1
|
Gómez-Delgado I, López-Pastor AR, González-Jiménez A, Ramos-Acosta C, Hernández-Garate Y, Martínez-Micaelo N, Amigó N, Espino-Paisán L, Anguita E, Urcelay E. Long-term mitochondrial and metabolic impairment in lymphocytes of subjects who recovered after severe COVID-19. Cell Biol Toxicol 2025; 41:27. [PMID: 39792183 PMCID: PMC11723900 DOI: 10.1007/s10565-024-09976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025]
Abstract
The underlying mechanisms explaining the differential course of SARS-CoV-2 infection and the potential clinical consequences after COVID-19 resolution have not been fully elucidated. As a dysregulated mitochondrial activity could impair the immune response, we explored long-lasting changes in mitochondrial functionality, circulating cytokine levels, and metabolomic profiles of infected individuals after symptoms resolution, to evaluate whether a complete recovery could be achieved. Results of this pilot study evidenced that different parameters of aerobic respiration in lymphocytes of individuals recuperated from a severe course lagged behind those shown upon mild COVID-19 recovery, in basal conditions and after simulated reinfection, and they also showed altered glycolytic capacity. The severe groups showed trends to enhanced superoxide production in parallel to lower OPA1-S levels. Unbalance of pivotal mitochondrial fusion (MFN2, OPA1) and fission (DRP1, FIS1) proteins was detected, suggesting a disruption in mitochondrial dynamics, as well as a lack of structural integrity in the electron transport chain. In serum, altered cytokine levels of IL-1β, IFN-α2, and IL-27 persisted long after clinical recovery, and growing amounts of the latter after severe infection correlated with lower basal and maximal respiration, ATP production, and glycolytic capacity. Finally, a trend for higher circulating levels of 3-hydroxybutyrate was found in individuals recovered after severe compared to mild course. In summary, long after acute infection, mitochondrial and metabolic changes seem to differ in a situation of full recovery after mild infection versus the one evolving from severe infection.
Collapse
Affiliation(s)
- Irene Gómez-Delgado
- Lab. Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
- Cooperative Research Networks Oriented to Health Results (RICORS, REI), ISCIII, 28029, Madrid, Spain
| | - Andrea R López-Pastor
- Lab. Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
- Cooperative Research Networks Oriented to Health Results (RICORS, REI), ISCIII, 28029, Madrid, Spain
| | - Adela González-Jiménez
- Lab. Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
- Cooperative Research Networks Oriented to Health Results (RICORS, REI), ISCIII, 28029, Madrid, Spain
| | - Carlos Ramos-Acosta
- Hematology Group, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Yenitzeh Hernández-Garate
- Lab. Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | | | - Núria Amigó
- Biosfer Teslab, 43201, Reus, Tarragona, Spain
- Department of Basic Medical Sciences, Rovira I Virgili University, 43007, Tarragona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Laura Espino-Paisán
- Lab. Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
- Cooperative Research Networks Oriented to Health Results (RICORS, REI), ISCIII, 28029, Madrid, Spain
| | - Eduardo Anguita
- Hematology Group, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
- Department of Medicine, Medical School, Universidad Complutense de Madrid, 28040, Madrid, Spain
- Hematology Department, IML, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Elena Urcelay
- Lab. Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain.
- Cooperative Research Networks Oriented to Health Results (RICORS, REI), ISCIII, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Netea MG, van de Veerdonk FL, Giamarellos-Bourboulis EJ. Host-Directed Therapy in Pandemic Preparedness. JAMA 2025:2828806. [PMID: 39761040 DOI: 10.1001/jama.2024.26152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
This JAMA Viewpoint explores the addition of host-directed therapy using immunotherapeutic agents to pandemic preparedness programs.
Collapse
Affiliation(s)
- Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Germany
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Evangelos J Giamarellos-Bourboulis
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Greece
- Hellenic Institute for the Study of Sepsis, Athens, Greece
| |
Collapse
|
3
|
Li YJ, Geng WL, Li CC, Wu JH, Gao F, Wang Y. Progress of CCL20-CCR6 in the airways: a promising new therapeutic target. J Inflamm (Lond) 2024; 21:54. [PMID: 39731176 PMCID: PMC11681768 DOI: 10.1186/s12950-024-00427-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
The chemokine CCL20, a small cytokine that belongs to the C-C chemokine family, interacts with its homologous receptor CCR6, which is expressed on wide range of cell types. According to current research, the CCL20-CCR6 has been established as acritical player in a diverse range of inflammatory, oncogenic, and autoimmune diseases. Within the respiratory system, CCL20-CCR6 demonstrates heightened expression in conditions such as allergic asthma, chronic airway inflammation, non-small cell lung cancer (NSCLC), chronic obstructive pulmonary disease (COPD), and other respiratory diseases, which is conducive to the inflammatory mediators recruitment and tumor microenvironment remodeling. Numerous studies have demonstrated that therapeutic interventions targeting CCL20 and CCR6, including antibodies and antagonists, have the potential to mitigate disease progression. Despite the promising research prospects surrounding the CCL20-CCR6 chemokine axis, the precise mechanisms underlying its action in respiratory diseases remain largely elusive. In this review, we delve into the potential roles of the CCL20-CCR6 axis within the respiratory system by synthesizing and analyzing current research findings. Our objective is to provide a comprehensive understanding of the CCL20-CCR6 axis and its implications for respiratory health and disease. And we aspire to propel research endeavors in this domain and furnish valuable insights for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Ya -Jing Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Wan-Li Geng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Chen-Chen Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jia-Hao Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Fei Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Yong Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| |
Collapse
|
4
|
Topper MJ, Guarnieri JW, Haltom JA, Chadburn A, Cope H, Frere J, An J, Borczuk A, Sinha S, Kim J, Park J, Butler D, Meydan C, Foox J, Bram Y, Richard SA, Epsi NJ, Agan B, Chenoweth JG, Simons MP, Tribble D, Burgess T, Dalgard C, Heise MT, Moorman NJ, Baxter VK, Madden EA, Taft-Benz SA, Anderson EJ, Sanders WA, Dickmander RJ, Beigel K, Widjaja GA, Janssen KA, Lie T, Murdock DG, Angelin A, Soto Albrecht YE, Olali AZ, Cen Z, Dybas J, Priebe W, Emmett MR, Best SM, Kelsey Johnson M, Trovao NS, Clark KB, Zaksas V, Meller R, Grabham P, Schisler JC, Moraes-Vieira PM, Pollett S, Mason CE, Syrkin Wurtele E, Taylor D, Schwartz RE, Beheshti A, Wallace DC, Baylin SB. Lethal COVID-19 associates with RAAS-induced inflammation for multiple organ damage including mediastinal lymph nodes. Proc Natl Acad Sci U S A 2024; 121:e2401968121. [PMID: 39602262 PMCID: PMC11626201 DOI: 10.1073/pnas.2401968121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/07/2024] [Indexed: 11/29/2024] Open
Abstract
Lethal COVID-19 outcomes are attributed to classic cytokine storm. We revisit this using RNA sequencing of nasopharyngeal and 40 autopsy samples from patients dying of SARS-CoV-2. Subsets of the 100 top-upregulated genes in nasal swabs are upregulated in the heart, lung, kidney, and liver, but not mediastinal lymph nodes. Twenty-two of these are "noncanonical" immune genes, which we link to components of the renin-angiotensin-activation-system that manifest as increased fibrin deposition, leaky vessels, thrombotic tendency, PANoptosis, and mitochondrial dysfunction. Immunohistochemistry of mediastinal lymph nodes reveals altered architecture, excess collagen deposition, and pathogenic fibroblast infiltration. Many of the above findings are paralleled in animal models of SARS-CoV-2 infection and human peripheral blood mononuclear and whole blood samples from individuals with early and later SARS-CoV-2 variants. We then redefine cytokine storm in lethal COVID-19 as driven by upstream immune gene and mitochondrial signaling producing downstream RAAS (renin-angiotensin-aldosterone system) overactivation and organ damage, including compromised mediastinal lymph node function.
Collapse
Affiliation(s)
- Michael J. Topper
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Joseph W. Guarnieri
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Jeffrey A. Haltom
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Amy Chadburn
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Henry Cope
- School of Medicine, University of Nottingham, DerbyDE22 3DT, United Kingdom
| | - Justin Frere
- Icahn School of Medicine, Mount Sinai, New York, NY10023
| | - Julia An
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | | | | | | | | | | | - Cem Meydan
- Weill Cornell Medicine, New York, NY10065
| | | | - Yaron Bram
- Weill Cornell Medicine, New York, NY10065
| | - Stephanie A. Richard
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Nusrat J. Epsi
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Brian Agan
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Josh G. Chenoweth
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Mark P. Simons
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - David Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - Timothy Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - Clifton Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD20814
| | | | | | | | | | | | | | | | | | - Katherine Beigel
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biomedical and Health, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Gabrielle A. Widjaja
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Kevin A. Janssen
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Timothy Lie
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Deborah G. Murdock
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Alessia Angelin
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Yentli E. Soto Albrecht
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- The University of Pennsylvania, Philadelphia, PA19104
| | - Arnold Z. Olali
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Zimu Cen
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Joseph Dybas
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Waldemar Priebe
- COVID-19 International Research Team, Medford, MA02155
- University of Texas Monroe Dunaway Anderson Cancer Center, Houston, TX77030
| | - Mark R. Emmett
- COVID-19 International Research Team, Medford, MA02155
- University of Texas Medical Branch, Galveston, TX77555
| | - Sonja M. Best
- COVID-19 International Research Team, Medford, MA02155
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT59840
| | - Maya Kelsey Johnson
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Nidia S. Trovao
- COVID-19 International Research Team, Medford, MA02155
- Fogarty International Center, NIH, Bethesda, MD20892
| | - Kevin B. Clark
- COVID-19 International Research Team, Medford, MA02155
- Cures Within Reach, Chicago, IL60602
- Champions Service, Computational Sciences Support Network, Multi-Tier Assistance, Training, and Computational Help Track, NSF's Advanced Cyberinfrastructure Coordination Ecosystem: Services and Support, Carnegie-Mellon University, Pittsburgh, PA15213
| | - Victoria Zaksas
- COVID-19 International Research Team, Medford, MA02155
- Center for Translational Data Science, University of Chicago, Chicago, IL60615
- Clever Research Lab, Springfield, IL62704
| | - Robert Meller
- COVID-19 International Research Team, Medford, MA02155
- Morehouse School of Medicine, Atlanta, GA30310
| | - Peter Grabham
- COVID-19 International Research Team, Medford, MA02155
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY19103
| | - Jonathan C. Schisler
- COVID-19 International Research Team, Medford, MA02155
- University of North Carolina, Chapel Hill, NC27599
| | - Pedro M. Moraes-Vieira
- COVID-19 International Research Team, Medford, MA02155
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil13083-862
| | - Simon Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Christopher E. Mason
- COVID-19 International Research Team, Medford, MA02155
- Weill Cornell Medicine, New York, NY10065
- New York Genome Center, New York, NY10013
| | - Eve Syrkin Wurtele
- COVID-19 International Research Team, Medford, MA02155
- Center for Metabolic Biology, Bioinformatics and Computational Biology, and Genetics Development, and Cell Biology, Iowa State University, Ames, IA50011
- Center for Bioinformatics and Computational Biology Iowa State University, Ames, IA50011
- Center for Genetics Development, and Cell Biology Iowa State University, Ames, IA50011
| | - Deanne Taylor
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biomedical and Health, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
| | - Robert E. Schwartz
- COVID-19 International Research Team, Medford, MA02155
- Weill Cornell Medicine, New York, NY10065
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA02155
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Blue Marble Space Institute of Science, Seattle, WA98104
- McGowan Institute for Regenerative Medicine and Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA15219
| | - Douglas C. Wallace
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Division of Human Genetics, Department of Pediatrics, University of Pennsylvania, Philadelphia, PA19104
| | - Stephen B. Baylin
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Van Andel Institute, Grand Rapids, MI49503
| |
Collapse
|
5
|
Luo L, Zhuang X, Fu L, Dong Z, Yi S, Wang K, Jiang Y, Zhao J, Yang X, Hei F. The role of the interplay between macrophage glycolytic reprogramming and NLRP3 inflammasome activation in acute lung injury/acute respiratory distress syndrome. Clin Transl Med 2024; 14:e70098. [PMID: 39623879 PMCID: PMC11612265 DOI: 10.1002/ctm2.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a severe respiratory condition associated with elevated morbidity and mortality. Understanding their complex pathophysiological mechanisms is crucial for developing new preventive and therapeutic strategies. Recent studies highlight the significant role of inflammation involved in ALI/ARDS, particularly the hyperactivation of the NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome in macrophages. This activation drives pulmonary inflammation by releasing inflammatory signalling molecules and is linked to metabolic reprogramming, marked by increased glycolysis and reduced oxidative phosphorylation. However, the relationship between NLRP3 inflammasome activation and macrophage glycolytic reprogramming in ALI/ARDS, as well as the molecular mechanisms regulating these processes, remain elusive. This review provides a detailed description of the interactions and potential mechanisms linking NLRP3 inflammasome activation with macrophage glycolytic reprogramming, proposing that glycolytic reprogramming may represent a promising therapeutic target for mitigating inflammatory responses in ALI/ARDS. KEY POINTS: NLRP3 inflammasome activation is pivotal in mediating the excessive inflammatory response in ALI/ARDS. Glycolytic reprogramming regulates NLRP3 inflammasome activation. Therapeutic potential of targeting glycolytic reprogramming to inhibit NLRP3 inflammasome activation in ALI/ARDS.
Collapse
Affiliation(s)
- Lan Luo
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Xiaoli Zhuang
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Lin Fu
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Ziyuan Dong
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Shuyuan Yi
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Kan Wang
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yu Jiang
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Ju Zhao
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Xiaofang Yang
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Feilong Hei
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
6
|
Chen N, Jin J, Zhang B, Meng Q, Lu Y, Liang B, Deng L, Qiao B, Zheng L. Viral strategies to antagonize the host antiviral innate immunity: an indispensable research direction for emerging virus-host interactions. Emerg Microbes Infect 2024; 13:2341144. [PMID: 38847579 PMCID: PMC11188965 DOI: 10.1080/22221751.2024.2341144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
The public's health is gravely at risk due to the current global outbreak of emerging viruses, specifically SARS-CoV-2 and MPXV. Recent studies have shown that SARS-CoV-2 mutants (such as Omicron) exhibit a higher capability to antagonize the host innate immunity, increasing their human adaptability and transmissibility. Furthermore, current studies on the strategies for MPXV to antagonize the host innate immunity are still in the initial stages. These multiple threats from emerging viruses make it urgent to study emerging virus-host interactions, especially the viral antagonism of host antiviral innate immunity. Given this, we selected several representative viruses that significantly threatened human public health and interpreted the multiple strategies for these viruses to antagonize the host antiviral innate immunity, hoping to provide ideas for molecular mechanism research that emerging viruses antagonize the host antiviral innate immunity and accelerate the research progress. The IAV, SARS-CoV-2, SARS-CoV, MERS-CoV, EBOV, DENV, ZIKV, and HIV are some of the typical viruses. Studies have shown that viruses could antagonize the host antiviral innate immunity by directly or indirectly blocking antiviral innate immune signaling pathways. Proviral host factors, host restriction factors, and ncRNAs (microRNAs, lncRNAs, circRNAs, and vtRNAs) are essential in indirectly blocking antiviral innate immune signaling pathways. Furthermore, via controlling apoptosis, ER stress, stress granule formation, and metabolic pathways, viruses may antagonize it. These regulatory mechanisms include transcriptional regulation, post-translational regulation, preventing complex formation, impeding nuclear translocation, cleavage, degradation, and epigenetic regulation.
Collapse
Affiliation(s)
- Na Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Jiayu Jin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Baoge Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Qi Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yuanlu Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Bing Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Lulu Deng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Bingchen Qiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Lucheng Zheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
| |
Collapse
|
7
|
Liu X, Chen R, Li B, Zhang J, Liu P, Li B, Li F, Zhang W, Lyu X, Hu M. Oxidative stress indexes as biomarkers of the severity in COVID-19 patients. Int J Med Sci 2024; 21:3034-3045. [PMID: 39628680 PMCID: PMC11610340 DOI: 10.7150/ijms.102879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/02/2024] [Indexed: 12/06/2024] Open
Abstract
Background: SARS-CoV-2 causes a global pandemic, with severe and critically ill COVID-19 patients often experiencing poor prognoses. Severe infection with SARS-CoV-2 is associated with oxidative stress (OS) and inflammation. Detecting markers of macromolecular damage caused by OS may provide valuable insights into disease progression. Methods: This study included 187 patients with laboratory-confirmed SARS-CoV-2 infection, categorized into non-severe, severe, and critically ill COVID-19 groups. We monitored the changes in serum indexes such as oxidized low-density lipoprotein (OxLDL), OxLDL/LDL-C ratio, advanced oxidation protein products (AOPP), 3-nitrotyrosine (3-NT), 8-hydroxydeoxyguanosine (8-OHdG), lipoprotein-associated phospholipase A2 (Lp-PLA2) and thromboxane B2 (TXB2) in patients with different clinical types. Results: 48 non-severe patients, 90 severe patients, and 49 critically ill patients were enrolled. Compared with the non-severe group, OxLDL level and OxLDL/LDL-C ratio were increased in severe COVID-19 patients and critically ill COVID-19 patients, while 3-NT and TXB2 concentrations were lower in critically ill COVID-19 patients. Critically ill COVID-19 patients also exhibited lower concentrations of Lp-PLA2 and a higher OxLDL/LDL-C ratio compared to severe COVID-19 patients. No significant differences were observed in AOPP and 8-OHdG concentrations. Spearman's correlation analysis revealed that CRP was associated with OxLDL, OxLDL/LDL-C ratio, AOPP, 3-NT, TXB2, and Lp-PLA2 (P <0.05). OxLDL was identified as an independent risk factor for progression from non-severe to severe/critically ill COVID-19. OxLDL and OxLDL/LDL-C ratio demonstrated good discriminatory value between non-severe and severe/critically ill COVID-19, with the OxLDL/LDL-C ratio also distinguishing between severe and critically ill patients. Conclusion: Patients with severe and critically ill COVID-19 exhibit elevated levels of oxidative damage to lipoproteins. OxLDL and the OxLDL/LDL-C ratio can serve as biomarkers for assessing disease severity in COVID-19 patients.
Collapse
Affiliation(s)
- Xin Liu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Clinical Molecular Diagnostics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ruohong Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Clinical Molecular Diagnostics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Binghui Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Clinical Molecular Diagnostics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jialiang Zhang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Clinical Molecular Diagnostics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Peiting Liu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Clinical Molecular Diagnostics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Bingchu Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Clinical Molecular Diagnostics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Fengfan Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Clinical Molecular Diagnostics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Weilin Zhang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Clinical Molecular Diagnostics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xing Lyu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Clinical Molecular Diagnostics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Min Hu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Clinical Molecular Diagnostics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
8
|
Wei J, Ji Y, Bai Y, Cheng R, Zhang J, Hu X, Zhang C. MiR-130c-5p targets the SHVV n gene and upregulates immune cytokines (IL-6, IL-22, IL-1β) to inhibit viral replication. Front Immunol 2024; 15:1486816. [PMID: 39555085 PMCID: PMC11563963 DOI: 10.3389/fimmu.2024.1486816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024] Open
Abstract
Background Snakehead vesiculovirus (SHVV) has led to huge economic losses in snakehead aquaculture, and its pathogenic mechanisms is still not fully understood. MicroRNAs (miRNAs), as an important class of non-coding RNAs, play a key regulatory role in the process of viral infection. Methods We examined the effect of SHVV infection on the expression of miR-130c-5p and the effect of overexpression of miR-130c-5p on the proliferation of SHVV. Cotransfection of viral N protein and miR-130c-5p, and the effect of miR-130c-5p on the expression of N protein was detected. Meanwhile, the effect of overexpression of miR-130c-5p on the expression of various immune factors in the case of viral infection were also tested. Results In this study, SHVV infection significantly upregulated the expression of miR-130c-5p in channel catfish ovary (CCO) cells in a time- and dose-dependent manner. The further research revealed that miR-130c-5p mimic significantly inhibited, while its inhibitors promoted SHVV replication. In addition, miR-130c-5p could directly target the viral mRNA of n gene, and overexpression of miR-130c-5p could significantly decrease, and conversely, downregulation of miR-130c-5p could increase the mRNA and protein expression of the viral n gene. Meanwhile, overexpression of miR-130c-5p also upregulated the expression of immune-related genes, such as nucleotide-oligomerization domain (NOD)-like receptor subfamily C3 (NLRC3), myeloid differentiation factor 88 (MyD88), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6), interleukin-22 (IL-22), and interleukin-1beta (IL-1β) in host cells. Conclusion miR-130c-5p was upregulated in the host during SHVV infection, and the upregulated miR-130c-5p directly inhibited viral replication by targeting the n gene of SHVV and promoting viral nucleoprotein degradation. The up-regulated miR-130c-5p also activated the expression of immune-related genes such as NLRC3, MyD88, NF-κB, IL-6, IL-22, and IL-1β, which were involved in the regulation of the signaling pathways including NF-κB, MyD88, Toll-like receptor (TLR), NLR, and janus tyrosine kinase-signal converter and activator of transcription (JAK-STAT), to enhance the host's antiviral immune response, and thus indirectly inhibited the viral proliferation.
Collapse
Affiliation(s)
- Jin Wei
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yan Ji
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yaqian Bai
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Rui Cheng
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan, China
| | - Jiaqi Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xianqin Hu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Chi Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
9
|
Zhou K, Lu J. Progress in cytokine research for ARDS: A comprehensive review. Open Med (Wars) 2024; 19:20241076. [PMID: 39479463 PMCID: PMC11524396 DOI: 10.1515/med-2024-1076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Acute respiratory distress syndrome (ARDS) is a critical form of acute respiratory failure characterized by diffuse alveolar damage, refractory hypoxemia, and non-cardiogenic pulmonary edema, resulting in high mortality. Dysregulated inflammation, driven by cytokines, is central to ARDS pathogenesis, progression, and prognosis. Objective This review synthesizes current knowledge on the role of cytokines in ARDS and evaluates their potential as therapeutic targets, offering new insights for clinical management. Methods A comprehensive analysis of recent studies was conducted to explore the roles of pro-inflammatory cytokines (e.g., IL-1β, IL-6, IL-8) and anti-inflammatory cytokines (e.g., IL-10, IL-22) in ARDS pathogenesis and to assess current and emerging therapies targeting these cytokines. Results Pro-inflammatory cytokines are crucial in initiating inflammatory responses and lung injury in early ARDS, while anti-inflammatory cytokines help regulate and resolve inflammation. Targeted therapies, such as IL-1 and IL-6 inhibitors, show potential in managing ARDS, particularly in COVID-19, but their clinical efficacy is still debated. Combination therapy strategies may enhance outcomes, but further large-scale, multicenter randomized controlled trials are required to establish their safety and efficacy. Conclusion Understanding cytokine regulation in ARDS could lead to innovative therapeutic approaches. Future research should focus on cytokine roles across ARDS subtypes and stages and develop biomarker-driven, individualized treatments.
Collapse
Affiliation(s)
- Kaihuan Zhou
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China
| | - Junyu Lu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxuedong Road, Nanning, Guangxi 530007, China
| |
Collapse
|
10
|
Murdocca M, Andrade Santos-Filho O, De Masi C, Dos Santos Rodrigues E, Campos de Souza CV, De Santis R, Amatore D, Latini A, Schipani R, di Rienzo Businco L, Brandimarte B, Grilli G, Huang TL, Mayence AS, Lista F, Duranti A, Sangiuolo F, Vanden Eynde JJ, Novelli G. Characterization of the symmetrical benzimidazole twin drug TL1228: the role as viral entry inhibitor for fighting COVID-19. Biol Direct 2024; 19:93. [PMID: 39415197 PMCID: PMC11481581 DOI: 10.1186/s13062-024-00523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 10/18/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is reliably one of the largest pandemics the world has suffered in recent years. In the search for non-biological antivirals, special emphasis was placed on drug repurposing to accelerate the clinical implementation of effective drugs.The life cycle of the virus has been extensively investigated and many human targets have been identified, such as the molecular chaperone GRP78, representing a host auxiliary factor for SARS-CoV-2 entry. Here we report the inhibitor capacity of TL1228, a small molecule discovered through an in silico screening approach, which could interfere with the interaction of SARS-CoV-2 and its target cells, blocking the recognition of the GRP78 cellular receptor by the viral Spike protein. TL1228 showed in vitro the ability to reduce significantly both pseudoviral and authentic viral activity even through the reduction of GRP78/ACE2 transcript levels. Importantly, TL1228 acts in modulating expression levels of innate immunity and as inflammation markers.
Collapse
Affiliation(s)
- Michela Murdocca
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Osvaldo Andrade Santos-Filho
- Center of Health Sciences Laboratory of Molecular Modelling & Computational Strutural Biology Cidade Universitária, Federal University of Rio de Janeiro IPPN, Av. Carlos Chagas Filho373, Bloco H, Rio de Janeiro, 21941-599, RJ, Brazil
| | - Claudia De Masi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Edivaldo Dos Santos Rodrigues
- Center of Health Sciences Laboratory of Molecular Modelling & Computational Strutural Biology Cidade Universitária, Federal University of Rio de Janeiro IPPN, Av. Carlos Chagas Filho373, Bloco H, Rio de Janeiro, 21941-599, RJ, Brazil
| | - Claudia Valeria Campos de Souza
- Center of Health Sciences Laboratory of Molecular Modelling & Computational Strutural Biology Cidade Universitária, Federal University of Rio de Janeiro IPPN, Av. Carlos Chagas Filho373, Bloco H, Rio de Janeiro, 21941-599, RJ, Brazil
| | - Riccardo De Santis
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Rome, Italy
- Defence Institute for Biomedical Sciences, Rome, 00184, Italy
| | | | - Andrea Latini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Rossella Schipani
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Lino di Rienzo Businco
- Otorhinolaryngology Department, Institute of Sport Medicine and Science CONI, Rome, Italy
| | - Bruno Brandimarte
- Electronic Measurements Physics Department, Sapienza University, Rome, Italy
| | - Giorgia Grilli
- Defence Institute for Biomedical Sciences, Rome, 00184, Italy
| | - Tien L Huang
- Formerly Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA, 70125, USA
| | - Annie S Mayence
- Formerly Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA, 70125, USA
| | - Florigio Lista
- Defence Institute for Biomedical Sciences, Rome, 00184, Italy
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, 61029, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| | - Jean Jacques Vanden Eynde
- Formerly Department of Organic Chemistry (FS), University of Mons-UMONS, 1 place du Parc, Mons, 7000, Belgium
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
11
|
Bader El Din N, Moustafa R, Ghaleb E, El‑Shenawy R, Agwa M, Helmy N, El‑Shiekh M, Yousif A, Mahfouz M, Seif A, Abdelghaffar M, Elsayed H. Association of OAS1 gene polymorphism with the severity of COVID‑19 infection. WORLD ACADEMY OF SCIENCES JOURNAL 2024; 6:72. [DOI: 10.3892/wasj.2024.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Noha Bader El Din
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Rehab Moustafa
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Enaya Ghaleb
- School of Pharmacy, Newgiza University (NGU), Newgiza, Giza 12577, Egypt
| | - Reem El‑Shenawy
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Mona Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Naiera Helmy
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
| | | | - Ahmed Yousif
- Department of Gastroenterology and Infectious Diseases, Ahmed Maher Teaching Hospital, Cairo 11562, Egypt
| | - Mohammad Mahfouz
- Department of Gastroenterology and Infectious Diseases, Ahmed Maher Teaching Hospital, Cairo 11562, Egypt
| | - Ahmed Seif
- Department of Hepatogastroenterology and Infectious Diseases, Shebin Elkom Teaching Hospital, Cairo 32511, Egypt
| | - Muhammad Abdelghaffar
- General Organization for Teaching Hospitals and Institutes (GOTHI), Cairo 11819, Egypt
| | - Hassan Elsayed
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
12
|
Ortega-Prieto AM, Jimenez-Guardeño JM. Interferon-stimulated genes and their antiviral activity against SARS-CoV-2. mBio 2024; 15:e0210024. [PMID: 39171921 PMCID: PMC11389394 DOI: 10.1128/mbio.02100-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic remains an international health problem caused by the recent emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of May 2024, SARS-CoV-2 has caused more than 775 million cases and over 7 million deaths globally. Despite current vaccination programs, infections are still rapidly increasing, mainly due to the appearance and spread of new variants, variations in immunization rates, and limitations of current vaccines in preventing transmission. This underscores the need for pan-variant antivirals and treatments. The interferon (IFN) system is a critical element of the innate immune response and serves as a frontline defense against viruses. It induces a generalized antiviral state by transiently upregulating hundreds of IFN-stimulated genes (ISGs). To gain a deeper comprehension of the innate immune response to SARS-CoV-2, its connection to COVID-19 pathogenesis, and the potential therapeutic implications, this review provides a detailed overview of fundamental aspects of the diverse ISGs identified for their antiviral properties against SARS-CoV-2. It emphasizes the importance of these proteins in controlling viral replication and spread. Furthermore, we explore methodological approaches for the identification of ISGs and conduct a comparative analysis with other viruses. Deciphering the roles of ISGs and their interactions with viral pathogens can help identify novel targets for antiviral therapies and enhance our preparedness to confront current and future viral threats.
Collapse
Affiliation(s)
- Ana Maria Ortega-Prieto
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Jose M Jimenez-Guardeño
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
13
|
Oliveira EH, Monteleone-Cassiano AC, Tavares L, Santos JC, Lima TM, Gomes GF, Tanaka PP, Monteiro CJ, Munuera M, Batah SS, Fabro AT, Faça VM, Masson AP, Donadi EA, Dametto M, Bonacin R, Martins RB, Neto EA, daSilva LLP, Cunha TM, Passos GA. A mimetic peptide of ACE2 protects against SARS-CoV-2 infection and decreases pulmonary inflammation related to COVID-19. Antiviral Res 2024; 229:105968. [PMID: 39004311 DOI: 10.1016/j.antiviral.2024.105968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Since human angiotensin-converting enzyme 2 (ACE2) serves as a primary receptor for SARS-CoV-2, characterizing ACE2 regions that allow SARS-CoV-2 to enter human cells is essential for designing peptide-based antiviral blockers and elucidating the pathogenesis of the virus. We identified and synthesized a 25-mer mimetic peptide (encompassing positions 22-46 of the ACE2 alpha-helix α1) implicated in the S1 receptor-binding domain (RBD)-ACE2 interface. The mimetic (wild-type, WT) ACE2 peptide significantly inhibited SARS-CoV-2 infection of human pulmonary Calu-3 cells in vitro. In silico protein modeling predicted that residues F28, K31, F32, F40, and Y41 of the ACE2 alpha-helix α1 are critical for the original, Delta, and Omicron strains of SARS-CoV-2 to establish the Spike RBD-ACE2 interface. Substituting these residues with alanine (A) or aspartic acid (D) abrogated the antiviral protective effect of the peptides, indicating that these positions are critical for viral entry into pulmonary cells. WT ACE2 peptide, but not the A or D mutated peptides, exhibited significant interaction with the SARS-CoV-2 S1 RBD, as shown through molecular dynamics simulations. Through identifying the critical amino acid residues of the ACE2 alpha-helix α1, which is necessary for the Spike RBD-ACE2 interface and mobilized during the in vitro viral infection of cells, we demonstrated that the WT ACE2 peptide protects susceptible K18-hACE2 mice against in vivo SARS-CoV-2 infection and is effective for the treatment of COVID-19.
Collapse
Affiliation(s)
- Ernna H Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana C Monteleone-Cassiano
- Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Lucas Tavares
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Jadson C Santos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Thais M Lima
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Giovanni F Gomes
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Pedro P Tanaka
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Cintia J Monteiro
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Matheus Munuera
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Sabrina S Batah
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Alexandre T Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Vitor M Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana P Masson
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Eduardo A Donadi
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Mariangela Dametto
- Renato Archer Technology Information Center, Ministry of Science, Technology and Innovation, Campinas, SP, Brazil
| | - Rodrigo Bonacin
- Renato Archer Technology Information Center, Ministry of Science, Technology and Innovation, Campinas, SP, Brazil
| | - Ronaldo B Martins
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Eurico Arruda Neto
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Luis Lamberti P daSilva
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Geraldo A Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
14
|
Abdolmohammadi-Vahid S, Baradaran B, Adcock IM, Mortaz E. Immune checkpoint inhibitors and SARS-CoV2 infection. Int Immunopharmacol 2024; 137:112419. [PMID: 38865755 DOI: 10.1016/j.intimp.2024.112419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) triggers coronavirus disease 2019 (COVID-19), which predominantly targets the respiratory tract. SARS-CoV-2 infection, especially severe COVID-19, is associated with dysregulated immune responses against the virus, including exaggerated inflammatory responses known as the cytokine storm, together with lymphocyte and NK cell dysfunction known as immune cell exhaustion. Overexpression of negative immune checkpoints such as PD-1 and CTLA-4 plays a considerable role in the dysfunction of immune cells upon SARS-CoV-2 infection. Blockade of these checkpoints has been suggested to improve the clinical outcome of COVID-19 patients by promoting potent immune responses against the virus. In the current review, we provide an overview of the potential of checkpoint inhibitors to induce potent immune responses against SARS-CoV-2 and improving the clinical outcome of severe COVID-19 patients.
Collapse
Affiliation(s)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ian M Adcock
- Respiratory Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Esmaeil Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, USA; Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
15
|
Zhai G, Fu W, Yuan S, Sun P, Zhu C, Zhao C, Zhang X, Xu J. A fusion protein approach to integrate antiviral and anti-inflammatory activities for developing new therapeutics against influenza A virus infection. Antiviral Res 2024; 228:105924. [PMID: 38862076 DOI: 10.1016/j.antiviral.2024.105924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Human interferon α2 (IFNα2) is a cytokine with broad-spectrum antiviral activity, and its engineered forms are widely used to treat viral infections. However, IFNα2 may trigger proinflammatory responses and underlying side effects during treatment. Trefoil factor 2 (TFF2) is a secreted protein with anti-inflammatory properties. Here, we explored whether coupling IFNα2 to TFF2 in a two-in-one fusion form could combine the beneficial effects of both molecules on viral infections toward a more desirable treatment outcome. We engineered two forms of human IFNα2 and TFF2 fusion proteins, IFNα2-TFF2-Fc (ITF) and TFF2-IFNα2-Fc (TIF), and examined their properties in vitro in comparison to IFNα2 and TFF2 alone. RNA-Seq was further used to explore such comparison on dynamic gene regulation at transriptomic level. These in vitro assessments collectively indicated that TIF largely retained the antiviral activity of IFNα2 while being a weaker inflammation inducer, consistent with the presence of TFF2 activity. We further demonstrated the superiority of TIF over IFNα2 or TFF2 alone in treating influenza infection using a mouse infection model. Together, our study provided evidence supporting that, by possessing antiviral activity conferred by IFNα2 with complementation from TFF2 in suppressing the inflammatory side effects, the fusion proteins, particularly TIF, represent more effective agents against influenza and other respiratory viral infections than IFNα2 or TFF2 alone. It implies that merging two molecules with complementary functions holds potential for developing novel therapeutics against viral infections.
Collapse
Affiliation(s)
- Guanxing Zhai
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Weihui Fu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Songhua Yuan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Peng Sun
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Cuisong Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
16
|
Li R, Ye JJ, Gan L, Zhang M, Sun D, Li Y, Wang T, Chang P. Traumatic inflammatory response: pathophysiological role and clinical value of cytokines. Eur J Trauma Emerg Surg 2024; 50:1313-1330. [PMID: 38151578 PMCID: PMC11458723 DOI: 10.1007/s00068-023-02388-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/23/2023] [Indexed: 12/29/2023]
Abstract
Severe trauma is an intractable problem in healthcare. Patients have a widespread immune system response that is complex and vital to survival. Excessive inflammatory response is the main cause of poor prognosis and poor therapeutic effect of medications in trauma patients. Cytokines are signaling proteins that play critical roles in the body's response to injuries, which could amplify or suppress immune responses. Studies have demonstrated that cytokines are closely related to the severity of injuries and prognosis of trauma patients and help present cytokine-based diagnosis and treatment plans for trauma patients. In this review, we introduce the pathophysiological mechanisms of a traumatic inflammatory response and the role of cytokines in trauma patients. Furthermore, we discuss the potential of cytokine-based diagnosis and therapy for post-traumatic inflammatory response, although further clarification to elucidate the underlying mechanisms of cytokines following trauma is warranted.
Collapse
Affiliation(s)
- Rui Li
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Jing Jing Ye
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Lebin Gan
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Mengwei Zhang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Diya Sun
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Yongzheng Li
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People's Republic of China.
| | - Tianbing Wang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China.
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China.
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China.
| | - Panpan Chang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China.
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China.
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China.
| |
Collapse
|
17
|
Huang Q, Yang G, Tang C, Dou B, Hu Y, Liu H, Wu X, Zhang H, Wang H, Xu L, Yang XD, Xu Y, Zheng Y. Rujin Jiedu decoction protects against influenza virus infection by modulating gut microbiota. Heliyon 2024; 10:e34055. [PMID: 39071618 PMCID: PMC11277438 DOI: 10.1016/j.heliyon.2024.e34055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Background Rujin Jiedu decoction (RJJDD) is a classical prescription of Traditional Chinese Medicine that has long been applied to treat pneumonia caused by external infection, but whether and how it benefits influenza virus therapy remains largely unclear. The aim of this study was to investigate the anti-inflammatory effect of RJJDD on the mouse model of influenza and to explore its potential mechanism. Methods The mice were mock-infected with PBS or infected with PR8 virus followed by treatment with RJJDD or antiviral oseltamivir. The weight loss and morbidity of mice were monitored daily. Network pharmacology is used to explore the potential pathways that RJJDD may modulate. qRT-PCR and ELISA were performed to assess the expression of inflammatory cytokines in the lung tissue and macrophages. The intestinal feces were collected for 16S rDNA sequencing to assess the changes in gut microbiota. Results We demonstrate that RJJDD protects against IAV-induced pneumonia. Comprehensive network pharmacology analyses of the Mass Spec-identified components of RJJDD suggest that RJJDD may act through down-regulating key signaling pathways producing inflammatory cytokines, which was experimentally confirmed by cytokine expression analysis in IAV-infected mouse lung tissues and IAV single-strand RNA mimic R837-induced macrophages. Furthermore, gut microbiota analysis indicates that RJJDD prevented IAV-induced dysbiosis of host intestinal flora, thereby offering a mechanistic explanation for RJJDD's efficacy in influenza pneumonia. Conclusion This study defines a previously uncharacterized role for RJJDD in protecting against influenza likely by maintaining homeostasis of gut microbiota, and provides a new therapeutic option for severe influenza.
Collapse
Affiliation(s)
- Qilin Huang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guizhen Yang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chenchen Tang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Biao Dou
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - You Hu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui Liu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao Wu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huan Zhang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haikun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lirong Xu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Dong Yang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yanwu Xu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
18
|
Padín JF, Pérez-Ortiz JM, Redondo-Calvo FJ. Aprotinin (I): Understanding the Role of Host Proteases in COVID-19 and the Importance of Pharmacologically Regulating Their Function. Int J Mol Sci 2024; 25:7553. [PMID: 39062796 PMCID: PMC11277036 DOI: 10.3390/ijms25147553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Proteases are produced and released in the mucosal cells of the respiratory tract and have important physiological functions, for example, maintaining airway humidification to allow proper gas exchange. The infectious mechanism of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), takes advantage of host proteases in two ways: to change the spatial conformation of the spike (S) protein via endoproteolysis (e.g., transmembrane serine protease type 2 (TMPRSS2)) and as a target to anchor to epithelial cells (e.g., angiotensin-converting enzyme 2 (ACE2)). This infectious process leads to an imbalance in the mucosa between the release and action of proteases versus regulation by anti-proteases, which contributes to the exacerbation of the inflammatory and prothrombotic response in COVID-19. In this article, we describe the most important proteases that are affected in COVID-19, and how their overactivation affects the three main physiological systems in which they participate: the complement system and the kinin-kallikrein system (KKS), which both form part of the contact system of innate immunity, and the renin-angiotensin-aldosterone system (RAAS). We aim to elucidate the pathophysiological bases of COVID-19 in the context of the imbalance between the action of proteases and anti-proteases to understand the mechanism of aprotinin action (a panprotease inhibitor). In a second-part review, titled "Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral Conditions", we explain in depth the pharmacodynamics, pharmacokinetics, toxicity, and use of aprotinin as an antiviral drug.
Collapse
Affiliation(s)
- Juan Fernando Padín
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
| | - José Manuel Pérez-Ortiz
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco Javier Redondo-Calvo
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
- Department of Anaesthesiology and Critical Care Medicine, University General Hospital, 13005 Ciudad Real, Spain
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13005 Ciudad Real, Spain
| |
Collapse
|
19
|
Corrao S, Raspanti M, Agugliaro F, Gervasi F, Di Bernardo F, Natoli G, Argano C. Safety of High-Dose Vitamin C in Non-Intensive Care Hospitalized Patients with COVID-19: An Open-Label Clinical Study. J Clin Med 2024; 13:3987. [PMID: 38999551 PMCID: PMC11242388 DOI: 10.3390/jcm13133987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Vitamin C has been used as an antioxidant and has been proven effective in boosting immunity in different diseases, including coronavirus disease (COVID-19). An increasing awareness was directed to the role of intravenous vitamin C in COVID-19. Methods: In this study, we aimed to assess the safety of high-dose intravenous vitamin C added to the conventional regimens for patients with different stages of COVID-19. An open-label clinical trial was conducted on patients with COVID-19. One hundred four patients underwent high-dose intravenous administration of vitamin C (in addition to conventional therapy), precisely 10 g in 250 cc of saline solution in slow infusion (60 drops/min) for three consecutive days. At the same time, 42 patients took the standard-of-care therapy. Results: This study showed the safety of high-dose intravenous administration of vitamin C. No adverse reactions were found. When we evaluated the renal function indices and estimated the glomerular filtration rate (eGRF, calculated with the CKD-EPI Creatinine Equation) as the main side effect and contraindication related to chronic renal failure, no statistically significant differences between the two groups were found. High-dose vitamin C treatment was not associated with a statistically significant reduction in mortality and admission to the intensive care unit, even if the result was bound to the statistical significance. On the contrary, age was independently associated with admission to the intensive care unit and in-hospital mortality as well as noninvasive ventilation (N.I.V.) and continuous positive airway pressure (CPAP) (OR 2.17, 95% CI 1.41-3.35; OR 7.50, 95% CI 1.97-28.54; OR 8.84, 95% CI 2.62-29.88, respectively). When considering the length of hospital stay, treatment with high-dose vitamin C predicts shorter hospitalization (OR -4.95 CI -0.21--9.69). Conclusions: Our findings showed that an intravenous high dose of vitamin C is configured as a safe and promising therapy for patients with moderate to severe COVID-19.
Collapse
Affiliation(s)
- Salvatore Corrao
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (F.A.); (G.N.); (C.A.)
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Massimo Raspanti
- Cardiology and Intensive Care Unit, A. Aiello Hospital, 91026 Mazzara del Vallo, Italy;
| | - Federica Agugliaro
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (F.A.); (G.N.); (C.A.)
| | - Francesco Gervasi
- Specialized Laboratory of Oncology, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy;
| | - Francesca Di Bernardo
- Department of Microbiology and Virology, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy;
| | - Giuseppe Natoli
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (F.A.); (G.N.); (C.A.)
| | - Christiano Argano
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (F.A.); (G.N.); (C.A.)
| |
Collapse
|
20
|
SINGH MAIREMBAMSTELIN, YELLABOINA SAILU, ANSARI MAIRAJAHMED. A COMPREHENSIVE REVIEW ON THE MULTIFACETED INTERACTIONS BETWEEN HOST IMMUNITY AND VIRAL PATHOGENESIS IN COVID-19. INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICS 2024:37-45. [DOI: 10.22159/ijap.2024v16i4.50576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The Corona Virus Disease (COVID-19) pandemic has presented unparalleled challenges, marked by a wide array of clinical presentations spanning from asymptomatic carriage to severe respiratory compromise and multi-organ dysfunction. It is crucial to comprehend the intricate interplay between host immunity and viral pathogenesis to elucidate disease mechanisms and guide therapeutic strategies. This review delves into the multifaceted interactions between host immunity and viral pathogenesis in COVID-19, with a particular focus on the impact of host factors such as age, sex, comorbidities, and genetic predisposition on disease severity. Utilizing state-of-the-art methodologies, including multiomics approaches, has yielded an expansive molecular portrayal of COVID-19, furnishing innovative perspectives on host immune reactions, viral pathogenicity, and disease advancement. Establishing standardized methodologies for data analysis and interpretation while concurrently addressing ethical considerations and promoting interdisciplinary collaboration are crucial steps in advancing our comprehension of COVID-19 pathogenesis. Despite obstacles like complexities in data integration, this review highlights the imperative of persistent endeavors in deciphering the complex interactions between hosts and pathogens to alleviate the global health ramifications of COVID-19.
Collapse
|
21
|
Rosario-Rodríguez LJ, Cantres-Rosario YM, Carrasquillo-Carrión K, Rosa-Díaz A, Rodríguez-De Jesús AE, Rivera-Nieves V, Tosado-Rodríguez EL, Méndez LB, Roche-Lima A, Bertrán J, Meléndez LM. Plasma Proteins Associated with COVID-19 Severity in Puerto Rico. Int J Mol Sci 2024; 25:5426. [PMID: 38791465 PMCID: PMC11121485 DOI: 10.3390/ijms25105426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Viral strains, age, and host factors are associated with variable immune responses against SARS-CoV-2 and disease severity. Puerto Ricans have a genetic mixture of races: European, African, and Native American. We hypothesized that unique host proteins/pathways are associated with COVID-19 disease severity in Puerto Rico. Following IRB approval, a total of 95 unvaccinated men and women aged 21-71 years old were recruited in Puerto Rico from 2020-2021. Plasma samples were collected from COVID-19-positive subjects (n = 39) and COVID-19-negative individuals (n = 56) during acute disease. COVID-19-positive individuals were stratified based on symptomatology as follows: mild (n = 18), moderate (n = 13), and severe (n = 8). Quantitative proteomics was performed in plasma samples using tandem mass tag (TMT) labeling. Labeled peptides were subjected to LC/MS/MS and analyzed by Proteome Discoverer (version 2.5), Limma software (version 3.41.15), and Ingenuity Pathways Analysis (IPA, version 22.0.2). Cytokines were quantified using a human cytokine array. Proteomics analyses of severely affected COVID-19-positive individuals revealed 58 differentially expressed proteins. Cadherin-13, which participates in synaptogenesis, was downregulated in severe patients and validated by ELISA. Cytokine immunoassay showed that TNF-α levels decreased with disease severity. This study uncovers potential host predictors of COVID-19 severity and new avenues for treatment in Puerto Ricans.
Collapse
Affiliation(s)
- Lester J. Rosario-Rodríguez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico;
| | - Yadira M. Cantres-Rosario
- Translational Proteomics Center, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| | - Kelvin Carrasquillo-Carrión
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (E.L.T.-R.); (A.R.-L.)
| | - Alexandra Rosa-Díaz
- Interdisciplinary Studies, Natural Sciences, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (A.R.-D.); (V.R.-N.)
| | - Ana E. Rodríguez-De Jesús
- Translational Proteomics Center, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| | - Verónica Rivera-Nieves
- Interdisciplinary Studies, Natural Sciences, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (A.R.-D.); (V.R.-N.)
| | - Eduardo L. Tosado-Rodríguez
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (E.L.T.-R.); (A.R.-L.)
| | - Loyda B. Méndez
- Department of Science & Technology, Ana G. Mendez University, Carolina 00928, Puerto Rico;
| | - Abiel Roche-Lima
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (E.L.T.-R.); (A.R.-L.)
| | - Jorge Bertrán
- Infectious Diseases, Auxilio Mutuo Hospital, San Juan 00919, Puerto Rico;
| | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico;
- Translational Proteomics Center, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| |
Collapse
|
22
|
Riyaz Tramboo S, Elkhalifa AM, Quibtiya S, Ali SI, Nazir Shah N, Taifa S, Rakhshan R, Hussain Shah I, Ahmad Mir M, Malik M, Ramzan Z, Bashir N, Ahad S, Khursheed I, Bazie EA, Mohamed Ahmed E, Elderdery AY, Alenazy FO, Alanazi A, Alzahrani B, Alruwaili M, Manni E, E. Hussein S, Abdalhabib EK, Nabi SU. The critical impacts of cytokine storms in respiratory disorders. Heliyon 2024; 10:e29769. [PMID: 38694122 PMCID: PMC11058722 DOI: 10.1016/j.heliyon.2024.e29769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Cytokine storm (CS) refers to the spontaneous dysregulated and hyper-activated inflammatory reaction occurring in various clinical conditions, ranging from microbial infection to end-stage organ failure. Recently the novel coronavirus involved in COVID-19 (Coronavirus disease-19) caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) has been associated with the pathological phenomenon of CS in critically ill patients. Furthermore, critically ill patients suffering from CS are likely to have a grave prognosis and a higher case fatality rate. Pathologically CS is manifested as hyper-immune activation and is clinically manifested as multiple organ failure. An in-depth understanding of the etiology of CS will enable the discovery of not just disease risk factors of CS but also therapeutic approaches to modulate the immune response and improve outcomes in patients with respiratory diseases having CS in the pathogenic pathway. Owing to the grave consequences of CS in various diseases, this phenomenon has attracted the attention of researchers and clinicians throughout the globe. So in the present manuscript, we have attempted to discuss CS and its ramifications in COVID-19 and other respiratory diseases, as well as prospective treatment approaches and biomarkers of the cytokine storm. Furthermore, we have attempted to provide in-depth insight into CS from both a prophylactic and therapeutic point of view. In addition, we have included recent findings of CS in respiratory diseases reported from different parts of the world, which are based on expert opinion, clinical case-control research, experimental research, and a case-controlled cohort approach.
Collapse
Affiliation(s)
- Shahana Riyaz Tramboo
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Ahmed M.E. Elkhalifa
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, 11673, Saudi Arabia
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Syed Quibtiya
- Department of General Surgery, Sher-I-Kashmir Institute of Medical Sciences, Medical College, Srinagar, 190011, Jammu & Kashmir, India
| | - Sofi Imtiyaz Ali
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Naveed Nazir Shah
- Department of Chest Medicine, Govt. Medical College, Srinagar, 191202, Jammu & Kashmir, India
| | - Syed Taifa
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Rabia Rakhshan
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | - Iqra Hussain Shah
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Muzafar Ahmad Mir
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Masood Malik
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Zahid Ramzan
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Nusrat Bashir
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Shubeena Ahad
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Ibraq Khursheed
- Department of Zoology, Central University of Kashmir, 191201, Nunar, Ganderbal, Jammu & Kashmir, India
| | - Elsharif A. Bazie
- Pediatric Department, Faculty of Medicine, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Elsadig Mohamed Ahmed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
- Department of Clinical Chemistry, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Abozer Y. Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Fawaz O. Alenazy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Awadh Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Muharib Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Emad Manni
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Sanaa E. Hussein
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Ezeldine K. Abdalhabib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Showkat Ul Nabi
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| |
Collapse
|
23
|
Zhu Y, Cao X, Ying R, Liu K, Chai Y, Luo M, Huang Q, Gao P, Zhang C. Mapping the vast landscape of multisystem complications of COVID-19: Bibliometric analysis. Heliyon 2024; 10:e30760. [PMID: 38765136 PMCID: PMC11098853 DOI: 10.1016/j.heliyon.2024.e30760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
Background With the rapid global spread of COVID-19, it has become evident that the virus can lead to multisystem complications, leading to a significant increase in related publications. Bibliometrics serves as a valuable tool for identifying highly cited literature and research hotspots within specific areas. Objective The aim of this study is to identify current research hotspots and future trends in COVID-19 complications. Methods The dataset was obtained from the Web of Science Core Collection, covering COVID-19 complications from December 8, 2019, to October 31, 2022. Various aspects, including publication general information, authors, journals, co-cited authors, co-cited references, research hotspots, and future trends, were subjected to analysis. Visual analysis was conducted using VOSviewer, The Online Analysis Platform of Literature Metrology, and Charticulator. Results There were 4597 articles in the study. The top three countries with the most published articles are the USA (n = 1350, 29.4 %), China (n = 765, 16.6 %), and Italy (n = 623, 13.6 %). USA and China have the closest collaborative relationship. The institute with the largest number of publications is Huazhong University of Science and Technology, followed by Harvard Medical School. Nevertheless, half of the top 10 institutes belong to the USA. "Rezaei, Nima" published 13 articles and ranked first, followed by "Yaghi, Shadi" with 12 articles and "Frontera, Jennifer" with 12 articles. The journal with the largest number of publications is "Journal of Clinical Medicine". The top 3 co-cited authors are "Zhou, Fei", "Guan, Wei-Jie", "Huang, Chaolin". The top 3 co-cited references addressed COVID-19's clinical features in China and noticed that COVID-19 patients had a wide range of complications. We also list four research hotspots. Conclusions This study conducted a bibliometric visual analysis of the literature on COVID-19 complications and summarized the current research hotspots. This study may provide valuable insights into the complications of COVID-19.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyu Cao
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongtao Ying
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilu Chai
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maocai Luo
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Huang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peiyang Gao
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
24
|
Lone AH, Tang J, Pignalosa A, Hsu HH, Abdul-Sater AA, Sweeney G. A novel blood-based bioassay to monitor adiponectin signaling. Int Immunopharmacol 2024; 132:111890. [PMID: 38547772 DOI: 10.1016/j.intimp.2024.111890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 05/01/2024]
Abstract
The diverse beneficial effects of adiponectin-receptor signaling, including its impact on the regulation of inflammatory processes in vivo, have resulted in development of adiponectin receptor agonists as a treatment for metabolic disorders. However, there are no established non-invasive bioassays for detection of adiponectin target engagement in humans or animal models. Here, we designed an assay using small amounts of blood to assess adiponectin action. Specifically, we tested effects of the small 10-amino acid peptide adiponectin receptor agonist, ALY688, in a sublethal LPS endotoxemia model in mice. LPS-induced pro-inflammatory cytokine levels in serum were significantly reduced in mice treated with ALY688, assessed via multiplex ELISA in flow cytometry. Furthermore, ALY688 alone significantly induced TGF-β release in serum 1 h after treatment and was elevated for up to 24 h. Additionally, using a flow-cytometry panel for detection of changes in circulating immune cell phenotypes, we observed a significant increase in absolute T cell counts in mice after ALY688 treatment. To assess changes in intracellular signaling effectors downstream of adiponectin, phospho-flow cytometry was conducted. There was a significant increase in phosphorylation of AMPK and p38-MAPK in mice after ALY688 treatment. We then used human donor immune cells (PBMCs) treated with ALY688 ex vivo and observed elevation of AMPK and p38-MAPK phosphorylation from baseline in response to ALY688. Together, these results indicate we can detect adiponectin action on immune cells in vivo by assessing adiponectin signaling pathway for AMPK and p38-MAPK, as well as pro-inflammatory cytokine levels. This new approach provides a blood-based bioassay for screening adiponectin action.
Collapse
Affiliation(s)
| | - Jialing Tang
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Henry H Hsu
- Allysta Pharmaceuticals Inc., Bellevue, WA, USA
| | - Ali A Abdul-Sater
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada.
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada.
| |
Collapse
|
25
|
Chen L, Dai X. Venous thromboembolism and severe COVID-19: a Mendelian randomization trial and transcriptomic analysis. Front Immunol 2024; 15:1363598. [PMID: 38742101 PMCID: PMC11089160 DOI: 10.3389/fimmu.2024.1363598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Venous thromboembolism (VTE) is known to be intricately linked to severe COVID-19 (sCOVID-19) occurrence. Herein, we employed univariable Mendelian randomization (MR) and transcriptome analysis to predict the causal association and associated signaling networks between VTE and sCOVID-19. Methods Potential VTE and sCOVID-19 association was assessed using MR-Egger, weighted median, simple mode, weighted mode, and inverse variance weighted (IVW) regression. We conducted independent univariable analyses involving VTE and sCOVID-19. Using heterogeneity, pleiotropy, and the Leave-One-Out examinations, we performed sensitivity analyses. Thereafter, we performed transcriptome analysis of the GSE164805 dataset to identify differentially expressed genes (DEGs) linked to single nucleotide polymorphisms (SNPs). Lastly, we conducted immune analyses. Results Based on our univariable analysis, VTE was a strong indicator of sCOVID-19 development, and it was intricately linked to sCOVID-19. We further conducted sensitivity analysis to demonstrate the reliability of our results. Using differential analysis, we identified 15 major genes, namely, ACSS2, CEP250, CYP4V2, DDB2, EIF6, GBGT1, GSS, MADD, MAPK8IP1, MMP24, YBPC3, NT5DC3, PROCR, SURF6, and YIPF2, which were strongly connected to suppressive adaptive immune as well as augmented inflammatory cells. In addition, we uncovered strong associations with most differential immunologic gene sets, such as, the Major Histocompatibility Complex (MHC), immunoactivators, and immunosuppressors. Conclusion Herein, we demonstrated we strong association between VTE and enhanced sCOVID-19 risk. We also identified 15 DEGs which potentially contribute to the shared immunologic pathogenesis between VTE and sCOVID-19.
Collapse
Affiliation(s)
- Liang Chen
- Department of Infectious Diseases, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical College of Nanjing University, Nanjing, China
| | - Xiaoting Dai
- Department of Infectious Diseases, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| |
Collapse
|
26
|
Li H, Wang X, Wang S, Feng X, Wang L, Li Y. Acceptance, safety, and immunogenicity of a booster dose of inactivated SARS-CoV-2 vaccine in patients with primary biliary cholangitis. Heliyon 2024; 10:e28405. [PMID: 38560178 PMCID: PMC10981126 DOI: 10.1016/j.heliyon.2024.e28405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Inactivated coronavirus disease 2019 (COVID-19) vaccines showed impaired immunogenicity in some autoimmune diseases, but it remains unclear in primary biliary cholangitis (PBC). This study aimed to explore the antibody response to the inactivated COVID-19 vaccine in individuals with PBC, as well as to evaluate coverage, safety, and attitudes toward the COVID-19 vaccine among them. Two cohorts of patients with PBC were enrolled in this study. One cohort was arranged to evaluate the immunogenicity of the inactivated COVID-19 vaccine, another cohort participated in an online survey. The titers of the anti-receptor-binding domain (RBD)-specific immunoglobulin G (IgG), neutralizing antibody (NAb) toward severe acute respiratory syndrome coronavirus 2 wild-type, and NAb toward Omicron BA.4/5 subvariants were detected to assess antibody response from the vaccine. After booster vaccination for more than six months, patients with PBC had significantly lowered levels of anti-RBD-specific IgG compared to HCs, and the inhibition rates of NAb toward wild-type also declined in individuals with PBC. The detected levels of NAb toward Omicron BA.4/5 were below the positive threshold in patients with PBC and HCs. Laboratory parameters did not significantly correlate with any of the three antibodies. The online survey revealed that 24% of patients with PBC received three COVID-19 vaccines, while 63% were unimmunized. Adverse effect rates after the first, second, and third vaccine doses were 6.1%, 10.3%, and 9.5%, respectively. Unvaccinated patients with PBC were more worried about the safety of the vaccine than those who were vaccinated (P = 0.004). As a result, this study fills the immunological assessment gap in patients with PBC who received inactivated COVID-19 vaccines.
Collapse
Affiliation(s)
- Haolong Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xu Wang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Siyu Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xinxin Feng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Li Wang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Kalinin RE, Suchkov IA, Raitsev SN, Zvyagina VI, Bel'skikh ES. Role of Hypoxia-Inducible Factor 1α in Adaptation to Hypoxia in the Pathogenesis of Novel Coronavirus Disease 2019. I.P. PAVLOV RUSSIAN MEDICAL BIOLOGICAL HERALD 2024; 32:133-144. [DOI: 10.17816/pavlovj165536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
INTRODUCTION: A novel coronavirus (severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2)) emerged in December 2019 and rapidly spread over the world having provoked a pandemic of respiratory disease. This highly pathogenic virus can attack the lung tissue and derange gas exchange leading to acute respiratory distress syndrome and systemic hypoxia. Hypoxic conditions trigger activation of adaptation mechanisms including hypoxia-inducible factor-1á (HIF-1á) which is involved in the regulation of the key processes, e. g, proliferation and metabolism of cells and angiogenesis. Besides, the level of HIF-1á expression is associated with the intensity of the immune response of an organism including that of the innate immunity mediating inflammatory reaction. Therefore, understanding the peculiarities of the mechanisms underlying the pathogenesis of this disease is of great importance for effective therapy of coronavirus disease 2019 (COVID-19).
AIM: Analysis of the current data on HIF-1á and its effect on the pathogenesis and progression of COVID-19.
The analysis of the relevant domestic and international literature sources was performed in the following sections: HIF-1á as a key factor of adaptation to hypoxia, targets for HIF-1á in the aspect of the pathogenesis of COVID-19, disorders in HIF-1á-mediated adaptation to hypoxia as an element of the pathogenesis of hyperactivation of the immune cells.
CONCLUSION: HIF-1á prevents penetration of SARS-CoV-2 virus into a cell and primarily acts as the main regulator of the proinflammatory activity at the inflammation site surrounded by hypoxia. In the conditions of the deranged metabolic flexibility, a high level of HIF-1á evokes an excessive inflammatory response of the immune cells. A high HIF-1á level in cells of the inflammation focus is associated with enhanced production of the factors of angiogenesis mediating vascular permeability and capillary leakage process. This is accompanied by tissue damage and organ failure. At the same time, HIF-1á can mediate the anti-inflammatory effect through activation of adenosine receptor-dependent pathway, which is considered as a probable protection of cells and organs against damage by hyperactive immune cells.
Collapse
|
28
|
Wu S, Liao G, Mao J, Yan H, Chen J, Peng J. Factors Associated with Mortality Among Severe Omicron Patients for COVID-19. Infect Drug Resist 2024; 17:1309-1319. [PMID: 38585415 PMCID: PMC10999197 DOI: 10.2147/idr.s450504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose The purpose of the study was to explore the potential risk factors of mortality in patients with severe pneumonia during the omicron pandemic in South China in 2022. Methods Clinical data was collected from patients hospitalized with omicron COVID-19. Then, patients were categorized into the non-survival and survival groups. A comprehensive analysis was conducted to analyze the factors associated with negative outcome in individuals suffering from severe omicron COVID-19. Results In this study, 155 severe COVID-19 patients were included, comprising 55 non-survivors and 100 survivors. Non-survivors, in comparison to survivors, exhibited elevated levels of various biomarkers including neutrophil count, hypersensitive troponin T, urea, creatinine, C-reactive protein, procalcitonin, interleukin-6, plasma D-dimer, and derived neutrophil-to-lymphocyte ratio (dNLR) (P < 0.05). They also displayed reduced lymphocyte count, platelet count, and albumin levels (P < 0.05) and were more prone to developing comorbidities, including shock, acute cardiac and renal injury, acute respiratory distress syndrome, coagulation disorders, and secondary infections. Platelet count (PLT) <100 × 10^/L, interleukin-6 (IL-6) >100 pg/mL, and dNLR >5.0 independently contributed to the risk of death in patients suffering from severe COVID-19. Conclusion PLT, IL-6, and dNRL independently contributed to the risk of mortality in patients with severe pneumonia during the 2022 omicron pandemic in South China.
Collapse
Affiliation(s)
- Shuting Wu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Guichan Liao
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jingchun Mao
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Haiming Yan
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Juanjuan Chen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jie Peng
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
29
|
Sen’kova AV, Savin IA, Chernolovskaya EL, Davydova AS, Meschaninova MI, Bishani A, Vorobyeva MA, Zenkova MA. LPS-Induced Acute Lung Injury: Analysis of the Development and Suppression by the TNF-α-Targeting Aptamer. Acta Naturae 2024; 16:61-71. [PMID: 39188267 PMCID: PMC11345095 DOI: 10.32607/actanaturae.27393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 08/28/2024] Open
Abstract
Acute lung injury (ALI) is a specific form of lung inflammation characterized by diffuse alveolar damage, noncardiogenic pulmonary edema, as well as a pulmonary and systemic inflammation. The pathogenesis of ALI involves a cascade inflammatory response accompanied by an increase in the local and systemic levels of proinflammatory cytokines and chemokines. The development of molecular tools targeting key components of cytokine signaling appears to be a promising approach in ALI treatment. The development of lipopolysaccharide (LPS)-induced ALI, as well as the feasibility of suppressing it by an aptamer targeting the proinflammatory cytokine TNF-α, was studied in a mouse model. The TNF-α level was shown to increase significantly and remain steadily high during the development of ALI. LPS-induced morphological signs of inflammation in the respiratory system become most pronounced 24 h after induction. Intranasal administration of TNF-α-targeting aptamers conjugated with polyethylene glycol (PEG-aptTNF-α) to mice with ALI reduced the intensity of inflammatory changes in lung tissue. Assessment of the levels of potential TNF-α target genes (Usp18, Traf1, and Tnfaip3) showed that their expression levels in the lungs increase during ALI development, while declining after the application of PEG-aptTNF-α. Therefore, topical use of TNF-α- targeting aptamers may be an efficient tool for treating ALI and other inflammatory lung diseases.
Collapse
Affiliation(s)
- A. V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russian Federation
| | - I. A. Savin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russian Federation
| | - E. L. Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russian Federation
| | - A. S. Davydova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russian Federation
| | - M. I. Meschaninova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russian Federation
| | - A. Bishani
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russian Federation
| | - M. A. Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russian Federation
| | - M. A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russian Federation
| |
Collapse
|
30
|
Hatch CJ, Piombo SD, Fang JS, Gach JS, Ewald ML, Van Trigt WK, Coon BG, Tong JM, Forthal DN, Hughes CCW. SARS-CoV-2 infection of endothelial cells, dependent on flow-induced ACE2 expression, drives hypercytokinemia in a vascularized microphysiological system. Front Cardiovasc Med 2024; 11:1360364. [PMID: 38576426 PMCID: PMC10991679 DOI: 10.3389/fcvm.2024.1360364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for COVID-19, has caused nearly 7 million deaths worldwide. Severe cases are marked by an aggressive inflammatory response known as hypercytokinemia, contributing to endothelial damage. Although vaccination has reduced hospitalizations, hypercytokinemia persists in breakthrough infections, emphasizing the need for disease models mimicking this response. Using a 3D microphysiological system (MPS), we explored the vascular role in SARS-CoV-2-induced hypercytokinemia. Methods The vascularized micro-organ (VMO) MPS, consisting of human-derived primary endothelial cells (ECs) and stromal cells within an extracellular matrix, was used to model SARS-CoV-2 infection. A non-replicative pseudotyped virus fused to GFP was employed, allowing visualization of viral entry into human ECs under physiologic flow conditions. Expression of ACE2, TMPRSS2, and AGTR1 was analyzed, and the impact of viral infection on ACE2 expression, vascular inflammation, and vascular morphology was assessed. Results The VMO platform facilitated the study of COVID-19 vasculature infection, revealing that ACE2 expression increased significantly in direct response to shear stress, thereby enhancing susceptibility to infection by pseudotyped SARS-CoV-2. Infected ECs secreted pro-inflammatory cytokines, including IL-6 along with coagulation factors. Cytokines released by infected cells were able to activate downstream, non-infected EC, providing an amplification mechanism for inflammation and coagulopathy. Discussion Our findings highlight the crucial role of vasculature in COVID-19 pathogenesis, emphasizing the significance of flow-induced ACE2 expression and subsequent inflammatory responses. The VMO provides a valuable tool for studying SARS-CoV-2 infection dynamics and evaluating potential therapeutics.
Collapse
Affiliation(s)
- Christopher J. Hatch
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| | - Sebastian D. Piombo
- Department of Pediatrics, School of Medicine, Institute for Clinical and Translational Science, University of California, Irvine, CA, United States
| | - Jennifer S. Fang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Johannes S. Gach
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, CA, United States
| | - Makena L. Ewald
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - William K. Van Trigt
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Brian G. Coon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jay M. Tong
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| | - Donald N. Forthal
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| |
Collapse
|
31
|
Huang W, Liu W, Yu T, Zhang Z, Zhai L, Huang P, Lu Y. Effect of anti-COVID-19 drugs on patients with cancer. Eur J Med Chem 2024; 268:116214. [PMID: 38367490 DOI: 10.1016/j.ejmech.2024.116214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/11/2024] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
The clinical treatment of patients with cancer who are also diagnosed with coronavirus disease (COVID-19) has been a challenging issue since the outbreak of COVID-19. Therefore, it is crucial to understand the effects of commonly used drugs for treating COVID-19 in patients with cancer. Hence, this review aims to provide a reference for the clinical treatment of patients with cancer to minimize the losses caused by the COVID-19 pandemic. In this study, we also focused on the relationship between COVID-19, commonly used drugs for treating COVID-19, and cancer. We specifically investigated the effect of these drugs on tumor cell proliferation, migration, invasion, and apoptosis. The potential mechanisms of action of these drugs were discussed and evaluated. We found that most of these drugs showed inhibitory effects on tumors, and only in a few cases had cancer-promoting effects. Furthermore, inappropriate usage of these drugs may lead to irreversible kidney and heart damage. Finally, we have clarified the use of different drugs, which can provide useful guidance for the clinical treatment of cancer patients diagnosed with COVID-19.
Collapse
Affiliation(s)
- Weicai Huang
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Wenyu Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Tingting Yu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Zhaoyang Zhang
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Lingyun Zhai
- Gynecology Department, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Panpan Huang
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| | - Yao Lu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
32
|
Yan H, Liu Y, Li X, Yu B, He J, Mao X, Yu J, Huang Z, Luo Y, Luo J, Wu A, Chen D. Leucine alleviates cytokine storm syndrome by regulating macrophage polarization via the mTORC1/LXRα signaling pathway. eLife 2024; 12:RP89750. [PMID: 38442142 PMCID: PMC10942637 DOI: 10.7554/elife.89750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Cytokine storms are associated with severe pathological damage and death in some diseases. Excessive activation of M1 macrophages and the subsequent secretion of pro-inflammatory cytokines are a major cause of cytokine storms. Therefore, promoting the polarization of M2 macrophages to restore immune balance is a promising therapeutic strategy for treating cytokine storm syndrome (CSS). This study was aimed at investigating the potential protective effects of leucine on lipopolysaccharide (LPS)-induced CSS in mice and exploring the underlying mechanisms. CSS was induced by LPS administration in mice, which were concurrently administered leucine orally. In vitro, bone marrow derived macrophages (BMDMs) were polarized to M1 and M2 phenotypes with LPS and interleukin-4 (IL-4), respectively, and treated with leucine. Leucine decreased mortality in mice treated with lethal doses of LPS. Specifically, leucine decreased M1 polarization and promoted M2 polarization, thus diminishing pro-inflammatory cytokine levels and ameliorating CSS in mice. Further studies revealed that leucine-induced macrophage polarization through the mechanistic target of rapamycin complex 1 (mTORC1)/liver X receptor α (LXRα) pathway, which synergistically enhanced the expression of the IL-4-induced M2 marker Arg1 and subsequent M2 polarization. In summary, this study revealed that leucine ameliorates CSS in LPS mice by promoting M2 polarization through the mTORC1/LXRα/Arg1 signaling pathway. Our findings indicate that a fundamental link between metabolism and immunity contributes to the resolution of inflammation and the repair of damaged tissues.
Collapse
Affiliation(s)
- Hui Yan
- Key Laboratory of Animal Disease Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural UniversityChengduChina
| | - Yao Liu
- Key Laboratory of Animal Disease Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural UniversityChengduChina
| | - Xipeng Li
- Key Laboratory of Animal Disease Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural UniversityChengduChina
| | - Bing Yu
- Key Laboratory of Animal Disease Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural UniversityChengduChina
| | - Jun He
- Key Laboratory of Animal Disease Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural UniversityChengduChina
| | - Xiangbing Mao
- Key Laboratory of Animal Disease Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural UniversityChengduChina
| | - Jie Yu
- Key Laboratory of Animal Disease Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural UniversityChengduChina
| | - Zhiqing Huang
- Key Laboratory of Animal Disease Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural UniversityChengduChina
| | - Yuheng Luo
- Key Laboratory of Animal Disease Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural UniversityChengduChina
| | - Junqiu Luo
- Key Laboratory of Animal Disease Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural UniversityChengduChina
| | - Aimin Wu
- Key Laboratory of Animal Disease Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural UniversityChengduChina
| | - Daiwen Chen
- Key Laboratory of Animal Disease Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural UniversityChengduChina
| |
Collapse
|
33
|
Xu Z, Wang H, Jiang S, Teng J, Zhou D, Chen Z, Wen C, Xu Z. Brain Pathology in COVID-19: Clinical Manifestations and Potential Mechanisms. Neurosci Bull 2024; 40:383-400. [PMID: 37715924 PMCID: PMC10912108 DOI: 10.1007/s12264-023-01110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/25/2023] [Indexed: 09/18/2023] Open
Abstract
Neurological manifestations of coronavirus disease 2019 (COVID-19) are less noticeable than the respiratory symptoms, but they may be associated with disability and mortality in COVID-19. Even though Omicron caused less severe disease than Delta, the incidence of neurological manifestations is similar. More than 30% of patients experienced "brain fog", delirium, stroke, and cognitive impairment, and over half of these patients presented abnormal neuroimaging outcomes. In this review, we summarize current advances in the clinical findings of neurological manifestations in COVID-19 patients and compare them with those in patients with influenza infection. We also illustrate the structure and cellular invasion mechanisms of SARS-CoV-2 and describe the pathway for central SARS-CoV-2 invasion. In addition, we discuss direct damage and other pathological conditions caused by SARS-CoV-2, such as an aberrant interferon response, cytokine storm, lymphopenia, and hypercoagulation, to provide treatment ideas. This review may offer new insights into preventing or treating brain damage in COVID-19.
Collapse
Affiliation(s)
- Zhixing Xu
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hui Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siya Jiang
- Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiao Teng
- Affiliated Lin'an People's Hospital of Hangzhou Medical College, First People's Hospital of Hangzhou Lin'an District, Lin'an, Hangzhou, 311300, China
| | - Dongxu Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhong Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chengping Wen
- Laboratory of Rheumatology and Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhenghao Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Laboratory of Rheumatology and Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
34
|
Mahmoodi M, Mohammadi Henjeroei F, Hassanshahi G, Nosratabadi R. Do chemokine/chemokine receptor axes play paramount parts in trafficking and oriented locomotion of monocytes/macrophages toward the lungs of COVID-19 infected patients? A systematic review. Cytokine 2024; 175:156497. [PMID: 38190792 DOI: 10.1016/j.cyto.2023.156497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/19/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
The COVID-19 (coronavirus disease 2019) is a well-defined viral infection, resulting from SARS-CoV-2 (severe acute respiratory syndrome- coronavirus-2). The innate immune system serves as the first line of defense to limit viral spreading and subsequently stimulate adaptive immune responses by the prominent aids of its cellular and molecular arms. Monocytes are defined as the most prominent innate immune cells (IICs) that are reactive against invading pathogens. These cells support host protection against the virus that is mediated by several non-specific mechanisms such as phagocytosis, producing antiviral enzymes, and recruitment of immune cells toward and into the infected tissues. They have the ability to egress from blood and migrate to the SARS-CoV-2 infected regions by the aid of some defense-related functions like chemotaxis, which is mediated by chemical compounds, e.g., chemokines. Chemokines, in addition to their related ligands are categorized within the most important and deserved agents involved in oriented trafficking of monocytes/macrophages towards and within the lung parenchyma in both steady state and pathological circumstances, including COVID-19-raised infection. However, the overexpression of chemokines could have deleterious effects on various organs through the induction of cytokine storm and may be the most important leading mechanisms in the pathogenesis of COVID-19. Authors have aimed the current review article to describe present knowledge about the interplay between monocytes/macrophages and SARS-CoV-2 with a focus on the ability of IICs to migrate and home into the lung of COVID-19 patients through various chemokine-chemokine receptor axes to promote our understanding regarding this disease.
Collapse
Affiliation(s)
- Merat Mahmoodi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Mohammadi Henjeroei
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, RafsanjanUniversity of Medical Sciences, Rafsanjan, Iran
| | - Reza Nosratabadi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
35
|
Yang Q, Lin Z, Xue M, Jiang Y, Chen L, Chen J, Liao Y, Lv J, Guo B, Zheng P, Huang H, Sun B. Deciphering the omicron variant: integrated omics analysis reveals critical biomarkers and pathophysiological pathways. J Transl Med 2024; 22:219. [PMID: 38424541 PMCID: PMC10905948 DOI: 10.1186/s12967-024-05022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The rapid emergence and global dissemination of the Omicron variant of SARS-CoV-2 have posed formidable challenges in public health. This scenario underscores the urgent need for an enhanced understanding of Omicron's pathophysiological mechanisms to guide clinical management and shape public health strategies. Our study is aimed at deciphering the intricate molecular mechanisms underlying Omicron infections, particularly focusing on the identification of specific biomarkers. METHODS This investigation employed a robust and systematic approach, initially encompassing 15 Omicron-infected patients and an equal number of healthy controls, followed by a validation cohort of 20 individuals per group. The study's methodological framework included a comprehensive multi-omics analysis that integrated proteomics and metabolomics, augmented by extensive bioinformatics. Proteomic exploration was conducted via an advanced Ultra-High-Performance Liquid Chromatography (UHPLC) system linked with mass spectrometry. Concurrently, metabolomic profiling was executed using an Ultra-Performance Liquid Chromatography (UPLC) system. The bioinformatics component, fundamental to this research, entailed an exhaustive analysis of protein-protein interactions, pathway enrichment, and metabolic network dynamics, utilizing state-of-the-art tools such as the STRING database and Cytoscape software, ensuring a holistic interpretation of the data. RESULTS Our proteomic inquiry identified eight notably dysregulated proteins (THBS1, ACTN1, ACTC1, POTEF, ACTB, TPM4, VCL, ICAM1) in individuals infected with the Omicron variant. These proteins play critical roles in essential physiological processes, especially within the coagulation cascade and hemostatic mechanisms, suggesting their significant involvement in the pathogenesis of Omicron infection. Complementing these proteomic insights, metabolomic analysis discerned 146 differentially expressed metabolites, intricately associated with pivotal metabolic pathways such as tryptophan metabolism, retinol metabolism, and steroid hormone biosynthesis. This comprehensive metabolic profiling sheds light on the systemic implications of Omicron infection, underscoring profound alterations in metabolic equilibrium. CONCLUSIONS This study substantially enriches our comprehension of the physiological ramifications induced by the Omicron variant, with a particular emphasis on the pivotal roles of coagulation and platelet pathways in disease pathogenesis. The discovery of these specific biomarkers illuminates their potential as critical targets for diagnostic and therapeutic strategies, providing invaluable insights for the development of tailored treatments and enhancing patient care in the dynamic context of the ongoing pandemic.
Collapse
Affiliation(s)
- Qianyue Yang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Zhiwei Lin
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- Respiratory Mechanics Laboratory, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Mingshan Xue
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- Guangzhou Laboratory, Guangzhou International Bio Island, XingDaoHuanBei Road, Guangzhou, 510005, Guangdong Province, China
| | - Yueting Jiang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Libing Chen
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jiahong Chen
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yuhong Liao
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jiali Lv
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Baojun Guo
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Peiyan Zheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Huimin Huang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, XingDaoHuanBei Road, Guangzhou, 510005, Guangdong Province, China.
| |
Collapse
|
36
|
Bohmwald K, Diethelm-Varela B, Rodríguez-Guilarte L, Rivera T, Riedel CA, González PA, Kalergis AM. Pathophysiological, immunological, and inflammatory features of long COVID. Front Immunol 2024; 15:1341600. [PMID: 38482000 PMCID: PMC10932978 DOI: 10.3389/fimmu.2024.1341600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/09/2024] [Indexed: 04/12/2024] Open
Abstract
The COVID-19 pandemic continues to cause severe global disruption, resulting in significant excess mortality, overwhelming healthcare systems, and imposing substantial social and economic burdens on nations. While most of the attention and therapeutic efforts have concentrated on the acute phase of the disease, a notable proportion of survivors experience persistent symptoms post-infection clearance. This diverse set of symptoms, loosely categorized as long COVID, presents a potential additional public health crisis. It is estimated that 1 in 5 COVID-19 survivors exhibit clinical manifestations consistent with long COVID. Despite this prevalence, the mechanisms and pathophysiology of long COVID remain poorly understood. Alarmingly, evidence suggests that a significant proportion of cases within this clinical condition develop debilitating or disabling symptoms. Hence, urgent priority should be given to further studies on this condition to equip global public health systems for its management. This review provides an overview of available information on this emerging clinical condition, focusing on the affected individuals' epidemiology, pathophysiological mechanisms, and immunological and inflammatory profiles.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Benjamín Diethelm-Varela
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodríguez-Guilarte
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Thomas Rivera
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
37
|
Uslu K, Ozcelik F, Zararsiz G, Eldem V, Cephe A, Sahin IO, Yuksel RC, Sipahioglu H, Ozer Simsek Z, Baspinar O, Akalin H, Simsek Y, Gundogan K, Tutar N, Karayol Akin A, Ozkul Y, Yildiz O, Dundar M. Deciphering the host genetic factors conferring susceptibility to severe COVID-19 using exome sequencing. Genes Immun 2024; 25:14-42. [PMID: 38123822 DOI: 10.1038/s41435-023-00232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023]
Abstract
The COVID-19 pandemic remains a significant public health concern despite the new vaccines and therapeutics. The clinical course of acute SARS-CoV-2 infection is highly variable and influenced by several factors related to the virus and the host. Numerous genetic studies, including candidate gene, exome, and genome sequencing studies, genome-wide association studies, and other omics efforts, have proposed various Mendelian and non-Mendelian associations with COVID-19 course. In this study, we conducted whole-exome sequencing on 90 unvaccinated patients from Turkey with no known comorbidities associated with severe COVID-19. Of these patients, 30 had severe, 30 had moderate, and 30 had mild/asymptomatic disease. We identified rare variants in genes associated with SARS-CoV-2 susceptibility and pathogenesis, with an emphasis on genes related to the regulation of inflammation, and discussed these in the context of the clinical course of the patients. In addition, we compared the frequencies of common variants between each group. Even though no variant remained statistically significant after correction for multiple testing, we observed that certain previously associated genes and variants showed significant associations before correction. Our study contributes to the existing literature regarding the genetic susceptibility to SARS-CoV-2. Future studies would be beneficial characterizing the host genetic properties in different populations.
Collapse
Affiliation(s)
- Kubra Uslu
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Firat Ozcelik
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gokmen Zararsiz
- Department of Biostatistics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Vahap Eldem
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Ahu Cephe
- Institutional Data Management and Analytics Units, Erciyes University Rectorate, Kayseri, Turkey
| | - Izem Olcay Sahin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Recep Civan Yuksel
- Division of Intensive Care Medicine, Department of Internal Medicine, Kayseri City Education and Research Hospital, Kayseri, Turkey
| | - Hilal Sipahioglu
- Division of Intensive Care Medicine, Department of Internal Medicine, Kayseri City Education and Research Hospital, Kayseri, Turkey
| | - Zuhal Ozer Simsek
- Division of Intensive Care Medicine, Department of Internal Medicine, Kayseri City Education and Research Hospital, Kayseri, Turkey
| | - Osman Baspinar
- Department of Internal Medicine, Kayseri City Education and Research Hospital, Kayseri, Turkey
| | - Hilal Akalin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Yasin Simsek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kayseri City Education and Research Hospital, Kayseri, Turkey
| | - Kursat Gundogan
- Division of Intensive Care Medicine, Department of Internal Medicine, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nuri Tutar
- Department of Chest Diseases, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Aynur Karayol Akin
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Orhan Yildiz
- Department of Infectious Diseases, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Munis Dundar
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
38
|
Chen XT, Zhi S, Han XY, Jiang JW, Liu GM, Rao ST. A systematic two-sample and bidirectional MR process highlights a unidirectional genetic causal effect of allergic diseases on COVID-19 infection/severity. J Transl Med 2024; 22:94. [PMID: 38263182 PMCID: PMC10804553 DOI: 10.1186/s12967-024-04887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Allergic diseases (ADs) such as asthma are presumed risk factors for COVID-19 infection. However, recent observational studies suggest that the assumed correlation contradicts each other. We therefore systematically investigated the genetic causal correlations between various ADs and COVID-19 infection/severity. METHODS We performed a two-sample, bidirectional Mendelian randomization (MR) study for five types of ADs and the latest round of COVID-19 GWAS meta-analysis datasets (critically ill, hospitalized, and infection cases). We also further validated the significant causal correlations and elucidated the potential underlying molecular mechanisms. RESULTS With the most suitable MR method, asthma consistently demonstrated causal protective effects on critically ill and hospitalized COVID-19 cases (OR < 0.93, p < 2.01 × 10-2), which were further confirmed by another validated GWAS dataset (OR < 0.92, p < 4.22 × 10-3). In addition, our MR analyses also observed significant causal correlations of food allergies such as shrimp allergy with the risk of COVID-19 infection/severity. However, we did not find any significant causal effect of COVID-19 phenotypes on the risk of ADs. Regarding the underlying molecular mechanisms, not only multiple immune-related cells such as CD4+ T, CD8+ T and the ratio of CD4+/CD8+ T cells showed significant causal effects on COVID-19 phenotypes and various ADs, the hematology traits including monocytes were also significantly correlated with them. Conversely, various ADs such as asthma and shrimp allergy may be causally correlated with COVID-19 infection/severity by affecting multiple hematological traits and immune-related cells. CONCLUSIONS Our systematic and bidirectional MR analyses suggest a unidirectional causal effect of various ADs, particularly of asthma on COVID-19 infection/severity, but the reverse is not true. The potential underlying molecular mechanisms of the causal effects call for more attention to clinical monitoring of hematological cells/traits and may be beneficial in developing effective therapeutic strategies for allergic patients following infection with COVID-19.
Collapse
Affiliation(s)
- Xiao-Tong Chen
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Institute of Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, No. 1 Xue-Yuan Rd., University Town, Fuzhou, 350122, Fujian, China
| | - Shuai Zhi
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Institute of Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, No. 1 Xue-Yuan Rd., University Town, Fuzhou, 350122, Fujian, China
| | - Xin-Yu Han
- Xiamen Key Laboratory of Marine Functional Food, College of Ocean Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Jian-Wei Jiang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Institute of Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, No. 1 Xue-Yuan Rd., University Town, Fuzhou, 350122, Fujian, China
| | - Guang-Ming Liu
- Xiamen Key Laboratory of Marine Functional Food, College of Ocean Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China.
| | - Shi-Tao Rao
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Institute of Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, No. 1 Xue-Yuan Rd., University Town, Fuzhou, 350122, Fujian, China.
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
39
|
Elnosary ME, Shreadah MA, Ashour ML, Nabil-Adam A. Predictions based on inflammatory cytokine profiling of Egyptian COVID-19 with 2 potential therapeutic effects of certain marine-derived compounds. Int Immunopharmacol 2024; 126:111072. [PMID: 38006751 DOI: 10.1016/j.intimp.2023.111072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUNDS A worldwide coronavirus pandemic has affected many healthcare systems in 2019 (COVID-19). Following viral activation, cytokines and chemokines are released, causing inflammation and tissue death, particularly in the lungs, resulting in severe COVID-19 symptoms such as pneumonia and ARDS. COVID-19 induces the release of several chemokines and cytokines in different organs, such as the cardiovascular system and lungs. RESEARCH IDEA COVID-19 and its more severe effects, such as an elevated risk of death, are more common in patients with metabolic syndrome and the elderly. Cytokine storm and COVID-19 severity may be mitigated by immunomodulation targeting NF-κB activation in conjunction with TNF- α -inhibition. In severe cases of COVID-19, inhibiting the NF-κB/TNF- α, the pathway may be employed as a therapeutic option. MATERIAL AND METHODS The study will elaborate on the Egyptian pattern for COVID-19 patients in the first part of our study. An Egyptian patient with COVID-19 inflammatory profiling will be discussed in the second part of this article using approved marine drugs selected to inhabit the significant inflammatory signals. A biomarker profiling study is currently being performed on Egyptian patients with SARS-COV-2. According to the severity of the infection, participants were divided into four groups. The First Group was non-infected with SARS-CoV-2 (Control, n = 16), the Second Group was non-intensive care patients (non-ICU, n = 16), the Third Group was intensive care patients (ICU, n = 16), and the Fourth Group was ICU with endotracheal intubation (ICU + EI, n = 16). To investigate COVID-19 inflammatory biomarkers for Egyptian patients, several inflammatory, oxidative, antioxidant, and anti-inflammatory biomarkers were measured. The following are examples of blood tests: CRP, Ferritin, D-dimer, TNF-α, IL-8, IL-6., IL-Ib, CD8, NF-κB, MDA, and total antioxidants. RESULTS AND DISCUSSION The results of the current study revealed many logical findings, such as the elevation of CRP, Ferritin, D-dimer, TNF- α, CD8, IL-6, IL-, NF-κB, and MDA. Where a significant increase showed in ICU group results (23.05 ± 0.30, 2.35 ± 0.86, 433.4 ± 159.3, 26.67 ± 3.51, 7.52 ± 1.48, 7.49 ± 1.04, 5.76 ± 1.31, 7.41 ± 0.73) respectively, and also ICU group results (54.75 ± 3.44, 0.65 ± 0.13, 460.2 ± 121.42, 27.43 ± 2.52, 8.63 ± 2.68, 10.65 ± 2.75, 5.93 ± 1.4, 10.64 ± 0.86) respectively, as well as ICU + EI group results (117.63 ± 11.89, 1.22 ± 0.65, 918.8 ± 159.27, 26.68 ± 2.00, 6.68 ± 1.08, 11.68 ± 6.16, 6.23 ± 0.07, 22.41 ± 1.39),respectively.The elevation in laboratory biomarkers of cytokines storm in three infected groups with remarkable increases in the ICU + EI group was due to the elevation of oxidative stress and inflammatory storm molecules, which lead to highly inflammatory responses, specifically in severe patients of COVID-19. Another approach to be used in the current study is investigating new computational drug compounds for SARS-COV-2 protective agents from the marine environment. The results revealed that (Imatinib and Indinavir) had the highest affinity toward Inflammatory molecules and COVID-19 proteins (PDB ID: -7CZ4 and 7KJR), which may be used in the future as possible COVID-19 drug candidates. CONCLUSION The investigated inflammatory biomarkers in Egyptian COVID-19 patients showed a strong correlation between IL6, TNF-α, NF-κB, CRB, DHL, and ferritin as COVID-19 biomarkers and determined the severity of the infection. Also, the oxidative /antioxidant showed good biomarkers for infection recovery and progression of the patients.
Collapse
Affiliation(s)
- Mohamed E Elnosary
- Al-Azhar University, Faculty of Science, Botany and Microbiology Department, 11884 Nasr City, Cairo, Egypt.
| | - Mohamed Attia Shreadah
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Egypt
| | - Mohamed L Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt; Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia.
| | - Asmaa Nabil-Adam
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Egypt.
| |
Collapse
|
40
|
Zhu C, Wu H, Yang X, Gao J. The outcomes of COVID-19 and acute pancreatitis: a systematic review and meta-analysis. Transl Gastroenterol Hepatol 2024; 9:6. [PMID: 38317749 PMCID: PMC10838611 DOI: 10.21037/tgh-23-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 02/07/2024] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) was first reported in China at the end of 2019. Several case studies have documented a probable association between infection with severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) and acute pancreatitis (AP). The objective of this study was to provide a complete analysis of existing literature that compares the clinical outcomes of AP in patients with COVID-19 and those without COVID-19. The intention was to further our understanding of the involvement of SARS-CoV-2 in the development of pancreatitis. Methods Between January 2019 and December 2022, we searched PubMed, Embase, Cochrane Library, Web of Science, and Scopus. Nine studies (3,160 patients) were included. In this meta-analysis, Stata 12.0. was utilized. The information provided in this study is presented following the MOOSE reporting checklist. Results Mortality [odds ratio (OR) =3.95, 95% confidence interval (CI): 2.87, 5.43, P<0.001], intensive care unit (ICU) administration (OR =3.74, 95% CI: 2.26, 6.20, P<0.001), mechanical ventilation (OR =4.84, 95% CI: 2.14, 10.96, P<0.001), severe pancreatitis (OR =2.71, 95% CI: 1.04, 7.04, P=0.042), etiology of idiopathic and unknown (OR =4.75, 95% CI: 1.80, 12.56, P=0.002), necrotizing pancreatitis (OR =1.88, 95% CI: 1.28, 2.76, P=0.001), and length of hospital stay [weighted mean difference (WMD) =5.10, 95% CI: 2.79, 7.41, P<0.001] were more significantly increased in AP cases with COVID-19 than those without it. Conclusions In conclusion, the findings of this study indicate a potential worsening of AP outcomes in patients affected by COVID-19.
Collapse
Affiliation(s)
- Caiyu Zhu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haijuan Wu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangyu Yang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Oddenino GA, Canepa P, Cozzani E, Gasparini G, Garlaschi A, Roccatagliata L, Schiavetti I, Parodi A. Prevalence of cutaneous manifestations and myositis-specific antibodies in COVID-19 patients and Anti-PL7 antibodies association with pulmonary radiological severity: A retrospective study. Int J Immunopathol Pharmacol 2024; 38:3946320241260295. [PMID: 39052920 PMCID: PMC11282529 DOI: 10.1177/03946320241260295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/22/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Dermatomyositis (DM) is an idiopathic immune-mediated myopathy, and may involve many organs, including muscles, skin and lungs. Myositis-specific autoantibodies (MSAs) are a useful aid in diagnosis DM and identifying its clinical subtype. During the COVID-19 pandemic, several studies found clinical similarities regarding lung involvement in both COVID-19 and DM. Such similarities have prompted speculation of a common pathogenetic mechanism. Indeed, viral infections are well-known triggers of autoimmune diseases. This prompted us to investigate whether circulating MSAs could be markers of the severity of lung involvement and of clinical outcome in COVID-19 patients. Moreover, we investigated the presence of cutaneous signs of DM in COVID-19 patients. METHODS We conducted a retrospective cohort study on 178 hospitalized patients affected by COVID-19. The diagnosis was confirmed by naso-pharyngeal swab positivity for SARS-CoV-2. The severity of lung involvement was assessed by assigning to each patient a radiological score ranging from 1 to 4, based on chest imaging (chest X-rays or CT scans). Serum samples were tested for MSAs. RESULTS Anti-PL-7 antibodies were detected in 10.1% of patients and were found to be associated with an increased risk of severe pulmonary involvement (p = 0.019) and a worse prognosis in COVID-19 patients. Cutaneous lesions were observed in 26.4% of patients. However, none were cutaneous manifestations of DM. CONCLUSIONS The detection of anti-PL7 antibodies might predict severe pulmonary involvement and a worse prognosis in COVID-19 patients.
Collapse
Affiliation(s)
- Giorgio Alberto Oddenino
- Section of Dermatology, Dipartimento di Scienze della Salute (DiSSal), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Dermatology Unit, Genoa, Italy
| | - Paola Canepa
- IRCCS Ospedale Policlinico San Martino, Dermatology Unit, Genoa, Italy
| | - Emanuele Cozzani
- Section of Dermatology, Dipartimento di Scienze della Salute (DiSSal), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Dermatology Unit, Genoa, Italy
| | - Giulia Gasparini
- Section of Dermatology, Dipartimento di Scienze della Salute (DiSSal), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Dermatology Unit, Genoa, Italy
| | - Alessandro Garlaschi
- IRCCS Ospedale Policlinico San Martino, Dermatology Unit, Genoa, Italy
- Section of Radiology, Dipartimento di Scienze della Salute (DiSSal), University of Genoa, Genoa, Italy
| | - Luca Roccatagliata
- IRCCS Ospedale Policlinico San Martino, Dermatology Unit, Genoa, Italy
- Section of Radiology, Dipartimento di Scienze della Salute (DiSSal), University of Genoa, Genoa, Italy
| | - Irene Schiavetti
- Section of Medical Statistics, Dipartimento di Scienze della Salute (DiSSal), University of Genoa, Genoa, Italy
| | - Aurora Parodi
- Section of Dermatology, Dipartimento di Scienze della Salute (DiSSal), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Dermatology Unit, Genoa, Italy
| |
Collapse
|
42
|
Navhaya LT, Blessing DM, Yamkela M, Godlo S, Makhoba XH. A comprehensive review of the interaction between COVID-19 spike proteins with mammalian small and major heat shock proteins. Biomol Concepts 2024; 15:bmc-2022-0027. [PMID: 38872399 DOI: 10.1515/bmc-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/13/2023] [Indexed: 06/15/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a novel disease that had devastating effects on human lives and the country's economies worldwide. This disease shows similar parasitic traits, requiring the host's biomolecules for its survival and propagation. Spike glycoproteins severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 spike protein) located on the surface of the COVID-19 virus serve as a potential hotspot for antiviral drug development based on their structure. COVID-19 virus calls into action the chaperonin system that assists the attacker, hence favoring infection. To investigate the interaction that occurs between SARS-CoV-2 spike protein and human molecular chaperons (HSPA8 and sHSP27), a series of steps were carried out which included sequence attainment and analysis, followed by multiple sequence alignment, homology modeling, and protein-protein docking which we performed using Cluspro to predict the interactions between SARS-CoV-2 spike protein and human molecular chaperones of interest. Our findings depicted that SARS-CoV-2 spike protein consists of three distinct chains, chains A, B, and C, which interact forming hydrogen bonds, hydrophobic interactions, and electrostatic interactions with both human HSPA8 and HSP27 with -828.3 and -827.9 kcal/mol as binding energies for human HSPA8 and -1166.7 and -1165.9 kcal/mol for HSP27.
Collapse
Affiliation(s)
- Liberty T Navhaya
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Turfloop Campus, Sovenga, 0727, South Africa
| | - Dzveta Mutsawashe Blessing
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice Campus, 1 King Williams Town, 5700, South Africa
| | - Mthembu Yamkela
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort, 1709, South Africa
| | - Sesethu Godlo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort, 1709, South Africa
| | - Xolani Henry Makhoba
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort, 1709, South Africa
| |
Collapse
|
43
|
Zhang H, Lin J, Wu J, Zhang J, Zhang L, Yuan S, Chen J, Tang Q, Zhang A, Cui Y, Xu X, Dai H, Shi H, Hu X, Xie D, Chen J, He F, Yin Y. Allergic diseases aggravate the symptoms of SARS-CoV-2 infection in China. Front Immunol 2023; 14:1284047. [PMID: 38204754 PMCID: PMC10777727 DOI: 10.3389/fimmu.2023.1284047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Background The relationship between allergic diseases and the adverse outcomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been a subject of controversy. This study aimed to investigate the association between allergic diseases and the incidence and severity of symptoms in SARS-CoV-2 infection. Methods Clinical data of individuals, including children and their parents, infected with SARS-CoV-2 from December 2022 to January 2023 in China were retrospectively analyzed. The data were collected through questionnaires. Statistical analysis, including chi-squared tests, nonparametric analysis, one-way ANOVA, and logistic regression analysis, was used to examine the relationship between allergic diseases, prior medication, and the symptoms of SARS-CoV-2 infection. Results There were 3,517 adults and 3,372 children with SARS-CoV-2 infection included in the study. Fever was found to occur at similar rates in children (86.5%) and adults (86.8%). However, other symptoms related to respiratory issues (such as cough and sore throat), neurological symptoms (headache, loss of smell, and loss of taste), and systemic symptoms (muscle soreness and weakness) were observed more frequently in adults (P < 0.001). Additionally, adults exhibited higher overall symptom scores, indicating greater severity. Allergic diseases were found to be associated with the incidence of certain SARS-CoV-2 infection symptoms in both children and adults. Specifically, children with allergic rhinitis (AR) were observed to be more susceptible to upper respiratory symptoms (OR: 1.320, 95% CI: 1.081-1.611, P = 0.006), while asthma patients were found to be more susceptible to severe respiratory symptoms (OR: 1.736, 95% CI: 1.250-2.411, P = 0.001). Similar patterns were identified in adults. Furthermore, AR was also suggested to be a risk factor for symptom severity in both children (OR: 1.704, 95% CI: 1.314-2.209, P < 0.001) and adults (OR: 1.736, 95% CI: 1.250-2.411, P = 0.001). However, prior medication for allergic diseases did not exhibit a preventive effect on SARS-CoV-2 infection symptoms. Conclusions Both children and adults with allergic diseases were found to be more prone to experiencing symptoms of SARS-CoV-2 infection, and these symptoms tended to be more severe.
Collapse
Affiliation(s)
- Huishan Zhang
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jilei Lin
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinhong Wu
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Zhang
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhang
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuhua Yuan
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiande Chen
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiuyu Tang
- Department of Respiratory Medicine, Shanghai Children’s Medical Centre Affiliated to Shanghai Jiaotong University School of Medicine, Fujian Children’s Hospital, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology And Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Ailian Zhang
- Department of Respiratory Medicine, The Second Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Yuxia Cui
- Department of Respiratory Medicine, Guizhou Provincial People’s Hospital, Shanghai Children’s Medical Center, Shanghai JiaoTong University School of Medicine, Guiyang, Guizhou, China
| | - Xiaojuan Xu
- Department of Respiratory Medicine, Shaoxing Central Hospital, Shaoxing, Zhejiang, China
| | - Hongxie Dai
- Department of Respiratory Medicine, Zhoupu Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Hongbo Shi
- Department of Respiratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Xiaowei Hu
- Department of Respiratory Medicine, Shanghai Children’s Medical Centre Affiliated to Shanghai Jiaotong University School of Medicine, Fujian Children’s Hospital, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology And Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Dan Xie
- Department of Respiratory Medicine, Sanya Women and Children’s Hospital Affiliated to Hainan Medical College, Shanghai Children’s Medical Center, Sanya, Hainan, China
| | - Jing Chen
- Department of Respiratory Medicine, Linyi Maternal and Child Healthcare Hospital, Linyi, Shandong, China
| | - Fengquan He
- HongHe MCH (HongHe Hani and Yi Autonomous Prefecture Maternal and Child Health Hospital), Honghe, Yunnan, China
| | - Yong Yin
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Respiratory Medicine, Sanya Women and Children’s Hospital Affiliated to Hainan Medical College, Shanghai Children’s Medical Center, Sanya, Hainan, China
- Department of Respiratory Medicine, Linyi Maternal and Child Healthcare Hospital, Linyi, Shandong, China
- Department of Respiratory Medicine, Shanghai Children’s Medical Center Pediatric Medical Complex (Pudong), Shanghai, China
- Pediatric Artificial Intelligence Clinical Application and Research Center, Shanghai Children’s Medical Center, Shanghai, China
| |
Collapse
|
44
|
Ji L, Li T, Chen H, Yang Y, Lu E, Liu J, Qiao W, Chen H. The crucial regulatory role of type I interferon in inflammatory diseases. Cell Biosci 2023; 13:230. [PMID: 38124132 PMCID: PMC10734085 DOI: 10.1186/s13578-023-01188-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
Type I interferon (IFN-I) plays crucial roles in the regulation of inflammation and it is associated with various inflammatory diseases including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and periodontitis, impacting people's health and quality of life. It is well-established that IFN-Is affect immune responses and inflammatory factors by regulating some signaling. However, currently, there is no comprehensive overview of the crucial regulatory role of IFN-I in distinctive pathways as well as associated inflammatory diseases. This review aims to provide a narrative of the involvement of IFN-I in different signaling pathways, mainly mediating the related key factors with specific targets in the pathways and signaling cascades to influence the progression of inflammatory diseases. As such, we suggested that IFN-Is induce inflammatory regulation through the stimulation of certain factors in signaling pathways, which displays possible efficient treatment methods and provides a reference for the precise control of inflammatory diseases.
Collapse
Affiliation(s)
- Ling Ji
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Tianle Li
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Huimin Chen
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Yanqi Yang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
- Division of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, China
| | - Jieying Liu
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Qiao
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China.
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Level 3, 34 Hospital Road, Sai Ying Pun, Hong Kong, SAR, People's Republic of China.
| | - Hui Chen
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China.
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Level 3, 34 Hospital Road, Sai Ying Pun, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
45
|
Dai S, Cao T, Shen H, Zong X, Gu W, Li H, Wei L, Huang H, Yu Y, Chen Y, Ye W, Hua F, Fan H, Shen Z. Landscape of molecular crosstalk between SARS-CoV-2 infection and cardiovascular diseases: emphasis on mitochondrial dysfunction and immune-inflammation. J Transl Med 2023; 21:915. [PMID: 38104081 PMCID: PMC10725609 DOI: 10.1186/s12967-023-04787-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND SARS-CoV-2, the pathogen of COVID-19, is a worldwide threat to human health and causes a long-term burden on the cardiovascular system. Individuals with pre-existing cardiovascular diseases are at higher risk for SARS-CoV-2 infection and tend to have a worse prognosis. However, the relevance and pathogenic mechanisms between COVID-19 and cardiovascular diseases are not yet completely comprehended. METHODS Common differentially expressed genes (DEGs) were obtained in datasets of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) infected with SARS-CoV-2 and myocardial tissues from heart failure patients. Further GO and KEGG pathway analysis, protein-protein interaction (PPI) network construction, hub genes identification, immune microenvironment analysis, and drug candidate predication were performed. Then, an isoproterenol-stimulated myocardial hypertrophy cell model and a transverse aortic constriction-induced mouse heart failure model were employed to validate the expression of hub genes. RESULTS A total of 315 up-regulated and 78 down-regulated common DEGs were identified. Functional enrichment analysis revealed mitochondrial metabolic disorders and extensive immune inflammation as the most prominent shared features of COVID-19 and cardiovascular diseases. Then, hub DEGs, as well as hub immune-related and mitochondria-related DEGs, were screened. Additionally, nine potential therapeutic agents for COVID-19-related cardiovascular diseases were proposed. Furthermore, the expression patterns of most of the hub genes related to cardiovascular diseases in the validation dataset along with cellular and mouse myocardial damage models, were consistent with the findings of bioinformatics analysis. CONCLUSIONS The study unveiled the molecular networks and signaling pathways connecting COVID-19 and cardiovascular diseases, which may provide novel targets for intervention of COVID-19-related cardiovascular diseases.
Collapse
Affiliation(s)
- Shiyu Dai
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Ting Cao
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Han Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Xuejing Zong
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Wenyu Gu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Hanghang Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Lei Wei
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Haoyue Huang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Yunsheng Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Yihuan Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Wenxue Ye
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Fei Hua
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Hongyou Fan
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
46
|
Tapryal N, Chakraborty A, Saha K, Islam A, Pan L, Hosoki K, Sayed IM, Duran JM, Alcantara J, Castillo V, Tindle C, Sarker AH, Wakamiya M, Cardenas VJ, Sharma G, Crotty Alexander LE, Sur S, Sahoo D, Ghosh G, Das S, Ghosh P, Boldogh I, Hazra TK. The DNA glycosylase NEIL2 is protective during SARS-CoV-2 infection. Nat Commun 2023; 14:8169. [PMID: 38071370 PMCID: PMC10710473 DOI: 10.1038/s41467-023-43938-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
SARS-CoV-2 infection-induced aggravation of host innate immune response not only causes tissue damage and multiorgan failure in COVID-19 patients but also induces host genome damage and activates DNA damage response pathways. To test whether the compromised DNA repair capacity of individuals modulates the severity of COVID-19 infection, we analyze DNA repair gene expression in publicly available patient datasets and observe a lower level of the DNA glycosylase NEIL2 in the lungs of severely infected COVID-19 patients. This observation of lower NEIL2 levels is further validated in infected patients, hamsters and ACE2 receptor-expressing human A549 (A549-ACE2) cells. Furthermore, delivery of recombinant NEIL2 in A549-ACE2 cells shows decreased expression of proinflammatory genes and viral E-gene, as well as lowers the yield of viral progeny compared to mock-treated cells. Mechanistically, NEIL2 cooperatively binds to the 5'-UTR of SARS-CoV-2 genomic RNA to block viral protein synthesis. Collectively, these data strongly suggest that the maintenance of basal NEIL2 levels is critical for the protective response of hosts to viral infection and disease.
Collapse
Affiliation(s)
- Nisha Tapryal
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kaushik Saha
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92037, USA
- Department of Biological Sciences, School of Engineering and Sciences, SRM University-AP, Guntur District, Andhra Pradesh, 522240, India
| | - Azharul Islam
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Koa Hosoki
- Department of Medicine, Immunology Allergy and Rheumatology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ibrahim M Sayed
- Department of Pathology, University of California, San Diego, CA, 92093, USA
- Department of Biomedical and Nutritional Science, University of Massachusetts-Lowell, Lowell, MA, 01854, USA
| | - Jason M Duran
- Department of Internal Medicine, Division of Cardiology, UC San Diego Medical Center, La Jolla, CA, 92037, USA
| | - Joshua Alcantara
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Vanessa Castillo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Courtney Tindle
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Altaf H Sarker
- Department of Cancer and DNA Damage Responses, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Maki Wakamiya
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Victor J Cardenas
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Gulshan Sharma
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | | | - Sanjiv Sur
- Department of Medicine, Immunology Allergy and Rheumatology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92037, USA.
| | - Soumita Das
- Department of Pathology, University of California, San Diego, CA, 92093, USA.
- Department of Biomedical and Nutritional Science, University of Massachusetts-Lowell, Lowell, MA, 01854, USA.
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Medicine, University of California, San Diego, CA, 92093, USA.
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Tapas K Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
47
|
Liu X, Xiong W, Ye M, Lu T, Yuan K, Chang S, Han Y, Wang Y, Lu L, Bao Y. Non-coding RNAs expression in SARS-CoV-2 infection: pathogenesis, clinical significance, and therapeutic targets. Signal Transduct Target Ther 2023; 8:441. [PMID: 38057315 PMCID: PMC10700414 DOI: 10.1038/s41392-023-01669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been looming globally for three years, yet the diagnostic and treatment methods for COVID-19 are still undergoing extensive exploration, which holds paramount importance in mitigating future epidemics. Host non-coding RNAs (ncRNAs) display aberrations in the context of COVID-19. Specifically, microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) exhibit a close association with viral infection and disease progression. In this comprehensive review, an overview was presented of the expression profiles of host ncRNAs following SARS-CoV-2 invasion and of the potential functions in COVID-19 development, encompassing viral invasion, replication, immune response, and multiorgan deficits which include respiratory system, cardiac system, central nervous system, peripheral nervous system as well as long COVID. Furthermore, we provide an overview of several promising host ncRNA biomarkers for diverse clinical scenarios related to COVID-19, such as stratification biomarkers, prognostic biomarkers, and predictive biomarkers for treatment response. In addition, we also discuss the therapeutic potential of ncRNAs for COVID-19, presenting ncRNA-based strategies to facilitate the development of novel treatments. Through an in-depth analysis of the interplay between ncRNA and COVID-19 combined with our bioinformatic analysis, we hope to offer valuable insights into the stratification, prognosis, and treatment of COVID-19.
Collapse
Affiliation(s)
- Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Wandi Xiong
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, 570228, Haikou, China
| | - Maosen Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, 650204, Kunming, Yunnan, China
| | - Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Yongxiang Wang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, Shandong, China.
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, Shandong, China.
- School of Public Health, Peking University, 100191, Beijing, China.
| |
Collapse
|
48
|
Pons MJ, Mayanga-Herrera A, Palomino-Kobayashi LA, Quispe AM, Ugarte-Gil MF. High Anti-Interferon-Alpha Autoantibody Levels in Severe/Critical COVID-19 Patients from Peru. J Interferon Cytokine Res 2023; 43:565-570. [PMID: 37906115 DOI: 10.1089/jir.2023.0087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Innate immune responses through the production of type I interferon-α (anti-IFN-α) play an essential role in the defense against viruses. The autoantibodies (auto-Abs) anti-IFN-α are implicated in COVID-19 pathogenesis with higher levels among patients with worse prognoses. The study aimed to assess the levels of anti-IFN-α auto-Abs in Peruvian patients with severe/critical hospitalized COVID-19 compared to asymptomatic/mild COVID-19 outpatients and healthy controls. We analyzed 101 serum samples, including 56 (55.5%) severe/critical, 13 (12.3%) asymptomatic/mild COVID-19 patients, and 32 (32.2%) healthy controls, which we tested using a commercial ELISA anti-IFN-α-auto-Abs kit. We observed seropositivity of 48.2% (26/54) to anti-IFN-α auto-Abs among the severe/critical COVID-19 group, but 0% (0/13) and 3.1% (1/32) among the asymptomatic/mild COVID-19 and healthy groups (P = 0.021), respectively. Furthermore, we observed a significant association between the log10 of anti-IFN-α auto-Abs and the COVID-19 status, with the log10 of anti-IFN-α auto-Abs levels being significantly higher among the severe/critical COVID-19 group compared to the healthy controls (β = 1.20; confidence interval [95% CI]: 0.72-1.67; P < 0.001). Such association remains significant either when adjusted by age and gender (adjusted β = 1.16; 95% CI: 0.62-1.70; P < 0.001) and when adjusted by the subjects' age, gender, and obesity (adjusted β = 1.16; 95% CI: 0.62-1.70; P < 0.001). Despite not measuring neutralizing activity, this study highlights the high frequency of these auto-Abs in the Peruvian population with a worse prognosis of COVID-19.
Collapse
Affiliation(s)
- Maria J Pons
- Grupo de Enfermedades Infecciosas Re-Emergentes, Universidad Científica del Sur, Lima, Perú
| | - Ana Mayanga-Herrera
- Laboratorio de Cultivo Celular e Inmunología, Universidad Científica del Sur, Lima, Perú
| | | | - Antonio M Quispe
- Dirección de Investigación, Universidad Continental, Huancayo, Perú
| | - Manuel F Ugarte-Gil
- Reumathology, Hospital Nacional Guillermo Almenara Irigoyen, EsSalud, Lima, Peru
- Grupo Peruano de Estudio de Enfermedades Autoinmunes Sistémicas, Universidad Científica Del Sur, Lima, Perú
| |
Collapse
|
49
|
Tosta BR, de Almeida IM, da Cruz Pena L, Dos Santos Silva H, Reis-Goes FS, Silva NN, Cruz JVA, Dos Anjos Silva M, de Araújo JF, Rodrigues JL, Oliveira G, Figueiredo RG, Vaz SN, Montaño-Castellón I, Santana D, de Lima Beltrão FE, Carneiro VL, Campos GS, Brites C, Fortuna V, Figueiredo CA, Trindade SC, Ramos HE, Costa RDS. MTOR gene variants are associated with severe COVID-19 outcomes: A multicenter study. Int Immunopharmacol 2023; 125:111155. [PMID: 37951192 DOI: 10.1016/j.intimp.2023.111155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND The worst outcomes linked to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have been attributed to the cytokine storm, which contributes significantly to the immunopathogenesis of the disease. The mammalian target of rapamycin (mTOR) pathway is essential for orchestrating innate immune cell defense including cytokine production and is dysregulated in severe Coronavirus Disease 2019 (COVID-19) individuals. The individual genetic background might play a role in the exacerbated immune response. OBJECTIVE In this study, we aimed to investigate the association between MTOR genetic variants and COVID-19 outcomes. METHODS This study enrolled groups of individuals with severe (n = 285) and mild (n = 207) COVID-19 from Brazilian states. The MTOR variants, rs1057079 and rs2536, were genotyped. A logistic regression analysis and Kaplan-Meier survival curves were performed. We applied a genotyping risk score to estimate the cumulative contribution of the risk alleles. Tumor necrosis factor (TNF) and interleukin-6 (IL-6) plasma levels were also measured. RESULTS The T allele of the MTOR rs1057079 variant was associated with a higher likelihood of developing the most severe form of COVID-19. In addition, higher levels of IL-6 and COVID-19 death was linked to the T allele of the rs2536 variant. These variants exhibited a cumulative risk when inherited collectively. CONCLUSIONS These results show a potential pathogenetic role of MTOR gene variants and may be useful for predicting severe outcomes following COVID-19 infection, resulting in a more effective allocation of health resources.
Collapse
Affiliation(s)
- Bruna Ramos Tosta
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Ingrid Marins de Almeida
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Laiane da Cruz Pena
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Hatilla Dos Santos Silva
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Fabiane S Reis-Goes
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Nívia N Silva
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - João Victor Andrade Cruz
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Mailane Dos Anjos Silva
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Jéssica Francisco de Araújo
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Juliana Lopes Rodrigues
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | | | | | - Sara Nunes Vaz
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Bahia, Brazil
| | - Iris Montaño-Castellón
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Bahia, Brazil
| | - Daniele Santana
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Bahia, Brazil
| | | | | | - Gubio Soares Campos
- Laboratório de Virologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Carlos Brites
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Bahia, Brazil
| | - Vitor Fortuna
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Camila Alexandrina Figueiredo
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Soraya Castro Trindade
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil; Universidade Estadual de Feira de Santana, Bahia, Brazil
| | - Helton Estrela Ramos
- Programa de Pós-Graduação em Processos Interativos de Órgãos e Sistema, Instituto de Saúde e Ciência, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Ryan Dos Santos Costa
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil.
| |
Collapse
|
50
|
Xiang X, Zhang Z, Liu Y, Xu W, Gong J, Yu S, Zhang L, Jiang T. Circulating Inflammatory Factor Levels in the Early Phase of COVID-19 are Associated with the Progression of Respiratory Failure: A Single-Center Retrospective Study. J Inflamm Res 2023; 16:5249-5260. [PMID: 38026262 PMCID: PMC10656869 DOI: 10.2147/jir.s430221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose To evaluate the potential relationships between serum interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α levels and occurrence of respiratory failure in patients with early-stage COVID-19 disease. Patients and Methods We analyzed clinical characteristics, laboratory parameters, and immunoinflammatory markers in 302 patients diagnosed with SARS-CoV-2 infection who required hospitalization at Changshu Hospital of Nantong University. IL-2, IL-4, IL-6, IL-10, IL-17, IFN-γ, and TNF-α levels in the peripheral blood of patients hospitalized five days after disease onset were measured using multiplex bead-based flow fluorescent immunoassay (MBFFI). Results Patients with respiratory failure had higher serum IL-4 [0 (0, 0.54) pg/mL], IL-6 [40.76 (12.33, 90.28) pg/mL], IL-10 [6.65 (4.12, 11.34) pg/mL], and IL-17 [9.48 (4.31, 12.13) pg/mL] levels than patients without respiratory failure (P=0.042, P<0.0001, P=0.012, and P=0.036, respectively). Serum IL-2, IFN-γ, and TNF-α levels were not significantly different between the two groups. The occurrence of respiratory failure was positively correlated with sex (R=0.122, P=0.034), lactic acid (R=0.193, P=0.007), white blood cell count (R=0.121, P=0.038), erythrocyte distribution width (R=0.131, P=0.024), thyrocalcitonin (R=0.280, P<0.0001), and D-dimer levels (R=0.214, P<0.0001) but negatively correlated with oxygen partial pressure (R=-0.208, P=0.004), oxygen saturation (R=-0.220, P=0.002), lymphocyte count (R=-0.129, P=0.026), and calcium (R=-0.152, P=0.042). Among the immunoinflammatory biomarkers, the occurrence of respiratory failure was positively correlated with IL-4 (R=-0.117, P=0.042), IL-6 (R=0.206, P<0.0001), IL-10 (R=0.145, P=0.012), and IL-17 (R=0.121, P=0.036) levels. Conclusion Serum levels of pro-inflammatory cytokines IL-6 and IL-17 and anti-inflammatory cytokines IL-4 and IL-10 were significantly elevated in patients with respiratory failure and weakly positively correlated with the occurrence of respiratory failure. Further studies are required to explore these key immune mechanisms to help clinicians better manage acute complications, long-term sequelae, and possible future COVID-19 variants and be flexible in managing future epidemics and similar public health threats.
Collapse
Affiliation(s)
- Xiaoli Xiang
- Department of Key Laboratory, Affiliated Changshu Hospital of Nantong University, Changshu, People’s Republic of China
- Department of Ophthalmology, Affiliated Changshu Hospital of Nantong University, Changshu, People’s Republic of China
| | - Zhicheng Zhang
- Department of Key Laboratory, Affiliated Changshu Hospital of Nantong University, Changshu, People’s Republic of China
| | - Ying Liu
- Department of Key Laboratory, Affiliated Changshu Hospital of Nantong University, Changshu, People’s Republic of China
| | - Wenxuan Xu
- Department of Key Laboratory, Affiliated Changshu Hospital of Nantong University, Changshu, People’s Republic of China
| | - Ju Gong
- Department of Emergency Medicine, Affiliated Changshu Hospital of Nantong University, Changshu, People’s Republic of China
| | - Sheng Yu
- Department of Critical Care Medicine, Affiliated Changshu Hospital of Nantong University, Changshu, People’s Republic of China
| | - Lan Zhang
- Information Center, Affiliated Changshu Hospital of Nantong University, Changshu, People’s Republic of China
| | - Tingwang Jiang
- Department of Key Laboratory, Affiliated Changshu Hospital of Nantong University, Changshu, People’s Republic of China
| |
Collapse
|