lowering or limiting the detrimental impacts of NP on aquaculture and help us to further study the molecular toxicity of NP in crustaceans.
Collapse
Affiliation(s)
- Xianbin Su
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, People's Republic of China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, People's Republic of China
| | - Teng Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, People's Republic of China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, People's Republic of China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, People's Republic of China
| | - Xiaowen Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, People's Republic of China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, People's Republic of China
| | - Peihua Zheng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, People's Republic of China
| | - Huakang Pan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, People's Republic of China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, People's Republic of China
| | - Hui Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, People's Republic of China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, People's Republic of China.
| |
Collapse
|
10
|
Pan T, Gao Y, Xu G, Yu L, Xu Q, Yu J, Liu M, Zhang C, Ma Y, Li Y. Widespread transcriptomic alterations of transient receptor potential channel genes in cancer. Brief Funct Genomics 2024; 23:214-227. [PMID: 37288496 DOI: 10.1093/bfgp/elad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Ion channels, in particular transient-receptor potential (TRP) channels, are essential genes that play important roles in many physiological processes. Emerging evidence has demonstrated that TRP genes are involved in a number of diseases, including various cancer types. However, we still lack knowledge about the expression alterations landscape of TRP genes across cancer types. In this review, we comprehensively reviewed and summarised the transcriptomes from more than 10 000 samples in 33 cancer types. We found that TRP genes were widespreadly transcriptomic dysregulated in cancer, which was associated with clinical survival of cancer patients. Perturbations of TRP genes were associated with a number of cancer pathways across cancer types. Moreover, we reviewed the functions of TRP family gene alterations in a number of diseases reported in recent studies. Taken together, our study comprehensively reviewed TRP genes with extensive transcriptomic alterations and their functions will directly contribute to cancer therapy and precision medicine.
Collapse
Affiliation(s)
- Tao Pan
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yueying Gao
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Gang Xu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | | | - Qi Xu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Jinyang Yu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Meng Liu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Can Zhang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yongsheng Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| |
Collapse
|
11
|
Bozdag A, Kuloglu T, Artas G, Aydin S. Investigation of Trpa1 and Trpc1 Immunreactivities in Colon Adenocarcinomas. Cancer Manag Res 2024; 16:377-384. [PMID: 38699653 PMCID: PMC11063473 DOI: 10.2147/cmar.s447549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Purpose As the normal colon epithelium differentiates into adenoma, invasive cancer and metastatic cancer, the cell acquires new characteristics such as apoptosis, proliferation, differentiation, invasion and metastasis. Many mechanisms are effective in acquiring these qualities. One of these is the regulation of the functioning of ion channels. This study aimed to examine TRPA1 and TRPC1 expression in colorectal adenocarcinomas showing different degrees of differentiation. Patients and Methods We examined the biopsy specimens of 60 patients diagnosed with colorectal adenocarcinomas, including those of patients with well-differentiated (n = 20), moderately differentiated (n = 20) and poorly differentiated (n = 20) carcinomas. Moreover, 20 biopsy specimens of individuals with normal colonic mucosa were examined. Histoscores were calculated for TRPA1 and TRPC1 based on the extent of diffusion and intensity of immunoreactivity, and these scores were compared statistically. Results A statistically significant increase in both TRPA1 and TRPC1 immunoreactivity was observed in low-grade and high-grade colon adenocarcinomas compared to the control group (p<0.001). A statistically significant decrease in both TRPA1 and TRPC1 immunoreactivity was observed in high-grade colon adenocarcinomas compared to low-grade colon adenocarcinomas (p<0.001). Conclusion TRPA1 and TRPC1 immunoreactivites are increased in colorectal adenocarcinoma tissue compared with the healthy tissue. Furthermore, the immunoreactivity decreases as the grade of cancer increases.
Collapse
Affiliation(s)
- Ahmet Bozdag
- Department of General Surgery, School of Medicine, Firat University, Elazig, Turkey
| | - Tuncay Kuloglu
- Department of Histology and Embryology, School of Medicine, Firat University, Elazig, Turkey
| | - Gokhan Artas
- Department of Pathology, School of Medicine, Firat University, Elazig, Turkey
| | - Suleyman Aydin
- Department of Biochemistry, School of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
12
|
Ronan EA, Nagel M, Emrick JJ. The anatomy, neurophysiology, and cellular mechanisms of intradental sensation. FRONTIERS IN PAIN RESEARCH 2024; 5:1376564. [PMID: 38590718 PMCID: PMC11000636 DOI: 10.3389/fpain.2024.1376564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Somatosensory innervation of the oral cavity enables the detection of a range of environmental stimuli including minute and noxious mechanical forces. The trigeminal sensory neurons underlie sensation originating from the tooth. Prior work has provided important physiological and molecular characterization of dental pulp sensory innervation. Clinical dental experiences have informed our conception of the consequence of activating these neurons. However, the biological role of sensory innervation within the tooth is yet to be defined. Recent transcriptomic data, combined with mouse genetic tools, have the capacity to provide important cell-type resolution for the physiological and behavioral function of pulp-innervating sensory neurons. Importantly, these tools can be applied to determine the neuronal origin of acute dental pain that coincides with tooth damage as well as pain stemming from tissue inflammation (i.e., pulpitis) toward developing treatment strategies aimed at relieving these distinct forms of pain.
Collapse
Affiliation(s)
- Elizabeth A. Ronan
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Maximilian Nagel
- Sensory Cells and Circuits Section, National Center for Complementary and Integrative Health, Bethesda, MD, United States
| | - Joshua J. Emrick
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Weihrauch T, Gray N, Wiebe D, Schmelz M, Limberg MM, Raap U. TRPV1 Channel in Human Eosinophils: Functional Expression and Inflammatory Modulation. Int J Mol Sci 2024; 25:1922. [PMID: 38339203 PMCID: PMC10856050 DOI: 10.3390/ijms25031922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel expressed on sensory neurons and immune cells. We hypothesize that TRPV1 plays a role in human eosinophil function and is modulated by inflammatory conditions. TRPV1 expression on human eosinophils was examined by qPCR, flow cytometry, and immunohistochemistry, respectively. TRPV1 functionality was analyzed by investigating calcium flux, apoptosis, modulation by cytokines and acidic pH, and CD69 externalization using flow cytometry. Activation of TRPV1 induced calcium influx and prolonged survival. Although eosinophils were not directly activated by TRPV1 agonists, activation by IL-3 or GM-CSF was mainly restricted to TRPV1-positive eosinophils. TRPV1 surface content was increased by acidic pH, IL-3, IL-31, IL-33, TSLP, TNF-α, BDNF, and NGF-β. Interestingly, TRPV1 was also expressed by eosinophils located in proximity to peripheral nerves in atopic dermatitis (AD) skin. In conclusion, eosinophils express functional TRPV1 channels which are increased by extracellular acidification and AD-related cytokines. Since eosinophils also express TRPV1 in AD skin, our results indicate an important role of TRPV1 for neuroimmune interaction mechanisms in itchy, inflammatory skin diseases, like AD.
Collapse
Affiliation(s)
- Tobias Weihrauch
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Natalie Gray
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Division of Anatomy, Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Daniela Wiebe
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, MCTN, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Maren M. Limberg
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Ulrike Raap
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- University Clinic of Dermatology and Allergy, Klinikum Oldenburg, University Oldenburg, 26133 Oldenburg, Germany
| |
Collapse
|
14
|
Alavi MS, Soheili V, Roohbakhsh A. The role of transient receptor potential (TRP) channels in phagocytosis: A comprehensive review. Eur J Pharmacol 2024; 964:176302. [PMID: 38154767 DOI: 10.1016/j.ejphar.2023.176302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
When host cells are exposed to foreign particles, dead cells, or cell hazards, a sophisticated process called phagocytosis begins. During this process, macrophages, dendritic cells, and neutrophils engulf the target by expanding their membranes. Phagocytosis of apoptotic cells is called efferocytosis. This process is of significant importance as billions of cells are eliminated daily without provoking inflammation. Both phagocytosis and efferocytosis depend on Ca2+ signaling. A big family of Ca2+ permeable channels is transient receptor potentials (TRPs) divided into nine subfamilies. We aimed to review their roles in phagocytosis. The present review article shows that various TRP channels such as TRPV1, 2, 3, 4, TRPM2, 4, 7, 8, TRPML1, TRPA1, TRPC1, 3, 5, 6 have roles at various stages of phagocytosis. They are involved in the phagocytosis of amyloid β, α-synuclein, myelin debris, bacteria, and apoptotic cells. In particular, TRPC3 and TRPM7 contribute to efferocytosis. These effects are mediated by changing Ca2+ signaling or targeting intracellular enzymes such as Akt. In addition, they contribute to the chemotaxis of phagocytic cells towards targets. Although a limited number of studies have assessed the role of TRP channels in phagocytosis and efferocytosis, their findings indicate that they have critical roles in these processes. In some cases, their ablation completely abolished the phagocytic function of the cells. As a result, TRP channels are potential targets for developing new therapeutics that modulate phagocytosis.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Pharmaceutical Control Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Robinson GI, Li D, Wang B, Rahman T, Gerasymchuk M, Hudson D, Kovalchuk O, Kovalchuk I. Psilocybin and Eugenol Reduce Inflammation in Human 3D EpiIntestinal Tissue. Life (Basel) 2023; 13:2345. [PMID: 38137946 PMCID: PMC10744792 DOI: 10.3390/life13122345] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammation plays a pivotal role in the development and progression of inflammatory bowel disease (IBD), by contributing to tissue damage and exacerbating the immune response. The investigation of serotonin receptor 2A (5-HT2A) ligands and transient receptor potential (TRP) channel ligands is of significant interest due to their potential to modulate key inflammatory pathways, mitigate the pathological effects of inflammation, and offer new avenues for therapeutic interventions in IBD. This study investigates the anti-inflammatory effects of 5-HT2A ligands, including psilocybin, 4-AcO-DMT, and ketanserin, in combination with TRP channel ligands, including capsaicin, curcumin, and eugenol, on the inflammatory response induced by tumor necrosis factor (TNF)-α and interferon (IFN)-γ in human 3D EpiIntestinal tissue. Enzyme-linked immunosorbent assay was used to assess the expression of pro-inflammatory markers TNF-α, IFN-γ, IL-6, IL-8, MCP-1, and GM-CSF. Our results show that psilocybin, 4-AcO-DMT, and eugenol significantly reduce TNF-α and IFN-γ levels, while capsaicin and curcumin decrease these markers to a lesser extent. Psilocybin effectively lowers IL-6 and IL-8 levels, but curcumin, capsaicin, and 4-AcO-DMT have limited effects on these markers. In addition, psilocybin can significantly decrease MCP-1 and GM-CSF levels. While ketanserin lowers IL-6 and GM-CSF levels, there are no effects seen on TNF-α, IFN-γ, IL-8, or MCP-1. Although synergistic effects between 5-HT2A and TRP channel ligands are minimal in this study, the results provide further evidence of the anti-inflammatory effects of psilocybin and eugenol. Further research is needed to understand the mechanisms of action and the feasibility of using these compounds as anti-inflammatory therapies for conditions like IBD.
Collapse
Affiliation(s)
- Gregory Ian Robinson
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Tahiat Rahman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Marta Gerasymchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Darryl Hudson
- GoodCap Pharmaceuticals, 520 3rd Avenue SW, Suite 1900, Calgary, AB T2P 0R3, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
16
|
Mei XC, Chen Q, Zuo S. Transient receptor potential-related risk model predicts prognosis of hepatocellular carcinoma patients. World J Gastrointest Oncol 2023; 15:2064-2076. [PMID: 38173438 PMCID: PMC10758653 DOI: 10.4251/wjgo.v15.i12.2064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/17/2023] [Accepted: 11/10/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND Members of the transient receptor potential (TRP) protein family shape oncogenic development, but the specific relevance of TRP-related genes in hepatocellular carcinoma (HCC) has yet to be defined. AIM To investigate the role of TRP genes in HCC, their association with HCC development and treatment was examined. METHODS HCC patient gene expression and clinical data were downloaded from The Cancer Genome Atlas database, and univariate and least absolute shrinkage and selection operator Cox regression models were employed to explore the TRP-related risk spectrum. Based on these analyses, clinically relevant TRP family genes were selected, and the association between the key TRP canonical type 1 (TRPC1) gene and HCC patient prognosis was evaluated. RESULTS In total, 28 TRP family genes were screened for clinical relevance, with multivariate analyses ultimately revealing three of these genes (TRPC1, TRP cation channel subfamily M member 2, and TRP cation channel subfamily M member 6) to be significantly associated with HCC patient prognosis (P < 0.05). These genes were utilized to establish a TRP-related risk model. Patients were separated into low- and high-risk groups based on the expression of these genes, and high-risk patients exhibited a significantly poorer prognosis (P = 0.001). Functional analyses highlighted pronounced differences in the immune status of patients in these two groups and associated enriched immune pathways. TRPC1 was identified as a candidate gene in this family worthy of further study, with HCC patients expressing higher TRPC1 levels exhibiting poorer survival outcomes. Consistently, quantitative, immunohistochemistry, and western blot analyses revealed increased TRPC1 expression in HCC. CONCLUSION These three TRP genes help determine HCC patient prognosis, providing insight into tumor immune status and immunological composition. These findings will help design combination therapies including immunotherapeutic and anti-TRP agents.
Collapse
Affiliation(s)
- Xiao-Cai Mei
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| | - Qian Chen
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| |
Collapse
|
17
|
Huang C, Shen Z, Yue S, Jia L, Wang R, Wang K, Qiao Y. Genetic evidence behind the Cd resistance of wild Metaphire californica: The global RNA regulation rather than specific mutation of well-known gene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122515. [PMID: 37678738 DOI: 10.1016/j.envpol.2023.122515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/06/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Heavy metal contamination presents a profound threat to terrestrial biodiversity, yet the genetic adaptation and evolution of field organisms under persistent stress are poorly understood. In this study, the Cd-resistant earthworms Metaphire californica collected from the control (Meihua, MHC) and elevated-pollution (Lupu, LPC) pairwise sites were used to elucidate the underlying genetic mechanism. A 48-h acute test showed that LPC worms exhibited 2.34 times higher LC50 (50% lethal concentration values) compared to MHC ones. The Cd bioaccumulation, metallothionein (MT) protein contents, and MT gene expression of LPC M.californica were all significantly higher than those of MHC worms. The well-known MT gene of M.californica was successfully cloned and identified, however, the encoding nucleotide and amino acids displayed non-observable mutations and the phylogenetic tree also revealed that different populations clustered together. Additionally, the results of transcriptomics sequencing demonstrated 173 differentially expressed genes between LPC and MHC worms, primarily involved in stress-response and detoxification pathways, including signal transduction, material metabolism, and protein exports. The above results confirmed that the crucial MT gene did not undergo genetic mutations but rather exhibited global mRNA regulation responsible for the Cd resistance of M.californica. The current study partially disclosed the stress adaptation and evolution of organisms under long-term in situ contamination, which provides insights into maintaining biodiversity under adverse environment.
Collapse
Affiliation(s)
- Caide Huang
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhiqiang Shen
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Shizhong Yue
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Li Jia
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Institut des Sciences de La Terre D'Orléans, UMR7327, CNRS-Université D'Orleans-Brgm, Orléans, 45071, France
| | - Ruiping Wang
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Kun Wang
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; State Key Laboratory of North China Crop and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding, 071001, China
| | - Yuhui Qiao
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Radhakrishnan A, Mukherjee T, Mahish C, Kumar PS, Goswami C, Chattopadhyay S. TRPA1 activation and Hsp90 inhibition synergistically downregulate macrophage activation and inflammatory responses in vitro. BMC Immunol 2023; 24:16. [PMID: 37391696 PMCID: PMC10314470 DOI: 10.1186/s12865-023-00549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Transient receptor potential ankyrin 1 (TRPA1) channels are known to be actively involved in various pathophysiological conditions, including neuronal inflammation, neuropathic pain, and various immunological responses. Heat shock protein 90 (Hsp90), a cytoplasmic molecular chaperone, is well-reported for various cellular and physiological processes. Hsp90 inhibition by various molecules has garnered importance for its therapeutic significance in the downregulation of inflammation and are proposed as anti-cancer drugs. However, the possible role of TRPA1 in the Hsp90-associated modulation of immune responses remains scanty. RESULTS Here, we have investigated the role of TRPA1 in regulating the anti-inflammatory effect of Hsp90 inhibition via 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) in lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA) stimulation in RAW 264.7, a mouse macrophage cell lines and PMA differentiated THP-1, a human monocytic cell line similar to macrophages. Activation of TRPA1 with Allyl isothiocyanate (AITC) is observed to execute an anti-inflammatory role via augmenting Hsp90 inhibition-mediated anti-inflammatory responses towards LPS or PMA stimulation in macrophages, whereas inhibition of TRPA1 by 1,2,3,6-Tetrahydro-1,3-dimethyl-N-[4-(1-methylethyl)phenyl]-2,6-dioxo-7 H-purine-7-acetamide,2-(1,3-Dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7 H-purin-7-yl)-N-(4-isopropylphenyl)acetamide (HC-030031) downregulates these developments. LPS or PMA-induced macrophage activation was found to be regulated by TRPA1. The same was confirmed by studying the levels of activation markers (major histocompatibility complex II (MHCII), cluster of differentiation (CD) 80 (CD80), and CD86, pro-inflammatory cytokines (tumor necrosis factor (TNF) and interleukin 6 (IL-6)), NO (nitric oxide) production, differential expression of mitogen-activated protein kinase (MAPK) signaling pathways (p-p38 MAPK, phospho-extracellular signal-regulated kinase 1/2 (p-ERK 1/2), and phosphor-stress-activated protein kinase/c-Jun N-terminal kinase (p-SAPK/JNK)), and induction of apoptosis. Additionally, TRPA1 has been found to be an important contributor to intracellular calcium levels toward Hsp90 inhibition in LPS or PMA-stimulated macrophages. CONCLUSION This study indicates a significant role of TRPA1 in Hsp90 inhibition-mediated anti-inflammatory developments in LPS or PMA-stimulated macrophages. Activation of TRPA1 and inhibition of Hsp90 has synergistic roles towards regulating inflammatory responses associated with macrophages. The role of TRPA1 in Hsp90 inhibition-mediated modulation of macrophage responses may provide insights towards designing future novel therapeutic approaches to regulate various inflammatory responses.
Collapse
Affiliation(s)
- Anukrishna Radhakrishnan
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| | - Tathagata Mukherjee
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| | - Chandan Mahish
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| | - P Sanjai Kumar
- Institute of Life Sciences, Nalco Nagar Rd, NALCO Square, NALCO Nagar, Chandrasekharpur, Bhubaneswar, Odisha 751023 India
| | - Chandan Goswami
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| | - Subhasis Chattopadhyay
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| |
Collapse
|
19
|
Otsuka Saito K, Fujita F, Toriyama M, Utami RA, Guo Z, Murakami M, Kato H, Suzuki Y, Okada F, Tominaga M, Ishii KJ. Roles of TRPM4 in immune responses in keratinocytes and identification of a novel TRPM4-activating agent. Biochem Biophys Res Commun 2023; 654:1-9. [PMID: 36871485 DOI: 10.1016/j.bbrc.2023.02.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023]
Abstract
The skin is a protective interface between the internal organs and environment and functions not only as a physical barrier but also as an immune organ. However, the immune system in the skin is not fully understood. A member of the thermo-sensitive transient receptor potential (TRP) channel family, TRPM4, which acts as a regulatory receptor in immune cells, was recently reported to be expressed in human skin and keratinocytes. However, the function of TRPM4 in immune responses in keratinocytes has not been investigated. In this study, we found that treatment with BTP2, a known TRPM4 agonist, reduced cytokine production induced by tumor necrosis factor (TNF) α in normal human epidermal keratinocytes and in immortalized human epidermal keratinocytes (HaCaT cells). This cytokine-reducing effect was not observed in TRPM4-deficient HaCaT cells, indicating that TRPM4 contributed to the control of cytokine production in keratinocytes. Furthermore, we identified aluminum potassium sulfate, as a new TRPM4 activating agent. Aluminum potassium sulfate reduced Ca2+ influx by store-operated Ca2+ entry in human TRPM4-expressing HEK293T cells. We further confirmed that aluminum potassium sulfate evoked TRPM4-mediated currents, showing direct evidence for TRPM4 activation. Moreover, treatment with aluminum potassium sulfate reduced cytokine expression induced by TNFα in HaCaT cells. Taken together, our data suggested that TRPM4 may serve as a new target for the treatment of skin inflammatory reactions by suppressing the cytokine production in keratinocytes, and aluminum potassium sulfate is a useful ingredient to prevent undesirable skin inflammation through TRPM4 activation.
Collapse
Affiliation(s)
- Kaori Otsuka Saito
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871, Japan; Fundamental Research Institute, Mandom Corp., 5-12, Juniken-Cho, Chuo-ku, Osaka, 540-8530, Japan; Laboratory of Mock Up Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NBIOHN), 7-6-8, Asagi, Saito, Ibaraki-City, Osaka, 567-0085, Japan.
| | - Fumitaka Fujita
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871, Japan; Fundamental Research Institute, Mandom Corp., 5-12, Juniken-Cho, Chuo-ku, Osaka, 540-8530, Japan; Laboratory of Mock Up Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NBIOHN), 7-6-8, Asagi, Saito, Ibaraki-City, Osaka, 567-0085, Japan
| | - Manami Toriyama
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Mock Up Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NBIOHN), 7-6-8, Asagi, Saito, Ibaraki-City, Osaka, 567-0085, Japan; Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-Cho, Ikoma, Nara, 630-0192, Japan
| | - Ratna Annisa Utami
- School of Pharmacy, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia
| | - Zhihan Guo
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masato Murakami
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871, Japan; Technical Development Center, Mandom Corp., 5-12, Juniken-Cho, Chuo-ku, Osaka, 540-8530, Japan
| | - Hiroko Kato
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Mock Up Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NBIOHN), 7-6-8, Asagi, Saito, Ibaraki-City, Osaka, 567-0085, Japan
| | - Yoshiro Suzuki
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems National Institutes of Natural Sciences, 5-1, Aza-higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1, Aza-higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan; Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), 5-1, Aza-higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan; Department of Physiology, Iwate Medical University, 1-1-1, Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Fumihiro Okada
- Fundamental Research Institute, Mandom Corp., 5-12, Juniken-Cho, Chuo-ku, Osaka, 540-8530, Japan
| | - Makoto Tominaga
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems National Institutes of Natural Sciences, 5-1, Aza-higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1, Aza-higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan; Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), 5-1, Aza-higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Ken J Ishii
- Laboratory of Mock Up Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NBIOHN), 7-6-8, Asagi, Saito, Ibaraki-City, Osaka, 567-0085, Japan; Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
20
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
21
|
Chen X, Lu W, Lu C, Zhang L, Xu F, Dong H. The CaSR/TRPV4 coupling mediates pro-inflammatory macrophage function. Acta Physiol (Oxf) 2023; 237:e13926. [PMID: 36606511 DOI: 10.1111/apha.13926] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
AIM Although calcium-sensing receptor (CaSR) and transient receptor potential vanilloid 4 (TRPV4) channels are functionally expressed on macrophages, it is unclear if they work coordinately to mediate macrophage function. The present study investigates whether CaSR couples to TRPV4 channels and mediates macrophage polarization via Ca2+ signaling. METHODS The role of CaSR/TRPV4/Ca2+ signaling was assessed in lipopolysaccharide (LPS)-treated peritoneal macrophages (PMs) from wild-type (WT) and TRPV4 knockout (TRPV4 KO) mice. The expression and function of CaSR and TRPV4 in PMs were analyzed by immunofluorescence and digital Ca2+ imaging. The correlation factors of M1 polarization, CCR7, IL-1β, and TNFα were detected using q-PCR, western blot, and ELISA. RESULTS We found that PMs expressed CaSR and TRPV4, and CaSR activation-induced marked Ca2+ signaling predominately through extracellular Ca2+ entry, which was inhibited by selective pharmacological blockers of CaSR and TRPV4 channels. The CaSR activation-induced Ca2+ signaling was significantly attenuated in PMs from TRPV4 KO mice compared to those from WT mice. Moreover, the CaSR activation-induced Ca2+ entry via TRPV4 channels was inhibited by blocking phospholipases A2 (PLA2)/cytochromeP450 (CYP450) and phospholipase C (PLC)/Protein kinase C (PKC) pathways. Finally, CaSR activation promoted the expression and release of M1-associated cytokines IL-1β and TNFɑ, which were attenuated in PMs from TRPV4 KO mice. CONCLUSION We reveal a novel coupling of the CaSR and TRPV4 channels via PLA2/CYP450 and PLC/PKC pathways, promoting a Ca2+ -dependent M1 macrophage polarization. Modulation of this coupling and downstream pathways may become a potential strategy for the prevention/treatment of immune-related disease.
Collapse
Affiliation(s)
- Xiongying Chen
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Lu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Luyun Zhang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Dong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
22
|
Simard C, Aize M, Chaigne S, Mpweme Bangando H, Guinamard R. Ion Channels in the Development and Remodeling of the Aortic Valve. Int J Mol Sci 2023; 24:5860. [PMID: 36982932 PMCID: PMC10055105 DOI: 10.3390/ijms24065860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
The role of ion channels is extensively described in the context of the electrical activity of excitable cells and in excitation-contraction coupling. They are, through this phenomenon, a key element for cardiac activity and its dysfunction. They also participate in cardiac morphological remodeling, in particular in situations of hypertrophy. Alongside this, a new field of exploration concerns the role of ion channels in valve development and remodeling. Cardiac valves are important components in the coordinated functioning of the heart by ensuring unidirectional circulation essential to the good efficiency of the cardiac pump. In this review, we will focus on the ion channels involved in both the development and/or the pathological remodeling of the aortic valve. Regarding valve development, mutations in genes encoding for several ion channels have been observed in patients suffering from malformation, including the bicuspid aortic valve. Ion channels were also reported to be involved in the morphological remodeling of the valve, characterized by the development of fibrosis and calcification of the leaflets leading to aortic stenosis. The final stage of aortic stenosis requires, until now, the replacement of the valve. Thus, understanding the role of ion channels in the progression of aortic stenosis is an essential step in designing new therapeutic approaches in order to avoid valve replacement.
Collapse
Affiliation(s)
- Christophe Simard
- UR 4650, Physiopathologie et Stratégies d’Imagerie du Remodelage Cardiovasculaire, GIP Cyceron, Unicaen, 14000 Caen, France
| | - Margaux Aize
- UR 4650, Physiopathologie et Stratégies d’Imagerie du Remodelage Cardiovasculaire, GIP Cyceron, Unicaen, 14000 Caen, France
| | - Sébastien Chaigne
- IHU LIRYC Electrophysiology and Heart Modeling Institute, Foundation Bordeaux, 33600 Pessac, France
- Electrophysiology and Ablation Unit, Bordeaux University Hospital, 33600 Pessac, France
| | - Harlyne Mpweme Bangando
- UR 4650, Physiopathologie et Stratégies d’Imagerie du Remodelage Cardiovasculaire, GIP Cyceron, Unicaen, 14000 Caen, France
| | - Romain Guinamard
- UR 4650, Physiopathologie et Stratégies d’Imagerie du Remodelage Cardiovasculaire, GIP Cyceron, Unicaen, 14000 Caen, France
| |
Collapse
|
23
|
Cao X, Li Y, Luo Y, Chu T, Yang H, Wen J, Liu Y, Zhao Y, Herrmann M. Transient receptor potential melastatin 2 regulates neutrophil extracellular traps formation and delays resolution of neutrophil-driven sterile inflammation. J Inflamm (Lond) 2023; 20:7. [PMID: 36810113 PMCID: PMC9945693 DOI: 10.1186/s12950-023-00334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
The formation of neutrophil extracellular traps (NETs) is a process releasing into the extracellular space networks of chromatin fibers decorated with granular proteins. It is implicated in infection-related as well as sterile inflammation. Monosodium urate (MSU) crystals serve as damage-associated molecular pattern (DAMP) in various conditions of disease. Formation of NETs or aggregated NETs (aggNETs) orchestrates initiation and resolution of MSU crystals-triggered inflammation, respectively. Elevated intracellular calcium levels and the generation of reactive oxygen species (ROS) are crucial for the formation of MSU crystal-induced NETs. However, the exact signaling pathways involved are still elusive. Herein, we demonstrate that the ROS-sensing, non-selective calcium-permeable channel transient receptor potential cation channel subfamily M member 2 (TRPM2) is required for a full-blown MSU crystal-induced NET formation. Primary neutrophils from TRPM2-/- mice showed reduced calcium influx and ROS production and, consequently a reduced formation of MSU crystal-induced NETs and aggNETs. Furthermore, in TRPM2-/- mice the infiltration of inflammatory cells into infected tissues and their production of inflammatory mediators was suppressed. Taken together these results describe an inflammatory role of TRPM2 for neutrophil-driven inflammation and identify TRPM2 as potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Xue Cao
- grid.13291.380000 0001 0807 1581Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.414011.10000 0004 1808 090XDepartment of Rheumatology and Immunology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan China
| | - Yanhong Li
- grid.13291.380000 0001 0807 1581Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yubin Luo
- grid.13291.380000 0001 0807 1581Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Tianshu Chu
- grid.414011.10000 0004 1808 090XDepartment of Rheumatology and Immunology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan China
| | - Hang Yang
- grid.13291.380000 0001 0807 1581Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Ji Wen
- grid.13291.380000 0001 0807 1581Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yi Liu
- grid.13291.380000 0001 0807 1581Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China. .,Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander- University Erlangen-Nürnberg (FAU), Erlangen, Germany. .,Department of Rheumatology & Immunology, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Martin Herrmann
- grid.5330.50000 0001 2107 3311Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander- University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
24
|
Bai S, Wei Y, Liu R, Chen Y, Ma W, Wang M, Chen L, Luo Y, Du J. The role of transient receptor potential channels in metastasis. Biomed Pharmacother 2023; 158:114074. [PMID: 36493698 DOI: 10.1016/j.biopha.2022.114074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the hallmark of failed tumor treatment and is typically associated with death due to cancer. Transient receptor potential (TRP) channels affect changes in intracellular calcium concentrations and participate at every stage of metastasis. Further, they increase the migratory ability of tumor cells, promote angiogenesis, regulate immune function, and promote the growth of tumor cells through changes in gene expression and function. In this review, we explore the potential mechanisms of action of TRP channels, summarize their role in tumor metastasis, compile inhibitors of TRP channels relevant in tumors, and discuss current challenges in research on TRP channels involved in tumor metastasis.
Collapse
Affiliation(s)
- Suwen Bai
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yuan Wei
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Rong Liu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuhua Chen
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Wanling Ma
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Minghua Wang
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Li Chen
- Department of obstetrics and gynecology, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Rd, Guangming Dist., Shenzhen, Guangdong 518107, China
| | - Yumei Luo
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - Juan Du
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| |
Collapse
|
25
|
Expression and functions of transient receptor potential channels in liver diseases. Acta Pharm Sin B 2023; 13:445-459. [PMID: 36873177 PMCID: PMC9978971 DOI: 10.1016/j.apsb.2022.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Liver diseases constitute a major healthcare burden globally, including acute hepatic injury resulted from acetaminophen overdose, ischemia-reperfusion or hepatotropic viral infection and chronic hepatitis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). Attainable treatment strategies for most liver diseases remain inadequate, highlighting the importance of substantial pathogenesis. The transient receptor potential (TRP) channels represent a versatile signalling mechanism regulating fundamental physiological processes in the liver. It is not surprising that liver diseases become a newly explored field to enrich our knowledge of TRP channels. Here, we discuss recent findings revealing TRP functions across the fundamental pathological course from early hepatocellular injury caused by various insults, to inflammation, subsequent fibrosis and hepatoma. We also explore expression levels of TRPs in liver tissues of ALD, NAFLD and HCC patients from Gene Expression Omnibus (GEO) or The Cancer Genome Atlas (TCGA) database and survival analysis estimated by Kaplan-Meier Plotter. At last, we address the therapeutical potential and challenges by pharmacologically targeting TRPs to treat liver diseases. The aim is to provide a better understanding of the implications of TRP channels in liver diseases, contributing to the discovery of novel therapeutic targets and efficient drugs.
Collapse
|
26
|
Rautenberg S, Keller M, Leser C, Chen CC, Bracher F, Grimm C. Expanding the Toolbox: Novel Modulators of Endolysosomal Cation Channels. Handb Exp Pharmacol 2023; 278:249-276. [PMID: 35902436 DOI: 10.1007/164_2022_605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Functional characterization of endolysosomal ion channels is challenging due to their intracellular location. With recent advances in endolysosomal patch clamp technology, it has become possible to directly measure ion channel currents across endolysosomal membranes. Members of the transient receptor potential (TRP) cation channel family, namely the endolysosomal TRPML channels (TRPML1-3), also called mucolipins, as well as the distantly related two-pore channels (TPCs) have recently been characterized in more detail with endolysosomal patch clamp techniques. However, answers to many physiological questions require work in intact cells or animal models. One major obstacle thereby is that the known endogenous ligands of TRPMLs and TPCs are anionic in nature and thus impermeable for cell membranes. Microinjection, on the other hand, is technically demanding. There is also a risk of losing essential co-factors for channel activation or inhibition in isolated preparations. Therefore, lipophilic, membrane-permeable small-molecule activators and inhibitors for TRPMLs and TPCs are urgently needed. Here, we describe and discuss the currently available small-molecule modulators of TRPMLs and TPCs.
Collapse
Affiliation(s)
- Susanne Rautenberg
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany
| | - Marco Keller
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany
| | - Charlotte Leser
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany
| | - Cheng-Chang Chen
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany.
| | - Christian Grimm
- Department of Pharmacology and Toxicology, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
27
|
García-Fernández P, Höfflin K, Rausch A, Strommer K, Neumann A, Cebulla N, Reinhold AK, Rittner H, Üçeyler N, Sommer C. Systemic inflammatory markers in patients with polyneuropathies. Front Immunol 2023; 14:1067714. [PMID: 36860843 PMCID: PMC9969086 DOI: 10.3389/fimmu.2023.1067714] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction In patients with peripheral neuropathies (PNP), neuropathic pain is present in 50% of the cases, independent of the etiology. The pathophysiology of pain is poorly understood, and inflammatory processes have been found to be involved in neuro-degeneration, -regeneration and pain. While previous studies have found a local upregulation of inflammatory mediators in patients with PNP, there is a high variability described in the cytokines present systemically in sera and cerebrospinal fluid (CSF). We hypothesized that the development of PNP and neuropathic pain is associated with enhanced systemic inflammation. Methods To test our hypothesis, we performed a comprehensive analysis of the protein, lipid and gene expression of different pro- and anti-inflammatory markers in blood and CSF from patients with PNP and controls. Results While we found differences between PNP and controls in specific cytokines or lipids, such as CCL2 or oleoylcarnitine, PNP patients and controls did not present major differences in systemic inflammatory markers in general. IL-10 and CCL2 levels were related to measures of axonal damage and neuropathic pain. Lastly, we describe a strong interaction between inflammation and neurodegeneration at the nerve roots in a specific subgroup of PNP patients with blood-CSF barrier dysfunction. Conclusion In patients with PNP systemic inflammatory, markers in blood or CSF do not differ from controls in general, but specific cytokines or lipids do. Our findings further highlight the importance of CSF analysis in patients with peripheral neuropathies.
Collapse
Affiliation(s)
| | - Klemens Höfflin
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Antonia Rausch
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | | | - Astrid Neumann
- Department of Bioanalytics, Bionorica research GmbH, Innsbruck, Austria
| | - Nadine Cebulla
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Ann-Kristin Reinhold
- Department of Anesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | - Heike Rittner
- Department of Anesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Xu R, Li S, Wu Y, Yue X, Wong EM, Southey MC, Hopper JL, Abramson MJ, Li S, Guo Y. Wildfire-related PM 2.5 and DNA methylation: An Australian twin and family study. ENVIRONMENT INTERNATIONAL 2023; 171:107704. [PMID: 36542997 DOI: 10.1016/j.envint.2022.107704] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/24/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Wildfire-related fine particulate matter (PM2.5) has many adverse health impacts, but its impacts on human epigenome are unknown. We aimed to evaluate the associations between long-term exposure to wildfire-related PM2.5 and blood DNA methylation, and whether the associations differ from those with non-wildfire-related PM2.5. METHODS We studied 479 Australian women comprising 132 twin pairs and 215 of their sisters. Blood-derived DNA methylation was measured using the HumanMethylation450 BeadChip array. Data on 3-year (year of blood collection and previous two years) average wildfire-related and non-wildfire-related PM2.5 at 0.01°×0.01° spatial resolution were created by combining information from satellite observations, chemical transport models, and ground-based observations. Exposure data were linked to each participant's home address, assuming the address did not change during the exposure window. For DNA methylation of each cytosine-guanine dinucleotide (CpG), and for global DNA methylation represented by the average of all measured CpGs or CpGs in repetitive elements, we evaluated their associations with wildfire- or non-wildfire-related PM2.5 using a within-sibship analysis controlling for factors shared between siblings and other important covariates. Differentially methylated regions (DMRs) were defined by comb-p and DMRcate. RESULTS The 3-year average wildfire-related PM2.5 (range: 0.3 to 7.6 µg/m3, mean: 1.6 µg/m3) was negatively, but not significantly (p-values greater than 0.05) associated with all seven global DNA methylation measures. There were 26 CpGs and 33 DMRs associated with wildfire-related PM2.5 (Bonferroni adjusted p-value < 0.05) mapped to 47 genes enriched for pathways related to inflammatory regulation and platelet activation. These genes have been related to many human diseases or phenotypes e.g., cancer, mental disorders, diabetes, obesity, asthma, blood pressure. These CpGs, DMRs and enriched pathways did not overlap with the 1 CpG and 7 DMRs associated with non-wildfire-related PM2.5. CONCLUSIONS Long-term exposure to wildfire-related PM2.5 was associated with various blood DNA methylation signatures in Australian women, and these were distinct from those associated with non-wildfire-related PM2.5.
Collapse
Affiliation(s)
- Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yao Wu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Xu Yue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Ee Ming Wong
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC 3010, Australia; Cancer Epidemiology Division, Cancer Council Victoria, VIC 3004, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Shuai Li
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
29
|
Alimohammadi S, Pénzes Z, Horváth D, Gyetvai Á, Bácsi A, Kis NG, Németh Á, Arany J, Oláh A, Lisztes E, Tóth BI, Bíró T, Szöllősi AG. TRPV4 Activation Increases the Expression of CD207 (Langerin) of Monocyte-Derived Langerhans Cells without Affecting their Maturation. J Invest Dermatol 2022; 143:801-811.e10. [PMID: 36502939 DOI: 10.1016/j.jid.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 12/14/2022]
Abstract
Langerhans cells (LCs) are the sole professional antigen-presenting cell normally found in the human epidermal compartment. Research into their physiological role is hindered by the fact that they are invariably activated during isolation from the skin. To overcome this challenge, we turned to a monocyte-derived LC (moLC) model, which we characterized with RNA sequencing, and compared the transcriptome of moLCs with that of donor-matched immature dendritic cells. We found that moLCs express markers characteristic of LC2 cells as well as TRPV4. TRPV4 is especially important in the skin because it has been linked to the conservation of the skin barrier, immunological responses, as well as acute and chronic itch, but we know little about its function on LCs. Our results show that TRPV4 activation increased the expression of Langerin and led to increased intracellular calcium concentration in moLCs. Regarding the functionality of moLCs, we found that TRPV4 agonism had a mitigating effect on their inflammatory responses because it decreased their cytokine production and T-cell activating capability. Because TRPV4 has emerged as a potential therapeutic target in dermatological conditions, it is important to highlight LCs as, to our knowledge, a previously unreported target of these therapies.
Collapse
Affiliation(s)
- Shahrzad Alimohammadi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsófia Pénzes
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Dorottya Horváth
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Ágnes Gyetvai
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nikoletta Gréta Kis
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ákos Németh
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Health Sciences, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - József Arany
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary; Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erika Lisztes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- Monasterium Laboratory Skin & Hair Research Solutions GmbH, Münster, Germany
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
30
|
Feng J, Xie Z, Hu H. Ion channel regulation of gut immunity. J Gen Physiol 2022; 155:213734. [PMID: 36459135 PMCID: PMC9723512 DOI: 10.1085/jgp.202113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/15/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Mounting evidence indicates that gastrointestinal (GI) homeostasis hinges on communications among many cellular networks including the intestinal epithelium, the immune system, and both intrinsic and extrinsic nerves innervating the gut. The GI tract, especially the colon, is the home base for gut microbiome which dynamically regulates immune function. The gut's immune system also provides an effective defense against harmful pathogens entering the GI tract while maintaining immune homeostasis to avoid exaggerated immune reaction to innocuous food and commensal antigens which are important causes of inflammatory disorders such as coeliac disease and inflammatory bowel diseases (IBD). Various ion channels have been detected in multiple cell types throughout the GI tract. By regulating membrane properties and intracellular biochemical signaling, ion channels play a critical role in synchronized signaling among diverse cellular components in the gut that orchestrates the GI immune response. This work focuses on the role of ion channels in immune cells, non-immune resident cells, and neuroimmune interactions in the gut at the steady state and pathological conditions. Understanding the cellular and molecular basis of ion channel signaling in these immune-related pathways and initial testing of pharmacological intervention will facilitate the development of ion channel-based therapeutic approaches for the treatment of intestinal inflammation.
Collapse
Affiliation(s)
- Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO,Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China,Correspondence to Jing Feng:
| | - Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO,Hongzhen Hu:
| |
Collapse
|
31
|
Do Chest Compresses with Mustard or Ginger Affect Warmth Regulation in Healthy Adults? A Randomized Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5034572. [PMID: 35899230 PMCID: PMC9313983 DOI: 10.1155/2022/5034572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Background Chest compresses with mustard (MU) or ginger (GI) are a complementary treatment option for respiratory tract infections. However, little is known about their specific thermogenic qualities. This study examines the short-term effects of MU, GI, and chest compresses with warm water only (WA) on measurable and self-perceived body warmth in healthy adults. Methods This was a single-center, randomized controlled trial with cross-over design (WA versus MU versus GI). 18 participants (23.7 ± 3.4 years; 66.7% female) received MU, GI, and WA in a random order on three different days with a mean washout period of 13.9 days. Chest compresses were applied to the thoracic back for a maximum of 20 minutes. The primary outcome measure was skin temperature of the posterior trunk (measured by infrared thermography) immediately following removal of the compresses (t1). Secondary outcome measures included skin temperature of the posterior trunk 10 minutes later (t2) and several parameters of self-perceived warmth at t1 and t2 (assessed with the Herdecke Warmth Perception Questionnaire). Results Skin temperature of the posterior trunk was significantly higher with MU compared to WA and GI at t1 (p < 0.001 for both, primary outcome measure) and t2 (WA versus MU: p=0.04, MU versus GI: p < 0.01). Self-perceived warmth of the posterior trunk was higher with MU and GI compared to WA at t1 (1.40 ≥ d ≥ 1.79) and remained higher with GI at t2 (WA versus GI: d = 0.74). The overall warmth perception increased significantly with GI (d = 0.69), tended to increase with MU (d = 0.54), and did not change with WA (d = 0.36) between t0 and t1. Conclusions Different effects on warmth regulation were observed when ginger and mustard were applied as chest compresses. Both substances induced self-perceived warming of the posterior trunk, but measurable skin temperature increased only with MU. Further research is needed to examine the duration of these thermogenic effects and how chest compresses with ginger or mustard might be incorporated into practice to influence clinical outcomes in respiratory tract infections.
Collapse
|
32
|
Fang C, Xu H, Liu Y, Huang C, Wang X, Zhang Z, Xu Y, Yuan L, Zhang A, Shao A, Lou M. TRP Family Genes Are Differently Expressed and Correlated with Immune Response in Glioma. Brain Sci 2022; 12:brainsci12050662. [PMID: 35625048 PMCID: PMC9139309 DOI: 10.3390/brainsci12050662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
(1) Background: glioma is the most prevalent primary tumor of the human central nervous system and accompanies extremely poor prognosis in patients. The transient receptor potential (TRP) channels family consists of six different families, which are closely associated with cancer cell proliferation, differentiation, migration, and invasion. TRP family genes play an essential role in the development of tumors. Nevertheless, the function of these genes in gliomas is not fully understood. (2) Methods: we analyze the gene expression data of 28 TRP family genes in glioma patients through bioinformatic analysis. (3) Results: the study showed the aberrations of TRP family genes were correlated to prognosis in glioma. Then, we set enrichment analysis and selected 10 hub genes that may play an important role in glioma. Meanwhile, the expression of 10 hub genes was further established according to different grades, survival time, IDH mutation status, and 1p/19q codeletion status. We found that TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, MCOLN1, MCOLN2, and MCOLN3 were significantly correlated to the prognosis in glioma patients. Furthermore, we illustrated that the expression of hub genes was associated with immune activation and immunoregulators (immunoinhibitors, immunostimulators, and MHC molecules) in glioma. (4) Conclusions: we proved that TRP family genes are promising immunotherapeutic targets and potential clinical biomarkers in patients with glioma.
Collapse
Affiliation(s)
- Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China; (C.F.); (H.X.); (L.Y.)
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China; (C.F.); (H.X.); (L.Y.)
| | - Yibo Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.L.); (X.W.); (Z.Z.); (A.Z.); (A.S.)
| | - Chenkai Huang
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA;
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.L.); (X.W.); (Z.Z.); (A.Z.); (A.S.)
| | - Zeyu Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.L.); (X.W.); (Z.Z.); (A.Z.); (A.S.)
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China;
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China; (C.F.); (H.X.); (L.Y.)
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.L.); (X.W.); (Z.Z.); (A.Z.); (A.S.)
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.L.); (X.W.); (Z.Z.); (A.Z.); (A.S.)
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China; (C.F.); (H.X.); (L.Y.)
- Correspondence: ; Tel.: +86-21-63240090; Fax: +86-21-63079925
| |
Collapse
|
33
|
Evidence-based Potential Therapeutic Applications of Cannabinoids in Wound Management. Adv Skin Wound Care 2022; 35:447-453. [PMID: 35588193 DOI: 10.1097/01.asw.0000831920.15801.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although wound management is a major component of all domains of healthcare, conventional therapeutics have numerous limitations. The endocannabinoid system of the skin, one of the major endogenous systems, has recently been connected to wound healing. Cannabinoids and their interactions with the endogenous chemical signaling system may be a promising therapeutic option because they address some of the fundamental pathways for physiologic derangement that underpin chronic integumentary wounds. RECENT ADVANCES The therapeutic applications of cannabinoids are increasing because of their legalization and resulting market expansion. Recently, their immunosuppressive and anti-inflammatory properties have been explored for the treatment of wounds that are not effectively managed by conventional medicines. CRITICAL ISSUES Failure to manage wounds effectively is associated with reduced quality of life, disability, mortality, and increased healthcare expenditures. Therapeutic options that can manage wounds effectively and efficiently are needed. In this review, the authors summarize recent advances on the use of cannabinoids to treat skin disorders with an emphasis on wound management. FUTURE DIRECTIONS Effective wound management requires medicines with good therapeutic outcomes and minimal adverse effects. Despite the promising results of cannabinoids in wound management, further controlled clinical studies are required to establish the definitive role of these compounds in the pathophysiology of wounds and their usefulness in the clinical setting.
Collapse
|
34
|
Sun S, Wang Y, Li M, Wu J. Identification of TRP-Related Subtypes, Development of a Prognostic Model, and Characterization of Tumor Microenvironment Infiltration in Lung Adenocarcinoma. Front Mol Biosci 2022; 9:861380. [PMID: 35620481 PMCID: PMC9127446 DOI: 10.3389/fmolb.2022.861380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/30/2022] [Indexed: 01/08/2023] Open
Abstract
The TRP (transient receptor potential) superfamily, as cation channels, is a critical chemosensor for potentially harmful irritants. Their activation is closely related not only to tumor progression and prognosis but also to tumor therapy response. Nevertheless, the TRP-related immune gene (TRIG) expression of the tumor microenvironment (TME) and the associations with prognosis remain unclear. First, we represented the transcriptional and genetic variations in TRIGs in 535 lung adenocarcinoma (LUAD) samples as well as their expression patterns. LUAD samples were divided into two distinct subtypes based on the TRIG variations. Significant differences had been found in prognosis, clinical features, and TME cell-infiltration features between the two subtypes of patients. Second, we framed a TRIG score for predicting overall survival (OS) and validated the predictive capability of the TRIG score in LUAD patients. Accordingly, to enhance the clinical applicability of TRIG score, we developed a considerable nomogram. A low TRIG score, characterized by increased immunity activation, indicated favorable advantages of OS compared with a high TRIG score. Furthermore, the TRIG score was found to have a significant connection with the TME cell-infiltration and immune checkpoint expressions. Our analysis of TRIGs in LUAD showed their potential roles in prognosis, clinical features, and tumor-immune microenvironments. These results may advance our knowledge of TRP genes in LUAD and show a new light on prognosis estimation and the improvement of immunotherapy strategies.
Collapse
|
35
|
Camponogara C, Oliveira SM. Are TRPA1 and TRPV1 channel-mediated signalling cascades involved in UVB radiation-induced sunburn? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103836. [PMID: 35248760 DOI: 10.1016/j.etap.2022.103836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Burn injuries are underappreciated injuries associated with substantial morbidity and mortality. Overexposure to ultraviolet (UV) radiation has dramatic clinical effects in humans and is a significant public health concern. Although the mechanisms underlying UVB exposure are not fully understood, many studies have made substantial progress in the pathophysiology of sunburn in terms of its molecular aspects in the last few years. It is well established that the transient receptor potential ankyrin 1 (TRPA1), and vanilloid 1 (TRPV1) channels modulate the inflammatory, oxidative, and proliferative processes underlying UVB radiation exposure. However, it is still unknown which mechanisms underlying TRPV1/A1 channel activation are elicited in sunburn induced by UVB radiation. Therefore, in this review, we give an overview of the TRPV1/A1 channel-mediated signalling cascades that may be involved in the pathophysiology of sunburn induced by UVB radiation. These data will undoubtedly help to explain the various features of sunburn and contribute to the development of novel therapeutic approaches to better treat it.
Collapse
Affiliation(s)
- Camila Camponogara
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
36
|
Paci P, Fiscon G, Conte F, Wang RS, Handy DE, Farina L, Loscalzo J. Comprehensive network medicine-based drug repositioning via integration of therapeutic efficacy and side effects. NPJ Syst Biol Appl 2022; 8:12. [PMID: 35443763 PMCID: PMC9021283 DOI: 10.1038/s41540-022-00221-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/19/2022] [Indexed: 12/28/2022] Open
Abstract
Despite advances in modern medicine that led to improvements in cardiovascular outcomes, cardiovascular disease (CVD) remains the leading cause of mortality and morbidity globally. Thus, there is an urgent need for new approaches to improve CVD drug treatments. As the development time and cost of drug discovery to clinical application are excessive, alternate strategies for drug development are warranted. Among these are included computational approaches based on omics data for drug repositioning, which have attracted increasing attention. In this work, we developed an adjusted similarity measure implemented by the algorithm SAveRUNNER to reposition drugs for cardiovascular diseases while, at the same time, considering the side effects of drug candidates. We analyzed nine cardiovascular disorders and two side effects. We formulated both disease disorders and side effects as network modules in the human interactome, and considered those drug candidates that are proximal to disease modules but far from side-effects modules as ideal. Our method provides a list of drug candidates for cardiovascular diseases that are unlikely to produce common, adverse side-effects. This approach incorporating side effects is applicable to other diseases, as well.
Collapse
Affiliation(s)
- Paola Paci
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy. .,Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy.
| | - Giulia Fiscon
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy.,Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Federica Conte
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Rui-Sheng Wang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Diane E Handy
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lorenzo Farina
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
37
|
Zhong T, Zhang W, Guo H, Pan X, Chen X, He Q, Yang B, Ding L. The regulatory and modulatory roles of TRP family channels in malignant tumors and relevant therapeutic strategies. Acta Pharm Sin B 2022; 12:1761-1780. [PMID: 35847486 PMCID: PMC9279634 DOI: 10.1016/j.apsb.2021.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/11/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023] Open
Abstract
Transient receptor potential (TRP) channels are one primary type of calcium (Ca2+) permeable channels, and those relevant transmembrane and intracellular TRP channels were previously thought to be mainly associated with the regulation of cardiovascular and neuronal systems. Nowadays, however, accumulating evidence shows that those TRP channels are also responsible for tumorigenesis and progression, inducing tumor invasion and metastasis. However, the overall underlying mechanisms and possible signaling transduction pathways that TRP channels in malignant tumors might still remain elusive. Therefore, in this review, we focus on the linkage between TRP channels and the significant characteristics of tumors such as multi-drug resistance (MDR), metastasis, apoptosis, proliferation, immune surveillance evasion, and the alterations of relevant tumor micro-environment. Moreover, we also have discussed the expression of relevant TRP channels in various forms of cancer and the relevant inhibitors' efficacy. The chemo-sensitivity of the anti-cancer drugs of various acting mechanisms and the potential clinical applications are also presented. Furthermore, it would be enlightening to provide possible novel therapeutic approaches to counteract malignant tumors regarding the intervention of calcium channels of this type.
Collapse
Key Words
- 4α-PDD, 4α-phorbol-12,13-didecanoate
- ABCB, ATP-binding cassette B1
- AKT, protein kinase B
- ALA, alpha lipoic acid
- AMPK, AMP-activated protein kinase
- APB, aminoethoxydiphenyl borate
- ATP, adenosine triphosphate
- CBD, cannabidiol
- CRAC, Ca2+ release-activated Ca2+ channel
- CaR, calcium-sensing receptor
- CaSR, calcium sensing receptor
- Cancer progression
- DAG, diacylglycerol
- DBTRG, Denver Brain Tumor Research Group
- ECFC, endothelial colony-forming cells
- ECM, enhanced extracellular matrix
- EGF, epidermal growth factor
- EMT, epithelial–mesenchymal transition
- ER, endoplasmic reticulum
- ERK, extracellular signal-regulated kinase
- ETS, erythroblastosis virus E26 oncogene homolog
- FAK, focal adhesion kinase
- GADD, growth arrest and DNA damage-inducible gene
- GC, gastric cancer
- GPCR, G-protein coupled receptor
- GSC, glioma stem-like cells
- GSK, glycogen synthase kinase
- HCC, hepatocellular carcinoma
- HIF, hypoxia-induced factor
- HSC, hematopoietic stem cells
- IP3R, inositol triphosphate receptor
- Intracellular mechanism
- KO, knockout
- LOX, lipoxygenase
- LPS, lipopolysaccharide
- LRP, lipoprotein receptor-related protein
- MAPK, mitogen-activated protein kinase
- MLKL, mixed lineage kinase domain-like protein
- MMP, matrix metalloproteinases
- NEDD4, neural precursor cell expressed, developmentally down-regulated 4
- NFAT, nuclear factor of activated T-cells
- NLRP3, NLR family pyrin domain containing 3
- NO, nitro oxide
- NSCLC, non-small cell lung cancer
- Nrf2, nuclear factor erythroid 2-related factor 2
- P-gp, P-glycoprotein
- PCa, prostate cancer
- PDAC, pancreatic ductal adenocarcinoma
- PHD, prolyl hydroxylases
- PI3K, phosphoinositide 3-kinase
- PKC, protein kinase C
- PKD, polycystic kidney disease
- PLC, phospholipase C
- Programmed cancer cell death
- RNS/ROS, reactive nitrogen species/reactive oxygen species
- RTX, resiniferatoxin
- SMAD, Caenorhabditis elegans protein (Sma) and mothers against decapentaplegic (Mad)
- SOCE, store operated calcium entry
- SOR, soricimed
- STIM1, stromal interaction molecules 1
- TEC, tumor endothelial cells
- TGF, transforming growth factor-β
- TNF-α, tumor necrosis factor-α
- TRP channels
- TRPA/C/M/ML/N/P/V, transient receptor potential ankyrin/canonical/melastatin/mucolipon/NOMPC/polycystin/vanilloid
- Targeted tumor therapy
- Tumor microenvironment
- Tumor-associated immunocytes
- UPR, unfolded protein response
- VEGF, vascular endothelial growth factor
- VIP, vasoactive intestinal peptide
- VPAC, vasoactive intestinal peptide receptor subtype
- mTOR, mammalian target of rapamycin
- pFRG/RTN, parafacial respiratory group/retrotrapezoid nucleus
Collapse
|
38
|
Termine A, Fabrizio C, Gimenez J, Panuccio A, Balsamo F, Passarello N, Caioli S, Saba L, De Bardi M, Della Valle F, Orlando V, Petrosini L, Laricchiuta D. Transcriptomic and Network Analyses Reveal Immune Modulation by Endocannabinoids in Approach/Avoidance Traits. Int J Mol Sci 2022; 23:ijms23052538. [PMID: 35269678 PMCID: PMC8910341 DOI: 10.3390/ijms23052538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Approach and avoidance (A/A) tendencies are stable behavioral traits in responding to rewarding and fearful stimuli. They represent the superordinate division of emotion, and individual differences in such traits are associated with disease susceptibility. The neural circuitry underlying A/A traits is retained to be the cortico-limbic pathway including the amygdala, the central hub for the emotional processing. Furthermore, A/A-specific individual differences are associated with the activity of the endocannabinoid system (ECS) and especially of CB1 receptors whose density and functionality in amygdala differ according to A/A traits. ECS markedly interacts with the immune system (IS). However, how the interplay between ECS and IS is associated with A/A individual differences is still ill-defined. To fill this gap, here we analyzed the interaction between the gene expression of ECS and immune system (IS) in relation to individual differences. To unveil the deep architecture of ECS-IS interaction, we performed cell-specific transcriptomics analysis. Differential gene expression profiling, functional enrichment, and protein–protein interaction network analyses were performed in amygdala pyramidal neurons of mice showing different A/A behavioral tendencies. Several altered pro-inflammatory pathways were identified as associated with individual differences in A/A traits, indicating the chronic activation of the adaptive immune response sustained by the interplay between endocannabinoids and the IS. Furthermore, results showed that the interaction between the two systems modulates synaptic plasticity and neuronal metabolism in individual difference-specific manner. Deepening our knowledge about ECS/IS interaction may provide useful targets for treatment and prevention of psychopathology associated with A/A traits.
Collapse
Affiliation(s)
- Andrea Termine
- Data Science Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.T.); (C.F.)
| | - Carlo Fabrizio
- Data Science Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.T.); (C.F.)
| | - Juliette Gimenez
- Epigenetics and Genome Reprogramming Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| | - Anna Panuccio
- Experimental and Behavioral Neurophysiology Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.P.); (F.B.); (N.P.); (L.P.)
- Department of Psychology, University Sapienza of Rome, 00185 Rome, Italy
| | - Francesca Balsamo
- Experimental and Behavioral Neurophysiology Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.P.); (F.B.); (N.P.); (L.P.)
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy
| | - Noemi Passarello
- Experimental and Behavioral Neurophysiology Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.P.); (F.B.); (N.P.); (L.P.)
- Department of Humanities, Federico II University of Naples, 80131 Naples, Italy
| | - Silvia Caioli
- Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy;
| | - Luana Saba
- Department of Sciences and Technologies for Humans and Environment, University of Campus Biomedico, 00128 Rome, Italy;
| | - Marco De Bardi
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| | - Francesco Della Valle
- KAUST Environmental Epigenetics Program, Biological Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955, Saudi Arabia; (F.D.V.); (V.O.)
| | - Valerio Orlando
- KAUST Environmental Epigenetics Program, Biological Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955, Saudi Arabia; (F.D.V.); (V.O.)
| | - Laura Petrosini
- Experimental and Behavioral Neurophysiology Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.P.); (F.B.); (N.P.); (L.P.)
| | - Daniela Laricchiuta
- Experimental and Behavioral Neurophysiology Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.P.); (F.B.); (N.P.); (L.P.)
- Correspondence:
| |
Collapse
|
39
|
Munjal NS, Sapra D, Parthasarathi KTS, Goyal A, Pandey A, Banerjee M, Sharma J. Deciphering the Interactions of SARS-CoV-2 Proteins with Human Ion Channels Using Machine-Learning-Based Methods. Pathogens 2022; 11:pathogens11020259. [PMID: 35215201 PMCID: PMC8874499 DOI: 10.3390/pathogens11020259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is accountable for the protracted COVID-19 pandemic. Its high transmission rate and pathogenicity led to health emergencies and economic crisis. Recent studies pertaining to the understanding of the molecular pathogenesis of SARS-CoV-2 infection exhibited the indispensable role of ion channels in viral infection inside the host. Moreover, machine learning (ML)-based algorithms are providing a higher accuracy for host-SARS-CoV-2 protein–protein interactions (PPIs). In this study, PPIs of SARS-CoV-2 proteins with human ion channels (HICs) were trained on the PPI-MetaGO algorithm. PPI networks (PPINs) and a signaling pathway map of HICs with SARS-CoV-2 proteins were generated. Additionally, various U.S. food and drug administration (FDA)-approved drugs interacting with the potential HICs were identified. The PPIs were predicted with 82.71% accuracy, 84.09% precision, 84.09% sensitivity, 0.89 AUC-ROC, 65.17% Matthews correlation coefficient score (MCC) and 84.09% F1 score. Several host pathways were found to be altered, including calcium signaling and taste transduction pathway. Potential HICs could serve as an initial set to the experimentalists for further validation. The study also reinforces the drug repurposing approach for the development of host directed antiviral drugs that may provide a better therapeutic management strategy for infection caused by SARS-CoV-2.
Collapse
Affiliation(s)
- Nupur S. Munjal
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; (N.S.M.); (D.S.); (K.T.S.P.); (A.G.)
| | - Dikscha Sapra
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; (N.S.M.); (D.S.); (K.T.S.P.); (A.G.)
| | - K. T. Shreya Parthasarathi
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; (N.S.M.); (D.S.); (K.T.S.P.); (A.G.)
| | - Abhishek Goyal
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; (N.S.M.); (D.S.); (K.T.S.P.); (A.G.)
| | - Akhilesh Pandey
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, India;
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India;
| | - Jyoti Sharma
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; (N.S.M.); (D.S.); (K.T.S.P.); (A.G.)
- Manipal Academy of Higher Education (MAHE), Udupi 576104, India
- Correspondence:
| |
Collapse
|
40
|
Morini M, Bergqvist CA, Asturiano JF, Larhammar D, Dufour S. Dynamic evolution of transient receptor potential vanilloid (TRPV) ion channel family with numerous gene duplications and losses. Front Endocrinol (Lausanne) 2022; 13:1013868. [PMID: 36387917 PMCID: PMC9664204 DOI: 10.3389/fendo.2022.1013868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2023] Open
Abstract
The transient receptor potential vanilloid (TRPV) ion channel family is involved in multiple sensory and physiological functions including thermosensing and temperature-dependent neuroendocrine regulation. The objective of the present study was to investigate the number, origin and evolution of TRPV genes in metazoans, with special focus on the impact of the vertebrate whole-genome duplications (WGD). Gene searches followed by phylogenetic and synteny analyses revealed multiple previously undescribed TRPV genes. The common ancestor of Cnidaria and Bilateria had three TRPV genes that became four in the deuterostome ancestor. Two of these were lost in the vertebrate ancestor. The remaining two genes gave rise to two TRPV subfamilies in vertebrates, consisting of subtypes 1, 2, 3, 4, 9 and 5, 6, 7, 8, respectively. This gene expansion resulted from the two basal vertebrate WGD events (1R and 2R) and three local duplications before the radiation of gnathostomes. TRPV1, 4 and 5 have been retained in all gnathostomes investigated, presumably reflecting important functions. TRPV7 and 8 have been lost independently in various lineages but are still retained in cyclostomes, actinistians (coelacanth), amphibians, prototherians and basal actinopterygians (Polypteridae). TRPV3 and 9 are present in extant elasmobranchs, while TRPV9 was lost in the osteichthyan ancestor and TRPV3 in the actinopterygian ancestor. The coelacanth has retained the ancestral osteichthyan repertoire of TRPV1, 3, 4, 5, 7 and 8. TRPV2 arose in the tetrapod ancestor. Duplications of TRPV5 occurred independently in various lineages, such as cyclostomes, chondrichthyans, anuran amphibians, sauropsids, mammals (where the duplicate is called TRPV6), and actinopterygians (Polypteridae and Esocidae). After the teleost-specific WGD (3R) only TRPV1 retained its duplicate, whereas TRPV4 and 5 remained as single genes. Both 3R-paralogs of TRPV1 were kept in some teleost species, while one paralog was lost in others. The salmonid-specific WGD (4R) duplicated TRPV1, 4, and 5 leading to six TRPV genes. The largest number was found in Xenopus tropicalis with no less than 15 TRPV genes. This study provides a comprehensive evolutionary scenario for the vertebrate TRPV family, revealing additional TRPV types and proposing a phylogeny-based classification of TRPV across metazoans.
Collapse
Affiliation(s)
- Marina Morini
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), National Museum of Natural History (MNHN), CNRS, IRD, Sorbonne University, Paris, France
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain
- *Correspondence: Marina Morini, ; Sylvie Dufour,
| | - Christina A. Bergqvist
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Juan F. Asturiano
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain
| | - Dan Larhammar
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), National Museum of Natural History (MNHN), CNRS, IRD, Sorbonne University, Paris, France
- *Correspondence: Marina Morini, ; Sylvie Dufour,
| |
Collapse
|
41
|
Wu H, Niu C, Qu Y, Sun X, Wang K. Selective activation of TRPA1 ion channels by nitrobenzene skin sensitizers DNFB and DNCB. J Biol Chem 2021; 298:101555. [PMID: 34973335 PMCID: PMC8800105 DOI: 10.1016/j.jbc.2021.101555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022] Open
Abstract
2, 4-dinitrofluorobenzene (DNFB) and 2, 4-dinitrochlorobenzene (DNCB) are well known as skin sensitizers that can cause dermatitis. DNFB has shown to more potently sensitize skin; however, how DNFB and DNCB cause skin inflammation at a molecular level and why this difference in their sensitization ability is observed remains unknown. In this study, we aimed to identify the molecular targets and mechanisms on which DNFB and DNCB act. We used a fluorescent calcium imaging plate reader in an initial screening assay before patch-clamp recordings for validation. Molecular docking in combination with site-directed mutagenesis was then carried out to investigate DNFB and DNCB binding sites in the TRPA1 ion channel that may be selectively activated by these tow sensitizers. We found that DNFB and DNCB selectively activated TRPA1 channel with EC50 values of 2.3 ± 0.7 μM μM and 42.4 ± 20.9 μM, respectively. Single-channel recordings revealed that DNFB and DNCB increase the probability of channel opening and acts on three residues (C621, E625 and Y658) critical for TRPA1 activation. Our findings may not only help explain the molecular mechanism underlying the dermatitis and pruritus caused by chemicals like DNFB and DNCB, but also provide a molecular tool 7.5-fold more potent than the current TRPA1 activator allyl isothiocyanate (AITC) used for investigating TRPA1 channel pharmacology and pathology.
Collapse
Affiliation(s)
- Han Wu
- Department of Pharmacology, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073
| | - Canyang Niu
- Department of Pharmacology, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073
| | - Yaxuan Qu
- Department of Pharmacology, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073
| | - Xiaoying Sun
- Department of Pharmacology, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073; Institue of Innovative Drugs, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073; Institue of Innovative Drugs, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.
| |
Collapse
|
42
|
Rouadi PW, Idriss SA, Bousquet J, Laidlaw TM, Azar CR, Sulaiman AL-Ahmad M, Yáñez A, AL-Nesf MAY, Nsouli TM, Bahna SL, Abou-Jaoude E, Zaitoun FH, Hadi UM, Hellings PW, Scadding GK, Smith PK, Morais-Almeida M, Gómez RM, González Díaz SN, Klimek L, Juvelekian GS, Riachy MA, Canonica GW, Peden D, Wong GW, Sublett J, Bernstein JA, Wang L, Tanno LK, Chikhladze M, Levin M, Chang YS, Martin BL, Caraballo L, Custovic A, Ortega-Martell JA, Jensen-Jarolim E, Ebisawa M, Fiocchi A, Ansotegui IJ. WAO-ARIA consensus on chronic cough - Part 1: Role of TRP channels in neurogenic inflammation of cough neuronal pathways. World Allergy Organ J 2021; 14:100617. [PMID: 34934475 PMCID: PMC8654622 DOI: 10.1016/j.waojou.2021.100617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cough features a complex peripheral and central neuronal network. The function of the chemosensitive and stretch (afferent) cough receptors is well described but partly understood. It is speculated that chronic cough reflects a neurogenic inflammation of the cough reflex, which becomes hypersensitive. This is mediated by neuromediators, cytokines, inflammatory cells, and a differential expression of neuronal (chemo/stretch) receptors, such as transient receptor potential (TRP) and purinergic P2X ion channels; yet the overall interaction of these mediators in neurogenic inflammation of cough pathways remains unclear. OBJECTIVES The World Allergy Organization/Allergic Rhinitis and its Impact on Asthma (WAO/ARIA) Joint Committee on Chronic Cough reviewed the current literature on neuroanatomy and pathophysiology of chronic cough. The role of TRP ion channels in pathogenic mechanisms of the hypersensitive cough reflex was also examined. OUTCOMES Chemoreceptors are better studied in cough neuronal pathways compared to stretch receptors, likely due to their anatomical overabundance in the respiratory tract, but also their distinctive functional properties. Central pathways are important in suppressive mechanisms and behavioral/affective aspects of chronic cough. Current evidence strongly suggests neurogenic inflammation induces a hypersensitive cough reflex marked by increased expression of neuromediators, mast cells, and eosinophils, among others. TRP ion channels, mainly TRP V1/A1, are important in the pathogenesis of chronic cough due to their role in mediating chemosensitivity to various endogenous and exogenous triggers, as well as a crosstalk between neurogenic and inflammatory pathways in cough-associated airways diseases.
Collapse
Affiliation(s)
- Philip W. Rouadi
- Department of Otolaryngology - Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Samar A. Idriss
- Department of Otolaryngology - Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
- Department of Audiology and Otoneurological Evaluation, Edouard Herriot Hospital, Lyon, France
| | - Jean Bousquet
- Hospital Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Berlin Institute of Health, Berlin, Germany
- Macvia France, Montpellier France
- Université Montpellier, Montpellier, France
| | - Tanya M. Laidlaw
- Department of Medicine, Harvard Medical School, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital Boston, MA, USA
| | - Cecilio R. Azar
- Department of Gastroenterology, American University of Beirut Medical Center (AUBMC), Beirut, Lebanon
- Department of Gastroenterology, Middle East Institute of Health (MEIH), Beirut, Lebanon
- Department of Gastroenterology, Clemenceau Medical Center (CMC), Beirut, Lebanon
| | | | - Anahí Yáñez
- INAER - Investigaciones en Alergia y Enfermedades Respiratorias, Buenos Aires, Argentina
| | - Maryam Ali Y. AL-Nesf
- Allergy and Immunology Section, Department of Medicine, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | | | - Sami L. Bahna
- Allergy & Immunology Section, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | - Fares H. Zaitoun
- Department of Allergy Otolaryngology, LAU-RIZK Medical Center, Beirut, Lebanon
| | - Usamah M. Hadi
- Clinical Professor Department of Otolaryngology Head and Neck Surgery, American University of Beirut, Lebanon
| | - Peter W. Hellings
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Allergy and Clinical Immunology, Leuven, Belgium
- University Hospitals Leuven, Department of Otorhinolaryngology, Leuven, Belgium
- University Hospital Ghent, Department of Otorhinolaryngology, Laboratory of Upper Airways Research, Ghent, Belgium
- Academic Medical Center, University of Amsterdam, Department of Otorhinolaryngology, Amsterdam, the Netherlands
| | | | - Peter K. Smith
- Clinical Medicine Griffith University, Southport Qld, 4215, Australia
| | | | | | - Sandra N. González Díaz
- Universidad Autónoma de Nuevo León, Hospital Universitario and Facultad de Medicina, Monterrey, Nuevo León, Mexico
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Georges S. Juvelekian
- Department of Pulmonary, Critical Care and Sleep Medicine at Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Moussa A. Riachy
- Department of Pulmonary and Critical Care, Hôtel-Dieu de France University Hospital, Beirut, Lebanon
| | - Giorgio Walter Canonica
- Humanitas University, Personalized Medicine Asthma & Allergy Clinic-Humanitas Research Hospital-IRCCS-Milano Italy
| | - David Peden
- UNC Center for Environmental Medicine, Asthma, and Lung Biology, Division of Allergy, Immunology and Rheumatology, Department of Pediatrics UNS School of Medicine, USA
| | - Gary W.K. Wong
- Department of Pediatrics, Chinese University of Hong Kong, Hong Kong, China
| | - James Sublett
- Department of Pediatrics, Section of Allergy and Immunology, University of Louisville School of Medicine, 9800 Shelbyville Rd, Louisville, KY, USA
| | - Jonathan A. Bernstein
- University of Cincinnati College of Medicine, Department of Internal Medicine, Division of Immunology/Allergy Section, Cincinnati
| | - Lianglu Wang
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Disease, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing 100730, China
| | - Luciana Kase Tanno
- Université Montpellier, Montpellier, France
- Desbrest Institute of Epidemiology and Public Health, UMR UA-11, INSERM University of Montpellier, Montpellier, France
- WHO Collaborating Centre on Scientific Classification Support, Montpellier, France
| | - Manana Chikhladze
- Medical Faculty at Akaki Tsereteli State University, National Institute of Allergy, Asthma & Clinical Immunology, KuTaisi, Tskaltubo, Georgia
| | - Michael Levin
- Division of Paediatric Allergology, Department of Paediatrics, University of Cape Town, South Africa
| | - Yoon-Seok Chang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Bryan L. Martin
- Department of Otolaryngology, Division of Allergy & Immunology, The Ohio State University, Columbus, OH, USA
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena. Cartagena de Indias, Colombia
| | - Adnan Custovic
- National Heart and Lund Institute, Imperial College London, UK
| | | | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Austria
- The Interuniversity Messerli Research Institute, Medical University Vienna and Univ, of Veterinary Medicine Vienna, Austria
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology,National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Alessandro Fiocchi
- Translational Pediatric Research Area, Allergic Diseases Research Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Holy See
| | - Ignacio J. Ansotegui
- Department of Allergy and Immunology, Hospital Quironsalud Bizkaia, Bilbao, Spain
| |
Collapse
|
43
|
Nascimento Da Conceicao V, Sun Y, Ramachandran K, Chauhan A, Raveendran A, Venkatesan M, DeKumar B, Maity S, Vishnu N, Kotsakis GA, Worley PF, Gill DL, Mishra BB, Madesh M, Singh BB. Resolving macrophage polarization through distinct Ca 2+ entry channel that maintains intracellular signaling and mitochondrial bioenergetics. iScience 2021; 24:103339. [PMID: 34816101 PMCID: PMC8591423 DOI: 10.1016/j.isci.2021.103339] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 01/21/2023] Open
Abstract
Transformation of naive macrophages into classically (M1) or alternatively (M2) activated macrophages regulates the inflammatory response. Here, we identified that distinct Ca2+ entry channels determine the IFNγ-induced M1 or IL-4-induced M2 transition. Naive or M2 macrophages exhibit a robust Ca2+ entry that was dependent on Orai1 channels, whereas the M1 phenotype showed a non-selective TRPC1 current. Blockade of Ca2+ entry suppresses pNF-κB/pJNK/STAT1 or STAT6 signaling events and consequently lowers cytokine production that is essential for M1 or M2 functions. Of importance, LPS stimulation shifted M2 cells from Orai1 toward TRPC1-mediated Ca2+ entry and TRPC1-/- mice exhibited transcriptional changes that suppress pro-inflammatory cytokines. In contrast, Orai1-/- macrophages showed a decrease in anti-inflammatory cytokines and exhibited a suppression of mitochondrial oxygen consumption rate and inhibited mitochondrial shape transition specifically in the M2 cells. Finally, alterations in TRPC1 or Orai1 expression determine macrophage polarization suggesting a distinct role of Ca2+ channels in modulating macrophage transformation.
Collapse
Affiliation(s)
| | - Yuyang Sun
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Karthik Ramachandran
- Department of Medicine, Cardiology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Arun Chauhan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Amritha Raveendran
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Manigandan Venkatesan
- Department of Medicine, Cardiology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Bony DeKumar
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Soumya Maity
- Department of Medicine, Cardiology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Neelanjan Vishnu
- Department of Medicine, Cardiology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - George A. Kotsakis
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Paul F. Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Donald L. Gill
- Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, PA 17033, USA
| | - Bibhuti B. Mishra
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Muniswamy Madesh
- Department of Medicine, Cardiology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Brij B. Singh
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
44
|
Li S, Feng Y, Zhang T, Wang S, Sun J. Identification and characterization of Trpm4 gene involved in regulating Japanese flounder (Paralichthys olivaceus) inflammatory response. JOURNAL OF FISH DISEASES 2021; 44:1765-1776. [PMID: 34252211 DOI: 10.1111/jfd.13493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed Ca2+ -impermeable cation channel involved in modulating inflammatory and immune responses in mammals. However, the role of TRPM4 channel in fish immunity remains unclear. In this report, from a comparative immunological point of view, we identified and characterized a Trpm4 gene from Japanese flounder (Paralichthys olivaceus) and analysed its potential role in regulating the fish inflammatory response. The Japanese flounder Trpm4 gene is expressed in a wide range of tissues and encodes a 1264-amino acid protein which expresses on the cell surface and shares several conserved domains with its mammalian counterparts. In vitro inflammatory challenge and in vivo bacterial infection experiments revealed that Japanese flounder Trpm4 expression was significantly modulated following different immune challenges, indicating the implication of Trpm4 in the fish immune response. Overexpression of TRPM4 significantly attenuated LPS- and poly(I:C)-induced pro-inflammatory cytokine expression in Japanese flounder FG-9307 cells. In contrast, pharmacological inhibition of the endogenous TRPM4 channel activity in Japanese flounder head kidney macrophages resulted in increased pro-inflammatory cytokine expression following LPS and poly(I:C) stimulations. Taken together, these findings indicate that TRPM4 channels may play a conserved role in regulating inflammatory response(s) in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Yu Feng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Tongtong Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Shan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
45
|
Bohmwald K, Gálvez NMS, Andrade CA, Mora VP, Muñoz JT, González PA, Riedel CA, Kalergis AM. Modulation of Adaptive Immunity and Viral Infections by Ion Channels. Front Physiol 2021; 12:736681. [PMID: 34690811 PMCID: PMC8531258 DOI: 10.3389/fphys.2021.736681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
Most cellular functions require of ion homeostasis and ion movement. Among others, ion channels play a crucial role in controlling the homeostasis of anions and cations concentration between the extracellular and intracellular compartments. Calcium (Ca2+) is one of the most relevant ions involved in regulating critical functions of immune cells, allowing the appropriate development of immune cell responses against pathogens and tumor cells. Due to the importance of Ca2+ in inducing the immune response, some viruses have evolved mechanisms to modulate intracellular Ca2+ concentrations and the mobilization of this cation through Ca2+ channels to increase their infectivity and to evade the immune system using different mechanisms. For instance, some viral infections require the influx of Ca2+ through ionic channels as a first step to enter the cell, as well as their replication and budding. Moreover, through the expression of viral proteins on the surface of infected cells, Ca2+ channels function can be altered, enhancing the pathogen evasion of the adaptive immune response. In this article, we review those ion channels and ion transporters that are essential for the function of immune cells. Specifically, cation channels and Ca2+ channels in the context of viral infections and their contribution to the modulation of adaptive immune responses.
Collapse
Affiliation(s)
- Karen Bohmwald
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M. S. Gálvez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A. Andrade
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina P. Mora
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José T. Muñoz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
46
|
Çakır M, Saçmacı H, Sabah-Özcan S. Selected transient receptor potential channel genes' expression in peripheral blood mononuclear cells of multiple sclerosis. Hum Exp Toxicol 2021; 40:S406-S413. [PMID: 34569347 DOI: 10.1177/09603271211043476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Transient receptor potential channels have responsibilities in many cellular processes such as cytokine production, cell differentiation, and cytotoxicity by affecting intracellular cation levels or intracellular signal pathways. Multiple sclerosis is a chronic autoimmune central nervous system (CNS) disease caused by environmental and genetic factors. In this study, we aim to investigate TRPV1-TRPV4, TRPM2, TRPM4, TRPM7, TRPC6, and TRPA1 mRNA expression levels, which are associated with the inflammatory process, in the peripheral blood mononuclear cells (PBMCs) of relapsing-remitting multiple sclerosis (RRMS) patients. Thirty-five healthy controls and age-gender matched thirty patients with RRMS were involved in the study. TRPC6, TRPA1, TRPM2, TRPM4, TRPM7, TRPV1, TRPV2, TRPV3, and TRPV4 PBMCs mRNA expression levels were determined by qPCR. In the present study, the TRPC6, TRPM7, TRPV1, TRPV3, and TRPV4 mRNA expressions of RRMS patients in PBMCs decreased at a significant level compared to the healthy control group (p = .000, p = .000, p = .044, p = .000, p = .004, respectively). The decreased expression of TRPC6, TRPM7, TRPV1, TRPV3, and TRPV4 in PBMCs may be associated with the pathogenesis of MS. Further studies are required to understand the mechanism of the relation between these TRP channels and MS and other autoimmune diseases.
Collapse
Affiliation(s)
- Murat Çakır
- Department of Physiology, Faculty of Medicine, 162338University of Yozgat Bozok, Yozgat, Turkey
| | - Hikmet Saçmacı
- Department of Neurology, Faculty of Medicine, 162338University of Yozgat Bozok, Yozgat, Turkey
| | - Seda Sabah-Özcan
- Department of Medical Biology, Faculty of Medicine, 64230University of Manisa Celal Bayar, Manisa, Turkey
| |
Collapse
|
47
|
TRPV1 activation and internalization is part of the LPS-induced inflammation in human iPSC-derived cardiomyocytes. Sci Rep 2021; 11:14689. [PMID: 34282193 PMCID: PMC8289830 DOI: 10.1038/s41598-021-93958-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
The non-selective cation channel transient receptor potential vanilloid 1 (TRPV1) is expressed throughout the cardiovascular system. Recent evidence shows a role for TRPV1 in inflammatory processes. The role of TRPV1 for myocardial inflammation has not been established yet. Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (hiPSC-CM) from 4 healthy donors were incubated with lipopolysaccharides (LPS, 6 h), TRPV1 agonist capsaicin (CAP, 20 min) or the antagonist capsazepine (CPZ, 20 min). TRPV1 expression was studied by PCR and western blotting. TRPV1 internalization was analyzed by immunofluorescence. Interleukin-6 (IL-6) secretion and phosphorylation of JNK, p38 and ERK were determined by ELISA. TRPV1-associated ion channel current was measured by patch clamp. TRPV1-mRNA and -protein were expressed in hiPSC-CM. TRPV1 was localized in the plasma membrane. LPS significantly increased secretion of IL-6 by 2.3-fold, which was prevented by pre-incubation with CPZ. LPS induced TRPV1 internalization. Phosphorylation levels of ERK, p38 or JNK were not altered by TRPV1 stimulation or inhibition. LPS and IL-6 significantly lowered TRPV1-mediated ion channel current. TRPV1 mediates the LPS-induced inflammation in cardiomyocytes, associated with changes of cellular electrophysiology. LPS-induced inflammation results in TRPV1 internalization. Further studies have to examine the underlying pathways and the clinical relevance of these findings.
Collapse
|
48
|
The Interplay between the Immune and the Endocannabinoid Systems in Cancer. Cells 2021; 10:cells10061282. [PMID: 34064197 PMCID: PMC8224348 DOI: 10.3390/cells10061282] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic potential of Cannabis sativa has been recognized since ancient times. Phytocannabinoids, endocannabinoids and synthetic cannabinoids activate two major G protein-coupled receptors, subtype 1 and 2 (CB1 and CB2). Cannabinoids (CBs) modulate several aspects of cancer cells, such as apoptosis, autophagy, proliferation, migration, epithelial-to-mesenchymal transition and stemness. Moreover, agonists of CB1 and CB2 receptors inhibit angiogenesis and lymphangiogenesis in vitro and in vivo. Low-grade inflammation is a hallmark of cancer in the tumor microenvironment (TME), which contains a plethora of innate and adaptive immune cells. These cells play a central role in tumor initiation and growth and the formation of metastasis. CB2 and, to a lesser extent, CB1 receptors are expressed on a variety of immune cells present in TME (e.g., T cells, macrophages, mast cells, neutrophils, NK cells, dendritic cells, monocytes, eosinophils). The activation of CB receptors modulates a variety of biological effects on cells of the adaptive and innate immune system. The expression of CB2 and CB1 on different subsets of immune cells in TME and hence in tumor development is incompletely characterized. The recent characterization of the human cannabinoid receptor CB2-Gi signaling complex will likely aid to design potent and specific CB2/CB1 ligands with therapeutic potential in cancer.
Collapse
|
49
|
Forni MF, Domínguez-Amorocho OA, de Assis LVM, Kinker GS, Moraes MN, Castrucci AMDL, Câmara NOS. An Immunometabolic Shift Modulates Cytotoxic Lymphocyte Activation During Melanoma Progression in TRPA1 Channel Null Mice. Front Oncol 2021; 11:667715. [PMID: 34041030 PMCID: PMC8141816 DOI: 10.3389/fonc.2021.667715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/21/2021] [Indexed: 02/02/2023] Open
Abstract
Melanoma skin cancer is extremely aggressive with increasing incidence and mortality. Among the emerging therapeutic targets in the treatment of cancer, the family of transient receptor potential channels (TRPs) has been reported as a possible pharmacological target. Specifically, the ankyrin subfamily, representing TRPA1 channels, can act as a pro-inflammatory hub. These channels have already been implicated in the control of intracellular metabolism in several cell models, but little is known about their role in immune cells, and how it could affect tumor progression in a process known as immune surveillance. Here, we investigated the participation of the TRPA1 channel in the immune response against melanoma tumor progression in a mouse model. Using Trpa1 +/+ and Trpa1 -/- animals, we evaluated tumor progression using murine B16-F10 cells and assessed isolated CD8+ T cells for respiratory and cytotoxic functions. Tumor growth was significantly reduced in Trpa1 -/- animals. We observed an increase in the frequency of circulating lymphocytes. Using a dataset of CD8+ T cells isolated from metastatic melanoma patients, we found that TRPA1 reduction correlates with several immunological pathways. Naïve CD8+ T cells from Trpa1 +/+ and Trpa1 -/- animals showed different mitochondrial respiration and glycolysis profiles. However, under CD3/CD28 costimulatory conditions, the absence of TRPA1 led to an even more extensive metabolic shift, probably linked to a greater in vitro killling ability of Trpa1 -/- CD8+ T cells. Therefore, these data demonstrate an unprecedented role of TRPA1 channel in the metabolism control of the immune system cells during carcinogenesis.
Collapse
Affiliation(s)
- Maria Fernanda Forni
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela Sarti Kinker
- Laboratory of Translational Immuno-Oncology A. C. Camargo Cancer Center - International Research Center, São Paulo, Brazil
| | - Maria Nathalia Moraes
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.,Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
50
|
Kraus A, Buckley KM, Salinas I. Sensing the world and its dangers: An evolutionary perspective in neuroimmunology. eLife 2021; 10:66706. [PMID: 33900197 PMCID: PMC8075586 DOI: 10.7554/elife.66706] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Detecting danger is key to the survival and success of all species. Animal nervous and immune systems cooperate to optimize danger detection. Preceding studies have highlighted the benefits of bringing neurons into the defense game, including regulation of immune responses, wound healing, pathogen control, and survival. Here, we summarize the body of knowledge in neuroimmune communication and assert that neuronal participation in the immune response is deeply beneficial in each step of combating infection, from inception to resolution. Despite the documented tight association between the immune and nervous systems in mammals or invertebrate model organisms, interdependence of these two systems is largely unexplored across metazoans. This review brings a phylogenetic perspective of the nervous and immune systems in the context of danger detection and advocates for the use of non-model organisms to diversify the field of neuroimmunology. We identify key taxa that are ripe for investigation due to the emergence of key evolutionary innovations in their immune and nervous systems. This novel perspective will help define the primordial principles that govern neuroimmune communication across taxa.
Collapse
Affiliation(s)
- Aurora Kraus
- Department of Biology, University of New Mexico, Albuquerque, United States
| | | | - Irene Salinas
- Department of Biology, University of New Mexico, Albuquerque, United States
| |
Collapse
|