1
|
Alasiri AB, Alahmari FS, Alanazi SD, Alhnake AW, Alkahtani AH, Aljaffer MA. Psychological changes among weight loss injection users compared with bariatric surgery patients in Saudi Arabia. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2024; 29:215-223. [PMID: 39379091 PMCID: PMC11460780 DOI: 10.17712/nsj.2024.4.20230112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/14/2024] [Indexed: 10/10/2024]
Abstract
OBJECTIVES To assess and evaluate the mental health and psychological changes in weight loss injection users and bariatric surgery. METHODS A descriptive and analytical cross-sectional study was conducted from July 2022 to December 2022. A self-administered questionnaire was given among participants using social media platforms. The questionnaire included socio-demographic characteristics, weight-loss-related characteristics, General Anxiety Disorder (GAD-7) to measure anxiety, and Patient Health Questionnaire (PHQ-9) to measure depression experienced by the patients. RESULTS Of the 721 patients, 73.9% were females, and 30.1% were aged between 30 to 39 years old. The prevalence of patients who underwent weight loss by surgery and injection was 47.7% and 41.2%, respectively. Overall, symptoms of anxiety and depression were detected in 19.7% and 24%, respectively. Independent risk factor of anxiety and depression was the symptom of the psychiatric disorder prior to surgery, while the independent protective factor for anxiety and depression was older age. Depression was higher in weight loss injection users. CONCLUSION Nearly one-quarter of the study population experienced anxiety or depression following weight loss treatment. Weight loss treatment by injections increases the risk of depression. However, improved self-confidence, mood, and relationships with family and friends were some of the positive changes exhibited by the patients after undergoing weight loss treatment. Appropriate psychiatric evaluation is necessary before and after weight loss intervention.
Collapse
Affiliation(s)
- Ahmed B. Alasiri
- From the College of Medicine (Alasiri, Alanazi, Alhnake, Alkahtani), Imam Mohammed Ibn Saud Islamic University, from the Department of Psychiatry (Alahmari), Prince Sultan Military Medical Hospital, and from the Department of Psychiatry (Aljaffer), College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Faisal S. Alahmari
- From the College of Medicine (Alasiri, Alanazi, Alhnake, Alkahtani), Imam Mohammed Ibn Saud Islamic University, from the Department of Psychiatry (Alahmari), Prince Sultan Military Medical Hospital, and from the Department of Psychiatry (Aljaffer), College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sadeem D. Alanazi
- From the College of Medicine (Alasiri, Alanazi, Alhnake, Alkahtani), Imam Mohammed Ibn Saud Islamic University, from the Department of Psychiatry (Alahmari), Prince Sultan Military Medical Hospital, and from the Department of Psychiatry (Aljaffer), College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Alanoud W. Alhnake
- From the College of Medicine (Alasiri, Alanazi, Alhnake, Alkahtani), Imam Mohammed Ibn Saud Islamic University, from the Department of Psychiatry (Alahmari), Prince Sultan Military Medical Hospital, and from the Department of Psychiatry (Aljaffer), College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdullah H. Alkahtani
- From the College of Medicine (Alasiri, Alanazi, Alhnake, Alkahtani), Imam Mohammed Ibn Saud Islamic University, from the Department of Psychiatry (Alahmari), Prince Sultan Military Medical Hospital, and from the Department of Psychiatry (Aljaffer), College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Abdullah Aljaffer
- From the College of Medicine (Alasiri, Alanazi, Alhnake, Alkahtani), Imam Mohammed Ibn Saud Islamic University, from the Department of Psychiatry (Alahmari), Prince Sultan Military Medical Hospital, and from the Department of Psychiatry (Aljaffer), College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Garcia-Luna GM, Bermudes-Contreras JD, Hernández-Correa S, Suarez-Ortiz JO, Diaz-Urbina D, Garfias-Ramirez SH, Vega AV, Villalobos-Molina R, Vilches-Flores A. Δ9-Tetrahydrocannabinol Treatment Modifies Insulin Secretion in Pancreatic Islets from Prediabetic Mice Under Hypercaloric Diet. Cannabis Cannabinoid Res 2024; 9:1277-1290. [PMID: 37267277 DOI: 10.1089/can.2023.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Abstract
Background: The endocannabinoid system over-activation is associated with type-2 diabetes mellitus onset, involving physiological, metabolic, and genetic alterations in pancreatic islets. The use of Δ9-Tetrahydrocannabinol (THC) as treatment is still controversial since its effects and mechanisms on insulin secretion are unclear. The aim of this study was to evaluate the effects of THC treatment in pancreatic islets from prediabetic mice. Methods: Prediabetes was induced in mice by hypercaloric diet, and then treated with THC for 3 weeks. Blood glucose and body weight were determined, after behavior tests. Histological changes were evaluated in whole pancreas; in isolated islets we analyzed the effect of THC exposure in glucose-stimulated insulin secretion (GSIS), gene expression, intracellular cyclic adenosine monophosphate (cAMP), and cytosolic calcium changes. Results: THC treatment in prediabetic mice enhanced anxiety and antidepressive behavior without changes in food ingestion, decreased oral-glucose tolerance test, plasma insulin and weight, with small alterations on pancreatic histology. In isolated islets from healthy mice THC increased GSIS, cAMP, and CB1 receptor (CB1r) expression, meanwhile calcium release was diminished. Small changes were observed in islets from prediabetic mice. Conclusions: THC treatment improves some clinical parameters in prediabetic mice, however, in isolated islets, modifies GSIS, intracellular calcium and gene expression, suggesting specific effects related to diabetes evolution.
Collapse
Affiliation(s)
- Guadalupe M Garcia-Luna
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - J David Bermudes-Contreras
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Samantha Hernández-Correa
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Josue O Suarez-Ortiz
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Daniel Diaz-Urbina
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Sergio H Garfias-Ramirez
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Ana V Vega
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Rafael Villalobos-Molina
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Alonso Vilches-Flores
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| |
Collapse
|
3
|
Peng Y, Yao SY, Chen Q, Jin H, Du MQ, Xue YH, Liu S. True or false? Alzheimer's disease is type 3 diabetes: Evidences from bench to bedside. Ageing Res Rev 2024; 99:102383. [PMID: 38955264 DOI: 10.1016/j.arr.2024.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Globally, Alzheimer's disease (AD) is the most widespread chronic neurodegenerative disorder, leading to cognitive impairment, such as aphasia and agnosia, as well as mental symptoms, like behavioral abnormalities, that place a heavy psychological and financial burden on the families of the afflicted. Unfortunately, no particular medications exist to treat AD, as the current treatments only impede its progression.The link between AD and type 2 diabetes (T2D) has been increasingly revealed by research; the danger of developing both AD and T2D rises exponentially with age, with T2D being especially prone to AD. This has propelled researchers to investigate the mechanism(s) underlying this connection. A critical review of the relationship between insulin resistance, Aβ, oxidative stress, mitochondrial hypothesis, abnormal phosphorylation of Tau protein, inflammatory response, high blood glucose levels, neurotransmitters and signaling pathways, vascular issues in AD and diabetes, and the similarities between the two diseases, is presented in this review. Grasping the essential mechanisms behind this detrimental interaction may offer chances to devise successful therapeutic strategies.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China.
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Ya-Hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| |
Collapse
|
4
|
Guldager MB, Biojone C, da Silva NR, Godoy LD, Joca S. New insights into the involvement of serotonin and BDNF-TrkB signalling in cannabidiol's antidepressant effect. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111029. [PMID: 38762160 DOI: 10.1016/j.pnpbp.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cannabidiol (CBD) is a phytocannabinoid devoid of psychostimulant properties and is currently under investigation as a potential antidepressant drug. However, the mechanisms underlying CBD's antidepressant effects are not yet well understood. CBD targets include a variety of receptors, enzymes, and transporters, with different binding-affinities. Neurochemical and pharmacological evidence indicates that both serotonin and BDNF-TrkB signalling in the prefrontal cortex are necessary for the antidepressant effects induced by CBD in animal models. Herein, we reviewed the current literature to dissect if these are independent mechanisms or if CBD-induced modulation of the serotonergic neurotransmission could mediate its neuroplastic effects through subsequent regulation of BDNF-TrkB signalling, thus culminating in rapid neuroplastic changes. It is hypothesized that: a) CBD interaction with serotonin receptors on neurons of the dorsal raphe nuclei and the resulting disinhibition of serotonergic neurons would promote rapid serotonin release in the PFC and hence its neuroplastic and antidepressant effects; b) CBD facilitates BDNF-TRKB signalling, especially in the PFC, which rapidly triggers neurochemical and neuroplastic effects. These hypotheses are discussed with perspectives for new drug development and clinical applications.
Collapse
Affiliation(s)
- Matti Bock Guldager
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Caroline Biojone
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nicole Rodrigues da Silva
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Livea Dornela Godoy
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
5
|
Gamble MC, Miracle S, Williams BR, Logan RW. Endocannabinoid agonist 2-arachidonoylglycerol differentially alters diurnal activity and sleep during fentanyl withdrawal in male and female mice. Pharmacol Biochem Behav 2024; 240:173791. [PMID: 38761993 PMCID: PMC11166043 DOI: 10.1016/j.pbb.2024.173791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Fentanyl has become the leading driver of opioid overdoses in the United States. Cessation of opioid use represents a challenge as the experience of withdrawal drives subsequent relapse. One of the most prominent withdrawal symptoms that can contribute to opioid craving and vulnerability to relapse is sleep disruption. The endocannabinoid agonist, 2-Arachidonoylglycerol (2-AG), may promote sleep and reduce withdrawal severity; however, the effects of 2-AG on sleep disruption during opioid withdrawal have yet to be assessed. Here, we investigated the effects of 2-AG administration on sleep-wake behavior and diurnal activity in mice during withdrawal from fentanyl. Sleep-wake activity measured via actigraphy was continuously recorded before and after chronic fentanyl administration in both male and female C57BL/6J mice. Immediately following cessation of fentanyl administration, 2-AG was administered intraperitoneally to investigate the impact of endocannabinoid agonism on opioid-induced sleep disruption. We found that female mice maintained higher activity levels in response to chronic fentanyl than male mice. Furthermore, fentanyl administration increased wake and decreased sleep during the light period and inversely increased sleep and decreased wake in the dark period in both sexes. 2-AG treatment increased arousal and decreased sleep in both sexes during first 24-h of withdrawal. On withdrawal day 2, only females showed increased wakefulness with no changes in males, but by withdrawal day 3 male mice displayed decreased rapid-eye movement sleep during the dark period with no changes in female mice. Overall, repeated administration of fentanyl altered sleep and diurnal activity and administration of the endocannabinoid agonist, 2-AG, had sex-specific effects on fentanyl-induced sleep and diurnal changes.
Collapse
Affiliation(s)
- Mackenzie C Gamble
- Molecular and Translational Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sophia Miracle
- Graduate Program in Neuroscience, Boston University, Boston, MA, USA
| | - Benjamin R Williams
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ryan W Logan
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Ariaee A, Wardill HR, Wignall A, Prestidge CA, Joyce P. The Degree of Inulin Polymerization Is Important for Short-Term Amelioration of High-Fat Diet (HFD)-Induced Metabolic Dysfunction and Gut Microbiota Dysbiosis in Rats. Foods 2024; 13:1039. [PMID: 38611345 PMCID: PMC11011263 DOI: 10.3390/foods13071039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Inulin, a non-digestible polysaccharide, has gained attention for its prebiotic properties, particularly in the context of obesity, a condition increasingly understood as a systemic inflammatory state linked to gut microbiota composition. This study investigates the short-term protective effects of inulin with different degrees of polymerization (DPn) against metabolic health deterioration and gut microbiota alterations induced by a high-fat diet (HFD) in Sprague Dawley rats. Inulin treatments with an average DPn of 7, 14, and 27 were administered at 1 g/kg of bodyweight to HFD-fed rats over 21 days. Body weight, systemic glucose levels, and proinflammatory markers were measured to assess metabolic health. Gut microbiota composition was analyzed through 16S rRNA gene sequencing. The results showed that inulin27 significantly reduced total weight gain and systemic glucose levels, suggesting a DPn-specific effect on metabolic health. The study also observed shifts in gut microbial populations, with inulin7 promoting several beneficial taxa from the Bifidobacterium genera, whilst inducing a unique microbial composition compared to medium-chain (DPn 14) and long-chain inulin (DPn: 27). However, the impact of inulin on proinflammatory markers and lipid metabolism parameters was not statistically significant, possibly due to the short study duration. Inulin with a higher DPn has a more pronounced effect on mitigating HFD-induced metabolic health deterioration, whilst inulin7 is particularly effective at inducing healthy microbial shifts. These findings highlight the benefits of inulin as a dietary adjuvant in obesity management and the importance of DPn in optimizing performance.
Collapse
Affiliation(s)
- Amin Ariaee
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (A.A.); (A.W.); (C.A.P.)
| | - Hannah R. Wardill
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5000, Australia;
- Supportive Oncology Research Group, Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Anthony Wignall
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (A.A.); (A.W.); (C.A.P.)
| | - Clive A. Prestidge
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (A.A.); (A.W.); (C.A.P.)
| | - Paul Joyce
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (A.A.); (A.W.); (C.A.P.)
| |
Collapse
|
7
|
Cortes-Justo E, Garfias-Ramírez SH, Vilches-Flores A. The function of the endocannabinoid system in the pancreatic islet and its implications on metabolic syndrome and diabetes. Islets 2023; 15:1-11. [PMID: 36598083 PMCID: PMC9815253 DOI: 10.1080/19382014.2022.2163826] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The following review focuses on the scientific studies related to the role of endocannabinoid system (ECS) in pancreatic islet physiology and dysfunction. Different natural or synthetic agonists and antagonists have been suggested as an alternative treatment for diabetes, obesity and metabolic syndrome. Therapeutic use of Cannabis led to the discovery and characterization of the ECS, a signaling complex involved in regulation of various physiological processes, including food intake and metabolism. After the development of different agonists and antagonists, evidence have demonstrated the presence and activity of cannabinoid receptors in several organs and tissues, including pancreatic islets. Insulin and glucagon expression, stimulated secretion, and the development of diabetes and other metabolic disorders have been associated with the activity and modulation of ECS in pancreatic islets. However, according to the animal model and experimental design, either endogenous or pharmacological ligands of cannabinoid receptors have guided to contradictory and paradoxical results that suggest a complex physiological interaction. In consensus, ECS activity modulates insulin and glucagon secretions according to glucose in media; over-stimulation of cannabinoid receptors affects islets negatively, leading to glucose intolerance, meanwhile the treatment with antagonists in diabetic models and humans suggests an improvement in islets function.
Collapse
Affiliation(s)
- Edgardo Cortes-Justo
- Posgrado e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico CityMexico
| | - Sergio H Garfias-Ramírez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Coyoacán, Mexico
| | - Alonso Vilches-Flores
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Coyoacán, Mexico
- CONTACT Alonso Vilches-Flores Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Iztacala. Edif.A4 Lab 4, Los Reyes Iztacala, Tlalnepantla54090, Mexico
| |
Collapse
|
8
|
Iannotti FA. Cannabinoids, Endocannabinoids, and Synthetic Cannabimimetic Molecules in Neuromuscular Disorders. Int J Mol Sci 2023; 25:238. [PMID: 38203407 PMCID: PMC10779239 DOI: 10.3390/ijms25010238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Neuromuscular disorders (NMDs) encompass a large heterogeneous group of hereditary and acquired diseases primarily affecting motor neurons, peripheral nerves, and the skeletal muscle system. The symptoms of NMDs may vary depending on the specific condition, but some of the most common ones include muscle weakness, pain, paresthesias, and hyporeflexia, as well as difficulties with swallowing and breathing. NMDs are currently untreatable. Therapeutic options include symptomatic and experimental medications aimed at delaying and alleviating symptoms, in some cases supplemented by surgical and physical interventions. To address this unmet medical need, ongoing research is being conducted on new treatments, including studies on medical cannabis, endocannabinoids, and related molecules with cannabimimetic properties. In this context, a significant amount of knowledge about the safety and effectiveness of cannabinoids in NMDs has been obtained from studies involving patients with multiple sclerosis experiencing pain and spasticity. In recent decades, numerous other preclinical and clinical studies have been conducted to determine the potential benefits of cannabinoids in NMDs. This review article aims to summarize and provide an unbiased point of view on the current knowledge about the use of cannabinoids, endocannabinoids, and synthetic analogs in NMDs, drawing from an array of compelling studies.
Collapse
Affiliation(s)
- Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry (ICB), National Research Council of Italy (CNR), 80078 Pozzuoli, NA, Italy
| |
Collapse
|
9
|
Gamble MC, Miracle S, Williams BR, Logan RW. Sex-specific Effects of the Endocannabinoid Agonist 2-Arachidonoylglycerol on Sleep and Circadian Disruptions during Fentanyl Withdrawal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572466. [PMID: 38187736 PMCID: PMC10769247 DOI: 10.1101/2023.12.19.572466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Fentanyl has become the leading driver of opioid overdoses. Cessation of opioid use represents a challenge as the experience of withdrawal drives subsequent relapse. One of the most prominent withdrawal symptoms that can contribute to opioid craving and vulnerability to relapse is sleep disruption. The endocannabinoid agonist, 2-Arachidonoylglycerol (2-AG), may promote sleep and reduce withdrawal severity; however, the effects of 2-AG on sleep disruption during opioid withdrawal have yet to be assessed. Here, we investigate the effects of 2-AG administration on sleep-wake behavior and diurnal activity in mice during withdrawal from fentanyl. Sleep-wake activity was continuously recorded before and after chronic fentanyl administration in both male and female C57BL/6J mice. Immediately following cessation of fentanyl administration, 2-AG was administered intraperitoneally to investigate the impact of endocannabinoid agonism on opioid-induced sleep disruption. Female mice maintained higher activity levels in response to chronic fentanyl than male mice. Furthermore, fentanyl increased wake and decreased sleep during the light period and inversely increased sleep and decreased wake in the dark period in both sexes. 2-AG treatment increased arousal and decreased sleep in both sexes during first 24 hrs of withdrawal. On withdrawal day 2, only female showed increased wakefulness with no changes in males, but by withdrawal day 3 male mice displayed decreased rapid-eye movement sleep during the dark period with no changes in female mice. Overall, repeated administration of fentanyl altered sleep and diurnal activity and administration of the endocannabinoid agonist, 2-AG, had sex-specific effects on fentanyl-induced sleep and diurnal changes.
Collapse
|
10
|
Zapata RC, Zhang D, Yoon D, Nasamran CA, Chilin-Fuentes DR, Libster A, Chaudry BS, Lopez-Valencia M, Ponnalagu D, Singh H, Petrascheck M, Osborn O. Targeting Clic1 for the treatment of obesity: A novel therapeutic strategy to reduce food intake and body weight. Mol Metab 2023; 76:101794. [PMID: 37604246 PMCID: PMC10480059 DOI: 10.1016/j.molmet.2023.101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
OBJECTIVE Despite great advances in obesity therapeutics in recent years, there is still a need to identify additional therapeutic targets for the treatment of this disease. We previously discovered a signature of genes, including Chloride intracellular channel 1 (Clic1), whose expression was associated with drug-induced weight gain, and in these studies, we assess the effect of Clic1 inhibition on food intake and body weight in mice. METHODS We studied the impact of Clic1 inhibition in mouse models of binge-eating, diet-induced obese mice and genetic models of obesity (Magel2 KO mice). RESULTS Clic1 knockout (KO) mice ate significantly less and had a lower body weight than WT littermates when either fed chow or high fat diet. Furthermore, pharmacological inhibition of Clic1 in diet-induced obese mice resulted in suppression of food intake and promoted highly efficacious weight loss. Clic1 inhibition also reduced food intake in binge-eating models and hyperphagic Magel2 KO mice. We observed that chronic obesity resulted in a significant change in subcellular localization of Clic1 with an increased ratio of Clic1 in the membrane in the obese state. These observations provide a novel therapeutic strategy to block Clic1 translocation as a potential mechanism to reduce food intake and lower body weight. CONCLUSIONS These studies attribute a novel role of Clic1 as a driver of food intake and overconsumption. In summary, we have identified hypothalamic expression of Clic1 plays a key role in food intake, providing a novel therapeutic target to treat overconsumption that is the root cause of modern obesity.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dinghong Zhang
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dongmin Yoon
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chanond A Nasamran
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Daisy R Chilin-Fuentes
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Avraham Libster
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Besma S Chaudry
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mariela Lopez-Valencia
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Devasena Ponnalagu
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Michael Petrascheck
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
11
|
Amidžić M, Banović Fuentes J, Banović J, Torović L. Notifications and Health Consequences of Unauthorized Pharmaceuticals in Food Supplements. PHARMACY 2023; 11:154. [PMID: 37888499 PMCID: PMC10609884 DOI: 10.3390/pharmacy11050154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Health concerns associated with the consumption of food supplements rise in parallel with the rise in the popularity and market availability of these products. In pursuit of data related to the unauthorized presence of pharmaceuticals in food supplements, the Rapid Alert System for Food and Feed (RASFF) database was searched for the 2011-2022 period. The most "popular" pharmaceuticals for the adulteration of food supplements were phosphodiesterase-5 inhibitors (235 records); anorexics and laxatives (76), including sibutramine and its active metabolite N-didesmethyl sibutramine, phenolphthalein and 2,4-dinitrophenol; stimulants, among which 1,3-dimethylamine (97), and synephrine (53) were the most numerous; nootropic drugs (24); anabolics and prohormones (16); and cannabinoid cannabidiol (14) (pending authorization as a novel food ingredient). Over 65% of notifications of interest were classified as serious risks, and over 80% of these were alert or border rejection notifications, mainly generated as a result of official control on the market. The alarming number of RASFF notifications should be considered a public health issue, demanding clear and targeted recommendation for action for the legislature and authorities. A harmonized nutrivigilance system should be considered as a tool to detect and scrutinize the adverse health effects of food supplements, along with measures to improve their safety, quality, and testing.
Collapse
Affiliation(s)
- Maja Amidžić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (M.A.); (J.B.F.)
| | - Jelena Banović Fuentes
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (M.A.); (J.B.F.)
| | - Jovica Banović
- Department of Internal Medicine, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
| | - Ljilja Torović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (M.A.); (J.B.F.)
- Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
12
|
Huang L, Bai Q, Wang Z, Zhang X, Liu K, Cui J, Du L, Liu S, Fu Y, Wang H, Li D, Sun H. Carbon Dots as Potential Therapeutic Agents for Treating Non-Alcoholic Fatty Liver Disease and Associated Inflammatory Bone Loss. Bioconjug Chem 2023; 34:1704-1715. [PMID: 37639623 DOI: 10.1021/acs.bioconjchem.3c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as one of the most significant metabolic diseases worldwide and is associated with heightened systemic inflammation, which has been shown to foster the development of extrahepatic complications. So far, there is no definitive, effective, and safe treatment for NAFLD. Although antidiabetic agents show potential for treating NAFLD, their efficacy is significantly limited by inadequate liver accumulation at safe doses and unwanted side effects. Herein, we demonstrate that pharmacologically active carbon dots (MCDs) derived from metformin can selectively accumulate in the liver and ameliorate NAFLD by activating hepatic PPARα expression while maintaining an excellent biosafety. Interestingly, MCDs can also improve the function of extrahepatic organs and tissues, such as alleviating alveolar inflammatory bone loss, in the process of treating NAFLD. This study proposes a feasible and safe strategy for designing pharmacologically active MCDs to target the liver, which regulates lipid metabolism and systemic inflammation, thereby treating NAFLD and its related extrahepatic complications.
Collapse
Affiliation(s)
- Lei Huang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Qinzhu Bai
- Department of Radiology, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Zhuoran Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Xu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Kexuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Jing Cui
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Liuyi Du
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Shuchen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, P.R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| |
Collapse
|
13
|
Kühnen P, Wabitsch M, von Schnurbein J, Chirila C, Mallya UG, Callahan P, Gnanasakthy A, Poitou C, Krabusch PM, Stewart M, Clément K. Quality of life outcomes in two phase 3 trials of setmelanotide in patients with obesity due to LEPR or POMC deficiency. Orphanet J Rare Dis 2022; 17:38. [PMID: 35123544 PMCID: PMC8817523 DOI: 10.1186/s13023-022-02186-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction Individuals with proopiomelanocortin (POMC) or leptin receptor (LEPR) deficiency are young and experience severe obesity, hyperphagia, and comorbidities, which can impair quality of life (QOL).
Methods Two pivotal Phase 3 trials explored the effect of setmelanotide on body weight and hunger in individuals with obesity due to POMC (NCT02896192) or LEPR (NCT03287960) deficiency. QOL and depression were investigated in parallel using the disease-specific, age-appropriate Impact of Weight on Quality of Life-Lite (IWQOL-Lite), Pediatric Quality of Life Inventory (PedsQL), and Patient Health Questionnaire-9 (PHQ-9). Results In total, the POMC and LEPR trials enrolled 21 patients. Adults (≥ 18 years old; n = 7) had moderate-to-severe impairment in QOL at baseline, with mean (standard deviation [SD]) IWQOL-Lite total score 60.3 (13.2; maximum IWQOL-Lite total score = 100). The effect of setmelanotide on IWQOL-Lite total score was observed as soon as Week 5. Among those with scores at Week 52, 5 of 6 adults experienced a clinically meaningful improvement, with mean (SD) total scores increased from baseline by 24.2 (12.1) points. Children (6–12 years old; n = 2) and adolescents (13–17 years old; n = 4) had impaired QOL at baseline, with mean (SD) self-reported PedsQL total scores 53.3 (6.2) and 63.3 (29.1), respectively (maximum PedsQL total score = 100). Three of 5 patients experienced clinically meaningful improvement in PedsQL, with 2 children whose PedsQL total score increased by 28.3 and 3.3 points and 3 adolescents whose mean (SD) total score increased from baseline by 5.8 (18.3) points. Baseline mean (SD) PHQ-9 score (in those ≥ 12 years old) was 5.3 (3.8) and was generally maintained through Week 52. Conclusions Patients with POMC or LEPR deficiency had impaired, and in some cases severely impaired, QOL before setmelanotide treatment. Setmelanotide improved QOL in patients as early as Week 5, with some patients no longer experiencing impaired QOL at Week 52. Improvements in QOL may be related to a reduction in hunger and body weight associated with setmelanotide. Because of the highly complex psychological consequences of rare genetic diseases of obesity, some patients may require a long period of treatment to improve QOL and benefit from interdisciplinary care.
Collapse
|
14
|
Obesity Animal Models for Acupuncture and Related Therapy Research Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6663397. [PMID: 34630614 PMCID: PMC8497105 DOI: 10.1155/2021/6663397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Obesity and related diseases are considered as pandemic representing a worldwide threat for health. Animal models are critical to validate the effects and understand the mechanisms related to classical or innovative preventive and therapeutic strategies. It is, therefore, important to identify the best animal models for translational research, using different evaluation criteria such as the face, construct, and predictive validity. Because the pharmacological treatments and surgical interventions currently used for treating obesity often present many undesirable side effects, relatively high relapse probabilities, acupuncture, electroacupuncture (EA), and related therapies have gained more popularity and attention. Many kinds of experimental animal models have been used for obesity research studies, but in the context of acupuncture, most of the studies were performed in rodent obesity models. Though, are these obesity rodent models really the best for acupuncture or related therapies research studies? In this study, we review different obesity animal models that have been used over the past 10 years for acupuncture and EA research studies. We present their respective advantages, disadvantages, and specific constraints. With the development of research on acupuncture and EA and the increasing interest regarding these approaches, proper animal models are critical for preclinical studies aiming at developing future clinical trials in the human. The aim of the present study is to provide researchers with information and guidance related to the preclinical models that are currently available to investigate the outcomes of acupuncture and related therapies.
Collapse
|
15
|
A Rapid Screening Method for Sibutramine Hydrochloride in Natural Herbal Medicines and Dietary Supplements. Int J Anal Chem 2021; 2021:8889423. [PMID: 34484342 PMCID: PMC8413021 DOI: 10.1155/2021/8889423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 04/25/2021] [Accepted: 07/31/2021] [Indexed: 11/24/2022] Open
Abstract
Herbal weight loss drugs are becoming more widely used in the fight against obesity, but ineffective regulation of these products have resulted in harmful additives. These products may contain adulterants such as sibutramine hydrochloride that may result in serious adverse health events including death. This work established a color precipitation reaction-based rapid screening method for illegal adulteration of sibutramine hydrochloride in natural herbal medicines (NHM) and dietary supplements (DS). While a variety of chromatography- and electrophoresis-based systems have been reported to measure this analyte, they generally suffer from high costs, complicated sample preparation, and a costly analytical infrastructure. In contrast, we present a simple, handheld kit to assay for sibutramine. The performance metrics of this tool include an average detection time of approximately 3 minutes, which is markedly shorter than conventional methods (HPLC or HPLC-MS, etc.), a detection limit of 0.1 mg per aliquot, and an accuracy of 99.02% (n = 820). More strikingly, the sensitivity is 100% (n = 278), and the specificity is 98.52% (n = 542). The rapid test kit developed from this screening method was evaluated by FDA. In summary, this screening method is a rapid, simple, and low-cost tool for the detection of sibutramine in NHM and DS with superior selectivity and sensitivity. For these reasons, this method is especially suitable for underdeveloped settings because it can be employed onsite without any instrumentation. In addition, this approach could rapidly exclude most of the negative samples to boost efficiency in large-scale samples assay. If necessary, positive samples can undergo further alternate testing methods to confirm the positive results of sibutramine hydrochloride content.
Collapse
|
16
|
Sternson SM, Bleakman D. Chemogenetics: drug-controlled gene therapies for neural circuit disorders. ACTA ACUST UNITED AC 2021; 6:1079-1094. [PMID: 34422319 PMCID: PMC8376173 DOI: 10.18609/cgti.2020.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many patients with nervous system disorders have considerable unmet clinical needs or suffer debilitating drug side effects. A major limitation of exiting treatment approaches is that traditional small molecule pharmacotherapy lacks sufficient specificity to effectively treat many neurological diseases. Chemogenetics is a new gene therapy technology that targets an engineered receptor to cell types involved in nervous system dysfunction, enabling highly selective drug-controlled neuromodulation. Here, we discuss chemogenetic platforms and considerations for their potential application as human nervous system therapies.
Collapse
Affiliation(s)
- Scott M Sternson
- Janelia Research Campus, HHMI, 19700 Helix Dr. Ashburn, VA 20147, USA
| | - David Bleakman
- Redpin Therapeutics, 1329, Madison Avenue, Suite 125, New York, NY 10029, USA
| |
Collapse
|
17
|
Santos-Molina L, Herrerias A, Zawatsky CN, Gunduz-Cinar O, Cinar R, Iyer MR, Wood CM, Lin Y, Gao B, Kunos G, Godlewski G. Effects of a Peripherally Restricted Hybrid Inhibitor of CB1 Receptors and iNOS on Alcohol Drinking Behavior and Alcohol-Induced Endotoxemia. Molecules 2021; 26:5089. [PMID: 34443679 PMCID: PMC8399901 DOI: 10.3390/molecules26165089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Alcohol consumption is associated with gut dysbiosis, increased intestinal permeability, endotoxemia, and a cascade that leads to persistent systemic inflammation, alcoholic liver disease, and other ailments. Craving for alcohol and its consequences depends, among other things, on the endocannabinoid system. We have analyzed the relative role of central vs. peripheral cannabinoid CB1 receptors (CB1R) using a "two-bottle" as well as a "drinking in the dark" paradigm in mice. The globally acting CB1R antagonist rimonabant and the non-brain penetrant CB1R antagonist JD5037 inhibited voluntary alcohol intake upon systemic but not upon intracerebroventricular administration in doses that elicited anxiogenic-like behavior and blocked CB1R-induced hypothermia and catalepsy. The peripherally restricted hybrid CB1R antagonist/iNOS inhibitor S-MRI-1867 was also effective in reducing alcohol consumption after oral gavage, while its R enantiomer (CB1R inactive/iNOS inhibitor) was not. The two MRI-1867 enantiomers were equally effective in inhibiting an alcohol-induced increase in portal blood endotoxin concentration that was caused by increased gut permeability. We conclude that (i) activation of peripheral CB1R plays a dominant role in promoting alcohol intake and (ii) the iNOS inhibitory function of MRI-1867 helps in mitigating the alcohol-induced increase in endotoxemia.
Collapse
Affiliation(s)
- Luis Santos-Molina
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.S.-M.); (A.H.); (G.K.)
| | - Alexa Herrerias
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.S.-M.); (A.H.); (G.K.)
| | - Charles N. Zawatsky
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (C.N.Z.); (R.C.)
| | - Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (C.N.Z.); (R.C.)
| | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (M.R.I.); (C.M.W.)
| | - Casey M. Wood
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (M.R.I.); (C.M.W.)
| | - Yuhong Lin
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (Y.L.); (B.G.)
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (Y.L.); (B.G.)
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.S.-M.); (A.H.); (G.K.)
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.S.-M.); (A.H.); (G.K.)
| |
Collapse
|
18
|
A novel chemical inhibitor suppresses breast cancer cell growth and metastasis through inhibiting HPIP oncoprotein. Cell Death Discov 2021; 7:198. [PMID: 34326318 PMCID: PMC8322322 DOI: 10.1038/s41420-021-00580-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 07/03/2021] [Indexed: 11/09/2022] Open
Abstract
Increasing evidence suggests the pivotal role of hematopoietic pre-B-cell leukemia transcription factor (PBX)-interacting protein (HPIP/PBXIP1) in cancer development and progression, indicating that HPIP inhibition may be a promising target for cancer therapy. Here, we screened compounds inhibiting breast cancer cell proliferation with HPIP fused with green fluorescent protein as a reporter. A novel agent named TXX-1-10 derived from rimonabant, an antagonist of cannabinoid receptor 1 with anticancer effects, has been discovered to reduce HPIP expression and has greater inhibitory effects on breast cancer cell growth and metastasis in vitro and in vivo than rimonabant. TXX-1-10 regulates HPIP downstream targets, including several important kinases involved in cancer development and progression (e.g., AKT, ERK1/2, and FAK) as well as cell cycle-, apoptosis-, migration-, and epithelial-to-mesenchymal transition (EMT)-related genes. Consistent with the results of anticancer effects, genome-wide RNA sequencing indicated that TXX-1-10 has more significant effects on regulation of the expression of genes related to DNA replication, cell cycle, apoptosis, cell adhesion, cell migration, and invasion than rimonabant. In addition, TXX-1-10 significantly regulated genes associated with the cell growth and extracellular matrix organization, many of which were shown to be regulated by HPIP. Moreover, compared with rimonabant, TXX-1-10 greatly reduces blood-brain barrier penetrability to avoid adverse central depressive effects. These findings suggest that HPIP inhibition may be a useful strategy for cancer treatment and TXX-1-10 is a promising candidate drug for cancer therapy.
Collapse
|
19
|
Abstract
Obese non-diabetic patients receiving semaglutide, an injectable long-acting GLP-1 receptor agonist, in a large randomized placebo-controlled trial, lost and maintained ∼15% of their body weight for over a year (Wilding et al., 2021). This impressive result is likely to usher in a new era of anti-obesity drugs based on hormones that suppress food intake, largely through acting on the brain.
Collapse
Affiliation(s)
- Fiona M Gribble
- WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Stephen O'Rahilly
- WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
20
|
Seoane-Collazo P, Diéguez C, Nogueiras R, Rahmouni K, Fernández-Real JM, López M. Nicotine' actions on energy balance: Friend or foe? Pharmacol Ther 2020; 219:107693. [PMID: 32987056 DOI: 10.1016/j.pharmthera.2020.107693] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Obesity has reached pandemic proportions and is associated with severe comorbidities, such as type 2 diabetes mellitus, hepatic and cardiovascular diseases, and certain cancer types. However, the therapeutic options to treat obesity are limited. Extensive epidemiological studies have shown a strong relationship between smoking and body weight, with non-smokers weighing more than smokers at any age. Increased body weight after smoking cessation is a major factor that interferes with their attempts to quit smoking. Numerous controlled studies in both humans and rodents have reported that nicotine, the main bioactive component of tobacco, exerts a marked anorectic action. Furthermore, nicotine is also known to modulate energy expenditure, by regulating the thermogenic activity of brown adipose tissue (BAT) and the browning of white adipose tissue (WAT), as well as glucose homeostasis. Many of these actions occur at central level, by controlling the activity of hypothalamic neuropeptide systems such as proopiomelanocortin (POMC), or energy sensors such as AMP-activated protein kinase (AMPK). However, direct impact of nicotine on metabolic tissues, such as BAT, WAT, liver and pancreas has also been described. Here, we review the actions of nicotine on energy balance. The relevance of this interaction is interesting, because considering the restricted efficiency of obesity treatments, a possible complementary approach may focus on compounds with known pharmacokinetic profile and pharmacological actions, such as nicotine or nicotinic acetylcholine receptors signaling.
Collapse
Affiliation(s)
- Patricia Seoane-Collazo
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine and Veterans Affairs Health Care System, Iowa City, IA 52242, USA
| | - José Manuel Fernández-Real
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta" and Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| |
Collapse
|
21
|
Kesner AJ, Lovinger DM. Cannabinoids, Endocannabinoids and Sleep. Front Mol Neurosci 2020; 13:125. [PMID: 32774241 PMCID: PMC7388834 DOI: 10.3389/fnmol.2020.00125] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
Sleep is a vital function of the nervous system that contributes to brain and bodily homeostasis, energy levels, cognitive ability, and other key functions of a variety of organisms. Dysfunctional sleep induces neural problems and is a key part of almost all human psychiatric disorders including substance abuse disorders. The hypnotic effects of cannabis have long been known and there is increasing use of phytocannabinoids and other formulations as sleep aids. Thus, it is crucial to gain a better understanding of the neurobiological basis of cannabis drug effects on sleep, as well as the role of the endogenous cannabinoid system in sleep physiology. In this review article, we summarize the current state of knowledge concerning sleep-related endogenous cannabinoid function derived from research on humans and rodent models. We also review information on acute and chronic cannabinoid drug effects on sleep in these organisms, and molecular mechanisms that may contribute to these effects. We point out the potential benefits of acute cannabinoids for sleep improvement, but also the potential sleep-disruptive effects of withdrawal following chronic cannabinoid drug use. Prescriptions for future research in this burgeoning field are also provided.
Collapse
Affiliation(s)
- Andrew J Kesner
- Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institute of Health (NIH), Bethesda, MD, United States
- Center on Compulsive Behaviors, Intramural Research Program, National Institute of Health (NIH), Bethesda, MD, United States
| | - David M Lovinger
- Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institute of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
22
|
Nava-Molina L, Uchida-Fuentes T, Ramos-Tovar H, Fregoso-Padilla M, Rodríguez-Monroy MA, Vega AV, Navarrete-Vázquez G, Andrade-Jorge E, Villalobos-Molina R, Ortiz-Ortega R, Vilches-Flores A. Novel CB1 receptor antagonist BAR-1 modifies pancreatic islet function and clinical parameters in prediabetic and diabetic mice. Nutr Diabetes 2020; 10:7. [PMID: 32132523 PMCID: PMC7055595 DOI: 10.1038/s41387-020-0110-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/02/2020] [Accepted: 01/16/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUDS Cannabinoid receptor antagonists have been suggested as a novel treatment for obesity and diabetes. We have developed a synthetic cannabinoid receptor antagonist denominated BAR-1. As the function and integrity of a β-cell cellular structure are important keys for diabetes onset, we evaluated the effects of pharmacological administration of BAR-1 on prediabetic and diabetic rodents. METHODS CD-1 mice fed a hypercaloric diet or treated with streptozotocin were treated with 10 mg/kg BAR-1 for 2, 4 or 8 weeks. Body weight, oral glucose tolerance test, HbA1c, triglycerides and insulin in serum were measured. In isolated islets, we evaluated stimulated secretion and mRNA expression, and relative area of islets in fixed pancreases. Docking analysis of BAR-1 was complemented. RESULTS BAR-1 treatment slowed down weight gain in prediabetic mice. Fasting glucose-insulin relation also decreased in BAR-1-treated mice and glucose-stimulated insulin secretion was increased in isolated islets, without effects in oral test. Diabetic mice treated with BAR-1 showed a reduced glucose and a partial recovery of islet integrity. Gene expression of insulin and glucagon showed biphasic behaviour, increasing after 4 weeks of BAR-1 administration; however, after 8 weeks, mRNA abundance decreased significantly. Administration of BAR-1 also prevents changes in endocannabinoid element expression observed in prediabetic mice. No changes were detected in other parameters studied, including the histological structure. A preliminary in-silico study suggests a close interaction with CB1 receptor. CONCLUSIONS BAR-1 induces improvement of islet function, isolated from both prediabetic and diabetic mice. Effects of BAR-1 suggest a possible interaction with other cannabinoid receptors.
Collapse
Affiliation(s)
- Lesly Nava-Molina
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Toyokazu Uchida-Fuentes
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Héctor Ramos-Tovar
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Martha Fregoso-Padilla
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Marco Aurelio Rodríguez-Monroy
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Ana V Vega
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Gabriel Navarrete-Vázquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Chamilpa, C.P., 62209, Cuernavaca, Morelos, Mexico
| | - Erik Andrade-Jorge
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Rafael Villalobos-Molina
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Ricardo Ortiz-Ortega
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Alonso Vilches-Flores
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico.
| |
Collapse
|
23
|
Gewehr MCF, Silverio R, Rosa-Neto JC, Lira FS, Reckziegel P, Ferro ES. Peptides from Natural or Rationally Designed Sources Can Be Used in Overweight, Obesity, and Type 2 Diabetes Therapies. Molecules 2020; 25:E1093. [PMID: 32121443 PMCID: PMC7179135 DOI: 10.3390/molecules25051093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
Overweight and obesity are among the most prominent health problems in the modern world, mostly because they are either associated with or increase the risk of other diseases such as type 2 diabetes, hypertension, and/or cancer. Most professional organizations define overweight and obesity according to individual body-mass index (BMI, weight in kilograms divided by height squared in meters). Overweight is defined as individuals with BMI from 25 to 29, and obesity as individuals with BMI ≥30. Obesity is the result of genetic, behavioral, environmental, physiological, social, and cultural factors that result in energy imbalance and promote excessive fat deposition. Despite all the knowledge concerning the pathophysiology of obesity, which is considered a disease, none of the existing treatments alone or in combination can normalize blood glucose concentration and prevent debilitating complications from obesity. This review discusses some new perspectives for overweight and obesity treatments, including the use of the new orally active cannabinoid peptide Pep19, the advantage of which is the absence of undesired central nervous system effects usually experienced with other cannabinoids.
Collapse
Affiliation(s)
- Mayara C. F. Gewehr
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Renata Silverio
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil;
| | - José Cesar Rosa-Neto
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Fabio S. Lira
- Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente 19060-900, Brazil;
| | - Patrícia Reckziegel
- Department of Pharmacology, National Institute of Pharmacology and Molecular Biology (INFAR), Federal University of São Paulo (UNIFESP), São Paulo 05508-000, Brazil;
| | - Emer S. Ferro
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| |
Collapse
|
24
|
Efficiently Anti-Obesity Effects of Unsaturated Alginate Oligosaccharides (UAOS) in High-Fat Diet (HFD)-Fed Mice. Mar Drugs 2019; 17:md17090540. [PMID: 31533255 PMCID: PMC6780860 DOI: 10.3390/md17090540] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022] Open
Abstract
Obesity and its related complications have become one of the leading problems affecting human health. However, current anti-obesity treatments are limited by high cost and numerous adverse effects. In this study, we investigated the use of a non-toxic green food additive, known as unsaturated alginate oligosaccharides (UAOS) from the enzymatic degradation of Laminaria japonicais, which showed effective anti-obesity effects in a high-fat diet (HFD) mouse model. Compared with acid hydrolyzed saturated alginate oligosaccharides (SAOS), UAOS significantly reduced body weight, serum lipid, including triacylglycerol (TG), total cholesterol (TC) and free fatty acids (FFA), liver weight, liver TG and TC, serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels, adipose mass, reactive oxygen species (ROS) formation, and accumulation induced in HFD mice. Moreover, the structural differences in β-d-mannuronate (M) and its C5 epimer α-l-guluronate (G) did not cause significant functional differences. Meanwhile, UAOS significantly increased both AMP-activated protein kinase α (AMPKα) and acetyl-CoA carboxylase (ACC) phosphorylation in adipocytes, which indicated that UAOS had an anti-obesity effect mainly through AMPK signaling. Our results indicate that UAOS has the potential for further development as an adjuvant treatment for many metabolic diseases such as fatty liver, hypertriglyceridemia, and possibly diabetes.
Collapse
|
25
|
He YL, Haynes W, Meyers CD, Amer A, Zhang Y, Mahling P, Mendonza AE, Ma S, Chutkow W, Bachman E. The effects of licogliflozin, a dual SGLT1/2 inhibitor, on body weight in obese patients with or without diabetes. Diabetes Obes Metab 2019; 21:1311-1321. [PMID: 30724002 DOI: 10.1111/dom.13654] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND There is an unmet need for a safer and more effective treatment for obesity. This study assessed the effects of licogliflozin, a dual inhibitor of sodium-glucose co-transporter (SGLT) 1/2, on body weight, metabolic parameters and incretin hormones in patients with type 2 diabetes mellitus (T2DM) and/or obesity. METHODS Patients with obesity (BMI, 35-50 kg/m2 ) were enrolled into a 12-week study (N = 88; licogliflozin 150 mg q.d.). Patients with T2DM were enrolled into a second, two-part study, comprising a single-dose cross-over study (N = 12; 2.5 - 300 mg) and a 14-day dosing study (N = 30; 15 mg q.d). Primary endpoints included effects on body weight, effects on glucose, safety and tolerability. Secondary endpoints included urinary glucose excretion (UGE24 ) and pharmacokinetics, while exploratory endpoints assessed the effects on incretin hormones (total GLP-1, PYY3-36 , and GIP), insulin and glucagon. RESULTS Treatment with licogliflozin 150 mg q.d. for 12 weeks in patients with obesity significantly reduced body weight by 5.7% vs placebo (P < 0.001) and improved metabolic parameters such as significantly reduced postprandial glucose excursion (21%; P < 0.001), reduced insulin levels (80%; P < 0.001) and increased glucagon (59%; P < 0.001). In patients with T2DM, a single dose of licogliflozin 300 mg in the morning prior to an oral glucose tolerance test (OGTT) remarkably reduced glucose excursion by 93% (P < 0.001; incremental AUC0-4h ) and suppressed insulin by 90% (P < 0.01; incremental AUC0-4h ). Treatment with licogliflozin 15 mg q.d. for 14 days reduced 24-hour average glucose levels by 26% (41 mg/dL; P < 0.001) and increased UGE24 to 100 g (P < 0.001) in patients with T2DM. In addition, this treatment regimen significantly increased total GLP-1 by 54% (P < 0.001) and PYY3-36 by 67% (P < 0.05) post OGTT vs placebo, while significantly reducing GIP levels by 53% (P < 0.001). Treatment with licogliflozin was generally safe and well tolerated. Diarrhea (increased numbers of loose stool) was the most common adverse event in all studies (90% with licogliflozin vs 25% with placebo in the 12-week study), while a lower incidence of flatulence, abdominal pain and abdominal distension (25%-43% with licogliflozin vs 9%-11% with placebo in the 12-week study) were among the other gastrointestinal events reported. CONCLUSION Licogliflozin treatment (1-84 days) leads to significant weight loss and favourable changes in a variety of metabolic parameters and incretin hormones. Dual inhibition of SGLT1/2 with licogliflozin in the gut and kidneys is an attractive strategy for treating obesity and diabetes.
Collapse
Affiliation(s)
- Yan-Ling He
- Translational Medicine, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - William Haynes
- Translational Medicine, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
- Novo Nordisk Research Centre Oxford, UK
| | - Charles D Meyers
- Translational Medicine, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
- Chief Medical Office, Anji Pharmaceuticals, Cambridge, Massachusetts
| | - Ahmed Amer
- CMO and Patient Safety, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Yiming Zhang
- Early Development Biostatistics, Biostatistics and Pharmacometrics, Novartis Institutes for BioMedical Research, East Hanover, New Jersey
| | - Ping Mahling
- DEV B&SS, CM/Global Health, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Anisha E Mendonza
- Translational Medicine, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Shenglin Ma
- Translational Medicine, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - William Chutkow
- Cardiovascular and Metabolism Disease Area, Novartis Institutes for BioMedical Research, Cambridge, Massachussets
| | - Eric Bachman
- Translational Medicine, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
- Vertex Pharmaceuticals, Boston, Massachusetts
| |
Collapse
|
26
|
Identification of novel mouse and rat CB1R isoforms and in silico modeling of human CB1R for peripheral cannabinoid therapeutics. Acta Pharmacol Sin 2019; 40:387-397. [PMID: 30202012 DOI: 10.1038/s41401-018-0152-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/18/2018] [Indexed: 01/28/2023] Open
Abstract
Targeting peripheral CB1R is desirable for the treatment of metabolic syndromes without adverse neuropsychiatric effects. We previously reported a human hCB1b isoform that is selectively enriched in pancreatic beta-cells and hepatocytes, providing a potential peripheral therapeutic hCB1R target. It is unknown whether there are peripherally enriched mouse and rat CB1R (mCB1 and rCB1, respectively) isoforms. In this study, we found no evidence of peripherally enriched rodent CB1 isoforms; however, some mCB1R isoforms are absent in peripheral tissues. We show that the mouse Cnr1 gene contains six exons that are transcribed from a single promoter. We found that mCB1A is a spliced variant of extended exon 1 and protein-coding exon 6; mCB1B is a novel spliced variant containing unspliced exon 1, intron 1, and exon 2, which is then spliced to exon 6; and mCB1C is a spliced variant including all 6 exons. Using RNAscope in situ hybridization, we show that the isoforms mCB1A and mCB1B are expressed at a cellular level and colocalized in GABAergic neurons in the hippocampus and cortex. RT-qPCR reveals that mCB1A and mCB1B are enriched in the brain, while mCB1B is not expressed in the pancreas or the liver. Rat rCB1R isoforms are differentially expressed in primary cultured neurons, astrocytes, and microglia. We also investigated modulation of Cnr1 expression by insulin in vivo and carried out in silico modeling of CB1R with JD5037, a peripherally restricted CB1R inverse agonist, using the published crystal structure of hCB1R. The results provide models for future CB1R peripheral targeting.
Collapse
|
27
|
Morikawa Y, Shibata A, Sasajima Y, Suenami K, Sato K, Takekoshi Y, Endo S, Ikari A, Matsunaga T. Sibutramine facilitates apoptosis and contraction of aortic smooth muscle cells through elevating production of reactive oxygen species. Eur J Pharmacol 2018; 841:113-121. [DOI: 10.1016/j.ejphar.2018.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023]
|
28
|
Levy A, Daniels S, Hudson R, Horman T, Flynn A, Zhou Y, Leri F. Bupropion and naltrexone combination alters high fructose corn syrup self-administration and gene expression in rats. Neuropharmacology 2018; 135:547-554. [DOI: 10.1016/j.neuropharm.2018.01.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 12/22/2022]
|
29
|
Pujol CN, Paasche C, Laprevote V, Trojak B, Vidailhet P, Bacon E, Lalanne L. Cognitive effects of labeled addictolytic medications. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:306-332. [PMID: 28919445 DOI: 10.1016/j.pnpbp.2017.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Alcohol, tobacco, and illegal drug usage is pervasive throughout the world, and abuse of these substances is a major contributor to the global disease burden. Many pharmacotherapies have been developed over the last 50years to target addictive disorders. While the efficacy of these pharmacotherapies is largely recognized, their cognitive impact is less known. However, all substance abuse disorders are known to promote cognitive disorders like executive dysfunction and memory impairment. These impairments are critical for the maintenance of addictive behaviors and impede cognitive behavioral therapies that are regularly administered in association with pharmacotherapies. It is also unknown if addictolytic medications have an impact on preexisting cognitive disorders, and if this impact is modulated by the indication of prescription, i.e. abstinence, reduction or substitution, or by the specific action of the medication. METHOD We reviewed the cognitive effects of labeled medications for tobacco addiction (varenicline, bupropion, nicotine patch and nicotine gums), alcohol addiction (naltrexone, nalmefene, baclofen, disulfiram, sodium oxybate, acamprosate), and opioid addiction (methadone, buprenorphine) in human studies. Studies were selected following MOOSE guidelines for systematic reviews of observational studies, using the keywords [Cognition] and [Cognitive disorders] and [treatment] for each medication. RESULTS 971 articles were screened and 77 studies met the inclusion criteria and were reported in this review (for alcohol abuse, n=21, for tobacco n=22, for opioid n=34. However, very few comparative clinical trials have explored the chronic effects of addictolytic medications on cognition in addictive behaviors, and there are no clinical trials on the cognitive impact of nalmefene in patients suffering from alcohol use disorders. DISCUSSION Although some medications seem to enhance cognition in patients suffering from cognitive disorders, others could promote cognitive impairments, and our work highlights a lack of literature on this subject. In conclusion, more comparative clinical trials are needed to better understand the cognitive impact of addictolytic medications.
Collapse
Affiliation(s)
- Camille Noélie Pujol
- Department of Neurosciences, Institute for Functional Genomics, INSERM U-661, CNRS UMR-5203, 34094 Montpellier, France
| | - Cecilia Paasche
- INSERM 1114, Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Vincent Laprevote
- Centre Psychothérapique de Nancy, Laxou, F-54520, France.; EA 7298, INGRES, Université de Lorraine, Vandoeuvre-lès-, Nancy F-54000, France; CHU Nancy, Maison des Addictions, Nancy, F-54000, France.
| | - Benoit Trojak
- Department of Psychiatry and Addictology, University Hospital of Dijon, France; EA 4452, LPPM, University of Burgundy, France.
| | - Pierre Vidailhet
- INSERM 1114, Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France; Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France..
| | - Elisabeth Bacon
- INSERM 1114, Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France.
| | - Laurence Lalanne
- INSERM 1114, Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France; Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France..
| |
Collapse
|
30
|
Goody SMG, Cannon KE, Liu M, Kallman MJ, Martinolle JP, Mazelin-Winum L, Giarola A, Ardayfio P, Moyer JA, Teuns G, Hudzik TJ. Considerations on nonclinical approaches to modeling risk factors of suicidal ideation and behavior. Regul Toxicol Pharmacol 2017; 89:288-301. [PMID: 28757322 DOI: 10.1016/j.yrtph.2017.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/22/2017] [Accepted: 07/26/2017] [Indexed: 12/31/2022]
Abstract
Given the serious nature of suicidal ideation and behavior (SIB) and the possibility of treatment-emergent SIB, pharmaceutical companies are now applying more proactive approaches in clinical trials and are considering the value of nonclinical models to predict SIB. The current review summarizes nonclinical approaches to modeling three common risk factors associated with SIB: aggression, impulsivity, and anhedonia. For each risk factor, a general description, advantages and disadvantages, species considerations, nonclinical to clinical translation, and pharmacological validation with respect to treatments associated with SIB are summarized. From this review, several gaps were identified that need to be addressed before use of these nonclinical models can be considered a viable option to predict the relative risk for SIB. Other future directions that may compliment these nonclinical approaches, including the use of selectively-bred or genetically-modified rodent models, transgenic models, gene expression profiling, and biomarker analysis, are discussed. This article was developed with the support of the DruSafe Leadership Group of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ, www.iqconsortium.org).
Collapse
Affiliation(s)
- S M G Goody
- Pfizer Drug Safety Research & Development, Groton, CT, USA.
| | | | - M Liu
- Drinker, Biddle and IQ Consortium, Washington, DC, USA
| | - M J Kallman
- Kallman Preclinical Consulting, Greenfield, IN, USA
| | | | | | - A Giarola
- GlaxoSmithKline Safety Pharmacology Department, Ware, UK
| | - P Ardayfio
- Eli Lilly and Company, Indianapolis, IN, USA
| | - J A Moyer
- Janssen Research & Development, Titusville, NJ, USA
| | - G Teuns
- Janssen Research & Development, Beerse, Belgium
| | - T J Hudzik
- ALA BioPharm Consulting, Gurnee, IL, USA
| |
Collapse
|
31
|
Lazzari P, Serra V, Marcello S, Pira M, Mastinu A. Metabolic side effects induced by olanzapine treatment are neutralized by CB1 receptor antagonist compounds co-administration in female rats. Eur Neuropsychopharmacol 2017; 27:667-678. [PMID: 28377074 DOI: 10.1016/j.euroneuro.2017.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 03/05/2017] [Accepted: 03/23/2017] [Indexed: 12/24/2022]
Abstract
Weight gain is an important side effect of most atypical antipsychotic drugs such as olanzapine. Moreover, although many animal models with metabolic side effects have been well defined, the interaction with other pathways has to be considered. The endocannabinoid system and the CB1 receptor (CB1R) are among the most promising central and peripheral targets involved in weight and energy balance. In this study we developed a rat model based 15-days treatment with olanzapine that shows weight gain and an alteration of the blood parameters involved in the regulation of energy balance and glucose metabolism. Consequently, we analysed whether, and by which mechanism, a co-treatment with the novel CB1R neutral antagonist NESS06SM, could attenuate the adverse metabolic effects of olanzapine compared to the reference CB1R inverse agonist rimonabant. Our results showed alterations of the cannabinoid markers in the nucleus accumbens and of orexigenic/anorexigenic markers in the hypothalamus of female rats treated with olanzapine. These molecular modifications could explain the excessive food intake and the resulting weight gain. Moreover, we confirmed that a co-treatment with CB1R antagonist/inverse agonist compounds decreased food intake and weight increment and restored all blood parameters, without altering the positive effects of olanzapine on behaviour. Furthermore, rimonabant and NESS06SM restored the metabolic enzymes in the liver and fat tissue altered by olanzapine. Therefore, CB1 receptor antagonist/inverse agonist compounds could be good candidate agents for the treatment of weight gain induced by olanzapine.
Collapse
Affiliation(s)
- P Lazzari
- Kemotech Srl, Edificio 3, Località Piscinamanna, 09010 Pula, CA, Italy
| | - V Serra
- Institute of Translational Pharmacology, UOS of Cagliari, National Research Council, Scientific and Technological Park of Sardinia - Polaris, Pula, CA, Italy
| | - S Marcello
- Institute of Translational Pharmacology, UOS of Cagliari, National Research Council, Scientific and Technological Park of Sardinia - Polaris, Pula, CA, Italy
| | - M Pira
- Kemotech Srl, Edificio 3, Località Piscinamanna, 09010 Pula, CA, Italy
| | - A Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; Institute of Translational Pharmacology, UOS of Cagliari, National Research Council, Scientific and Technological Park of Sardinia - Polaris, Pula, CA, Italy.
| |
Collapse
|
32
|
Abstract
Cannabis sativa has long been used for medicinal purposes. To improve safety and efficacy, compounds from C. sativa were purified or synthesized and named under an umbrella group as cannabinoids. Currently, several cannabinoids may be prescribed in Canada for a variety of indications such as nausea and pain. More recently, an increasing number of reports suggest other salutary effects associated with endogenous cannabinoid signaling including cardioprotection. The therapeutic potential of cannabinoids is therefore extended; however, evidence is limited and mechanisms remain unclear. In addition, the use of cannabinoids clinically has been hindered due to pronounced psychoactive side effects. This review provides an overview on the endocannabinoid system, including known physiological roles, and conditions in which cannabinoid receptor signaling has been implicated.
Collapse
Affiliation(s)
- Yan Lu
- a College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.,b Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Hope D Anderson
- a College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.,b Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.,c Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada
| |
Collapse
|
33
|
Mollica A, Pelliccia S, Famiglini V, Stefanucci A, Macedonio G, Chiavaroli A, Orlando G, Brunetti L, Ferrante C, Pieretti S, Novellino E, Benyhe S, Zador F, Erdei A, Szucs E, Samavati R, Dvrorasko S, Tomboly C, Ragno R, Patsilinakos A, Silvestri R. Exploring the first Rimonabant analog-opioid peptide hybrid compound, as bivalent ligand for CB1 and opioid receptors. J Enzyme Inhib Med Chem 2017; 32:444-451. [PMID: 28097916 PMCID: PMC6009935 DOI: 10.1080/14756366.2016.1260565] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cannabinoid (CB) and opioid systems are both involved in analgesia, food intake, mood and behavior. Due to the co-localization of µ-opioid (MOR) and CB1 receptors in various regions of the central nervous system (CNS) and their ability to form heterodimers, bivalent ligands targeting to both these systems may be good candidates to investigate the existence of possible cross-talking or synergistic effects, also at sub-effective doses. In this work, we selected from a small series of new Rimonabant analogs one CB1R reverse agonist to be conjugated to the opioid fragment Tyr-D-Ala-Gly-Phe-NH2. The bivalent compound (9) has been used for in vitro binding assays, for in vivo antinociception models and in vitro hypothalamic perfusion test, to evaluate the neurotransmitters release.
Collapse
Affiliation(s)
- Adriano Mollica
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Sveva Pelliccia
- b Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Roma , Italy
| | - Valeria Famiglini
- b Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Roma , Italy
| | - Azzurra Stefanucci
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Giorgia Macedonio
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Annalisa Chiavaroli
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Giustino Orlando
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Luigi Brunetti
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Claudio Ferrante
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Stefano Pieretti
- c Dipartimento del Farmaco , Istituto Superiore di Sanità , Rome , Italy
| | - Ettore Novellino
- d Dipartimento di Farmacia , Università di Napoli "Federico II" , Naples , Italy
| | - Sandor Benyhe
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Ferenc Zador
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Anna Erdei
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Edina Szucs
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Reza Samavati
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Szalbolch Dvrorasko
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Csaba Tomboly
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Rino Ragno
- f Dipartimento di Chimica e Tecnologie del Farmaco , Rome Center for Molecular Design, Sapienza Università di Roma , Roma , Italy.,g Alchemical Dynamics s.r.l , Roma , Italy
| | - Alexandros Patsilinakos
- f Dipartimento di Chimica e Tecnologie del Farmaco , Rome Center for Molecular Design, Sapienza Università di Roma , Roma , Italy.,g Alchemical Dynamics s.r.l , Roma , Italy
| | - Romano Silvestri
- b Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Roma , Italy
| |
Collapse
|
34
|
Abstract
Obesity is a global epidemic that contributes to a number of health complications including cardiovascular disease, type 2 diabetes, cancer and neuropsychiatric disorders. Pharmacotherapeutic strategies to treat obesity are urgently needed. Research over the past two decades has increased substantially our knowledge of central and peripheral mechanisms underlying homeostatic energy balance. Homeostatic mechanisms involve multiple components including neuronal circuits, some originating in hypothalamus and brain stem, as well as peripherally-derived satiety, hunger and adiposity signals that modulate neural activity and regulate eating behavior. Dysregulation of one or more of these homeostatic components results in obesity. Coincident with obesity, reward mechanisms that regulate hedonic aspects of food intake override the homeostatic regulation of eating. In addition to functional interactions between homeostatic and reward systems in the regulation of food intake, homeostatic signals have the ability to alter vulnerability to drug abuse. Regarding the treatment of obesity, pharmacological monotherapies primarily focus on a single protein target. FDA-approved monotherapy options include phentermine (Adipex-P®), orlistat (Xenical®), lorcaserin (Belviq®) and liraglutide (Saxenda®). However, monotherapies have limited efficacy, in part due to the recruitment of alternate and counter-regulatory pathways. Consequently, a multi-target approach may provide greater benefit. Recently, two combination products have been approved by the FDA to treat obesity, including phentermine/topiramate (Qsymia®) and naltrexone/bupropion (Contrave®). The current review provides an overview of homeostatic and reward mechanisms that regulate energy balance, potential therapeutic targets for obesity and current treatment options, including some candidate therapeutics in clinical development. Finally, challenges in anti-obesity drug development are discussed.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
35
|
Stephens GJ. Does modulation of the endocannabinoid system have potential therapeutic utility in cerebellar ataxia? J Physiol 2016; 594:4631-41. [PMID: 26970080 PMCID: PMC4983615 DOI: 10.1113/jp271106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 02/04/2016] [Indexed: 12/12/2022] Open
Abstract
Cerebellar ataxias represent a spectrum of disorders which are, however, linked by common symptoms of motor incoordination and typically associated with deficiency in Purkinje cell firing activity and, often, degeneration. Cerebellar ataxias currently lack a curative agent. The endocannabinoid (eCB) system includes eCB compounds and their associated metabolic enzymes, together with cannabinoid receptors, predominantly the cannabinoid CB1 receptor (CB1R) in the cerebellum; activation of this system in the cerebellar cortex is associated with deficits in motor coordination characteristic of ataxia, effects which can be prevented by CB1R antagonists. Of further interest are various findings that CB1R deficits may also induce a progressive ataxic phenotype. Together these studies suggest that motor coordination is reliant on maintaining the correct balance in eCB system signalling. Recent work also demonstrates deficient cannabinoid signalling in the mouse ‘ducky2J’ model of ataxia. In light of these points, the potential mechanisms whereby cannabinoids may modulate the eCB system to ameliorate dysfunction associated with cerebellar ataxias are considered.
![]()
Collapse
Affiliation(s)
- G J Stephens
- School of Pharmacy, University of Reading, Reading, RG6 6AJ, UK
| |
Collapse
|
36
|
Li W, Zhang L, Xu L, Yuan C, Du P, Chen J, Zhen X, Fu W. Functional reversal of (-)-Stepholidine analogues by replacement of benzazepine substructure using the ring-expansion strategy. Chem Biol Drug Des 2016; 88:599-607. [PMID: 27232055 DOI: 10.1111/cbdd.12796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/10/2016] [Accepted: 05/24/2016] [Indexed: 11/26/2022]
Abstract
(-)-Stepholidine is an active ingredient of the Chinese herb Stephania and naturally occurring tetrahydroprotoberberine alkaloid with mixed dopamine receptor D1 agonistic and dopamine receptor D2 antagonistic activities. In this work, a series of novel hexahydrobenzo[4,5]azepino [2,1-a]isoquinolines were designed and synthesized as ring-expanded analogues of (-)-Stepholidine. Initial pharmacological assays demonstrated that a benzazepine replacement was associated with significant increase in selectivity and functional reversal at dopamine receptor D1 . Compound-(-)-15e (Ki = 5.32 ± 0.01 nm) is more potent than (-)-Stepholidine (Ki = 13 nm) and was identified as a selective dopamine receptor D1 antagonist (IC50 = 0.14 μm). Moreover, molecular modeling suggested that (-)-15e might exert its dopamine receptor D1 antagonistic activities through interacting with the transmembrane helix 7 of dopamine receptor D1 .
Collapse
Affiliation(s)
- Wei Li
- Department of Medicinal Chemistry & Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, Shanghai, China
| | - Li Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatricdisorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - Lili Xu
- Department of Medicinal Chemistry & Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, Shanghai, China
| | - Congmin Yuan
- Department of Medicinal Chemistry & Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, Shanghai, China
| | - Peng Du
- Department of Medicinal Chemistry & Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiaojiao Chen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatricdisorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatricdisorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province, China.
| | - Wei Fu
- Department of Medicinal Chemistry & Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
37
|
Liu Y, Li TRR, Xu C, Xu T. Ribose Accelerates Gut Motility and Suppresses Mouse Body Weight Gaining. Int J Biol Sci 2016; 12:701-9. [PMID: 27194947 PMCID: PMC4870713 DOI: 10.7150/ijbs.13635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 02/24/2016] [Indexed: 02/06/2023] Open
Abstract
The increasing prevalence of obesity is closely related to excessive energy consumption. Clinical intervention of energy intake is an attractive strategy to fight obesity. However, the current FDA-approved weight-loss drugs all have significant side effects. Here we show that ribose upregulates gut motility and suppresses mice body weight gain. Ribokinase, which is encoded by Rbks gene, is the first enzyme for ribose metabolism in vivo. Rbks mutation resulted in ribose accumulation in the small intestine, which accelerated gut movement. Ribose oral treatment in wild type mice also enhanced bowel motility and rendered mice resistance to high fat diets. The suppressed weight gain was resulted from enhanced ingested food excretion. In addition, the effective dose of ribose didn't cause any known side effects (i.e. diarrhea and hypoglycemia). Overall, our results show that ribose can regulate gut motility and energy homeostasis in mice, and suggest that administration of ribose and its analogs could regulate gastrointestinal motility, providing a novel therapeutic approach for gastrointestinal dysfunction and weight control.
Collapse
Affiliation(s)
- Yan Liu
- 1. State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research, Fudan-Yale Center for Biomedical Research, School of Life Sciences, Fudan University, Shanghai 200433, China; 2. Shanghai Yao Yuan Biotechnology (Drug Farm) Limited, Co. Room 701, 43 Handan Rd, Shanghai, 200437, China
| | - Tong-Ruei R Li
- 2. Shanghai Yao Yuan Biotechnology (Drug Farm) Limited, Co. Room 701, 43 Handan Rd, Shanghai, 200437, China
| | - Cong Xu
- 2. Shanghai Yao Yuan Biotechnology (Drug Farm) Limited, Co. Room 701, 43 Handan Rd, Shanghai, 200437, China
| | - Tian Xu
- 1. State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research, Fudan-Yale Center for Biomedical Research, School of Life Sciences, Fudan University, Shanghai 200433, China; 3. Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, Connecticut 06536, USA
| |
Collapse
|
38
|
Pava MJ, Makriyannis A, Lovinger DM. Endocannabinoid Signaling Regulates Sleep Stability. PLoS One 2016; 11:e0152473. [PMID: 27031992 PMCID: PMC4816426 DOI: 10.1371/journal.pone.0152473] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/15/2016] [Indexed: 11/18/2022] Open
Abstract
The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184) or fatty acid amide hydrolase (AM3506) produced a transient increase in non-rapid eye movement (NREM) sleep due to an augmentation of the length of NREM bouts (NREM stability). Similarly, direct activation of type 1 cannabinoid (CB1) receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis.
Collapse
MESH Headings
- Algorithms
- Amidohydrolases/antagonists & inhibitors
- Amidohydrolases/metabolism
- Animals
- Benzodioxoles/pharmacology
- Drug Inverse Agonism
- Electrodes, Implanted
- Electroencephalography
- Male
- Mice
- Mice, Inbred C57BL
- Monoacylglycerol Lipases/antagonists & inhibitors
- Monoacylglycerol Lipases/metabolism
- Morpholines/pharmacology
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Signal Transduction/drug effects
- Sleep/drug effects
- Sleep/physiology
- Sleep Deprivation/physiopathology
- Sleep, REM/drug effects
- Sleep, REM/physiology
Collapse
Affiliation(s)
- Matthew J. Pava
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, Division of Intramural Biological and Clinical Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States of America
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - David M. Lovinger
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, Division of Intramural Biological and Clinical Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States of America
| |
Collapse
|
39
|
Roiser JP, Nathan PJ, Mander AP, Adusei G, Zavitz KH, Blackwell AD. Assessment of cognitive safety in clinical drug development. Drug Discov Today 2016; 21:445-53. [PMID: 26610416 PMCID: PMC4863933 DOI: 10.1016/j.drudis.2015.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/21/2015] [Accepted: 11/08/2015] [Indexed: 02/08/2023]
Abstract
Cognitive impairment is increasingly recognised as an important potential adverse effect of medication. However, many drug development programmes do not incorporate sensitive cognitive measurements. Here, we review the rationale for cognitive safety assessment, and explain several basic methodological principles for measuring cognition during clinical drug development, including study design and statistical analysis, from Phase I through to postmarketing. The crucial issue of how cognition should be assessed is emphasized, especially the sensitivity of measurement. We also consider how best to interpret the magnitude of any identified effects, including comparison with benchmarks. We conclude by discussing strategies for the effective communication of cognitive risks.
Collapse
Affiliation(s)
- Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, London, UK.
| | - Pradeep J Nathan
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Neuroscience Center of Excellence, inVentiv Health, Maidenhead, UK; School of Psychological Sciences, Monash University, Clayton, Australia
| | - Adrian P Mander
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | | | | | - Andrew D Blackwell
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Cambridge Cognition Limited, Bottisham, Cambridge, UK
| |
Collapse
|
40
|
Mosińska P, Salaga M, Fichna J. Novel investigational drugs for constipation-predominant irritable bowel syndrome: a review. Expert Opin Investig Drugs 2016; 25:275-86. [PMID: 26765585 DOI: 10.1517/13543784.2016.1142532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Constipation-predominant irritable bowel syndrome (IBS-C) is a functional gastrointestinal (GI) disorder with an unknown etiology. A number of the drugs tested for IBS-C have also been applied to chronic constipation and chronic idiopathic constipation. Unfortunately, due to severe adverse effects, many drugs envisioned for IBS-C had been withdrawn from the market. Nevertheless, a number of potential new agents for this indication are now under development. AREAS COVERED The following review describes the most recently developed agents in preclinical as well as Phase 1 and Phase 2 clinical studies. Information was obtained from published literature, abstracts and the latest results found in Clinicaltrial.gov database. The authors put a special interest on glucagon-like peptide 1 analogue, bile acid modulators, serotonergic agents, guanylate cyclase C and cannabinoid antagonists. EXPERT OPINION To enter the market, a newly-developed drug has to meet several criteria, such as good bioavailability or the absence of drug-related adverse events. Taking into account constipation and abdominal pain as the main symptoms in IBS-C, a novel successful drug is usually able to improve both at the same time. Four out of fifteen investigational drugs described in this paper belong to the serotonergic family and have a good prognosis to reach the market; still, more long-term clinical studies are warranted.
Collapse
Affiliation(s)
- Paula Mosińska
- a Department of Biochemistry, Faculty of Medicine , Medical University of Lodz , Lodz , Poland
| | - Maciej Salaga
- a Department of Biochemistry, Faculty of Medicine , Medical University of Lodz , Lodz , Poland
| | - Jakub Fichna
- a Department of Biochemistry, Faculty of Medicine , Medical University of Lodz , Lodz , Poland
| |
Collapse
|
41
|
Bronova I, Smith B, Aydogan B, Weichselbaum RR, Vemuri K, Erdelyi K, Makriyannis A, Pacher P, Berdyshev EV. Protection from Radiation-Induced Pulmonary Fibrosis by Peripheral Targeting of Cannabinoid Receptor-1. Am J Respir Cell Mol Biol 2015; 53:555-62. [PMID: 26426981 DOI: 10.1165/rcmb.2014-0331oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Radiation-induced pulmonary fibrosis (RIF) is a severe complication of thoracic radiotherapy that limits its dose, intensity, and duration. The contribution of the endocannabinoid signaling system in pulmonary fibrogenesis is not known. Using a well-established mouse model of RIF, we assessed the involvement of cannabinoid receptor-1 (CB1) in the onset and progression of pulmonary fibrosis. Female C57BL/6 mice and CB1 knockout mice generated on C57BL/6 background received 20 Gy (2 Gy/min) single-dose thoracic irradiation that resulted in pulmonary fibrosis and animal death within 15 to 18 weeks. Some C57BL/6 animals received the CB1 peripherally restricted antagonist AM6545 at 1 mg/kg intraperitoneally three times per week. Animal survival and parameters of pulmonary inflammation and fibrosis were evaluated. Thoracic irradiation (20 Gy) was associated with marked pulmonary inflammation and fibrosis in mice and high mortality within 15 to 18 weeks after exposure. Genetic deletion or pharmacological inhibition of CB1 receptors with a peripheral CB1 antagonist AM6545 markedly attenuated or delayed the lung inflammation and fibrosis and increased animal survival. Our results show that CB1 signaling plays a key pathological role in the development of radiation-induced pulmonary inflammation and fibrosis, and peripherally restricted CB1 antagonists may represent a novel therapeutic approach against this devastating complication of radiotherapy/irradiation.
Collapse
Affiliation(s)
- Irina Bronova
- 1 Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, and
| | | | | | | | | | - Katalin Erdelyi
- 5 Laboratory of Physiological Studies, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland; and
| | - Alex Makriyannis
- 6 Center for Drug Discovery, Departments of Pharmaceutical Sciences and Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts
| | | | - Evgeny V Berdyshev
- 1 Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, and
| |
Collapse
|
42
|
Sugimoto S, Nakajima H, Kosaka K, Hosoi H. Review: Miglitol has potential as a therapeutic drug against obesity. Nutr Metab (Lond) 2015; 12:51. [PMID: 26628904 PMCID: PMC4666030 DOI: 10.1186/s12986-015-0048-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/25/2015] [Indexed: 12/18/2022] Open
Abstract
The number of obese patients has increased annually worldwide. Therefore, there is a strong need to develop a new effective and safe anti-obesity drug. Miglitol is an alpha-glucosidase inhibitor (αGI) that is commonly used as an anti-diabetic drug, and there is growing evidence that it also has anti-obesity effects. Miglitol has been shown to reduce body weight and ameliorate insulin resistance in both clinical trials with adult patients and in rodent models of obesity. Although the specific mechanism of action of this effect remains unclear, some mechanisms have been suggested through experimental results. Miglitol has been shown to inhibit adipogenesis of white adipocytes in vitro, activate brown adipose tissue (BAT) in mice, influence bile acid metabolism in mice, and regulate the secretion of incretin hormones in humans. Among these results, we consider that BAT activation is likely the definitive mediator of miglitol's anti-obesity effect. A unique advantage of miglitol is that it is already used as an anti-diabetic drug with no severe side effects, whereas many of the anti-obesity drugs developed to date have been withdrawn because of their severe side effects. Miglitol is currently used clinically in a limited number of countries. In this review, we provide an overview of the state of research on miglitol for obesity treatment, emphasizing that it warrants more detailed attention. Overall, we demonstrate that miglitol shows good potential as a therapeutic for the treatment of obesity. Thus, we believe that further investigations of how it exerts its anti-obesity effect will likely contribute to the development of a new class of safe and effective drugs against obesity.
Collapse
Affiliation(s)
- Satoru Sugimoto
- Department of Pediatrics, Ayabe Municipal Hospital, 20-1 Otsuka, Aono-cho, Ayabe city, 623-0011 Kyoto Japan ; Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465-Kajiicho, Hirokoji-Kawaramachi, Kamikyo-ku, Kyoto, 602-8566 Kyoto Japan
| | - Hisakazu Nakajima
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465-Kajiicho, Hirokoji-Kawaramachi, Kamikyo-ku, Kyoto, 602-8566 Kyoto Japan
| | - Kitaro Kosaka
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465-Kajiicho, Hirokoji-Kawaramachi, Kamikyo-ku, Kyoto, 602-8566 Kyoto Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465-Kajiicho, Hirokoji-Kawaramachi, Kamikyo-ku, Kyoto, 602-8566 Kyoto Japan
| |
Collapse
|
43
|
Jackson VM, Breen DM, Fortin JP, Liou A, Kuzmiski JB, Loomis AK, Rives ML, Shah B, Carpino PA. Latest approaches for the treatment of obesity. Expert Opin Drug Discov 2015; 10:825-39. [DOI: 10.1517/17460441.2015.1044966] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- V Margaret Jackson
- 1Cardiovascular and Metabolic Diseases Research Unit, Pfizer PharmaTherapeutics, 610 Main Street, Cambridge, MA 02139, USA
| | - Danna M Breen
- 1Cardiovascular and Metabolic Diseases Research Unit, Pfizer PharmaTherapeutics, 610 Main Street, Cambridge, MA 02139, USA
| | - Jean-Philippe Fortin
- 1Cardiovascular and Metabolic Diseases Research Unit, Pfizer PharmaTherapeutics, 610 Main Street, Cambridge, MA 02139, USA
| | - Alice Liou
- 1Cardiovascular and Metabolic Diseases Research Unit, Pfizer PharmaTherapeutics, 610 Main Street, Cambridge, MA 02139, USA
| | - J Brent Kuzmiski
- 1Cardiovascular and Metabolic Diseases Research Unit, Pfizer PharmaTherapeutics, 610 Main Street, Cambridge, MA 02139, USA
| | - A Katrina Loomis
- 2Clinical Research, Pfizer PharmaTherapeutics, Eastern Point Road, Groton, CT 06340, USA
| | - Marie-Laure Rives
- 1Cardiovascular and Metabolic Diseases Research Unit, Pfizer PharmaTherapeutics, 610 Main Street, Cambridge, MA 02139, USA
| | - Bhavik Shah
- 1Cardiovascular and Metabolic Diseases Research Unit, Pfizer PharmaTherapeutics, 610 Main Street, Cambridge, MA 02139, USA
| | - Philip A Carpino
- 3Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer PharmaTherapeutics, 610 Main Street, Cambridge, MA 02139, USA
| |
Collapse
|
44
|
Potential ghrelin-mediated benefits and risks of hydrogen water. Med Hypotheses 2015; 84:350-5. [PMID: 25649854 DOI: 10.1016/j.mehy.2015.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 01/15/2015] [Indexed: 12/12/2022]
Abstract
Molecular hydrogen (H2) can scavenge hydroxyl radical and diminish the toxicity of peroxynitrite; hence, it has interesting potential for antioxidant protection. Recently, a number of studies have explored the utility of inhaled hydrogen gas, or of hydrogen-saturated water, administered parenterally or orally, in rodent models of pathology and in clinical trials, oftentimes with very positive outcomes. The efficacy of orally ingested hydrogen-rich water (HW) has been particularly surprising, given that only transient and rather small increments in plasma hydrogen can be achieved by this method. A recent study in mice has discovered that orally administered HW provokes increased gastric production of the orexic hormone ghrelin, and that this ghrelin mediates the favorable impact of HW on a mouse model of Parkinson's disease. The possibility that most of the benefits observed with HW in experimental studies are mediated by ghrelin merits consideration. Ghrelin is well known to function as an appetite stimulant and secretagogue for growth hormone, but it influences physiological function throughout the body via interaction with the widely express GHS-R1a receptor. Rodent and, to a more limited extent, clinical studies establish that ghrelin has versatile neuroprotective and cognitive enhancing activity, favorably impacts vascular health, exerts anti-inflammatory activity useful in autoimmune disorders, and is markedly hepatoprotective. The stimulatory impact of ghrelin on GH-IGF-I activity, while potentially beneficial in sarcopenia or cachectic disorders, does raise concerns regarding the long-term impact of ghrelin up-regulation on cancer risk. The impact of ingesting HW water on ghrelin production in humans needs to be evaluated; if HW does up-regulate ghrelin in humans, it may have versatile potential for prevention and control of a number of health disorders.
Collapse
|
45
|
Gamaleddin IH, Trigo JM, Gueye AB, Zvonok A, Makriyannis A, Goldberg SR, Le Foll B. Role of the endogenous cannabinoid system in nicotine addiction: novel insights. Front Psychiatry 2015; 6:41. [PMID: 25859226 PMCID: PMC4373509 DOI: 10.3389/fpsyt.2015.00041] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 03/06/2015] [Indexed: 12/22/2022] Open
Abstract
Several lines of evidence have shown that the endogenous cannabinoids are implicated in several neuropsychiatric diseases. Notably, preclinical and human clinical studies have shown a pivotal role of the cannabinoid system in nicotine addiction. The CB1 receptor inverse agonist/antagonist rimonabant (also known as SR141716) was effective to decrease nicotine-taking and nicotine-seeking in rodents, as well as the elevation of dopamine induced by nicotine in brain reward area. Rimonabant has been shown to improve the ability of smokers to quit smoking in randomized clinical trials. However, rimonabant was removed from the market due to increased risk of psychiatric side-effects observed in humans. Recently, other components of the endogenous cannabinoid system have been explored. Here, we present the recent advances on the understanding of the role of the different components of the cannabinoid system on nicotine's effects. Those recent findings suggest possible alternative ways of modulating the cannabinoid system that could have implication for nicotine dependence treatment.
Collapse
Affiliation(s)
- Islam Hany Gamaleddin
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto, ON , Canada ; Directorate of Poison Control and Forensic Chemistry, Ministry of Health , Riyadh , Saudi Arabia
| | - Jose M Trigo
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto, ON , Canada
| | - Aliou B Gueye
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto, ON , Canada
| | - Alexander Zvonok
- Center for Drug Discovery, Bouvé College of Health Sciences, Northeastern University , Boston, MA , USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Bouvé College of Health Sciences, Northeastern University , Boston, MA , USA
| | - Steven R Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services , Baltimore, MD , USA
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto, ON , Canada ; Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health , Toronto, ON , Canada ; Department of Family and Community Medicine, Institute of Medical Sciences, University of Toronto , Toronto, ON , Canada ; Department of Psychiatry, Institute of Medical Sciences, University of Toronto , Toronto, ON , Canada ; Department of Pharmacology and Toxicology, Institute of Medical Sciences, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
46
|
Cantarelli MDG, Tramontina AC, Leite MC, Gonçalves CA. Potential neurochemical links between cholesterol and suicidal behavior. Psychiatry Res 2014; 220:745-51. [PMID: 25457283 DOI: 10.1016/j.psychres.2014.10.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 10/07/2014] [Accepted: 10/16/2014] [Indexed: 12/16/2022]
Abstract
The role of cholesterol in psychiatric diseases has aroused the interest of the medical community, particularly in association with violent and suicidal behavior. Herein, we discuss some aspects of brain cholesterol metabolism, exploring possible mechanisms underlying the findings and reviewing the available literature on the possible neurochemical link between suicide and low or reduced levels of serum cholesterol. Most of the current hypotheses suggest a decreased serotonergic activity due to a decrease in cholesterol in the lipid rafts of synaptic membranes. Some aspects and limitations of this assumption are emphasized. In addition to serotonin hypofunction, other mechanisms have been proposed to explain increased impulsivity in suicidal individuals, including steroid modulation and brain-derived neurotrophic factor decrease, which could also be related to changes in lipid rafts. Other putative markers of suicidal behavior (e.g. protein S100B) are discussed in connection with cholesterol metabolism in the brain tissue.
Collapse
|
47
|
Pucci A, Finer N. New medications for treatment of obesity: metabolic and cardiovascular effects. Can J Cardiol 2014; 31:142-52. [PMID: 25661549 DOI: 10.1016/j.cjca.2014.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/02/2014] [Accepted: 11/03/2014] [Indexed: 12/26/2022] Open
Abstract
The management of obesity remains a major challenge. Dietary therapy often fails, whereas bariatric surgery, although successful, is demanding and applicable to a limited number of patients. Drug therapy has had many setbacks over the past 20 years because of serious adverse effects; however, several new drugs for the treatment of obesity are either licensed in some parts of the world, submitted for registration, or completing phase III trials. These include combinations (at low dose) of existing drugs, e.g., bupropion + naltrexone (Contrave), phentermine + topiramate (Qsymia), higher doses of existing drugs licensed for other indications (liraglutide, 3 mg), and new entities (lorcaserin). We discuss the challenges and opportunities for obesity pharmacotherapy and review in detail the efficacy of the new drugs regarding weight loss and both desirable and potential undesirable cardiovascular (CV) and metabolic risk factors. Substantial barriers remain, even if the drugs are approved, in successfully integrating these agents into weight management practice, largely related to cost, patient acceptability, and clinician willingness to be engaged in obesity treatment. Although hard clinical outcome benefit (at least for CV outcomes) has yet to be established, obesity pharmacotherapy may soon address many of the challenges in the clinical management of obesity, although newer and better drug combinations and more evidence of benefit from appropriately designed outcome trials is needed.
Collapse
Affiliation(s)
- Andrea Pucci
- Centre for Obesity Research, Rayne Institute, Department of Medicine, University College London, London, United Kingdom; UCLH Centre for Weight Loss, Metabolic and Endocrine Surgery, University College London Hospitals, London, United Kingdom
| | - Nicholas Finer
- Centre for Obesity Research, Rayne Institute, Department of Medicine, University College London, London, United Kingdom; UCLH Centre for Weight Loss, Metabolic and Endocrine Surgery, University College London Hospitals, London, United Kingdom; University College London Institute of Cardiovascular Science, London, United Kingdom.
| |
Collapse
|
48
|
Murray E, Brouwer S, McCutcheon R, Harmer CJ, Cowen PJ, McCabe C. Opposing neural effects of naltrexone on food reward and aversion: implications for the treatment of obesity. Psychopharmacology (Berl) 2014; 231:4323-35. [PMID: 24763910 DOI: 10.1007/s00213-014-3573-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 04/06/2014] [Indexed: 01/02/2023]
Abstract
RATIONALE Opioid antagonism reduces the consumption of palatable foods in humans but the neural substrates implicated in these effects are less well understood. OBJECTIVES The aim of the present study was to examine the effects of the opioid antagonist, naltrexone, on neural response to rewarding and aversive sight and taste stimuli. METHODS We used functional magnetic resonance imaging (fMRI) to examine the neural responses to the sight and taste of pleasant (chocolate) and aversive (mouldy strawberry) stimuli in 20 healthy volunteers who received a single oral dose of naltrexone (50 mg) and placebo in a double-blind, repeated-measures cross-over, design. RESULTS Relative to placebo, naltrexone decreased reward activation to chocolate in the dorsal anterior cingulate cortex and caudate, and increased aversive-related activation to unpleasant strawberry in the amygdala and anterior insula. CONCLUSIONS These findings suggest that modulation of key brain areas involved in reward processing, cognitive control and habit formation such as the dorsal anterior cingulate cortex (dACC) and caudate might underlie reduction in food intake with opioid antagonism. Furthermore we show for the first time that naltrexone can increase activations related to aversive food stimuli. These results support further investigation of opioid treatments in obesity.
Collapse
Affiliation(s)
- Elizabeth Murray
- Department of Psychiatry, Warneford Hospital, University of Oxford, Neuroscience Building, Oxford, OX3 7JX, UK
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Isolation and structure elucidation of most of the major cannabinoid constituents--including Δ(9)-tetrahydrocannabinol (Δ(9)-THC), which is the principal psychoactive molecule in Cannabis sativa--was achieved in the 1960s and 1970s. It was followed by the identification of two cannabinoid receptors in the 1980s and the early 1990s and by the identification of the endocannabinoids shortly thereafter. There have since been considerable advances in our understanding of the endocannabinoid system and its function in the brain, which reveal potential therapeutic targets for a wide range of brain disorders.
Collapse
|
50
|
Caixàs A, Albert L, Capel I, Rigla M. Naltrexone sustained-release/bupropion sustained-release for the management of obesity: review of the data to date. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:1419-27. [PMID: 25258511 PMCID: PMC4174046 DOI: 10.2147/dddt.s55587] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Obesity is an emerging disease worldwide. Changes in living habits, especially with increased consumption of high-calorie foods and decreased levels of physical activity, lead to an energy imbalance that brings weight gain. Overweight and obesity are major risk factors for several chronic diseases (including cardiovascular diseases, diabetes, and cancer), reduce quality of life, and are associated with higher mortality. For all these reasons, it is of the utmost importance that the trend be reversed and obese people enabled to lose weight. It is known that eating a healthy diet and exercising regularly can help prevent obesity, but data show that in many cases these steps are not enough. This is the reason why, over the last few decades, several antiobesity drugs have been developed. However, the disappointing results demonstrated for the vast majority of them have not discouraged the pharmaceutical industry from continuing to look for an effective drug or combination of drugs. The systematic review presented here focuses on naltrexone sustained-release/bupropion sustained-release combination (Contrave®). We conclude from the current published reports that its effectiveness in the treatment of obesity can be estimated as a placebo-subtracted weight loss of around 4.5%. This weight reduction is moderate but similar to other antiobesity drugs. The safety profile of this combination is acceptable, despite additional data regarding cardiovascular disease being needed.
Collapse
Affiliation(s)
- Assumpta Caixàs
- Endocrinology and Nutrition Department, Parc Tauli Sabadell University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Lara Albert
- Endocrinology and Nutrition Department, Parc Tauli Sabadell University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Ismael Capel
- Endocrinology and Nutrition Department, Parc Tauli Sabadell University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Mercedes Rigla
- Endocrinology and Nutrition Department, Parc Tauli Sabadell University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|