1
|
Mills MB, Both S, Jotan P, Huaraca Huasco W, Cruz R, Pillco MM, Burslem DFRP, Maycock C, Malhi Y, Ewers RM, Berrio JC, Kaduk J, Page S, Robert R, Teh YA, Riutta T. From tree to plot: investigating stem CO 2 efflux and its drivers along a logging gradient in Sabah, Malaysian Borneo. THE NEW PHYTOLOGIST 2024; 244:91-103. [PMID: 39148398 DOI: 10.1111/nph.20043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Stem respiration constitutes a substantial proportion of autotrophic respiration in forested ecosystems, but its drivers across different spatial scales and land-use gradients remain poorly understood. This study quantifies and examines the impact of logging disturbance on stem CO2 efflux (EA) in Malaysian Borneo. EA was quantified at tree- and stand-level in nine 1-ha plots over a logging gradient from heavily logged to old-growth using the static chamber method. Tree-level results showed higher EA per unit stem area in logged vs old-growth plots (37.0 ± 1.1 vs 26.92 ± 1.14 g C m-2 month-1). However, at stand-level, there was no difference in EA between logged and old-growth plots (6.7 ± 1.1 vs 6.0 ± 0.7 Mg C ha-1 yr-1) due to greater stem surface area in old-growth plots. Allocation to growth respiration and carbon use efficiency was significantly higher in logged plots. Variation in EA at both tree- and stand-level was driven by tree size, growth and differences in investment strategies between the forest types. These results reflect different resource allocation strategies and priorities, with a priority for growth in response to increased light availability in logged plots, while old-growth plots prioritise maintenance and cell structure.
Collapse
Affiliation(s)
- Maria B Mills
- School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, UK
| | - Sabine Both
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Palasiah Jotan
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, 165 00, Czech Republic
| | - Walter Huaraca Huasco
- School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, OX1 3QY, UK
| | - Rudi Cruz
- Instituto de Ciencias de la Naturaleza, Territorio y Energías Renovables, Pontificia Universidad Católica del Peru, Lima, 15088, Peru
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, 08003, Peru
| | - Milenka M Pillco
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, 08003, Peru
| | - David F R P Burslem
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Colin Maycock
- University Malaysia Sabah, Kota Kinabalu, 88400, Malaysia
| | - Yadvinder Malhi
- School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, OX1 3QY, UK
| | - Robert M Ewers
- Department of Life Science, Imperial College London, London, SL5 7PY, UK
| | - Juan Carlos Berrio
- School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, UK
| | - Jörg Kaduk
- School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, UK
| | - Susan Page
- School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, UK
| | - Rolando Robert
- Sabah Forestry Department, Forest Research Centre, Sandakan, Sabah, 90715, Malaysia
| | - Yit A Teh
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, NE1 4LB, UK
| | - Terhi Riutta
- School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, OX1 3QY, UK
- Department of Life Science, Imperial College London, London, SL5 7PY, UK
- UK Centre for Ecology and Hydrology (UK CEH), Lancaster, OX10 8BB, UK
| |
Collapse
|
2
|
Salomón RL, Helm J, Gessler A, Grams TEE, Hilman B, Muhr J, Steppe K, Wittmann C, Hartmann H. The quandary of sources and sinks of CO2 efflux in tree stems-new insights and future directions. TREE PHYSIOLOGY 2024; 44:tpad157. [PMID: 38214910 DOI: 10.1093/treephys/tpad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Stem respiration (RS) substantially contributes to the return of photo assimilated carbon to the atmosphere and, thus, to the tree and ecosystem carbon balance. Stem CO2 efflux (ECO2) is often used as a proxy for RS. However, this metric has often been challenged because of the uncertain origin of CO2 emitted from the stem due to post-respiratory processes. In this Insight, we (i) describe processes affecting the quantification of RS, (ii) review common methodological approaches to quantify and model RS and (iii) develop a research agenda to fill the most relevant knowledge gaps that we identified. Dissolution, transport and accumulation of respired CO2 away from its production site, reassimilation of respired CO2 via stem photosynthesis and the enzyme phosphoenolpyruvate carboxylase, axial CO2 diffusion in the gas phase, shifts in the respiratory substrate and non-respiratory oxygen (O2) consumption are the most relevant processes causing divergence between RS and measured stem gas exchange (ECO2 or O2 influx, IO2). Two common methodological approaches to estimate RS, namely the CO2 mass balance approach and the O2 consumption technique, circumvent some of these processes but have yielded inconsistent results regarding the fate of respired CO2. Stem respiration modelling has recently progressed at the organ and tree levels. However, its implementation in large-scale models, commonly operated from a source-driven perspective, is unlikely to reflect adequate mechanisms. Finally, we propose hypotheses and approaches to advance the knowledge of the stem carbon balance, the role of sap pH on RS, the reassimilation of respired CO2, RS upscaling procedures, large-scale RS modelling and shifts in respiratory metabolism during environmental stress.
Collapse
Affiliation(s)
- Roberto L Salomón
- Universidad Politécnica de Madrid (UPM), Departamento de Sistemas y Recursos Naturales, Research Group FORESCENT, Antonio Novais 10, 28040, Madrid, Spain
- Department of Plants and Crops, Laboratory of Plant Ecology, Ghent University, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Ghent, Belgium
| | - Juliane Helm
- Max-Planck-Institute for Biogeochemistry, Biogeochemical Processes, Hans-Knöll-Str. 10, 07743 Jena, Germany
- Department of Environmental Sciences - Botany, Basel University, Schönbeinstr. 6, Basel CH-4056, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, 8903 Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zürich, Rämistrasse 101, 8902 Zurich, Switzerland
| | - Thorsten E E Grams
- Technical University of Munich, Ecophysiology of Plants, Land Surface - Atmosphere Interactions, Von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Boaz Hilman
- Max-Planck-Institute for Biogeochemistry, Biogeochemical Processes, Hans-Knöll-Str. 10, 07743 Jena, Germany
| | - Jan Muhr
- Department of Forest Botany and Tree Physiology, Laboratory for Radioisotopes, Georg-August Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Kathy Steppe
- Department of Plants and Crops, Laboratory of Plant Ecology, Ghent University, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Ghent, Belgium
| | - Christiane Wittmann
- Faculty of Biology, Botanical Garden, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Henrik Hartmann
- Max-Planck-Institute for Biogeochemistry, Biogeochemical Processes, Hans-Knöll-Str. 10, 07743 Jena, Germany
- Institute for Forest Protection, Julius Kühn Institute Federal Research Centre for Cultivated Plants, Erwin-Baur-Straße 27, 06484 Quedlinburg, Germany
| |
Collapse
|
3
|
Nunes MH, Vaz MC, Camargo JLC, Laurance WF, de Andrade A, Vicentini A, Laurance S, Raumonen P, Jackson T, Zuquim G, Wu J, Peñuelas J, Chave J, Maeda EE. Edge effects on tree architecture exacerbate biomass loss of fragmented Amazonian forests. Nat Commun 2023; 14:8129. [PMID: 38097604 PMCID: PMC10721830 DOI: 10.1038/s41467-023-44004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Habitat fragmentation could potentially affect tree architecture and allometry. Here, we use ground surveys of terrestrial LiDAR in Central Amazonia to explore the influence of forest edge effects on tree architecture and allometry, as well as forest biomass, 40 years after fragmentation. We find that young trees colonising the forest fragments have thicker branches and architectural traits that optimise for light capture, which result in 50% more woody volume than their counterparts of similar stem size and height in the forest interior. However, we observe a disproportionately lower height in some large trees, leading to a 30% decline in their woody volume. Despite the substantial wood production of colonising trees, the lower height of some large trees has resulted in a net loss of 6.0 Mg ha-1 of aboveground biomass - representing 2.3% of the aboveground biomass of edge forests. Our findings indicate a strong influence of edge effects on tree architecture and allometry, and uncover an overlooked factor that likely exacerbates carbon losses in fragmented forests.
Collapse
Affiliation(s)
- Matheus Henrique Nunes
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.
- Department of Geographical Sciences, University of Maryland, College Park, MD, USA.
| | - Marcel Caritá Vaz
- Institute for Environmental Science and Sustainabilty, Wilkes University, Wilkes-Barre, PA, USA
| | - José Luís Campana Camargo
- Ecology Graduate Program, National Institute for Amazonian Research, (INPA), Manaus, Brazil
- Biological Dynamics of Forest Fragments Project (BDFFP) at National Institute for Amazonian Research (INPA), Manaus, Brazil
| | - William F Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Ana de Andrade
- Biological Dynamics of Forest Fragments Project (BDFFP) at National Institute for Amazonian Research (INPA), Manaus, Brazil
| | - Alberto Vicentini
- Biological Dynamics of Forest Fragments Project (BDFFP) at National Institute for Amazonian Research (INPA), Manaus, Brazil
- Coordenação de Pesquisas em Ecologia, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brasil
| | - Susan Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Pasi Raumonen
- Computing Sciences, Tampere University, Tampere, Finland
| | - Toby Jackson
- Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - Gabriela Zuquim
- Amazon Research Team, Department of Biology, University of Turku, Turku, Finland
| | - Jin Wu
- School of Biological Sciences and Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, China
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, Spain
| | - Jérôme Chave
- Laboratoire Evolution et Diversité Biologique, CNRS, UPS, IRD, Université Paul Sabatier, Toulouse, France
| | - Eduardo Eiji Maeda
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.
- Finnish Meteorological Institute, FMI, Helsinki, Finland.
| |
Collapse
|
4
|
Broussard L, Abadie C, Lalande J, Limami AM, Lothier J, Tcherkez G. Phloem Sap Composition: What Have We Learnt from Metabolomics? Int J Mol Sci 2023; 24:ijms24086917. [PMID: 37108078 PMCID: PMC10139104 DOI: 10.3390/ijms24086917] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Phloem sap transport is essential for plant nutrition and development since it mediates redistribution of nutrients, metabolites and signaling molecules. However, its biochemical composition is not so well-known because phloem sap sampling is difficult and does not always allow extensive chemical analysis. In the past years, efforts have been devoted to metabolomics analyses of phloem sap using either liquid chromatography or gas chromatography coupled with mass spectrometry. Phloem sap metabolomics is of importance to understand how metabolites can be exchanged between plant organs and how metabolite allocation may impact plant growth and development. Here, we provide an overview of our current knowledge of phloem sap metabolome and physiological information obtained therefrom. Although metabolomics analyses of phloem sap are still not numerous, they show that metabolites present in sap are not just sugars and amino acids but that many more metabolic pathways are represented. They further suggest that metabolite exchange between source and sink organs is a general phenomenon, offering opportunities for metabolic cycles at the whole-plant scale. Such cycles reflect metabolic interdependence of plant organs and shoot-root coordination of plant growth and development.
Collapse
Affiliation(s)
- Louis Broussard
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Cyril Abadie
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Julie Lalande
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Anis M Limami
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Jérémy Lothier
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Guillaume Tcherkez
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
5
|
Castorena M, Olson ME, Enquist BJ, Fajardo A. Toward a general theory of plant carbon economics. Trends Ecol Evol 2022; 37:829-837. [PMID: 35717415 DOI: 10.1016/j.tree.2022.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
Abstract
Plant life-history variation reflects different outcomes of natural selection given the strictures of resource allocation trade-offs. However, there is limited theory of selection predicting how leaves, stems, roots, and reproductive organs should evolve in concert across environments. Here, we synthesize two optimality theories to offer a general theory of plant carbon economics, named as Gmax theory, that shows how life-history variation is limited to phenotypes that have an approximately similar lifetime net carbon gain per body mass. In consequence, fast-slow economics spectra are the result of trait combinations obtaining similar lifetime net carbon gains from leaves and similar net carbon investment costs in stems, roots, and reproductive organs. Gmax theory also helps explain ecosystem and crop productivity and even helps guide carbon conservation strategies.
Collapse
Affiliation(s)
- Matiss Castorena
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85719, USA.
| | - Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85719, USA; Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Alex Fajardo
- Instituto de Investigación Interdisciplinario (I3), Universidad de Talca, Campus Lircay, Talca 3460000, Chile.
| |
Collapse
|
6
|
Carbon allocation and tree diversity: shifts in autotrophic respiration in tree mixtures compared to monocultures. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractMixed species forests are known to have a higher gross primary productivity (GPP) and net primary productivity (NPP) than forests containing only one single tree species. Trees growing in mixtures are characterized by higher autotrophic respiration (Ra), this results in a lower carbon use efficiency of mixed species forests compared to monocultures. The pathway responsible for the high quantities of carbon lost through respiratory pathways is still unclear. Here, we present the only existing measurements evaluating tree mixture effects based on stem CO2 efflux (Estem), scaled to woody respiration (Rw) on stand level. We conducted predawn Estem measurements on five tree species in an experimental tree plantation in Central Panama. Estem was scaled to the entire plot level woody respiration (Rw). Annual Rw was on average 0.25 ± 0.08 Mg C ha− 1 in the monocultures and 0.28 ± 0.10 Mg C ha− 1 in mixed species stands. In mixtures, annual Ra was more than three times higher than in monocultures. As mean Rw was almost constant across the mixture types and Ra varied largely, leads to the conclusion that mixed species plots allocate a higher amount of carbon toward respiratory processes in leaves and roots. This was supported by no significant differences in the mixture effects on the growth respiration relationship.
Collapse
|
7
|
Salomón RL, De Roo L, Oleksyn J, Steppe K. Mechanistic drivers of stem respiration: A modelling exercise across species and seasons. PLANT, CELL & ENVIRONMENT 2022; 45:1270-1285. [PMID: 34914118 DOI: 10.1111/pce.14246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/22/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Stem respiration (RS ) plays a crucial role in plant carbon budgets. However, its poor understanding limits our ability to model woody tissue and whole-tree respiration. A biophysical model of stem water and carbon fluxes (TReSpire) was calibrated on cedar, maple and oak trees during spring and late summer. For this, stem sap flow, water potential, diameter variation, temperature, CO2 efflux, allometry and biochemistry were monitored. Shoot photosynthesis (PN ) and nonstructural carbohydrates (NSC) were additionally measured to evaluate source-sink relations. The highest RS and stem growth was found in maple and oak during spring, both being seasonally decoupled from PN and [NSC]. Temperature largely affected maintenance respiration (RM ) in the short term, but temperature-normalized RM was highly variable on a seasonal timescale. Overall, most of the respired CO2 radially diffused to the atmosphere (>87%) while the remainder was transported upward with the transpiration stream. The modelling exercise highlights the sink-driven behaviour of RS and the significance of overall metabolic activity on nitrogen (N) allocation patterns and N-normalized respiratory costs to capture RS variability over the long term. These insights should be considered when modelling plant respiration, whose representation is currently biased towards a better understanding of leaf metabolism.
Collapse
Affiliation(s)
- Roberto L Salomón
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid, Spain
| | - Linus De Roo
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jacek Oleksyn
- Polish Academy of Sciences, Institute of Dendrology, Körnik, Poland
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Jansen S, Bittencourt P, Pereira L, Schenk HJ, Kunert N. A crucial phase in plants - it's a gas, gas, gas! THE NEW PHYTOLOGIST 2022; 233:1556-1559. [PMID: 35048375 DOI: 10.1111/nph.17875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Paulo Bittencourt
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, UK
| | - Luciano Pereira
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - H Jochen Schenk
- Department of Biological Science, California State University Fullerton, 800 N. State College Boulevard, Fullerton, CA, 92831, USA
| | - Norbert Kunert
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| |
Collapse
|
9
|
Salomón RL, De Roo L, Bodé S, Boeckx P, Steppe K. Efflux and assimilation of xylem-transported CO 2 in stems and leaves of tree species with different wood anatomy. PLANT, CELL & ENVIRONMENT 2021; 44:3494-3508. [PMID: 33822389 DOI: 10.1111/pce.14062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Determining the fate of CO2 respired in woody tissues is necessary to understand plant respiratory physiology and to evaluate CO2 recycling mechanisms. An aqueous 13 C-enriched CO2 solution was infused into the stem of 3-4 m tall trees to estimate efflux and assimilation of xylem-transported CO2 via cavity ring-down laser spectroscopy and isotope ratio mass spectrometry, respectively. Different tree locations (lower stem, upper stem and leafy shoots) and tissues (xylem, bark and leaves) were monitored in species with tracheid, diffuse- and ring-porous wood anatomy (cedar, maple and oak, respectively). Radial xylem CO2 diffusivity and xylem [CO2 ] were lower in cedar relative to maple and oak trees, thereby limiting label diffusion. Part of the labeled 13 CO2 was assimilated in cedar (8.7%) and oak (20.6%) trees, mostly in xylem and bark tissues of the stem, while limited solution uptake in maple trees hindered the detection of label assimilation. Little label reached foliar tissues, suggesting substantial label loss along the stem-branch transition following reductions in the radial diffusive pathway. Differences in respiration rates and radial xylem CO2 diffusivity (lower in conifer relative to angiosperm species) might reconcile discrepancies in efflux and assimilation of xylem-transported CO2 so far observed between taxonomic clades.
Collapse
Affiliation(s)
- Roberto Luis Salomón
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid, Spain
| | - Linus De Roo
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Samuel Bodé
- Isotope Bioscience Laboratory-ISOFYS, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Pascal Boeckx
- Isotope Bioscience Laboratory-ISOFYS, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Helm J, Hartmann H, Göbel M, Hilman B, Herrera Ramírez D, Muhr J. Low-cost chamber design for simultaneous CO2 and O2 flux measurements between tree stems and the atmosphere. TREE PHYSIOLOGY 2021; 41:1767-1780. [PMID: 33677590 PMCID: PMC8441941 DOI: 10.1093/treephys/tpab022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 02/02/2021] [Indexed: 05/24/2023]
Abstract
Tree stem CO2 efflux is an important component of ecosystem carbon fluxes and has been the focus of many studies. While CO2 efflux can easily be measured, a growing number of studies have shown that it is not identical with actual in situ respiration. Complementing measurements of CO2 flux with simultaneous measurements of O2 flux provides an additional proxy for respiration, and the combination of both fluxes can potentially help getting closer to actual measures of respiratory fluxes. To date, however, the technical challenge to measure relatively small changes in O2 concentration against its high atmospheric background has prevented routine O2 measurements in field applications. Here, we present a new and low-cost field-tested device for autonomous real-time and quasi-continuous long-term measurements of stem respiration by combining CO2 (NDIR-based) and O2 (quenching-based) sensors in a tree stem chamber. Our device operates as a cyclic-closed system and measures changes in both CO2 and O2 concentration within the chamber over time. The device is battery powered with a >1-week power independence, and data acquisition is conveniently achieved by an internal logger. Results from both field and laboratory tests document that our sensors provide reproducible measurements of CO2 and O2 exchange fluxes under varying environmental conditions.
Collapse
Affiliation(s)
| | - Henrik Hartmann
- Max-Planck-Institute for Biogeochemistry, Department of Biogeochemical Processes, Hans-Knöll-Str. 10, 07743 Jena, Germany
| | - Martin Göbel
- Max-Planck-Institute for Biogeochemistry, Department of Biogeochemical Processes, Hans-Knöll-Str. 10, 07743 Jena, Germany
| | - Boaz Hilman
- Max-Planck-Institute for Biogeochemistry, Department of Biogeochemical Processes, Hans-Knöll-Str. 10, 07743 Jena, Germany
| | - David Herrera Ramírez
- Max-Planck-Institute for Biogeochemistry, Department of Biogeochemical Processes, Hans-Knöll-Str. 10, 07743 Jena, Germany
| | - Jan Muhr
- Max-Planck-Institute for Biogeochemistry, Department of Biogeochemical Processes, Hans-Knöll-Str. 10, 07743 Jena, Germany
- Georg-August University Göttingen, Department of Bioclimatology, Büsgenweg 2, 37077 Göttingen, Germany
| |
Collapse
|
11
|
Tarvainen L, Wallin G, Linder S, Näsholm T, Oren R, Ottosson Löfvenius M, Räntfors M, Tor-Ngern P, Marshall JD. Limited vertical CO2 transport in stems of mature boreal Pinus sylvestris trees. TREE PHYSIOLOGY 2021; 41:63-75. [PMID: 32864696 DOI: 10.1093/treephys/tpaa113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/25/2020] [Indexed: 05/14/2023]
Abstract
Several studies have suggested that CO2 transport in the transpiration stream can considerably bias estimates of root and stem respiration in ring-porous and diffuse-porous tree species. Whether this also happens in species with tracheid xylem anatomy and lower sap flow rates, such as conifers, is currently unclear. We infused 13C-labelled solution into the xylem near the base of two 90-year-old Pinus sylvestris L. trees. A custom-built gas exchange system and an online isotopic analyser were used to sample the CO2 efflux and its isotopic composition continuously from four positions along the bole and one upper canopy shoot in each tree. Phloem and needle tissue 13C enrichment was also evaluated at these positions. Most of the 13C label was lost by diffusion within a few metres of the infusion point indicating rapid CO2 loss during vertical xylem transport. No 13C enrichment was detected in the upper bole needle tissues. Furthermore, mass balance calculations showed that c. 97% of the locally respired CO2 diffused radially to the atmosphere. Our results support the notion that xylem CO2 transport is of limited magnitude in conifers. This implies that the concerns that stem transport of CO2 derived from root respiration biases chamber-based estimates of forest carbon cycling may be unwarranted for mature conifer stands.
Collapse
Affiliation(s)
- Lasse Tarvainen
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Skogmarksgränd, SE-901 83 Umeå, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, SE-405 30 Gothenburg, Sweden
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Linnaeus väg 6, SE-901 87 Umeå, Sweden
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, SE-405 30 Gothenburg, Sweden
| | - Sune Linder
- Southern Swedish Forest Research Centre, SLU, PO Box 49, SE-230 53, Alnarp, Sweden
| | - Torgny Näsholm
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Skogmarksgränd, SE-901 83 Umeå, Sweden
| | - Ram Oren
- Nicholas School of the Environment, Duke University, Grainger Hall, 9 Circuit Drive, Box 90328, Durham, NC 27708-0328, USA
- Pratt School of Engineering, Duke University, 305 Teer Building, Box 90271, Durham, NC 27708-0271, USA
- Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, Box 27, FI-00014 Helsinki, Finland
| | - Mikaell Ottosson Löfvenius
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Skogmarksgränd, SE-901 83 Umeå, Sweden
| | - Mats Räntfors
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, SE-405 30 Gothenburg, Sweden
| | - Pantana Tor-Ngern
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Rd, Wang Mai, Pathum Wan District, 10330 Bangkok, Thailand
- Environment, Health and Social Data Analytics Research Group, Chulalongkorn University, 254 Phayathai Rd, Wang Mai, Pathum Wan District, 10330 Bangkok, Thailand
| | - John D Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Skogmarksgränd, SE-901 83 Umeå, Sweden
| |
Collapse
|
12
|
D'Andrea E, Rezaie N, Prislan P, Gričar J, Collalti A, Muhr J, Matteucci G. Frost and drought: Effects of extreme weather events on stem carbon dynamics in a Mediterranean beech forest. PLANT, CELL & ENVIRONMENT 2020; 43:2365-2379. [PMID: 32705694 DOI: 10.1111/pce.13858] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The effects of short-term extreme events on tree functioning and physiology are still rather elusive. European beech is one of the most sensitive species to late frost and water shortage. We investigated the intra-annual C dynamics in stems under such conditions. Wood formation and stem CO2 efflux were monitored in a Mediterranean beech forest for 3 years (2015-2017), including a late frost (2016) and a summer drought (2017). The late frost reduced radial growth and, consequently, the amount of carbon fixed in the stem biomass by 80%. Stem carbon dioxide efflux in 2016 was reduced by 25%, which can be attributed to the reduction of effluxes due to growth respiration. Counter to our expectations, we found no effects of the 2017 summer drought on radial growth and stem carbon efflux. The studied extreme weather events had various effects on tree growth. Even though late spring frost had a strong impact on beech radial growth in the current year, trees fully recovered in the following growing season, indicating high resilience of beech to this stressful event.
Collapse
Affiliation(s)
- Ettore D'Andrea
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Ercolano, Naples, Italy
| | - Negar Rezaie
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Ercolano, Naples, Italy
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro Ricerca Ingegneria e Trasformazioni Agroalimentari (CREA-IT), Monterotondo Scalo, Rome, Italy
| | | | | | - Alessio Collalti
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Perugia, Perugia, Italy
- Department of Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Jan Muhr
- Bioclimatology, University of Göttingen, Göttingen, Germany
- Department of Biogeochemical Processes, Max-Planck-Institute for Biogeochemistry, Jena, Germany
| | - Giorgio Matteucci
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Ercolano, Naples, Italy
- Institute for BioEconomy (CNR-IBE), National Research Council of Italy, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
13
|
Mincke J, Courtyn J, Vanhove C, Vandenberghe S, Steppe K. Studying in vivo dynamics of xylem-transported 11CO2 using positron emission tomography. TREE PHYSIOLOGY 2020; 40:1058-1070. [PMID: 32333788 DOI: 10.1093/treephys/tpaa048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/20/2020] [Indexed: 05/26/2023]
Abstract
Respired CO2 in woody tissues can build up in the xylem and dissolve in the sap solution to be transported through the plant. From the sap, a fraction of the CO2 can either be radially diffuse to the atmosphere or be assimilated in chloroplasts present in woody tissues. These processes occur simultaneously in stems and branches, making it difficult to study their specific dynamics. Therefore, an 11C-enriched aqueous solution was administered to young branches of Populus tremula L., which were subsequently imaged by positron emission tomography (PET). This approach allows in vivo visualization of the internal movement of CO2 inside branches at high spatial and temporal resolution, and enables direct measurement of the transport speed of xylem-transported CO2 (vCO2). Through compartmental modeling of the dynamic data obtained from the PET images, we (i) quantified vCO2 and (ii) proposed a new method to assess the fate of xylem-transported 11CO2 within the branches. It was found that a fraction of 0.49 min-1 of CO2 present in the xylem was transported upwards. A fraction of 0.38 min-1 diffused radially from the sap to the surrounding parenchyma and apoplastic spaces (CO2,PA) to be assimilated by woody tissue photosynthesis. Another 0.12 min-1 of the xylem-transported CO2 diffused to the atmosphere via efflux. The remaining CO2 (i.e., 0.01 min-1) was stored as CO2,PA, representing the build-up within parenchyma and apoplastic spaces to be assimilated or directed to the atmosphere. Here, we demonstrate the outstanding potential of 11CO2-based plant-PET in combination with compartmental modeling to advance our understanding of internal CO2 movement and the respiratory physiology within woody tissues.
Collapse
Affiliation(s)
- Jens Mincke
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- MEDISIP-INFINITY, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Jan Courtyn
- Medical Molecular Imaging and Therapy, Department of Radiology and Nuclear Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Christian Vanhove
- MEDISIP-INFINITY, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Stefaan Vandenberghe
- MEDISIP-INFINITY, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
14
|
De Roo L, Salomón RL, Steppe K. Woody tissue photosynthesis reduces stem CO 2 efflux by half and remains unaffected by drought stress in young Populus tremula trees. PLANT, CELL & ENVIRONMENT 2020; 43:981-991. [PMID: 31884680 DOI: 10.1111/pce.13711] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
A substantial portion of locally respired CO2 in stems can be assimilated by chloroplast-containing tissues. Woody tissue photosynthesis (Pwt ) therefore plays a major role in the stem carbon balance. To study the impact of Pwt on stem carbon cycling along a gradient of water availability, stem CO2 efflux (EA ), xylem CO2 concentration ([CO2 ]), and xylem water potential (Ψxylem ) were measured in 4-year-old Populus tremula L. trees exposed to drought stress and different regimes of light exclusion of woody tissues. Under well-watered conditions, local Pwt decreased EA up to 30%. Axial CO2 diffusion (Dax ) induced by distant Pwt caused an additional decrease in EA of up to 25% and limited xylem [CO2 ] build-up. Under drought stress, absolute decreases in EA driven by Pwt remained stable, denoting that Pwt was not affected by drought. At the end of the dry period, when transpiration was low, local Pwt and Dax offset 20% and 10% of stem respiration on a daily basis, respectively. These results highlight (a) the importance of Pwt for an adequate interpretation of EA measurements and (b) homeostatic Pwt along a drought stress gradient, which might play a crucial role to fuel stem metabolism when leaf carbon uptake and phloem transport are limited.
Collapse
Affiliation(s)
- Linus De Roo
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Roberto Luis Salomón
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Salomón RL, De Roo L, Oleksyn J, De Pauw DJW, Steppe K. TReSpire - a biophysical TRee Stem respiration model. THE NEW PHYTOLOGIST 2020; 225:2214-2230. [PMID: 31494939 DOI: 10.1111/nph.16174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Mechanistic models of plant respiration remain poorly developed, especially in stems and woody tissues where measurements of CO2 efflux do not necessarily reflect local respiratory activity. We built a process-based model of stem respiration that couples water and carbon fluxes at the organ level (TReSpire). To this end, sap flow, stem diameter variations, xylem and soil water potential, stem temperature, stem CO2 efflux and nonstructural carbohydrates were measured in a maple tree, while xylem CO2 concentration and additional stem and xylem diameter variations were monitored in an ancillary tree for model validation. TReSpire realistically described: (1) turgor pressure to differentiate growing from nongrowing metabolism; (2) maintenance expenditures in xylem and outer tissues based on Arrhenius kinetics and nitrogen content; and (3) radial CO2 diffusivity and CO2 solubility and transport in the sap solution. Collinearity issues with phloem unloading rates and sugar-starch interconversion rates suggest parallel submodelling to close the stem carbon balance. TReSpire brings a breakthrough in the modelling of stem water and carbon fluxes at a detailed (hourly) temporal resolution. TReSpire is calibrated from a sink-driven perspective, and has potential to advance our understanding on stem growth dynamics, CO2 fluxes and underlying respiratory physiology across different species and phenological stages.
Collapse
Affiliation(s)
- Roberto L Salomón
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, 9000, Belgium
| | - Linus De Roo
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, 9000, Belgium
| | - Jacek Oleksyn
- Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, Kórnik, PL-62-035, Poland
| | - Dirk J W De Pauw
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, 9000, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, 9000, Belgium
| |
Collapse
|
16
|
Salomón RL, Steppe K, Crous KY, Noh NJ, Ellsworth DS. Elevated CO 2 does not affect stem CO 2 efflux nor stem respiration in a dry Eucalyptus woodland, but it shifts the vertical gradient in xylem [CO 2 ]. PLANT, CELL & ENVIRONMENT 2019; 42:2151-2164. [PMID: 30903994 DOI: 10.1111/pce.13550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
To quantify stem respiration (RS ) under elevated CO2 (eCO2 ), stem CO2 efflux (EA ) and CO2 flux through the xylem (FT ) should be accounted for, because part of respired CO2 is transported upwards with the sap solution. However, previous studies have used EA as a proxy of RS , which could lead to equivocal conclusions. Here, to test the effect of eCO2 on RS , both EA and FT were measured in a free-air CO2 enrichment experiment located in a mature Eucalyptus native forest. Drought stress substantially reduced EA and RS , which were unaffected by eCO2 , likely as a consequence of its neutral effect on stem growth in this phosphorus-limited site. However, xylem CO2 concentration measured near the stem base was higher under eCO2 , and decreased along the stem resulting in a negative contribution of FT to RS , whereas the contribution of FT to RS under ambient CO2 was positive. Negative FT indicates net efflux of CO2 respired below the monitored stem segment, likely coming from the roots. Our results highlight the role of nutrient availability on the dependency of RS on eCO2 and suggest stimulated root respiration under eCO2 that may shift vertical gradients in xylem [CO2 ] confounding the interpretation of EA measurements.
Collapse
Affiliation(s)
- Roberto L Salomón
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Kristine Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Nam Jin Noh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| |
Collapse
|
17
|
Salomón RL, De Roo L, Bodé S, Boeckx P, Steppe K. Isotope ratio laser spectroscopy to disentangle xylem-transported from locally respired CO2 in stem CO2 efflux. TREE PHYSIOLOGY 2019; 39:819-830. [PMID: 30726992 DOI: 10.1093/treephys/tpy152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Respired CO2 in woody tissues radially diffuses to the atmosphere or it is transported upward with the transpiration stream, making the origin of CO2 in stem CO2 efflux (EA) uncertain, which may confound stem respiration (RS) estimates. An aqueous 13C-enriched solution was infused into stems of Populus tremula L. trees, and real-time measurements of 13C-CO2 and 12C-CO2 in EA were performed via Cavity Ring Down Laser Spectroscopy (CRDS). The contribution of locally respired CO2 (LCO2) and xylem-transported CO2 (TCO2) to EA was estimated from their different isotopic composition. Mean daily values of TCO2/EA ranged from 13% to 38%, evidencing the notable role that xylem CO2 transport plays in the assessment of stem respiration. Mean daily TCO2/EA did not differ between treatments of drought stress and light exclusion of woody tissues, but they showed different TCO2/EA dynamics on a sub-daily time scale. Sub-daily CO2 diffusion patterns were explained by a light-induced axial CO2 gradient ascribed to woody tissue photosynthesis, and the resistance to radial CO2 diffusion determined by bark water content. Here, we demonstrate the outstanding potential of CRDS paired with 13C-CO2 labelling to advance in the understanding of CO2 movement at the plant-atmosphere interface and the respiratory physiology in woody tissues.
Collapse
Affiliation(s)
- Roberto L Salomón
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Linus De Roo
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Samuel Bodé
- Isotope Bioscience Laboratory - ISOFYS, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Pascal Boeckx
- Isotope Bioscience Laboratory - ISOFYS, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Darenova E, Szatniewska J, Acosta M, Pavelka M. Variability of stem CO2 efflux response to temperature over the diel period. TREE PHYSIOLOGY 2019; 39:877-887. [PMID: 30597110 DOI: 10.1093/treephys/tpy134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/22/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
This study presents results from continuous measurements of stem CO2 efflux carried out for seven growing seasons in a young Norway spruce forest. The objective of the study was to determine differences in temperature sensitivity of stem CO2 efflux (Q10) during night (when sap flow is zero or nearly zero), during early afternoon (when the maximum rate of sap flow occurs) and during two transition periods between the aforementioned periods. The highest Q10 was recorded during the period of zero sap flow, while the lowest Q10 was observed in period of the highest sap flow. Calculating Q10 using only data from the period of zero sap flow resulted in a Q10 that was higher by as much as 19% compared with Q10 calculated using 24 h data. On the other hand, basing the calculation on data from the period of the highest sap flow yielded 5.6% lower Q10 than if 24 h data were used. Considering that change in CO2 efflux lagged in time behind changing stem temperature, there was only a small effect on calculated Q10 for periods with zero and the highest sap flow. A larger effect of the time lag (by as much as 15%) was observed for the two transition periods. Stem CO2 efflux was modelled based on the night CO2 efflux response to temperature. This model had a tendency to overestimate CO2 efflux during daytime, thus indicating potential daytime depression of stem CO2 efflux compared with the values predicated on the basis of temperature caused by CO2 transport upward in the sap flow. This view was supported by our results inasmuch as the overestimation grew with sap flow that was modelled on the basis of photosynthetically active radiation and vapour pressure deficit.
Collapse
Affiliation(s)
- Eva Darenova
- Global Change Research Institute CAS, v.v.i., Belidla 4a, Brno, Czech Republic
| | - Justyna Szatniewska
- Global Change Research Institute CAS, v.v.i., Belidla 4a, Brno, Czech Republic
| | - Manuel Acosta
- Global Change Research Institute CAS, v.v.i., Belidla 4a, Brno, Czech Republic
| | - Marian Pavelka
- Global Change Research Institute CAS, v.v.i., Belidla 4a, Brno, Czech Republic
| |
Collapse
|
19
|
Muhr J, Trumbore S, Higuchi N, Kunert N. Living on borrowed time - Amazonian trees use decade-old storage carbon to survive for months after complete stem girdling. THE NEW PHYTOLOGIST 2018; 220:111-120. [PMID: 30067298 PMCID: PMC6175381 DOI: 10.1111/nph.15302] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/11/2018] [Indexed: 05/26/2023]
Abstract
Nonstructural carbon (NSC) reserves act as buffers to sustain tree activity during periods when carbon (C) assimilation does not meet C demand, but little is known about their age and accessibility; we designed a controlled girdling experiment in the Amazon to study tree survival on NSC reserves. We used bomb-radiocarbon (14 C) to monitor the time elapsed between C fixation and release ('age' of substrates). We simultaneously monitored how the mobilization of reserve C affected δ13 CO2 . Six ungirdled control trees relied almost exclusively on recent assimilates throughout the 17 months of measurement. The Δ14 C of CO2 emitted from the six girdled stems increased significantly over time after girdling, indicating substantial remobilization of storage NSC fixed up to 13-14 yr previously. This remobilization was not accompanied by a consistent change in observed δ13 CO2 . These trees have access to storage pools integrating C accumulated over more than a decade. Remobilization follows a very clear reverse chronological mobilization with younger reserve pools being mobilized first. The lack of a shift in the δ13 CO2 might indicate a constant contribution of starch hydrolysis to the soluble sugar pool even outside pronounced stress periods (regular mixing).
Collapse
Affiliation(s)
- Jan Muhr
- Max‐Planck‐Institute for BiogeochemistryHans‐Knöll‐Str. 10Jena07745Germany
| | - Susan Trumbore
- Max‐Planck‐Institute for BiogeochemistryHans‐Knöll‐Str. 10Jena07745Germany
- Earth System ScienceUniversity of California IrvineIrvineCA92697‐3100USA
| | - Niro Higuchi
- Laboratory of Forest ManagementBrazilian National Institute for Research in the AmazonManausBrazil
| | - Norbert Kunert
- Max‐Planck‐Institute for BiogeochemistryHans‐Knöll‐Str. 10Jena07745Germany
- Conservation Ecology CenterSmithsonian Conservation Biology Institute1500 Remount Rd. MRC 5535Front RoyalVA22630USA
- Center for Tropical Forest Science‐Forest Global Earth ObservatorySmithsonian Tropical Research InstitutePanama CityPanama
| |
Collapse
|
20
|
Chan T, Berninger F, Kolari P, Nikinmaa E, Hölttä T. Linking stem growth respiration to the seasonal course of stem growth and GPP of Scots pine. TREE PHYSIOLOGY 2018; 38:1356-1370. [PMID: 29771366 PMCID: PMC6178967 DOI: 10.1093/treephys/tpy040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 03/14/2018] [Accepted: 04/07/2018] [Indexed: 05/27/2023]
Abstract
Current methods to study relations between stem respiration and stem growth have been hampered by problems in quantifying stem growth from dendrometer measurements, particularly on a daily time scale. This is mainly due to the water-related influences within these measurements that mask growth. A previously published model was used to remove water-related influences from measured radial stem variations to reveal a daily radial growth signal (ΔˆGm). We analysed the intra- and inter-annual relations between ΔˆGm and estimated growth respiration rates (Rg) on a daily scale for 5 years. Results showed that Rg was weakly correlated to stem growth prior to tracheid formation, but was significant during the early summer. In the late summer, the correlation decreased slightly relative to the early summer. A 1-day time lag was found of ΔˆGm preceding Rg. Using wavelet analysis and measurements from eddy covariance, it was found that Rg followed gross primary production and temperature with a 2 and 3 h time lag, respectively.This study shows that further in-depth analysis of in-situ growth and growth respiration dynamics is greatly needed, with a focus on cellular respiration at specific developmental stages, its woody tissue costs and linkages to source-sink processes and environmental drivers.
Collapse
Affiliation(s)
- Tommy Chan
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, PO Box 68, Helsinki, Finland
| | - Frank Berninger
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, Helsinki, Finland
| | - Pasi Kolari
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, PO Box 68, Helsinki, Finland
| | - Eero Nikinmaa
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, Helsinki, Finland
| | - Teemu Hölttä
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, Helsinki, Finland
| |
Collapse
|
21
|
Wittmann C, Pfanz H. More than just CO 2 -recycling: corticular photosynthesis as a mechanism to reduce the risk of an energy crisis induced by low oxygen. THE NEW PHYTOLOGIST 2018; 219:551-564. [PMID: 29767842 DOI: 10.1111/nph.15198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Reassimilation of internal CO2 via corticular photosynthesis (PScort ) has an important effect on the carbon economy of trees. However, little is known about its role as a source of O2 supply to the stem parenchyma and its implications in consumption and movement of O2 within trees. PScort of young Populus nigra (black poplar) trees was investigated by combining optical micro-optode measurements with monitoring of stem chlorophyll fluorescence. During times of zero sap flow in spring, stem oxygen concentrations (cO2 ) exhibited large temporal changes. In the sapwood, over 80% of diurnal changes in cO2 could be explained by respiration rates (Rd(mod) ). In the cortex, photosynthetic oxygen release during the day altered this relationship. With daytime illumination, oxygen levels in the cortex steadily increased from subambient and even exhibited a diel period of superoxia of up to 110% (% air sat.). By contrast, in the sapwood, cO2 never reached ambient levels; the diurnal oxygen deficit was up to 25% of air saturation. Our results confirm that PScort is not only a CO2 -recycling mechanism, it is also a mechanism to actively raise the cortical O2 concentration and counteract temporal/spatial hypoxia inside plant stems.
Collapse
Affiliation(s)
- Christiane Wittmann
- Department of Applied Botany and Volcano Biology, University of Duisburg-Essen, Essen, 45117, Germany
| | - Hardy Pfanz
- Department of Applied Botany and Volcano Biology, University of Duisburg-Essen, Essen, 45117, Germany
| |
Collapse
|
22
|
Rowland L, da Costa ACL, Oliveira AAR, Oliveira RS, Bittencourt PL, Costa PB, Giles AL, Sosa AI, Coughlin I, Godlee JL, Vasconcelos SS, Junior JAS, Ferreira LV, Mencuccini M, Meir P. Drought stress and tree size determine stem CO 2 efflux in a tropical forest. THE NEW PHYTOLOGIST 2018; 218:1393-1405. [PMID: 29397028 PMCID: PMC5969101 DOI: 10.1111/nph.15024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/22/2017] [Indexed: 05/10/2023]
Abstract
CO2 efflux from stems (CO2_stem ) accounts for a substantial fraction of tropical forest gross primary productivity, but the climate sensitivity of this flux remains poorly understood. We present a study of tropical forest CO2_stem from 215 trees across wet and dry seasons, at the world's longest running tropical forest drought experiment site. We show a 27% increase in wet season CO2_stem in the droughted forest relative to a control forest. This was driven by increasing CO2_stem in trees 10-40 cm diameter. Furthermore, we show that drought increases the proportion of maintenance to growth respiration in trees > 20 cm diameter, including large increases in maintenance respiration in the largest droughted trees, > 40 cm diameter. However, we found no clear taxonomic influence on CO2_stem and were unable to accurately predict how drought sensitivity altered ecosystem scale CO2_stem , due to substantial uncertainty introduced by contrasting methods previously employed to scale CO2_stem fluxes. Our findings indicate that under future scenarios of elevated drought, increases in CO2_stem may augment carbon losses, weakening or potentially reversing the tropical forest carbon sink. However, due to substantial uncertainties in scaling CO2_stem fluxes, stand-scale future estimates of changes in stem CO2 emissions remain highly uncertain.
Collapse
Affiliation(s)
- Lucy Rowland
- College of Life and Environmental SciencesUniversity of ExeterExeterEX4 4RJUK
| | | | | | | | | | | | | | - Azul I. Sosa
- Instituto de BiologiaUNICAMPCampinasSP13083‐970Brasil
| | - Ingrid Coughlin
- Departamento de BiologiaFFCLRPUniversidade de São PauloRibeirão PretoSP14040‐900Brasil
| | - John L. Godlee
- School of GeoSciencesUniversity of EdinburghEdinburghEH9 3FFUK
| | | | - João A. S. Junior
- Instituto de GeosciênciasUniversidade Federal do ParáBelémPA66075‐110Brasil
| | | | | | - Patrick Meir
- School of GeoSciencesUniversity of EdinburghEdinburghEH9 3FFUK
- Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| |
Collapse
|
23
|
Gessler A. Where does it come from, where does it go? The role of the xylem for plant CO 2 efflux. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2633-2636. [PMCID: PMC5853442 DOI: 10.1093/jxb/erx161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Arthur Gessler
- Swiss Federal Research Institute WSL, Research Unit Forest Dynamics, Zuercherstr., Birmensdorf, Switzerland
| |
Collapse
|
24
|
Salomón RL, Valbuena-Carabaña M, Gil L, McGuire MA, Teskey RO, Aubrey DP, González-Doncel I, Rodríguez-Calcerrada J. Temporal and spatial patterns of internal and external stem CO2 fluxes in a sub-Mediterranean oak. TREE PHYSIOLOGY 2016; 36:1409-1421. [PMID: 27126229 DOI: 10.1093/treephys/tpw029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/12/2016] [Indexed: 06/05/2023]
Abstract
To accurately estimate stem respiration (RS), measurements of both carbon dioxide (CO2) efflux to the atmosphere (EA) and internal CO2 flux through xylem (FT) are needed because xylem sap transports respired CO2 upward. However, reports of seasonal dynamics of FT and EA are scarce and no studies exist in Mediterranean species under drought stress conditions. Internal and external CO2 fluxes at three stem heights, together with radial stem growth, temperature, sap flow and shoot water potential, were measured in Quercus pyrenaica Willd. in four measurement campaigns during one growing season. Substantial daytime depressions in temperature-normalized EA were observed throughout the experiment, including prior to budburst, indicating that diel hysteresis between stem temperature and EA cannot be uniquely ascribed to diversion of CO2 in the transpiration stream. Low internal [CO2] (<0.5%) resulted in low contributions of FT to RS throughout the growing season, and RS was mainly explained by EA (>90%). Internal [CO2] was found to vary vertically along the stems. Seasonality in resistance to radial CO2 diffusion was related to shoot water potential. The low internal [CO2] and FT observed in our study may result from the downregulation of xylem respiration in response to a legacy of coppicing as well as high radial diffusion of CO2 through cambium, phloem and bark tissues, which was related to low water content of stems. Long-term studies analyzing temporal and spatial variation in internal and external CO2 fluxes and their interactions are needed to mechanistically understand and model respiration of woody tissues.
Collapse
Affiliation(s)
- Roberto L Salomón
- Forest Genetics and Ecophysiology Research Group, E.T.S. Forestry Engineering, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - María Valbuena-Carabaña
- Forest Genetics and Ecophysiology Research Group, E.T.S. Forestry Engineering, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Luis Gil
- Forest Genetics and Ecophysiology Research Group, E.T.S. Forestry Engineering, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Mary Anne McGuire
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green St, Athens, GA 30602-2152, USA
| | - Robert O Teskey
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green St, Athens, GA 30602-2152, USA
| | - Doug P Aubrey
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green St, Athens, GA 30602-2152, USA
- Savannah River Ecology Lab, University of Georgia, Drawer E, Aiken, SC 29802, USA
| | - Inés González-Doncel
- Forest Genetics and Ecophysiology Research Group, E.T.S. Forestry Engineering, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Jesús Rodríguez-Calcerrada
- Forest Genetics and Ecophysiology Research Group, E.T.S. Forestry Engineering, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|
25
|
Salomón R, Valbuena-Carabaña M, Teskey R, McGuire MA, Aubrey D, González-Doncel I, Gil L, Rodríguez-Calcerrada J. Seasonal and diel variation in xylem CO2 concentration and sap pH in sub-Mediterranean oak stems. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2817-2827. [PMID: 27012285 DOI: 10.1093/jxb/erw121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Since a substantial portion of respired CO2 remains within the stem, diel and seasonal trends in stem CO2 concentration ([CO2]) are of major interest in plant respiration and carbon budget research. However, continuous long-term stem [CO2] studies are scarce, and generally absent in Mediterranean climates. In this study, stem [CO2] was monitored every 15min together with stem and air temperature, sap flow, and soil water storage during a growing season in 16 stems of Quercus pyrenaica to elucidate the main drivers of stem [CO2] at different temporal scales. Fluctuations in sap pH were also assessed during two growing seasons to evaluate potential errors in estimates of the concentration of CO2 dissolved in xylem sap ([CO2*]) calculated using Henry's law. Stem temperature was the best predictor of stem [CO2] and explained more than 90% and 50% of the variability in stem [CO2] at diel and seasonal scales, respectively. Under dry conditions, soil water storage was the main driver of stem [CO2]. Likewise, the first rains after summer drought caused intense stem [CO2] pulses, suggesting enhanced stem and root respiration and increased resistance to radial CO2 diffusion. Sap flow played a secondary role in controlling stem [CO2] variations. We observed night-time sap pH acidification and progressive seasonal alkalinization. Thus, if the annual mean value of sap pH (measured at midday) was assumed to be constant, night-time sap [CO2*] was substantially overestimated (40%), and spring and autumn sap [CO2*] were misestimated by 25%. This work highlights that diel and seasonal variations in temperature, tree water availability, and sap pH substantially affect xylem [CO2] and sap [CO2*].
Collapse
Affiliation(s)
- Roberto Salomón
- Forest Genetics and Ecophysiology Research Group, E.T.S. Forestry Engineering, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - María Valbuena-Carabaña
- Forest Genetics and Ecophysiology Research Group, E.T.S. Forestry Engineering, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Robert Teskey
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green St, Athens, GA 30602-2152, USA
| | - Mary Anne McGuire
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green St, Athens, GA 30602-2152, USA
| | - Doug Aubrey
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green St, Athens, GA 30602-2152, USA Savannah River Ecology Lab, University of Georgia, Drawer E, Aiken, SC 29802, USA
| | - Inés González-Doncel
- Forest Genetics and Ecophysiology Research Group, E.T.S. Forestry Engineering, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Luis Gil
- Forest Genetics and Ecophysiology Research Group, E.T.S. Forestry Engineering, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Jesús Rodríguez-Calcerrada
- Forest Genetics and Ecophysiology Research Group, E.T.S. Forestry Engineering, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|
26
|
Kunert N, Edinger J. Xylem Sap Flux Affects Conventional Stem CO2Efflux Measurements in Tropical Trees. Biotropica 2015. [DOI: 10.1111/btp.12257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Norbert Kunert
- Department for Biogeochemical Processes; Max Planck Institute for Biogeochemistry; Jena Germany
- Laboratory for Forest Mangement; Brazilian National Institute for Research in the Amazon; Manaus Brazil
| | - Jens Edinger
- Department for Biogeochemical Processes; Max Planck Institute for Biogeochemistry; Jena Germany
| |
Collapse
|
27
|
Steppe K, Sterck F, Deslauriers A. Diel growth dynamics in tree stems: linking anatomy and ecophysiology. TRENDS IN PLANT SCIENCE 2015; 20:335-43. [PMID: 25911419 DOI: 10.1016/j.tplants.2015.03.015] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 05/08/2023]
Abstract
Impacts of climate on stem growth in trees are studied in anatomical, ecophysiological, and ecological disciplines, but an integrative framework to assess those impacts remains lacking. In this opinion article, we argue that three research efforts are required to provide that integration. First, we need to identify the missing links in diel patterns in stem diameter and stem growth and relate those patterns to the underlying mechanisms that control water and carbon balance. Second, we should focus on the understudied mechanisms responsible for seasonal impacts on such diel patterns. Third, information on stem anatomy and ecophysiology should be integrated in the same experiments and mechanistic plant growth models to capture both diel and seasonal scales.
Collapse
Affiliation(s)
- Kathy Steppe
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| | - Frank Sterck
- Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands
| | - Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC G7H 2B1, Canada
| |
Collapse
|
28
|
Abstract
In C3 plants, CO2 concentrations drop considerably along mesophyll diffusion pathways from substomatal cavities to chloroplasts where CO2 assimilation occurs. Global carbon cycle models have not explicitly represented this internal drawdown and therefore overestimate CO2 available for carboxylation and underestimate photosynthetic responsiveness to atmospheric CO2. An explicit consideration of mesophyll diffusion increases the modeled cumulative CO2 fertilization effect (CFE) for global gross primary production (GPP) from 915 to 1,057 PgC for the period of 1901-2010. This increase represents a 16% correction, which is large enough to explain the persistent overestimation of growth rates of historical atmospheric CO2 by Earth system models. Without this correction, the CFE for global GPP is underestimated by 0.05 PgC/y/ppm. This finding implies that the contemporary terrestrial biosphere is more CO2 limited than previously thought.
Collapse
|
29
|
Tarvainen L, Räntfors M, Wallin G. Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand. TREE PHYSIOLOGY 2014; 34:488-502. [PMID: 24878562 DOI: 10.1093/treephys/tpu036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Stem CO2 efflux is known to vary seasonally and vertically along tree stems. However, annual tree- and stand-scale efflux estimates are commonly based on measurements made only a few times a year, during daytime and at breast height. In this study, the effect of these simplifying assumptions on annual efflux estimates and their influence on the estimates of the importance of stems in stand-scale carbon cycling are evaluated. In order to assess the strength of seasonal, diurnal and along-stem variability in CO2 efflux, half-hourly measurements were carried out at three heights on three mature Norway spruce (Picea abies (L.) Karst.) trees over a period of 3 years. Making the common assumption of breast height efflux rates being representative of the entire stem was found to result in underestimations of 10-17% in the annual tree-scale CO2 efflux. Upscaling using only daytime measurements from breast height increased the underestimation to 15-20%. Furthermore, the results show that the strength of the vertical gradient varies seasonally, being strongest in the early summer and non-existent during the cool months. The observed seasonality in the vertical CO2 efflux gradient could not be explained by variation in stem temperature, temperature response of the CO2 efflux (Q10), outer-bark permeability, CO2 transport in the xylem or CO2 release from the phloem. However, the estimated CO2 concentration immediately beneath the bark was considerably higher in the upper stem during the main period of diameter growth, coinciding with the strongest vertical efflux gradient. These results suggest that higher growth rates in the upper stem are the main cause for the observed vertical variation in the stem CO2 effluxes. Furthermore, the results indicate that accounting for the vertical efflux variation is essential for assessments of the importance of stems in stand-scale carbon cycling.
Collapse
Affiliation(s)
- Lasse Tarvainen
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, SE-405 30 Gothenburg, Sweden Present address: Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), SE-901 83 Umeå, Sweden
| | - Mats Räntfors
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, SE-405 30 Gothenburg, Sweden
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
30
|
Bloemen J, Agneessens L, Van Meulebroek L, Aubrey DP, McGuire MA, Teskey RO, Steppe K. Stem girdling affects the quantity of CO2 transported in xylem as well as CO2 efflux from soil. THE NEW PHYTOLOGIST 2014; 201:897-907. [PMID: 24400900 DOI: 10.1111/nph.12568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/26/2013] [Indexed: 05/24/2023]
Abstract
There is recent clear evidence that an important fraction of root-respired CO2 is transported upward in the transpiration stream in tree stems rather than fluxing to the soil. In this study, we aimed to quantify the contribution of root-respired CO2 to both soil CO2 efflux and xylem CO2 transport by manipulating the autotrophic component of belowground respiration. We compared soil CO2 efflux and the flux of root-respired CO2 transported in the transpiration stream in girdled and nongirdled 9-yr-old oak trees (Quercus robur) to assess the impact of a change in the autotrophic component of belowground respiration on both CO2 fluxes. Stem girdling decreased xylem CO2 concentration, indicating that belowground respiration contributes to the aboveground transport of internal CO2 . Girdling also decreased soil CO2 efflux. These results confirmed that root respiration contributes to xylem CO2 transport and that failure to account for this flux results in inaccurate estimates of belowground respiration when efflux-based methods are used. This research adds to the growing body of evidence that efflux-based measurements of belowground respiration underestimate autotrophic contributions.
Collapse
Affiliation(s)
- Jasper Bloemen
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Ghent University, Coupure links 653, 9000, Gent, Belgium
| | - Laura Agneessens
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Ghent University, Coupure links 653, 9000, Gent, Belgium
| | - Lieven Van Meulebroek
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Doug P Aubrey
- Department of Biology, Georgia Southern University, PO Box 8042, Statesboro, GA, 30460-8042, USA
| | - Mary Anne McGuire
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green St, Athens, GA, 30602-2152, USA
| | - Robert O Teskey
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green St, Athens, GA, 30602-2152, USA
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Ghent University, Coupure links 653, 9000, Gent, Belgium
| |
Collapse
|
31
|
Carbone MS, Czimczik CI, Keenan TF, Murakami PF, Pederson N, Schaberg PG, Xu X, Richardson AD. Age, allocation and availability of nonstructural carbon in mature red maple trees. THE NEW PHYTOLOGIST 2013; 200:1145-55. [PMID: 24032647 DOI: 10.1111/nph.12448] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/14/2013] [Indexed: 05/08/2023]
Abstract
The allocation of nonstructural carbon (NSC) to growth, metabolism and storage remains poorly understood, but is critical for the prediction of stress tolerance and mortality. We used the radiocarbon ((14) C) 'bomb spike' as a tracer of substrate and age of carbon in stemwood NSC, CO2 emitted by stems, tree ring cellulose and stump sprouts regenerated following harvesting in mature red maple trees. We addressed the following questions: which factors influence the age of stemwood NSC?; to what extent is stored vs new NSC used for metabolism and growth?; and, is older, stored NSC available for use? The mean age of extracted stemwood NSC was 10 yr. More vigorous trees had both larger and younger stemwood NSC pools. NSC used to support metabolism (stem CO2 ) was 1-2 yr old in spring before leaves emerged, but reflected current-year photosynthetic products in late summer. The tree ring cellulose (14) C age was 0.9 yr older than direct ring counts. Stump sprouts were formed from NSC up to 17 yr old. Thus, younger NSC is preferentially used for growth and day-to-day metabolic demands. More recently stored NSC contributes to annual ring growth and metabolism in the dormant season, yet decade-old and older NSC is accessible for regrowth.
Collapse
Affiliation(s)
- Mariah S Carbone
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Muhr J, Angert A, Negrón-Juárez RI, Muñoz WA, Kraemer G, Chambers JQ, Trumbore SE. Carbon dioxide emitted from live stems of tropical trees is several years old. TREE PHYSIOLOGY 2013; 33:743-52. [PMID: 23893086 DOI: 10.1093/treephys/tpt049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Storage carbon (C) pools are often assumed to contribute to respiration and growth when assimilation is insufficient to meet the current C demand. However, little is known of the age of stored C and the degree to which it supports respiration in general. We used bomb radiocarbon ((14)C) measurements to determine the mean age of carbon in CO2 emitted from and within stems of three tropical tree species in Peru. Carbon pools fixed >1 year previously contributed to stem CO2 efflux in all trees investigated, in both dry and wet seasons. The average age, i.e., the time elapsed since original fixation of CO2 from the atmosphere by the plant to its loss from the stem, ranged from 0 to 6 years. The average age of CO2 sampled 5-cm deep within the stems ranged from 2 to 6 years for two of the three species, while CO2 in the stem of the third tree species was fixed from 14 to >20 years previously. Given the consistency of (14)C values observed for individuals within each species, it is unlikely that decomposition is the source of the older CO2. Our results are in accordance with other studies that have demonstrated the contribution of storage reserves to the construction of stem wood and root respiration in temperate and boreal forests. We postulate the high (14)C values observed in stem CO2 efflux and stem-internal CO2 result from respiration of storage C pools within the tree. The observed age differences between emitted and stem-internal CO2 indicate an age gradient for sources of CO2 within the tree: CO2 produced in the outer region of the stem is younger, originating from more recent assimilates, whereas the CO2 found deeper within the stem is older, fueled by several-year-old C pools. The CO2 emitted at the stem-atmosphere interface represents a mixture of young and old CO2. These observations were independent of season, even during a time of severe regional drought. Therefore, we postulate that the use of storage C for respiration occurs on a regular basis challenging the assumption that storage pools serve as substrates for respiration only during times of limited assimilation.
Collapse
Affiliation(s)
- Jan Muhr
- Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Jena 07745, Germany.
| | | | | | | | | | | | | |
Collapse
|