1
|
Sternini C, Rozengurt E. Bitter taste receptors as sensors of gut luminal contents. Nat Rev Gastroenterol Hepatol 2025; 22:39-53. [PMID: 39468215 DOI: 10.1038/s41575-024-01005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Taste is important in the selection of food and is orchestrated by a group of distinct receptors, the taste G protein-coupled receptors (GPCRs). Taste 1 receptors (Tas1rs in mice and TAS1Rs in humans; also known as T1Rs) detect sweet and umami tastes, and taste 2 receptors (Tas2rs in mice and TAS2Rs in humans; also known as T2Rs) detect bitterness. These receptors are also expressed in extraoral sites, including the gastrointestinal mucosa. Tas2rs/TAS2Rs have gained interest as potential targets to prevent or treat metabolic disorders. These bitter taste receptors are expressed in functionally distinct types of gastrointestinal mucosal cells, including enteroendocrine cells, which, upon stimulation, increase intracellular Ca2+ and release signalling molecules that regulate gut chemosensory processes critical for digestion and absorption of nutrients, for neutralization and expulsion of harmful substances, and for metabolic regulation. Expression of Tas2rs/TAS2Rs in gut mucosa is upregulated by high-fat diets, and intraluminal bitter 'tastants' affect gastrointestinal functions and ingestive behaviour through local and gut-brain axis signalling. Tas2rs/TAS2Rs are also found in Paneth and goblet cells, which release antimicrobial peptides and glycoproteins, and in tuft cells, which trigger type 2 immune response against parasites, thus providing a direct line of defence against pathogens. This Review will focus on gut Tas2r/TAS2R distribution, signalling and regulation in enteroendocrine cells, supporting their role as chemosensors of luminal content that serve distinct functions as regulators of body homeostasis and immune response.
Collapse
Affiliation(s)
- Catia Sternini
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Enrique Rozengurt
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Li X, Li C, Wu P, Zhang L, Zhou P, Ma X. Recent status and trends of innate immunity and the gut-kidney aixs in IgAN: A systematic review and bibliometric analysis. Int Immunopharmacol 2024; 143:113335. [PMID: 39423662 DOI: 10.1016/j.intimp.2024.113335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND There is a significant global demand for precise diagnosis and effective treatment of IgA nephropathy (IgAN), with innate immunity, particularly the complement system, exerting a profound influence on its pathogenesis. Additionally, the gut-kidney axis pathway is vital in the emergence and development of IgAN. METHODS We conducted a comprehensive search in the Web of Science database, spanning from January 1, 2000 to December 18, 2023. The gathered literature underwent a visual examination through CiteSpace, VOSviewer, and Scimago Graphica to delve into authors, nations, organizations, key terms, and other pertinent elements. RESULT Between 2000 and 2023, a total of 720 publications were identified, out of which 436 publications underwent screening for highly relevant literature analysis. The average annual number of articles focusing on IgAN, innate immunity, and the gut-kidney axis is approximately 31, with an upward trend observed. In terms of research impact encompassing publication count and authorship, the United States emerged as the leading contributor. Prominent keywords included "complement", "activation", "microbe", "gut-kidney axis", "C4d deposition", "alternative pathway" and "B cells" along with other prospective hot topics. CONCLUSION The correlation between IgAN and innate immunity is a focal point in current scientific research. Recent literature underscores the significance of the gut-kidney axis, where intestinal microorganisms and metabolites may influence IgAN. The complement system, a key component of innate immunity, also has a crucial function.Advancements in prevention, diagnosis, and treatment hinge on unraveling this intricate relationship.
Collapse
Affiliation(s)
- Xun Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Chengni Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Peiwen Wu
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Lifang Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Ping Zhou
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| | - Xin Ma
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| |
Collapse
|
3
|
Ortega MA, Fraile-Martinez O, García-Montero C, Diaz-Pedrero R, Lopez-Gonzalez L, Monserrat J, Barrena-Blázquez S, Alvarez-Mon MA, Lahera G, Alvarez-Mon M. Understanding immune system dysfunction and its context in mood disorders: psychoneuroimmunoendocrinology and clinical interventions. Mil Med Res 2024; 11:80. [PMID: 39681901 DOI: 10.1186/s40779-024-00577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2024] [Indexed: 12/18/2024] Open
Abstract
Mood disorders include a set of psychiatric manifestations of increasing prevalence in our society, being mainly represented by major depressive disorder (MDD) and bipolar disorder (BD). The etiopathogenesis of mood disorders is extremely complex, with a wide spectrum of biological, psychological, and sociocultural factors being responsible for their appearance and development. In this sense, immune system dysfunction represents a key mechanism in the onset and pathophysiology of mood disorders, worsening mainly the central nervous system (neuroinflammation) and the periphery of the body (systemic inflammation). However, these alterations cannot be understood separately, but as part of a complex picture in which different factors and systems interact with each other. Psychoneuroimmunoendocrinology (PNIE) is the area responsible for studying the relationship between these elements and the impact of mind-body integration, placing the immune system as part of a whole. Thus, the dysfunction of the immune system is capable of influencing and activating different mechanisms that promote disruption of the psyche, damage to the nervous system, alterations to the endocrine and metabolic systems, and disruption of the microbiota and intestinal ecosystem, as well as of other organs and, in turn, all these mechanisms are responsible for inducing and enhancing the immune dysfunction. Similarly, the clinical approach to these patients is usually multidisciplinary, and the therapeutic arsenal includes different pharmacological (for example, antidepressants, antipsychotics, and lithium) and non-pharmacological (i.e., psychotherapy, lifestyle, and electroconvulsive therapy) treatments. These interventions also modulate the immune system and other elements of the PNIE in these patients, which may be interesting to understand the therapeutic success or failure of these approaches. In this sense, this review aims to delve into the relationship between immune dysfunction and mood disorders and their integration in the complex context of PNIE. Likewise, an attempt will be made to explore the effects on the immune system of different strategies available in the clinical approach to these patients, in order to identify the mechanisms described and their possible uses as biomarkers.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031, Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806, Alcalá de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806, Alcalá de Henares, Spain
| |
Collapse
|
4
|
Dagbasi A, Fuller A, Hanyaloglu AC, Carroll B, McLaughlin J, Frost G, Holliday A. The role of nutrient sensing dysregulation in anorexia of ageing: The little we know and the much we don't. Appetite 2024; 203:107718. [PMID: 39423861 DOI: 10.1016/j.appet.2024.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/01/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The age-related decline in appetite and food intake - termed "anorexia of ageing" - is implicated in undernutrition in later life and hence provides a public health challenge for our ageing population. Eating behaviour is controlled, in part, by homeostatic mechanisms which sense nutrient status and provide feedback to appetite control regions of the brain. Such feedback signals, propagated by episodic gut hormones, are dysregulated in some older adults. The secretory responses of appetite-related gut hormones to feeding are amplified, inducing a more anorexigenic signal which is associated with reduced appetite and food intake. Such an augmented response would indicate an increase in gut sensitivity to nutrients. Consequently, this review explores the role of gastrointestinal tract nutrient sensing in age-related appetite dysregulation. We review and synthesise evidence for age-related alterations in nutrient sensing which may explain the observed hormonal dysregulation. Drawing on what is known regarding elements of nutrient sensing pathways in animal models, in other tissues of the body, and in certain models of disease, we identify potential causal mechanisms including alterations in enteroendocrine cell number and distribution, dysregulation of cell signalling pathways, and changes in the gut milieu. From identified gaps in evidence, we highlight interesting and important avenues for future research.
Collapse
Affiliation(s)
- Aygul Dagbasi
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, London, W12 0NN, UK
| | - Amy Fuller
- Research Centre for Health and Life Sciences, Institute of Health and Wellbeing, Faculty of Health and Life Science, Coventry University, Coventry, CV1 5FB, UK
| | - Aylin C Hanyaloglu
- Institute of Reproductive and Developmental Biology (IRDB), Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Bernadette Carroll
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS1 8TD, UK
| | - John McLaughlin
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK
| | - Gary Frost
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, London, W12 0NN, UK
| | - Adrian Holliday
- School of Biomedical, Nutritional, and Sport Science, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK; Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK.
| |
Collapse
|
5
|
Meerschaert KA, Chiu IM. The gut-brain axis and pain signalling mechanisms in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-01017-9. [PMID: 39578592 DOI: 10.1038/s41575-024-01017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Visceral pain is a major clinical problem and one of the most common reasons patients with gastrointestinal disorders seek medical help. Peripheral sensory neurons that innervate the gut can detect noxious stimuli and send signals to the central nervous system that are perceived as pain. There is a bidirectional communication network between the gastrointestinal tract and the nervous system that mediates pain through the gut-brain axis. Sensory neurons detect mechanical and chemical stimuli within the intestinal tissues, and receive signals from immune cells, epithelial cells and the gut microbiota, which results in peripheral sensitization and visceral pain. This Review focuses on molecular communication between these non-neuronal cell types and neurons in visceral pain. These bidirectional interactions can be dysregulated during gastrointestinal diseases to exacerbate visceral pain. We outline the anatomical pathways involved in pain processing in the gut and how cell-cell communication is integrated into this gut-brain axis. Understanding how bidirectional communication between the gut and nervous system is altered during disease could provide new therapeutic targets for treating visceral pain.
Collapse
Affiliation(s)
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Kustrimovic N, Balkhi S, Bilato G, Mortara L. Gut Microbiota and Immune System Dynamics in Parkinson's and Alzheimer's Diseases. Int J Mol Sci 2024; 25:12164. [PMID: 39596232 PMCID: PMC11595203 DOI: 10.3390/ijms252212164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
The gut microbiota, a diverse collection of microorganisms in the gastrointestinal tract, plays a critical role in regulating metabolic, immune, and cognitive functions. Disruptions in the composition of these microbial communities, termed dysbiosis, have been linked to various neurodegenerative diseases (NDs), such as Parkinson's disease (PD) and Alzheimer's disease (AD). One of the key pathological features of NDs is neuroinflammation, which involves the activation of microglia and peripheral immune cells. The gut microbiota modulates immune responses through the production of metabolites and interactions with immune cells, influencing the inflammatory processes within the central nervous system. This review explores the impact of gut dysbiosis on neuroinflammation, focusing on the roles of microglia, immune cells, and potential therapeutic strategies targeting the gut microbiota to alleviate neuroinflammatory processes in NDs.
Collapse
Affiliation(s)
- Natasa Kustrimovic
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Sahar Balkhi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.)
| | - Giorgia Bilato
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20138 Milan, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20138 Milan, Italy
| |
Collapse
|
7
|
Ignot-Gutiérrez A, Serena-Romero G, Guajardo-Flores D, Alvarado-Olivarez M, Martínez AJ, Cruz-Huerta E. Proteins and Peptides from Food Sources with Effect on Satiety and Their Role as Anti-Obesity Agents: A Narrative Review. Nutrients 2024; 16:3560. [PMID: 39458554 PMCID: PMC11510221 DOI: 10.3390/nu16203560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVE Obesity, clinically defined as a body mass index (BMI) of 30 kg/m2 or higher, is a medical condition characterized by the excessive accumulation of body fat, which can lead to adverse health consequences. As a global public health issue with an escalating prevalence, controlling appetite and satiety is essential for regulating energy balance and managing body weight. Dietary proteins and peptides have gained interest in their potential to prevent and treat obesity by modulating satiety signals. This narrative review analyzes scientific evidence highlighting the role of dietary proteins and peptides in regulating satiety signals and investigates their therapeutic potential in preventing and treating obesity. METHODS A comprehensive literature search was conducted in multiple electronic databases, including PubMed, Scopus, and Web of Science. The search focused on articles examining the impact of dietary proteins and peptides on satiety and obesity, encompassing both preclinical and clinical trials. RESULTS Several studies have demonstrated a correlation between the intake of specific proteins or peptides from plant and animal sources and satiety regulation. These investigations identified mechanisms where amino acids and peptides interact with enteroendocrine cell receptors, activating intracellular signaling cascades that promote the release of anorexigenic gut hormones such as cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide YY (PYY). Both in vitro and in vivo assays have shown that these interactions contribute to appetite regulation and the sensation of satiety. CONCLUSIONS Using proteins and peptides in the diet may be an effective strategy for regulating appetite and controlling body weight. However, more research-including clinical trials-is needed to understand the underlying mechanisms better and optimize the application of these bioactive compounds in preventing and treating obesity.
Collapse
Affiliation(s)
- Anaís Ignot-Gutiérrez
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico; (A.I.-G.); (M.A.-O.)
| | - Gloricel Serena-Romero
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico;
| | - Daniel Guajardo-Flores
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico;
| | - Mayvi Alvarado-Olivarez
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico; (A.I.-G.); (M.A.-O.)
| | - Armando J. Martínez
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico; (A.I.-G.); (M.A.-O.)
| | - Elvia Cruz-Huerta
- Centro de Investigación y Desarrollo en Alimentos, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa-Enríquez 91193, Veracruz, Mexico
| |
Collapse
|
8
|
Lulla V, Sridhar A. Understanding neurotropic enteric viruses: routes of infection and mechanisms of attenuation. Cell Mol Life Sci 2024; 81:413. [PMID: 39365457 PMCID: PMC11452578 DOI: 10.1007/s00018-024-05450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024]
Abstract
The intricate connection between the gut and the brain involves multiple routes. Several viral families begin their infection cycle in the intestinal tract. However, amongst the long list of viral intestinal pathogens, picornaviruses, and astroviruses stand out for their ability to transition from the intestinal epithelia to central or peripheral nervous system cells. In immunocompromised, neonates and young children, these viral infections can manifest as severe diseases, such as encephalitis, meningitis, and acute flaccid paralysis. What confers this remarkable plasticity and makes them efficient in infecting cells of the gut and the brain axes? Here, we review the current understanding of the virus infection along the gut-brain axis for some enteric viruses and discuss the molecular mechanisms of their attenuation.
Collapse
Affiliation(s)
- Valeria Lulla
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Adithya Sridhar
- OrganoVIR Labs, Department of Pediatric Infectious Diseases, Amsterdam UMC, location Academic Medical Center, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100 AZ, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100 AZ, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Yang W, Cui H, Wang C, Wang X, Yan C, Cheng W. A review of the pathogenesis of epilepsy based on the microbiota-gut-brain-axis theory. Front Mol Neurosci 2024; 17:1454780. [PMID: 39421261 PMCID: PMC11484502 DOI: 10.3389/fnmol.2024.1454780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
The pathogenesis of epilepsy is related to the microbiota-gut-brain axis, but the mechanism has not been clarified. The microbiota-gut-brain axis is divided into the microbiota-gut-brain axis (upward pathways) and the brain-gut-microbiota axis (downward pathways) according to the direction of conduction. Gut microorganisms are involved in pathological and physiological processes in the human body and participate in epileptogenesis through neurological, immunological, endocrine, and metabolic pathways, as well as through the gut barrier and blood brain barrier mediated upward pathways. After epilepsy, the downward pathway mediated by the HPA axis and autonomic nerves triggers "leaky brain "and "leaky gut," resulting in the formation of microbial structures and enterobacterial metabolites associated with epileptogenicity, re-initiating seizures via the upward pathway. Characteristic changes in microbial and metabolic pathways in the gut of epileptic patients provide new targets for clinical prevention and treatment of epilepsy through the upward pathway. Based on these changes, this review further redescribes the pathogenesis of epilepsy and provides a new direction for its prevention and treatment.
Collapse
Affiliation(s)
- Wentao Yang
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Cui
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chaojie Wang
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuan Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ciai Yan
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weiping Cheng
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
10
|
Alshaikh AA, Alshehri AAA, Alshehri AZA, Alobaid AS, Mohammed AA, Saeed F Alshahrani T, Albarqi AZM, Sultan HSH, Alhussen M, Shehri ADA, Ghazy RM. Prevalence of gastrointestinal manifestations among diabetic patients in the Aseer region: A cross-sectional study. Medicine (Baltimore) 2024; 103:e39895. [PMID: 39331911 PMCID: PMC11441854 DOI: 10.1097/md.0000000000039895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Diabetes mellitus (DM) has a systemic consequence, influencing many systems of the body, including metabolic functions. This study aimed to determine the prevalence of gastrointestinal complications among patients with type 2 DM in the Asser region of Saudi Arabia, identify sources of information, and investigate the association of these symptoms with disease duration and glycated hemoglobin. This cross-sectional study was conducted between November 13 and December 27, 2023. The questionnaire collected demographic data including age, sex, education, employment, income, and nationality, and 16 questions (5 points for each symptom) about the frequency of gastrointestinal symptoms in the past 3 months. The total score was 80, participants were categorized based on their total scores into 2 groups: those scoring 40 or below, and those scoring above 40. A total of 230 patients were included in this study, their median age was 32.0 (24.00) years, 60% were men, 63.9% were married, 38.7% earned between 5000 and 10,000 Saudi Riyal/month, 85.2% did not work in the medical field, 39.1% held university degrees, 54.8% did not have health insurance, 70.4% did not smoke, 35.7% worked in government jobs, 63% lived in urban areas, 95.2% were Saudi and 53.5% had only DM. More than half of the respondents, 57.4%, relied on doctors for information about DM. Dysmotility symptoms were common: dyspepsia affected 26.5% often and 5.7% always; early satiety impacted 24.3% often and 5.2% always; and bloating affected 28.3% often and 10.9% always. Constipation/diarrhea were a common complaint, with 23.5% of patients experiencing them often and an additional 4.8% reporting it always. Stool consistency also varied widely, with 21.7% experiencing lumpy or hardened stool. Health insurance status and having chronic diseases showed significant association with the severity of symptoms. Duration of diabetes and glycated hemoglobin were associated with the frequency of the symptoms. Gastrointestinal symptoms are common among diabetic patients in Aseer. The frequency of symptoms is associated with glycemic control, duration of diabetes, and health insurance status. These findings highlight the need for improved management and support for better gastrointestinal health in diabetes.
Collapse
Affiliation(s)
- Ayoub Ali Alshaikh
- Family & Community Medicine Department, College of Medicine, King Khalid University, Abha, Saudia Arabia
| | | | | | | | | | | | | | | | - Mohammed Alhussen
- Medical Colleague, College of Medicine, King Khalid University, Abha, Saudia Arabia
| | | | - Ramy Mohamed Ghazy
- Family & Community Medicine Department, College of Medicine, King Khalid University, Abha, Saudia Arabia
- Tropical Health Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Gong HS, Pan JP, Guo F, Wu MM, Dong L, Li Y, Rong WF. Sodium oligomannate activates the enteroendocrine-vagal afferent pathways in APP/PS1 mice. Acta Pharmacol Sin 2024; 45:1821-1831. [PMID: 38702501 PMCID: PMC11335854 DOI: 10.1038/s41401-024-01293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
Enteroendocrine cells (EECs) and vagal afferent neurons constitute functional sensory units of the gut, which have been implicated in bottom-up modulation of brain functions. Sodium oligomannate (GV-971) has been shown to improve cognitive functions in murine models of Alzheimer's disease (AD) and recently approved for the treatment of AD patients in China. In this study, we explored whether activation of the EECs-vagal afferent pathways was involved in the therapeutic effects of GV-971. We found that an enteroendocrine cell line RIN-14B displayed spontaneous calcium oscillations due to TRPA1-mediated calcium entry; perfusion of GV-971 (50, 100 mg/L) concentration-dependently enhanced the calcium oscillations in EECs. In ex vivo murine jejunum preparation, intraluminal infusion of GV-971 (500 mg/L) significantly increased the spontaneous and distension-induced discharge rate of the vagal afferent nerves. In wild-type mice, administration of GV-971 (100 mg· kg-1 ·d-1, i.g. for 7 days) significantly elevated serum serotonin and CCK levels and increased jejunal afferent nerve activity. In 7-month-old APP/PS1 mice, administration of GV-971 for 12 weeks significantly increased jejunal afferent nerve activity and improved the cognitive deficits in behavioral tests. Sweet taste receptor inhibitor Lactisole (0.5 mM) and the TRPA1 channel blocker HC-030031 (10 µM) negated the effects of GV-971 on calcium oscillations in RIN-14B cells as well as on jejunal afferent nerve activity. In APP/PS1 mice, co-administration of Lactisole (30 mg ·kg-1 ·d-1, i.g. for 12 weeks) attenuated the effects of GV-971 on serum serotonin and CCK levels, vagal afferent firing, and cognitive behaviors. We conclude that GV-971 activates sweet taste receptors and TRPA1, either directly or indirectly, to enhance calcium entry in enteroendocrine cells, resulting in increased CCK and 5-HT release and consequent increase of vagal afferent activity. GV-971 might activate the EECs-vagal afferent pathways to modulate cognitive functions.
Collapse
Affiliation(s)
- Hua-Shan Gong
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing-Pei Pan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mei-Mei Wu
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Dong
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Wei-Fang Rong
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
12
|
El Baassiri MG, Raouf Z, Jang HS, Scheese D, Duess JW, Fulton WB, Sodhi CP, Hackam DJ, Nasr IW. Ccr2-dependent monocytes exacerbate intestinal inflammation and modulate gut serotonergic signaling following traumatic brain injury. J Trauma Acute Care Surg 2024; 97:356-364. [PMID: 38189659 DOI: 10.1097/ta.0000000000004246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) leads to acute gastrointestinal dysfunction and mucosal damage, resulting in feeding intolerance. C-C motif chemokine receptor 2 (Ccr2 + ) monocytes are crucial immune cells that regulate the gut's inflammatory response via the brain-gut axis. Using Ccr2 ko mice, we investigated the intricate interplay between these cells to better elucidate the role of systemic inflammation after TBI. METHODS A murine-controlled cortical impact model was used, and results were analyzed on postinjury days 1 and 3. The experimental groups included (1) sham C57Bl/6 wild type (WT), (2) TBI WT, (3) sham Ccr2 ko , and (4) TBI Ccr2 ko . Mice were euthanized on postinjury days 1 and 3 to harvest the ileum and study intestinal dysfunction and serotonergic signaling using a combination of quantitative real-time polymerase chain reaction, immunohistochemistry, fluorescein isothiocyanate-dextran motility assays, and flow cytometry. Student's t test and one-way analysis of variance were used for statistical analysis, with significance achieved when p < 0.05. RESULTS Traumatic brain injury resulted in severe dysfunction and dysmotility of the small intestine in WT mice as established by significant upregulation of inflammatory cytokines iNOS , Lcn2 , TNFα , and IL1β and the innate immunity receptor toll-like receptor 4 ( Tlr4 ). This was accompanied by disruption of genes related to serotonin synthesis and degradation. Notably, Ccr2 ko mice subjected to TBI showed substantial improvements in intestinal pathology. Traumatic brain injury Ccr2 ko groups demonstrated reduced expression of inflammatory mediators ( iNOS , Lcn2 , IL1β , and Tlr4 ) and improvement in serotonin synthesis genes, including tryptophan hydroxylase 1 ( Tph1 ) and dopa decarboxylase ( Ddc ). CONCLUSION Our study reveals a critical role for Ccr2 + monocytes in modulating intestinal homeostasis after TBI. Ccr2 + monocytes aggravate intestinal inflammation and alter gut-derived serotonergic signaling. Therefore, targeting Ccr2 + monocyte-dependent responses could provide a better understanding of TBI-induced gut inflammation. Further studies are required to elucidate the impact of these changes on brain neuroinflammation and cognitive outcomes.
Collapse
Affiliation(s)
- Mahmoud G El Baassiri
- From the Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cingolani F, Balasubramaniam A, Srinivasan S. Molecular mechanisms of enteric neuropathies in high-fat diet feeding and diabetes. Neurogastroenterol Motil 2024:e14897. [PMID: 39119749 DOI: 10.1111/nmo.14897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Obesity and diabetes are associated with altered gastrointestinal function and with the development of abdominal pain, nausea, diarrhea, and constipation among other symptoms. The enteric nervous system (ENS) regulates gastrointestinal motility. Enteric neuropathies defined as damage or loss of enteric neurons can lead to motility disorders. PURPOSE Here, we review the molecular mechanisms that drive enteric neurodegeneration in diabetes and obesity, including signaling pathways leading to neuronal cell death, oxidative stress, and microbiota alteration. We also highlight potential approaches to treat enteric neuropathies including antioxidant therapy to prevent oxidative stress-induced damage and the use of stem cells.
Collapse
Affiliation(s)
- Francesca Cingolani
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, USA
| | - Arun Balasubramaniam
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, USA
| |
Collapse
|
14
|
Hu A, Zaongo SD, Harypursat V, Wang X, Ouyang J, Chen Y. HIV-associated neurocognitive disorder: key implications of the microbiota-gut-brain axis. Front Microbiol 2024; 15:1428239. [PMID: 39155987 PMCID: PMC11327151 DOI: 10.3389/fmicb.2024.1428239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
HIV-associated neurocognitive disorder (HAND) is now recognized to be relatively common in people living with HIV (PLWH), and remains a common cause of cognitive impairment. Unfortunately, the fundamental pathogenic processes underlying this specific outcome of HIV infection have not as yet been fully elucidated. With increased interest in research related to the microbiota-gut-brain axis, the gut-brain axis has been shown to play critical roles in regulating central nervous system disorders such as Alzheimer's disease and Parkinson's disease. PLWH are characterized by a particular affliction, referred to as gut-associated dysbiosis syndrome, which provokes an alteration in microbial composition and diversity, and of their associated metabolite composition within the gut. Interestingly, the gut microbiota has also been recognized as a key element, which both positively and negatively influences human brain health, including the functioning and development of the central nervous system (CNS). In this review, based on published evidence, we critically discuss the relevant interactions between the microbiota-gut-brain axis and the pathogenesis of HAND in the context of HIV infection. It is likely that HAND manifestation in PLWH mainly results from (i) gut-associated dysbiosis syndrome and a leaky gut on the one hand and (ii) inflammation on the other hand. In other words, the preceding features of HIV infection negatively alter the composition of the gut microbiota (microbes and their associated metabolites) and promote proinflammatory immune responses which singularly or in tandem damage neurons and/or induce inadequate neuronal signaling. Thus, HAND is fairly prevalent in PLWH. This work aims to demonstrate that in the quest to prevent and possibly treat HAND, the gut microbiota may ultimately represent a therapeutically targetable "host factor."
Collapse
Affiliation(s)
- Aizhen Hu
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D. Zaongo
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Xin Wang
- Phase I Clinical Trial Center, Chonggang General Hospital, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Yaokai Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
15
|
Taghizadeh Ghassab F, Shamlou Mahmoudi F, Taheri Tinjani R, Emami Meibodi A, Zali MR, Yadegar A. Probiotics and the microbiota-gut-brain axis in neurodegeneration: Beneficial effects and mechanistic insights. Life Sci 2024; 350:122748. [PMID: 38843992 DOI: 10.1016/j.lfs.2024.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/21/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Neurodegenerative diseases (NDs) are a group of heterogeneous disorders with a high socioeconomic burden. Although pharmacotherapy is currently the principal therapeutic approach for the management of NDs, mounting evidence supports the notion that the protracted application of available drugs would abate their dopaminergic outcomes in the long run. The therapeutic application of microbiome-based modalities has received escalating attention in biomedical works. In-depth investigations of the bidirectional communication between the microbiome in the gut and the brain offer a multitude of targets for the treatment of NDs or maximizing the patient's quality of life. Probiotic administration is a well-known microbial-oriented approach to modulate the gut microbiota and potentially influence the process of neurodegeneration. Of note, there is a strong need for further investigation to map out the mechanistic prospects for the gut-brain axis and the clinical efficacy of probiotics. In this review, we discuss the importance of microbiome modulation and hemostasis via probiotics, prebiotics, postbiotics and synbiotics in ameliorating pathological neurodegenerative events. Also, we meticulously describe the underlying mechanism of action of probiotics and their metabolites on the gut-brain axis in different NDs. We suppose that the present work will provide a functional direction for the use of probiotic-based modalities in promoting current practical treatments for the management of neurodegenerative-related diseases.
Collapse
Affiliation(s)
- Fatemeh Taghizadeh Ghassab
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shamlou Mahmoudi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Taheri Tinjani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armitasadat Emami Meibodi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Shen X, Mu X. Systematic Insights into the Relationship between the Microbiota-Gut-Brain Axis and Stroke with the Focus on Tryptophan Metabolism. Metabolites 2024; 14:399. [PMID: 39195495 DOI: 10.3390/metabo14080399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Stroke, as a serious cerebral vascular disease with high incidence and high rates of disability and mortality, has limited therapeutic options due to the narrow time window. Compelling evidence has highlighted the significance of the gut microbiota and gut-brain axis as critical regulatory factors affecting stroke. Along the microbiota-gut-brain axis, tryptophan metabolism further acquires increasing attention for its intimate association with central nervous system diseases. For the purpose of exploring the potential role of tryptophan metabolism in stroke and providing systematic insights into the intricate connection of the microbiota-gut-brain axis with the pathological procedure of stroke, this review first summarized the practical relationship between microbiota and stroke by compiling the latest case-control research. Then, the microbiota-gut-brain axis, as well as its interaction with stroke, were comprehensively elucidated on the basis of the basic anatomical structure and physiological function. Based on the crosstalk of microbiota-gut-brain, we further focused on the tryptophan metabolism from the three major metabolic pathways, namely, the kynurenine pathway, serotonin pathway, and microbial pathway, within the axis. Moreover, the effects of tryptophan metabolism on stroke were appreciated and elaborated here, which is scarcely found in other reviews. Hopefully, the systematic illustration of the mechanisms and pathways along the microbiota-gut-brain axis will inspire more translational research from metabolic perspectives, along with more attention paid to tryptophan metabolism as a promising pharmaceutical target in order to reduce the risk of stroke, mitigate the stroke progression, and ameliorate the stroke prognosis.
Collapse
Affiliation(s)
- Xinyu Shen
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Xiaoqin Mu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| |
Collapse
|
17
|
Ribeiro FM, Anderson M, Aguiar S, Gabriela E, Petriz B, Franco OL. Systematic review and meta-analysis of gut peptides expression during fasting and postprandial states in individuals with obesity. Nutr Res 2024; 127:27-39. [PMID: 38843565 DOI: 10.1016/j.nutres.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 07/28/2024]
Abstract
Gut peptides play a role in signaling appetite control in the hypothalamus. Limited knowledge exists regarding the release of these peptides in individuals with obesity before and during external stimuli. We hypothesize that the expression of gut peptides is different in the fasting and postprandial states in the scenario of obesity. PubMed/MEDLINE, Scopus, and Science Direct electronic databases were searched. The meta-analysis was performed using Review Manager Software. Randomized controlled trials that measured gut peptides in both obese and lean subjects were included in the analysis. A total of 552 subjects with obesity were enrolled in 25 trials. The gut peptide profile did not show any significant difference between obese and lean subjects for glucagon-like peptide 1 (95% confidence interval [CI], -1.21 to 0.38; P = .30), peptide YY (95% CI, -1.47 to 0.18; P = .13), and cholecystokinin (95% CI, -1.25 to 1.28; P = .98). Gut peptides are decreased by an increased high-fat, high-carbohydrate diet and by decreased chewing. There is no statistically significant difference in gut peptides between individuals with obesity and leanness in a fasting state. However, the release of gut peptides is affected in individuals with obesity following external stimuli, such as dietary interventions and chewing. Further studies are necessary to investigate the relationship between various stimuli and the release of gut peptides, as well as their impact on appetite regulation in subjects with obesity.
Collapse
Affiliation(s)
- Filipe M Ribeiro
- Postgraduate Program in Physical Education, Catholic University of Brasilia, Brasilia, DF, Brazil; Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil; Laboratory of Molecular Exercise Physiology - University Center - UDF, Brasilia, DF, Brazil
| | - Maycon Anderson
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil; Laboratory of Molecular Exercise Physiology - University Center - UDF, Brasilia, DF, Brazil
| | - Samuel Aguiar
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil; Laboratory of Molecular Exercise Physiology - University Center - UDF, Brasilia, DF, Brazil
| | - Elza Gabriela
- Laboratory of Molecular Exercise Physiology - University Center - UDF, Brasilia, DF, Brazil
| | - Bernardo Petriz
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil; Laboratory of Molecular Exercise Physiology - University Center - UDF, Brasilia, DF, Brazil
| | - Octavio L Franco
- Postgraduate Program in Physical Education, Catholic University of Brasilia, Brasilia, DF, Brazil; Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil; S-Inova Biotech, Catholic University Dom Bosco, Biotechnology Program, Campo Grande, MS, Brazil.
| |
Collapse
|
18
|
Sahasrabudhe A, Rupprecht LE, Orguc S, Khudiyev T, Tanaka T, Sands J, Zhu W, Tabet A, Manthey M, Allen H, Loke G, Antonini MJ, Rosenfeld D, Park J, Garwood IC, Yan W, Niroui F, Fink Y, Chandrakasan A, Bohórquez DV, Anikeeva P. Multifunctional microelectronic fibers enable wireless modulation of gut and brain neural circuits. Nat Biotechnol 2024; 42:892-904. [PMID: 37349522 PMCID: PMC11180606 DOI: 10.1038/s41587-023-01833-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/23/2023] [Indexed: 06/24/2023]
Abstract
Progress in understanding brain-viscera interoceptive signaling is hindered by a dearth of implantable devices suitable for probing both brain and peripheral organ neurophysiology during behavior. Here we describe multifunctional neural interfaces that combine the scalability and mechanical versatility of thermally drawn polymer-based fibers with the sophistication of microelectronic chips for organs as diverse as the brain and the gut. Our approach uses meters-long continuous fibers that can integrate light sources, electrodes, thermal sensors and microfluidic channels in a miniature footprint. Paired with custom-fabricated control modules, the fibers wirelessly deliver light for optogenetics and transfer data for physiological recording. We validate this technology by modulating the mesolimbic reward pathway in the mouse brain. We then apply the fibers in the anatomically challenging intestinal lumen and demonstrate wireless control of sensory epithelial cells that guide feeding behaviors. Finally, we show that optogenetic stimulation of vagal afferents from the intestinal lumen is sufficient to evoke a reward phenotype in untethered mice.
Collapse
Affiliation(s)
- Atharva Sahasrabudhe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura E Rupprecht
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Sirma Orguc
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tural Khudiyev
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tomo Tanaka
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Secure System Platform Research Laboratories, NEC Corporation, Kawasaki, Japan
| | - Joanna Sands
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Weikun Zhu
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony Tabet
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie Manthey
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harrison Allen
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gabriel Loke
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marc-Joseph Antonini
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard/MIT Health Sciences and Technology Graduate Program, Cambridge, MA, USA
| | - Dekel Rosenfeld
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jimin Park
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Indie C Garwood
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard/MIT Health Sciences and Technology Graduate Program, Cambridge, MA, USA
| | - Wei Yan
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Farnaz Niroui
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yoel Fink
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anantha Chandrakasan
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Diego V Bohórquez
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
19
|
Le Dréan G, Blottière HM. Glutamate from the microbiome controls host metabolism. Nat Metab 2024; 6:987-989. [PMID: 38777855 DOI: 10.1038/s42255-024-01050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Affiliation(s)
| | - Hervé M Blottière
- Nantes Université/INRAE, UMR 1280, PhAN, Nantes, France.
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, France.
| |
Collapse
|
20
|
El Baassiri MG, Raouf Z, Badin S, Escobosa A, Sodhi CP, Nasr IW. Dysregulated brain-gut axis in the setting of traumatic brain injury: review of mechanisms and anti-inflammatory pharmacotherapies. J Neuroinflammation 2024; 21:124. [PMID: 38730498 PMCID: PMC11083845 DOI: 10.1186/s12974-024-03118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Traumatic brain injury (TBI) is a chronic and debilitating disease, associated with a high risk of psychiatric and neurodegenerative diseases. Despite significant advancements in improving outcomes, the lack of effective treatments underscore the urgent need for innovative therapeutic strategies. The brain-gut axis has emerged as a crucial bidirectional pathway connecting the brain and the gastrointestinal (GI) system through an intricate network of neuronal, hormonal, and immunological pathways. Four main pathways are primarily implicated in this crosstalk, including the systemic immune system, autonomic and enteric nervous systems, neuroendocrine system, and microbiome. TBI induces profound changes in the gut, initiating an unrestrained vicious cycle that exacerbates brain injury through the brain-gut axis. Alterations in the gut include mucosal damage associated with the malabsorption of nutrients/electrolytes, disintegration of the intestinal barrier, increased infiltration of systemic immune cells, dysmotility, dysbiosis, enteroendocrine cell (EEC) dysfunction and disruption in the enteric nervous system (ENS) and autonomic nervous system (ANS). Collectively, these changes further contribute to brain neuroinflammation and neurodegeneration via the gut-brain axis. In this review article, we elucidate the roles of various anti-inflammatory pharmacotherapies capable of attenuating the dysregulated inflammatory response along the brain-gut axis in TBI. These agents include hormones such as serotonin, ghrelin, and progesterone, ANS regulators such as beta-blockers, lipid-lowering drugs like statins, and intestinal flora modulators such as probiotics and antibiotics. They attenuate neuroinflammation by targeting distinct inflammatory pathways in both the brain and the gut post-TBI. These therapeutic agents exhibit promising potential in mitigating inflammation along the brain-gut axis and enhancing neurocognitive outcomes for TBI patients.
Collapse
Affiliation(s)
- Mahmoud G El Baassiri
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Zachariah Raouf
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sarah Badin
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alejandro Escobosa
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Chhinder P Sodhi
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Isam W Nasr
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
21
|
Deehan EC, Mocanu V, Madsen KL. Effects of dietary fibre on metabolic health and obesity. Nat Rev Gastroenterol Hepatol 2024; 21:301-318. [PMID: 38326443 DOI: 10.1038/s41575-023-00891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/09/2024]
Abstract
Obesity and metabolic syndrome represent a growing epidemic worldwide. Body weight is regulated through complex interactions between hormonal, neural and metabolic pathways and is influenced by numerous environmental factors. Imbalances between energy intake and expenditure can occur due to several factors, including alterations in eating behaviours, abnormal satiation and satiety, and low energy expenditure. The gut microbiota profoundly affects all aspects of energy homeostasis through diverse mechanisms involving effects on mucosal and systemic immune, hormonal and neural systems. The benefits of dietary fibre on metabolism and obesity have been demonstrated through mechanistic studies and clinical trials, but many questions remain as to how different fibres are best utilized in managing obesity. In this Review, we discuss the physiochemical properties of different fibres, current findings on how fibre and the gut microbiota interact to regulate body weight homeostasis, and knowledge gaps related to using dietary fibres as a complementary strategy. Precision medicine approaches that utilize baseline microbiota and clinical characteristics to predict individual responses to fibre supplementation represent a new paradigm with great potential to enhance weight management efficacy, but many challenges remain before these approaches can be fully implemented.
Collapse
Affiliation(s)
- Edward C Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Nebraska Food for Health Center, Lincoln, NE, USA
| | - Valentin Mocanu
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Karen L Madsen
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
22
|
Atanga R, Appell LL, Thompson MN, Lauer FT, Brearley A, Campen MJ, Castillo EF, In JG. Single Cell Analysis of Human Colonoids Exposed to Uranium-Bearing Dust. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:57006. [PMID: 38771937 PMCID: PMC11108582 DOI: 10.1289/ehp13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Uranium exposure remains an important environmental legacy and physiological health concern, with hundreds of abandoned uranium mines located in the Southwestern United States largely impacting underserved indigenous communities. The negative effects of heavy metals on barrier permeability and inhibition of intestinal epithelial healing have been described; however, transcriptomic changes within the intestinal epithelial cells and impacts on lineage differentiation are largely unknown. OBJECTIVES Herein, we sought to determine the molecular and cellular changes that occur in the colon in response to uranium bearing dust (UBD) exposure. METHODS Human colonoids from three biologically distinct donors were acutely exposed to UBD then digested for single cell RNA sequencing to define the molecular changes that occur to specific identities of colonic epithelial cells. Validation in colonoids was assessed using morphological and imaging techniques. RESULTS Human colonoids acutely exposed to UBD exhibited disrupted proliferation and hyperplastic differentiation of the secretory lineage cell, enteroendocrine cells (EEC). Single-cell RNA sequencing also showed more EEC subtypes present in UBD-exposed colonoids. DISCUSSION These findings highlight the significance of crypt-based proliferative cells and secretory cell differentiation using human colonoids to model major colonic responses to uranium-bearing particulate dust exposure. https://doi.org/10.1289/EHP13855.
Collapse
Affiliation(s)
- Roger Atanga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Lidia L. Appell
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Myranda N. Thompson
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Fredine T. Lauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, College of Arts and Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
23
|
Mingrone G, Rajagopalan H. Bariatrics and endoscopic therapies for the treatment of metabolic disease: Past, present, and future. Diabetes Res Clin Pract 2024; 211:111651. [PMID: 38580037 DOI: 10.1016/j.diabres.2024.111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The burden of chronic metabolic diseases such as obesity, type 2 diabetes mellitus (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD) and the urgency of the epidemiological situation necessitate the development of therapies that enhance metabolic health and alter the trajectory of metabolic disease in society. Certain bariatric-metabolic surgeries have proven to be effective approaches for treating metabolic dysfunction, showing remission or significant improvements in obesity, T2DM, and MASLD-related outcomes, suggesting that these interventions might be able to "reset" a pathologically calibrated metabolic setpoint. However, considering the challenges and invasiveness of surgery, endoscopic bariatric metabolic therapies (EBMTs) have emerged with a primary focus to reconstruct or mimic anatomical and/or functional changes observed with bariatric surgery in a more broadly accessible manner. These innovative approaches offer a potentially promising solution to address significant unmet medical need in the large segment of society, which remains at risk for the consequences of metabolic diseases. In this review, we discuss therapeutic options within the EBMT space in the context of the metabolic setpoint intellectual model and provide a brief overview of current knowledge surrounding their mechanisms of action and impact on metabolic health. Finally, we explore future perspectives and directions in this exciting field.
Collapse
Affiliation(s)
- Geltrude Mingrone
- Division of Obesity and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy; Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom.
| | | |
Collapse
|
24
|
Gao J, Zhang S, Deng P, Wu Z, Lemaitre B, Zhai Z, Guo Z. Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion. Nat Commun 2024; 15:3514. [PMID: 38664401 PMCID: PMC11045819 DOI: 10.1038/s41467-024-47465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory peptides. However, the cellular machinery underlying amino acid-sensing by EECs and how EEC-derived hormones modulate feeding behavior remain elusive. Here, by developing tools to specifically manipulate EECs, we find that Drosophila neuropeptide F (NPF) from mated female EECs inhibits feeding, similar to human PYY. Mechanistically, dietary L-Glutamate acts through the metabotropic glutamate receptor mGluR to decelerate calcium oscillations in EECs, thereby causing reduced NPF secretion via dense-core vesicles. Furthermore, two dopaminergic enteric neurons expressing NPFR perceive EEC-derived NPF and relay an anorexigenic signal to the brain. Thus, our findings provide mechanistic insights into how EECs assess food quality and identify a conserved mode of action that explains how gut NPF/PYY modulates food intake.
Collapse
Affiliation(s)
- Junjun Gao
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Zhang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Deng
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhigang Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Zongzhao Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, PR China.
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
25
|
Spencer NJ, Kyloh MA, Travis L, Hibberd TJ. Mechanisms underlying the gut-brain communication: How enterochromaffin (EC) cells activate vagal afferent nerve endings in the small intestine. J Comp Neurol 2024; 532:e25613. [PMID: 38625817 DOI: 10.1002/cne.25613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/02/2024] [Accepted: 03/24/2024] [Indexed: 04/18/2024]
Abstract
How the gastrointestinal tract communicates with the brain, via sensory nerves, is of significant interest for our understanding of human health and disease. Enterochromaffin (EC) cells in the gut mucosa release a variety of neurochemicals, including the largest quantity of 5-hydroxytryptamine (5-HT) in the body. How 5-HT and other substances released from EC cells activate sensory nerve endings in the gut wall remains a major unresolved mystery. We used in vivo anterograde tracing from nodose ganglia to determine the spatial relationship between 5-HT synthesizing and peptide-YY (PYY)-synthesizing EC cells and their proximity to vagal afferent nerve endings that project to the mucosa of mouse small intestine. The shortest mean distances between single 5-HT- and PYY-synthesizing EC cells and the nearest vagal afferent nerve endings in the mucosa were 33.1 ± 14.4 µm (n = 56; N = 6) and 70.3 ± 32.3 µm (n = 16; N = 6). No morphological evidence was found to suggest that 5-HT- or PYY-containing EC cells form close morphological associations with vagal afferents endings, or varicose axons of passage. The large distances between EC cells and vagal afferent endings are many hundreds of times greater than those known to underlie synaptic transmission in the nervous system (typically 10-15 nm). Taken together, the findings lead to the inescapable conclusion that communication between 5-HT-containing EC cells and vagal afferent nerve endings in the mucosa of the mouse small intestinal occurs in a paracrine fashion, via diffusion. New and Noteworthy None of the findings here are consistent with a view that close physical contacts occur between 5-HT-containing EC cells and vagal afferent nerve endings in mouse small intestine. Rather, the findings suggest that gut-brain communication between EC cells and vagal afferent endings occurs via passive diffusion. The morphological data presented do not support the view that EC cells are physically close enough to vagal afferent endings to communicate via fast synaptic transmission.
Collapse
Affiliation(s)
- Nick J Spencer
- Visceral Neurophysiology Laboratory, Flinders Health and Medical Research Institute & College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia, Australia
| | - Melinda A Kyloh
- Visceral Neurophysiology Laboratory, Flinders Health and Medical Research Institute & College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia, Australia
| | - Lee Travis
- Visceral Neurophysiology Laboratory, Flinders Health and Medical Research Institute & College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia, Australia
| | - Timothy J Hibberd
- Visceral Neurophysiology Laboratory, Flinders Health and Medical Research Institute & College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia, Australia
| |
Collapse
|
26
|
Pan Y, Bu T, Deng X, Jia J, Yuan G. Gut microbiota and type 2 diabetes mellitus: a focus on the gut-brain axis. Endocrine 2024; 84:1-15. [PMID: 38227168 DOI: 10.1007/s12020-023-03640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/30/2023] [Indexed: 01/17/2024]
Abstract
Type 2 diabetes mellitus (T2DM) has become one of the most serious public healthcare challenges, contributing to increased mortality and disability. In the past decades, significant progress has been made in understanding the pathogenesis of T2DM. Mounting evidence suggested that gut microbiota (GM) plays a significant role in the development of T2DM. Communication between the GM and the brain is a complex bidirectional connection, known as the "gut-brain axis," via the nervous, neuroendocrine, and immune systems. Gut-brain axis has an essential impact on various physiological processes, including glucose metabolism, food intake, gut motility, etc. In this review, we provide an outline of the gut-brain axis. We also highlight how the dysbiosis of the gut-brain axis affects glucose homeostasis and even results in T2DM.
Collapse
Affiliation(s)
- Yi Pan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tong Bu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jue Jia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
27
|
Balasubramanian R, Schneider E, Gunnigle E, Cotter PD, Cryan JF. Fermented foods: Harnessing their potential to modulate the microbiota-gut-brain axis for mental health. Neurosci Biobehav Rev 2024; 158:105562. [PMID: 38278378 DOI: 10.1016/j.neubiorev.2024.105562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Over the past two decades, whole food supplementation strategies have been leveraged to target mental health. In addition, there has been increasing attention on the ability of gut microbes, so called psychobiotics, to positively impact behaviour though the microbiota-gut-brain axis. Fermented foods offer themselves as a combined whole food microbiota modulating intervention. Indeed, they contain potentially beneficial microbes, microbial metabolites and other bioactives, which are being harnessed to target the microbiota-gut-brain axis for positive benefits. This review highlights the diverse nature of fermented foods in terms of the raw materials used and type of fermentation employed, and summarises their potential to shape composition of the gut microbiota, the gut to brain communication pathways including the immune system and, ultimately, modulate the microbiota-gut-brain axis. Throughout, we identify knowledge gaps and challenges faced in designing human studies for investigating the mental health-promoting potential of individual fermented foods or components thereof. Importantly, we also suggest solutions that can advance understanding of the therapeutic merit of fermented foods to modulate the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Ramya Balasubramanian
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61C996, County Cork, Ireland
| | | | - Eoin Gunnigle
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61C996, County Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
28
|
NamKoong C, Kim B, Yu JH, Youn BS, Kim H, Kim E, Gil SY, Kang GM, Lee CH, Kim YB, Park KH, Kim MS, Kwon O. Stomach clusterin as a gut-derived feeding regulator. BMB Rep 2024; 57:149-154. [PMID: 37817436 PMCID: PMC10979347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
The stomach has emerged as a crucial endocrine organ in the regulation of feeding since the discovery of ghrelin. Gut-derived hormones, such as ghrelin and cholecystokinin, can act through the vagus nerve. We previously reported the satiety effect of hypothalamic clusterin, but the impact of peripheral clusterin remains unknown. In this study, we administered clusterin intraperitoneally to mice and observed its ability to suppress fasting-driven food intake. Interestingly, we found its synergism with cholecystokinin and antagonism with ghrelin. These effects were accompanied by increased c-fos immunoreactivity in nucleus tractus solitarius, area postrema, and hypothalamic paraventricular nucleus. Notably, truncal vagotomy abolished this response. The stomach expressed clusterin at high levels among the organs, and gastric clusterin was detected in specific enteroendocrine cells and the submucosal plexus. Gastric clusterin expression decreased after fasting but recovered after 2 hours of refeeding. Furthermore, we confirmed that stomachspecific overexpression of clusterin reduced food intake after overnight fasting. These results suggest that gastric clusterin may function as a gut-derived peptide involved in the regulation of feeding through the gut-brain axis. [BMB Reports 2024; 57(3): 149-154].
Collapse
Affiliation(s)
- Cherl NamKoong
- Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Bohye Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Ji Hee Yu
- Division of Endocrinology and Metabolism, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Byung Soo Youn
- Osteoneurogen, Inc., Seoul 08501, Korea, Chuncheon 24341, Korea
| | - Hanbin Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Evonne Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - So Young Gil
- Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Gil Myoung Kang
- Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Chan Hee Lee
- Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA, Chuncheon 24341, Korea
| | - Kyeong-Han Park
- Department of Anatomy and Cell Biology, Kangwon National University College of Medicine, Chuncheon 24341, Korea
| | - Min-Seon Kim
- Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
- Division of Endocrinology and Metabolism, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Obin Kwon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
29
|
Ekwudo MN, Gubert C, Hannan AJ. The microbiota-gut-brain axis in Huntington's disease: pathogenic mechanisms and therapeutic targets. FEBS J 2024. [PMID: 38426291 DOI: 10.1111/febs.17102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Huntington's disease (HD) is a currently incurable neurogenerative disorder and is typically characterized by progressive movement disorder (including chorea), cognitive deficits (culminating in dementia), psychiatric abnormalities (the most common of which is depression), and peripheral symptoms (including gastrointestinal dysfunction). There are currently no approved disease-modifying therapies available for HD, with death usually occurring approximately 10-25 years after onset, but some therapies hold promising potential. HD subjects are often burdened by chronic diarrhea, constipation, esophageal and gastric inflammation, and a susceptibility to diabetes. Our understanding of the microbiota-gut-brain axis in HD is in its infancy and growing evidence from preclinical and clinical studies suggests a role of gut microbial population imbalance (gut dysbiosis) in HD pathophysiology. The gut and the brain can communicate through the enteric nervous system, immune system, vagus nerve, and microbiota-derived-metabolites including short-chain fatty acids, bile acids, and branched-chain amino acids. This review summarizes supporting evidence demonstrating the alterations in bacterial and fungal composition that may be associated with HD. We focus on mechanisms through which gut dysbiosis may compromise brain and gut health, thus triggering neuroinflammatory responses, and further highlight outcomes of attempts to modulate the gut microbiota as promising therapeutic strategies for HD. Ultimately, we discuss the dearth of data and the need for more longitudinal and translational studies in this nascent field. We suggest future directions to improve our understanding of the association between gut microbes and the pathogenesis of HD, and other 'brain and body disorders'.
Collapse
Affiliation(s)
- Millicent N Ekwudo
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| |
Collapse
|
30
|
Zhao H, Sun M, Zhang Y, Kong W, Fan L, Wang K, Xu Q, Chen B, Dong J, Shi Y, Wang Z, Wang S, Zhuang X, Li Q, Lin F, Yao X, Zhang W, Kong C, Zhang R, Feng D, Zhao X. Connecting the Dots: The Cerebral Lymphatic System as a Bridge Between the Central Nervous System and Peripheral System in Health and Disease. Aging Dis 2024; 15:115-152. [PMID: 37307828 PMCID: PMC10796102 DOI: 10.14336/ad.2023.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
As a recently discovered waste removal system in the brain, cerebral lymphatic system is thought to play an important role in regulating the homeostasis of the central nervous system. Currently, more and more attention is being focused on the cerebral lymphatic system. Further understanding of the structural and functional characteristics of cerebral lymphatic system is essential to better understand the pathogenesis of diseases and to explore therapeutic approaches. In this review, we summarize the structural components and functional characteristics of cerebral lymphatic system. More importantly, it is closely associated with peripheral system diseases in the gastrointestinal tract, liver, and kidney. However, there is still a gap in the study of the cerebral lymphatic system. However, we believe that it is a critical mediator of the interactions between the central nervous system and the peripheral system.
Collapse
Affiliation(s)
- Hongxiang Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Meiyan Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yue Zhang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Wenwen Kong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Lulu Fan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Kaifang Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Qing Xu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Baiyan Chen
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Jianxin Dong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yanan Shi
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Zhengyan Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - ShiQi Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Xiaoli Zhuang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Qi Li
- Department of Anesthesiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Feihong Lin
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Xinyu Yao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - WenBo Zhang
- Department of Neurosurgery, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Chang Kong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China.
| | - Rui Zhang
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Dayun Feng
- Department of neurosurgery, Tangdu hospital, Fourth Military Medical University, Xi'an, China.
| | - Xiaoyong Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| |
Collapse
|
31
|
McCoy R, Oldroyd S, Yang W, Wang K, Hoven D, Bulmer D, Zilbauer M, Owens RM. In Vitro Models for Investigating Intestinal Host-Pathogen Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306727. [PMID: 38155358 PMCID: PMC10885678 DOI: 10.1002/advs.202306727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Indexed: 12/30/2023]
Abstract
Infectious diseases are increasingly recognized as a major threat worldwide due to the rise of antimicrobial resistance and the emergence of novel pathogens. In vitro models that can adequately mimic in vivo gastrointestinal physiology are in high demand to elucidate mechanisms behind pathogen infectivity, and to aid the design of effective preventive and therapeutic interventions. There exists a trade-off between simple and high throughput models and those that are more complex and physiologically relevant. The complexity of the model used shall be guided by the biological question to be addressed. This review provides an overview of the structure and function of the intestine and the models that are developed to emulate this. Conventional models are discussed in addition to emerging models which employ engineering principles to equip them with necessary advanced monitoring capabilities for intestinal host-pathogen interrogation. Limitations of current models and future perspectives on the field are presented.
Collapse
Affiliation(s)
- Reece McCoy
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Sophie Oldroyd
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Woojin Yang
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| | - Kaixin Wang
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Darius Hoven
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - David Bulmer
- Department of PharmacologyUniversity of CambridgeCambridgeCB2 1PDUK
| | - Matthias Zilbauer
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| | - Róisín M. Owens
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| |
Collapse
|
32
|
Vossen C, Schmidt P, Wunderlich CM, Mittenbühler MJ, Tapken C, Wienand P, Mirabella PN, Cabot L, Schumacher AL, Folz-Donahue K, Kukat C, Voigt I, Brüning JC, Fenselau H, Wunderlich FT. An Approach to Intersectionally Target Mature Enteroendocrine Cells in the Small Intestine of Mice. Cells 2024; 13:102. [PMID: 38201306 PMCID: PMC10778503 DOI: 10.3390/cells13010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Enteroendocrine cells (EECs) constitute only a small proportion of Villin-1 (Vil1)-expressing intestinal epithelial cells (IECs) of the gastrointestinal tract; yet, in sum, they build the largest endocrine organ of the body, with each of them storing and releasing a distinct set of peptides for the control of feeding behavior, glucose metabolism, and gastrointestinal motility. Like all IEC types, EECs are continuously renewed from intestinal stem cells in the crypt base and terminally differentiate into mature subtypes while moving up the crypt-villus axis. Interestingly, EECs adjust their hormonal secretion according to their migration state as EECs receive altering differentiation signals along the crypt-villus axis and thus undergo functional readaptation. Cell-specific targeting of mature EEC subtypes by specific promoters is challenging because the expression of EEC-derived peptides and their precursors is not limited to EECs but are also found in other organs, such as the brain (e.g., Cck and Sst) as well as in the pancreas (e.g., Sst and Gcg). Here, we describe an intersectional genetic approach that enables cell type-specific targeting of functionally distinct EEC subtypes by combining a newly generated Dre-recombinase expressing mouse line (Vil1-2A-DD-Dre) with multiple existing Cre-recombinase mice and mouse strains with rox and loxP sites flanked stop cassettes for transgene expression. We found that transgene expression in triple-transgenic mice is highly specific in I but not D and L cells in the terminal villi of the small intestine. The targeting of EECs only in terminal villi is due to the integration of a defective 2A separating peptide that, combined with low EEC intrinsic Vil1 expression, restricts our Vil1-2A-DD-Dre mouse line and the intersectional genetic approach described here only applicable for the investigation of mature EEC subpopulations.
Collapse
Affiliation(s)
- Christian Vossen
- Obesity and Cancer Research Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Patricia Schmidt
- Obesity and Cancer Research Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Claudia Maria Wunderlich
- Obesity and Cancer Research Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Melanie Joyce Mittenbühler
- Obesity and Cancer Research Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Claas Tapken
- Obesity and Cancer Research Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Peter Wienand
- Obesity and Cancer Research Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Paul Nicolas Mirabella
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Research Group Synaptic Transmission in Energy Homeostasis, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Leonie Cabot
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Research Group Synaptic Transmission in Energy Homeostasis, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Anna-Lena Schumacher
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.-L.S.)
| | - Kat Folz-Donahue
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.-L.S.)
| | - Christian Kukat
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.-L.S.)
| | - Ingo Voigt
- Transgenic Core Facility, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany;
| | - Jens C. Brüning
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Department of neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Henning Fenselau
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Research Group Synaptic Transmission in Energy Homeostasis, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - F. Thomas Wunderlich
- Obesity and Cancer Research Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
33
|
Yong GJM, Porsche CE, Sitarik AR, Fujimura KE, McCauley K, Nguyen DT, Levin AM, Woodcroft KJ, Ownby DR, Rundle AG, Johnson CC, Cassidy-Bushrow A, Lynch SV. Precocious infant fecal microbiome promotes enterocyte barrier dysfuction, altered neuroendocrine signaling and associates with increased childhood obesity risk. Gut Microbes 2024; 16:2290661. [PMID: 38117587 PMCID: PMC10761186 DOI: 10.1080/19490976.2023.2290661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023] Open
Abstract
Early life gut microbiome composition has been correlated with childhood obesity, though microbial functional contributions to disease origins remain unclear. Here, using an infant birth cohort (n = 349) we identify a distinct fecal microbiota composition in 1-month-old infants with the lowest rate of exclusive breastfeeding, that relates with higher relative risk for obesity and overweight phenotypes at two years. Higher-risk infant fecal microbiomes exhibited accelerated taxonomic and functional maturation and broad-ranging metabolic reprogramming, including reduced concentrations of neuro-endocrine signals. In vitro, exposure of enterocytes to fecal extracts from higher-risk infants led to upregulation of genes associated with obesity and with expansion of nutrient sensing enteroendocrine progenitor cells. Fecal extracts from higher-risk infants also promoted enterocyte barrier dysfunction. These data implicate dysregulation of infant microbiome functional development, and more specifically promotion of enteroendocrine signaling and epithelial barrier impairment in the early-life developmental origins of childhood obesity.
Collapse
Affiliation(s)
- Germaine J. M. Yong
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA, USA
- Asian Microbiome Library Pte Ltd, Singapore and Singapore Institute of Food and Biotechnology Innovation, Singapore, Singapore
| | - Cara E. Porsche
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Alexandra R. Sitarik
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Kei E. Fujimura
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA, USA
- Genetic Disease Laboratory, California Department of Public Health, San Francisco, CA, USA
| | - Kathryn McCauley
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Dat T. Nguyen
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Albert M. Levin
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | | | - Dennis R. Ownby
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Augusta University, Augusta, GA, USA
| | - Andrew G. Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Christine C. Johnson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | | | - Susan V. Lynch
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
34
|
Noemi CN, Bob P, Bókkon I. Long-Term Implicit Epigenetic Stress Information in the Enteric Nervous System and its Contribution to Developing and Perpetuating IBS. Curr Neuropharmacol 2024; 22:2100-2112. [PMID: 38726788 PMCID: PMC11337685 DOI: 10.2174/1570159x22666240507095700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 08/23/2024] Open
Abstract
Psychiatric and mood disorders may play an important role in the development and persistence of irritable bowel syndrome (IBS). Previously, we hypothesized that stress-induced implicit memories may persist throughout life via epigenetic processes in the enteric nervous system (ENS), independent of the central nervous system (CNS). These epigenetic memories in the ENS may contribute to developing and perpetuating IBS. Here, we further elaborate on our earlier hypothesis. That is, during pregnancy, maternal prenatal stresses perturb the HPA axis and increase circulating cortisol levels, which can affect the maternal gut microbiota. Maternal cortisol can cross the placental barrier and increase cortisol-circulating levels in the fetus. This leads to dysregulation of the HPA axis, affecting the gut microbiota, microbial metabolites, and intestinal permeability in the fetus. Microbial metabolites, such as short-chain fatty acids (which also regulate the development of fetal ENS), can modulate a range of diseases by inducing epigenetic changes. These mentioned processes suggest that stress-related, implicit, long-term epigenetic memories may be programmed into the fetal ENS during pregnancy. Subsequently, this implicit epigenetic stress information from the fetal ENS could be conveyed to the CNS through the bidirectional microbiota-gut-brain axis (MGBA), leading to perturbed functional connectivity among various brain networks and the dysregulation of affective and pain processes.
Collapse
Affiliation(s)
- Császár-Nagy Noemi
- National University of Public Services, H-1083 Budapest, Hungary
- Psychosomatic Outpatient Clinics, H-1037 Budapest, Hungary
| | - Petr Bob
- Center for Neuropsychiatric Research of Traumatic Stress, Department of Psychiatry & UHSL, First Faculty of Medicine, and Department of Psychiatry, Faculty of Medicine Pilsen, Charles University, CZ-12108 Prague, Czechia
| | - István Bókkon
- Psychosomatic Outpatient Clinics, H-1037 Budapest, Hungary
- Neuroscience and Consciousness Research Department, Vision Research Institute, Lowell, MA 01854 USA
| |
Collapse
|
35
|
Munir MU, Ali SA, Chung KHK, Kakinen A, Javed I, Davis TP. Reverse engineering the Gut-Brain Axis and microbiome-metabolomics for symbiotic/pathogenic balance in neurodegenerative diseases. Gut Microbes 2024; 16:2422468. [PMID: 39523450 PMCID: PMC11556280 DOI: 10.1080/19490976.2024.2422468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/28/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Deciphering the molecular communications along the gut-brain axis can help in understanding the pathophysiology of neurodegenerative diseases and exploiting the gut microbiome for therapeutics. However, gut microbes and their metabolites have a multifaceted role in mediating both brain physiology and neurodegenerative pathology. There is a lack of understanding of how and when this role is tipped in neurodegenerative diseases and what are those contributing factors, both at local (gut) and distal (neuronal) levels, that drive this imbalance. Here we have reviewed the gut microbiome and its metabolites in the context of the gut-brain axis and summarized how different factors such as gut-microbial diversity, their metabolites, the role of the native immune system and the integrity of gut epithelial and blood-brain barriers are interconnected and collectively define the involvement of gut-microbiome in neurodegenerative pathologies. It also underlines the need for multidisciplinary tools and animal models to simultaneously reflect on many of these factors and to better correlate with clinical observations and data obtained from human biopsies and fecal samples. Harnessing the gut-brain axis will herald a paradigm shift in medicine for neurodegenerative diseases and aging, emphasizing the significance of the microbiome in the broader spectrum of health and disease.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
| | - Syed Aoun Ali
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
| | - Ka Hang Karen Chung
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
- Clinical and Health Sciences,University of South Australia, Adelaide, SA, Australia
| | - Thomas Paul Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
36
|
Guha L, Agnihotri TG, Jain A, Kumar H. Gut microbiota and traumatic central nervous system injuries: Insights into pathophysiology and therapeutic approaches. Life Sci 2023; 334:122193. [PMID: 37865177 DOI: 10.1016/j.lfs.2023.122193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Traumatic brain injury and spinal cord injury are two distinct but fundamentally similar types of acute insults to the central nervous system (CNS) that often culminate in death or cognitive and motor impairment. Over the past decade, researchers have tapped into research to discover the potential role being played by gut bacteria in CNS. After an acute CNS injury, the altered composition of the gut microbiota disturbs the balance of the bidirectional gut-brain axis, aggravating secondary CNS injury, motor dysfunctions, and cognitive deficits, which worsens the patient's prognosis. Some of the well-known therapeutic interventions which can also be used as adjuvant therapy for alleviating CNS injuries include, the use of pro and prebiotics, fecal microbiota transplantation, and microbial engineering. In this review, we aim to discuss the importance of gut microbes in our nervous system, anatomy, and signaling pathways involved in regulating the gut-brain axis, the alteration of the gut microbiome in CNS injuries, and the therapeutic strategies to target gut microbiomes in traumatic CNS injuries.
Collapse
Affiliation(s)
- Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
37
|
Basiji K, Sendani AA, Ghavami SB, Farmani M, Kazemifard N, Sadeghi A, Lotfali E, Aghdaei HA. The critical role of gut-brain axis microbiome in mental disorders. Metab Brain Dis 2023; 38:2547-2561. [PMID: 37436588 DOI: 10.1007/s11011-023-01248-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/30/2023] [Indexed: 07/13/2023]
Abstract
The Gut-brain axis is a bidirectional neural and humoral signaling that plays an important role in mental disorders and intestinal health and connects them as well. Over the past decades, the gut microbiota has been explored as an important part of the gastrointestinal tract that plays a crucial role in the regulation of most functions of various human organs. The evidence shows several mediators such as short-chain fatty acids, peptides, and neurotransmitters that are produced by the gut may affect the brain's function directly or indirectly. Thus, dysregulation in this microbiome community can give rise to several diseases such as Parkinson's disease, depression, irritable bowel syndrome, and Alzheimer's disease. So, the interactions between the gut and the brain are significantly considered, and also it provides a prominent subject to investigate the causes of some diseases. In this article, we reviewed and focused on the role of the largest and most repetitive bacterial community and their relevance with some diseases that they have mentioned previously.
Collapse
Affiliation(s)
- Kimia Basiji
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Aghamohammadi Sendani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nesa Kazemifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Lu Q, Liang Y, Meng X, Zhao Y, Fan H, Hou S. The Role of Long Noncoding RNAs in Intestinal Health and Diseases: A Focus on the Intestinal Barrier. Biomolecules 2023; 13:1674. [PMID: 38002356 PMCID: PMC10669616 DOI: 10.3390/biom13111674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The gut is the body's largest immune organ, and the intestinal barrier prevents harmful substances such as bacteria and toxins from passing through the gastrointestinal mucosa. Intestinal barrier dysfunction is closely associated with various diseases. However, there are currently no FDA-approved therapies targeting the intestinal epithelial barriers. Long noncoding RNAs (lncRNAs), a class of RNA transcripts with a length of more than 200 nucleotides and no coding capacity, are essential for the development and regulation of a variety of biological processes and diseases. lncRNAs are involved in the intestinal barrier function and homeostasis maintenance. This article reviews the emerging role of lncRNAs in the intestinal barrier and highlights the potential applications of lncRNAs in the treatment of various intestinal diseases by reviewing the literature on cells, animal models, and clinical patients. The aim is to explore potential lncRNAs involved in the intestinal barrier and provide new ideas for the diagnosis and treatment of intestinal barrier damage-associated diseases in the clinical setting.
Collapse
Affiliation(s)
- Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
39
|
Barton JR, Londregan AK, Alexander TD, Entezari AA, Covarrubias M, Waldman SA. Enteroendocrine cell regulation of the gut-brain axis. Front Neurosci 2023; 17:1272955. [PMID: 38027512 PMCID: PMC10662325 DOI: 10.3389/fnins.2023.1272955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Enteroendocrine cells (EECs) are an essential interface between the gut and brain that communicate signals about nutrients, pain, and even information from our microbiome. EECs are hormone-producing cells expressed throughout the gastrointestinal epithelium and have been leveraged by pharmaceuticals like semaglutide (Ozempic, Wegovy), terzepatide (Mounjaro), and retatrutide (Phase 2) for diabetes and weight control, and linaclotide (Linzess) to treat irritable bowel syndrome (IBS) and visceral pain. This review focuses on role of intestinal EECs to communicate signals from the gut lumen to the brain. Canonically, EECs communicate information about the intestinal environment through a variety of hormones, dividing EECs into separate classes based on the hormone each cell type secretes. Recent studies have revealed more diverse hormone profiles and communication modalities for EECs including direct synaptic communication with peripheral neurons. EECs known as neuropod cells rapidly relay signals from gut to brain via a direct communication with vagal and primary sensory neurons. Further, this review discusses the complex information processing machinery within EECs, including receptors that transduce intraluminal signals and the ion channel complement that govern initiation and propagation of these signals. Deeper understanding of EEC physiology is necessary to safely treat devastating and pervasive conditions like irritable bowel syndrome and obesity.
Collapse
Affiliation(s)
- Joshua R. Barton
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Annie K. Londregan
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tyler D. Alexander
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ariana A. Entezari
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Manuel Covarrubias
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Scott A. Waldman
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
40
|
Sirajudeen S, Shah I, Karam SM, Al Menhali A. Seven-Month Vitamin D Deficiency Inhibits Gastric Epithelial Cell Proliferation, Stimulates Acid Secretion, and Differentially Alters Cell Lineages in the Gastric Glands. Nutrients 2023; 15:4648. [PMID: 37960302 PMCID: PMC10649607 DOI: 10.3390/nu15214648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Vitamin D (VD) deficiency can result from insufficiency of either light exposure or VD intake. We investigated the biological effects of VD deficiency for 7 months on the mouse gastric glands. Varying degrees of VD deficiency were induced in C57BL/6 mice by keeping them on standard diet with constant-dark conditions (SDD) or VD deficient diet with constant-dark conditions (VDD). Samples of serum, glandular stomach, and gastric contents were collected for LCMS/MS, RT-PCR, immunohistochemistry, and acid content measurements. Both SDD and VDD mice had a significant decline in 25OHVD metabolite, gastric epithelial cell proliferation, and mucin 6 gene expression. These effects were enhanced with the severity of VD deficiency from SDD to VDD. Besides and compared to the control group, SDD mice only displayed a significant increase in the number of zymogenic cells (p ≤ 0.0001) and high expression of the adiponectin (p ≤ 0.05), gastrin (p ≤ 0.0001), mucin 5AC (*** p ≤ 0.001) and the Cyclin-dependent kinase inhibitor 1A (**** p ≤ 0.0001). These phenotypes were unique to SDD gastric samples and not seen in the VDD or control groups. This study suggests that the body reacts differently to diverse VD deficiency sources, light or diet.
Collapse
Affiliation(s)
- Shaima Sirajudeen
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates;
| | - Iltaf Shah
- Zayed bin Sultan Al Nahyan Center for Health Sciences, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates; (I.S.); (S.M.K.)
- Department of Chemistry, College of Science, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates
| | - Sherif M. Karam
- Zayed bin Sultan Al Nahyan Center for Health Sciences, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates; (I.S.); (S.M.K.)
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates
| | - Asma Al Menhali
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates;
- Zayed bin Sultan Al Nahyan Center for Health Sciences, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates; (I.S.); (S.M.K.)
| |
Collapse
|
41
|
Guo B, Zhang J, Zhang W, Chen F, Liu B. Gut microbiota-derived short chain fatty acids act as mediators of the gut-brain axis targeting age-related neurodegenerative disorders: a narrative review. Crit Rev Food Sci Nutr 2023; 65:265-286. [PMID: 37897083 DOI: 10.1080/10408398.2023.2272769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Neurodegenerative diseases associated with aging are often accompanied by cognitive decline and gut microbiota disorder. But the impact of gut microbiota on these cognitive disturbances remains incompletely understood. Short chain fatty acids (SCFAs) are major metabolites produced by gut microbiota during the digestion of dietary fiber, serving as an energy source for gut epithelial cells and/or circulating to other organs, such as the liver and brain, through the bloodstream. SCFAs have been shown to cross the blood-brain barrier and played crucial roles in brain metabolism, with potential implications in mediating Alzheimer's disease (AD) and Parkinson's disease (PD). However, the underlying mechanisms that SCFAs might influence psychological functioning, including affective and cognitive processes and their neural basis, have not been fully elucidated. Furthermore, the dietary sources which determine these SCFAs production was not thoroughly evaluated yet. This comprehensive review explores the production of SCFAs by gut microbiota, their transportation through the gut-brain axis, and the potential mechanisms by which they influence age-related neurodegenerative disorders. Also, the review discusses the importance of dietary fiber sources and the challenges associated with harnessing dietary-derived SCFAs as promoters of neurological health in elderly individuals. Overall, this study suggests that gut microbiota-derived SCFAs and/or dietary fibers hold promise as potential targets and strategies for addressing age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Bingbing Guo
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jingyi Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Weihao Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Feng Chen
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
42
|
Zaongo SD, Harypursat V, Rashid F, Dahourou DL, Ouedraogo AS, Chen Y. Influence of HIV infection on cognition and overall intelligence in HIV-infected individuals: advances and perspectives. Front Behav Neurosci 2023; 17:1261784. [PMID: 37953826 PMCID: PMC10637382 DOI: 10.3389/fnbeh.2023.1261784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
It is now well understood that HIV-positive individuals, even those under effective ART, tend to develop a spectrum of cognitive, motor, and/or mood conditions which are contemporarily referred to as HIV-associated neurocognitive disorder (HAND), and which is directly related to HIV-1 infection and HIV-1 replication in the central nervous system (CNS). As HAND is known to induce difficulties associated with attention, concentration, and memory, it is thus legitimate and pertinent to speculate upon the possibility that HIV infection may well influence human cognition and intelligence. We therefore propose herein to review the concept of intelligence, the concept of cells of intelligence, the influence of HIV on these particular cells, and the evidence pointing to differences in observed intelligence quotient (IQ) scores between HIV-positive and HIV-negative individuals. Additionally, cumulative research evidence continues to draw attention to the influence of the gut on human intelligence. Up to now, although it is known that HIV infection profoundly alters both the composition and diversity of the gut microbiota and the structural integrity of the gut, the influence of the gut on intelligence in the context of HIV infection remains poorly described. As such, we also provide herein a review of the different ways in which HIV may influence human intelligence via the gut-brain axis. Finally, we provide a discourse on perspectives related to HIV and human intelligence which may assist in generating more robust evidence with respect to this issue in future studies. Our aim is to provide insightful knowledge for the identification of novel areas of investigation, in order to reveal and explain some of the enigmas related to HIV infection.
Collapse
Affiliation(s)
- Silvere D. Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Farooq Rashid
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Désiré Lucien Dahourou
- Département Biomédical/Santé Publique, Institut de Recherche en Sciences de la Santé/CNRST, Ouagadougou, Burkina Faso
| | - Abdoul-Salam Ouedraogo
- Centre Muraz, Bobo-Dioulasso, Burkina Faso
- Department of Bacteriology and Virology, Souro Sanou University Hospital, Bobo-Dioulasso, Burkina Faso
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
43
|
Nery Neto JADO, Yariwake VY, Câmara NOS, Andrade-Oliveira V. Enteroendocrine cells and gut hormones as potential targets in the crossroad of the gut-kidney axis communication. Front Pharmacol 2023; 14:1248757. [PMID: 37927592 PMCID: PMC10620747 DOI: 10.3389/fphar.2023.1248757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Recent studies suggest that disruptions in intestinal homeostasis, such as changes in gut microbiota composition, infection, and inflammatory-related gut diseases, can be associated with kidney diseases. For instance, genomic investigations highlight how susceptibility genes linked to IgA nephropathy are also correlated with the risk of inflammatory bowel disease. Conversely, investigations demonstrate that the use of short-chain fatty acids, produced through fermentation by intestinal bacteria, protects kidney function in models of acute and chronic kidney diseases. Thus, the dialogue between the gut and kidney seems to be crucial in maintaining their proper function, although the factors governing this crosstalk are still emerging as the field evolves. In recent years, a series of studies have highlighted the significance of enteroendocrine cells (EECs) which are part of the secretory lineage of the gut epithelial cells, as important components in gut-kidney crosstalk. EECs are distributed throughout the epithelial layer and release more than 20 hormones in response to microenvironment stimuli. Interestingly, some of these hormones and/or their pathways such as Glucagon-Like Peptide 1 (GLP-1), GLP-2, gastrin, and somatostatin have been shown to exert renoprotective effects. Therefore, the present review explores the role of EECs and their hormones as regulators of gut-kidney crosstalk and their potential impact on kidney diseases. This comprehensive exploration underscores the substantial contribution of EEC hormones in mediating gut-kidney communication and their promising potential for the treatment of kidney diseases.
Collapse
Affiliation(s)
- José Arimatéa de Oliveira Nery Neto
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Victor Yuji Yariwake
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vinicius Andrade-Oliveira
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
44
|
Lefèvre C, Le Roy C, Bessard A, Le Berre-Scoul C, Marchix J, Coron E, Le Rhun M, Brochard C, Perrouin-Verbe B, Neunlist M. Region-specific remodeling of the enteric nervous system and enteroendocrine cells in the colon of spinal cord injury patients. Sci Rep 2023; 13:16902. [PMID: 37803037 PMCID: PMC10558436 DOI: 10.1038/s41598-023-44057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
Patients with spinal cord injury (SCI) suffer from major bowel dysfunction, whose exact pathophysiology, particularly the involvement of the enteric nervous system or epithelial dysfunction is poorly understood. Herein, we aimed to characterize the mucosal biopsies of the right and left colon in SCI patients vs controls (CT): (1) remodeling of key enteric neurotransmitters, (2) remodeling of enteroendocrine cells, and (3) mucosal inflammation compared to those in controls. In SCI, mucosal ACh concentration was lower in the right colon as compared to CT, but no change was observed in the left colon, and AChE expression was lower in both the right and left colons than in CT. While the VIP concentration was similar in the right and left colons, VIP mRNA expression was increased in the right colon and decreased in the left colon, in SCI patients as compared to CT. Interestingly, 5-HT concentration was reduced in the left colon but not in the right colon in SCI patients. Moreover, in SCI patients, as compared to CT, SERT mRNA expression was selectively increased in the left colon while TPH1 mRNA expression was increased in the right and left colons. Although mucosal TNFα and IL-1β mRNA expression did not significantly differ between SCI and CT groups, we identified a significant positive correlation between TNFα and IL-1β mRNA expression and left colon transit time in the SCI group. In conclusion, region-specific changes occur in the enteric neurotransmitter, serotonergic, and inflammatory pathways in the colon of SCI patients. The significant correlations between these pathways and clinical parameters in the left colon further set a scientific basis for designing therapeutic targets to improve colonic motor dysfunction in patients.Biobank information: Spinal cord injury patients: PHRC ConstiCAPE-clinical trial NCT02566746. Controls: Anosain-clinical trial NCT03054415 and biobank of the "Institut des Maladies de l'Appareil Digestif (IMAD)" registered under number DC-2008-402.
Collapse
Affiliation(s)
- Chloë Lefèvre
- Nantes Université, INSERM, CHU Nantes, IMAD, "The Enteric Nervous System in Gut and Brain Disorders", 44000, Nantes, France
- Service de Médecine Physique et Réadaptation Neurologique, Nantes Université, CHU Nantes, 44000, Nantes, France
| | - Camille Le Roy
- Nantes Université, INSERM, CHU Nantes, IMAD, "The Enteric Nervous System in Gut and Brain Disorders", 44000, Nantes, France
- Service de Médecine Physique et Réadaptation Neurologique, Nantes Université, CHU Nantes, 44000, Nantes, France
| | - Anne Bessard
- Nantes Université, INSERM, CHU Nantes, IMAD, "The Enteric Nervous System in Gut and Brain Disorders", 44000, Nantes, France
| | - Catherine Le Berre-Scoul
- Nantes Université, INSERM, CHU Nantes, IMAD, "The Enteric Nervous System in Gut and Brain Disorders", 44000, Nantes, France
| | - Justine Marchix
- Nantes Université, INSERM, CHU Nantes, IMAD, "The Enteric Nervous System in Gut and Brain Disorders", 44000, Nantes, France
| | - Emmanuel Coron
- Nantes Université, INSERM, CHU Nantes, IMAD, "The Enteric Nervous System in Gut and Brain Disorders", 44000, Nantes, France
- Service de Gastroentérologie, Nantes Université, CHU Nantes, IMAD, 44000, Nantes, France
| | - Marc Le Rhun
- Service de Gastroentérologie, Nantes Université, CHU Nantes, IMAD, 44000, Nantes, France
| | - Charlène Brochard
- Nantes Université, INSERM, CHU Nantes, IMAD, "The Enteric Nervous System in Gut and Brain Disorders", 44000, Nantes, France
- CHU Rennes, Explorations Fonctionnelles Digestives, 35000, Rennes, France
| | - Brigitte Perrouin-Verbe
- Nantes Université, INSERM, CHU Nantes, IMAD, "The Enteric Nervous System in Gut and Brain Disorders", 44000, Nantes, France
- Service de Médecine Physique et Réadaptation Neurologique, Nantes Université, CHU Nantes, 44000, Nantes, France
| | - Michel Neunlist
- Nantes Université, INSERM, CHU Nantes, IMAD, "The Enteric Nervous System in Gut and Brain Disorders", 44000, Nantes, France.
| |
Collapse
|
45
|
Caremoli F, Huynh J, Lagishetty V, Markovic D, Braun J, Dong TS, Jacobs JP, Sternini C. Microbiota-Dependent Upregulation of Bitter Taste Receptor Subtypes in the Mouse Large Intestine in High-Fat Diet-Induced Obesity. Nutrients 2023; 15:4145. [PMID: 37836428 PMCID: PMC10574285 DOI: 10.3390/nu15194145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Bitter taste receptors (Tas2rs in mice) detect bitterness, a warning signal for toxins and poisons, and are expressed in enteroendocrine cells. We tested the hypothesis that Tas2r138 and Tas2r116 mRNAs are modulated by microbiota alterations induced by a long-term high-fat diet (HFD) and antibiotics (ABX) (ampicillin and neomycin) administered in drinking water. Cecum and colon specimens and luminal contents were collected from C57BL/6 female and male mice for qRT-PCR and microbial luminal 16S sequencing. HFD with/without ABX significantly increased body weight and fat mass at 4, 6, and 8 weeks. Tas2r138 and Tas2r116 mRNAs were significantly increased in mice fed HFD for 8 weeks vs. normal diet, and this increase was prevented by ABX. There was a distinct microbiota separation in each experimental group and significant changes in the composition and diversity of microbiome in mice fed a HFD with/without ABX. Tas2r mRNA expression in HFD was associated with several genera, particularly with Akkermansia, a Gram-negative mucus-resident bacterium. These studies indicate that luminal bacterial composition is affected by sex, diet, and ABX and support a microbial dependent upregulation of Tas2rs in HFD-induced obesity, suggesting an adaptive host response to specific diet-induced dysbiosis.
Collapse
Affiliation(s)
- Filippo Caremoli
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Jennifer Huynh
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Venu Lagishetty
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Daniela Markovic
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Jonathan Braun
- Inflammatory Bowel and Immunobiology Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Tien S. Dong
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Jonathan P. Jacobs
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Catia Sternini
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
46
|
Song H, Wang Q, Shao Z, Wang X, Cao H, Huang K, Sun Q, Sun Z, Guan X. In vitro gastrointestinal digestion of buckwheat ( Fagopyrum esculentum Moench) protein: release and structural characteristics of novel bioactive peptides stimulating gut cholecystokinin secretion. Food Funct 2023; 14:7469-7477. [PMID: 37489980 DOI: 10.1039/d3fo01951a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Satiety hormone cholecystokinin (CCK) plays a vital role in appetite inhibition. Its secretion is regulated by dietary components. The search for bioactive compounds that stimulate CCK secretion is currently an active area of research. The objective of this study was to evaluate the ability of buckwheat (Fagopyrum esculentum Moench) protein digest (BPD) to stimulate CCK secretion in vitro and in vivo and clarify the structural characteristics of peptides stimulating CCK secretion. BPD was prepared by an in vitro gastrointestinal digestion model. The relative molecular weight of BPD was <10 000 Da, and peptides with <3000 Da accounted for 70%. BPD was rich in essential amino acids Lys, Leu, and Val but lacked sulfur amino acids Met and Cys. It had a stimulatory effect on CCK secretion in vitro and in vivo. Chromatographic separation was performed to isolate peptide fractions involved in CCK secretion, and five novel CCK-releasing peptides including QFDLDD, PAFKEEHL, SFHFPI, IPPLFP, and RVTVQPDS were successfully identified. A sequence length range of 6-8 and marked hydrophobicity (18-28) were observed among the most CCK-releasing peptides. The present study demonstrated for the first time that BPD could stimulate CCK secretion and clarify the structural characteristics of bioactive peptides having CCK secretagogue activity in BPD.
Collapse
Affiliation(s)
- Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Qingyu Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhuwei Shao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xinyue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Qiqi Sun
- Fengxian Central Hospital, Shanghai 201499, China.
| | | | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| |
Collapse
|
47
|
Atanga R, Appell LL, Lauer FT, Brearley A, Campen MJ, Castillo EF, In JG. Uranium-bearing dust induces differentiation and expansion of enteroendocrine cells in human colonoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552796. [PMID: 37609291 PMCID: PMC10441413 DOI: 10.1101/2023.08.10.552796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Chronic exposure to environmental toxins and heavy metals has been associated with intestinal inflammation, increased susceptibility to pathogen-induced diseases, and higher incidences of colorectal cancer, all of which have been steadily increasing in prevalence for the past 40 years. The negative effects of heavy metals on barrier permeability and inhibition of intestinal epithelial healing have been described; however, transcriptomic changes within the intestinal epithelial cells and impacts on lineage differentiation are largely unknown. Uranium exposure remains an important environmental legacy and physiological health concern, with hundreds of abandoned uranium mines located in the Southwestern United States largely impacting underserved indigenous communities. Herein, using human colonoids, we defined the molecular and cellular changes that occur in response to uranium bearing dust (UBD) exposure. We used single cell RNA sequencing to define the molecular changes that occur to specific identities of colonic epithelial cells. We demonstrate that this environmental toxicant disrupts proliferation and induces hyperplastic differentiation of secretory lineage cells, particularly enteroendocrine cells (EEC). EECs respond to UBD exposure with increased differentiation into de novo EEC sub-types not found in control colonoids. This UBD-induced EEC differentiation does not occur via canonical transcription factors NEUROG3 or NEUROD1. These findings highlight the significance of crypts-based proliferative cells and secretory cell differentiation as major colonic responses to heavy metal-induced injury.
Collapse
Affiliation(s)
- Roger Atanga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Lidia L. Appell
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Fredine T. Lauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, College of Arts and Sciences, University of New Mexico, Albuquerque, NM
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
| |
Collapse
|
48
|
Post Z, Manfready RA, Keshavarzian A. Overview of the Gut-Brain Axis: From Gut to Brain and Back Again. Semin Neurol 2023; 43:506-517. [PMID: 37562457 DOI: 10.1055/s-0043-1771464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The gut-brain axis refers to a bidirectional communication pathway linking the gastrointestinal system to the central nervous system. The hardware of this multifaceted pathway takes many forms, at once structural (neurons, microglia, intestinal epithelial cell barrier), chemical (neurotransmitters, enteroendocrine hormones, bacterial metabolites), and cellular (immune signaling, inflammatory pathways). The gut-brain axis is exquisitely influenced by our environment, diet, and behaviors. Here, we will describe recent progress in understanding the gut-brain axis in neurological disease, using Parkinson's disease as a guide. We will see that each component of the gut-brain axis is heavily mediated by intestinal microbiota and learn how gut-brain communication can go awry in microbial dysbiosis.
Collapse
Affiliation(s)
- Zoë Post
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Richard A Manfready
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois
- Departments of Physiology and Anatomy & Cell Biology, Rush University Medical Center, Chicago, Illinois
| | - Ali Keshavarzian
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois
- Departments of Physiology and Anatomy & Cell Biology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
49
|
Delong LM, Ross AE. Open multi-organ communication device for easy interrogation of tissue slices. LAB ON A CHIP 2023; 23:3034-3049. [PMID: 37278087 PMCID: PMC10330603 DOI: 10.1039/d3lc00115f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Here, we have developed an open multi-organ communication device that facilitates cellular and molecular communication between ex vivo organ slices. Measuring communication between organs is vital for understanding the mechanisms of health regulation yet remains difficult with current technology. Communication between organs along the gut-brain-immune axis is a key regulator of gut homeostasis. As a novel application of the device, we have used tissue slices from the Peyer's patch (PP) and mesenteric lymph node (MLN) due to their importance in gut immunity; however, any organ slices could be used here. The device was designed and fabricated using a combination of 3D printed molds for polydimethylsiloxane (PDMS) soft lithography, PDMS membranes, and track-etch porous membranes. To validate cellular and protein transfer between organs on-chip, we used fluorescence microscopy to quantitate movement of fluorescent proteins and cells from the PP to the MLN, replicating the initial response to immune stimuli in the gut. IFN-γ secretion during perfusion from a naïve vs. inflamed PP to a healthy MLN was quantitated to demonstrate soluble signaling molecules are moving on-chip. Finally, transient catecholamine release was measured during perfusion from PP to MLN using fast-scan cyclic voltammetry at carbon-fiber microelectrodes to demonstrate a novel application of the device for real-time sensing during communication. Overall, we show an open-well multi-organ device capable of facilitating transfer of soluble factors and cells with the added benefit of being available for external analysis techniques like electrochemical sensing which will advance abilities to probe communication in real-time across multiple organs ex vivo.
Collapse
Affiliation(s)
- Lauren M Delong
- Department of Chemistry, University of Cincinnati, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | - Ashley E Ross
- Department of Chemistry, University of Cincinnati, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| |
Collapse
|
50
|
Chapelet G, Béguin N, Castellano B, Grit I, de Coppet P, Oullier T, Neunlist M, Blottière H, Rolli-Derkinderen M, Le Dréan G, Derkinderen P. Tau expression and phosphorylation in enteroendocrine cells. Front Neurosci 2023; 17:1166848. [PMID: 37332860 PMCID: PMC10272410 DOI: 10.3389/fnins.2023.1166848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Background and objective There is mounting evidence to suggest that the gut-brain axis is involved in the development of Parkinson's disease (PD). In this regard, the enteroendocrine cells (EEC), which faces the gut lumen and are connected with both enteric neurons and glial cells have received growing attention. The recent observation showing that these cells express alpha-synuclein, a presynaptic neuronal protein genetically and neuropathologically linked to PD came to reinforce the assumption that EEC might be a key component of the neural circuit between the gut lumen and the brain for the bottom-up propagation of PD pathology. Besides alpha-synuclein, tau is another key protein involved in neurodegeneration and converging evidences indicate that there is an interplay between these two proteins at both molecular and pathological levels. There are no existing studies on tau in EEC and therefore we set out to examine the isoform profile and phosphorylation state of tau in these cells. Methods Surgical specimens of human colon from control subjects were analyzed by immunohistochemistry using a panel of anti-tau antibodies together with chromogranin A and Glucagon-like peptide-1 (two EEC markers) antibodies. To investigate tau expression further, two EEC lines, namely GLUTag and NCI-H716 were analyzed by Western blot with pan-tau and tau isoform specific antibodies and by RT-PCR. Lambda phosphatase treatment was used to study tau phosphorylation in both cell lines. Eventually, GLUTag were treated with propionate and butyrate, two short chain fatty acids known to sense EEC, and analyzed at different time points by Western blot with an antibody specific for tau phosphorylated at Thr205. Results We found that tau is expressed and phosphorylated in EEC in adult human colon and that both EEC lines mainly express two tau isoforms that are phosphorylated under basal condition. Both propionate and butyrate regulated tau phosphorylation state by decreasing its phosphorylation at Thr205. Conclusion and inference Our study is the first to characterize tau in human EEC and in EEC lines. As a whole, our findings provide a basis to unravel the functions of tau in EEC and to further investigate the possibility of pathological changes in tauopathies and synucleinopathies.
Collapse
Affiliation(s)
- Guillaume Chapelet
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Nora Béguin
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | | | - Isabelle Grit
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, Nantes, France
| | - Pierre de Coppet
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, Nantes, France
| | - Thibauld Oullier
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Michel Neunlist
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Hervé Blottière
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, Nantes, France
| | - Malvyne Rolli-Derkinderen
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Gwenola Le Dréan
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, Nantes, France
| | - Pascal Derkinderen
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| |
Collapse
|