1
|
Carlström M, Weitzberg E, Lundberg JO. Nitric Oxide Signaling and Regulation in the Cardiovascular System: Recent Advances. Pharmacol Rev 2024; 76:1038-1062. [PMID: 38866562 DOI: 10.1124/pharmrev.124.001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Nitric oxide (NO) from endothelial NO synthase importantly contributes to vascular homeostasis. Reduced NO production or increased scavenging during disease conditions with oxidative stress contribute to endothelial dysfunction and NO deficiency. In addition to the classical enzymatic NO synthases (NOS) system, NO can also be generated via the nitrate-nitrite-NO pathway. Dietary and pharmacological approaches aimed at increasing NO bioactivity, especially in the cardiovascular system, have been the focus of much research since the discovery of this small gaseous signaling molecule. Despite wide appreciation of the biological role of NOS/NO signaling, questions still remain about the chemical nature of NOS-derived bioactivity. Recent studies show that NO-like bioactivity can be efficiently transduced by mobile NO-ferroheme species, which can transfer between proteins, partition into a hydrophobic phase, and directly activate the soluble guanylyl cyclase-cGMP-protein kinase G pathway without intermediacy of free NO. Moreover, interaction between red blood cells and the endothelium in the regulation of vascular NO homeostasis have gained much attention, especially in conditions with cardiometabolic disease. In this review we discuss both classical and nonclassical pathways for NO generation in the cardiovascular system and how these can be modulated for therapeutic purposes. SIGNIFICANCE STATEMENT: After four decades of intensive research, questions persist about the transduction and control of nitric oxide (NO) synthase bioactivity. Here we discuss NO signaling in cardiovascular health and disease, highlighting new findings, such as the important role of red blood cells in cardiovascular NO homeostasis. Nonclassical signaling modes, like the nitrate-nitrite-NO pathway, and therapeutic opportunities related to the NO system are discussed. Existing and potential pharmacological treatments/strategies, as well as dietary components influencing NO generation and signaling are covered.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| |
Collapse
|
2
|
Boulares A, Jdidi H, Bragazzi NL. Impact of Mouthwash-Induced Oral Microbiome Disruption on Alzheimer's Disease Risk: A Perspective Review. Int Dent J 2024:S0020-6539(24)00197-7. [PMID: 39379282 DOI: 10.1016/j.identj.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 10/10/2024] Open
Abstract
The widespread use of mouthwashes, particularly those containing chlorhexidine (CHX), has raised concerns about their impact on the oral microbiome and potential systemic health effects. This perspective review examines the current evidence linking CHX mouthwash use to disruptions in the oral microbiome and explores the potential indirect implications for Alzheimer's disease (AD) risk. CHX mouthwash is effective in reducing dental plaque and gingival inflammation, but it also significantly alters the composition of the oral microbiome, decreasing the abundance of nitrate-reducing bacteria critical for nitric oxide (NO) production. This disruption can lead to increased blood pressure, a major risk factor for AD. Given the established connection between hypertension and AD, the long-term use of CHX mouthwash may indirectly contribute to the onset of AD. However, the relationship between CHX mouthwash use and AD remains largely indirect, necessitating further longitudinal and cohort studies to investigate whether a direct causal link exists. The review aims to highlight the importance of maintaining a balanced oral microbiome for both oral and systemic health and calls for more research into safer oral hygiene practices and their potential impacts on neurodegenerative disease risk.
Collapse
Affiliation(s)
- Ayoub Boulares
- Laboratory Mobility, Faculty of Sport Sciences-STAPS, Aging & Exercise-ER20296, University of Poitiers, Poitiers, France
| | - Hela Jdidi
- Laboratory Mobility, Faculty of Sport Sciences-STAPS, Aging & Exercise-ER20296, University of Poitiers, Poitiers, France
| | - Nicola Luigi Bragazzi
- Department of Food and Drugs, Human Nutrition Unit (HNU), Medical School, University of Parma, Parma, Italy; Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Paiva B, Laranjinha J, Rocha BS. Do oral and gut microbiota communicate through redox pathways? A novel asset of the nitrate-nitrite-NO pathway. FEBS Lett 2024; 598:2211-2223. [PMID: 38523057 DOI: 10.1002/1873-3468.14859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024]
Abstract
Nitrate may act as a regulator of •NO bioavailability via sequential reduction along the nitrate-nitrite-NO pathway with widespread health benefits, including a eubiotic effect on the oral and gut microbiota. Here, we discuss the molecular mechanisms of microbiota-host communication through redox pathways, via the production of •NO and oxidants by the family of NADPH oxidases, namely hydrogen peroxide (via Duox2), superoxide radical (via Nox1 and Nox2) and peroxynitrite, which leads to downstream activation of stress responses (Nrf2 and NFkB pathways) in the host mucosa. The activation of Nox2 by microbial metabolites is also discussed. Finally, we propose a new perspective in which both oral and gut microbiota communicate through redox pathways, with nitrate as the pivot linking both ecosystems.
Collapse
Affiliation(s)
- Beatriz Paiva
- Faculty of Pharmacy, University of Coimbra, Portugal
| | - João Laranjinha
- Faculty of Pharmacy, University of Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Bárbara S Rocha
- Faculty of Pharmacy, University of Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| |
Collapse
|
4
|
Anwar A, Shukla S, Pathak P. Nitric oxide in modulating oxidative stress mediated skeletal muscle insulin resistance. Mol Biol Rep 2024; 51:944. [PMID: 39210004 DOI: 10.1007/s11033-024-09874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Insulin resistance (IR) being the major cause behind different metabolic disorders, has attracted a lot of attention. Epidemiological data shows marked rise in the cases over a period of time. Nitric oxide (NO), produced from nitric oxide synthases (NOS), is involved in a variety of biological functions, alteration in which causes various disorders like hypertension, atherosclerosis, and angiogenesis-associated disorders. IR has been found to be a contributing factor, which is associated with abnormal NO signalling. Skeletal muscle is essential for metabolism, both for its role in glucose uptake and its importance in metabolic disease. In this article, we give an overview of the significance of NO in oxidative stress (OS) mediated IR, describing its role in different conditions that are associated with skeletal muscle IR. NO is found to be involved in the activation of insulin receptor downstream pathway, which suggests absence of NO could lead to reduced glucose uptake, and may ultimately result in IR.
Collapse
Affiliation(s)
- Aamir Anwar
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University (Lucknow Campus), Lucknow, Uttar Pradesh, 226010, India
| | - Shivang Shukla
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University (Lucknow Campus), Lucknow, Uttar Pradesh, 226010, India
| | - Priya Pathak
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University (Lucknow Campus), Lucknow, Uttar Pradesh, 226010, India.
| |
Collapse
|
5
|
Russo A, Patanè GT, Putaggio S, Lombardo GE, Ficarra S, Barreca D, Giunta E, Tellone E, Laganà G. Mechanisms Underlying the Effects of Chloroquine on Red Blood Cells Metabolism. Int J Mol Sci 2024; 25:6424. [PMID: 38928131 PMCID: PMC11203553 DOI: 10.3390/ijms25126424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Chloroquine (CQ) is a 4-aminoquinoline derivative largely employed in the management of malaria. CQ treatment exploits the drug's ability to cross the erythrocyte membrane, inhibiting heme polymerase in malarial trophozoites. Accumulation of CQ prevents the conversion of heme to hemozoin, causing its toxic buildup, thus blocking the survival of Plasmodium parasites. Recently, it has been reported that CQ is able to exert antiviral properties, mainly against HIV and SARS-CoV-2. This renewed interest in CQ treatment has led to the development of new studies which aim to explore its side effects and long-term outcome. Our study focuses on the effects of CQ in non-parasitized red blood cells (RBCs), investigating hemoglobin (Hb) functionality, the anion exchanger 1 (AE1) or band 3 protein, caspase 3 and protein tyrosine phosphatase 1B (PTP-1B) activity, intra and extracellular ATP levels, and the oxidative state of RBCs. Interestingly, CQ influences the functionality of both Hb and AE1, the main RBC proteins, affecting the properties of Hb oxygen affinity by shifting the conformational structure of the molecule towards the R state. The influence of CQ on AE1 flux leads to a rate variation of anion exchange, which begins at a concentration of 2.5 μM and reaches its maximum effect at 20 µM. Moreover, a significant decrease in intra and extracellular ATP levels was observed in RBCs pre-treated with 10 µM CQ vs. erythrocytes under normal conditions. This effect is related to the PTP-1B activity which is reduced in RBCs incubated with CQ. Despite these metabolic alterations to RBCs caused by exposure to CQ, no signs of variations in oxidative state or caspase 3 activation were recorded. Our results highlight the antithetical effects of CQ on the functionality and metabolism of RBCs, and encourage the development of new research to better understand the multiple potentiality of the drug.
Collapse
Affiliation(s)
| | - Giuseppe Tancredi Patanè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | - Stefano Putaggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | | | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | - Elena Giunta
- Virology and Microbiology AOOR Papardo-Piemonte, 98166 Messina, Italy;
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | - Giuseppina Laganà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| |
Collapse
|
6
|
Fejes R, Lutnik M, Weisshaar S, Pilat N, Wagner KH, Stüger HP, Peake JM, Woodman RJ, Croft KD, Bondonno CP, Hodgson JM, Wolzt M, Neubauer O. Increased nitrate intake from beetroot juice over 4 weeks affects nitrate metabolism, but not vascular function or blood pressure in older adults with hypertension. Food Funct 2024; 15:4065-4078. [PMID: 38546454 PMCID: PMC11034575 DOI: 10.1039/d3fo03749e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/24/2024] [Indexed: 04/23/2024]
Abstract
The decline in vascular function and increase in blood pressure with aging contribute to an increased cardiovascular disease risk. In this randomized placebo-controlled crossover study, we evaluated whether previously reported cardiovascular benefits of plant-derived inorganic nitrate via nitric oxide (NO) translate into improved vascular function and blood pressure-lowering in 15 men and women (age range: 56-71 years) with treated hypertension. We investigated the effects of a single ∼400 mg-dose at 3 hours post-ingestion (3H POST) and the daily consumption of 2 × ∼400 mg of nitrate through nitrate-rich compared with nitrate-depleted (placebo) beetroot juice over 4 weeks (4WK POST). Measurements included nitrate and nitrite in plasma and saliva; endothelial-dependent and -independent forearm blood flow (FBF) responses to acetylcholine (FBFACh) and glyceryltrinitrate (FBFGTN); and clinic-, home- and 24-hour ambulatory blood pressure. Compared to placebo, plasma and salivary nitrate and nitrite increased at 3H and 4WK POST following nitrate treatment (P < 0.01), suggesting a functioning nitrate-nitrite-NO pathway in the participants of this study. There were no differences between treatments in FBFACh and FBFGTN-area under the curve (AUC) ratios [AUC ratios after (3H POST, 4WK POST) compared with before (PRE) the intervention], or 24-hour ambulatory blood pressure or home blood pressure measures (P > 0.05). These findings do not support the hypothesis that an increased intake of dietary nitrate exerts sustained beneficial effects on FBF or blood pressure in hypertensive older adults, providing important information on the efficacy of nitrate-based interventions for healthy vascular aging. This study was registered under ClinicialTrials.gov (NCT04584372).
Collapse
Affiliation(s)
- Rebeka Fejes
- Department of Nutritional Sciences, Research Platform Active Ageing, University of Vienna, Vienna, Austria.
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | - Martin Lutnik
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Stefan Weisshaar
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Nina Pilat
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Research Platform Active Ageing, University of Vienna, Vienna, Austria.
| | - Hans-Peter Stüger
- Division Integrative Risk Assessment, Data and Statistics, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Jonathan M Peake
- School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Richard J Woodman
- Flinders Centre for Epidemiology and Biostatistics, Flinders University, Adelaide, South Australia, Australia
| | - Kevin D Croft
- Medical School, University of Western Australia, Royal Perth Hospital Unit, Perth, Western Australia, Australia
| | - Catherine P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Royal Perth Hospital Research Foundation, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Michael Wolzt
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Oliver Neubauer
- Department of Nutritional Sciences, Research Platform Active Ageing, University of Vienna, Vienna, Austria.
- Centre for Health Sciences and Medicine, University for Continuing Education Krems, Krems, Austria
| |
Collapse
|
7
|
Chai X, Liu L, Chen F. Oral nitrate-reducing bacteria as potential probiotics for blood pressure homeostasis. Front Cardiovasc Med 2024; 11:1337281. [PMID: 38638884 PMCID: PMC11024454 DOI: 10.3389/fcvm.2024.1337281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/12/2024] [Indexed: 04/20/2024] Open
Abstract
Hypertension is a leading cause of morbidity and mortality worldwide and poses a major risk factor for cardiovascular diseases and chronic kidney disease. Research has shown that nitric oxide (NO) is a vasodilator that regulates vascular tension and the decrease of NO bioactivity is considered one of the potential pathogenesis of essential hypertension. The L-arginine-nitric oxide synthase (NOS) pathway is the main source of endogenous NO production. However, with aging or the onset of diseases, the function of the NOS system becomes impaired, leading to insufficient NO production. The nitrate-nitrite-NO pathway allows for the generation of biologically active NO independent of the NOS system, by utilizing endogenous or dietary inorganic nitrate and nitrite through a series of reduction cycles. The oral cavity serves as an important interface between the body and the environment, and dysbiosis or disruption of the oral microbiota has negative effects on blood pressure regulation. In this review, we explore the role of oral microbiota in maintaining blood pressure homeostasis, particularly the connection between nitrate-reducing bacteria and the bioavailability of NO in the bloodstream and blood pressure changes. This review aims to elucidate the potential mechanisms by which oral nitrate-reducing bacteria contribute to blood pressure homeostasis and to highlight the use of oral nitrate-reducing bacteria as probiotics for oral microbiota intervention to prevent hypertension.
Collapse
Affiliation(s)
- Xiaofen Chai
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Libing Liu
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
8
|
Gonçalves JS, Marçal AL, Marques BS, Costa FD, Laranjinha J, Rocha BS, Lourenço CF. Dietary nitrate supplementation and cognitive health: the nitric oxide-dependent neurovascular coupling hypothesis. Biochem Soc Trans 2024; 52:279-289. [PMID: 38385536 DOI: 10.1042/bst20230491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Diet is currently recognized as a major modifiable agent of human health. In particular, dietary nitrate has been increasingly explored as a strategy to modulate different physiological mechanisms with demonstrated benefits in multiple organs, including gastrointestinal, cardiovascular, metabolic, and endocrine systems. An intriguing exception in this scenario has been the brain, for which the evidence of the nitrate benefits remains controversial. Upon consumption, nitrate can undergo sequential reduction reactions in vivo to produce nitric oxide (•NO), a ubiquitous paracrine messenger that supports multiple physiological events such as vasodilation and neuromodulation. In the brain, •NO plays a key role in neurovascular coupling, a fine process associated with the dynamic regulation of cerebral blood flow matching the metabolic needs of neurons and crucial for sustaining brain function. Neurovascular coupling dysregulation has been associated with neurodegeneration and cognitive dysfunction during different pathological conditions and aging. We discuss the potential biological action of nitrate on brain health, concerning the molecular mechanisms underpinning this association, particularly via modulation of •NO-dependent neurovascular coupling. The impact of nitrate supplementation on cognitive performance was scrutinized through preclinical and clinical data, suggesting that intervention length and the health condition of the participants are determinants of the outcome. Also, it stresses the need for multimodal quantitative studies relating cellular and mechanistic approaches to function coupled with behavior clinical outputs to understand whether a mechanistic relationship between dietary nitrate and cognitive health is operative in the brain. If proven, it supports the exciting hypothesis of cognitive enhancement via diet.
Collapse
Affiliation(s)
- João S Gonçalves
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ana L Marçal
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Bárbara S Marques
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Filipa D Costa
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Bárbara S Rocha
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Cátia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
9
|
Abolfazli S, Mortazavi P, Kheirandish A, Butler AE, Jamialahmadi T, Sahebkar A. Regulatory effects of curcumin on nitric oxide signaling in the cardiovascular system. Nitric Oxide 2024; 143:16-28. [PMID: 38141926 DOI: 10.1016/j.niox.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/25/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The continuously rising prevalence of cardiovascular disease (CVD) globally substantially impacts the economic growth of developing countries. Indeed, one of the leading causes of death worldwide is unfavorable cardiovascular events. Reduced nitric oxide (NO) generation is the pathogenic foundation of endothelial dysfunction, which is regarded as the first stage in the development of a number of CVDs. Nitric oxide exerts an array of biological effects, including vasodilation, the suppression of vascular smooth muscle cell proliferation and the functional control of cardiac cells. Numerous treatment strategies aim to increase NO synthesis or upregulate downstream NO signaling pathways. The major component of Curcuma longa, curcumin, has long been utilized in traditional medicine to treat various illnesses, especially CVDs. Curcumin improves CV function as well as having important pleiotropic effects, such as anti-inflammatory and antioxidant, through its ability to increase the bioavailability of NO and to positively impact NO-related signaling pathways. In this review, we discuss the scientific literature relating to curcumin's positive effects on NO signaling and vascular endothelial function.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Parham Mortazavi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Kheirandish
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, PO Box, 15503, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Zheng L, Shi L, Wu X, Hu P, Zhang B, Han X, Wang K, Li X, Yang F, Wang Y, Li X, Qiao R. Advances in Research on Pig Salivary Analytes: A Window to Reveal Pig Health and Physiological Status. Animals (Basel) 2024; 14:374. [PMID: 38338017 PMCID: PMC10854898 DOI: 10.3390/ani14030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Saliva is an important exocrine fluid that is easy to collect and is a complex mixture of proteins and other molecules from multiple sources from which considerable biological information can be mined. Pig saliva, as an easily available biological liquid rich in bioactive ingredients, is rich in nucleic acid analytes, such as eggs, enzymes, amino acids, sugars, etc. The expression levels of these components in different diseases have received extensive attention, and the analysis of specific proteins, metabolites, and biological compositions in pig saliva has become a new direction for disease diagnosis and treatment. The study of the changes in analytes in pig saliva can provide a new strategy for early diagnosis, prognosis assessment, and treatment of diseases. In this paper, the detection methods and research progress of porcine salivary analytes are reviewed, the application and research progress of porcine salivary analytes in diseases are discussed, and the future application prospect is presented.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (L.S.)
| |
Collapse
|
11
|
de Oliveira Santos AD, do Nascimento MTL, da Silva de Freitas A, Gomes de Carvalho D, Bila DM, Hauser-Davis RA, Monteiro da Fonseca E, Baptista Neto JA. The evolution of endocrine disruptor chemical assessments worldwide in the last three decades. MARINE POLLUTION BULLETIN 2023; 197:115727. [PMID: 37918146 DOI: 10.1016/j.marpolbul.2023.115727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Endocrine Disrupting Chemicals (EDCs) encompass a wide variety of substances capable of interfering with the endocrine system, including but not limited to bisphenol A, organochlorines, polybrominated flame retardants, alkylphenols and phthalates. These compounds are widely produced and used in everyday modern life and have increasingly been detected in aquatic matrices worldwide. In this context, this study aimed to carry out a literature review to assess the evolution of EDCs detected in different matrices in the last thirty years. A bibliometric analysis was conducted at the Scopus, Web of Science, and Google Scholar databases. Data were evaluated using the Vosviewer 1.6.17 software. A total of 3951 articles in English were retrieved following filtering. The results demonstrate a gradual and significant growth in the number of published documents, strongly associated with the increasing knowledge on the real environmental impacts of these compounds. Studied were mostly conducted by developed countries in the first two decades, 1993 to 2012, but in the last decade (2013 to 2022), an exponential leap in the number of publications by countries such as China and an advance in research by developing countries, such as Brazil, was verified.
Collapse
Affiliation(s)
- Ana Dalva de Oliveira Santos
- Laboratório de Geologia Marinha/LAGEMAR, Departmento de Geologia e Geofísica, Instituto de Geociências, Universidade Federal Fluminense, Niterói, Rio de Janeiro, RJ, Brazil.
| | - Marilia Teresa Lima do Nascimento
- Laboratório de Geologia Marinha/LAGEMAR, Departmento de Geologia e Geofísica, Instituto de Geociências, Universidade Federal Fluminense, Niterói, Rio de Janeiro, RJ, Brazil
| | - Alex da Silva de Freitas
- Laboratório de Geologia Marinha/LAGEMAR, Departmento de Geologia e Geofísica, Instituto de Geociências, Universidade Federal Fluminense, Niterói, Rio de Janeiro, RJ, Brazil
| | - Diego Gomes de Carvalho
- Laboratório de Geologia Marinha/LAGEMAR, Departmento de Geologia e Geofísica, Instituto de Geociências, Universidade Federal Fluminense, Niterói, Rio de Janeiro, RJ, Brazil
| | - Daniele Maia Bila
- Departamento de Engenharia Sanitária e do Meio Ambiente, Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Estefan Monteiro da Fonseca
- Laboratório de Geologia Marinha/LAGEMAR, Departmento de Geologia e Geofísica, Instituto de Geociências, Universidade Federal Fluminense, Niterói, Rio de Janeiro, RJ, Brazil
| | - José Antonio Baptista Neto
- Laboratório de Geologia Marinha/LAGEMAR, Departmento de Geologia e Geofísica, Instituto de Geociências, Universidade Federal Fluminense, Niterói, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Alharbi M, Stephan BC, Shannon OM, Siervo M. Does dietary nitrate boost the effects of caloric restriction on brain health? Potential physiological mechanisms and implications for future research. Nutr Metab (Lond) 2023; 20:45. [PMID: 37880786 PMCID: PMC10599060 DOI: 10.1186/s12986-023-00766-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
Dementia is a highly prevalent and costly disease characterised by deterioration of cognitive and physical capacity due to changes in brain function and structure. Given the absence of effective treatment options for dementia, dietary and other lifestyle approaches have been advocated as potential strategies to reduce the burden of this condition. Maintaining an optimal nutritional status is vital for the preservation of brain function and structure. Several studies have recognised the significant role of nutritional factors to protect and enhance metabolic, cerebrovascular, and neurocognitive functions. Caloric restriction (CR) positively impacts on brain function via a modulation of mitochondrial efficiency, endothelial function, neuro-inflammatory, antioxidant and autophagy responses. Dietary nitrate, which serves as a substrate for the ubiquitous gasotransmitter nitric oxide (NO), has been identified as a promising nutritional intervention that could have an important role in improving vascular and metabolic brain regulation by affecting oxidative metabolism, ROS production, and endothelial and neuronal integrity. Only one study has recently tested the combined effects of both interventions and showed preliminary, positive outcomes cognitive function. This paper explores the potential synergistic effects of a nutritional strategy based on the co-administration of CR and a high-nitrate diet as a potential and more effective (than either intervention alone) strategy to protect brain health and reduce dementia risk.
Collapse
Affiliation(s)
- Mushari Alharbi
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, 22252, Saudi Arabia
| | - Blossom Cm Stephan
- Curtin Dementia Centre of Excellence, EnAble Institute, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mario Siervo
- Curtin Dementia Centre of Excellence, EnAble Institute, Curtin University, Kent Street, Bentley, WA, 6102, Australia.
| |
Collapse
|
13
|
Wong SA, Drovandi A, Jones R, Golledge J. Effect of Dietary Supplements Which Upregulate Nitric Oxide on Walking and Quality of Life in Patients with Peripheral Artery Disease: A Meta-Analysis. Biomedicines 2023; 11:1859. [PMID: 37509499 PMCID: PMC10376856 DOI: 10.3390/biomedicines11071859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
This systematic review pooled evidence from randomised controlled trials (RCTs) on the effectiveness of dietary upregulators of nitric oxide (NO) in improving the walking and quality of life of patients with peripheral artery disease (PAD). RCTs examining the effect of dietary upregulators of NO in patients with PAD were included. The primary outcome was the maximum walking distance. Secondary outcomes were the initial claudication distance, the six-minute walking distance, quality of life, the ankle-brachial pressure index (ABI), adverse events and risk of mortality, revascularisation or amputation. Meta-analyses were performed using random effects models. The risk of bias was assessed using Cochrane's ROB-2 tool. Leave-one-out and subgroup analyses were conducted to assess the effect of individual studies, the risk of bias and intervention type on pooled estimates. Thirty-four RCTs involving 3472 participants were included. Seven trials tested NO donors, nineteen tested antioxidants, three tested NO synthase inducers and five tested enhancers of NO availability. Overall, the dietary supplements significantly improved the initial claudication (SMD 0.34; 95%CI 0.04, 0.64; p = 0.03) but not maximum walking (SMD 0.13; 95%CI -0.17, 0.43; p = 0.39) distances. Antioxidant supplements significantly increased both the maximum walking (SMD 0.36; 95%CI 0.14, 0.59; p = 0.001) and initial claudication (SMD 0.58; 95%CI 0.26, 0.90; p < 0.001) distances. The dietary interventions did not improve the physical function domain of the Short Form-36 (SMD -0.16; 95%CI -0.32, 0.00; p = 0.38), ABI or risk of adverse events, mortality, revascularisation or amputation. Dietary NO upregulators, especially antioxidants, appear to improve the initial claudication distance in patients with PAD. Larger high-quality RCTs are needed to fully examine the benefits and risks of these treatments. PROSPERO Registration: CRD42022256653.
Collapse
Affiliation(s)
- Shannon A Wong
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Aaron Drovandi
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Rhondda Jones
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
- The Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, QLD 4814, Australia
| |
Collapse
|
14
|
Oliveira-Paula GH, I M Batista R, Stransky S, Tella SC, Ferreira GC, Portella RL, Pinheiro LC, Damacena-Angelis C, Riascos-Bernal DF, Sidoli S, Sibinga N, Tanus-Santos JE. Orally administered sodium nitrite prevents the increased α-1 adrenergic vasoconstriction induced by hypertension and promotes the S-nitrosylation of calcium/calmodulin-dependent protein kinase II. Biochem Pharmacol 2023; 212:115571. [PMID: 37127250 PMCID: PMC10198929 DOI: 10.1016/j.bcp.2023.115571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
The unsatisfactory rates of adequate blood pressure control among patients receiving antihypertensive treatment calls for new therapeutic strategies to treat hypertension. Several studies have shown that oral sodium nitrite exerts significant antihypertensive effects, but the mechanisms underlying these effects remain unclear. While these mechanisms may involve nitrite-derived S-nitrosothiols, their implication in important alterations associated with hypertension, such as aberrant α1-adrenergic vasoconstriction, has not yet been investigated. Here, we examined the effects of oral nitrite treatment on vascular responses to the α1-adrenergic agonist phenylephrine in two-kidney, one clip (2K1C) hypertensive rats and investigated the potential underlying mechanisms. Our results show that treatment with oral sodium nitrite decreases blood pressure and prevents the increased α1-adrenergic vasoconstriction in 2K1C hypertensive rats. Interestingly, we found that these effects require vascular protein S-nitrosylation, and to investigate the specific S-nitrosylated proteins we performed an unbiased nitrosoproteomic analysis of vascular smooth muscle cells (VSMCs) treated with the nitrosylating compound S-nitrosoglutathione (GSNO). This analysis revealed that GSNO markedly increases the nitrosylation of calcium/calmodulin-dependent protein kinase II γ (CaMKIIγ), a multifunctional protein that mediates the α1-adrenergic receptor signaling. This result was associated with reduced α1-adrenergic receptor-mediated CaMKIIγ activity in VSMCs. We further tested the relevance of these findings in vivo and found that treatment with oral nitrite increases CaMKIIγ S-nitrosylation and blunts the increased CaMKIIγ activity induced by phenylephrine in rat aortas. Collectively, these results are consistent with the idea that oral sodium nitrite treatment increases vascular protein S-nitrosylation, including CaMKIIγ as a target, which may ultimately prevent the increased α1-adrenergic vasoconstriction induced by hypertension. These mechanisms may help to explain the antihypertensive effects of oral nitrite and hold potential implications in the therapy of hypertension and other cardiovascular diseases associated with abnormal α1-adrenergic vasoconstriction.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Rose I M Batista
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Sandra C Tella
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Rafael L Portella
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Celio Damacena-Angelis
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Dario F Riascos-Bernal
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Nicholas Sibinga
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
15
|
Caloric Restriction (CR) Plus High-Nitrate Beetroot Juice Does Not Amplify CR-Induced Metabolic Adaptation and Improves Vascular and Cognitive Functions in Overweight Adults: A 14-Day Pilot Randomised Trial. Nutrients 2023; 15:nu15040890. [PMID: 36839248 PMCID: PMC9962072 DOI: 10.3390/nu15040890] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Caloric restriction (CR) and dietary nitrate supplementation are nutritional interventions with pleiotropic physiological functions. This pilot study investigates the combined effects of CR and nitrate-rich beetroot juice (BRJ) on metabolic, vascular, and cognitive functions in overweight and obese middle-aged and older adults. This was a two-arm, parallel randomized clinical trial including 29 participants allocated to CR + BRJ (n = 15) or CR alone (n = 14) for 14 days. Body composition, resting energy expenditure (REE), and hand-grip strength were measured. Resting blood pressure (BP) and microvascular endothelial function were measured, and Trail-Making Test A and B were used to assess cognitive function. Salivary nitrate and nitrite, and urinary nitrate and 8-isoprostane concentrations were measured. Changes in body composition, REE, and systolic and diastolic BP were similar between the two interventions (p > 0.05). The CR + BRJ intervention produced greater changes in average microvascular flux (p = 0.03), NO-dependent endothelial activity (p = 0.02), and TMT-B cognitive scores (p = 0.012) compared to CR alone. Changes in urinary 8-isoprostane were greater in the CR + BRJ group (p = 0.02), and they were inversely associated with changes in average microvascular flux (r = -0.53, p = 0.003). These preliminary findings suggest that greater effects on vascular and cognitive functions could be achieved by combining CR with dietary nitrate supplementation.
Collapse
|
16
|
Jiang Y, Yue R, Liu G, Liu J, Peng B, Yang M, Zhao L, Li Z. Garlic ( Allium sativum L.) in diabetes and its complications: Recent advances in mechanisms of action. Crit Rev Food Sci Nutr 2022; 64:5290-5340. [PMID: 36503329 DOI: 10.1080/10408398.2022.2153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia and impaired islet secretion that places a heavy burden on the global health care system due to its high incidence rate, long disease course and many complications. Fortunately, garlic (Allium sativum L.), a well-known medicinal plant and functional food without the toxicity and side effects of conventional drugs, has shown positive effects in the treatment of diabetes and its complications. With interdisciplinary development and in-depth exploration, we offer a clear and comprehensive summary of the research from the past ten years, focusing on the mechanisms and development processes of garlic in the treatment of diabetes and its complications, aiming to provide a new perspective for the treatment of diabetes and promote the efficient development of this field.
Collapse
Affiliation(s)
- Yayi Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guojie Liu
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Jun Liu
- People's Hospital of NanJiang, Bazhong, China
| | - Bo Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lianxue Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Bock JM, Hanson BE, Miller KA, Seaberg NT, Ueda K, Feider AJ, Hanada S, Lira VA, Casey DP. Eight weeks of inorganic nitrate/nitrite supplementation improves aerobic exercise capacity and the gas exchange threshold in patients with type 2 diabetes. J Appl Physiol (1985) 2022; 133:1407-1414. [PMID: 36326473 PMCID: PMC9762960 DOI: 10.1152/japplphysiol.00478.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) have reduced exercise capacity, indexed by lower maximal oxygen consumption (V̇o2max) and achievement of the gas exchange threshold (GET) at a lower % V̇o2max. The ubiquitous signaling molecule nitric oxide (NO) plays a multifaceted role during exercise and, as patients with T2DM have poor endogenous NO production, we investigated if inorganic nitrate/nitrite supplementation (an exogenous source of NO) improves exercise capacity in patients with T2DM. Thirty-six patients with T2DM (10F, 59 ± 9 yr, 32.0 ± 5.1 kg/m2, HbA1c = 7.4 ± 1.4%) consumed beetroot juice containing either inorganic nitrate/nitrite (4.03 mmol/0.29 mmol) or a placebo (0.8 mmol/0.00 mmol) for 8 wk. A maximal exercise test was completed before and after both interventions. V̇o2max was determined by averaging 15-s data, whereas the GET was identified using the V-slope method and breath-by-breath data. Inorganic nitrate/nitrite increased both absolute (1.96 ± 0.67 to 2.07 ± 0.75 L/min) and relative (20.7 ± 7.0 to 21.9 ± 7.4 mL/kg/min, P < 0.05 for both) V̇o2max, whereas no changes were observed following placebo (1.94 ± 0.40 to 1.90 ± 0.39 L/min, P = 0.33; 20.0 ± 4.2 to 19.7 ± 4.6 mL/kg/min, P = 0.39). Maximal workload was also increased following inorganic nitrate/nitrite supplementation (134 ± 47 to 140 ± 51 W, P < 0.05) but not placebo (138 ± 32 to 138 ± 32 W, P = 0.98). V̇o2 at the GET (1.11 ± 0.27 to 1.27 ± 0.38L/min) and the %V̇o2max in which GET occurred (56 ± 8 to 61 ± 7%, P < 0.05 for both) increased following inorganic nitrate/nitrite supplementation but not placebo (1.10 ± 0.23 to 1.08 ± 0.21 L/min, P = 0.60; 57 ± 9 to 57 ± 8%, P = 0.90) although the workload at GET did not achieve statistical significance (group-by-time P = 0.06). Combined inorganic nitrate/nitrite consumption improves exercise capacity, maximal workload, and promotes a rightward shift in the GET in patients with T2DM. This manuscript reports data from a registered Clinical Trial at ClinicalTrials.gov ID: NCT02804932.NEW & NOTEWORTHY We report that increasing nitric oxide bioavailability via 8 wk of inorganic nitrate/nitrite supplementation improves maximal aerobic exercise capacity in patients with type 2 diabetes mellitus. Similarly, we observed a rightward shift in the gas exchange threshold. Taken together, these data indicate inorganic nitrate/nitrite may serve as a means to improve fitness in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Joshua M Bock
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Brady E Hanson
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Kayla A Miller
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Nathanael T Seaberg
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Kenichi Ueda
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Andrew J Feider
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Satoshi Hanada
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Vitor A Lira
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
18
|
Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell 2022; 185:2853-2878. [DOI: 10.1016/j.cell.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 10/16/2022]
|
19
|
Jeitner TM, Babich JW, Kelly JM. Advances in PSMA theranostics. Transl Oncol 2022; 22:101450. [PMID: 35597190 PMCID: PMC9123266 DOI: 10.1016/j.tranon.2022.101450] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022] Open
Abstract
PSMA is an appealing target for theranostic because it is a transmembrane protein with a known substrate that is overexpessed on prostate cancer cells and internalizes upon ligand binding. There are a number of PSMA theranostic ligands in clinical evaluation, clinical trial, or clinically approved. PSMA theranostic ligands increase progression-free survival, overall survival, and pain in patients with metastatic castration resistant prostate cancer. A major obstacle to PSMA-targeted radioligand therapy is off-target toxicity in salivary glands.
The validation of prostate specific membrane antigen (PSMA) as a molecular target in metastatic castration-resistant prostate cancer has stimulated the development of multiple classes of theranostic ligands that specifically target PSMA. Theranostic ligands are used to image disease or selectively deliver cytotoxic radioactivity to cells expressing PSMA according to the radioisotope conjugated to the ligand. PSMA theranostics is a rapidly advancing field that is now integrating into clinical management of prostate cancer patients. In this review we summarize published research describing the biological role(s) and activity of PSMA, highlight the most clinically advanced PSMA targeting molecules and biomacromolecules, and identify next generation PSMA ligands that aim to further improve treatment efficacy. The goal of this review is to provide a comprehensive assessment of the current state-of-play and a roadmap to achieving further advances in PSMA theranostics.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA
| | - John W Babich
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA; Weill Cornell Medicine, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA; Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY 10021, USA
| | - James M Kelly
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA; Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY 10021, USA.
| |
Collapse
|
20
|
Liu T, Schroeder H, Power GG, Blood AB. A physiologically relevant role for NO stored in vascular smooth muscle cells: A novel theory of vascular NO signaling. Redox Biol 2022; 53:102327. [PMID: 35605454 PMCID: PMC9126848 DOI: 10.1016/j.redox.2022.102327] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/16/2022] [Accepted: 04/29/2022] [Indexed: 01/16/2023] Open
Abstract
S-nitrosothiols (SNO), dinitrosyl iron complexes (DNIC), and nitroglycerine (NTG) dilate vessels via activation of soluble guanylyl cyclase (sGC) in vascular smooth muscle cells. Although these compounds are often considered to be nitric oxide (NO) donors, attempts to ascribe their vasodilatory activity to NO-donating properties have failed. Even more puzzling, many of these compounds have vasodilatory potency comparable to or even greater than that of NO itself, despite low membrane permeability. This raises the question: How do these NO adducts activate cytosolic sGC when their NO moiety is still outside the cell? In this review, we classify these compounds as ‘nitrodilators’, defined by their potent NO-mimetic vasoactivities despite not releasing requisite amounts of free NO. We propose that nitrodilators activate sGC via a preformed nitrodilator-activated NO store (NANOS) found within the vascular smooth muscle cell. We reinterpret vascular NO handling in the framework of this NANOS paradigm, and describe the knowledge gaps and perspectives of this novel model.
Collapse
|
21
|
Wang Y, Chen W, Zhou J, Wang Y, Wang H, Wang Y. Nitrate Metabolism and Ischemic Cerebrovascular Disease: A Narrative Review. Front Neurol 2022; 13:735181. [PMID: 35309590 PMCID: PMC8927699 DOI: 10.3389/fneur.2022.735181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
Inorganic and organic nitrates are present in vivo and in vitro. Inorganic nitrate is considered a pool of nitric oxide (NO), but it can be converted into nitrite and NO through various mechanisms. It plays an important role in the regulation of complex physiological and biochemical reactions, such as anti-inflammatory processes and the inhibition of platelet aggregation, which are closely related to the pathology and treatment of cerebrovascular disease. Ischemic cerebrovascular disease is characterized by high incidence, recurrence, and disability rates. Nitrate, nitrite, and NO were recently found to be involved in cerebrovascular disease. In this review, we describe the relationship between cerebrovascular disease and nitrate metabolism to provide a basis for further advances in laboratory and clinical medicine.
Collapse
Affiliation(s)
- Yicong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Laboratory for Oral and General Health Integration and Translation, Beijing, China
| | - Weiqi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Laboratory for Oral and General Health Integration and Translation, Beijing, China
| | - Jian Zhou
- Laboratory for Oral and General Health Integration and Translation, Beijing, China
- School of Stomatology, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hao Wang
- Laboratory for Oral and General Health Integration and Translation, Beijing, China
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Hao Wang
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Laboratory for Oral and General Health Integration and Translation, Beijing, China
- Yilong Wang
| |
Collapse
|
22
|
Biochemical and molecular-physiological aspects of the nitric oxide action in the utera. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Li S, An W, Wang B, Li J, Qu Y, Zhang H, Zhang Y, Wang S, Qin L. Inorganic nitrate alleviates irradiation-induced salivary gland damage by inhibiting pyroptosis. Free Radic Biol Med 2021; 175:130-140. [PMID: 34454049 DOI: 10.1016/j.freeradbiomed.2021.08.227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023]
Abstract
Over 80% of patients undergoing radiotherapy (RT) for head and neck cancer (HNC) suffer reduced saliva secretion and dry mouth symptoms due to salivary gland damage. Although therapeutic interventions to alleviate such RT-induced damage are available, long-term hypofunction remains a significant issue. Therefore, novel therapeutic solutions to prevent irradiation (IR)-induced salivary gland damage are required. This study explored the protective effect of inorganic nitrate in preventing IR-induced salivary gland injury via pyroptosis suppression, both in vivo and in vitro. In the treatment group, C57BL/6 mice were pretreated with 2 mmol/L NaNO3 supplied in drinking water one week before a single-dose of 15 Gy IR in the submandibular gland (SMG) region. Human vein endothelial cells (HUVECs) and mice SMG cells were treated with 10 μmol/L or 100 μmol/L NaNO3 2 h before a single-dose of 8 Gy IR. In vivo, IR-induced decreased saliva flow rate and body weight loss could be alleviated by nitrate supplementation. Nitrate prevented acinar and microvascular endothelial cell loss. Moreover, nitrate improved mitochondrial function and significantly decreased pyroptosis-related indexes. In vitro, nitrate supplementation reduced reactive oxygen species (ROS) generation by preserving mitochondrial homeostasis to inhibit NLPR3 inflammasome-mediated pyroptosis both in HUVECs and SMG cells. Nitrate showed potential as an oral protective agent to prevent IR-induced salivary gland damage; prospective insight into the underlying molecular mechanisms is presented.
Collapse
Affiliation(s)
- Shaoqing Li
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China; Beijing Laboratory of Oral Helath, Capital Medical University, Beijing 100069, China; Department of Stomatology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Wei An
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China; Beijing Laboratory of Oral Helath, Capital Medical University, Beijing 100069, China; Department of Oral and Maxillofacial Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, China
| | - Bin Wang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Jing Li
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Yi Qu
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Haoyang Zhang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Yingrui Zhang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Songlin Wang
- Beijing Laboratory of Oral Helath, Capital Medical University, Beijing 100069, China; Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medicine, Beijing 100069, China.
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China; Beijing Laboratory of Oral Helath, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
24
|
Feng X, Wu Z, Xu J, Xu Y, Zhao B, Pang B, Qu X, Hu L, Hu L, Fan Z, Jin L, Xia D, Chang S, Wang J, Zhang C, Wang S. Dietary nitrate supplementation prevents radiotherapy-induced xerostomia. eLife 2021; 10:70710. [PMID: 34581269 PMCID: PMC8563005 DOI: 10.7554/elife.70710] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022] Open
Abstract
Management of salivary gland hypofunction caused by irradiation (IR) therapy for head and neck cancer remains lack of effective treatments. Salivary glands, especially the parotid gland, actively uptake dietary nitrate and secrete it into saliva. Here, we investigated the effect of dietary nitrate on the prevention and treatment of IR-induced parotid gland hypofunction in miniature pigs, and elucidated the underlying mechanism in human parotid gland cells. We found that nitrate administration prevented IR-induced parotid gland damage in a dose-dependent manner, by maintaining the function of irradiated parotid gland tissue. Nitrate could increase sialin expression, a nitrate transporter expressed in the parotid gland, making the nitrate-sialin feedback loop that facilitates nitrate influx into cells for maintaining cell proliferation and inhibiting apoptosis. Furthermore, nitrate enhanced cell proliferation via the epidermal growth factor receptor (EGFR)-protein kinase B (AKT)-mitogen-activated protein kinase (MAPK) signaling pathway in irradiated parotid gland tissue. Collectively, nitrate effectively prevented IR-induced xerostomia via the EGFR-AKT-MAPK signaling pathway. Dietary nitrate supplementation may provide a novel, safe, and effective way to resolve IR-induced xerostomia.
Collapse
Affiliation(s)
- Xiaoyu Feng
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China.,Department of Pediatric Dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Zhifang Wu
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Junji Xu
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yipu Xu
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Bin Zhao
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Baoxing Pang
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Xingmin Qu
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Liang Hu
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lei Hu
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Luyuan Jin
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Dengsheng Xia
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Shimin Chang
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Jingsong Wang
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing, China
| | - Chunmei Zhang
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Songlin Wang
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China.,Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Aramide Modupe Dosunmu-Ogunbi A, Galley JC, Yuan S, Schmidt HM, Wood KC, Straub AC. Redox Switches Controlling Nitric Oxide Signaling in the Resistance Vasculature and Implications for Blood Pressure Regulation: Mid-Career Award for Research Excellence 2020. Hypertension 2021; 78:912-926. [PMID: 34420371 DOI: 10.1161/hypertensionaha.121.16493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The arterial resistance vasculature modulates blood pressure and flow to match oxygen delivery to tissue metabolic demand. As such, resistance arteries and arterioles have evolved a series of highly orchestrated cell-cell communication mechanisms between endothelial cells and vascular smooth muscle cells to regulate vascular tone. In response to neurohormonal agonists, release of several intracellular molecules, including nitric oxide, evokes changes in vascular tone. We and others have uncovered novel redox switches in the walls of resistance arteries that govern nitric oxide compartmentalization and diffusion. In this review, we discuss our current understanding of redox switches controlling nitric oxide signaling in endothelial and vascular smooth muscle cells, focusing on new mechanistic insights, physiological and pathophysiological implications, and advances in therapeutic strategies for hypertension and other diseases.
Collapse
Affiliation(s)
- Atinuke Aramide Modupe Dosunmu-Ogunbi
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA.,Department of Pharmacology and Chemical Biology (A.A.M.D.-O., J.C.G., H.M.S., A.C.S), University of Pittsburgh, PA
| | - Joseph C Galley
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA.,Department of Pharmacology and Chemical Biology (A.A.M.D.-O., J.C.G., H.M.S., A.C.S), University of Pittsburgh, PA
| | - Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA
| | - Heidi M Schmidt
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA.,Department of Pharmacology and Chemical Biology (A.A.M.D.-O., J.C.G., H.M.S., A.C.S), University of Pittsburgh, PA
| | - Katherine C Wood
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA.,Department of Pharmacology and Chemical Biology (A.A.M.D.-O., J.C.G., H.M.S., A.C.S), University of Pittsburgh, PA.,Center for Microvascular Research (A.C.S.), University of Pittsburgh, PA
| |
Collapse
|
26
|
Eriksson KE, Eidhagen F, Liska J, Franco-Cereceda A, Lundberg JO, Weitzberg E. Effects of inorganic nitrate on ischaemia-reperfusion injury after coronary artery bypass surgery. Br J Anaesth 2021; 127:547-555. [PMID: 34399982 PMCID: PMC8524391 DOI: 10.1016/j.bja.2021.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
Background Nitric oxide (NO) is an important signalling molecule in the cardiovascular system with protective properties in ischaemia–reperfusion injury. Inorganic nitrate, an oxidation product of endogenous NO production and a constituent in our diet, can be recycled back to bioactive NO. We investigated if preoperative administration of inorganic nitrate could reduce troponin T release and other plasma markers of injury to the heart, liver, kidney, and brain in patients undergoing cardiac surgery. Methods This single-centre, randomised, double-blind, placebo-controlled trial included 82 patients undergoing coronary artery bypass surgery with cardiopulmonary bypass. Oral sodium nitrate (700 mg×2) or placebo (NaCl) were administered before surgery. Biomarkers of ischaemia–reperfusion injury and plasma nitrate and nitrite were collected before and up to 72 h after surgery. Troponin T release was our predefined primary endpoint and biomarkers of renal, liver, and brain injury were secondary endpoints. Results Plasma concentrations of nitrate and nitrite were elevated in nitrate-treated patients compared with placebo. The 72-h release of troponin T did not differ between groups. Other plasma biomarkers of organ injury were also similar between groups. Blood loss was not a predefined outcome parameter, but perioperative bleeding was 18% less in nitrate-treated patients compared with controls. Conclusion Preoperative administration of inorganic nitrate did not influence troponin T release or other plasma biomarkers of organ injury in cardiac surgery. Clinical trial registration NCT01348971.
Collapse
Affiliation(s)
- Karin E Eriksson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden.
| | - Fredrik Eidhagen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Stockholm Center for Spine Surgery (RKC), Stockholm, Sweden
| | - Jan Liska
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Cardiothoracic Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Franco-Cereceda
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Cardiothoracic Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
27
|
Acute Effects of Dietary Nitrate on Exercise Tolerance, Muscle Oxygenation, and Cardiovascular Function in Patients With Peripheral Arterial Disease. Int J Sport Nutr Exerc Metab 2021; 31:385-396. [PMID: 34284348 DOI: 10.1123/ijsnem.2021-0054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/18/2022]
Abstract
Previous studies have used supplements to increase dietary nitrate intake in clinical populations. Little is known about whether effects can also be induced through vegetable consumption. Therefore, the aim of this study was to assess the impact of dietary nitrate, through nitrate-rich vegetables (NRV) and beetroot juice (BRJ) supplementation, on plasma nitrate and nitrite concentrations, exercise tolerance, muscle oxygenation, and cardiovascular function in patients with peripheral arterial disease. In a randomized crossover design, 18 patients with peripheral arterial disease (age: 73 ± 8 years) followed a nitrate intake protocol (∼6.5 mmol) through the consumption of NRV, BRJ, and nitrate-depleted BRJ (placebo). Blood samples were taken, blood pressure and arterial stiffness were measured in fasted state and 150 min after intervention. Each intervention was followed by a maximal walking exercise test to determine claudication onset time and peak walking time. Gastrocnemius oxygenation was measured by near-infrared spectroscopy. Blood samples were taken and blood pressure was measured 10 min after exercise. Mean plasma nitrate and nitrite concentrations increased (nitrate; Time × Intervention interaction; p < .001), with the highest concentrations after BRJ (494 ± 110 μmol/L) compared with NRV (202 ± 89 μmol/L) and placebo (80 ± 19 μmol/L; p < .001). Mean claudication onset time and peak walking time did not differ between NRV (413 ± 187 s and 745 ± 220 s, respectively), BRJ (392 ± 154 s and 746 ± 176 s), and placebo (403 ± 176 s and 696 ± 222 s) (p = .762 and p = .165, respectively). Gastrocnemius oxygenation, blood pressure, and arterial stiffness were not affected by the intervention. NRV and BRJ intake markedly increase plasma nitrate and nitrite, but this does not translate to improved exercise tolerance, muscle oxygenation, and/or cardiovascular function.
Collapse
|
28
|
Pekas EJ, Wooden TK, Yadav SK, Park SY. Body mass-normalized moderate dose of dietary nitrate intake improves endothelial function and walking capacity in patients with peripheral artery disease. Am J Physiol Regul Integr Comp Physiol 2021; 321:R162-R173. [PMID: 34161745 DOI: 10.1152/ajpregu.00121.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral artery disease (PAD) is characterized by the accumulation of atherosclerotic plaques in the lower extremity conduit arteries, which impairs blood flow and walking capacity. Dietary nitrate has been used to reduce blood pressure (BP) and improve walking capacity in PAD. However, a standardized dose for PAD has not been determined. Therefore, we sought to determine the effects of a body mass-normalized moderate dose of nitrate (0.11 mmol nitrate/kg) as beetroot juice on serum nitrate/nitrite, vascular function, walking capacity, and tissue oxygen utilization capacity in patients with PAD. A total of 11 patients with PAD received either nitrate supplement or placebo in a randomized crossover design. Total serum nitrate/nitrite, resting BP, brachial and popliteal artery endothelial function (flow-mediated dilation, FMD), arterial stiffness (pulse-wave velocity, PWV), augmentation index (AIx), maximal walking distance and time, claudication onset time, and skeletal muscle oxygen utilization were measured pre- and postnitrate and placebo intake. There were significant group × time interactions (P < 0.05) for serum nitrate/nitrite, FMD, BP, walking distance and time, and skeletal muscle oxygen utilization. The nitrate group showed significantly increased serum nitrate/nitrite (Δ1.32 μM), increased brachial and popliteal FMD (Δ1.3% and Δ1.7%, respectively), reduced peripheral and central systolic BP (Δ-4.7 mmHg and Δ-8.2 mmHg, respectively), increased maximal walking distance (Δ92.7 m) and time (Δ56.3 s), and reduced deoxygenated hemoglobin during walking. There were no changes in PWV, AIx, or claudication (P > 0.05). These results indicate that a body-mass normalized moderate dose of nitrate may be effective and safe for reducing BP, improving endothelial function, and improving walking capacity in patients with PAD.
Collapse
Affiliation(s)
- Elizabeth J Pekas
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - TeSean K Wooden
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Santosh K Yadav
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Song-Young Park
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| |
Collapse
|
29
|
Li S, Jin H, Sun G, Zhang C, Wang J, Xu H, Zhang D, Wang S. Dietary Inorganic Nitrate Protects Hepatic Ischemia-Reperfusion Injury Through NRF2-Mediated Antioxidative Stress. Front Pharmacol 2021; 12:634115. [PMID: 34163351 PMCID: PMC8215696 DOI: 10.3389/fphar.2021.634115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/08/2021] [Indexed: 12/30/2022] Open
Abstract
Objectives: Hepatic ischemia-reperfusion injury (HIRI) is of common occurrence during liver surgery and liver transplantation and may cause hepatic impairment, resulting in acute liver dysfunction. Nitrate plays an important physiological regulatory role in the human body. Whether dietary nitrate could prevent HIRI is, however, unknown. Methods: A HIRI mouse model was established in that the blood supply to the median lobe and left lateral lobe was blocked for 60 min through the portal vein and related structures using an atraumatic clip. Sodium nitrate (4 mM) was administrated in advance through drinking water to compare the influence of sodium nitrate and normal water on HIRI. Results: Liver necrosis and injury aggravated after HIRI. The group treated with sodium nitrate showed the lowest activities of plasma aminotransferase and lactate dehydrogenase and improved outcomes in histological investigation and TUNEL assay. Mechanistically, sodium nitrate intake increased plasma and liver nitric oxide levels, upregulated nuclear factor erythroid 2-related factor 2 (NRF2)-related molecules to reduce malondialdehyde level, and increased the activities of antioxidant enzymes to modulate hepatic oxidative stress. Conclusions: Dietary inorganic nitrate could prevent HIRI, possibly by activating the NRF2 pathway and modulating oxidative stress. Our study provides a novel therapeutic compound that could potentially prevent HIRI during liver transplantation or hepatic surgery.
Collapse
Affiliation(s)
- Shaorong Li
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hua Jin
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Guangyong Sun
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Chunmei Zhang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jinsong Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medicine, Beijing, China
| | - Hufeng Xu
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Dong Zhang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medicine, Beijing, China
| |
Collapse
|
30
|
Rocca C, Grande F, Granieri MC, Colombo B, De Bartolo A, Giordano F, Rago V, Amodio N, Tota B, Cerra MC, Rizzuti B, Corti A, Angelone T, Pasqua T. The chromogranin A 1-373 fragment reveals how a single change in the protein sequence exerts strong cardioregulatory effects by engaging neuropilin-1. Acta Physiol (Oxf) 2021; 231:e13570. [PMID: 33073482 DOI: 10.1111/apha.13570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
AIM Chromogranin A (CgA), a 439-residue long protein, is an important cardiovascular regulator and a precursor of various bioactive fragments. Under stressful/pathological conditions, CgA cleavage generates the CgA1-373 proangiogenic fragment. The present work investigated the possibility that human CgA1-373 influences the mammalian cardiac performance, evaluating the role of its C-terminal sequence. METHODS Haemodynamic assessment was performed on an ex vivo Langendorff rat heart model, while mechanistic studies were performed using perfused hearts, H9c2 cardiomyocytes and in silico. RESULTS On the ex vivo heart, CgA1-373 elicited direct dose-dependent negative inotropism and vasodilation, while CgA1-372 , a fragment lacking the C-terminal R373 residue, was ineffective. Antibodies against the PGPQLR373 C-terminal sequence abrogated the CgA1-373 -dependent cardiac and coronary modulation. Ex vivo studies showed that CgA1-373 -dependent effects were mediated by endothelium, neuropilin-1 (NRP1) receptor, Akt/NO/Erk1,2 pathways, nitric oxide (NO) production and S-nitrosylation. In vitro experiments on H9c2 cardiomyocytes indicated that CgA1-373 also induced eNOS activation directly on the cardiomyocyte component by NRP1 targeting and NO involvement and provided beneficial action against isoproterenol-induced hypertrophy, by reducing the increase in cell surface area and brain natriuretic peptide (BNP) release. Molecular docking and all-atom molecular dynamics simulations strongly supported the hypothesis that the C-terminal R373 residue of CgA1-373 directly interacts with NRP1. CONCLUSION These results suggest that CgA1-373 is a new cardioregulatory hormone and that the removal of R373 represents a critical switch for turning "off" its cardioregulatory activity.
Collapse
Affiliation(s)
- Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Patho‐Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
| | - Fedora Grande
- Laboratory of Medicinal and Analytical Chemistry Department of Pharmacy, Health and Nutritional Sciences University of Calabria Rende Italy
| | - Maria Concetta Granieri
- Laboratory of Cellular and Molecular Cardiovascular Patho‐Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
| | - Barbara Colombo
- Division of Experimental Oncology Vita‐Salute San Raffaele University–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute Milan Italy
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Patho‐Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria Rende Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria Rende Italy
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria Rende Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine Magna Graecia University of Catanzaro Catanzaro Italy
| | - Bruno Tota
- Laboratory of Cellular and Molecular Cardiovascular Patho‐Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
- Laboratory of Organ and System Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
| | - Maria Carmela Cerra
- Laboratory of Organ and System Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
| | - Bruno Rizzuti
- CNR‐NANOTEC Licryl‐UOS Cosenza and CEMIF.Cal Department of Physics University of Calabria Rende Italy
| | - Angelo Corti
- Division of Experimental Oncology Vita‐Salute San Raffaele University–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute Milan Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Patho‐Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
- National Institute of Cardiovascular Research (INRC) Bologna Italy
| | - Teresa Pasqua
- Laboratory of Cellular and Molecular Cardiovascular Patho‐Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
- "Fondazione Umberto Veronesi" Milan Italy
| |
Collapse
|
31
|
Ahmed KA, Kim K, Ricart K, Van Der Pol W, Qi X, Bamman MM, Behrens C, Fisher G, Boulton ME, Morrow C, O'Neal PV, Patel RP. Potential role for age as a modulator of oral nitrate reductase activity. Nitric Oxide 2021; 108:1-7. [PMID: 33321206 PMCID: PMC8085911 DOI: 10.1016/j.niox.2020.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Reduction of salivary nitrate to nitrite by oral nitrate reductase (NR) expressing bacteria has emerged as an integral pathway in regulating nitric oxide (NO) homeostasis and signaling. The oral microbiome is critical for this pathway. Variations in this pathway may underlie variable responses in the magnitude by which dietary or therapeutic nitrate modulates NO-signaling. The relationships between oral microbes and NR activity, and the factors that affect this relationship remain unclear however. Using a cross-sectional study design, the objective of this study was to determine the relationships between oral microbes and oral NR activity using a protocol that directly measures initial NR activity. Tongue swabs were collected from 28 subjects ranging in age from 21 to 73y. Initial NR activity showed a bell-shaped dependence with age, with activity peaking at ~40-50y and being lower but similar between younger (20-30y) and older (51-73) individuals. Microbiome relative abundance and diversity analyses, using 16s sequencing, demonstrated differences across age and identified both NR expressing and non-expressing bacteria in modulating initial NR activity. Finally, initial NR activity was measured in 3mo and 13mo old C57BL/6J mice. No differences in bacterial number were observed. However initial NR activity was significantly (80%) lower in 13mo old mice. Collectively, these data suggest that age is a variable in NR activity and may modulate responsiveness to dietary nitrate.
Collapse
Affiliation(s)
- Khandaker Ahtesham Ahmed
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kiyoung Kim
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Karina Ricart
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William Van Der Pol
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, USA
| | - Xiaoping Qi
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marcas M Bamman
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christian Behrens
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gordon Fisher
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael E Boulton
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Pamela V O'Neal
- College of Nursing, University of Alabama in Huntsville, Huntsville, AL, USA
| | - Rakesh P Patel
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
32
|
Griffiths K, Lee JJ, Frenneaux MP, Feelisch M, Madhani M. Nitrite and myocardial ischaemia reperfusion injury. Where are we now? Pharmacol Ther 2021; 223:107819. [PMID: 33600852 DOI: 10.1016/j.pharmthera.2021.107819] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease remains the leading cause of death worldwide despite major advances in technology and treatment, with coronary heart disease (CHD) being a key contributor. Following an acute myocardial infarction (AMI), it is imperative that blood flow is rapidly restored to the ischaemic myocardium. However, this restoration is associated with an increased risk of additional complications and further cardiomyocyte death, termed myocardial ischaemia reperfusion injury (IRI). Endogenously produced nitric oxide (NO) plays an important role in protecting the myocardium from IRI. It is well established that NO mediates many of its downstream functions through the 'canonical' NO-sGC-cGMP pathway, which is vital for cardiovascular homeostasis; however, this pathway can become impaired in the face of inadequate delivery of necessary substrates, in particular L-arginine, oxygen and reducing equivalents. Recently, it has been shown that during conditions of ischaemia an alternative pathway for NO generation exists, which has become known as the 'nitrate-nitrite-NO pathway'. This pathway has been reported to improve endothelial dysfunction, protect against myocardial IRI and attenuate infarct size in various experimental models. Furthermore, emerging evidence suggests that nitrite itself provides multi-faceted protection, in an NO-independent fashion, against a myriad of pathophysiologies attributed to IRI. In this review, we explore the existing pre-clinical and clinical evidence for the role of nitrate and nitrite in cardioprotection and discuss the lessons learnt from the clinical trials for nitrite as a perconditioning agent. We also discuss the potential future for nitrite as a pre-conditioning intervention in man.
Collapse
Affiliation(s)
- Kayleigh Griffiths
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jordan J Lee
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Michael P Frenneaux
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Melanie Madhani
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
33
|
Abstract
The prevalence of cardiovascular and metabolic disease coupled with kidney dysfunction is increasing worldwide. This triad of disorders is associated with considerable morbidity and mortality as well as a substantial economic burden. Further understanding of the underlying pathophysiological mechanisms is important to develop novel preventive or therapeutic approaches. Among the proposed mechanisms, compromised nitric oxide (NO) bioactivity associated with oxidative stress is considered to be important. NO is a short-lived diatomic signalling molecule that exerts numerous effects on the kidneys, heart and vasculature as well as on peripheral metabolically active organs. The enzymatic L-arginine-dependent NO synthase (NOS) pathway is classically viewed as the main source of endogenous NO formation. However, the function of the NOS system is often compromised in various pathologies including kidney, cardiovascular and metabolic diseases. An alternative pathway, the nitrate-nitrite-NO pathway, enables endogenous or dietary-derived inorganic nitrate and nitrite to be recycled via serial reduction to form bioactive nitrogen species, including NO, independent of the NOS system. Signalling via these nitrogen species is linked with cGMP-dependent and independent mechanisms. Novel approaches to restoring NO homeostasis during NOS deficiency and oxidative stress have potential therapeutic applications in kidney, cardiovascular and metabolic disorders.
Collapse
|
34
|
Bock JM, Hanson BE, Asama TF, Feider AJ, Hanada S, Aldrich AW, Dyken ME, Casey DP. Acute inorganic nitrate supplementation and the hypoxic ventilatory response in patients with obstructive sleep apnea. J Appl Physiol (1985) 2021; 130:87-95. [PMID: 33211592 DOI: 10.1152/japplphysiol.00696.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Patients with obstructive sleep apnea (OSA) have increased cardiovascular disease risk largely attributable to hypertension. Heightened peripheral chemoreflex sensitivity (i.e., exaggerated responsiveness to hypoxia) facilitates hypertension in these patients. Nitric oxide blunts the peripheral chemoreflex, and patients with OSA have reduced nitric oxide bioavailability. We therefore investigated the dose-dependent effects of acute inorganic nitrate supplementation (beetroot juice), an exogenous nitric oxide source, on blood pressure and cardiopulmonary responses to hypoxia in patients with OSA using a randomized, double-blind, placebo-controlled crossover design. Fourteen patients with OSA (53 ± 10 yr, 29.2 ± 5.8 kg/m2, apnea-hypopnea index = 17.8 ± 8.1, 43%F) completed three visits. Resting brachial blood pressure and cardiopulmonary responses to inspiratory hypoxia were measured before, and 2 h after, acute inorganic nitrate supplementation [∼0.10 mmol (placebo), 4.03 mmol (low dose), and 8.06 mmol (high dose)]. Placebo increased neither plasma [nitrate] (30 ± 52 to 52 ± 23 μM, P = 0.26) nor [nitrite] (266 ± 153 to 277 ± 164 nM, P = 0.21); however, both increased following low (29 ± 17 to 175 ± 42 μM, 220 ± 137 to 514 ± 352 nM) and high doses (26 ± 11 to 292 ± 90 μM, 248 ± 155 to 738 ± 427 nM, respectively, P < 0.01 for all). Following placebo, systolic blood pressure increased (120 ± 9 to 128 ± 10 mmHg, P < 0.05), whereas no changes were observed following low (121 ± 11 to 123 ± 8 mmHg, P = 0.19) or high doses (124 ± 13 to 124 ± 9 mmHg, P = 0.96). The peak ventilatory response to hypoxia increased following placebo (3.1 ± 1.2 to 4.4 ± 2.6 L/min, P < 0.01) but not low (4.4 ± 2.4 to 5.4 ± 3.4 L/min, P = 0.11) or high doses (4.3 ± 2.3 to 4.8 ± 2.7 L/min, P = 0.42). Inorganic nitrate did not change the heart rate responses to hypoxia (beverage-by-time P = 0.64). Acute inorganic nitrate supplementation appears to blunt an early-morning rise in systolic blood pressure potentially through suppression of peripheral chemoreflex sensitivity in patients with OSA.NEW & NOTEWORTHY The present study is the first to examine the acute effects of inorganic nitrate supplementation on resting blood pressure and cardiopulmonary responses to hypoxia (e.g., peripheral chemoreflex sensitivity) in patients with obstructive sleep apnea (OSA). Our data indicate inorganic nitrate supplementation attenuates an early-morning rise in systolic blood pressure potentially attributable to blunted peripheral chemoreflex sensitivity. These data show proof-of-concept that inorganic nitrate supplementation could reduce the risk of cardiovascular disease in patients with OSA.
Collapse
Affiliation(s)
- Joshua M Bock
- Department of Physical Therapy & Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Brady E Hanson
- Department of Physical Therapy & Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Thomas F Asama
- Department of Physical Therapy & Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Andrew J Feider
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Satoshi Hanada
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Aric W Aldrich
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Mark Eric Dyken
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Darren P Casey
- Department of Physical Therapy & Rehabilitation Science, University of Iowa, Iowa City, Iowa.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
| |
Collapse
|
35
|
Gorman S, Weller RB. Investigating the Potential for Ultraviolet Light to Modulate Morbidity and Mortality From COVID-19: A Narrative Review and Update. Front Cardiovasc Med 2020; 7:616527. [PMID: 33426009 PMCID: PMC7786057 DOI: 10.3389/fcvm.2020.616527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
During the COVID-19 (coronavirus disease of 2019) pandemic, researchers have been seeking low-cost and accessible means of providing protection from its harms, particularly for at-risk individuals such as those with cardiovascular disease, diabetes and obesity. One possible way is via safe sun exposure, and/or dietary supplementation with induced beneficial mediators (e.g., vitamin D). In this narrative review, we provide rationale and updated evidence on the potential benefits and harms of sun exposure and ultraviolet (UV) light that may impact COVID-19. We review recent studies that provide new evidence for any benefits (or otherwise) of UV light, sun exposure, and the induced mediators, vitamin D and nitric oxide, and their potential to modulate morbidity and mortality induced by infection with SARS-CoV-2 (severe acute respiratory disease coronavirus-2). We identified substantial interest in this research area, with many commentaries and reviews already published; however, most of these have focused on vitamin D, with less consideration of UV light (or sun exposure) or other mediators such as nitric oxide. Data collected to-date suggest that ambient levels of both UVA and UVB may be beneficial for reducing severity or mortality due to COVID-19, with some inconsistent findings. Currently unresolved are the nature of the associations between blood 25-hydroxyvitamin D and COVID-19 measures, with more prospective data needed that better consider lifestyle factors, such as physical activity and personal sun exposure levels. Another short-coming has been a lack of measurement of sun exposure, and its potential to influence COVID-19 outcomes. We also discuss possible mechanisms by which sun exposure, UV light and induced mediators could affect COVID-19 morbidity and mortality, by focusing on likely effects on viral pathogenesis, immunity and inflammation, and potential cardiometabolic protective mechanisms. Finally, we explore potential issues including the impacts of exposure to high dose UV radiation on COVID-19 and vaccination, and effective and safe doses for vitamin D supplementation.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Richard B. Weller
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
36
|
Potential Use of Hyssopus officinalis and Borago officinalis as Curing Ingredients in Pork Meat Formulations. Animals (Basel) 2020; 10:ani10122327. [PMID: 33297565 PMCID: PMC7762358 DOI: 10.3390/ani10122327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Health risks associated with nitrites as curing agents have led consumers to search for products without those additives. Herbs have been used in medicine for many years and are usually positively perceived by consumers. Good-quality products with medicinal plants may be an alternative for those who try to avoid additives other than salt and spices. Hyssopus officinalis and Borago officinalis were tested for their potential to be used as colour forming and antioxidant agents. Both herbs were used in pork meat formulations along with nitrate reducing bacteria. A colour formation similar to a control product containing nitrite was noted in all the samples. Borage had a stronger antioxidant effect. Those additives can be used as an alternative to nitrite cured pork products. Abstract The replacement of nitrites in pork meat products has been a studied issue for many years. Due to potential health threats associated with these additives, consumers tend to search for alternative meat curing methods. In this study, Hyssopus officinalis and Borago officinalis were tested for their potential to be used as colour-forming and antioxidant agents. Dry plant samples from various sources were tested for fat, protein, ash, polyphenol and nitrate content. There were significant differences between the herbs depending on source. Two control samples (containing curing salt and sodium chloride with nitrate reducing bacteria) and samples with herbs (hyssop, hyssop with nitrate reducing bacteria, borage, borage with nitrate reducing bacteria)—0.5% of the meat mass—were prepared and stored for 15 days. In the samples with herbs and bacterial cultures, a red colour was developed, the TBARS values were low and DPPH activity was strong. All the samples with herbs had lower residual nitrite levels compared to the samples with curing salt. Borage had a stronger influence on colour and antioxidant stability of the meat samples compared to hyssop. However, both herbs can be used as colour-forming and antioxidant agents along with nitrate-reducing bacteria.
Collapse
|
37
|
Moretti CH, Schiffer TA, Montenegro MF, Larsen FJ, Tsarouhas V, Carlström M, Samakovlis C, Weitzberg E, Lundberg JO. Dietary nitrite extends lifespan and prevents age-related locomotor decline in the fruit fly. Free Radic Biol Med 2020; 160:860-870. [PMID: 32980539 DOI: 10.1016/j.freeradbiomed.2020.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
Abstract
Aging is associated with decreased nitric oxide (NO) bioavailability and signalling. Boosting of a dietary nitrate-nitrite-NO pathway e.g. by ingestion of leafy green vegetables, improves cardiometabolic function, mitochondrial efficiency and reduces oxidative stress in humans and rodents, making dietary nitrate and nitrite an appealing intervention to address age-related disorders. On the other hand, these anions have long been implicated in detrimental health effects of our diet, particularly in formation of carcinogenic nitrosamines. The aim of this study was to assess whether inorganic nitrite affects lifespan in Drosophila melanogaster and investigate possible mechanisms underlying any such effect. In a survival assay, female flies fed a nitrite supplemented diet showed lifespan extension by 9 and 15% with 0.1 and 1 μM nitrite respectively, with no impact of nitrite on reproductive output. Interestingly, nitrite could also protect female flies from age-dependent locomotor decline, indicating a protective effect on healthspan. NO generation from nitrite involved Drosophila commensal bacteria and was indicated by a fluorescent probe as well as direct measurements of NO gas formation with chemiluminescence. Nutrient sensing pathways such as TOR and sirtuins, have been strongly implicated in lifespan extension. In aged flies, nitrite supplementation significantly downregulated dTOR and upregulated dSir2 gene expression. Total triglycerides and glucose were decreased, a described downstream effect of both TOR and sirtuin pathways. In conclusion, we demonstrate that very low doses of dietary nitrite extend lifespan and favour healthspan in female flies. We propose modulation of nutrient sensing pathways as driving mechanisms for such effects.
Collapse
Affiliation(s)
- Chiara H Moretti
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 171 77, Sweden.
| | - Tomas A Schiffer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Marcelo F Montenegro
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Filip J Larsen
- The Swedish School of Sport and Health Sciences, Stockholm, 114 86, Sweden
| | - Vasilios Tsarouhas
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm, 106 91, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Christos Samakovlis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm, 106 91, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 171 77, Sweden.
| |
Collapse
|
38
|
The solution chemistry of nitric oxide and other reactive nitrogen species. Nitric Oxide 2020; 103:31-46. [DOI: 10.1016/j.niox.2020.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
|
39
|
Makieieva N, Odynets Y, Yavorovych M, Afanasieva O, Chaika K, Butov D. Serum Levels of Monocyte Chemotactic Protein-1 and Nitrogen Oxide Metabolites in Henoch-Schönlein Purpura Indicate the Development of Renal Syndrome. Indian J Pediatr 2020; 87:863-864. [PMID: 32338349 DOI: 10.1007/s12098-020-03300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Nataliia Makieieva
- Department of Pediatrics # 2, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Yuriy Odynets
- Department of Pediatrics # 2, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Mariia Yavorovych
- Department of Pediatrics # 2, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Oksana Afanasieva
- Department of Pediatrics # 2, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Khrystyna Chaika
- Department of Pediatrics # 2, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Dmytro Butov
- Department of Pediatrics # 2, Kharkiv National Medical University, Kharkiv, Ukraine.
| |
Collapse
|
40
|
Gheibi S, Ghasemi A. Insulin secretion: The nitric oxide controversy. EXCLI JOURNAL 2020; 19:1227-1245. [PMID: 33088259 PMCID: PMC7573190 DOI: 10.17179/excli2020-2711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) is a gas that serves as a ubiquitous signaling molecule participating in physiological activities of various organ systems. Nitric oxide is produced in the endocrine pancreas and contributes to synthesis and secretion of insulin. The potential role of NO in insulin secretion is disputable - both stimulatory and inhibitory effects have been reported. Available data indicate that effects of NO critically depend on its concentration. Different isoforms of NO synthase (NOS) control this and have the potential to decrease or increase insulin secretion. In this review, the role of NO in insulin secretion as well as the possible reasons for discrepant findings are discussed. A better understanding of the role of NO system in the regulation of insulin secretion may facilitate the development of new therapeutic strategies in the management of diabetes.
Collapse
Affiliation(s)
- Sevda Gheibi
- Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Cramer MN, Hieda M, Huang M, Moralez G, Crandall CG. Dietary nitrate supplementation does not influence thermoregulatory or cardiovascular strain in older individuals during severe ambient heat stress. Exp Physiol 2020; 105:1730-1741. [PMID: 32816341 DOI: 10.1113/ep088834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does dietary nitrate supplementation with beetroot juice attenuate thermoregulatory and cardiovascular strain in older adults during severe heat stress? What is the main finding and its importance? A 7-day nitrate supplementation regimen lowered resting mean arterial pressure in thermoneutral conditions. During heat stress, core and mean skin temperatures, vasodilatory responses, sweat loss, heart rate and left ventricular function were unchanged, and mean arterial pressure was only transiently reduced, post-supplementation. These data suggest nitrate supplementation with beetroot juice does not mitigate thermoregulatory or cardiovascular strain in heat-stressed older individuals. ABSTRACT This study tested the hypothesis that dietary nitrate supplementation with concentrated beetroot juice attenuates thermoregulatory and cardiovascular strain in older individuals during environmental heat stress. Nine healthy older individuals (six females, three males; aged 67 ± 5 years) were exposed to 42.5 ± 0.1°C and 34.0 ± 0.5% relative humidity conditions for 120 min before (CON) and after 7 days of dietary nitrate supplementation with concentrated beetroot juice (BRJ; 280 ml, ∼16.8 mmol of nitrate daily). Core and skin temperatures, body mass changes (indicative of whole-body sweat loss), skin blood flow and cutaneous vascular conductance, forearm blood flow and vascular conductance, heart rate, arterial blood pressures and indices of cardiac function were measured. The 7-day beetroot juice regimen increased plasma nitrate/nitrite levels from 27.4 ± 15.2 to 477.0 ± 102.5 μmol l-1 (P < 0.01) and lowered resting mean arterial pressure from 90 ± 7 to 83 ± 10 mmHg at baseline under thermoneutral conditions (P = 0.02). However, during subsequent heat stress, no differences in core and skin temperatures, skin blood flow and vascular conductance, forearm blood flow and vascular conductance, whole-body sweat loss, heart rate, and echocardiographic indices of systolic function and diastolic filling were evident following nitrate supplementation (all P > 0.05). Mean arterial pressure was lower in BRJ vs. CON during heat stress (treatment-by-time interaction: P = 0.02). Overall, these findings suggest that dietary nitrate supplementation with concentrated beetroot juice does not attenuate thermoregulatory or cardiovascular strain in older individuals exposed to severe ambient heat stress.
Collapse
Affiliation(s)
- Matthew N Cramer
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michinari Hieda
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA.,School of Medicine, Kyushu University, Fukuoka, Japan
| | - Mu Huang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA.,Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gilbert Moralez
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA.,Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
42
|
Park JW, Piknova B, Jenkins A, Hellinga D, Parver LM, Schechter AN. Potential roles of nitrate and nitrite in nitric oxide metabolism in the eye. Sci Rep 2020; 10:13166. [PMID: 32759980 PMCID: PMC7406513 DOI: 10.1038/s41598-020-69272-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) signaling has been studied in the eye, including in the pathophysiology of some eye diseases. While NO production by nitric oxide synthase (NOS) enzymes in the eye has been characterized, the more recently described pathways of NO generation by nitrate (NO3-) and nitrite (NO2-) ions reduction has received much less attention. To elucidate the potential roles of these pathways, we analyzed nitrate and nitrite levels in components of the eye and lacrimal glands, primarily in porcine samples. Nitrate and nitrite levels were higher in cornea than in other eye parts, while lens contained the least amounts. Lacrimal glands exhibited much higher levels of both ions compared to other organs, such as liver and skeletal muscle, and even to salivary glands which are known to concentrate these ions. Western blotting showed expression of sialin, a known nitrate transporter, in the lacrimal glands and other eye components, and also xanthine oxidoreductase, a nitrate and nitrite reductase, in cornea and sclera. Cornea and sclera homogenates possessed a measurable amount of nitrate reduction activity. These results suggest that nitrate ions are concentrated in the lacrimal glands by sialin and can be secreted into eye components via tears and then reduced to nitrite and NO, thereby being an important source of NO in the eye.
Collapse
Affiliation(s)
- Ji Won Park
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, 9N314, Bethesda, MD, 20892, USA
| | - Barbora Piknova
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, 9N314, Bethesda, MD, 20892, USA
| | | | | | - Leonard M Parver
- Department of Ophthalmology, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Alan N Schechter
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, 9N314, Bethesda, MD, 20892, USA.
| |
Collapse
|
43
|
Kapil V, Khambata RS, Jones DA, Rathod K, Primus C, Massimo G, Fukuto JM, Ahluwalia A. The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. Pharmacol Rev 2020; 72:692-766. [DOI: 10.1124/pr.120.019240] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
44
|
Shahraki ZS, Karbalaei N, Nemati M. Improving effect of combined inorganic nitrate and nitric oxide synthase inhibitor on pancreatic oxidative stress and impaired insulin secretion in streptozotocin induced-diabetic rats. J Diabetes Metab Disord 2020; 19:353-362. [PMID: 32550186 DOI: 10.1007/s40200-020-00516-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
Purpose The aim of this study was to evaluate the effect of dietary nitrate on secretory function of pancreatic islet and oxidative stress status in streptozotocin (STZ) induced type 1 diabetes in absence or presence of nitric oxide synthase inhibitor (L-NAME). Methods Fifty adult male sprague-dawly rats were divided into 5 groups: controls (C), diabetes (D), diabetes+nitrate (DN), diabetes +L-NAME (D + Ln), and diabetes+nitrate+L-NAME (DN + Ln) for 45 days. The concentrations of sodium nitrate and L-NAME were respectively 80 mg/L in drinking water and 5 mg/kg intraperitoneally. Body weight gain, plasma levels of glucose and insulin, islet insulin secretion and content, lipid peroxidation and antioxidant status in the pancreas of rats were determined. Results Compared to control group, the body weight gain and plasma insulin level were significantly decreased and plasma glucose and pancreatic NO and MDA concentrations and antioxidant enzymes activities were significantly increased in the STZ diabetic rats. In the diabetic rats, nitrate alone significantly reduced plasma glucose and increased pancreatic SOD and GPx activity. Reduced plasma glucose, pancreatic MDA and NO concentrations and increased plasma insulin level and pancreatic islet insulin secretion were observed in D + Ln and DN + Ln groups. Antioxidant enzymes activities were increased in diabetic rats which received combination of nitrate and L-NAME. Conclusions Our results showed that nitrate without effect on pancreatic islet insulin content and secretion decreased the blood glucose and slightly moderate oxidative stress and its effects in the presence of L-NAME on glucose hemostasis and pancreatic insulin secretion higher than those of nitrate alone.
Collapse
Affiliation(s)
- Zahra Shabgard Shahraki
- Department of Physiology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Department of Physiology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Nemati
- Department of Physiology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
45
|
Schiffer TA, Lundberg JO, Weitzberg E, Carlström M. Modulation of mitochondria and NADPH oxidase function by the nitrate-nitrite-NO pathway in metabolic disease with focus on type 2 diabetes. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165811. [PMID: 32339643 DOI: 10.1016/j.bbadis.2020.165811] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria play fundamental role in maintaining cellular metabolic homeostasis, and metabolic disorders including type 2 diabetes (T2D) have been associated with mitochondrial dysfunction. Pathophysiological mechanisms are coupled to increased production of reactive oxygen species and oxidative stress, together with reduced bioactivity/signaling of nitric oxide (NO). Novel strategies restoring these abnormalities may have therapeutic potential in order to prevent or even treat T2D and associated cardiovascular and renal co-morbidities. A diet rich in green leafy vegetables, which contains high concentrations of inorganic nitrate, has been shown to reduce the risk of T2D. To this regard research has shown that in addition to the classical NO synthase (NOS) dependent pathway, nitrate from our diet can work as an alternative precursor for NO and other bioactive nitrogen oxide species via serial reductions of nitrate (i.e. nitrate-nitrite-NO pathway). This non-conventional pathway may act as an efficient back-up system during various pathological conditions when the endogenous NOS system is compromised (e.g. acidemia, hypoxia, ischemia, aging, oxidative stress). A number of experimental studies have demonstrated protective effects of nitrate supplementation in models of obesity, metabolic syndrome and T2D. Recently, attention has been directed towards the effects of nitrate/nitrite on mitochondrial functions including beiging/browning of white adipose tissue, PGC-1α and SIRT3 dependent AMPK activation, GLUT4 translocation and mitochondrial fusion-dependent improvements in glucose homeostasis, as well as dampening of NADPH oxidase activity. In this review, we examine recent research related to the effects of bioactive nitrogen oxide species on mitochondrial function with emphasis on T2D.
Collapse
Affiliation(s)
- Tomas A Schiffer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
46
|
Exogenous NO Therapy for the Treatment and Prevention of Atherosclerosis. Int J Mol Sci 2020; 21:ijms21082703. [PMID: 32295055 PMCID: PMC7216146 DOI: 10.3390/ijms21082703] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/31/2020] [Accepted: 04/11/2020] [Indexed: 12/20/2022] Open
Abstract
Amyl nitrite was introduced in 1867 as the first molecule of a new class of agents for the treatment of angina pectoris. In the following 150 years, the nitric oxide pathway has been the subject of a number of pharmacological approaches, particularly since when this elusive mediator was identified as one of the most important modulators of vascular homeostasis beyond vasomotion, including platelet function, inflammation, and atherogenesis. While having potent antianginal and antiischemic properties, however, nitric oxide donors are also not devoid of side effects, including the induction of tolerance, and, as shown in the last decade, of oxidative stress and endothelial dysfunction. In turn, endothelial dysfunction is itself felt to be involved in all stages of atherogenesis, from the development of fatty streaks to plaque rupture and thrombosis. In the present review, we summarize the agents that act on the nitric oxide pathway, with a particular focus on their potentially beneficial antiatherosclerotic and unwanted pro-atherosclerotic effects.
Collapse
|
47
|
Burdine RD, Preston CC, Leonard RJ, Bradley TA, Faustino RS. Nucleoporins in cardiovascular disease. J Mol Cell Cardiol 2020; 141:43-52. [PMID: 32209327 DOI: 10.1016/j.yjmcc.2020.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 01/01/2023]
Abstract
Cardiovascular disease is a pressing health problem with significant global health, societal, and financial burdens. Understanding the molecular basis of polygenic cardiac pathology is thus essential to devising novel approaches for management and treatment. Recent identification of uncharacterized regulatory functions for a class of nuclear envelope proteins called nucleoporins offers the opportunity to understand novel putative mechanisms of cardiac disease development and progression. Consistent reports of nucleoporin deregulation associated with ischemic and dilated cardiomyopathies, arrhythmias and valvular disorders suggests that nucleoporin impairment may be a significant but understudied variable in cardiopathologic disorders. This review discusses and converges existing literature regarding nuclear pore complex proteins and their association with cardiac pathologies, and proposes a role for nucleoporins as facilitators of cardiac disease.
Collapse
Affiliation(s)
- Ryan D Burdine
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America; School of Health Sciences, University of South Dakota, 414 E Clark St, Vermillion, SD 57069, United States of America
| | - Claudia C Preston
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America
| | - Riley J Leonard
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America
| | - Tyler A Bradley
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America
| | - Randolph S Faustino
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America; Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, 1400 W. 22(nd) Street, Sioux Falls, SD 57105, United States of America.
| |
Collapse
|
48
|
Heredia Martinez A, Rosa Diez G, Ferraris V, Coccia PA, Ferraris JR, Checa A, Wheelock CE, Lundberg JO, Weitzberg E, Carlström M, Krmar RT. "Removal of nitrate and nitrite by hemodialysis in end-stage renal disease and by sustained low-efficiency dialysis in acute kidney injury". Nitric Oxide 2020; 98:33-40. [PMID: 32119993 DOI: 10.1016/j.niox.2020.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & PURPOSE It is well established that end-stage renal disease (ESRD) is associated with increased cardiovascular morbidity and mortality both in the adult and pediatric population. Although the underlying molecular mechanisms are poorly understood, compromised nitric oxide (NO) bioactivity has been suggested as a contributing factor. With this in mind, we investigated the effects of hemodialysis on NO homeostasis and bioactivity in blood. METHODS & RESULTS Plasma and dialysate samples were obtained before and after hemodialysis sessions from adults (n = 33) and pediatric patients (n = 10) with ESRD on chronic renal replacement therapy, and from critically ill adults with acute kidney injury (n = 12) at their first sustained low-efficiency dialysis session. Levels of nitrate, nitrite, cyclic guanosine monophosphate (cGMP) and amino acids relevant for NO homeostasis were analyzed. We consistently found that nitrate and cGMP levels in plasma were significantly reduced after hemodialysis, whereas post-dialysis nitrite and amino acids coupled to NO synthase activity (i.e., arginine and citrulline) were only significantly reduced in adults with ESRD. The amount of excreted nitrate and nitrite during dialysis were similar to daily endogenous levels that would be expected from endothelial NO synthase activity. CONCLUSIONS Our results show that hemodialysis significantly reduces circulating levels of nitrate and cGMP, indicating that this medical procedure may impair NO synthesis and potentially NO signaling pathways.
Collapse
Affiliation(s)
| | | | - Veronica Ferraris
- Servicio de Nefrología del Hospital Italiano de Buenos Aires, Argentina
| | - Paula A Coccia
- Servicio de Nefrología del Hospital Italiano de Buenos Aires, Argentina
| | - Jorge R Ferraris
- Servicio de Nefrología del Hospital Italiano de Buenos Aires, Argentina
| | - Antonio Checa
- Dept. of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Dept. of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Jon O Lundberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Carlström
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Rafael T Krmar
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
49
|
Oliveira MS, Tanaka LY, Antonio EL, Brandizzi LI, Serra AJ, Dos Santos L, Krieger JE, Laurindo FRM, Tucci PJF. Hyperbaric oxygenation improves redox control and reduces mortality in the acute phase of myocardial infarction in a rat model. Mol Med Rep 2020; 21:1431-1438. [PMID: 32016473 PMCID: PMC7003025 DOI: 10.3892/mmr.2020.10968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 07/18/2019] [Indexed: 01/02/2023] Open
Abstract
Among the mechanisms of action of hyperbaric oxygenation (HBO), the chance of reducing injury by interfering with the mechanisms of redox homeostasis in the heart leads to the possibility of extending the period of viability of the myocardium at risk. This would benefit late interventions for reperfusion to the ischemic area. The objective of the present study was to investigate the changes in the redox system associated with HBO therapy maintained during the first hour after coronary occlusion in an acute myocardial infarction (MI) rat model. Surviving male rats (n=105) were randomly assigned to one of three groups: Sham (SH=26), myocardial infarction (MI=45) and infarction+hyperbaric therapy (HBO=34, 1 h at 2.5 atm). After 90 min of coronary occlusion, a sample of the heart was collected for western blot analysis of total protein levels of superoxide dismutase, catalase, peroxiredoxin and 3‑nitrotyrosine. Glutathione was measured by enzyme‑linked immunosorbent assay (ELISA). The detection of the superoxide radical anion was carried out by oxidation of dihydroethidium analyzed with confocal microscopy. The mortality rate of the MI group was significantly higher than that of the HBO group. No difference was noted in the myocardial infarction size. The oxidized/reduced glutathione ratio and peroxiredoxin were significantly higher in the SH and MI when compared to the HBO group. Superoxide dismutase enzymes and catalase were significantly higher in the HBO group compared to the MI and SH groups. 3‑Nitrotyrosine and the superoxide radical were significantly lower in the HBO group compared to these in the MI and SH groups. These data demonstrated that hyperbaric oxygenation therapy decreased mortality by improving redox control in the hearts of rats in the acute phase of myocardial infarction.
Collapse
Affiliation(s)
- Mario S Oliveira
- Division of Cardiology, Federal University of São Paulo (UNIFESP), São Paulo 04039‑032, Brazil
| | - Leonardo Y Tanaka
- Vascular Biology Laboratory, Heart Institute, University of São Paulo (USP), São Paulo 05403‑900, Brazil
| | - Ednei L Antonio
- Division of Cardiology, Federal University of São Paulo (UNIFESP), São Paulo 04039‑032, Brazil
| | - Laura I Brandizzi
- Vascular Biology Laboratory, Heart Institute, University of São Paulo (USP), São Paulo 05403‑900, Brazil
| | - Andrey J Serra
- Division of Cardiology, Federal University of São Paulo (UNIFESP), São Paulo 04039‑032, Brazil
| | - Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo 29043‑215, Brazil
| | - José E Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo (USP), São Paulo 05403‑900, Brazil
| | - Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute, University of São Paulo (USP), São Paulo 05403‑900, Brazil
| | - Paulo J F Tucci
- Division of Cardiology, Federal University of São Paulo (UNIFESP), São Paulo 04039‑032, Brazil
| |
Collapse
|
50
|
Casin KM, Kohr MJ. An emerging perspective on sex differences: Intersecting S-nitrosothiol and aldehyde signaling in the heart. Redox Biol 2020; 31:101441. [PMID: 32007450 PMCID: PMC7212482 DOI: 10.1016/j.redox.2020.101441] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease is the leading cause of the death for both men and women. Although baseline heart physiology and the response to disease are known to differ by sex, little is known about sex differences in baseline molecular signaling, especially with regard to redox biology. In this review, we describe current research on sex differences in cardiac redox biology with a focus on the regulation of nitric oxide and aldehyde signaling. Furthermore, we argue for a new perspective on cardiovascular sex differences research, one that focuses on baseline redox biology without the elimination or disruption of sex hormones.
Collapse
Affiliation(s)
- Kevin M Casin
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Mark J Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|