1
|
Wen J, Xia W, Wang Y, Li J, Guo R, Zhao Y, Fen J, Duan X, Wei G, Wang G, Li Z, Xu H. Pathway elucidation and heterologous reconstitution of the long-chain alkane pentadecane biosynthesis from Pogostemon cablin. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:564-578. [PMID: 39556096 PMCID: PMC11772327 DOI: 10.1111/pbi.14520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Very-long-chain (VLC) alkanes are major components of hydrophobic cuticular waxes that cover the aerial epidermis of land plants, serving as a waterproofing barrier to protect the plant against environmental stresses. The mechanism of VLC-alkane biosynthesis has been extensively elucidated in plants. However, little is known about the biosynthesis of long-chain alkanes (LC, C13 ~ C19) such as pentadecane in plants. Alkanes with different chain lengths are also major constituents of fossil fuels and thus the discovery of the alkane biosynthetic machinery in plants would provide a toolbox of enzymes for the production of renewable hydrocarbon sources and next generations of biofuels. The top leaves of Pogostemon cablin at young stage accumulate large amounts of LC-alkane pentadecane, making this plant an excellent system for the elucidation of LC-alkane biosynthetic machinery in plant. We show here that LC-alkane pentadecane biosynthesis in P. cablin involves an endoplasmic reticulum (ER)-localized complex made of PcCER1-LIKE3 and PcCER3, homologues of Arabidopsis ECERIFERUM1 (AtCER1) and AtCER3 proteins that are involved in Arabidopsis VLC-alkane biosynthesis. We reconstitute the biosynthesis of pentadecane in Nicotiana benthamiana by co-expression of PcCER1-LIKE3 and PcCER3 and further improve its production by silencing multifunctional acetyl-CoA carboxylases involved in fatty acid elongation pathway. Taken together, we uncovered the key biosynthetic machinery of LC-alkane pentadecane in P. cablin and demonstrated that using these newly identified enzymes to engineer this LC-alkane for liquid biofuel production in a heterologous plant host is possible.
Collapse
Affiliation(s)
- Jing Wen
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| | - Wanxian Xia
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| | - Ying Wang
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| | - Juan Li
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| | - Ruihao Guo
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| | - Yue Zhao
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| | - Jing Fen
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| | - Xinyu Duan
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| | - Guo Wei
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| | - Haiyang Xu
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| |
Collapse
|
2
|
Tian R, Liu W, Wang Y, Wang W. Cuticular wax in wheat: biosynthesis, genetics, and the stress response. FRONTIERS IN PLANT SCIENCE 2024; 15:1498505. [PMID: 39703555 PMCID: PMC11658265 DOI: 10.3389/fpls.2024.1498505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024]
Abstract
All terrestrial plants possess a hydrophobic cuticle in the outermost layer of their aerial organs that is composed of cutin and wax. The cuticle serves as the first barrier between the plant and the surrounding environment and plays a key role in the resistance of plants to abiotic and biotic stressors. Additionally, they are closely associated with plant growth and development. Cuticular wax has attracted considerable attention as the main mediator of cuticular functions. In this review, we summarize the advances in the research investigating wheat cuticular wax, focusing on three aspects that include biosynthesis, genetics, and stress responses. Additionally, we discuss the applications of cuticular wax in wheat breeding.
Collapse
Affiliation(s)
- Ruiyang Tian
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
- Jinan Key Laboratory of Biological Breeding, Spring Valley Agriscience Co., Ltd., Jinan, China
| | - Wendi Liu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
- Jinan Key Laboratory of Biological Breeding, Spring Valley Agriscience Co., Ltd., Jinan, China
| | - Yuhai Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Wenqiang Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
- Jinan Key Laboratory of Biological Breeding, Spring Valley Agriscience Co., Ltd., Jinan, China
| |
Collapse
|
3
|
Hao Y, Luo H, Wang Z, Lu C, Ye X, Wang H, Miao L. Research progress on the mechanisms of fruit glossiness in cucumber. Gene 2024; 927:148626. [PMID: 38830516 DOI: 10.1016/j.gene.2024.148626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Cucumber (Cucumis sativus L.) is an important horticultural crop in China. Consumer requirements for aesthetically pleasing appearances of horticultural crops are gradually increasing, and cucumbers having a good visual appearance, as well as flavor, are important for breeding and industry development. The gloss of cucumber fruit epidermis is an important component of its appeal, and the wax layer on the fruit surface plays important roles in plant growth and forms a powerful barrier against external biotic and abiotic stresses. The wax of the cucumber epidermis is mainly composed of alkanes, and the luster of cucumber fruit is mainly determined by the alkane and silicon contents of the epidermis. Several genes, transcription factors, and transporters affect the synthesis of ultra-long-chain fatty acids and change the silicon content, further altering the gloss of the epidermis. However, the specific regulatory mechanisms are not clear. Here, progress in research on the luster of cucumber fruit epidermis from physiological, biochemical, and molecular regulatory perspectives are reviewed. Additionally, future research avenues in the field are discussed.
Collapse
Affiliation(s)
- Yiyang Hao
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Haiyan Luo
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Zhiyi Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Chuanlong Lu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Xiaolong Ye
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Huasen Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China.
| | - Li Miao
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
4
|
Mathew A, Poulose A, Sasidharan SP, Pasquini D, Grohens Y, Gopakumar DA, George JJ. Bioinspired Hydrophobicity via Temperature-Induced Phase Separation of Beeswax: A Pathway for Developing Cellulose Nanofiber-Based Adsorbents for the Removal of Conventional Tetracycline Tablets. ACS APPLIED BIO MATERIALS 2024; 7:7009-7022. [PMID: 39378355 DOI: 10.1021/acsabm.4c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Cellulose nanofiber-based aerogels (CNFAs) hold immense promise across diverse fields, but their innate hydrophilicity and structural fragility in water have constrained their utility in water purification. This study introduces a green approach to induce hydrophobicity into CNFAs via thermally induced phase separation (TIPS) of beeswax, which was adhered to the nanofiber by hydrogen bonding and hydrophobic-hydrophobic interactions. The fabricated aerogel was characterized by using FTIR, SEM, XRD, TGA, contact angle, BET, and compression test. The resulting beeswax cellulose nanofiber-based aerogels (BCNFAs) possess a highly porous structure and extremely low density, enabling the aerogels to self-float and facilitate practical applications and recycling. Due to these remarkable characteristics, BCNFAs had excellent adsorption capacity within 10 min to effectively remove tetracycline (TC) from water with an adsorption capacity of 31.6 mg/g. The demonstrated methodology to induce hydrophobicity in CNFAs via TIPS of beeswax on CNFAs could be an eco-friendly and scalable approach for the fabrication of robust BCNFAs without using any toxic chemicals. So far, this is the first report on to make robust hydrophobic CNFAs by employing TIPS of beeswax while maintaining the porosity of CNFAs, which is highly desirable for effective TC tablet adsorption from water in the present context. The demonstrated work has commercial potential as it focuses on the practical utility of the modified aerogel for adsorbing conventional tetracycline tablets, rather than exclusively targeting the pharmaceutical ingredient alone.
Collapse
Affiliation(s)
- Ajith Mathew
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala 682022, India
| | - Aiswarya Poulose
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala 682022, India
| | - Sari Panikkassery Sasidharan
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala 682022, India
| | - Daniel Pasquini
- Laboratoire d'Íngenierie des Mate riaux de Bretagne, Centre de Recherche, Rue Saint Maude-BP 95116, Lorient, Cedex F-56321, France
| | - Yves Grohens
- Chemistry Institute, Federal University of Uberlandia-UFU, Campus Santa Monica-Bloco1D-CP593, Uberlandia 38400-902, Brazil
| | - Deepu A Gopakumar
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala 682022, India
| | - Jinu Jacob George
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala 682022, India
| |
Collapse
|
5
|
Kloudová B, Vrkoslav V, Polášek M, Bosáková Z, Cvačka J. Structural characterization of wax esters using ultraviolet photodissociation mass spectrometry. Anal Bioanal Chem 2024; 416:5497-5512. [PMID: 39030399 PMCID: PMC11427557 DOI: 10.1007/s00216-024-05434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024]
Abstract
Wax esters play critical roles in biological systems, serving functions from energy storage to chemical signaling. Their diversity is attributed to variations in alcohol and acyl chains, including their length, branching, and the stereochemistry of double bonds. Traditional analysis by mass spectrometry with collisional activations (CID, HCD) offers insights into acyl chain lengths and unsaturation level. Still, it falls short in pinpointing more nuanced structural features like the position of double bonds. As a solution, this study explores the application of 213-nm ultraviolet photodissociation (UVPD) for the detailed structural analysis of wax esters. It is shown that lithium adducts provide unique fragments as a result of Norrish and Norrish-Yang reactions at the ester moieties and photoinduced cleavages of double bonds. The product ions are useful for determining chain lengths and localizing double bonds. UVPD spectra of various wax esters are presented systematically, and the effect of activation time is discussed. The applicability of tandem mass spectrometry with UVPD is demonstrated for wax esters from natural sources. The UHPLC analysis of jojoba oil proves the compatibility of MS2 UVPD with the chromatography time scale, and a direct infusion is used to analyze wax esters from vernix caseosa. Data shows the potential of UVPD and its combination with CID or HCD in advancing our understanding of wax ester structures.
Collapse
Affiliation(s)
- Barbora Kloudová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, CZ-128 43, Prague 2, Czech Republic
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
| | - Miroslav Polášek
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Zuzana Bosáková
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, CZ-128 43, Prague 2, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic.
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, CZ-128 43, Prague 2, Czech Republic.
| |
Collapse
|
6
|
Fakhrzad F, Jowkar A. Gene expression analysis of drought tolerance and cuticular wax biosynthesis in diploid and tetraploid induced wallflowers. BMC PLANT BIOLOGY 2024; 24:330. [PMID: 38664602 PMCID: PMC11044323 DOI: 10.1186/s12870-024-05007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Whole-genome doubling leads to cell reprogramming, upregulation of stress genes, and establishment of new pathways of drought stress responses in plants. This study investigated the molecular mechanisms of drought tolerance and cuticular wax characteristics in diploid and tetraploid-induced Erysimum cheiri. According to real-time PCR analysis, tetraploid induced wallflowers exhibited increased expression of several genes encoding transcription factors (TFs), including AREB1 and AREB3; the stress response genes RD29A and ERD1 under drought stress conditions. Furthermore, two cuticular wax biosynthetic pathway genes, CER1 and SHN1, were upregulated in tetraploid plants under drought conditions. Leaf morphological studies revealed that tetraploid leaves were covered with unique cuticular wax crystalloids, which produced a white fluffy appearance, while the diploid leaves were green and smooth. The greater content of epicuticular wax in tetraploid leaves than in diploid leaves can explain the decrease in cuticle permeability as well as the decrease in water loss and improvement in drought tolerance in wallflowers. GC‒MS analysis revealed that the wax components included alkanes, alcohols, aldehydes, and fatty acids. The most abundant wax compound in this plant was alkanes (50%), the most predominant of which was C29. The relative abundance of these compounds increased significantly in tetraploid plants under drought stress conditions. These findings revealed that tetraploid-induced wallflowers presented upregulation of multiple drought-related and wax biosynthesis genes; therefore, polyploidization has proved useful for improving plant drought tolerance.
Collapse
Affiliation(s)
- Fazilat Fakhrzad
- Department of Horticultural Science, College of Agriculture, Shiraz University, P.O. Box: 71441-13131, Shiraz, Iran
| | - Abolfazl Jowkar
- Department of Horticultural Science, College of Agriculture, Shiraz University, P.O. Box: 71441-13131, Shiraz, Iran.
| |
Collapse
|
7
|
Schilling F, Schumacher C, Köhl K, Sprenger H, Kopka J, Peters R, Haas M, Zuther E, Horn R. Whole-genome sequencing of tetraploid potato varieties reveals different strategies for drought tolerance. Sci Rep 2024; 14:5476. [PMID: 38443466 PMCID: PMC10914802 DOI: 10.1038/s41598-024-55669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Climate changes leading to increasingly longer seasonal drought periods in large parts of the world increase the necessity for breeding drought-tolerant crops. Cultivated potato (Solanum tuberosum), the third most important vegetable crop worldwide, is regarded as drought-sensitive due to its shallow root architecture. Two German tetraploid potato cultivars differing in drought tolerance and their F1-progeny were evaluated under various drought scenarios. Bulked segregant analyses were combined with whole-genome sequencing (BSA-Seq) using contrasting bulks of drought-tolerant and drought-sensitive F1-clones. Applying QTLseqr, 15 QTLs comprising 588,983 single nucleotide polymorphisms (SNPs) in 2325 genes associated with drought stress tolerance were identified. SeqSNP analyses in an association panel of 34 mostly starch potato varieties using 1-8 SNPs for each of 188 selected genes narrowed the number of candidate genes down to 10. In addition, ent-kaurene synthase B was the only gene present under QTL 10. Eight of the identified genes (StABP1, StBRI1, StKS, StLEA, StPKSP1, StPKSP2, StYAB5, and StZOG1) address plant development, the other three genes (StFATA, StHGD and StSYP) contribute to plant protection under drought stress. Allelic variation in these genes might be explored in future breeding for drought-tolerant potato varieties.
Collapse
Affiliation(s)
- Florian Schilling
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany
| | - Christina Schumacher
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany
| | - Karin Köhl
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Heike Sprenger
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Rolf Peters
- Landwirtschaftskammer Niedersachsen, Dethlingen 14, 29633, Munster, Germany
- PotatoConsult UG, Hiddinger Straße 33, 27374, Visselhövede, Germany
| | - Manuela Haas
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Ministry of Agriculture, Environment and Climate Protection, Henning-Von-Tresckow-Straße 2-13, 14467, Potsdam, Germany
| | - Ellen Zuther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Center of Artificial Intelligence in Public Health Research, Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
| | - Renate Horn
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany.
| |
Collapse
|
8
|
Zhao Y, Yang H, Yan Q, Zhu Z, Wang B, Song Z, Hou S, Zhou Y. n-Alkane 13C/12C indicates differential metabolic controls of fatty lipid chain extension in C3 and C4 grasses. PLANT PHYSIOLOGY 2024; 194:1299-1303. [PMID: 37988573 DOI: 10.1093/plphys/kiad619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/03/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
Fundamental differences in metabolic control of fatty acids chain extension are reflected in the contrasting carbon isotopic composition profiles of C3 and C4 grasses.
Collapse
Affiliation(s)
- Yu Zhao
- Isotopomics in Chemical Biology (ICB), School of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Hubiao Yang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Qiulin Yan
- Isotopomics in Chemical Biology (ICB), School of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhenyu Zhu
- Isotopomics in Chemical Biology (ICB), School of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Bo Wang
- Isotopomics in Chemical Biology (ICB), School of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | | | - Shengwei Hou
- Department of Ocean Science & Engineering, Southern University of Science & Technology, Shenzhen 518055, China
| | - Youping Zhou
- Department of Ocean Science & Engineering, Southern University of Science & Technology, Shenzhen 518055, China
- Isotopomics in Chemical Biology (ICB), School of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
9
|
Zhang W, Hu W, Zhu Q, Niu M, An N, Feng Y, Kawamura K, Fu P. Hydroxy fatty acids in the surface Earth system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167358. [PMID: 37793460 DOI: 10.1016/j.scitotenv.2023.167358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023]
Abstract
Lipids are ubiquitous and highly abundant in a wide range of organisms and have been found in various types of environmental media. These molecules play a crucial role as organic tracers by providing a chemical perspective on viewing the material world, as well as offering a wealth of information on metabolic activities. Among the diverse lipid compounds, hydroxy fatty acids (HFAs) with one to multiple hydroxyl groups attached to the carbon chain stand out as important biomarkers for different sources of organic matter. HFAs are widespread in nature and are involved in biotransformation and oxidation processes in living organisms. The unique chemical and physical properties attributed to the hydroxyl group make HFAs ideal biomarkers in biomedicine and environmental toxicology, as well as organic geochemistry. The molecular distribution patterns of HFAs can be unique and diagnostic for a given class of organisms, including animals, plants, and microorganisms. Thus, HFAs can act as a valuable proxy for understanding the ecological relationships between different organisms and their environment. Furthermore, HFAs have numerous industrial applications due to their higher reactivity, viscosity, and solvent miscibility. This review paper integrates the latest research on the sources and chemical analyses of HFAs, as well as their applications in industrial/medicinal production and as biomarkers in environmental studies. This review article also provides insights into the biogeochemical cycles of HFAs in the surface Earth system, highlighting the importance of these compounds in understanding the complex interactions between living organisms and the environment.
Collapse
Affiliation(s)
- Wenxin Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China.
| | - Quanfei Zhu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Mutong Niu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Na An
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yuqi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Kimitaka Kawamura
- Chubu Institute for Advanced Studies, Chubu University, Kasugai 487-8501, Japan
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
10
|
Antón-Herrero R, Chicca I, García-Delgado C, Crognale S, Lelli D, Gargarello RM, Herrero J, Fischer A, Thannberger L, Eymar E, Petruccioli M, D’Annibale A. Main Factors Determining the Scale-Up Effectiveness of Mycoremediation for the Decontamination of Aliphatic Hydrocarbons in Soil. J Fungi (Basel) 2023; 9:1205. [PMID: 38132804 PMCID: PMC10745009 DOI: 10.3390/jof9121205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Soil contamination constitutes a significant threat to the health of soil ecosystems in terms of complexity, toxicity, and recalcitrance. Among all contaminants, aliphatic petroleum hydrocarbons (APH) are of particular concern due to their abundance and persistence in the environment and the need of remediation technologies to ensure their removal in an environmentally, socially, and economically sustainable way. Soil remediation technologies presently available on the market to tackle soil contamination by petroleum hydrocarbons (PH) include landfilling, physical treatments (e.g., thermal desorption), chemical treatments (e.g., oxidation), and conventional bioremediation. The first two solutions are costly and energy-intensive approaches. Conversely, bioremediation of on-site excavated soil arranged in biopiles is a more sustainable procedure. Biopiles are engineered heaps able to stimulate microbial activity and enhance biodegradation, thus ensuring the removal of organic pollutants. This soil remediation technology is currently the most environmentally friendly solution available on the market, as it is less energy-intensive and has no detrimental impact on biological soil functions. However, its major limitation is its low removal efficiency, especially for long-chain hydrocarbons (LCH), compared to thermal desorption. Nevertheless, the use of fungi for remediation of environmental contaminants retains the benefits of bioremediation treatments, including low economic, social, and environmental costs, while attaining removal efficiencies similar to thermal desorption. Mycoremediation is a widely studied technology at lab scale, but there are few experiences at pilot scale. Several factors may reduce the overall efficiency of on-site mycoremediation biopiles (mycopiles), and the efficiency detected in the bench scale. These factors include the bioavailability of hydrocarbons, the selection of fungal species and bulking agents and their application rate, the interaction between the inoculated fungi and the indigenous microbiota, soil properties and nutrients, and other environmental factors (e.g., humidity, oxygen, and temperature). The identification of these factors at an early stage of biotreatability experiments would allow the application of this on-site technology to be refined and fine-tuned. This review brings together all mycoremediation work applied to aliphatic petroleum hydrocarbons (APH) and identifies the key factors in making mycoremediation effective. It also includes technological advances that reduce the effect of these factors, such as the structure of mycopiles, the application of surfactants, and the control of environmental factors.
Collapse
Affiliation(s)
- Rafael Antón-Herrero
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (R.A.-H.); (E.E.)
| | | | - Carlos García-Delgado
- Department of Geology and Geochemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Silvia Crognale
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| | - Davide Lelli
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| | - Romina Mariel Gargarello
- Water, Air and Soil Unit, Eurecat, Centre Tecnològic de Catalunya, 08242 Manresa, Spain; (R.M.G.); (J.H.)
| | - Jofre Herrero
- Water, Air and Soil Unit, Eurecat, Centre Tecnològic de Catalunya, 08242 Manresa, Spain; (R.M.G.); (J.H.)
| | | | | | - Enrique Eymar
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (R.A.-H.); (E.E.)
| | - Maurizio Petruccioli
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| | - Alessandro D’Annibale
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| |
Collapse
|
11
|
Chemelewski R, McKinley BA, Finlayson S, Mullet JE. Epicuticular wax accumulation and regulation of wax pathway gene expression during bioenergy Sorghum stem development. FRONTIERS IN PLANT SCIENCE 2023; 14:1227859. [PMID: 37936930 PMCID: PMC10626490 DOI: 10.3389/fpls.2023.1227859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/11/2023] [Indexed: 11/09/2023]
Abstract
Bioenergy sorghum is a drought-tolerant high-biomass C4 grass targeted for production on annual cropland marginal for food crops due primarily to abiotic constraints. To better understand the overall contribution of stem wax to bioenergy sorghum's resilience, the current study characterized sorghum stem cuticular wax loads, composition, morphometrics, wax pathway gene expression and regulation using vegetative phase Wray, R07020, and TX08001 genotypes. Wax loads on sorghum stems (~103-215 µg/cm2) were much higher than Arabidopsis stem and leaf wax loads. Wax on developing sorghum stem internodes was enriched in C28/30 primary alcohols (~65%) while stem wax on fully developed stems was enriched in C28/30 aldehydes (~80%). Scanning Electron Microscopy showed minimal wax on internodes prior to the onset of elongation and that wax tubules first appear associated with cork-silica cell complexes when internode cell elongation is complete. Sorghum homologs of genes involved in wax biosynthesis/transport were differentially expressed in the stem epidermis. Expression of many wax pathway genes (i.e., SbKCS6, SbCER3-1, SbWSD1, SbABCG12, SbABCG11) is low in immature apical internodes then increases at the onset of stem wax accumulation. SbCER4 is expressed relatively early in stem development consistent with accumulation of C28/30 primary alcohols on developing apical internodes. High expression of two SbCER3 homologs in fully elongated internodes is consistent with a role in production of C28/30 aldehydes. Gene regulatory network analysis aided the identification of sorghum homologs of transcription factors that regulate wax biosynthesis (i.e., SbSHN1, SbWRI1/3, SbMYB94/96/30/60, MYS1) and other transcription factors that could regulate and specify expression of the wax pathway in epidermal cells during cuticle development.
Collapse
Affiliation(s)
- Robert Chemelewski
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, United States
| | - Brian A. McKinley
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, United States
| | - Scott Finlayson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - John E. Mullet
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
12
|
Song G, Liu C, Fang B, Ren J, Feng H. Identification of an epicuticular wax crystal deficiency gene Brwdm1 in Chinese cabbage ( Brassica campestris L. ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2023; 14:1161181. [PMID: 37324687 PMCID: PMC10267742 DOI: 10.3389/fpls.2023.1161181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
Introduction The cuticle wax covering the plant surface is a whitish hydrophobic protective barrier in Chinese cabbage, and the epicuticular wax crystal deficiency normally has higher commodity value for a tender texture and glossy appearance. Herein, two allelic epicuticular wax crystal deficiency mutants, wdm1 and wdm7, were obtained from the EMS mutagenesis population of a Chinese cabbage DH line 'FT'. Methods The cuticle wax morphology was observed by Cryo-scanning electron microscopy (Cryo-SEM) and the composition of wax was determined by GC-MS. The candidate mutant gene was found by MutMap and validated by KASP. The function of candidate gene was verified by allelic variation. Results The mutants had fewer wax crystals and lower leaf primary alcohol and ester content. Genetic analysis revealed that the epicuticular wax crystal deficiency phenotype was controlled by a recessive nuclear gene, named Brwdm1. MutMap and KASP analyses indicated that BraA01g004350.3C, encoding an alcohol-forming fatty acyl-CoA reductase, was the candidate gene for Brwdm1. A SNP 2,113,772 (C to T) variation in the 6th exon of Brwdm1 in wdm1 led to the 262nd amino acid substitution from threonine (T) to isoleucine (I), which existed in a rather conserved site among the amino acid sequences from Brwdm1 and its homologs. Meanwhile, the substitution changed the three-dimensional structure of Brwdm1. The SNP 2,114,994 (G to A) in the 10th exon of Brwdm1 in wdm7 resulted in the change of the 434th amino acid from valine (V) to isoleucine (I), which occurred in the STERILE domain. KASP genotyping showed that SNP 2,114,994 was co-segregated with glossy phenotype. Compared with the wild type, the relative expression of Brwdm1 was significantly decreased in the leaves, flowers, buds and siliques of wdm1. Discussion These results indicated that Brwdm1 was indispensable for the wax crystals formation and its mutation resulted in glossy appearance in Chinese cabbage.
Collapse
Affiliation(s)
| | | | | | - Jie Ren
- *Correspondence: Jie Ren, ; Hui Feng,
| | - Hui Feng
- *Correspondence: Jie Ren, ; Hui Feng,
| |
Collapse
|
13
|
Fan W, Liu S, Feng Y, Xu Y, Liu C, Zhu P, Zhang S, Xia Z, Zhao A. Stigma type and transcriptome analyses of mulberry revealed the key factors associated with Ciboria shiraiana resistance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107743. [PMID: 37186979 DOI: 10.1016/j.plaphy.2023.107743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/09/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023]
Abstract
Ciboria shiraiana is a fungal pathogen and the causal agent of hypertrophy sorosis scleroteniosis (HSS) in mulberry, leading to substantial economic losses in the mulberry fruit-related industry. To obtain HSS resistant resources and investigate the resistance mechanism, the resistances of 14 mulberry varieties were assessed. Morus laevigata Wall. (MLW) varieties showed strong resistance to C. shiraiana, and the pathogen's infection was associated with mulberry fluorescence. Stigmas were identified as the infection site through cutting experiments. Susceptible varieties (S-varieties) displayed secretory droplets on their stigma papillar cell surfaces, while MLWs lacked these secretions. Correlation analysis between the secretion rate and the diseased fruit rate indicated that the differences between resistant varieties (R-varieties) and S-varieties were related to the stigma type. Furthermore, comparative transcriptome analysis was performed on stigma and ovary samples from R- and S-varieties. Compared with the stigma of R-varieties, the key differentially expressed genes (DEGs) with significantly higher expression in S-variety stigmas mainly participated in the fatty acid biosynthetic process. In R-variety stigmas and ovaries, the transcript levels of DEGs involved in defense response, including resistance (R) genes, were significantly higher than that of S-varieties. Overexpression of MlwRPM1-2 and MlwRGA3 enhances resistance to C. shiraiana and Sclerotinia sclerotiorum, but not Botrytis cinerea in tobacco. These findings help us explain the different resistance mechanisms of mulberry to C. shiraiana, and the critical defense genes in R-varieties can be applied to breeding antifungal plant varieties.
Collapse
Affiliation(s)
- Wei Fan
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400715, China
| | - Shuman Liu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400715, China
| | - Yang Feng
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400715, China
| | - Yazhen Xu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400715, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, 610106, China
| | - Panpan Zhu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400715, China
| | - Shuai Zhang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400715, China
| | - Zhongqiang Xia
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400715, China
| | - Aichun Zhao
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
14
|
Using oils and fats to replace sugars as feedstocks for biomanufacturing: Challenges and opportunities for the yeast Yarrowia lipolytica. Biotechnol Adv 2023; 65:108128. [PMID: 36921878 DOI: 10.1016/j.biotechadv.2023.108128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
More than 200 million tons of plant oils and animal fats are produced annually worldwide from oil, crops, and the rendered animal fat industry. Triacylglycerol, an abundant energy-dense compound, is the major form of lipid in oils and fats. While oils or fats are very important raw materials and functional ingredients for food or related products, a significant portion is currently diverted to or recovered as waste. To significantly increase the value of waste oils or fats and expand their applications with a minimal environmental footprint, microbial biomanufacturing is presented as an effective strategy for adding value. Though both bacteria and yeast can be engineered to use oils or fats as the biomanufacturing feedstocks, the yeast Yarrowia lipolytica is presented as one of the most attractive platforms. Y. lipolytica is oleaginous, generally regarded as safe, demonstrated as a promising industrial producer, and has unique capabilities for efficient catabolism and bioconversion of lipid substrates. This review summarizes the major challenges and opportunities for Y. lipolytica as a new biomanufacturing platform for the production of value-added products from oils and fats. This review also discusses relevant cellular and metabolic engineering strategies such as fatty acid transport, fatty acid catabolism and bioconversion, redox balances and energy yield, cell morphology and stress response, and bioreaction engineering. Finally, this review highlights specific product classes including long-chain diacids, wax esters, terpenes, and carotenoids with unique synthesis opportunities from oils and fats in Y. lipolytica.
Collapse
|
15
|
Speckert TC, Petibon F, Wiesenberg GLB. Late-season biosynthesis of leaf fatty acids and n-alkanes of a mature beech ( Fagus sylvatica) tree traced via 13CO 2 pulse-chase labelling and compound-specific isotope analysis. FRONTIERS IN PLANT SCIENCE 2023; 13:1029026. [PMID: 36684794 PMCID: PMC9853289 DOI: 10.3389/fpls.2022.1029026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Leaf cuticular waxes play an important role in reducing evapotranspiration via diffusion. However, the ability of mature trees to regulate the biosynthesis of waxes to changing conditions (e.g., drought, light exposition) remain an open question, especially during the late growing season. This holds also true for one of the most widely distributed trees in Central Europe, the European beech tree (Fagus sylvatica L.). In order to investigate the ongoing formation of wax constituents like alkanes and fatty acids, we conducted a 13CO2 pulse-chase labelling experiment on sun-exposed and shaded branches of a mature beech tree during the late summer 2018. The 13C-label was traced via compound-specific δ13C isotope analysis of n-alkanes and fatty acids to determine the de-novo biosynthesis within these compound classes. We did not observe a significant change in lipid concentrations during the late growing season, but we found higher n-alkane concentrations in sun-exposed compared to shaded leaves in August and September. The n-alkane and fatty acid composition showed ongoing modifications during the late growing season. Together with the uptake and following subsequent decrease of the 13C-label, this suggests ongoing de-novo biosynthesis, especially of fatty acids in European beech leaves. Moreover, there is a high variability in the 13C-label among individual branches and between sun-exposed and shaded leaves. At the same time, sun-exposed leaves invest more of the assimilated C into secondary metabolites such as lipids than shaded leaves. This indicates that the investigated mature beech tree could adjust its lipid production and composition in order to acclimate to changes in microclimates within the tree crown and during the investigated period.
Collapse
|
16
|
Liu Q, Huang H, Chen Y, Yue Z, Wang Z, Qu T, Xu D, Lü S, Hu H. Two Arabidopsis MYB-SHAQKYF transcription repressors regulate leaf wax biosynthesis via transcriptional suppression on DEWAX. THE NEW PHYTOLOGIST 2022; 236:2115-2130. [PMID: 36110041 DOI: 10.1111/nph.18498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Plant cuticular wax accumulation limits nonstomatal transpiration and is regulated by external environmental stresses. DEWAX (DECREASE WAX BIOSYNTHESIS) plays a vital role in diurnal wax biosynthesis. However, how DEWAX expression is controlled and the molecular mechanism of wax biosynthesis regulated by the diurnal cycle remains largely unknown. Here, we identified two Arabidopsis MYB-SHAQKYF transcription factors, MYS1 and MYS2, as new regulators in wax biosynthesis and drought tolerance. Mutations of both MYS1 and MYS2 caused significantly reduced leaf wax, whereas overexpression of MYS1 or MYS2 increased leaf wax biosynthesis and enhanced drought tolerance. Our results demonstrated that MYS1 and MYS2 act as transcription repressors and directly suppress DEWAX expression via ethylene response factor-associated amphiphilic repression motifs. Genetic interaction analysis with DEWAX, SPL9 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9), and CER1 (ECERIFERUM 1) in wax biosynthesis and under drought stresses demonstrated that MYS1 and MYS2 act upstream of the DEWAX-SPL9 module, thus regulating CER1 expression. Expression analysis suggested that the diurnal expression pattern of DEWAX is partly regulated by MYS1 and MYS2. Our findings demonstrate the roles of two unidentified transcription repressors, MYS1 and MYS2, in wax biosynthesis and provide insights into the mechanism of diurnal cycle-regulated wax biosynthesis.
Collapse
Affiliation(s)
- Qing Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yongqiang Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhichuang Yue
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhipeng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingting Qu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Danyun Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
17
|
He J, Li C, Hu N, Zhu Y, He Z, Sun Y, Wang Z, Wang Y. ECERIFERUM1-6A is required for the synthesis of cuticular wax alkanes and promotes drought tolerance in wheat. PLANT PHYSIOLOGY 2022; 190:1640-1657. [PMID: 36000923 PMCID: PMC9614490 DOI: 10.1093/plphys/kiac394] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 05/27/2023]
Abstract
Cuticular waxes cover the aerial surfaces of land plants and protect them from various environmental stresses. Alkanes are major wax components and contribute to plant drought tolerance, but the biosynthesis and regulation of alkanes remain largely unknown in wheat (Triticum aestivum L.). Here, we identified and functionally characterized a key alkane biosynthesis gene ECERIFERUM1-6A (TaCER1-6A) from wheat. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated knockout mutation in TaCER1-6A greatly reduced the contents of C27, C29, C31, and C33 alkanes in wheat leaves, while TaCER1-6A overexpression significantly increased the contents of these alkanes in wheat leaves, suggesting that TaCER1-6A is specifically involved in the biosynthesis of C27, C29, C31, and C33 alkanes on wheat leaf surfaces. TaCER1-6A knockout lines exhibited increased cuticle permeability and reduced drought tolerance, whereas TaCER1-6A overexpression lines displayed reduced cuticle permeability and enhanced drought tolerance. TaCER1-6A was highly expressed in flag leaf blades and seedling leaf blades and could respond to abiotic stresses and abscisic acid. TaCER1-6A was located in the endoplasmic reticulum, which is the subcellular compartment responsible for wax biosynthesis. A total of three haplotypes (HapI/II/III) of TaCER1-6A were identified in 43 wheat accessions, and HapI was the dominant haplotype (95%) in these wheat varieties. Additionally, we identified two R2R3-MYB transcription factors TaMYB96-2D and TaMYB96-5D that bound directly to the conserved motif CAACCA in promoters of the cuticular wax biosynthesis genes TaCER1-6A, TaCER1-1A, and fatty acyl-CoA reductase4. Collectively, these results suggest that TaCER1-6A is required for C27, C29, C31, and C33 alkanes biosynthesis and improves drought tolerance in wheat.
Collapse
Affiliation(s)
- Jiajia He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chongzhao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ning Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuyao Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhaofeng He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yulin Sun
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
18
|
Wang M, Zhu Q, Li X, Hu J, Song F, Liang W, Ma X, Wang L, Liang W. Effect of Drought Stress on Degradation and Remodeling of Membrane Lipids in Nostoc flagelliforme. Foods 2022; 11:foods11121798. [PMID: 35741996 PMCID: PMC9222375 DOI: 10.3390/foods11121798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Nostoc flagelliforme is a kind of terrestrial edible cyanobacteria with important ecological and economic value which has developed special mechanisms to adapt to drought conditions. However, the specific mechanism of lipidome changes in drought tolerance of N. flagelliforme has not been well understood. In this study, the ultra-high-performance liquid chromatography and mass spectrometry were employed to analyze the lipidome changes of N. flagelliforme under dehydration. A total of 853 lipid molecules were identified, of which 171 were significantly different from that of the control group. The digalactosyldiacylglycerol/monogalactosyldiacylglycerol (DGDG/MGDG) ratio was increased. The amount of wax ester (WE) was sharply decreased during drought stress, while Co (Q10) was accumulated. The levels of odd chain fatty acids (OCFAs) were increased under dehydration, positively responding to drought stress according to the energy metabolism state. In conclusion, the lipidomic data corroborated that oxidation, degradation, and biosynthesis of membrane lipids took place during lipid metabolism, which can respond to drought stress through the transformation of energy and substances. Besides, we constructed a lipid metabolic model demonstrating the regulatory mechanism of drought stress in N. flagelliforme. The present study provides insight into the defense strategies of cyanobacteria in lipid metabolic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wenyu Liang
- Correspondence: ; Tel./Fax: +86-0951-206-2810
| |
Collapse
|
19
|
Yang X, Cui L, Li S, Ma C, Kosma DK, Zhao H, Lü S. Fatty alcohol oxidase 3 (FAO3) and FAO4b connect the alcohol- and alkane-forming pathways in Arabidopsis stem wax biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3018-3029. [PMID: 35560209 DOI: 10.1093/jxb/erab532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/03/2021] [Indexed: 06/15/2023]
Abstract
The alcohol- and alkane-forming pathways in cuticular wax biosynthesis are well characterized in Arabidopsis. However, potential interactions between the two pathways remain unclear. Here, we reveal that mutation of CER4, the key gene in the alcohol-forming pathway, also led to a deficiency in the alkane-forming pathway in distal stems. To trace the connection between the two pathways, we characterized two homologs of fatty alcohol oxidase (FAO), FAO3 and FAO4b, which were highly expressed in distal stems and localized to the endoplasmic reticulum. The amounts of waxes from the alkane-forming pathway were significantly decreased in stems of fao4b and much lower in fao3 fao4b plants, indicative of an overlapping function for the two proteins in wax synthesis. Additionally, overexpression of FAO3 and FAO4b in Arabidopsis resulted in a dramatic reduction of primary alcohols and significant increases of aldehydes and related waxes. Moreover, expressing FAO3 or FAO4b led to significantly decreased amounts of C18-C26 alcohols in yeast co-expressing CER4 and FAR1. Collectively, these findings demonstrate that FAO3 and FAO4b are functionally redundant in suppressing accumulation of primary alcohols and contributing to aldehyde production, which provides a missing and long-sought-after link between these two pathways in wax biosynthesis.
Collapse
Affiliation(s)
- Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Lili Cui
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250014, China
| | - Shipeng Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
20
|
Huang H, Ayaz A, Zheng M, Yang X, Zaman W, Zhao H, Lü S. ArabidopsisKCS5 and KCS6 Play Redundant Roles in Wax Synthesis. Int J Mol Sci 2022; 23:ijms23084450. [PMID: 35457268 PMCID: PMC9027390 DOI: 10.3390/ijms23084450] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 01/09/2023] Open
Abstract
3-ketoacyl-CoA synthases (KCSs), as components of a fatty acid elongase (FAE) complex, play key roles in determining the chain length of very-long-chain fatty acids (VLCFAs). KCS6, taking a predominate role during the elongation from C26 to C28, is well known to play an important role in wax synthesis. KCS5 is one paralog of KCS6 and its role in wax synthesis remains unknown. Wax phenotype analysis showed that in kcs5 mutants, the total amounts of wax components derived from carbon 32 (C32) and C34 were apparently decreased in leaves, and those of C26 to C32 derivatives were obviously decreased in flowers. Heterologous yeast expression analysis showed that KCS5 alone displayed specificity towards C24 to C28 acids, and its coordination with CER2 and CER26 catalyzed the elongation of acids exceeding C28, especially displaying higher activity towards C28 acids than KCS6. BiLC experiments identified that KCS5 physically interacts with CER2 and CER26. Wax phenotype analysis of different organs in kcs5 and kcs6 single or double mutants showed that KCS6 mutation causes greater effects on the wax synthesis than KCS5 mutation in the tested organs, and simultaneous repression of both protein activities caused additive effects, suggesting that during the wax biosynthesis process, KCS5 and KCS6 play redundant roles, among which KCS6 plays a major role. In addition, simultaneous mutations of two genes nearly block drought-induced wax production, indicating that the reactions catalyzed by KCS5 and KCS6 play a critical role in the wax biosynthesis in response to drought.
Collapse
Affiliation(s)
- Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (H.H.); (A.A.); (M.Z.)
| | - Asma Ayaz
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (H.H.); (A.A.); (M.Z.)
| | - Minglü Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (H.H.); (A.A.); (M.Z.)
| | - Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China;
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Korea;
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (H.H.); (A.A.); (M.Z.)
- Correspondence: (H.Z.); (S.L.); Tel.: +86-27-88663882 (S.L.)
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (H.H.); (A.A.); (M.Z.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Correspondence: (H.Z.); (S.L.); Tel.: +86-27-88663882 (S.L.)
| |
Collapse
|
21
|
Zhang Y, Guo X, Yang H, Shi S. The Studies in Constructing Yeast Cell Factories for the Production of Fatty Acid Alkyl Esters. Front Bioeng Biotechnol 2022; 9:799032. [PMID: 35087801 PMCID: PMC8787340 DOI: 10.3389/fbioe.2021.799032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 12/25/2022] Open
Abstract
Fatty acid alkyl esters have broad applications in biofuels, lubricant formulas, paints, coatings, and cosmetics. Traditionally, these esters are mostly produced through unsustainable and energy-intensive processes. In contrast, microbial production of esters from renewable and sustainable feedstocks may provide a promising alternative and has attracted widespread attention in recent years. At present, yeasts are used as ideal hosts for producing such esters, due to their availability for high-density fermentation, resistance to phage infection, and tolerance against toxic inhibitors. Here, we summarize recent development on the biosynthesis of alkyl esters, including fatty acid ethyl esters (FAEEs), fatty acid short-branched chain alkyl esters (FASBEs), and wax esters (WEs) by various yeast cell factories. We focus mainly on the enzyme engineering strategies of critical wax ester synthases, and the pathway engineering strategies employed for the biosynthesis of various ester products. The bottlenecks that limit productivity and their potential solutions are also discussed in this review.
Collapse
Affiliation(s)
- Yang Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiao Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huaiyi Yang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
22
|
Escolà Casas M, Matamoros V. Linking plant-root exudate changes to micropollutant exposure in aquatic plants (Lemna minor and Salvinia natans). A prospective metabolomic study. CHEMOSPHERE 2022; 287:132056. [PMID: 34481172 DOI: 10.1016/j.chemosphere.2021.132056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Recent findings indicate that plant-root exudates can stimulate plant-associated microorganisms to enhance the biodegradation of contaminants in constructed wetlands. To understand this process, we studied the root-exudation changes of two aquatic plants (Lemna minor and Salvinia natans) upon micropollutants exposure (10, 100 and 1000 μg/L mixes containing naproxen, diclofenac, carbamazepine, and benzotriazole). After a 2-day exposure, plant exudates were collected, extracted and non-target analysis was performed with a gas chromatography-high resolution Orbitrap mass-spectrometer. Plants didn't show morphological or growth differences between the control and spiked reactors, but exudation changes were observed in both plants at all concentration levels. Partial least squares discriminant analysis showed that, for Lemna minor, the increase of micropollutants exposure was linked to the reduction of sugar and fatty acid exudation. This may trigger changes in the microbial community living on complex carbon forms. Instead, in Salvinia natans, micropollutants exposure was linked to the release of long-chain compounds such as cuticular waxes and sesquiterpenoids, which might be related to stress signaling. These results demonstrate that plant micropollutant-exposure at environmentally relevant concentration levels triggers changes in root exudates. This may help to design new strategies to enhance micropollutants degradation in nature based solutions such as in constructed wetlands.
Collapse
Affiliation(s)
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| |
Collapse
|
23
|
Ji J, Cao W, Tong L, Fang Z, Zhang Y, Zhuang M, Wang Y, Yang L, Lv H. Identification and validation of an ECERIFERUM2- LIKE gene controlling cuticular wax biosynthesis in cabbage (Brassica oleracea L. var. capitata L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:4055-4066. [PMID: 34546379 DOI: 10.1007/s00122-021-03947-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
A single nucleotide mutation of BoCER2 is the primary cause of the wax deficiency in cabbage. An effective allele-specific KASP marker was developed for marker-assisted selection of glossiness. TL28-1 is a novel spontaneous wax-deficient mutant with a glossy phenotype identified from cabbage. In this study, the genetic analysis suggested that the wax-deficient trait of TL28-1 was controlled by a single recessive gene. All wax monomers longer than 28 carbons were significantly decreased in TL28-1. Fine-mapping results showed that the wax-deficient locus wdtl28 was located at an 80-kb interval between BOL01-20 and BOL01-24 markers on chromosome 1. According to the genome annotation of B. oleracea, the ECERIFERUM2- LIKE (CER2-LIKE) gene, BoCER2, was identified as the candidate gene. Phylogenetic analysis showed that BoCER2 and other CER2-LIKEs from vascular plants formed a clade within the BAHD superfamily of acyltransferases. The BoCER2 transcript was detected in various tissues, including stem, leaf, flower, and silique, but not in the cabbage roots. Subcellular localization indicated that BoCER2 protein functions in the endoplasmic reticulum. Further sequence analysis showed that a single nucleotide mutation (G to A) is present in the BoCER2 coding sequence in TL28-1, leading to a stop codon (TGA), hence premature translation termination. Linkage analysis showed that the homozygotic mutational BoCER2 co-segregated with wax deficiency. Moreover, the complementation test suggested that BoCER2 from wild type can rescue the wax deficiency of TL28-1. These results indicate that BoCER2 mutation hinders the elongation of very-long-chain fatty acid precursors in TL28-1, leading to wax deficiency. The allele-specific KASP marker designed in this study could be effective for marker-assisted selection of glossiness.
Collapse
Affiliation(s)
- Jialei Ji
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China
| | - Wenxue Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China
| | - Long Tong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China.
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China.
| |
Collapse
|
24
|
Aselmeyer C, Légeret B, Bénarouche A, Sorigué D, Parsiegla G, Beisson F, Carrière F. Fatty Acid Photodecarboxylase Is an Interfacial Enzyme That Binds to Lipid-Water Interfaces to Access Its Insoluble Substrate. Biochemistry 2021; 60:3200-3212. [PMID: 34633183 DOI: 10.1021/acs.biochem.1c00317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fatty acid photodecarboxylase (FAP), one of the few natural photoenzymes characterized so far, is a promising biocatalyst for lipid-to-hydrocarbon conversion using light. However, the optimum supramolecular organization under which the fatty acid (FA) substrate should be presented to FAP has not been addressed. Using palmitic acid embedded in phospholipid liposomes, phospholipid-stabilized microemulsions, and mixed micelles, we show that FAP displays a preference for FAs present in liposomes and at the surface of microemulsions. The kinetics of adsorption onto phospholipid and galactolipid monomolecular films further suggests the ability of FAP to bind to and penetrate into membranes, with a higher affinity in the presence of FAs. The FAP structure reveals a potential interfacial recognition site with clusters of hydrophobic and basic residues surrounding the active site entrance. The resulting dipolar moment suggests the orientation of FAP at negatively charged interfaces. These findings provide important clues about the mode of action of FAP and the development of FAP-based bioconversion processes.
Collapse
Affiliation(s)
- Cyril Aselmeyer
- Aix Marseille Université, CNRS, UMR 7281 Bioénergétique et Ingénierie des Protéines, 13009 Marseille, France.,CEA, CNRS, Aix Marseille Université, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), UMR 7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Bertrand Légeret
- CEA, CNRS, Aix Marseille Université, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), UMR 7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Anaïs Bénarouche
- Aix Marseille Université, CNRS, UMR 7281 Bioénergétique et Ingénierie des Protéines, 13009 Marseille, France
| | - Damien Sorigué
- CEA, CNRS, Aix Marseille Université, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), UMR 7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Goetz Parsiegla
- Aix Marseille Université, CNRS, UMR 7281 Bioénergétique et Ingénierie des Protéines, 13009 Marseille, France
| | - Fred Beisson
- CEA, CNRS, Aix Marseille Université, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), UMR 7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Frédéric Carrière
- Aix Marseille Université, CNRS, UMR 7281 Bioénergétique et Ingénierie des Protéines, 13009 Marseille, France
| |
Collapse
|
25
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
26
|
Soong YHV, Zhao L, Liu N, Yu P, Lopez C, Olson A, Wong HW, Shao Z, Xie D. Microbial synthesis of wax esters. Metab Eng 2021; 67:428-442. [PMID: 34391890 DOI: 10.1016/j.ymben.2021.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/27/2021] [Accepted: 08/10/2021] [Indexed: 01/10/2023]
Abstract
Microbial synthesis of wax esters (WE) from low-cost renewable and sustainable feedstocks is a promising path to achieve cost-effectiveness in biomanufacturing. WE are industrially high-value molecules, which are widely used for applications in chemical, pharmaceutical, and food industries. Since the natural WE resources are limited, the WE production mostly rely on chemical synthesis from rather expensive starting materials, and therefore solution are sought from development of efficient microbial cell factories. Here we report to engineer the yeast Yarrowia lipolytica and bacterium Escherichia coli to produce WE at the highest level up to date. First, the key genes encoding fatty acyl-CoA reductases and wax ester synthase from different sources were investigated, and the expression system for two different Y. lipolytica hosts were compared and optimized for enhanced WE production and the strain stability. To improve the metabolic pathway efficiency, different carbon sources including glucose, free fatty acid, soybean oil, and waste cooking oil (WCO) were compared, and the corresponding pathway engineering strategies were optimized. It was found that using a lipid substrate such as WCO to replace glucose led to a 60-fold increase in WE production. The engineered yeast was able to produce 7.6 g/L WE with a yield of 0.31 (g/g) from WCO within 120 h and the produced WE contributed to 57% of the yeast DCW. After that, E. coli BL21(DE3), with a faster growth rate than the yeast, was engineered to significantly improve the WE production rate. Optimization of the expression system and the substrate feeding strategies led to production of 3.7-4.0 g/L WE within 40 h in a 1-L bioreactor. The predominant intracellular WE produced by both Y. lipolytica and E. coli in the presence of hydrophobic substrates as sole carbon sources were C36, C34 and C32, in an order of decreasing abundance and with a large proportion being unsaturated. This work paved the way for the biomanufacturing of WE at a large scale.
Collapse
Affiliation(s)
- Ya-Hue Valerie Soong
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Le Zhao
- Department of Chemical and Biological Engineering, NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, 50011, USA
| | - Na Liu
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Peng Yu
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Carmen Lopez
- Department of Chemical and Biological Engineering, NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, 50011, USA
| | - Andrew Olson
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Hsi-Wu Wong
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, 50011, USA.
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
27
|
Moulin SLY, Beyly-Adriano A, Cuiné S, Blangy S, Légeret B, Floriani M, Burlacot A, Sorigué D, Samire PP, Li-Beisson Y, Peltier G, Beisson F. Fatty acid photodecarboxylase is an ancient photoenzyme that forms hydrocarbons in the thylakoids of algae. PLANT PHYSIOLOGY 2021; 186:1455-1472. [PMID: 33856460 PMCID: PMC8260138 DOI: 10.1093/plphys/kiab168] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/07/2021] [Indexed: 05/11/2023]
Abstract
Fatty acid photodecarboxylase (FAP) is one of the few enzymes that require light for their catalytic cycle (photoenzymes). FAP was first identified in the microalga Chlorella variabilis NC64A, and belongs to an algae-specific subgroup of the glucose-methanol-choline oxidoreductase family. While the FAP from C. variabilis and its Chlamydomonas reinhardtii homolog CrFAP have demonstrated in vitro activities, their activities and physiological functions have not been studied in vivo. Furthermore, the conservation of FAP activity beyond green microalgae remains hypothetical. Here, using a C. reinhardtii FAP knockout line (fap), we showed that CrFAP is responsible for the formation of 7-heptadecene, the only hydrocarbon of this alga. We further showed that CrFAP was predominantly membrane-associated and that >90% of 7-heptadecene was recovered in the thylakoid fraction. In the fap mutant, photosynthetic activity was not affected under standard growth conditions, but was reduced after cold acclimation when light intensity varied. A phylogenetic analysis that included sequences from Tara Ocean identified almost 200 putative FAPs and indicated that FAP was acquired early after primary endosymbiosis. Within Bikonta, FAP was retained in secondary photosynthetic endosymbiosis lineages but absent from those that lost the plastid. Characterization of recombinant FAPs from various algal genera (Nannochloropsis, Ectocarpus, Galdieria, Chondrus) provided experimental evidence that FAP photochemical activity was present in red and brown algae, and was not limited to unicellular species. These results thus indicate that FAP was conserved during the evolution of most algal lineages where photosynthesis was retained, and suggest that its function is linked to photosynthetic membranes.
Collapse
Affiliation(s)
- Solène L Y Moulin
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
- Present address: Stanford University, 279 Campus Dr, Stanford, CA 94305
| | - Audrey Beyly-Adriano
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Stéphan Cuiné
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Stéphanie Blangy
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Bertrand Légeret
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Magali Floriani
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SRTE/LECO, Cadarache, 13108 Saint-Paul-Lez-Durance, France
| | - Adrien Burlacot
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
- Present address: Howard Hughes Medical Institute, Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA
| | - Damien Sorigué
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Poutoum-Palakiyem Samire
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Yonghua Li-Beisson
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Gilles Peltier
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Fred Beisson
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
- Author for communication:
| |
Collapse
|
28
|
Szczepańska P, Hapeta P, Lazar Z. Advances in production of high-value lipids by oleaginous yeasts. Crit Rev Biotechnol 2021; 42:1-22. [PMID: 34000935 DOI: 10.1080/07388551.2021.1922353] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The global market for high-value fatty acids production, mainly omega-3/6, hydroxy fatty-acids, waxes and their derivatives, has seen strong development in the last decade. The reason for this growth was the increasing utilization of these lipids as significant ingredients for cosmetics, food and the oleochemical industries. The large demand for these compounds resulted in a greater scientific interest in research focused on alternative sources of oil production - among which microorganisms attracted the most attention. Microbial oil production offers the possibility to engineer the pathways and store lipids enriched with the desired fatty acids. Moreover, costly chemical steps are avoided and direct commercial use of these fatty acids is available. Among all microorganisms, the oleaginous yeasts have become the most promising hosts for lipid production - their efficient lipogenesis, ability to use various (often highly affordable) carbon sources, feasible large-scale cultivations and wide range of available genetic engineering tools turns them into powerful micro-factories. This review is an in-depth description of the recent developments in the engineering of the lipid biosynthetic pathway with oleaginous yeasts. The different classes of valuable lipid compounds with their derivatives are described and their importance for human health and industry is presented. The emphasis is also placed on the optimization of culture conditions in order to improve the yield and titer of these valuable compounds. Furthermore, the important economic aspects of the current microbial oil production are discussed.
Collapse
Affiliation(s)
- Patrycja Szczepańska
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Piotr Hapeta
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
29
|
Sharma A, Yazdani SS. Microbial engineering to produce fatty alcohols and alkanes. J Ind Microbiol Biotechnol 2021; 48:6169711. [PMID: 33713132 DOI: 10.1093/jimb/kuab011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 11/14/2022]
Abstract
Owing to their high energy density and composition, fatty acid-derived chemicals possess a wide range of applications such as biofuels, biomaterials, and other biochemical, and as a consequence, the global annual demand for products has surpassed 2 million tons. With the exhausting petroleum reservoirs and emerging environmental concerns on using petroleum feedstock, it has become indispensable to shift to a renewable-based industry. With the advancement in the field of synthetic biology and metabolic engineering, the use of microbes as factories for the production of fatty acid-derived chemicals is becoming a promising alternative approach for the production of these derivatives. Numerous metabolic approaches have been developed for conditioning the microbes to improve existing or develop new methodologies capable of efficient oleochemical production. However, there still exist several limitations that need to be addressed for the commercial viability of the microbial cell factory production. Though substantial advancement has been made toward successfully producing these fatty acids derived chemicals, a considerable amount of work needs to be done for improving the titers. In the present review, we aim to address the roadblocks impeding the heterologous production, the engineering pathway strategies implemented across the range of microbes in a detailed manner, and the commercial readiness of these molecules of immense application.
Collapse
Affiliation(s)
- Ashima Sharma
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.,DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.,DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
30
|
Insights into the unique carboxylation reactions in the metabolism of propylene and acetone. Biochem J 2020; 477:2027-2038. [PMID: 32497192 DOI: 10.1042/bcj20200174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 01/16/2023]
Abstract
Alkenes and ketones are two classes of ubiquitous, toxic organic compounds in natural environments produced in several biological and anthropogenic processes. In spite of their toxicity, these compounds are utilized as primary carbon and energy sources or are generated as intermediate metabolites in the metabolism of other compounds by many diverse bacteria. The aerobic metabolism of some of the smallest and most volatile of these compounds (propylene, acetone, isopropanol) involves novel carboxylation reactions resulting in a common product acetoacetate. Propylene is metabolized in a four-step pathway involving five enzymes where the penultimate step is a carboxylation reaction catalyzed by a unique disulfide oxidoreductase that couples reductive cleavage of a thioether linkage with carboxylation to produce acetoacetate. The carboxylation of isopropanol begins with conversion to acetone via an alcohol dehydrogenase. Acetone is converted to acetoacetate in a single step by an acetone carboxylase which couples the hydrolysis of MgATP to the activation of both acetone and bicarbonate, generating highly reactive intermediates that are condensed into acetoacetate at a Mn2+ containing the active site. Acetoacetate is then utilized in central metabolism where it is readily converted to acetyl-coenzyme A and subsequently converted into biomass or utilized in energy metabolism via the tricarboxylic acid cycle. This review summarizes recent structural and biochemical findings that have contributed significant insights into the mechanism of these two unique carboxylating enzymes.
Collapse
|
31
|
Compositional Analyses Reveal Relationships among Components of Blue Maize Grains. PLANTS 2020; 9:plants9121775. [PMID: 33327625 PMCID: PMC7765092 DOI: 10.3390/plants9121775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
One aim of this experiment was to develop NIR calibrations for 20-grain components in 143 pigmented maize samples evaluated in four locations across New Mexico during 2013 and 2014. Based on reference analysis, prediction models were developed using principal component regression (PCR) and partial least squares (PLS). The predictive ability of calibrations was generally low, with the calibrations for methionine and glycine performing best by PCR and PLS. The second aim was to explore the relationships among grain constituents. In PCA, the first three PCs explained 49.62, 22.20, and 6.92% of the total variance and tend to align with nitrogen-containing compounds (amino acids), carbon-rich compounds (starch, anthocyanin, fiber, and fat), and sulfur-containing compounds (cysteine and methionine), respectively. Correlations among traits were identified, and these relationships were illustrated by a correlation network. Some relationships among components were driven by common synthetic origins, for example, among amino acids derived from pyruvate. Similarly, anthocyanins, crude fat, and fatty acids all share malonyl CoA in their biosynthetic pathways and were correlated. In contrast, crude fiber and starch have similar biosynthetic origins but were negatively correlated, and this may have been due to their different functional roles in structure and energy storage, respectively.
Collapse
|
32
|
Huang L, Xiao Q, Zhao X, Wang D, Wei L, Li X, Liu Y, He Z, Kang L, Guo Y. Responses of cuticular waxes of faba bean to light wavelengths and selection of candidate genes for cuticular wax biosynthesis. THE PLANT GENOME 2020; 13:e20058. [PMID: 33124766 DOI: 10.1002/tpg2.20058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Cuticular waxes play important eco-physiological roles in protecting plants against abiotic and biotic stresses and show high sensitivity to environmental changes. In order to clarify the responses of cuticular waxes on faba bean (Vicia faba L.) leaves to different light wavelengths, the phenotypic plasticity of cuticular waxes was analyzed when plants were subjected to white, red, yellow, blue, and purple light. Leaf samples from yellow, purple, and white lights were further analyzed, and candidate genes of wax biosynthesis were selected by RNA-seq technology and transcriptome processing. Yellow light increased the total wax coverage and changed the crystal structure compared with leaves under white light. Light wavelengths changed the relative abundance of dominant primary alcohol from C24 under white, yellow, and red lights to C26 under blue and purple lights. In total, 100,194 unigenes were obtained, and 10 genes were annotated in wax biosynthesis pathway, including VLCFAs elongation (KCS1, KCS4, LACS2 and LACS9), acyl reduction pathway (FAR3 and WSD1), and decarboxylation pathway (CER1, CER3 and MAH1). qRT-PCR analysis revealed that yellow and purple lights significantly influenced the expression levels of these genes. Yellow light also increased the water loss rate and decreased the photosynthesis rate. Light at different wavelengths particularly yellow light induced the changes of phenotypic plasticity of cuticular waxes, which thus altered the leaf eco-physiological functions. The expression levels of genes related to wax biosynthesis were also altered by different light wavelengths, suggesting that light at different wavelengths may also be applied in selecting candidate genes involved in wax biosynthesis in other crops.
Collapse
Affiliation(s)
- Lei Huang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Qianlin Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Xiao Zhao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Dengke Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Liangliang Wei
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Xiaoting Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yating Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Zhibin He
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Lin Kang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yanjun Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| |
Collapse
|
33
|
Xiao Y, Li X, Yao L, Xu D, Li Y, Zhang X, Li Z, Xiao Q, Ni Y, Guo Y. Chemical profiles of cuticular waxes on various organs of Sorghum bicolor and their antifungal activities. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:596-604. [PMID: 32846395 DOI: 10.1016/j.plaphy.2020.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Sorghum bicolor is widely cultivated in arid and semi-arid areas. This paper reports the chemical profiles of cuticular waxes on adaxial and abaxial sides of common leaf, flag leaf, sheath and stem from six sorghum cultivars and the variations of leaf cuticular waxes at seedling, jointing and filling stages. Then, the bioassay of leaf and sheath wax were evaluated against Penicillium sp and Alternaria alternata. The six sorghum cultivars had similar wax profiles. In total, eight wax compounds were identified, including fatty acids, aldehydes, primary alcohols, alkanes, secondary alcohols, ketones, sterols and minor triterpenoids. Leaf wax coverage increased from 2.2 to 3.1 μg/cm2 at seedling stages to 6.5-14.0 μg/cm2 at jointing and filling stages, respectively. The relative abundance of primary alcohols decreased from 51 to 62% at seedling stage to 17-33% at jointing stage whereas alkanes increased from 5-9% to 19-33%. Leaf was dominated with alkanes (28.4%) and aldehydes (28.4%), sheath with acids (42.8%), and stem with aldehydes (80.8%). Epicuticular wax of leaf and sheath contained higher proportions of alkanes whereas the intracuticular waxes contained higher proportions of sterols. The leaf wax improved the growth of Penicillium but reduced that of A. alternaria, whereas sheath wax reduced the growth of Penicillium but unchanged A. alternaria. The detailed sorghum wax profiles improve our understanding of the physiological roles of these waxes and their diversified potential usages in industries.
Collapse
Affiliation(s)
- Yu Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xiaoting Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Luhua Yao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Daixiang Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yang Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xuefeng Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Zhen Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Qainlin Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yu Ni
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yanjun Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China.
| |
Collapse
|
34
|
Shalini T, Martin A. Identification, isolation, and heterologous expression of Sunflower wax synthase for the synthesis of tailored wax esters. J Food Biochem 2020; 44:e13433. [PMID: 33090542 DOI: 10.1111/jfbc.13433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/01/2022]
Abstract
Wax esters (WE) are neutral lipids formed by condensation of fatty alcohol with fatty acyl-CoA by wax synthases. They serve as carbon and energy reserves and are potential substrates for various commercial applications. Sunflower (Helianthus annuus) an edible oil seed is a source of WE, however, the gene responsible for WE formation has hitherto remained unidentified. Using an in silico approach we identified, isolated putative Sunflower wax synthase (HaWS) gene and investigated it's potential for WE production in yeast. Heterologous expression of HaWS in Saccharomyces cerevisiae H1246 exhibited 57 kDa protein which was confirmed by immunoblotting. Recombinant yeast expressing HaWS were fed with combinations of C16, C18 fatty alcohols with 16:0, 18:0 fatty acyl CoA's as potential substrates to validate WE formation in vivo. The yeast cells accumulated C-32 to C-36 WE. Our study reveals identification, isolation, and heterologous functional expression of WS gene from Sunflower for the first time. PRACTICAL APPLICATIONS: Wax synthases (WSs) are critical enzymes for wax ester (WE) biosynthesis. WEs are high value products having several industrial applications. WE serve as substrates for lubricants, food coatings, cosmetics, and pharmaceuticals. There is a demand for alternate renewable resource of WEs. In this study, we have successfully isolated a putative wax synthase gene from Sunflower and submitted its sequence data to the GenBank (Accession number MH460820). Conserved sequence search analysis showed presence of condensation superfamily motif‒HHXXXDG, critical for WE biosynthesis. Heterologous expression of HaWS in yeast revealed synthesis of C-32 to C-36 WE. Our study demonstrates the efficacy of HaWS to accumulate specific WE of desired lengths in yeast, and thus represents an alternate source of WE for commercial applications and for biotechnological production of tailored WE in eukaryotic expression systems.
Collapse
Affiliation(s)
- Theresa Shalini
- Department of Food Safety and Analytical Quality Control Laboratory, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Asha Martin
- Department of Food Safety and Analytical Quality Control Laboratory, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
35
|
Gao Q, Yang JL, Zhao XR, Liu SC, Liu ZJ, Wei LJ, Hua Q. Yarrowia lipolytica as a Metabolic Engineering Platform for the Production of Very-Long-Chain Wax Esters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10730-10740. [PMID: 32896122 DOI: 10.1021/acs.jafc.0c04393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The oleaginous yeast Yarrowia lipolytica is an attractive cell factory platform strain and can be used for sustainable production of high-value oleochemical products. Wax esters (WEs) have a good lubricating property and are usually used as a base for the production of advanced lubricants and emollient oils. In this study, we reported the metabolic engineering of Y. lipolytica to heterologously biosynthesize high-content very-long-chain fatty acids (VLCFAs) and fatty alcohols and efficiently esterify them to obtain very-long-chain WEs. Co-expression of fatty acid elongases from different sources in Y. lipolytica could yield VLCFAs with carbon chain lengths up to 24. Combining with optimization of the central metabolic modules could further enhance the biosynthesis of VLCFAs. Furthermore, through the screening of heterologous fatty acyl reductases (FARs), we enabled high-level production of fatty alcohols. Genomic integration and heterologous expression of wax synthase (WS) and FAR in a VLCFA-producing Y. lipolytica strain yielded 95-650 mg/L WEs with carbon chain lengths from 32 to 44. Scaled-up fermentation in 5 L laboratory bioreactors significantly increased the production of WEs to 2.0 g/L, the highest content so far in yeasts. This study contributes to the further efficient biosynthesis of VLCFAs and their derivatives.
Collapse
Affiliation(s)
- Qi Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jing-Lin Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xin-Ru Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Shun-Cheng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhi-Jie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
36
|
Weber J, Schwark L. Epicuticular wax lipid composition of endemic European Betula species in a simulated ontogenetic/diagenetic continuum and its application to chemotaxonomy and paleobotany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:138324. [PMID: 32388385 DOI: 10.1016/j.scitotenv.2020.138324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Plants are excellent climate indicators and their macro-remains or pollen accumulating in geological archives serve as recorders of environmental change. In Europe birch trees contribute importantly to Holocene plant successions. They constitute the dwarf species Betula nana and B. humilis, representing colder and two tree birches, B. pubescens and B. pendula indicative of more temperate climate. Birch pollen is highly similar preventing species differentiation. We obtained unambiguous chemotaxonomic differentiation of four European birch species via cuticular wax lipids. Dominating lipid classes in recent epicuticular birch waxes were n-alkanes (nC23 to nC33), n-alcohols and n-alkanoic acids (nC20 to nC32), and long-chain wax ester (nC36 to nC48) differing in amount and distribution. After plant senescence and in geological archives lipids undergo diagenetic alteration modifying the distributions found in recent plants. Long-chain wax esters via hydrolysis release bound n-alcohols and n-fatty acids, adding to their free analogues. Simulated release of bound lipids increased the pool of n-alcohol and n-fatty acids up to 400%. Such modification of primary lipid patterns is unaccounted for in most paleovegetation studies. Proceeding diagenesis, e.g. by decarboxylation will convert these functionalized primary and secondary lipids into their corresponding n-alkanes, the compound class mostly applied in paleoenvironment reconstruction. The simulated n-alkane pattern changed significantly, evidenced by an increase of mid-chain (nC23,nC25) homologues. Release of bound lipids may not only alter molecular but also isotopic composition, which may cause errors in paleoclimate reconstruction. We assessed the potential contribution of secondary (free lipid decarboxylation) and tertiary (bound lipid decarboxylation) wax metabolites and compared the cumulative n-alkane patterns with birch n-alkane distributions reported in the literature. Two statistically different patterns were separated, one dominated by primary, the other by secondary and tertiary formed n-alkanes. This may explain the inconsistency in previous birch wax analysis reported and needs consideration in paleoenvironment reconstruction.
Collapse
Affiliation(s)
- Jan Weber
- Department of Organic Geochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Lorenz Schwark
- Department of Organic Geochemistry, Christian-Albrechts-University, Kiel, Germany; Department of Earth Sciences, WA-OIGC, Curtin University, Perth, Australia.
| |
Collapse
|
37
|
Wan H, Liu H, Zhang J, Lyu Y, Li Z, He Y, Zhang X, Deng X, Brotman Y, Fernie AR, Cheng Y, Wen W. Lipidomic and transcriptomic analysis reveals reallocation of carbon flux from cuticular wax into plastid membrane lipids in a glossy "Newhall" navel orange mutant. HORTICULTURE RESEARCH 2020; 7:41. [PMID: 32257227 PMCID: PMC7109130 DOI: 10.1038/s41438-020-0262-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/26/2019] [Accepted: 02/07/2020] [Indexed: 05/10/2023]
Abstract
Both cuticle and membrane lipids play essential roles in quality maintenance and disease resistance in fresh fruits. Many reports have indicated the modification of alternative branch pathways in epicuticular wax mutants; however, the specific alterations concerning lipids have not been clarified thus far. Here, we conducted a comprehensive, time-resolved lipidomic, and transcriptomic analysis on the "Newhall" navel orange (WT) and its glossy mutant (MT) "Gannan No. 1". The results revealed severely suppressed wax formation accompanied by significantly elevated production of 36-carbon plastid lipids with increasing fruit maturation in MT. Transcriptomics analysis further identified a series of key functional enzymes and transcription factors putatively involved in the biosynthesis pathways of wax and membrane lipids. Moreover, the high accumulation of jasmonic acid (JA) in MT was possibly due to the need to maintain plastid lipid homeostasis, as the expression levels of two significantly upregulated lipases (CsDAD1 and CsDALL2) were positively correlated with plastid lipids and characterized to hydrolyze plastid lipids to increase the JA content. Our results will provide new insights into the molecular mechanisms underlying the natural variation of plant lipids to lay a foundation for the quality improvement of citrus fruit.
Collapse
Affiliation(s)
- Haoliang Wan
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Jingyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yi Lyu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Youyi Xilu 127, Xi’an, 710072 Shaanxi China
| | - Zhuoran Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yizhong He
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xiaoliang Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| |
Collapse
|
38
|
Liu N, Zhao L, Tang L, Stobbs J, Parkin I, Kunst L, Karunakaran C. Mid-infrared spectroscopy is a fast screening method for selecting Arabidopsis genotypes with altered leaf cuticular wax. PLANT, CELL & ENVIRONMENT 2020; 43:662-674. [PMID: 31759335 DOI: 10.1111/pce.13691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 05/25/2023]
Abstract
Arabidopsis eceriferum (cer) mutants with unique alterations in their rosette leaf cuticular wax accumulation and composition established by gas chromatography have been investigated using attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy in combination with univariate and multivariate analysis. Objectives of this study were to evaluate the utility of ATR-FTIR for detection of chemical diversity in leaf cuticles, obtain spectral profiles of cer mutants in comparison with the wild type, and identify changes in leaf cuticles caused by drought stress. FTIR spectra revealed both genotype- and treatment-dependent differences in the chemical make-up of Arabidopsis leaf cuticles. Drought stress caused specific changes in the integrated area of the CH3 peak, asymmetrical and symmetrical CH2 peaks, ester carbonyl peak and the peak area ratio of ester CO to CH2 asymmetrical vibration. CH3 peak positively correlated with the total wax accumulation. Thus, ATR-FTIR spectroscopy is a valuable tool that can advance our understanding of the role of cuticle chemistry in plant response to drought and allow selection of superior drought-tolerant varieties from large genetic resources.
Collapse
Affiliation(s)
- Na Liu
- Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada
| | - Lifang Zhao
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lily Tang
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Jarvis Stobbs
- Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada
| | - Isobel Parkin
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Ljerka Kunst
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
39
|
Jaroensuk J, Intasian P, Wattanasuepsin W, Akeratchatapan N, Kesornpun C, Kittipanukul N, Chaiyen P. Enzymatic reactions and pathway engineering for the production of renewable hydrocarbons. J Biotechnol 2020; 309:1-19. [DOI: 10.1016/j.jbiotec.2019.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 01/23/2023]
|
40
|
Overexpression of BnKCS1-1, BnKCS1-2, and BnCER1-2 promotes cuticular wax production and increases drought tolerance in Brassica napus. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cj.2019.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Evaluation of the Foliar Damage That Threatens a Millennial-Age Tree, Araucaria araucana (Molina) K. Koch, Using Leaf Waxes. FORESTS 2020. [DOI: 10.3390/f11010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A. araucana is an endemic species of the temperate forests from Chile and Argentina; protected in both countries and categorized as in danger of extinction. Individuals of this species have begun to show foliar damage (i.e., discoloration) in branches and upper parts. The discoloration begins from the base to the top and from the trunk to the branches with necrotic rings appearing; in some cases causing death; and is currently attributed to an as yet unknown disease. This study focuses on the first protective layer of plants against environmental stress and pathogens; known as leaf waxes. The abundance and distribution of three classes of leaf waxes (long chain fatty acids; alkanes and alcohols) were measured in healthy individuals of A. araucana from different sites and individuals that present foliar damage (sick individuals). In the case of sick individuals; their leaf waxes were measured considering the level of leaf damage; that is; leaves without; medium and full foliar damage. The most abundant class of leaf wax in both sick and healthy individuals was fatty acids; followed by alkanes and then alcohols; with common dominant chains; C28 fatty acid; C29 alkane and C24 alcohol. Sick individuals have higher abundances of alkanes and alcohols than healthy individuals. The leaves of sick individuals have lower values of distribution indices (the carbon preference index of fatty acids and average chain length of alkanes) as foliar damage increases that are interpreted as a reduction of in vivo biosynthesis of waxes. This is the first evidence of A. araucana response to a still unknown disease that is killing individuals of this endemic species.
Collapse
|
42
|
Honjo MN, Kudoh H. Arabidopsis halleri: a perennial model system for studying population differentiation and local adaptation. AOB PLANTS 2019; 11:plz076. [PMID: 31832127 PMCID: PMC6899346 DOI: 10.1093/aobpla/plz076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/26/2019] [Indexed: 05/21/2023]
Abstract
Local adaptation is assumed to occur when populations differ in a phenotypic trait or a set of traits, and such variation has a genetic basis. Here, we introduce Arabidopsis halleri and its life history as a perennial model system to study population differentiation and local adaptation. Studies on altitudinal adaptation have been conducted in two regions: Mt. Ibuki in Japan and the European Alps. Several studies have demonstrated altitudinal adaptation in ultraviolet-B (UV-B) tolerance, leaf water repellency against spring frost and anti-herbivore defences. Studies on population differentiation in A. halleri have also focused on metal hyperaccumulation and tolerance to heavy metal contamination. In these study systems, genome scans to identify candidate genes under selection have been applied. Lastly, we briefly discuss how RNA-Seq can broaden phenotypic space and serve as a link to underlying mechanisms. In conclusion, A. halleri provides us with opportunities to study population differentiation and local adaptation, and relate these to the genetic systems underlying target functional traits.
Collapse
Affiliation(s)
- Mie N Honjo
- Center for Ecological Research, Kyoto University, Hirano, Otsu, Shiga, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano, Otsu, Shiga, Japan
| |
Collapse
|
43
|
Continuous photoproduction of hydrocarbon drop-in fuel by microbial cell factories. Sci Rep 2019; 9:13713. [PMID: 31548626 PMCID: PMC6757031 DOI: 10.1038/s41598-019-50261-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/09/2019] [Indexed: 11/20/2022] Open
Abstract
Use of microbes to produce liquid transportation fuels is not yet economically viable. A key point to reduce production costs is the design a cell factory that combines the continuous production of drop-in fuel molecules with the ability to recover products from the cell culture at low cost. Medium-chain hydrocarbons seem ideal targets because they can be produced from abundant fatty acids and, due to their volatility, can be easily collected in gas phase. However, pathways used to produce hydrocarbons from fatty acids require two steps, low efficient enzymes and/or complex electron donors. Recently, a new hydrocarbon-forming route involving a single enzyme called fatty acid photodecarboxylase (FAP) was discovered in microalgae. Here, we show that in illuminated E. coli cultures coexpression of FAP and a medium-chain fatty acid thioesterase results in continuous release of volatile hydrocarbons. Maximum hydrocarbon productivity was reached under low/medium light while higher irradiance resulted in decreased amounts of FAP. It was also found that the production rate of hydrocarbons was constant for at least 5 days and that 30% of total hydrocarbons could be collected in the gas phase of the culture. This work thus demonstrates that the photochemistry of the FAP can be harnessed to design a simple cell factory that continuously produces hydrocarbons easy to recover and in pure form.
Collapse
|
44
|
Genome-Wide Identification and Comparative Expression Profile Analysis of the Long-Chain Acyl-CoA synthetase (LACS) Gene Family in Two Different Oil Content Cultivars of Brassica napus. Biochem Genet 2019; 57:781-800. [DOI: 10.1007/s10528-019-09921-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
|
45
|
Sharma P, Madhyastha H, Madhyastha R, Nakajima Y, Maruyama M, Verma KS, Verma S, Prasad J, Kothari SL, Gour VS. An appraisal of cuticular wax of Calotropis procera (Ait.) R. Br.: Extraction, chemical composition, biosafety and application. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:397-403. [PMID: 30690392 DOI: 10.1016/j.jhazmat.2019.01.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 05/07/2023]
Abstract
Plastic and polythene as hydrophobic materials become a grave concern due to their non-biodegradable nature, cumbersome recycling and waste management. Cuticular wax derived from Calotropis procera is explored as an eco-friendly and safe hydrophobic material. The effects of duration of exposure to solvent, solvent type, size and side of the leaf on cuticular wax yield have been studied. Leaf with the smallest area (10 cm2-25 cm2) was found to be the most suitable to isolate the wax. GC-MS analysis of the wax revealed that the wax consists of mainly esters, alkane and alkene. Mitochondrial reductase (MTT) and lactate dehydrogenase (LDH) assay have been carried out on M5S cell line at various concentrations and the results indicate that up to 1 μg/ml (acetone as solvent) and 3 μg/ml (chloroform as solvent) use of wax has no toxic effect. To evaluate the hydrophobic potential of the wax in developing hydrophobic paper water regains and contact angle has been measured. The gain in hydrophobicity of the paper is evident from the rise in contact angle (≥90˚) of paper coated with wax. Scanning electron micrograph and FTIR spectra generated physical and chemical evidence of coating of wax on paper.
Collapse
Affiliation(s)
- Priyal Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Harishkumar Madhyastha
- Department of Applied Physiology, School of Medicine, University of Miyazaki, Kiyotake-cho, Kihara Miyazaki, 5200, Japan
| | - Radha Madhyastha
- Department of Applied Physiology, School of Medicine, University of Miyazaki, Kiyotake-cho, Kihara Miyazaki, 5200, Japan
| | - Yuchi Nakajima
- Department of Applied Physiology, School of Medicine, University of Miyazaki, Kiyotake-cho, Kihara Miyazaki, 5200, Japan
| | - Masugi Maruyama
- Department of Applied Physiology, School of Medicine, University of Miyazaki, Kiyotake-cho, Kihara Miyazaki, 5200, Japan
| | | | - Shashi Verma
- Amity School of Applied Science, Amity University Rajasthan, Jaipur, India
| | - Jagdish Prasad
- Amity School of Applied Science, Amity University Rajasthan, Jaipur, India
| | - S L Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Vinod Singh Gour
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| |
Collapse
|
46
|
Soong YHV, Liu N, Yoon S, Lawton C, Xie D. Cellular and metabolic engineering of oleaginous yeast Yarrowia lipolytica for bioconversion of hydrophobic substrates into high-value products. Eng Life Sci 2019; 19:423-443. [PMID: 32625020 DOI: 10.1002/elsc.201800147] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/12/2018] [Accepted: 02/07/2019] [Indexed: 12/17/2022] Open
Abstract
The non-conventional oleaginous yeast Yarrowia lipolytica is able to utilize both hydrophilic and hydrophobic carbon sources as substrates and convert them into value-added bioproducts such as organic acids, extracellular proteins, wax esters, long-chain diacids, fatty acid ethyl esters, carotenoids and omega-3 fatty acids. Metabolic pathway analysis and previous research results show that hydrophobic substrates are potentially more preferred by Y. lipolytica than hydrophilic substrates to make high-value products at higher productivity, titer, rate, and yield. Hence, Y. lipolytica is becoming an efficient and promising biomanufacturing platform due to its capabilities in biosynthesis of extracellular lipases and directly converting the extracellular triacylglycerol oils and fats into high-value products. It is believed that the cell size and morphology of the Y. lipolytica is related to the cell growth, nutrient uptake, and product formation. Dimorphic Y. lipolytica demonstrates the yeast-to-hypha transition in response to the extracellular environments and genetic background. Yeast-to-hyphal transition regulating genes, such as YlBEM1, YlMHY1 and YlZNC1 and so forth, have been identified to involve as major transcriptional factors that control morphology transition in Y. lipolytica. The connection of the cell polarization including cell cycle and the dimorphic transition with the cell size and morphology in Y. lipolytica adapting to new growth are reviewed and discussed. This review also summarizes the general and advanced genetic tools that are used to build a Y. lipolytica biomanufacturing platform.
Collapse
Affiliation(s)
- Ya-Hue Valerie Soong
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| | - Na Liu
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| | - Seongkyu Yoon
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| | - Carl Lawton
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| | - Dongming Xie
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| |
Collapse
|
47
|
Liu N, Karunakaran C, Lahlali R, Warkentin T, Bueckert RA. Genotypic and heat stress effects on leaf cuticles of field pea using ATR-FTIR spectroscopy. PLANTA 2019; 249:601-613. [PMID: 30317440 DOI: 10.1007/s00425-018-3025-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/04/2018] [Indexed: 05/08/2023]
Abstract
MAIN CONCLUSION ATR-FTIR spectroscopy in combination with uni- and multivariate analysis was used to quantify the spectral-chemical composition of the leaf cuticle of pea, investigating the effects of variety and heat stress. Field pea (Pisum sativum L.) is sensitive to heat stress and our goal was to improve canopy cooling and flower retention by investigating the protective role of lipid-related compounds in leaf cuticle, and to use results in the future to identify heat resistant genotypes. The objective was to use Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy, a non-invasive technique, to investigate and quantify changes in adaxial cuticles of fresh leaves of pea varieties that were subjected to heat stress. Eleven varieties were grown under control (24/18 °C day/night) and heat stress conditions (35/18 °C day/night, for 5 days at the early flowering stage). These 11 had significant spectral differences in the integrated area of the main lipid region, CH2 region, CH3 peak, asymmetric and symmetric CH2 peaks, ester carbonyl peak, and the peak area ratio of CH2 to CH3 and ester carbonyl to CH2 asymmetric peak, indicating that cuticles had spectral-chemical diversity of waxes, cutin, and polysaccharides. Results indicated considerable diversity in spectral-chemical makeup of leaf cuticles within commercially available field pea varieties and they responded differently to high growth temperature, revealing their diverse potential to resist heat stress. The ATR-FTIR spectral technique can, therefore, be further used as a medium-throughput approach for rapid screening of superior cultivars for heat tolerance.
Collapse
Affiliation(s)
- Na Liu
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada
| | - Chithra Karunakaran
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada
| | - Rachid Lahlali
- Département de Protection des Plantes et de l'Environnement Km10, École Nationale d'Agriculture de Meknes, Rte Haj Kaddour, BP S/40, 50001, Meknès, Morocco
| | - Tom Warkentin
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
- Crop Development Centre (CDC), University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Rosalind A Bueckert
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada.
| |
Collapse
|
48
|
Zhao X, Chen S, Wang S, Shan W, Wang X, Lin Y, Su F, Yang Z, Yu X. Defensive Responses of Tea Plants ( Camellia sinensis) Against Tea Green Leafhopper Attack: A Multi-Omics Study. FRONTIERS IN PLANT SCIENCE 2019; 10:1705. [PMID: 32010173 PMCID: PMC6978701 DOI: 10.3389/fpls.2019.01705] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/04/2019] [Indexed: 05/21/2023]
Abstract
Tea green leafhopper [Empoasca (Matsumurasca) onukii Matsuda] is one of the most devastating pests of tea plants (Camellia sinensis), greatly impacting tea yield and quality. A thorough understanding of the interactions between the tea green leafhopper and the tea plant would facilitate a better pest management. To gain more insights into the molecular and biochemical mechanisms behind their interactions, a combined analysis of the global transcriptome and metabolome reconfiguration of the tea plant challenged with tea green leafhoppers was performed for the first time, complemented with phytohormone analysis. Non-targeted metabolomics analysis by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF MS), together with quantifications by ultra-performance liquid chromatography triple quadrupole mass spectrometry (UPLC-QqQ MS), revealed a marked accumulation of various flavonoid compounds and glycosidically bound volatiles but a great reduction in the level of amino acids and glutathione upon leaf herbivory. RNA-Seq data analysis showed a clear modulation of processes related to plant defense. Genes pertaining to the biosynthesis of phenylpropanoids and flavonoids, plant-pathogen interactions, and the biosynthesis of cuticle wax were significantly up-regulated. In particular, the transcript level for a CER1 homolog involved in cuticular wax alkane formation was most drastically elevated and an increase in C29 alkane levels in tea leaf waxes was observed. The tea green leafhopper attack triggered a significant increase in salicylic acid (SA) and a minor increase in jasmonic acid (JA) in infested tea leaves. Moreover, transcription factors (TFs) constitute a large portion of differentially expressed genes, with several TFs families likely involved in SA and JA signaling being significantly induced by tea green leafhopper feeding. This study presents a valuable resource for uncovering insect-induced genes and metabolites, which can potentially be used to enhance insect resistance in tea plants.
Collapse
Affiliation(s)
- Xiaoman Zhao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Si Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shanshan Wang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenna Shan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaxia Wang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuzhen Lin
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Su
- Fujian Farming Technology Extension Center, Fuzhou, China
| | - Zhenbiao Yang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Zhenbiao Yang, ; Xiaomin Yu,
| | - Xiaomin Yu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Zhenbiao Yang, ; Xiaomin Yu,
| |
Collapse
|
49
|
Guo Y, Li JJ, Busta L, Jetter R. Coverage and composition of cuticular waxes on the fronds of the temperate ferns Pteridium aquilinum, Cryptogramma crispa, Polypodium glycyrrhiza, Polystichum munitum and Gymnocarpium dryopteris. ANNALS OF BOTANY 2018; 122:555-568. [PMID: 30252045 PMCID: PMC6153475 DOI: 10.1093/aob/mcy078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 04/23/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS The cuticular waxes sealing plant surfaces against excessive water loss are complex mixtures of very-long-chain aliphatics, with compositions that vary widely between plant species. To help fill the gap in our knowledge about waxes of non-flowering plant taxa, and thus about the cuticle of ancestral land plants, this study provides comprehensive analyses of waxes on temperate fern species from five different families. METHODS The wax mixtures on fronds of Pteridium aquilinum, Cryptogramma crispa, Polypodium glycyrrhiza, Polystichum munitum and Gymnocarpium dryopteris were analysed using gas chromatography-mass spectrometry for identification, and gas chromatography-flame ionization detection for quantification. KEY RESULTS The wax mixtures from all five fern species contained large amounts of C36-C54 alkyl esters, with species-specific homologue distributions. They were accompanied by minor amounts of fatty acids, primary alcohols, aldehydes and/or alkanes, whose chain length profiles also varied widely between species. In the frond wax of G. dryopteris, C27-C33 secondary alcohols and C27-C35 ketones with functional groups exclusively on even-numbered carbons (C-10 to C-16) were identified; these are characteristic structures similar to secondary alcohols and ketones in moss, gymnosperm and basal angiosperm waxes. The ferns had total wax amounts varying from 3.9 μg cm-2 on P. glycyrrhiza to 16.9 μg cm-2 on G. dryopteris, thus spanning a range comparable with that on leaves of flowering plants. CONCLUSIONS The characteristic compound class compositions indicate that all five fern species contain the full complement of wax biosynthesis enzymes previously described for the angiosperm arabidopsis. Based on the isomer profiles, we predict that each fern species, in contrast to arabidopsis, has multiple ester synthase enzymes, each with unique substrate specificities.
Collapse
Affiliation(s)
- Yanjun Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Department of Botany, University of British Columbia, University Boulevard, Vancouver, BC, Canada
| | - Jia Jun Li
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Lucas Busta
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
- Present address: Center for Plant Science Innovation, 1901 Vine Street, Lincoln, NE 68588, USA
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, University Boulevard, Vancouver, BC, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
- For correspondence. E-mail
| |
Collapse
|
50
|
Yang X, Wang Z, Feng T, Li J, Huang L, Yang B, Zhao H, Jenks MA, Yang P, Lü S. Evolutionarily conserved function of the sacred lotus (Nelumbo nucifera Gaertn.) CER2-LIKE family in very-long-chain fatty acid elongation. PLANTA 2018; 248:715-727. [PMID: 29948126 DOI: 10.1007/s00425-018-2934-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Identification of NnCER2 and NnCER2-LIKE from Nelumbo nucifera, which are required for the very-long-chain fatty acid elongation, provides new evidence that CER2 proteins are evolutionarily conserved across the eudicots. CER2-LIKE family proteins have been described as core components of the fatty acid elongase complex in Arabidopsis, maize, and rice, having specific function in synthesis of the C30 to C34 fatty acyl-CoA precursors of cuticular waxes. Little is known about the functional conservation in this gene family across species. In this study, two CER2-LIKE family proteins, NnCER2 and NnCER2-LIKE, were characterized from sacred lotus (Nelumbo nucifera), which is an ancient basal eudicot. The transcriptional expression of NnCER2 and NnCER2-LIKE was found in floating leaf blades, emergent petioles and vertical leaves, petals, and anthers. The NnCER2 and NnCER2-LIKE proteins were localized to the endoplasmic reticulum and nucleus. Overexpressing NnCER2 and NnCER2-LIKE in Arabidopsis led to alteration of cuticle wax structure in inflorescence stems, and this was associated with elevated 30, 32, and 34 carbon length wax compounds, and their derivatives. The different substrate specificities of NnCER2 and NnCER2-LIKE were explored using co-expression with AtCER6 in yeast cells. These findings provide clear evidence that the function of CER2 family proteins in producing VLCFAs is highly conserved across the eudicots.
Collapse
Affiliation(s)
- Xianpeng Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Zhouya Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Tao Feng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Juanjuan Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Longyu Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Baiming Yang
- Changchun Guoxin Modern Agricultural Science and Technology Development Co., Ltd., Changchun, 130061, China
| | - Huayan Zhao
- Applied Biotechnology Center, Wuhan Institute of Bioengineering, Wuhan, 430415, China
| | - Matthew A Jenks
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Shiyou Lü
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|