1
|
Yeganegi H, Ondracek JM. Local sleep in songbirds: different simultaneous sleep states across the avian pallium. J Sleep Res 2024:e14344. [PMID: 39425588 DOI: 10.1111/jsr.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 10/21/2024]
Abstract
Wakefulness and sleep have often been treated as distinct and global brain states. However, an emerging body of evidence on the local regulation of sleep stages challenges this conventional view. Apart from unihemispheric sleep, the current data that support local variations of neural oscillations during sleep are focused on the homeostatic regulation of local sleep, i.e., the role preceding awake activity. Here, to examine local differences in brain activity during natural sleep, we recorded the electroencephalogram and the local field potential across multiple sites within the avian pallium of zebra finches without perturbing the previous awake state. We scored the sleep stages independently in each pallial site and found that the sleep stages are not pallium-wide phenomena but rather deviate widely across electrode sites. Importantly, deeper electrode sites had a dominant role in defining the temporal aspects of sleep state congruence. Altogether, these findings show that local regulation of sleep oscillations also occurs in the avian brain without prior awake recruitment of specific pallial circuits and in the absence of mammalian cortical neural architecture.
Collapse
Affiliation(s)
- Hamed Yeganegi
- Technical University of Munich, TUM School of Life Sciences, Chair of Zoology, Freising-Weihenstephan, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg, Germany
| | - Janie M Ondracek
- Technical University of Munich, TUM School of Life Sciences, Chair of Zoology, Freising-Weihenstephan, Germany
| |
Collapse
|
2
|
Ran B, Su E, He D, Guo Z, Jiang B. Functional MRI-based biomarkers of insomnia with objective short sleep duration phenotype. Sleep Med 2024; 121:191-195. [PMID: 39002327 DOI: 10.1016/j.sleep.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/31/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Insomnia disorder with objective short sleep duration (ISS) phenotype is a more serious biological subtype than insomnia with objective normal sleep duration (INS) phenotype, and the neuroimaging data is helpful to understand the pathophysiology of the ISS phenotype. This study was to compare the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) between the ISS phenotype and the INS phenotype. METHODS In this cross-sectional study, 55 patients with insomnia disorder were recruited, and 22 of them were defined as the ISS phenotype by the objective cardiopulmonary coupling (CPC) technique. The blood oxygen level-dependent (BOLD) sequences of all participants were obtained using the 3.0 T magnetic resonance imaging system. We analyzed and compared the ALFF, ReHo, and FC between the ISS phenotype and the INS phenotype. We also conducted Pearson's correlation analysis between significant neuroimaging biomarkers and the CPC parameters. RESULTS The differences were not significant in ALFF (PFWE-corr>0.05) or ReHo (PFWE-corr>0.05) between the ISS phenotype and the INS phenotype. For the FC analysis, the ISS phenotype had a Hub-node of the left inferior occipital gyrus (IOG.L), with significantly decreased connections (p<0.001) in the bilateral occipital, parietal, and temporal regions. The significant FCs were closely related to sleep parameters. CONCLUSION The left inferior occipital gyrus (IOG.L), as a Hub-node with decreased functional connections, may be a potential fMRI-based biomarker of the ISS phenotype.
Collapse
Affiliation(s)
- Bingqing Ran
- Department of Radiology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - E Su
- Department of Radiology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Dongmei He
- Department of Neurology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Zhiwei Guo
- Institute of Brain Function, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Binghu Jiang
- Department of Radiology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, 637000, Sichuan, China; Institute of Brain Function, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
3
|
Krueger JM. Tripping on the edge of consciousness. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad039. [PMID: 37954093 PMCID: PMC10632728 DOI: 10.1093/sleepadvances/zpad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 11/14/2023]
Abstract
Herein the major accomplishments, trials and tribulations, and epiphanies experienced by James M. Krueger over the course of his career in sleep research are presented. They include the characterization of a) the supranormal EEG delta waves occurring during NREMS post sleep loss, b) Factor S as a muramyl peptide, c) the physiological roles of cytokines in sleep regulation, d) multiple other sleep regulatory substances, e) the dramatic changes in sleep over the course of infectious diseases, and f) sleep initiation within small neuronal/glial networks. The theory that the preservation of brain plasticity is the primordial sleep function is briefly discussed. These accomplishments resulted from collaborations with many outstanding scientists including James M. Krueger's mentors (John Pappenheimer and Manfred Karnovsky) and collaborators later in life, including Charles Dinarello, Louis Chedid, Mark Opp, Ferenc Obal jr., Dave Rector, Ping Taishi, Linda Toth, Jeannine Majde, Levente Kapas, Eva Szentirmai, Jidong Fang, Chris Davis, Sandip Roy, Tetsuya Kushikata, Fabio Garcia-Garcia, Ilia Karatsoreos, Mark Zielinski, and Alok De, plus many students, e.g. Jeremy Alt, Kathryn Jewett, Erika English, and Victor Leyva-Grado.
Collapse
Affiliation(s)
- James M Krueger
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, USA
| |
Collapse
|
4
|
Tossell K, Yu X, Giannos P, Anuncibay Soto B, Nollet M, Yustos R, Miracca G, Vicente M, Miao A, Hsieh B, Ma Y, Vyssotski AL, Constandinou T, Franks NP, Wisden W. Somatostatin neurons in prefrontal cortex initiate sleep-preparatory behavior and sleep via the preoptic and lateral hypothalamus. Nat Neurosci 2023; 26:1805-1819. [PMID: 37735497 PMCID: PMC10545541 DOI: 10.1038/s41593-023-01430-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/14/2023] [Indexed: 09/23/2023]
Abstract
The prefrontal cortex (PFC) enables mammals to respond to situations, including internal states, with appropriate actions. One such internal state could be 'tiredness'. Here, using activity tagging in the mouse PFC, we identified particularly excitable, fast-spiking, somatostatin-expressing, γ-aminobutyric acid (GABA) (PFCSst-GABA) cells that responded to sleep deprivation. These cells projected to the lateral preoptic (LPO) hypothalamus and the lateral hypothalamus (LH). Stimulating PFCSst-GABA terminals in the LPO hypothalamus caused sleep-preparatory behavior (nesting, elevated theta power and elevated temperature), and stimulating PFCSst-GABA terminals in the LH mimicked recovery sleep (non-rapid eye-movement sleep with higher delta power and lower body temperature). PFCSst-GABA terminals had enhanced activity during nesting and sleep, inducing inhibitory postsynaptic currents on diverse cells in the LPO hypothalamus and the LH. The PFC also might feature in deciding sleep location in the absence of excessive fatigue. These findings suggest that the PFC instructs the hypothalamus to ensure that optimal sleep takes place in a suitable place.
Collapse
Affiliation(s)
- Kyoko Tossell
- Department of Life Sciences, Imperial College London, London, UK
| | - Xiao Yu
- Department of Life Sciences, Imperial College London, London, UK
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | | | - Berta Anuncibay Soto
- Department of Life Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Mathieu Nollet
- Department of Life Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Raquel Yustos
- Department of Life Sciences, Imperial College London, London, UK
| | - Giulia Miracca
- Department of Life Sciences, Imperial College London, London, UK
| | - Mikal Vicente
- Department of Life Sciences, Imperial College London, London, UK
| | - Andawei Miao
- Department of Life Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Bryan Hsieh
- Department of Life Sciences, Imperial College London, London, UK
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
- Center for Neurotechnology, Imperial College London, London, UK
| | - Ying Ma
- Department of Life Sciences, Imperial College London, London, UK
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zürich-ETH Zürich, Zürich, Switzerland
| | - Tim Constandinou
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
- Center for Neurotechnology, Imperial College London, London, UK
- Care Research and Technology Centre, UK Dementia Research Institute, London, UK
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
- Center for Neurotechnology, Imperial College London, London, UK.
| | - William Wisden
- Department of Life Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
- Center for Neurotechnology, Imperial College London, London, UK.
| |
Collapse
|
5
|
Austin-Zimmerman I, Levey DF, Giannakopoulou O, Deak JD, Galimberti M, Adhikari K, Zhou H, Denaxas S, Irizar H, Kuchenbaecker K, McQuillin A, Concato J, Buysse DJ, Gaziano JM, Gottlieb DJ, Polimanti R, Stein MB, Bramon E, Gelernter J. Genome-wide association studies and cross-population meta-analyses investigating short and long sleep duration. Nat Commun 2023; 14:6059. [PMID: 37770476 PMCID: PMC10539313 DOI: 10.1038/s41467-023-41249-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Sleep duration has been linked to a wide range of negative health outcomes and to reduced life expectancy. We present genome-wide association studies of short ( ≤ 5 h) and long ( ≥ 10 h) sleep duration in adults of European (N = 445,966), African (N = 27,785), East Asian (N = 3141), and admixed-American (N = 16,250) ancestry from UK Biobank and the Million Veteran Programme. In a cross-population meta-analysis, we identify 84 independent loci for short sleep and 1 for long sleep. We estimate SNP-based heritability for both sleep traits in each ancestry based on population derived linkage disequilibrium (LD) scores using cov-LDSC. We identify positive genetic correlation between short and long sleep traits (rg = 0.16 ± 0.04; p = 0.0002), as well as similar patterns of genetic correlation with other psychiatric and cardiometabolic phenotypes. Mendelian randomisation reveals a directional causal relationship between short sleep and depression, and a bidirectional causal relationship between long sleep and depression.
Collapse
Affiliation(s)
- Isabelle Austin-Zimmerman
- Department of Mental Health Neuroscience, Division of Psychiatry, University College London, London, W1T 7BN, UK
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Daniel F Levey
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Olga Giannakopoulou
- Department of Mental Health Neuroscience, Division of Psychiatry, University College London, London, W1T 7BN, UK
- UCL Genetics Institute, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Joseph D Deak
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Marco Galimberti
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Keyrun Adhikari
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Hang Zhou
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Spiros Denaxas
- Health Data Research UK, Institute of Health Informatics, University College London, London, NW1 2DA, UK
| | - Haritz Irizar
- Department of Mental Health Neuroscience, Division of Psychiatry, University College London, London, W1T 7BN, UK
- Department of Genetics & Genomic Sciences and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karoline Kuchenbaecker
- Department of Mental Health Neuroscience, Division of Psychiatry, University College London, London, W1T 7BN, UK
- UCL Genetics Institute, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Andrew McQuillin
- Department of Mental Health Neuroscience, Division of Psychiatry, University College London, London, W1T 7BN, UK
| | - John Concato
- School of Medicine, Yale University, New Haven, CT, 06511, USA
- Office of Medical Policy, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Daniel J Buysse
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel J Gottlieb
- VA Boston Healthcare System, 1400 VFW Parkway (111PI), West Roxbury, MA, 02132, USA
- Division of Sleep and Circadian Disorders, Brigham & Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Renato Polimanti
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Murray B Stein
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
- Departments of Psychiatry and Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Elvira Bramon
- Department of Mental Health Neuroscience, Division of Psychiatry, University College London, London, W1T 7BN, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA.
| |
Collapse
|
6
|
Stenson AR, Whitney P, Hinson JM, Hansen DA, Lawrence-Sidebottom D, Skeiky L, Riedy SM, Kurinec CA, Van Dongen HPA. Effects of total sleep deprivation on components of top-down attentional control using a flexible attentional control task. J Sleep Res 2023; 32:e13744. [PMID: 36205178 DOI: 10.1111/jsr.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/28/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022]
Abstract
Sleep deprivation consistently decreases vigilant attention, which can lead to difficulty in performing a variety of cognitive tasks. However, sleep-deprived individuals may be able to compensate for degraded vigilant attention by means of top-down attentional control. We employed a novel task to measure the degree to which individuals overcome impairments in vigilant attention by using top-down attentional control, the Flexible Attentional Control Task (FACT). The FACT is a two-choice task that has trials with valid, invalid, and neutral cues, along with an unexpected switch in the probability of cue validity about halfway in the task. The task provides indices that isolate performance components reflecting vigilant attention and top-down attentional control. Twelve healthy young adults completed an in-laboratory study. After a baseline day, the subjects underwent 39 hours of total sleep deprivation (TSD), followed by a recovery day. The FACT was administered at 03:00, 11:00, and 19:00 during sleep deprivation (TSD condition) and at 11:00 and 19:00 after baseline sleep and at 11:00 after recovery sleep (rested condition). When rested, the subjects demonstrated both facilitation and interference effects on cued trials. While sleep deprived, the subjects showed vigilant attention deficits on neutral cue trials, and an impaired ability to reduce these deficits by using predictive contextual cues. Our results indicate that the FACT can dissociate vigilant attention from top-down attentional control. Furthermore, they show that during sleep deprivation, contextual cues help individuals to compensate partially for impairments in vigilant attention, but the effectiveness of top-down attentional control is diminished.
Collapse
Affiliation(s)
- Anthony R Stenson
- Department of Psychology, Washington State University, Pullman, Washington, USA
| | - Paul Whitney
- Department of Psychology, Washington State University, Pullman, Washington, USA.,Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA
| | - John M Hinson
- Department of Psychology, Washington State University, Pullman, Washington, USA.,Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA
| | - Devon A Hansen
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA.,Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | | | - Lillian Skeiky
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA.,Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Samantha M Riedy
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA
| | - Courtney A Kurinec
- Department of Psychology, Washington State University, Pullman, Washington, USA.,Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA
| | - Hans P A Van Dongen
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA.,Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| |
Collapse
|
7
|
Poluektov MG, Spektor ED. [Molecular and cellular mechanisms of restorative effects of sleep]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:15-20. [PMID: 37275993 DOI: 10.17116/jnevro202312305215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The review article enlightens contemporary concept about a role of sleep in cellular energy metabolism, neuroplasticity and glymphatic clearance of waste products. Many researches have demonstrated that prolonged wakefulness is an energetic and a neurophysiologic issue for the brain. The article provides description of biochemical processes that are responsive for energy restoration in sleep, particularly the role of ATP, adenosine and glycogen. Energy metabolism substrates depletion leads to endoplasmic reticulum stress and unfolded protein response. At the same time the conductance of synapses increases that worsens energetic problems. Level of the glymphatic clearance during wakefulness is substantially lower in comparison with sleep, and waste products are not removed fast enough.
Collapse
Affiliation(s)
- M G Poluektov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - E D Spektor
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
8
|
Working around the Clock: Is a Person’s Endogenous Circadian Timing for Optimal Neurobehavioral Functioning Inherently Task-Dependent? Clocks Sleep 2022; 4:23-36. [PMID: 35225951 PMCID: PMC8883919 DOI: 10.3390/clockssleep4010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Neurobehavioral task performance is modulated by the circadian and homeostatic processes of sleep/wake regulation. Biomathematical modeling of the temporal dynamics of these processes and their interaction allows for prospective prediction of performance impairment in shift-workers and provides a basis for fatigue risk management in 24/7 operations. It has been reported, however, that the impact of the circadian rhythm—and in particular its timing—is inherently task-dependent, which would have profound implications for our understanding of the temporal dynamics of neurobehavioral functioning and the accuracy of biomathematical model predictions. We investigated this issue in a laboratory study designed to unambiguously dissociate the influences of the circadian and homeostatic processes on neurobehavioral performance, as measured during a constant routine protocol preceded by three days on either a simulated night shift or a simulated day shift schedule. Neurobehavioral functions were measured every 3 h using three functionally distinct assays: a digit symbol substitution test, a psychomotor vigilance test, and the Karolinska Sleepiness Scale. After dissociating the circadian and homeostatic influences and accounting for inter-individual variability, peak circadian performance occurred in the late biological afternoon (in the “wake maintenance zone”) for all three neurobehavioral assays. Our results are incongruent with the idea of inherent task-dependent differences in the endogenous circadian impact on performance. Rather, our results suggest that neurobehavioral functions are under top-down circadian control, consistent with the way they are accounted for in extant biomathematical models.
Collapse
|
9
|
Yamagata T, Kahn MC, Prius-Mengual J, Meijer E, Šabanović M, Guillaumin MCC, van der Vinne V, Huang YG, McKillop LE, Jagannath A, Peirson SN, Mann EO, Foster RG, Vyazovskiy VV. The hypothalamic link between arousal and sleep homeostasis in mice. Proc Natl Acad Sci U S A 2021; 118:e2101580118. [PMID: 34903646 PMCID: PMC8713782 DOI: 10.1073/pnas.2101580118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 02/05/2023] Open
Abstract
Sleep and wakefulness are not simple, homogenous all-or-none states but represent a spectrum of substates, distinguished by behavior, levels of arousal, and brain activity at the local and global levels. Until now, the role of the hypothalamic circuitry in sleep-wake control was studied primarily with respect to its contribution to rapid state transitions. In contrast, whether the hypothalamus modulates within-state dynamics (state "quality") and the functional significance thereof remains unexplored. Here, we show that photoactivation of inhibitory neurons in the lateral preoptic area (LPO) of the hypothalamus of adult male and female laboratory mice does not merely trigger awakening from sleep, but the resulting awake state is also characterized by an activated electroencephalogram (EEG) pattern, suggesting increased levels of arousal. This was associated with a faster build-up of sleep pressure, as reflected in higher EEG slow-wave activity (SWA) during subsequent sleep. In contrast, photoinhibition of inhibitory LPO neurons did not result in changes in vigilance states but was associated with persistently increased EEG SWA during spontaneous sleep. These findings suggest a role of the LPO in regulating arousal levels, which we propose as a key variable shaping the daily architecture of sleep-wake states.
Collapse
Affiliation(s)
- Tomoko Yamagata
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Martin C Kahn
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - José Prius-Mengual
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Elise Meijer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Merima Šabanović
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Mathilde C C Guillaumin
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Vincent van der Vinne
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Yi-Ge Huang
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Laura E McKillop
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Edward O Mann
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3RE, United Kingdom;
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| |
Collapse
|
10
|
Garbarino S, Lanteri P, Bragazzi NL, Magnavita N, Scoditti E. Role of sleep deprivation in immune-related disease risk and outcomes. Commun Biol 2021; 4:1304. [PMID: 34795404 PMCID: PMC8602722 DOI: 10.1038/s42003-021-02825-4] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Modern societies are experiencing an increasing trend of reduced sleep duration, with nocturnal sleeping time below the recommended ranges for health. Epidemiological and laboratory studies have demonstrated detrimental effects of sleep deprivation on health. Sleep exerts an immune-supportive function, promoting host defense against infection and inflammatory insults. Sleep deprivation has been associated with alterations of innate and adaptive immune parameters, leading to a chronic inflammatory state and an increased risk for infectious/inflammatory pathologies, including cardiometabolic, neoplastic, autoimmune and neurodegenerative diseases. Here, we review recent advancements on the immune responses to sleep deprivation as evidenced by experimental and epidemiological studies, the pathophysiology, and the role for the sleep deprivation-induced immune changes in increasing the risk for chronic diseases. Gaps in knowledge and methodological pitfalls still remain. Further understanding of the causal relationship between sleep deprivation and immune deregulation would help to identify individuals at risk for disease and to prevent adverse health outcomes.
Collapse
Affiliation(s)
- Sergio Garbarino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genoa, 16132, Genoa, Italy.
| | - Paola Lanteri
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON, M3J 1P3, Canada
| | - Nicola Magnavita
- Postgraduate School of Occupational Medicine, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Department of Woman/Child and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Egeria Scoditti
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 73100, Lecce, Italy
| |
Collapse
|
11
|
Xia M, Li Z, Li S, Liang S, Li X, Chen B, Zhang M, Dong C, Verkhratsky A, Guan D, Li B. Sleep Deprivation Selectively Down-Regulates Astrocytic 5-HT 2B Receptors and Triggers Depressive-Like Behaviors via Stimulating P2X 7 Receptors in Mice. Neurosci Bull 2020; 36:1259-1270. [PMID: 32506374 DOI: 10.1007/s12264-020-00524-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/11/2020] [Indexed: 10/24/2022] Open
Abstract
Chronic loss of sleep damages health and disturbs the quality of life. Long-lasting sleep deprivation (SD) as well as sleep abnormalities are substantial risk factors for major depressive disorder, although the underlying mechanisms are not clear. Here, we showed that chronic SD in mice promotes a gradual elevation of extracellular ATP, which activates astroglial P2X7 receptors (P2X7Rs). Activated P2X7Rs, in turn, selectively down-regulated the expression of 5-HT2B receptors (5-HT2BRs) in astrocytes. Stimulation of P2X7Rs induced by SD selectively suppressed the phosphorylation of AKT and FoxO3a in astrocytes, but not in neurons. The over-expression of FoxO3a in astrocytes inhibited the expression of 5-HT2BRs. Down-regulation of 5-HT2BsRs instigated by SD suppressed the activation of STAT3 and relieved the inhibition of Ca2+-dependent phospholipase A2. This latter cascade promoted the release of arachidonic acid and prostaglandin E2. The depression-like behaviors induced by SD were alleviated in P2X7R-KO mice. Our study reveals the mechanism underlying chronic SD-induced depression-like behaviors and suggests 5-HT2BRs as a key target for exploring therapeutic strategies aimed at the depression evoked by sleep disorders.
Collapse
Affiliation(s)
- Maosheng Xia
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.,Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, 110001, China
| | - Zexiong Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Shuai Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Shanshan Liang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Xiaowei Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Beina Chen
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Manman Zhang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Chengyi Dong
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, 110001, China
| | - Alexei Verkhratsky
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China. .,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M139PL, UK.
| | - Dawei Guan
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
| | - Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China. .,Department of Poison Analysis, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
12
|
Krueger JM. Sleep and circadian rhythms: Evolutionary entanglement and local regulation. Neurobiol Sleep Circadian Rhythms 2020; 9:100052. [PMID: 32529121 PMCID: PMC7281830 DOI: 10.1016/j.nbscr.2020.100052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022] Open
Abstract
Circadian rhythms evolved within single cell organisms and serve to regulate rest-activity cycles in most single-cell and multiple-cell organisms. In contrast, sleep is a network emergent property found in animals with a nervous system. Rhythms and sleep are much entangled involving shared regulatory molecules such as adenosine, ATP, cytokines, neurotrophins, and nitric oxide. These molecules are activity-dependent and act locally to initiate regulatory events involved in rhythms, sleep, and plasticity.
Collapse
Affiliation(s)
- James M Krueger
- Department of Integrative Physiology and Neurobiology, Washington State University, Spokane, United States
| |
Collapse
|
13
|
Weigend S, Holst SC, Treyer V, O'Gorman Tuura RL, Meier J, Ametamey SM, Buck A, Landolt HP. Dynamic changes in cerebral and peripheral markers of glutamatergic signaling across the human sleep-wake cycle. Sleep 2020; 42:5532239. [PMID: 31304973 PMCID: PMC6802568 DOI: 10.1093/sleep/zsz161] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/05/2019] [Indexed: 12/22/2022] Open
Abstract
Sleep and brain glutamatergic signaling are homeostatically regulated. Recovery sleep following prolonged wakefulness restores efficient functioning of the brain, possibly by keeping glutamatergic signaling in a homeostatic range. Evidence in humans and mice suggested that metabotropic glutamate receptors of subtype-5 (mGluR5) contribute to the brain's coping mechanisms with sleep deprivation. Here, proton magnetic resonance spectroscopy in 31 healthy men was used to quantify the levels of glutamate (Glu), glutamate-to-glutamine ratio (GLX), and γ-amino-butyric-acid (GABA) in basal ganglia (BG) and dorsolateral prefrontal cortex on 3 consecutive days, after ~8 (baseline), ~32 (sleep deprivation), and ~8 hours (recovery sleep) of wakefulness. Simultaneously, mGluR5 availability was quantified with the novel radioligand for positron emission tomography, [18F]PSS232, and the blood levels of the mGluR5-regulated proteins, fragile X mental retardation protein (FMRP) and brain-derived neurotrophic factor (BDNF) were determined. The data revealed that GLX (p = 0.03) in BG (for Glu: p < 0.06) and the serum concentration of FMRP (p < 0.04) were increased after sleep loss. Other brain metabolites (GABA, N-acetyl-aspartate, choline, glutathione) and serum BDNF levels were not altered by sleep deprivation (pall > 0.6). By contrast, the night without sleep enhanced whole-brain, BG, and parietal cortex mGluR5 availability, which was normalized by recovery sleep (pall < 0.05). The findings provide convergent multimodal evidence that glutamatergic signaling is affected by sleep deprivation and recovery sleep. They support a role for mGluR5 and FMRP in sleep-wake regulation and warrant further studies to investigate their causality and relevance for regulating human sleep in health and disease. Clinical Trial Registration: www.clinicaltrials.gov (study identifier: NCT03813082).
Collapse
Affiliation(s)
- Susanne Weigend
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.,Sleep & Health Zürich, University Center of Competence, University of Zürich, Zürich Switzerland
| | - Sebastian C Holst
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.,Sleep & Health Zürich, University Center of Competence, University of Zürich, Zürich Switzerland
| | - Valérie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Zürich, Switzerland.,Institute for Regenerative Medicine, University of Zürich, Zürich, Switzerland
| | | | - Josefine Meier
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.,Sleep & Health Zürich, University Center of Competence, University of Zürich, Zürich Switzerland
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zürich, Switzerland
| | - Alfred Buck
- Department of Nuclear Medicine, University Hospital Zurich, Zürich, Switzerland
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.,Sleep & Health Zürich, University Center of Competence, University of Zürich, Zürich Switzerland
| |
Collapse
|
14
|
Tukker JJ, Beed P, Schmitz D, Larkum ME, Sachdev RNS. Up and Down States and Memory Consolidation Across Somatosensory, Entorhinal, and Hippocampal Cortices. Front Syst Neurosci 2020; 14:22. [PMID: 32457582 PMCID: PMC7227438 DOI: 10.3389/fnsys.2020.00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
In the course of a day, brain states fluctuate, from conscious awake information-acquiring states to sleep states, during which previously acquired information is further processed and stored as memories. One hypothesis is that memories are consolidated and stored during "offline" states such as sleep, a process thought to involve transfer of information from the hippocampus to other cortical areas. Up and Down states (UDS), patterns of activity that occur under anesthesia and sleep states, are likely to play a role in this process, although the nature of this role remains unclear. Here we review what is currently known about these mechanisms in three anatomically distinct but interconnected cortical areas: somatosensory cortex, entorhinal cortex, and the hippocampus. In doing so, we consider the role of this activity in the coordination of "replay" during sleep states, particularly during hippocampal sharp-wave ripples. We conclude that understanding the generation and propagation of UDS may provide key insights into the cortico-hippocampal dialogue linking archi- and neocortical areas during memory formation.
Collapse
Affiliation(s)
- John J Tukker
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Prateep Beed
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Cluster of Excellence NeuroCure, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Matthew E Larkum
- Cluster of Excellence NeuroCure, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany.,Institut für Biologie, Humboldt Universität, Berlin, Germany
| | | |
Collapse
|
15
|
Oles V, Koh KMS, Dykstra-Aiello CJ, Savenkova M, Gibbons CM, Nguyen JT, Karatsoreos I, Panchenko A, Krueger JM. Sleep- and time of day-linked RNA transcript expression in wild-type and IL1 receptor accessory protein-null mice. J Appl Physiol (1985) 2020; 128:1506-1522. [PMID: 32324480 DOI: 10.1152/japplphysiol.00839.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sleep regulation involves interleukin-1β (IL1) family members, TNF, and circadian clock genes. Previously, we characterized spontaneous sleep and sleep after 8 h of sleep deprivation (SD) ending at zeitgeber time (ZT)4 and ZT16 in wild-type (WT) and IL1 receptor accessory protein (AcP)- and brain-specific AcP (AcPb)-knockout (KO) mice. Here, we applied quantitative reverse transcriptase polymerase chain reaction and Spearman gene pair expression correlation methods to characterize IL1, IL1 receptor 1 (IL1R1), AcP, AcPb, Period 1 (Per1), Clock, adenosine deaminase (Ada), peptidoglycan recognition protein 1 (Pglyrp1), and TNF mRNA expressions under conditions with distinct sleep phenotypes. In WT mice, IL1, IL1R1, AcP, Ada, and Clock mRNAs were higher at ZT4 (mid-sleep period) than at ZT16. mRNA expressions differed substantially in AcP and AcPb KO mice at those times. After SD ending at ZT4, only WT mice had a non-rapid eye movement sleep (NREMS) rebound, and AcPb and IL1R1 mRNA increases were unique to WT mice. In AcPb KO mice, which have spontaneous high EEG slow wave power, AcP and Pglyrp1 mRNAs were elevated relative to WT mice at ZT4. At ZT4, the AcPb KO - WT Spearman correlation difference networks showed high positive correlations between IL1R1 and IL1, Per1, and Clock and high negative correlations between TNF and Pglyrp1 and Ada. At ZT16, the WT mice gene pair expression network was mostly negative, whereas in AcP KO mice, which have substantially more rapid eye movement sleep than WT mice, it was all positive. We conclude that gene pair expression correlations depend on the presence of AcP and AcPb.NEW & NOTEWORTHY Spearman gene pair expression correlations depend upon the presence or absence of interleukin-1 receptor accessory protein and upon sleep phenotype.
Collapse
Affiliation(s)
- Vladyslav Oles
- Department of Mathematics and Statistics, Washington State University, Pullman, Washington
| | - Khia Min Sabrina Koh
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | | | - Marina Savenkova
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Cody M Gibbons
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington.,University of Washington School of Medicine, Seattle, Washington
| | - Joseph T Nguyen
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Ilia Karatsoreos
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Alexander Panchenko
- Department of Mathematics and Statistics, Washington State University, Pullman, Washington
| | - James M Krueger
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
16
|
Carroll CM, Hsiang H, Snyder S, Forsberg J, Dash MB. Cortical zeta-inhibitory peptide injection reduces local sleep need. Sleep 2020; 42:5306948. [PMID: 30722054 DOI: 10.1093/sleep/zsz028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/28/2019] [Indexed: 11/14/2022] Open
Abstract
Local sleep need within cortical circuits exhibits extensive interregional variability and appears to increase following learning during preceding waking. Although the biological mechanisms responsible for generating sleep need are unclear, this local variability could arise as a consequence of wake-dependent synaptic plasticity. To test whether cortical synaptic strength is a proximate driver of sleep homeostasis, we developed a novel experimental approach to alter local sleep need. One hour prior to light onset, we injected zeta-inhibitory peptide (ZIP), a pharmacological antagonist of protein kinase Mζ, which can produce pronounced synaptic depotentiation, into the right motor cortex of freely behaving rats. When compared with saline control, ZIP selectively reduced slow-wave activity (SWA; the best electrophysiological marker of sleep need) within the injected motor cortex without affecting SWA in a distal cortical site. This local reduction in SWA was associated with a significant reduction in the slope and amplitude of individual slow waves. Local ZIP injection did not significantly alter the amount of time spent in each behavioral state, locomotor activity, or EEG/LFP power during waking or REM sleep. Thus, local ZIP injection selectively produced a local reduction in sleep need; synaptic strength, therefore, may play a causal role in generating local homeostatic sleep need within the cortex.
Collapse
Affiliation(s)
| | | | - Sam Snyder
- Program in Neuroscience, Middlebury College, Middlebury, VT
| | - Jade Forsberg
- Program in Neuroscience, Middlebury College, Middlebury, VT
| | - Michael B Dash
- Program in Neuroscience, Middlebury College, Middlebury, VT.,Department of Psychology, Middlebury College, Middlebury, VT
| |
Collapse
|
17
|
Decoeur F, Benmamar-Badel A, Leyrolle Q, Persillet M, Layé S, Nadjar A. Dietary N-3 PUFA deficiency affects sleep-wake activity in basal condition and in response to an inflammatory challenge in mice. Brain Behav Immun 2020; 85:162-169. [PMID: 31100369 DOI: 10.1016/j.bbi.2019.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/12/2019] [Accepted: 05/11/2019] [Indexed: 12/22/2022] Open
Abstract
Essential polyunsaturated fatty acids (PUFA) from the n-3 and n-6 series constitute the building blocks of brain cell membranes where they regulate most aspects of cell physiology. They are either biosynthesized from their dietary precursors or can be directly sourced from the diet. An overall increase in the dietary n-6/n-3 PUFA ratio, as observed in the Western diet, leads to reduced n-3 PUFAs in tissues that include the brain. Some clinical studies have shown a positive correlation between dietary n-3 PUFA intake and sleep quantity, yet evidence is still sparse. We here used a preclinical model of dietary n-3 PUFA deficiency to assess the precise relationship between dietary PUFA intake and sleep/wake activity. Using electroencephalography (EEG)/electromyography (EMG) recordings on n-3 PUFA deficient or sufficient mice, we showed that dietary PUFA deficiency affects the architecture of sleep-wake activity and the oscillatory activity of cortical neurons during sleep. In a second part of the study, and since PUFAs are a potent modulator of inflammation, we assessed the effect of dietary n-3 PUFA deficiency on the sleep response to an inflammatory stimulus known to modulate sleep/wake activity. We injected mice with the endotoxin lipopolysaccharide (LPS) and quantified the sleep response across the following 12 h. Our results revealed that n-3 PUFA deficiency affects the sleep response in basal condition and after a peripheral immune challenge. More studies are now required aimed at deciphering the molecular mechanisms underlying the intimate relationship between n-3 PUFAs and sleep/wake activity.
Collapse
Affiliation(s)
- F Decoeur
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A Benmamar-Badel
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Q Leyrolle
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - M Persillet
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - S Layé
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A Nadjar
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France.
| |
Collapse
|
18
|
Sleep deprivation, vigilant attention, and brain function: a review. Neuropsychopharmacology 2020; 45:21-30. [PMID: 31176308 PMCID: PMC6879580 DOI: 10.1038/s41386-019-0432-6] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/13/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022]
Abstract
Vigilant attention is a major component of a wide range of cognitive performance tasks. Vigilant attention is impaired by sleep deprivation and restored after rest breaks and (more enduringly) after sleep. The temporal dynamics of vigilant attention deficits across hours and days are driven by physiologic, sleep regulatory processes-a sleep homeostatic process and a circadian process. There is also evidence of a slower, allostatic process, which modulates the sleep homeostatic setpoint across days and weeks and is responsible for cumulative deficits in vigilant attention across consecutive days of sleep restriction. There are large inter-individual differences in vulnerability to sleep loss, and these inter-individual differences constitute a pronounced human phenotype. However, this phenotype is multi-dimensional; vulnerability in terms of vigilant attention impairment can be dissociated from vulnerability in terms of other cognitive processes such as attentional control. The vigilance decrement, or time-on-task effect-a decline in performance across the duration of a vigilant attention task-is characterized by progressively increasing response variability, which is exacerbated by sleep loss. This variability, while crucial to understanding the impact of sleep deprivation on performance in safety-critical tasks, is not well explained by top-down regulatory mechanisms, such as the homeostatic and circadian processes. A bottom-up, neuronal pathway-dependent mechanism involving use-dependent, local sleep may be the main driver of response variability. This bottom-up mechanism may also explain the dissociation between cognitive processes with regard to trait vulnerability to sleep loss.
Collapse
|
19
|
Pethő M, Détári L, Keserű D, Hajnik T, Szalontai Ö, Tóth A. Region-specific adenosinergic modulation of the slow-cortical rhythm in urethane-anesthetized rats. Brain Res 2019; 1725:146471. [PMID: 31568768 DOI: 10.1016/j.brainres.2019.146471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 11/27/2022]
Abstract
Slow cortical rhythm (SCR) is a rhythmic alternation of UP and DOWN states during sleep and anesthesia. SCR-associated slow waves reflect homeostatic sleep functions. Adenosine accumulating during prolonged wakefulness and sleep deprivation (SD) may play a role in the delta power increment during recovery sleep. NREM sleep is a local, use-dependent process of the brain. In the present study, direct effect of adenosine on UP and DOWN states was tested by topical application to frontal, somatosensory and visual cortices, respectively, in urethane-anesthetized rats. Local field potentials (LFPs) were recorded using an electrode array inserted close to the location of adenosine application. Multiple unit activity (MUA) was measured from layer V-VI in close proximity of the recording array. In the frontal and somatosensory cortex, adenosine modulated SCR with slow kinetics on the LFP level while MUA remained mostly unaffected. In the visual cortex, adenosine modulated SCR with fast kinetics. In each region, delta power increment was based on the increased frequency of state transitions as well as increased height of UP-state associated slow waves. These results show that adenosine may directly modulate SCR in a complex and region-specific manner which may be related to the finding that restorative processes may take place with varying duration and intensity during recovery sleep in different cortical regions. Adenosine may play a direct role in the increment of the slow wave power observed during local sleep, furthermore it may shape the region-specific characteristics of the phenomenon.
Collapse
Affiliation(s)
- Máté Pethő
- Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C., Budapest 1117, Hungary.
| | - László Détári
- Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C., Budapest 1117, Hungary.
| | - Dóra Keserű
- Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C., Budapest 1117, Hungary.
| | - Tünde Hajnik
- Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C., Budapest 1117, Hungary.
| | - Örs Szalontai
- Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C., Budapest 1117, Hungary
| | - Attila Tóth
- Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C., Budapest 1117, Hungary.
| |
Collapse
|
20
|
Abstract
During sleep, animals do not eat, reproduce or forage. Sleeping animals are vulnerable to predation. Yet, the persistence of sleep despite evolutionary pressures, and the deleterious effects of sleep deprivation, indicate that sleep serves a function or functions that cannot easily be bypassed. Recent research demonstrates sleep to be phylogenetically far more pervasive than previously appreciated; it is possible that the very first animals slept. Here, we give an overview of sleep across various species, with the aim of determining its original purpose. Sleep exists in animals without cephalized nervous systems and can be influenced by non-neuronal signals, including those associated with metabolic rhythms. Together, these observations support the notion that sleep serves metabolic functions in neural and non-neural tissues.
Collapse
Affiliation(s)
- Ron C Anafi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Sleep and Circadian Neurobiology and the Program for Chronobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew S Kayser
- Center for Sleep and Circadian Neurobiology and the Program for Chronobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Psychiatry and Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David M Raizen
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Center for Sleep and Circadian Neurobiology and the Program for Chronobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Nguyen J, Gibbons CM, Dykstra-Aiello C, Ellingsen R, Koh KMS, Taishi P, Krueger JM. Interleukin-1 receptor accessory proteins are required for normal homeostatic responses to sleep deprivation. J Appl Physiol (1985) 2019; 127:770-780. [PMID: 31295066 DOI: 10.1152/japplphysiol.00366.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interleukin-1β (IL1) is a sleep regulatory substance. The IL1/IL1 type 1 receptor complex requires a receptor accessory protein (AcP) to signal. There are three isoforms of AcP. In the current experiments, mice lacking a neuron-specific isoform, called AcPb knockout (AcPb KO), or mice lacking AcP + AcPb isoforms (AcP KO) or wild-type (WT) mice were used. Spontaneous sleep and sleep responses to sleep deprivation (SD) between zeitgeber time (ZT) 20-ZT4 and ZT8-ZT16 were characterized. Furthermore, somatosensory cortical protein extracts were examined for phosphorylated (p) proto-oncogene tyrosine-protein kinase sarcoma (Src) and p38MAPK levels at ZT4 and ZT16 and after SD. Spontaneous sleep was similar in the three strains, except rapid eye movement sleep (REMS) duration between ZT12-ZT16 was greater in AcP KO than WT mice. After SD at ZT4, only WT mice had non-REMS (NREMS) rebounds. All mouse strains lacked an NREMS rebound after SD at ZT16. All strains after both SD periods had REMS rebounds. AcPb KO mice, but not AcP KO mice, had greater EEG delta wave (0.5-4 Hz) power during NREMS than WT mice. p-Src was very low at ZT16 but high at ZT4, whereas p-p38MAPK was low at ZT4 and high at ZT16. p-p38MAPK levels were not sensitive to SD. In contrast, p-Src levels were less after SD at the P = 0.08 level of significance in the strains lacking AcPb. We conclude that AcPb is required for NREMS responses to sleep loss, but not for SD-induced EEG delta wave or REMS responses.NEW & NOTEWORTHY Interleukin-1β (IL1), a well-characterized sleep regulatory substance, requires an IL1 receptor accessory protein (AcP); one of its isoforms is neuron-specific (called AcPb). We showed that in mice, AcPb is required for nonrapid eye movement sleep responses following 8 h of sleep loss ending 4 h after daybreak but did not affect rapid eye movement sleep rebound. Sleep loss reduced phosphorylation of proto-oncogene tyrosine-protein kinase sarcoma but not of the less sensitive p38MAPK, downstream IL1 signaling molecules.
Collapse
Affiliation(s)
- Joseph Nguyen
- Department Integrative Physiology and Neurobiology, College of Veterinary Medicine, Washington State University, Spokane, Washington
| | - Cody M Gibbons
- School of Medicine University of Washington, Spokane, Washington
| | - Cheryl Dykstra-Aiello
- Department Integrative Physiology and Neurobiology, College of Veterinary Medicine, Washington State University, Spokane, Washington
| | | | - Khia Min Sabrina Koh
- Department Integrative Physiology and Neurobiology, College of Veterinary Medicine, Washington State University, Spokane, Washington
| | - Ping Taishi
- Department Integrative Physiology and Neurobiology, College of Veterinary Medicine, Washington State University, Spokane, Washington
| | - James M Krueger
- Department Integrative Physiology and Neurobiology, College of Veterinary Medicine, Washington State University, Spokane, Washington
| |
Collapse
|
22
|
Nguyen JT, Sahabandu D, Taishi P, Xue M, Jewett K, Dykstra-Aiello C, Roy S, Krueger JM. The neuron-specific interleukin-1 receptor accessory protein alters emergent network state properties in Vitro. Neurobiol Sleep Circadian Rhythms 2019; 6:35-43. [PMID: 31106280 PMCID: PMC6519741 DOI: 10.1016/j.nbscr.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Small in vitro neuronal/glial networks exhibit sleep-like states. Sleep regulatory substance interleukin-1β (IL1) signals via its type I receptor and a receptor accessory protein (AcP). AcP has a neuron-specific isoform called AcPb. After sleep deprivation, AcPb, but not AcP, upregulates in brain, and mice lacking AcPb lack sleep rebound. Herein we used action potentials (APs), AP burstiness, synchronization of electrical activity (SYN), and delta wave (0.5–3.75 Hz) power to characterize cortical culture network state. Homologous parameters are used in vivo to characterize sleep. Cortical cells from 1–2-day-old pups from AcP knockout (KO, lacking both AcP and AcPb), AcPb KO (lacking only AcPb), and wild type (WT) mice were cultured separately on multi-electrode arrays. Recordings of spontaneous activity were taken each day during days 4–14 in vitro. In addition, cultures were treated with IL1, or in separate experiments, stimulated electrically to determine evoked response potentials (ERPs). In AcP KO cells, the maturation of network properties accelerated compared to those from cells lacking only AcPb. In contrast, the lack of AcPb delayed spontaneous network emergence of sleep-linked properties. The addition of IL1 enhanced delta wave power in WT cells but not in AcP KO or AcPb KO cells. The ontology of electrically-induced ERPs was delayed in AcP KO cells. We conclude IL1 signaling has a critical role in the emergence of sleep-linked network behavior with AcP playing a dominant role in the slowing of development while AcPb enhances development rates of sleep-linked emergent network properties. Interleukin-1 receptor accessory protein (AcP) is required for normal development of neuronal/glial network emergent electrophysiological properties. The neuron-specific isoform of AcP, AcPb, is required for enhancement of delta wave power by interleukin-1. Results provide further support for a) interleukin-1’s involvement in sleep regulation b) that it enhances sleep via AcPb and c) that sleep is a property of mature neuronal/glial networks whether in vitro or in vivo.
Collapse
Affiliation(s)
- Joseph T. Nguyen
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University Spokane, WA, USA
| | - Dinuka Sahabandu
- Department of Electrical Engineering, Washington State University, Pullman, WA, USA
| | - Ping Taishi
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University Spokane, WA, USA
| | - Mengran Xue
- Department of Electrical Engineering, Washington State University, Pullman, WA, USA
| | - Kathryn Jewett
- Department of Genome Sciences, University of Washington. Seattle, WA, USA
| | - Cheryl Dykstra-Aiello
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University Spokane, WA, USA
| | - Sandip Roy
- Department of Electrical Engineering, Washington State University, Pullman, WA, USA
| | - James M. Krueger
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University Spokane, WA, USA
- Correspondence to: P.O. Box 1495 Spokane, WA 99210-1495, USA.
| |
Collapse
|
23
|
Fernandez LM, Vantomme G, Osorio-Forero A, Cardis R, Béard E, Lüthi A. Thalamic reticular control of local sleep in mouse sensory cortex. eLife 2018; 7:39111. [PMID: 30583750 PMCID: PMC6342525 DOI: 10.7554/elife.39111] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/19/2018] [Indexed: 12/25/2022] Open
Abstract
Sleep affects brain activity globally, but many cortical sleep waves are spatially confined. Local rhythms serve cortical area-specific sleep needs and functions; however, mechanisms controlling locality are unclear. We identify the thalamic reticular nucleus (TRN) as a source for local, sensory-cortex-specific non-rapid-eye-movement sleep (NREMS) in mouse. Neurons in optogenetically identified sensory TRN sectors showed stronger repetitive burst discharge compared to non-sensory TRN cells due to higher activity of the low-threshold Ca2+ channel CaV3.3. Major NREMS rhythms in sensory but not non-sensory cortical areas were regulated in a CaV3.3-dependent manner. In particular, NREMS in somatosensory cortex was enriched in fast spindles, but switched to delta wave-dominated sleep when CaV3.3 channels were genetically eliminated or somatosensory TRN cells chemogenetically hyperpolarized. Our data indicate a previously unrecognized heterogeneity in a powerful forebrain oscillator that contributes to sensory-cortex-specific and dually regulated NREMS, enabling local sleep regulation according to use- and experience-dependence. Falling asleep affects our behavior immediately and profoundly. During sleep, large electrical waves appear across the brain in areas responsible for consciousness, sensation and movement. In the cortex – the outer layer of the brain – sleep waves arise from networks that connect to the thalamus, a deeper structure within the brain. However, not all areas of the brain sleep equally. We know this intuitively because sensory stimuli, such as an alarm clock or a baby’s cry, can still wake us up. By contrast, we typically do not move much or take major decisions while we sleep. Therefore, the brain areas involved in sensation should not be expected to sleep in the same way as areas involved in movement or reasoning. Neighboring brain areas generally show very different sleep waves. The brain regions that we use during the day can also affect how sleep varies from one area to the next. It is not well understood what determines these ‘local’ sleep properties. By studying the brains of mice, Fernandez et al. now show that the networks between the cortex and thalamus are much more varied than previously thought, in particular regarding a thalamic nucleus that is relevant for sleep wave generation. These previously unrecognized differences deep within the brain are part of the origin of local sleep in the outer layer of the brain. Sleep wave activity differed depending on whether the networks were involved in sensory or non-sensory roles. The networks allow sensory areas to switch efficiently between different forms of local sleep. This might underlie how the brain’s sensory activity during the day can influence local sleep at night. There is growing evidence that major sleep disorders are due to disturbances to local sleep. Techniques to modify or restore specific sleep waves locally in the brain could help to develop new sleep therapies. For example, having a detailed map of electrical waves within the sleep-disordered brain could help researchers to apply transcranial stimulation techniques in ways that might help to treat these debilitating disorders.
Collapse
Affiliation(s)
- Laura Mj Fernandez
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Gil Vantomme
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | - Romain Cardis
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Elidie Béard
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
24
|
Krueger JM, Nguyen JT, Dykstra-Aiello CJ, Taishi P. Local sleep. Sleep Med Rev 2018; 43:14-21. [PMID: 30502497 DOI: 10.1016/j.smrv.2018.10.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022]
Abstract
The historic sleep regulatory paradigm invokes "top-down" imposition of sleep on the brain by sleep regulatory circuits. While remaining conceptually useful, many sleep phenomena are difficult to explain using that paradigm, including, unilateral sleep, sleep-walking, and poor performance after sleep deprivation. Further, all animals sleep after non-lethal brain lesions, regardless of whether the lesion includes sleep regulatory circuits, suggesting that sleep is a fundamental property of small viable neuronal/glial networks. That small areas of the brain can exhibit non-rapid eye movement sleep-like states is summarized. Further, sleep-like states in neuronal/glial cultures are described. The local sleep states, whether in vivo or in vitro, share electrophysiological properties and molecular regulatory components with whole animal sleep and exhibit sleep homeostasis. The molecular regulatory components of sleep are also involved in plasticity and inflammation. Like sleep, these processes, are initiated by local cell-activity dependent events, yet have at higher levels of tissue organization whole body functions. While there are large literatures dealing with local initiation and regulation of plasticity and inflammation, the literature surrounding local sleep is in its infancy and clinical applications of the local sleep concept are absent. Regardless, the local use-dependent sleep paradigm can advise and advance future research and clinical applications.
Collapse
Affiliation(s)
- James M Krueger
- Department of Integrative Physiology and Neurobiology, College of Veterinary Medicine, Spokane, WA, USA.
| | - Joseph T Nguyen
- Department of Integrative Physiology and Neurobiology, College of Veterinary Medicine, Spokane, WA, USA
| | - Cheryl J Dykstra-Aiello
- Department of Integrative Physiology and Neurobiology, College of Veterinary Medicine, Spokane, WA, USA
| | - Ping Taishi
- Department of Integrative Physiology and Neurobiology, College of Veterinary Medicine, Spokane, WA, USA
| |
Collapse
|
25
|
Ehrlenspiel F, Erlacher D, Ziegler M. Changes in Subjective Sleep Quality Before a Competition and Their Relation to Competitive Anxiety. Behav Sleep Med 2018; 16:553-568. [PMID: 27935323 DOI: 10.1080/15402002.2016.1253012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE/BACKGROUND The aim of this study was to examine the effects of competitions on subjective sleep quality. Previous studies have been inconclusive and lack differentiated and standardized measurements of subjective sleep quality. Furthermore the temporal relation between precompetitive anxiety and sleep quality was investigated. Anxiety and nervousness associated with competitions are considered to cause sleep impairments. PARTICIPANTS A convenience sample of N = 79 elite male athletes from various sports participated. METHODS In a time-to-event paradigm, sleep quality and competitive anxiety were assessed via standardized self-report measurements 4 days before a competition and on the day of the competition. Univariate analyses were used to examine differences between time points. To examine cross-lagged effects between anxiety and sleep quality a latent change score model (LCSM) was specified that tested an effect of anxiety on changes in sleep quality. RESULTS Evaluations of nocturnal sleep deteriorated significantly from 4 days before competition to the day of competition, but there were no differences regarding perceptions of the restorative value of sleep. LCSM revealed that athletes who reported more intense worry symptoms 4 days before competition also reported greater deterioration in evaluations of nocturnal sleep. CONCLUSIONS The findings support earlier reports of impaired subjective sleep quality before competitions. Precompetitive sleep impairments appear also to be preceded by cognitive anxiety. Whereas interventions should thus address worry-cognitions associated with competition and sleep, research should address the practical importance of these perceptions of sleep impairments.
Collapse
Affiliation(s)
- Felix Ehrlenspiel
- a Department of Sport and Health Sciences , Technische Universität München , München , Germany
| | - Daniel Erlacher
- b Institute of Sport Science, University of Bern , Bern , Switzerland
| | - Matthias Ziegler
- c Institute of Psychology, Humboldt-Universität zu Berlin , Berlin , Germany
| |
Collapse
|
26
|
Grønli J, Schmidt MA, Wisor JP. State-Dependent Modulation of Visual Evoked Potentials in a Rodent Genetic Model of Electroencephalographic Instability. Front Syst Neurosci 2018; 12:36. [PMID: 30158860 PMCID: PMC6104170 DOI: 10.3389/fnsys.2018.00036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/17/2018] [Indexed: 12/29/2022] Open
Abstract
Despite normal sleep timing and duration, Egr3-deficient (Egr3−/−) mice exhibit electroencephalographic (EEG) characteristics of reduced arousal, including elevated slow wave (1–4 Hz) activity during wakefulness. Here we show that these mice exhibit state-dependent instability in the EEG. Intermittent surges in EEG power were found in Egr3−/− mice during wakefulness and rapid eye movement sleep, most prominently in the beta (15–35 Hz) range compared to wild type (Egr3+/+) mice. Such surges did not coincide with sleep onset, as the surges were not associated with cessation of electromyographic tone. Cortical processing of sensory information by visual evoked responses (VEP) were found to vary as a function of vigilance state, being of higher magnitude during slow wave sleep (SWS) than wakefulness and rapid eye movement sleep. VEP responses were significantly larger during quiet wakefulness than active wakefulness, in both Egr3−/− mice and Egr3+/+ mice. EEG synchronization in the beta range, previously linked to the accumulation of sleep need over time, predicted VEP magnitude. Egr3−/− mice not only displayed elevated beta activity, but in quiet wake, this elevated beta activity coincides with an elevated evoked response similar to that of animals in SWS. These data confirm that (a) VEPs vary as a function of vigilance state, and (b) beta activity in the EEG is a predictor of state-dependent modulation of visual information processing. The phenotype of Egr3−/− mice indicates that Egr3 is a genetic regulator of these phenomena.
Collapse
Affiliation(s)
- Janne Grønli
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Michelle A Schmidt
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States.,Sleep and Performance Research Center, Washington State University, Spokane, WA, United States
| | - Jonathan P Wisor
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States.,Sleep and Performance Research Center, Washington State University, Spokane, WA, United States
| |
Collapse
|
27
|
Abstract
Computational models have become common tools in psychology. They provide quantitative instantiations of theories that seek to explain the functioning of the human mind. In this paper, we focus on identifying deep theoretical similarities between two very different models. Both models are concerned with how fatigue from sleep loss impacts cognitive processing. The first is based on the diffusion model and posits that fatigue decreases the drift rate of the diffusion process. The second is based on the Adaptive Control of Thought - Rational (ACT-R) cognitive architecture and posits that fatigue decreases the utility of candidate actions leading to microlapses in cognitive processing. A biomathematical model of fatigue is used to control drift rate in the first account and utility in the second. We investigated the predicted response time distributions of these two integrated computational cognitive models for performance on a psychomotor vigilance test under conditions of total sleep deprivation, simulated shift work, and sustained sleep restriction. The models generated equivalent predictions of response time distributions with excellent goodness-of-fit to the human data. More importantly, although the accounts involve different modeling approaches and levels of abstraction, they represent the effects of fatigue in a functionally equivalent way: in both, fatigue decreases the signal-to-noise ratio in decision processes and decreases response inhibition. This convergence suggests that sleep loss impairs psychomotor vigilance performance through degradation of the quality of cognitive processing, which provides a foundation for systematic investigation of the effects of sleep loss on other aspects of cognition. Our findings illustrate the value of treating different modeling formalisms as vehicles for discovery.
Collapse
|
28
|
Cooper JM, Halter KA, Prosser RA. Circadian rhythm and sleep-wake systems share the dynamic extracellular synaptic milieu. Neurobiol Sleep Circadian Rhythms 2018; 5:15-36. [PMID: 31236509 PMCID: PMC6584685 DOI: 10.1016/j.nbscr.2018.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/06/2018] [Accepted: 04/10/2018] [Indexed: 01/23/2023] Open
Abstract
The mammalian circadian and sleep-wake systems are closely aligned through their coordinated regulation of daily activity patterns. Although they differ in their anatomical organization and physiological processes, they utilize overlapping regulatory mechanisms that include an assortment of proteins and molecules interacting within the extracellular space. These extracellular factors include proteases that interact with soluble proteins, membrane-attached receptors and the extracellular matrix; and cell adhesion molecules that can form complex scaffolds connecting adjacent neurons, astrocytes and their respective intracellular cytoskeletal elements. Astrocytes also participate in the dynamic regulation of both systems through modulating neuronal appositions, the extracellular space and/or through release of gliotransmitters that can further contribute to the extracellular signaling processes. Together, these extracellular elements create a system that integrates rapid neurotransmitter signaling across longer time scales and thereby adjust neuronal signaling to reflect the daily fluctuations fundamental to both systems. Here we review what is known about these extracellular processes, focusing specifically on areas of overlap between the two systems. We also highlight questions that still need to be addressed. Although we know many of the extracellular players, far more research is needed to understand the mechanisms through which they modulate the circadian and sleep-wake systems.
Collapse
Key Words
- ADAM, A disintegrin and metalloproteinase
- AMPAR, AMPA receptor
- Astrocytes
- BDNF, brain-derived neurotrophic factor
- BMAL1, Brain and muscle Arnt-like-1 protein
- Bmal1, Brain and muscle Arnt-like-1 gene
- CAM, cell adhesion molecules
- CRY, cryptochrome protein
- Cell adhesion molecules
- Circadian rhythms
- Cry, cryptochrome gene
- DD, dark-dark
- ECM, extracellular matrix
- ECS, extracellular space
- EEG, electroencephalogram
- Endo N, endoneuraminidase N
- Extracellular proteases
- GFAP, glial fibrillary acidic protein
- IL, interleukin
- Ig, immunoglobulin
- LC, locus coeruleus
- LD, light-dark
- LH, lateral hypothalamus
- LRP-1, low density lipoprotein receptor-related protein 1
- LTP, long-term potentiation
- MMP, matrix metalloproteinases
- NCAM, neural cell adhesion molecule protein
- NMDAR, NMDA receptor
- NO, nitric oxide
- NST, nucleus of the solitary tract
- Ncam, neural cell adhesion molecule gene
- Nrl, neuroligin gene
- Nrx, neurexin gene
- P2, purine type 2 receptor
- PAI-1, plasminogen activator inhibitor-1
- PER, period protein
- PPT, peduculopontine tegmental nucleus
- PSA, polysialic acid
- Per, period gene
- REMS, rapid eye movement sleep
- RSD, REM sleep disruption
- SCN, suprachiasmatic nucleus
- SWS, slow wave sleep
- Sleep-wake system
- Suprachiasmatic nucleus
- TNF, tumor necrosis factor
- TTFL, transcriptional-translational negative feedback loop
- VIP, vasoactive intestinal polypeptide
- VLPO, ventrolateral preoptic
- VP, vasopressin
- VTA, ventral tegmental area
- dNlg4, drosophila neuroligin-4 gene
- nNOS, neuronal nitric oxide synthase gene
- nNOS, neuronal nitric oxide synthase protein
- tPA, tissue-type plasminogen activator
- uPA, urokinase-type plasminogen activator
- uPAR, uPA receptor
Collapse
|
29
|
Steel JL, Terhorst L, Collins KP, Geller DA, Vodovotz Y, Kim J, Krane A, Antoni M, Marsh JW, Burke LE, Butterfield LH, Penedo FJ, Buysse DJ, Tsung A. Prospective Analyses of Cytokine Mediation of Sleep and Survival in the Context of Advanced Cancer. Psychosom Med 2018; 80:483-491. [PMID: 29621045 PMCID: PMC5976532 DOI: 10.1097/psy.0000000000000579] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The aims of this study were to examine the potential association between sleep problems, symptom burden, and survival in patients with advanced cancer. METHODS A prospective study of 294 patients with gastrointestinal cancer administered questionnaires assessing sleep, depression, anxiety, stress, pain, fatigue, and health-related quality of life. Serum levels of cytokines including interleukin (IL)-1α, IL-1β, tumor necrosis factor α, IL-10, IL-2, and interferon-γ were measured to assess biological mediation between sleep and survival. Survival was measured as time from diagnosis to death. RESULTS Fifty-nine percent of patients reported poor sleep quality, 53% reported poor sleep efficiency, 39% reported sleep latency greater than 30 minutes, and 45% reported sleeping less than 6 hours or greater than 10 hours. We found a significant association between sleep duration and symptom burden. Shorter sleep duration was significantly associated with higher levels of fatigue (r = -0.169, p = .01), pain (r = -0.302, p = .01), anxiety (r = -0.182, p = .01), depression (r = -0.172, p = .003), and lower levels of quality of life (r = 0.240, p = .01). After adjustment for demographic, psychological, and disease-specific factors, short sleep duration was associated with reduced survival (hazard ratio [HR] linear = 0.485, 95% confidence interval = 0.275-0.857) and there was also evidence for a quadratic pattern (HR quadrati = 1.064, 95% confidence interval = 1.015-1.115) suggesting a curvilinear relationship between sleep duration and survival. Interleukin 2 was the only cytokine significantly related to survival (HR = 1.01, p = .003) and sleep duration (β = -30.11, p = .027). When of IL-2 was added to the multivariable model, short and long sleep (β = -0.557, p = .097; β = 0.046, p = .114) were no longer significantly related to survival, suggesting mediation by IL-2. CONCLUSION Sleep duration was associated with symptom burden and poorer survival and IL-2 was found to mediate the association between sleep and survival. Screening and treatment of sleep problems in patients diagnosed with cancer are warranted.
Collapse
Affiliation(s)
- Jennifer L Steel
- From the Departments of Surgery, Psychiatry, and Psychology (Steel), Occupational Therapy (Terhorst), Surgery, Mathematica Policy Research (Collins), Surgery (Geller, Vodovotz, Kim, Krane, Marsh, Tsung), University of Pittsburg, Pennsylvania; Department of Psychology (Antoni), University of Miami, Florida; School of Nursing (Burke), and Department of Medicine, Surgery and Immunology (Butterfield), University of Pittsburgh, Pennsylvania; Department of Medical Social Sciences, Psychology, and Psychiatry and Behavioral Sciences (Penedo), Northwestern University, Evantson, Illinois; and Department of Psychiatry (Buysse), University of Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Quercia A, Zappasodi F, Committeri G, Ferrara M. Local Use-Dependent Sleep in Wakefulness Links Performance Errors to Learning. Front Hum Neurosci 2018; 12:122. [PMID: 29666574 PMCID: PMC5891895 DOI: 10.3389/fnhum.2018.00122] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/12/2018] [Indexed: 01/10/2023] Open
Abstract
Sleep and wakefulness are no longer to be considered as discrete states. During wakefulness brain regions can enter a sleep-like state (off-periods) in response to a prolonged period of activity (local use-dependent sleep). Similarly, during nonREM sleep the slow-wave activity, the hallmark of sleep plasticity, increases locally in brain regions previously involved in a learning task. Recent studies have demonstrated that behavioral performance may be impaired by off-periods in wake in task-related regions. However, the relation between off-periods in wake, related performance errors and learning is still untested in humans. Here, by employing high density electroencephalographic (hd-EEG) recordings, we investigated local use-dependent sleep in wake, asking participants to repeat continuously two intensive spatial navigation tasks. Critically, one task relied on previous map learning (Wayfinding) while the other did not (Control). Behaviorally awake participants, who were not sleep deprived, showed progressive increments of delta activity only during the learning-based spatial navigation task. As shown by source localization, delta activity was mainly localized in the left parietal and bilateral frontal cortices, all regions known to be engaged in spatial navigation tasks. Moreover, during the Wayfinding task, these increments of delta power were specifically associated with errors, whose probability of occurrence was significantly higher compared to the Control task. Unlike the Wayfinding task, during the Control task neither delta activity nor the number of errors increased progressively. Furthermore, during the Wayfinding task, both the number and the amplitude of individual delta waves, as indexes of neuronal silence in wake (off-periods), were significantly higher during errors than hits. Finally, a path analysis linked the use of the spatial navigation circuits undergone to learning plasticity to off periods in wake. In conclusion, local sleep regulation in wakefulness, associated with performance failures, could be functionally linked to learning-related cortical plasticity.
Collapse
Affiliation(s)
- Angelica Quercia
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Filippo Zappasodi
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Giorgia Committeri
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Coppito, Italy
| |
Collapse
|
31
|
Silver R. Cells have sex chromosomes and circadian clocks: Implications for organismal level functions. Physiol Behav 2018; 187:6-12. [DOI: 10.1016/j.physbeh.2017.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/24/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
|
32
|
Effects of Aging on Cortical Neural Dynamics and Local Sleep Homeostasis in Mice. J Neurosci 2018; 38:3911-3928. [PMID: 29581380 PMCID: PMC5907054 DOI: 10.1523/jneurosci.2513-17.2018] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 01/13/2023] Open
Abstract
Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture. SIGNIFICANCE STATEMENT The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we performed chronic electrophysiological recordings of cortical neural activity during waking, sleep, and after sleep deprivation from young and older mice. We found that all main hallmarks of cortical activity during spontaneous sleep and recovery sleep after sleep deprivation were largely intact in older mice, suggesting that the well-described age-related changes in global sleep are unlikely to arise from a disruption of local network dynamics within the neocortex.
Collapse
|
33
|
Sleep deprivation decreases neuronal excitability and responsiveness in rats both in vivo and ex vivo. Brain Res Bull 2018; 137:166-177. [DOI: 10.1016/j.brainresbull.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 11/19/2022]
|
34
|
McKillop LE, Vyazovskiy VV. Sleep- and Wake-Like States in Small Networks In Vivo and In Vitro. Handb Exp Pharmacol 2018; 253:97-121. [PMID: 30443784 DOI: 10.1007/164_2018_174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Wakefulness and sleep are highly complex and heterogeneous processes, involving multiple neurotransmitter systems and a sophisticated interplay between global and local networks of neurons and non-neuronal cells. Macroscopic approaches applied at the level of the whole organism, view sleep as a global behaviour and allow for investigation into aspects such as the effects of insufficient or disrupted sleep on cognitive function, metabolism, thermoregulation and sensory processing. While significant progress has been achieved using such large-scale approaches, the inherent complexity of sleep-wake regulation has necessitated the development of methods which tackle specific aspects of sleep in isolation. One way this may be achieved is by investigating specific cellular or molecular phenomena in the whole organism in situ, either during spontaneous or induced sleep-wake states. This approach has greatly advanced our knowledge about the electrophysiology and pharmacology of ion channels, specific receptors, intracellular pathways and the small networks implicated in the control and regulation of the sleep-wake cycle. Importantly though, there are a variety of external and internal factors that influence global behavioural states which are difficult to control for using these approaches. For this reason, over the last few decades, ex vivo experimental models have become increasingly popular and have greatly advanced our understanding of many fundamental aspects of sleep, including the neuroanatomy and neurochemistry of sleep states, sleep regulation, the origin and dynamics of specific sleep oscillations, network homeostasis as well as the functional roles of sleep. This chapter will focus on the use of small neuronal networks as experimental models and will highlight the most significant and novel insights these approaches have provided.
Collapse
Affiliation(s)
- Laura E McKillop
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
35
|
Tumor necrosis factor alpha in sleep regulation. Sleep Med Rev 2017; 40:69-78. [PMID: 29153862 DOI: 10.1016/j.smrv.2017.10.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 12/14/2022]
Abstract
This review details tumor necrosis factor alpha (TNF) biology and its role in sleep, and describes how TNF medications influence sleep/wake activity. Substantial evidence from healthy young animals indicates acute enhancement or inhibition of endogenous brain TNF respectively promotes and inhibits sleep. In contrast, the role of TNF in sleep in most human studies involves pathological conditions associated with chronic elevations of systemic TNF and disrupted sleep. Normalization of TNF levels in such patients improves sleep. A few studies involving normal healthy humans and their TNF levels and sleep are consistent with the animal studies but are necessarily more limited in scope. TNF can act on established sleep regulatory circuits to promote sleep and on the cortex within small networks, such as cortical columns, to induce sleep-like states. TNF affects multiple synaptic functions, e.g., its role in synaptic scaling is firmly established. The TNF-plasticity actions, like its role in sleep, can be local network events suggesting that sleep and plasticity share biochemical regulatory mechanisms and thus may be inseparable from each other. We conclude that TNF is involved in sleep regulation acting within an extensive tightly orchestrated biochemical network to niche-adapt sleep in health and disease.
Collapse
|
36
|
Kay DB, Karim HT, Soehner AM, Hasler BP, James JA, Germain A, Hall MH, Franzen PL, Price JC, Nofzinger EA, Buysse DJ. Subjective-Objective Sleep Discrepancy Is Associated With Alterations in Regional Glucose Metabolism in Patients With Insomnia and Good Sleeper Controls. Sleep 2017; 40:4282628. [PMID: 29029313 PMCID: PMC5819841 DOI: 10.1093/sleep/zsx155] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Objectives Sleep discrepancies are common in primary insomnia (PI) and include reports of longer sleep onset latency (SOL) than measured by polysomnography (PSG) or "negative SOL discrepancy." We hypothesized that negative SOL discrepancy in PI would be associated with higher relative glucose metabolism during nonrapid eye movement (NREM) sleep in brain networks involved in conscious awareness, including the salience, left executive control, and default mode networks. Methods PI (n = 32) and good sleeper controls (GS; n = 30) completed [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) scans during NREM sleep, and relative regional cerebral metabolic rate for glucose (rCMRglc) was measured. Sleep discrepancy was calculated by subtracting PSG-measured SOL on the PET night from corresponding self-report values the following morning. We tested for interactions between group (PI vs. GS) and SOL discrepancy for rCMRglc during NREM sleep using both a region of interest mask and exploratory whole-brain analyses. Results Significant group by SOL discrepancy interactions for rCMRglc were observed in several brain regions (pcorrected < .05 for all clusters). In the PI group, more negative SOL discrepancy (self-reported > PSG-measured SOL) was associated with significantly higher relative rCMRglc in the right anterior insula and middle/posterior cingulate during NREM sleep. In GS, more positive SOL discrepancy (self-reported < PSG-measured SOL) was associated with significantly higher relative rCMRglc in the right anterior insula, left anterior cingulate cortex, and middle/posterior cingulate cortex. Conclusions Although preliminary, these findings suggest regions of the brain previously shown to be involved in conscious awareness, and the perception of PSG-defined states may also be involved in the phenomena of SOL discrepancy.
Collapse
Affiliation(s)
- Daniel B Kay
- Department of Psychology, Brigham Young University, Provo, UT
| | - Helmet T Karim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Adriane M Soehner
- Department of Psychiatry, Sleep and Chronobiology Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Brant P Hasler
- Department of Psychiatry, Sleep and Chronobiology Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jeffrey A James
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA
| | - Anne Germain
- Department of Psychiatry, Sleep and Chronobiology Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Martica H Hall
- Department of Psychiatry, Sleep and Chronobiology Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Peter L Franzen
- Department of Psychiatry, Sleep and Chronobiology Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Julie C Price
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA
| | - Eric A Nofzinger
- Cerêve Inc., Oakmont, PA
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC
| | - Daniel J Buysse
- Department of Psychiatry, Sleep and Chronobiology Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
37
|
Holst SC, Sousek A, Hefti K, Saberi-Moghadam S, Buck A, Ametamey SM, Scheidegger M, Franken P, Henning A, Seifritz E, Tafti M, Landolt HP. Cerebral mGluR5 availability contributes to elevated sleep need and behavioral adjustment after sleep deprivation. eLife 2017; 6:28751. [PMID: 28980941 PMCID: PMC5644949 DOI: 10.7554/elife.28751] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/04/2017] [Indexed: 12/16/2022] Open
Abstract
Increased sleep time and intensity quantified as low-frequency brain electrical activity after sleep loss demonstrate that sleep need is homeostatically regulated, yet the underlying molecular mechanisms remain elusive. We here demonstrate that metabotropic glutamate receptors of subtype 5 (mGluR5) contribute to the molecular machinery governing sleep-wake homeostasis. Using positron emission tomography, magnetic resonance spectroscopy, and electroencephalography in humans, we find that increased mGluR5 availability after sleep loss tightly correlates with behavioral and electroencephalographic biomarkers of elevated sleep need. These changes are associated with altered cortical myo-inositol and glycine levels, suggesting sleep loss-induced modifications downstream of mGluR5 signaling. Knock-out mice without functional mGluR5 exhibit severe dysregulation of sleep-wake homeostasis, including lack of recovery sleep and impaired behavioral adjustment to a novel task after sleep deprivation. The data suggest that mGluR5 contribute to the brain's coping mechanisms with sleep deprivation and point to a novel target to improve disturbed wakefulness and sleep.
Collapse
Affiliation(s)
- Sebastian C Holst
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.,CRPP Sleep and Health, Zürich Center for Interdisciplinary Sleep Research, University of Zürich, Zürich, Switzerland
| | - Alexandra Sousek
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Katharina Hefti
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | | | - Alfred Buck
- Division of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Simon M Ametamey
- Center for Radiopharmaceutical Sciences of ETH, Zürich, Switzerland.,Paul Scherrer Institut, Zürich, Switzerland.,University Hospital of Zürich, Zürich, Switzerland
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland.,Institute for Biomedical Engineering, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Anke Henning
- Center for Radiopharmaceutical Sciences of ETH, Zürich, Switzerland.,Paul Scherrer Institut, Zürich, Switzerland.,University Hospital of Zürich, Zürich, Switzerland
| | - Erich Seifritz
- CRPP Sleep and Health, Zürich Center for Interdisciplinary Sleep Research, University of Zürich, Zürich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | - Mehdi Tafti
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.,CRPP Sleep and Health, Zürich Center for Interdisciplinary Sleep Research, University of Zürich, Zürich, Switzerland
| |
Collapse
|
38
|
Kenzie ES, Parks EL, Bigler ED, Lim MM, Chesnutt JC, Wakeland W. Concussion As a Multi-Scale Complex System: An Interdisciplinary Synthesis of Current Knowledge. Front Neurol 2017; 8:513. [PMID: 29033888 PMCID: PMC5626937 DOI: 10.3389/fneur.2017.00513] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/13/2017] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) has been called "the most complicated disease of the most complex organ of the body" and is an increasingly high-profile public health issue. Many patients report long-term impairments following even "mild" injuries, but reliable criteria for diagnosis and prognosis are lacking. Every clinical trial for TBI treatment to date has failed to demonstrate reliable and safe improvement in outcomes, and the existing body of literature is insufficient to support the creation of a new classification system. Concussion, or mild TBI, is a highly heterogeneous phenomenon, and numerous factors interact dynamically to influence an individual's recovery trajectory. Many of the obstacles faced in research and clinical practice related to TBI and concussion, including observed heterogeneity, arguably stem from the complexity of the condition itself. To improve understanding of this complexity, we review the current state of research through the lens provided by the interdisciplinary field of systems science, which has been increasingly applied to biomedical issues. The review was conducted iteratively, through multiple phases of literature review, expert interviews, and systems diagramming and represents the first phase in an effort to develop systems models of concussion. The primary focus of this work was to examine concepts and ways of thinking about concussion that currently impede research design and block advancements in care of TBI. Results are presented in the form of a multi-scale conceptual framework intended to synthesize knowledge across disciplines, improve research design, and provide a broader, multi-scale model for understanding concussion pathophysiology, classification, and treatment.
Collapse
Affiliation(s)
- Erin S. Kenzie
- Systems Science Program, Portland State University, Portland, OR, United States
| | - Elle L. Parks
- Systems Science Program, Portland State University, Portland, OR, United States
| | - Erin D. Bigler
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, United States
| | - Miranda M. Lim
- Sleep Disorders Clinic, Division of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland, OR, United States
- Departments of Neurology, Medicine, and Behavioral Neuroscience, and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| | - James C. Chesnutt
- TBI/Concussion Program, Orthopedics & Rehabilitation and Family Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Wayne Wakeland
- Systems Science Program, Portland State University, Portland, OR, United States
| |
Collapse
|
39
|
Vyazovskiy VV, Walton ME, Peirson SN, Bannerman DM. Sleep homeostasis, habits and habituation. Curr Opin Neurobiol 2017; 44:202-211. [PMID: 28575718 DOI: 10.1016/j.conb.2017.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/06/2017] [Accepted: 05/01/2017] [Indexed: 02/08/2023]
Abstract
The importance of sleep for behavioural performance during waking is long-established, but the underlying reasons and mechanisms remain elusive. Waking and sleep are associated with changes in the levels of GluA1 AMPAR subunit in synaptic membranes, while studies using genetically-modified mice have identified an important role for GluA1-dependent synaptic plasticity in a non-associative form of memory that underlies short-term habituation to recently experienced stimuli. Here we posit that sleep may play a role in dishabituation, which restores attentional capacity and maximises the readiness of the animal for learning and goal-directed behaviour during subsequent wakefulness. Furthermore we suggest that sleep disturbance may fundamentally change the nature of behaviour, making it more model-free and habitual as a result of reduced attentional capacity.
Collapse
Affiliation(s)
- Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom; Sleep and Circadian Neuroscience Institute, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, United Kingdom.
| | - Mark E Walton
- Department of Experimental Psychology, University of Oxford,South Parks Road, Oxford OX1 3UD, United Kingdom
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - David M Bannerman
- Sleep and Circadian Neuroscience Institute, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, United Kingdom; Department of Experimental Psychology, University of Oxford,South Parks Road, Oxford OX1 3UD, United Kingdom
| |
Collapse
|
40
|
Chennaoui M, Arnal PJ, Drogou C, Leger D, Sauvet F, Gomez-Merino D. Leukocyte Expression of Type 1 and Type 2 Purinergic Receptors and Pro-Inflammatory Cytokines during Total Sleep Deprivation and/or Sleep Extension in Healthy Subjects. Front Neurosci 2017; 11:240. [PMID: 28512397 PMCID: PMC5411417 DOI: 10.3389/fnins.2017.00240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/11/2017] [Indexed: 12/26/2022] Open
Abstract
The purinergic type P1 (adenosine A1 and A2A) receptors and the type P2 (X7) receptor have been suggested to mediate physiological effects of adenosine and adenosine triphosphate on sleep. We aimed to determine gene expression of A1R (receptor), A2AR, and P2RX7 in leukocytes of healthy subjects during total sleep deprivation followed by sleep recovery. Expression of the pro-inflammatory cytokines IL-1β and TNF-α were also determined as they have been characterized as sleep regulatory substances, via P2RX7 activation. Blood sampling was performed on 14 young men (aged 31.9 ± 3.9) at baseline (B), after 24 h of sleep deprivation (24 h-SD), and after one night of sleep recovery (R). We compared gene expression levels after six nights of habitual (22.30–07.00) or extended (21.00–07.00) bedtimes. Using quantitative real-time PCR, the amount of mRNA for A1R, A2AR, P2RX7, TNF-α, and IL-1β was analyzed. After 24 h-SD compared to B, whatever prior sleep condition, a significant increase of A2AR expression was observed that returned to basal level after sleep recovery [day main effect, F(2, 26) = 10.8, p < 0.001]. In both sleep condition, a day main effect on P2RX7 mRNA was observed [F(2, 26) = 6.7, p = 0.005] with significant increases after R compared with 24 h-SD. TNF-α and IL-1β expressions were not significantly altered. Before 24 h-SD (baseline), the A2AR expression was negatively correlated with the latency of stage 3 sleep during the previous night, while that of the A1R positively. This was not observed after sleep recovery following 24 h-SD. This is the first study showing increased A2AR and not A1 gene expression after 24 h-SD in leukocytes of healthy subjects, and this even if bedtime was initially increased by 1.5 h per night for six nights. In conclusion, prolonged wakefulness induced an up-regulation of the A2A receptor gene expression in leukocytes from healthy subjects. Significant correlations between baseline expression of A1 and A2A receptors in peripheral cells and stage 3 sleep suggested their involvement in mediating the effects of adenosine on sleep.
Collapse
Affiliation(s)
- Mounir Chennaoui
- Fatigue and Vigilance team, Neuroscience and Operational Constraints Department, French Armed Forces Biomedical Research Institute (IRBA)Brétigny-sur-Orge, France.,VIFASOM team (EA 7330), Paris Desacrtes University, Sorbonne Paris CitéHôtel Dieu, Paris, France
| | - Pierrick J Arnal
- Fatigue and Vigilance team, Neuroscience and Operational Constraints Department, French Armed Forces Biomedical Research Institute (IRBA)Brétigny-sur-Orge, France.,VIFASOM team (EA 7330), Paris Desacrtes University, Sorbonne Paris CitéHôtel Dieu, Paris, France
| | - Catherine Drogou
- Fatigue and Vigilance team, Neuroscience and Operational Constraints Department, French Armed Forces Biomedical Research Institute (IRBA)Brétigny-sur-Orge, France.,VIFASOM team (EA 7330), Paris Desacrtes University, Sorbonne Paris CitéHôtel Dieu, Paris, France
| | - Damien Leger
- VIFASOM team (EA 7330), Paris Desacrtes University, Sorbonne Paris CitéHôtel Dieu, Paris, France.,Centre du Sommeil et de la Vigilance, Hôtel Dieu, Assistance publique - Hôpitaux de ParisParis, France
| | - Fabien Sauvet
- Fatigue and Vigilance team, Neuroscience and Operational Constraints Department, French Armed Forces Biomedical Research Institute (IRBA)Brétigny-sur-Orge, France.,VIFASOM team (EA 7330), Paris Desacrtes University, Sorbonne Paris CitéHôtel Dieu, Paris, France
| | - Danielle Gomez-Merino
- Fatigue and Vigilance team, Neuroscience and Operational Constraints Department, French Armed Forces Biomedical Research Institute (IRBA)Brétigny-sur-Orge, France.,VIFASOM team (EA 7330), Paris Desacrtes University, Sorbonne Paris CitéHôtel Dieu, Paris, France
| |
Collapse
|
41
|
Timofeev I, Chauvette S. Sleep slow oscillation and plasticity. Curr Opin Neurobiol 2017; 44:116-126. [PMID: 28453998 DOI: 10.1016/j.conb.2017.03.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/31/2017] [Indexed: 11/25/2022]
Abstract
It is well documented that sleep contributes to memory consolidation and it is also accepted that long-term synaptic plasticity plays a critical role in memory formation. The mechanisms of this sleep-dependent memory formation are unclear. Two main hypotheses are proposed. According to the first one, synapses are potentiated during wake; and during sleep they are scaled back to become available for the learning tasks in the next day. The other hypothesis is that sleep slow oscillations potentiate synapses that were depressed due to persistent activities during the previous day and that potentiation provides physiological basis for memory consolidation. The objective of this review is to group information on whether cortical synapses are up-scaled or down-scaled during sleep. We conclude that the majority of cortical synapses are up-regulated by sleep slow oscillation.
Collapse
Affiliation(s)
- Igor Timofeev
- Department of Psychiatry and Neuroscience, Université Laval Québec, QC G1V 0A6, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), 2601, de la Canardière Québec, QC G1J 2G3, Canada.
| | - Sylvain Chauvette
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), 2601, de la Canardière Québec, QC G1J 2G3, Canada
| |
Collapse
|
42
|
Prerau MJ, Brown RE, Bianchi MT, Ellenbogen JM, Purdon PL. Sleep Neurophysiological Dynamics Through the Lens of Multitaper Spectral Analysis. Physiology (Bethesda) 2017; 32:60-92. [PMID: 27927806 PMCID: PMC5343535 DOI: 10.1152/physiol.00062.2015] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During sleep, cortical and subcortical structures within the brain engage in highly structured oscillatory dynamics that can be observed in the electroencephalogram (EEG). The ability to accurately describe changes in sleep state from these oscillations has thus been a major goal of sleep medicine. While numerous studies over the past 50 years have shown sleep to be a continuous, multifocal, dynamic process, long-standing clinical practice categorizes sleep EEG into discrete stages through visual inspection of 30-s epochs. By representing sleep as a coarsely discretized progression of stages, vital neurophysiological information on the dynamic interplay between sleep and arousal is lost. However, by using principled time-frequency spectral analysis methods, the rich dynamics of the sleep EEG are immediately visible-elegantly depicted and quantified at time scales ranging from a full night down to individual microevents. In this paper, we review the neurophysiology of sleep through this lens of dynamic spectral analysis. We begin by reviewing spectral estimation techniques traditionally used in sleep EEG analysis and introduce multitaper spectral analysis, a method that makes EEG spectral estimates clearer and more accurate than traditional approaches. Through the lens of the multitaper spectrogram, we review the oscillations and mechanisms underlying the traditional sleep stages. In doing so, we will demonstrate how multitaper spectral analysis makes the oscillatory structure of traditional sleep states instantaneously visible, closely paralleling the traditional hypnogram, but with a richness of information that suggests novel insights into the neural mechanisms of sleep, as well as novel clinical and research applications.
Collapse
Affiliation(s)
- Michael J Prerau
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Ritchie E Brown
- Department of Psychiatry, Laboratory of Neuroscience, VA Boston Healthcare System and Harvard Medical School, Brockton, Massachusetts
| | - Matt T Bianchi
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts; and
| | | | - Patrick L Purdon
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
43
|
Grønli J, Meerlo P, Pedersen TT, Pallesen S, Skrede S, Marti AR, Wisor JP, Murison R, Henriksen TE, Rempe MJ, Mrdalj J. A Rodent Model of Night-Shift Work Induces Short-Term and Enduring Sleep and Electroencephalographic Disturbances. J Biol Rhythms 2016; 32:48-63. [DOI: 10.1177/0748730416675460] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Millions of people worldwide are working at times that overlap with the normal time for sleep. Sleep problems related to the work schedule may mediate the well-established relationship between shift work and increased risk for disease, occupational errors and accidents. Yet, our understanding of causality and the underlying mechanisms that explain this relationship is limited. We aimed to assess the consequences of night-shift work for sleep and to examine whether night-shift work-induced sleep disturbances may yield electrophysiological markers of impaired maintenance of the waking brain state. An experimental model developed in rats simulated a 4-day protocol of night-work in humans. Two groups of rats underwent 8-h sessions of enforced ambulation, either at the circadian time when the animal was physiologically primed for wakefulness (active-workers, mimicking day-shift) or for sleep (rest-workers, mimicking night-shift). The 4-day rest-work schedule induced a pronounced redistribution of sleep to the endogenous active phase. Rest-work also led to higher electroencephalogram (EEG) slow-wave (1-4 Hz) energy in quiet wakefulness during work-sessions, suggesting a degraded waking state. After the daily work-sessions, being in their endogenous active phase, rest-workers slept less and had higher gamma (80-90 Hz) activity during wake than active-workers. Finally, rest-work induced an enduring shift in the main sleep period and attenuated the accumulation of slow-wave energy during NREM sleep. A comparison of recovery data from 12:12 LD and constant dark conditions suggests that reduced time in NREM sleep throughout the recorded 7-day recovery phase induced by rest-work may be modulated by circadian factors. Our data in rats show that enforced night-work-like activity during the normal resting phase has pronounced acute and persistent effects on sleep and waking behavior. The study also underscores the potential importance of animal models for future studies on the health consequences of night-shift work and the mechanisms underlying increased risk for diseases.
Collapse
Affiliation(s)
- Janne Grønli
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- College of Medical Sciences, Washington State University, Spokane, Washington, USA
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Torhild T. Pedersen
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Ståle Pallesen
- Department of Psychosocial Science, University of Bergen, Bergen, Norway
- Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, Bergen, Norway
| | - Silje Skrede
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland Univeristy Hospital, Bergen, Norway
| | - Andrea R. Marti
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Jonathan P. Wisor
- College of Medical Sciences, Washington State University, Spokane, Washington, USA
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA
| | - Robert Murison
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Tone E.G. Henriksen
- Section of Psychiatry, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Division of Mental Health Care, Valen Hospital, Fonna Local Health Authority, Valen, Norway
| | - Michael J. Rempe
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA
- Mathematics and Computer Science, Whitworth University, Spokane, Washington, USA
| | - Jelena Mrdalj
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
44
|
Kay DB, Karim HT, Soehner AM, Hasler BP, Wilckens KA, James JA, Aizenstein HJ, Price JC, Rosario BL, Kupfer DJ, Germain A, Hall MH, Franzen PL, Nofzinger EA, Buysse DJ. Sleep-Wake Differences in Relative Regional Cerebral Metabolic Rate for Glucose among Patients with Insomnia Compared with Good Sleepers. Sleep 2016; 39:1779-1794. [PMID: 27568812 PMCID: PMC5020360 DOI: 10.5665/sleep.6154] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/30/2016] [Indexed: 01/15/2023] Open
Abstract
STUDY OBJECTIVES The neurobiological mechanisms of insomnia may involve altered patterns of activation across sleep-wake states in brain regions associated with cognition, self-referential processes, affect, and sleep-wake promotion. The objective of this study was to compare relative regional cerebral metabolic rate for glucose (rCMRglc) in these brain regions across wake and nonrapid eye movement (NREM) sleep states in patients with primary insomnia (PI) and good sleeper controls (GS). METHODS Participants included 44 PI and 40 GS matched for age (mean = 37 y old, range 21-60), sex, and race. We conducted [18F]fluoro-2-deoxy-D-glucose positron emission tomography scans in PI and GS during both morning wakefulness and NREM sleep at night. Repeated measures analysis of variance was used to test for group (PI vs. GS) by state (wake vs. NREM sleep) interactions in relative rCMRglc. RESULTS Significant group-by-state interactions in relative rCMRglc were found in the precuneus/posterior cingulate cortex, left middle frontal gyrus, left inferior/superior parietal lobules, left lingual/fusiform/occipital gyri, and right lingual gyrus. All clusters were significant at Pcorrected < 0.05. CONCLUSIONS Insomnia was characterized by regional alterations in relative glucose metabolism across NREM sleep and wakefulness. Significant group-by-state interactions in relative rCMRglc suggest that insomnia is associated with impaired disengagement of brain regions involved in cognition (left frontoparietal), self-referential processes (precuneus/posterior cingulate), and affect (left middle frontal, fusiform/lingual gyri) during NREM sleep, or alternatively, to impaired engagement of these regions during wakefulness.
Collapse
Affiliation(s)
- Daniel B. Kay
- Department of Psychiatry, Sleep and Chronobiology Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Helmet T. Karim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Adriane M. Soehner
- Department of Psychiatry, Sleep and Chronobiology Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Brant P. Hasler
- Department of Psychiatry, Sleep and Chronobiology Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Kristine A. Wilckens
- Department of Psychiatry, Sleep and Chronobiology Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jeffrey A. James
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA
| | - Howard J. Aizenstein
- Department of Psychiatry, Sleep and Chronobiology Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Julie C. Price
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA
| | - Bedda L. Rosario
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - David J. Kupfer
- Department of Psychiatry, Sleep and Chronobiology Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Anne Germain
- Department of Psychiatry, Sleep and Chronobiology Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Martica H. Hall
- Department of Psychiatry, Sleep and Chronobiology Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Peter L. Franzen
- Department of Psychiatry, Sleep and Chronobiology Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Eric A. Nofzinger
- Department of Psychiatry, Sleep and Chronobiology Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Cerêve Inc. Oakmont, PA
| | - Daniel J. Buysse
- Department of Psychiatry, Sleep and Chronobiology Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
45
|
Abstract
Sleep is profoundly altered during the course of infectious diseases. The typical response to infection includes an initial increase in nonrapid eye movement sleep (NREMS) followed by an inhibition in NREMS. REMS is inhibited during infections. Bacterial cell wall components, such as peptidoglycan and lipopolysaccharide, macrophage digests of these components, such as muramyl peptides, and viral products, such as viral double-stranded RNA, trigger sleep responses. They do so via pathogen-associated molecular pattern recognition receptors that, in turn, enhance cytokine production. Altered sleep and associated sleep-facilitated fever responses are likely adaptive responses to infection. Normal sleep in physiological conditions may also be influenced by gut microbes because the microbiota is affected by circadian rhythms, stressors, diet, and exercise. Furthermore, sleep loss enhances translocation of viable bacteria from the intestine, which provides another means by which sleep-microbe interactions impact neurobiology.
Collapse
|
46
|
Krueger JM, Frank MG, Wisor JP, Roy S. Sleep function: Toward elucidating an enigma. Sleep Med Rev 2016; 28:46-54. [PMID: 26447948 PMCID: PMC4769986 DOI: 10.1016/j.smrv.2015.08.005] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/16/2015] [Accepted: 08/19/2015] [Indexed: 01/11/2023]
Abstract
Sleep function remains controversial. Individual perspectives frame the issue of sleep function differently. We briefly illustrate how sleep measurement and the evolution, tissue organization levels, molecular mechanisms, and regulation of sleep could influence one's view of sleep function. Then we discuss six viable theories of sleep function. Sleep serves host-defense mechanisms and conserves caloric expenditures, but these functions likely are opportunistic functions evolving later in evolution. That sleep replenishes brain energy stores and that sleep serves a glymphatic function by removing toxic byproducts of waking activity are attractive ideas, but lack extensive supporting experimental evidence. That sleep restores performance is experimentally demonstrated and has obvious evolutionary value. However, this hypothesis lacks experimentally verified mechanisms although ideas relating to this issue are presented. Finally, the ideas surrounding the broad hypothesis that sleep serves a connectivity/plasticity function are many and attractive. There is experimental evidence that connectivity changes with sleep, sleep loss, and with changing afferent input, and that those changes are linked to sleep regulatory mechanisms. In our view, this is the leading contender for the primordial function of sleep. However, much refinement of ideas and innovative experimental approaches are needed to clarify the sleep-connectivity relationship.
Collapse
Affiliation(s)
- James M Krueger
- College of Medical Sciences, Washington State University-Spokane, WA, USA.
| | - Marcos G Frank
- College of Medical Sciences, Washington State University-Spokane, WA, USA
| | - Jonathan P Wisor
- College of Medical Sciences, Washington State University-Spokane, WA, USA
| | - Sandip Roy
- Department of Electrical Engineering, Washington State University-Pullman, WA, USA
| |
Collapse
|
47
|
The occurrence of individual slow waves in sleep is predicted by heart rate. Sci Rep 2016; 6:29671. [PMID: 27445083 PMCID: PMC4957222 DOI: 10.1038/srep29671] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/21/2016] [Indexed: 12/20/2022] Open
Abstract
The integration of near-infrared spectroscopy and electroencephalography measures presents an ideal method to study the haemodynamics of sleep. While the cortical dynamics and neuro-modulating influences affecting the transition from wakefulness to sleep is well researched, the assumption has been that individual slow waves, the hallmark of deep sleep, are spontaneously occurring cortical events. By creating event-related potentials from the NIRS recording, time-locked to the onset of thousands of individual slow waves, we show the onset of slow waves is phase-locked to an ongoing oscillation in the NIRS recording. This oscillation stems from the moment to moment fluctuations of light absorption caused by arterial pulsations driven by the heart beat. The same oscillating signal can be detected if the electrocardiogram is time-locked to the onset of the slow wave. The ongoing NIRS oscillation suggests that individual slow wave initiation is dependent on that signal, and not the other way round. However, the precise causal links remain speculative. We propose several potential mechanisms: that the heart-beat or arterial pulsation acts as a stimulus which evokes a down-state; local fluctuations in energy supply may lead to a network effect of hyperpolarization; that the arterial pulsations lead to corresponding changes in the cerebral-spinal-fluid which evokes the slow wave; or that a third neural generator, regulating heart rate and slow waves may be involved.
Collapse
|
48
|
Oonk M, Krueger JM, Davis CJ. Voluntary Sleep Loss in Rats. Sleep 2016; 39:1467-79. [PMID: 27166236 PMCID: PMC4909628 DOI: 10.5665/sleep.5984] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/28/2016] [Indexed: 12/22/2022] Open
Abstract
STUDY OBJECTIVES Animal sleep deprivation (SDEP), in contrast to human SDEP, is involuntary and involves repeated exposure to aversive stimuli including the inability of the animal to control the waking stimulus. Therefore, we explored intracranial self-stimulation (ICSS), an operant behavior, as a method for voluntary SDEP in rodents. METHODS Male Sprague-Dawley rats were implanted with electroencephalography/electromyography (EEG/EMG) recording electrodes and a unilateral bipolar electrode into the lateral hypothalamus. Rats were allowed to self-stimulate, or underwent gentle handling-induced SDEP (GH-SDEP), during the first 6 h of the light phase, after which they were allowed to sleep. Other rats performed the 6 h ICSS and 1 w later were subjected to 6 h of noncontingent stimulation (NCS). During NCS the individual stimulation patterns recorded during ICSS were replayed. RESULTS After GH-SDEP, ICSS, or NCS, time in nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep increased. Further, in the 24 h after SDEP, rats recovered all of the REM sleep lost during SDEP, but only 75% to 80% of the NREM sleep lost, regardless of the SDEP method. The magnitude of EEG slow wave responses occurring during NREM sleep also increased after SDEP treatments. However, NREM sleep EEG slow wave activity (SWA) responses were attenuated following ICSS, compared to GH-SDEP and NCS. CONCLUSIONS We conclude that ICSS and NCS can be used to sleep deprive rats. Changes in rebound NREM sleep EEG SWA occurring after ICSS, NCS, and GH-SDEP suggest that nonspecific effects of the SDEP procedure differentially affect recovery sleep phenotypes.
Collapse
Affiliation(s)
- Marcella Oonk
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA
| | - James M. Krueger
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA
| | - Christopher J. Davis
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA
- Sleep and Performance Research Center, Washington State University, Spokane, WA
| |
Collapse
|
49
|
Krueger JM, Roy S. Sleep's Kernel: Surprisingly small sections of brain, and even neuronal and glial networks in a dish, display many electrical indicators of sleep. SCIENTIST (PHILADELPHIA, PA.) 2016; 30:36-41. [PMID: 27695161 PMCID: PMC5044876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- James M Krueger
- Regents professor of neuroscience at Washington State University
| | - Sandip Roy
- Associate professor of electrical engineering at Washington State University
| |
Collapse
|
50
|
Konadhode RR, Pelluru D, Shiromani PJ. Unihemispheric Sleep: An Enigma for Current Models of Sleep-Wake Regulation. Sleep 2016; 39:491-4. [PMID: 26856898 DOI: 10.5665/sleep.5508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 12/16/2022] Open
Affiliation(s)
- Roda Rani Konadhode
- Departments of Psychiatry & Behavioral Sciences, Medical University of South Carolina
| | - Dheeraj Pelluru
- Departments of Psychiatry & Behavioral Sciences, Medical University of South Carolina
| | - Priyattam J Shiromani
- Departments of Psychiatry & Behavioral Sciences, Medical University of South Carolina.,Ralph H. Johnson VA Medical Center, Charleston, SC
| |
Collapse
|