1
|
Murakami T, Matsuura R, Chutiwitoonchai N, Takei M, Aida Y. Huntingtin-Interacting Protein 1 Promotes Vpr-Induced G2 Arrest and HIV-1 Infection in Macrophages. Viruses 2021; 13:v13112308. [PMID: 34835114 PMCID: PMC8624357 DOI: 10.3390/v13112308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 02/02/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) modulates the host cell cycle. The HIV-1 accessory protein Vpr arrests the cell cycle at the G2 phase in dividing cells, and the ability of Vpr to induce G2 arrest is well conserved among primate lentiviruses. Additionally, Vpr-mediated G2 arrest likely correlates with enhanced HIV-1 infection in monocyte-derived macrophages. Here, we screened small-interfering RNA to reveal candidates that suppress Vpr-induced G2 arrest and identified Huntingtin-interacting protein 1 (HIP1) required for efficient G2 arrest. Interestingly, HIP1 was not essential for Vpr-induced DNA double-strand breaks, which are required for activation of the DNA-damage checkpoint and G2 arrest. Furthermore, HIP1 knockdown suppressed HIV-1 infection in monocyte-derived macrophages. This study identifies HIP1 as a factor promoting Vpr-induced G2 arrest and HIV-1 infection in macrophages.
Collapse
Affiliation(s)
- Tomoyuki Murakami
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (T.M.); (R.M.); (N.C.)
| | - Ryosuke Matsuura
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (T.M.); (R.M.); (N.C.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nopporn Chutiwitoonchai
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (T.M.); (R.M.); (N.C.)
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi, Kami-cho, Itabashi, Tokyo 173-8610, Japan;
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (T.M.); (R.M.); (N.C.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence:
| |
Collapse
|
2
|
Vpr and Its Cellular Interaction Partners: R We There Yet? Cells 2019; 8:cells8111310. [PMID: 31652959 PMCID: PMC6912716 DOI: 10.3390/cells8111310] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Vpr is a lentiviral accessory protein that is expressed late during the infection cycle and is packaged in significant quantities into virus particles through a specific interaction with the P6 domain of the viral Gag precursor. Characterization of the physiologically relevant function(s) of Vpr has been hampered by the fact that in many cell lines, deletion of Vpr does not significantly affect viral fitness. However, Vpr is critical for virus replication in primary macrophages and for viral pathogenesis in vivo. It is generally accepted that Vpr does not have a specific enzymatic activity but functions as a molecular adapter to modulate viral or cellular processes for the benefit of the virus. Indeed, many Vpr interacting factors have been described by now, and the goal of this review is to summarize our current knowledge of cellular proteins targeted by Vpr.
Collapse
|
3
|
Naamati A, Williamson JC, Greenwood EJ, Marelli S, Lehner PJ, Matheson NJ. Functional proteomic atlas of HIV infection in primary human CD4+ T cells. eLife 2019; 8:41431. [PMID: 30857592 PMCID: PMC6414203 DOI: 10.7554/elife.41431] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/10/2019] [Indexed: 12/19/2022] Open
Abstract
Viruses manipulate host cells to enhance their replication, and the identification of cellular factors targeted by viruses has led to key insights into both viral pathogenesis and cell biology. In this study, we develop an HIV reporter virus (HIV-AFMACS) displaying a streptavidin-binding affinity tag at the surface of infected cells, allowing facile one-step selection with streptavidin-conjugated magnetic beads. We use this system to obtain pure populations of HIV-infected primary human CD4+ T cells for detailed proteomic analysis, and quantitate approximately 9000 proteins across multiple donors on a dynamic background of T cell activation. Amongst 650 HIV-dependent changes (q < 0.05), we describe novel Vif-dependent targets FMR1 and DPH7, and 192 proteins not identified and/or regulated in T cell lines, such as ARID5A and PTPN22. We therefore provide a high-coverage functional proteomic atlas of HIV infection, and a mechanistic account of host factors subverted by the virus in its natural target cell.
Collapse
Affiliation(s)
- Adi Naamati
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - James C Williamson
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Edward Jd Greenwood
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Sara Marelli
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
4
|
Kübler J, Kirschner S, Hartmann L, Welzel G, Engelhardt M, Herskind C, Veldwijk MR, Schultz C, Felix M, Glatting G, Maier P, Wenz F, Brockmann MA, Giordano FA. The HIV-derived protein Vpr52-96 has anti-glioma activity in vitro and in vivo. Oncotarget 2018; 7:45500-45512. [PMID: 27275537 PMCID: PMC5216737 DOI: 10.18632/oncotarget.9787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022] Open
Abstract
Patients with actively replicating human immunodeficiency virus (HIV) exhibit adverse reactions even to low irradiation doses. High levels of the virus-encoded viral protein R (Vpr) are believed to be one of the major underlying causes for increased radiosensitivity. As Vpr efficiently crosses the blood-brain barrier and accumulates in astrocytes, we examined its efficacy as a drug for treatment of glioblastoma multiforme (GBM). In vitro, four glioblastoma-derived cell lines with and without methylguanine-DNA methyltransferase (MGMT) overexpression (U251, U87, U251-MGMT, U87-MGMT) were exposed to Vpr, temozolomide (TMZ), conventional photon irradiation (2 to 6 Gy) or to combinations thereof. Vpr showed high rates of acute toxicities with median effective doses of 4.0±1.1 μM and 15.7±7.5 μM for U251 and U87 cells, respectively. Caspase assays revealed Vpr-induced apoptosis in U251, but not in U87 cells. Vpr also efficiently inhibited clonogenic survival in both U251 and U87 cells and acted additively with irradiation. In contrast to TMZ, Vpr acted independently of MGMT expression. Dose escalation in mice (n=12) was feasible and resulted in no evident renal or liver toxicity. Both, irradiation with 3×5 Gy (n=8) and treatment with Vpr (n=5) delayed intracerebral tumor growth and prolonged overall survival compared to untreated animals (n=5; p3×5 Gy<0.001 and pVpr=0.04; log-rank test). Our data show that the HIV-encoded peptide Vpr exhibits all properties of an effective chemotherapeutic drug and may be a useful agent in the treatment of GBM.
Collapse
Affiliation(s)
- Jens Kübler
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefanie Kirschner
- Department of Neuroradiology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Linda Hartmann
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Grit Welzel
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Maren Engelhardt
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Institute of Neuroanatomy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Herskind
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marlon R Veldwijk
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Schultz
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Institute of Neuroanatomy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Manuela Felix
- Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gerhard Glatting
- Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Patrick Maier
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederik Wenz
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frank A Giordano
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
5
|
Payne EH, Ramalingam D, Fox DT, Klotman ME. Polyploidy and Mitotic Cell Death Are Two Distinct HIV-1 Vpr-Driven Outcomes in Renal Tubule Epithelial Cells. J Virol 2018; 92:e01718-17. [PMID: 29093088 PMCID: PMC5752950 DOI: 10.1128/jvi.01718-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/19/2017] [Indexed: 01/24/2023] Open
Abstract
Prior studies have found that HIV, through the Vpr protein, promotes genome reduplication (polyploidy) in infection-surviving epithelial cells within renal tissue. However, the temporal progression and molecular regulation through which Vpr promotes polyploidy have remained unclear. Here we define a sequential progression to Vpr-mediated polyploidy in human renal tubule epithelial cells (RTECs). We found that as in many cell types, Vpr first initiates G2 cell cycle arrest in RTECs. We then identified a previously unreported cascade of Vpr-dependent events that lead to renal cell survival and polyploidy. Specifically, we found that a fraction of G2-arrested RTECs reenter the cell cycle. Following this cell cycle reentry, two distinct outcomes occur. Cells that enter complete mitosis undergo mitotic cell death due to extra centrosomes and aberrant division. Conversely, cells that abort mitosis undergo endoreplication to become polyploid. We further show that multiple small-molecule inhibitors of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, including those that target ATR, ATM, and mTOR, indirectly prevent Vpr-mediated polyploidy by preventing G2 arrest. In contrast, an inhibitor that targets DNA-dependent protein kinase (DNA-PK) specifically blocks the Vpr-mediated transition from G2 arrest to polyploidy. These findings outline a temporal, molecularly regulated path to polyploidy in HIV-positive renal cells.IMPORTANCE Current cure-focused efforts in HIV research aim to elucidate the mechanisms of long-term persistence of HIV in compartments. The kidney is recognized as one such compartment, since viral DNA and mRNA persist in the renal tissues of HIV-positive patients. Further, renal disease is a long-term comorbidity in the setting of HIV. Thus, understanding the regulation and impact of HIV infection on renal cell biology will provide important insights into this unique HIV compartment. Our work identifies mechanisms that distinguish between HIV-positive cell survival and death in a known HIV compartment, as well as pharmacological agents that alter these outcomes.
Collapse
Affiliation(s)
- Emily H Payne
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Dhivya Ramalingam
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Donald T Fox
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Mary E Klotman
- Department of Pathology, Duke University, Durham, North Carolina, USA
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
6
|
Zhou X, DeLucia M, Hao C, Hrecka K, Monnie C, Skowronski J, Ahn J. HIV-1 Vpr protein directly loads helicase-like transcription factor (HLTF) onto the CRL4-DCAF1 E3 ubiquitin ligase. J Biol Chem 2017; 292:21117-21127. [PMID: 29079575 DOI: 10.1074/jbc.m117.798801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/23/2017] [Indexed: 11/06/2022] Open
Abstract
The viral protein R (Vpr) is an accessory virulence factor of HIV-1 that facilitates infection in immune cells. Cellular functions of Vpr are tied to its interaction with DCAF1, a substrate receptor component of the CRL4 E3 ubiquitin ligase. Recent proteomic approaches suggested that Vpr degrades helicase-like transcription factor (HLTF) DNA helicase in a proteasome-dependent manner by redirecting the CRL4-DCAF1 E3 ligase. However, the precise molecular mechanism of Vpr-dependent HLTF depletion is not known. Here, using in vitro reconstitution assays, we show that Vpr mediates polyubiquitination of HLTF, by directly loading it onto the C-terminal WD40 domain of DCAF1 in complex with the CRL4 E3 ubiquitin ligase. Mutational analyses suggest that Vpr interacts with DNA-binding residues in the N-terminal HIRAN domain of HLTF in a manner similar to the recruitment of another target, uracil DNA glycosylase (UNG2), to the CRL4-DCAF1 E3 by Vpr. Strikingly, Vpr also engages a second, adjacent region, which connects the HIRAN and ATPase/helicase domains. Thus, our findings reveal that Vpr utilizes common as well as distinctive interfaces to recruit multiple postreplication DNA repair proteins to the CRL4-DCAF1 E3 ligase for ubiquitin-dependent proteasomal degradation.
Collapse
Affiliation(s)
- Xiaohong Zhou
- From the Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260 and
| | - Maria DeLucia
- From the Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260 and
| | - Caili Hao
- Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, Ohio 44106
| | - Kasia Hrecka
- Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, Ohio 44106
| | - Christina Monnie
- From the Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260 and
| | - Jacek Skowronski
- Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, Ohio 44106
| | - Jinwoo Ahn
- From the Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260 and
| |
Collapse
|
7
|
González ME. The HIV-1 Vpr Protein: A Multifaceted Target for Therapeutic Intervention. Int J Mol Sci 2017; 18:ijms18010126. [PMID: 28075409 PMCID: PMC5297760 DOI: 10.3390/ijms18010126] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 12/16/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Vpr protein is an attractive target for antiretroviral drug development. The conservation both of the structure along virus evolution and the amino acid sequence in viral isolates from patients underlines the importance of Vpr for the establishment and progression of HIV-1 disease. While its contribution to virus replication in dividing and non-dividing cells and to the pathogenesis of HIV-1 in many different cell types, both extracellular and intracellular forms, have been extensively studied, its precise mechanism of action nevertheless remains enigmatic. The present review discusses how the apparently multifaceted interplay between Vpr and host cells may be due to the impairment of basic metabolic pathways. Vpr protein modifies host cell energy metabolism, oxidative status, and proteasome function, all of which are likely conditioned by the concentration and multimerization of the protein. The characterization of Vpr domains along with new laboratory tools for the assessment of their function has become increasingly relevant in recent years. With these advances, it is conceivable that drug discovery efforts involving Vpr-targeted antiretrovirals will experience substantial growth in the coming years.
Collapse
Affiliation(s)
- María Eugenia González
- Unidad de Expresión Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo Km 2, Majadahonda, 28220 Madrid, Spain.
| |
Collapse
|
8
|
Kamata M, Kim PY, Ng HL, Ringpis GEE, Kranz E, Chan J, O'Connor S, Yang OO, Chen ISY. Ectopic expression of anti-HIV-1 shRNAs protects CD8(+) T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation. Biochem Biophys Res Commun 2015; 463:216-21. [PMID: 25998390 DOI: 10.1016/j.bbrc.2015.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 12/31/2022]
Abstract
Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8(+) T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8(+) T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8(+) T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24(Gag) in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8(+) T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8(+) T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8(+) T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance.
Collapse
Affiliation(s)
- Masakazu Kamata
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Patrick Y Kim
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hwee L Ng
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gene-Errol E Ringpis
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Emiko Kranz
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Joshua Chan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sean O'Connor
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Otto O Yang
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; UCLA AIDS Institute, Los Angeles, CA, USA; AIDS Healthcare Foundation, Los Angeles, CA, USA
| | - Irvin S Y Chen
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; UCLA AIDS Institute, Los Angeles, CA, USA
| |
Collapse
|
9
|
Brégnard C, Benkirane M, Laguette N. DNA damage repair machinery and HIV escape from innate immune sensing. Front Microbiol 2014; 5:176. [PMID: 24795708 PMCID: PMC4001025 DOI: 10.3389/fmicb.2014.00176] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 03/31/2014] [Indexed: 01/11/2023] Open
Abstract
Viruses have been long known to perturb cell cycle regulators and key players of the DNA damage response to benefit their life cycles. In the case of the human immunodeficiency virus (HIV), the viral auxiliary protein Vpr activates the structure-specific endonuclease SLX4 complex to promote escape from innate immune sensing and, as a side effect, induces replication stress in cycling cells and subsequent cell cycle arrest at the G2/M transition. This novel pathway subverted by HIV to prevent accumulation of viral reverse transcription by-products adds up to facilitating effects of major cellular exonucleases that degrade pathological DNA species. Within this review we discuss the impact of this finding on our understanding of the interplay between HIV replication and nucleic acid metabolism and its implications for cancer-related chronic inflammation.
Collapse
Affiliation(s)
- Christelle Brégnard
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine CNRS UPR1142, Montpellier, France
| | - Monsef Benkirane
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine CNRS UPR1142, Montpellier, France
| | - Nadine Laguette
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine CNRS UPR1142, Montpellier, France
| |
Collapse
|
10
|
Laguette N, Brégnard C, Hue P, Basbous J, Yatim A, Larroque M, Kirchhoff F, Constantinou A, Sobhian B, Benkirane M. Premature activation of the SLX4 complex by Vpr promotes G2/M arrest and escape from innate immune sensing. Cell 2014; 156:134-45. [PMID: 24412650 DOI: 10.1016/j.cell.2013.12.011] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/05/2013] [Accepted: 12/10/2013] [Indexed: 11/29/2022]
Abstract
The HIV auxiliary protein Vpr potently blocks the cell cycle at the G2/M transition. Here, we show that G2/M arrest results from untimely activation of the structure-specific endonuclease (SSE) regulator SLX4 complex (SLX4com) by Vpr, a process that requires VPRBP-DDB1-CUL4 E3-ligase complex. Direct interaction of Vpr with SLX4 induced the recruitment of VPRBP and kinase-active PLK1, enhancing the cleavage of DNA by SLX4-associated MUS81-EME1 endonucleases. G2/M arrest-deficient Vpr alleles failed to interact with SLX4 or to induce recruitment of MUS81 and PLK1. Furthermore, knockdown of SLX4, MUS81, or EME1 inhibited Vpr-induced G2/M arrest. In addition, we show that the SLX4com is involved in suppressing spontaneous and HIV-1-mediated induction of type 1 interferon and establishment of antiviral responses. Thus, our work not only reveals the identity of the cellular factors required for Vpr-mediated G2/M arrest but also identifies the SLX4com as a regulator of innate immunity.
Collapse
Affiliation(s)
- Nadine Laguette
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS UPR1142, Montpellier 34000, France.
| | - Christelle Brégnard
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS UPR1142, Montpellier 34000, France
| | - Pauline Hue
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS UPR1142, Montpellier 34000, France
| | - Jihane Basbous
- Laboratoire Instabilité du Génome et Cancer, CNRS UPR1142, Montpellier 34000, France
| | - Ahmad Yatim
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS UPR1142, Montpellier 34000, France
| | - Marion Larroque
- Laboratoire Instabilité du Génome et Cancer, CNRS UPR1142, Montpellier 34000, France
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 81089 Ulm, Germany
| | - Angelos Constantinou
- Laboratoire Instabilité du Génome et Cancer, CNRS UPR1142, Montpellier 34000, France
| | - Bijan Sobhian
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS UPR1142, Montpellier 34000, France
| | - Monsef Benkirane
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS UPR1142, Montpellier 34000, France.
| |
Collapse
|
11
|
Upreti D, Pathak A, Kung SKP. Lentiviral vector-based therapy in head and neck cancer (Review). Oncol Lett 2013; 7:3-9. [PMID: 24348811 PMCID: PMC3861563 DOI: 10.3892/ol.2013.1652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 09/17/2013] [Indexed: 12/30/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common neoplasm worldwide. Despite advances in multimodality treatments involving surgery, radiation and chemotherapy, the five-year survival rate has remained at ~50% for the past 35 years. Therefore, the early detection of recurrent or persistent disease is extremely important. Replication-incompetent HIV-1-based lentiviral vectors have emerged as powerful and safe tools for gene delivery. Commonly, HNSCC is a locoregional disease that presents at or close to the body surface. Thus, HNSCC is amendable to intratumoral injections of gene therapy vectors aimed at correcting defects associated with tumor suppressor genes to induce the direct cytotoxicity of cancer cells or immune modulation to promote antitumor immunity. Current investigations analyzing HNSCC gene mutations and stem cell markers and the cancer immunoediting concept are creating exciting therapeutic opportunities for lentiviral and other gene transfer vectors. The present review reports specific examples of the current applications of lentiviral vectors in HNSCC.
Collapse
Affiliation(s)
- Deepak Upreti
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Alok Pathak
- Department of Surgery, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Sam K P Kung
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
12
|
Fritz JV, Briant L, Mély Y, Bouaziz S, de Rocquigny H. HIV-1 viral protein r: from structure to function. Future Virol 2010. [DOI: 10.2217/fvl.10.47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The viral protein r (Vpr) of HIV-1 binds several host proteins leading to pleiotropic functions, such as G2/M cell cycle arrest, apoptosis induction and gene transactivation. Vpr is encapsidated through the Gag C-terminus into the nascent viral particles, suggesting that Vpr plays several important functions in the early stages of the viral lifecycle. In this regard, Vpr interacts with nucleic acids and membranes to facilitate the preintegration complex migration and incorporation into the nucleus of nondividing cells. Thus, Vpr has to recruit several host and viral factors to promote its functions during HIV-1 pathogenesis. This article focuses on its interacting partners by giving an overview of the functional outcome of the different Vpr complexes, as well as the structural determinants of Vpr required for its binding properties.
Collapse
Affiliation(s)
- Joëlle V Fritz
- Department of Infectious Diseases, Virology, Universitätsklinikum, Im Neuenheimer Feld, 324, D-69120, Heidelberg, Germany
| | - Laurence Briant
- Université Montpellier 1, Centre d’études d’agents Pathogènes et Biotechnologies pour la Santé, CNRS, UMR 5236, CPBS, F-34965 Montpellier, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| | - Serge Bouaziz
- Laboratoire de Cristallographie et RMN Biologiques, CNRS UMR8015 UFR des Sciences Pharmaceutiques et Biologiques 4, Avenue de L’observatoire, 75006 Paris, France: Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| | | |
Collapse
|
13
|
Planelles V, Barker E. Roles of Vpr and Vpx in modulating the virus-host cell relationship. Mol Aspects Med 2010; 31:398-406. [PMID: 20558198 DOI: 10.1016/j.mam.2010.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 05/26/2010] [Indexed: 01/02/2023]
Abstract
The human and simian immunodeficiency viruses contain small open reading frames known as vpr and vpx. These genes encode proteins that are highly related both at the amino acid level and functionally, although key differences do exist. This review describes the main functions ascribed to Vpr and Vpx in the context of both viral replication and modulation of host cell biology.
Collapse
Affiliation(s)
- Vicente Planelles
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, #2100 - Room 2520, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
14
|
Ho SK, Coman RM, Bunger JC, Rose SL, O'Brien P, Munoz I, Dunn BM, Sleasman JW, Goodenow MM. Drug-associated changes in amino acid residues in Gag p2, p7(NC), and p6(Gag)/p6(Pol) in human immunodeficiency virus type 1 (HIV-1) display a dominant effect on replicative fitness and drug response. Virology 2008; 378:272-81. [PMID: 18599104 DOI: 10.1016/j.virol.2008.05.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 02/27/2008] [Accepted: 05/29/2008] [Indexed: 10/21/2022]
Abstract
Regions of HIV-1 gag between p2 and p6(Gag)/p6(Pol), in addition to protease (PR), develop genetic diversity in HIV-1 infected individuals who fail to suppress virus replication by combination protease inhibitor (PI) therapy. To elucidate functional consequences for viral replication and PI susceptibility by changes in Gag that evolve in vivo during PI therapy, a panel of recombinant viruses was constructed. Residues in Gag p2/p7(NC) cleavage site and p7(NC), combined with residues in the flap of PR, defined novel fitness determinants that restored replicative capacity to the posttherapy virus. Multiple determinants in Gag have a dominant effect on PR phenotype and increase susceptibility to inhibitors of drug-resistant or drug-sensitive PR genes. Gag determinants of drug sensitivity and replication alter the fitness landscape of the virus, and viral replicative capacity can be independent of drug sensitivity. The functional linkage between Gag and PR provides targets for novel therapeutics to inhibit drug-resistant viruses.
Collapse
Affiliation(s)
- Sarah K Ho
- Department of Pathology, Immunology, and Laboratory Medicine, Box 103633, University of Florida College of Medicine, 1376 Mowry Road, Gainesville, FL 32610-3633, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Andersen JL, Le Rouzic E, Planelles V. HIV-1 Vpr: mechanisms of G2 arrest and apoptosis. Exp Mol Pathol 2008; 85:2-10. [PMID: 18514189 DOI: 10.1016/j.yexmp.2008.03.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 03/04/2008] [Indexed: 02/05/2023]
Abstract
Since the first isolation of HIV-1 from a patient with generalized lymphadenopathy in 1983, great progress has been made in understanding the viral life cycle and the functional nuances of each of the nine genes encoded by HIV-1. Considerable attention has been paid to four small HIV-1 open reading frames, vif, vpr, vpu and nef. These genes were originally termed "accessory" because their deletion failed to completely disable viral replication in vitro. More than twenty years after the cloning and sequencing of HIV-1, a great deal of information is available regarding the multiple functions of the accessory proteins and it is well accepted that, collectively, these gene products modulate the host cell biology to favor viral replication, and that they are largely responsible for the pathogenesis of HIV-1. Expression of Vpr, in particular, leads to cell cycle arrest in G(2), followed by apoptosis. Here we summarize our current understanding of Vpr biology with a focus on Vpr-induced G(2) arrest and apoptosis.
Collapse
Affiliation(s)
- Joshua L Andersen
- Center for the Study of Aging and Human Development, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
16
|
Owsianowski E, Walter D, Fahrenkrog B. Negative regulation of apoptosis in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1303-10. [PMID: 18406356 DOI: 10.1016/j.bbamcr.2008.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 03/08/2008] [Accepted: 03/12/2008] [Indexed: 12/29/2022]
Abstract
In recent years, yeast has been proven to be a useful model organism for studying programmed cell death. It not only exhibits characteristic markers of apoptotic cell death when heterologous inducers of apoptosis are expressed or when treated with apoptosis inducing drugs such as hydrogen peroxide (H(2)O(2)) or acetic acid, but contains homologues of several components of the apoptotic machinery identified in mammals, flies and nematodes, such as caspases, apoptosis inducing factor (AIF), Omi/HtrA2 and inhibitor-of-apoptosis proteins (IAPs). In this review, we focus on the role of negative regulators of apoptosis in yeasts. Bir1p is the only IAP protein in Saccharomyces cerevisiae and has long been known to play a role in cell cycle progression by acting as kinetochore and chromosomal passenger protein. Recent data established Bir1p's protective function against programmed cell death induced by H(2)O(2) treatment and in chronological ageing. Other factors that have a direct or indirect influence on intracellular levels of reactive oxygen species (ROS) and thus lead to apoptosis if they are misregulated or non-functional will be discussed.
Collapse
Affiliation(s)
- Esther Owsianowski
- ME Müller Institute for Structural Biology, Biozentrum, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
17
|
Derouet-Hümbert E, Drăgan CA, Hakki T, Bureik M. ROS production by adrenodoxin does not cause apoptosis in fission yeast. Apoptosis 2007; 12:2135-42. [PMID: 17885803 DOI: 10.1007/s10495-007-0133-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We previously showed that production of reactive oxygen species (ROS) caused by overexpression of the mitochondrial electron transfer protein adrenodoxin (Adx) induces apoptosis in mammalian cells. In the fission yeast Schizosaccharomyces pombe, ROS are also produced in cells that undergo an apoptotic-like cell death, but it is not yet clear whether they are actually causative for this phenomenon or whether they are merely produced as a by-product. Therefore, the purpose of this study was to trigger mitochondrial ROS production in fission yeast by overexpression of either wildtype Adx (Adx-WT) or of several activated Adx mutants and to investigate its consequences. It was found that strong expression of either Adx-WT or Adx-S112W did not produce any ROS, while Adx-D113Y caused a twofold and Adx1-108 a threefold increase in ROS formation as compared to basal levels. However, no typical apoptotic markers or decreased viability could be observed in these strains. Since we previously observed that an increase in mitochondrial ROS formation of about 60% above basal levels is sufficient to strongly induce apoptosis in mammalian cells, we conclude that S. pombe is either very robust to mitochondrial ROS production or does not undergo apoptotic cell death in response to mitochondrial ROS at all.
Collapse
Affiliation(s)
- Evi Derouet-Hümbert
- Department of Biochemistry, Building A 2-4, Saarland University, 66041, Saarbrucken, Germany
| | | | | | | |
Collapse
|
18
|
Liang D, Benko Z, Agbottah E, Bukrinsky M, Zhao RY. Anti-vpr activities of heat shock protein 27. Mol Med 2007. [PMID: 17622316 DOI: 10.2119/2007-00004.liang] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIV-1 Vpr plays a pivotal role in viral pathogenesis and is preferentially targeted by the host immune system. In this report, we demonstrate that a small heat shock protein, HSP27, exhibits Vpr-specific antiviral activity, as its expression is specifically responsive to vpr gene expression and increased levels of HSP27 inhibit Vpr-induced cell cycle G2 arrest and cell killing. We further show that overexpression of HSP27 reduces viral replication in T-lymphocytes in a Vpr-dependent manner. Mechanistically, Vpr triggers HSP27 expression through heat shock factor (HSF) 1, but inhibits prolonged expression of HSP27 under heat-shock conditions. Together, these data suggest a potential dynamic and antagonistic interaction between HIV-1 Vpr and a host cell HSP27, suggesting that HSP27 may contribute to cellular intrinsic immunity against HIV infection.
Collapse
Affiliation(s)
- Dong Liang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
19
|
Liang D, Benko Z, Agbottah E, Bukrinsky M, Zhao RY. Anti-vpr activities of heat shock protein 27. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2007; 13:229-39. [PMID: 17622316 PMCID: PMC1906686 DOI: 10.2119/2007–00004.liang] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 03/25/2007] [Indexed: 11/06/2022]
Abstract
HIV-1 Vpr plays a pivotal role in viral pathogenesis and is preferentially targeted by the host immune system. In this report, we demonstrate that a small heat shock protein, HSP27, exhibits Vpr-specific antiviral activity, as its expression is specifically responsive to vpr gene expression and increased levels of HSP27 inhibit Vpr-induced cell cycle G2 arrest and cell killing. We further show that overexpression of HSP27 reduces viral replication in T-lymphocytes in a Vpr-dependent manner. Mechanistically, Vpr triggers HSP27 expression through heat shock factor (HSF) 1, but inhibits prolonged expression of HSP27 under heat-shock conditions. Together, these data suggest a potential dynamic and antagonistic interaction between HIV-1 Vpr and a host cell HSP27, suggesting that HSP27 may contribute to cellular intrinsic immunity against HIV infection.
Collapse
Affiliation(s)
- Dong Liang
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zsigmond Benko
- Children’s Memorial Research Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Emmanuel Agbottah
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Richard Y Zhao
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Children’s Memorial Research Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Microbiology-Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Address correspondence and reprint requests to Richard Y. Zhao, Department of Pathology, University of Maryland School of Medicine, 10 South Pine Street, MSTF700A, Baltimore, MD 21201. Phone: 410-796-6301; Fax 410-706-6303; E-mail:
, or Michael Bukrinsky, Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20037. Phone: 202-994-2036; Fax: 410-706-6303; E-mail:
| |
Collapse
|
20
|
Wen X, Duus KM, Friedrich TD, de Noronha CMC. The HIV1 protein Vpr acts to promote G2 cell cycle arrest by engaging a DDB1 and Cullin4A-containing ubiquitin ligase complex using VprBP/DCAF1 as an adaptor. J Biol Chem 2007; 282:27046-27057. [PMID: 17620334 DOI: 10.1074/jbc.m703955200] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The roles of the HIV1 protein Vpr in virus replication and pathogenesis remain unclear. Expression of Vpr in dividing cells causes cell cycle arrest in G(2). Vpr also facilitates low titer infection of terminally differentiated macrophages, enhances transcription, promotes apoptosis, and targets cellular uracil N-glycosylase for degradation. Using co-immunoprecipitation and tandem mass spectroscopy, we found that HIV1 Vpr engages a DDB1- and cullin4A-containing ubiquitin-ligase complex through VprBP/DCAF1. HIV2 Vpr has two Vpr-like proteins, Vpr and Vpx, which cause G(2) arrest and facilitate macrophage infection, respectively. HIV2 Vpr, but not Vpx, engages the same set of proteins. We further demonstrate that the interaction between Vpr and the ubiquitin-ligase components as well as further assembly of the ubiquitin-ligase are necessary for Vpr-mediated G(2) arrest. Our data support a model in which Vpr engages the ubiquitin ligase to deplete a cellular factor that is required for cell cycle progression into mitosis. Vpr, thus, functions like the HIV1 proteins Vif and Vpu to usurp cellular ubiquitin ligases for viral functions.
Collapse
Affiliation(s)
- Xiaoyun Wen
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208
| | - Karen M Duus
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208
| | - Thomas D Friedrich
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208
| | - Carlos M C de Noronha
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208.
| |
Collapse
|
21
|
Andersen JL, DeHart JL, Zimmerman ES, Ardon O, Kim B, Jacquot G, Benichou S, Planelles V. HIV-1 Vpr-induced apoptosis is cell cycle dependent and requires Bax but not ANT. PLoS Pathog 2007; 2:e127. [PMID: 17140287 PMCID: PMC1665652 DOI: 10.1371/journal.ppat.0020127] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 10/25/2006] [Indexed: 11/18/2022] Open
Abstract
The HIV-1 accessory protein viral protein R (Vpr) causes G2 arrest and apoptosis in infected cells. We previously identified the DNA damage–signaling protein ATR as the cellular factor that mediates Vpr-induced G2 arrest and apoptosis. Here, we examine the mechanism of induction of apoptosis by Vpr and how it relates to induction of G2 arrest. We find that entry into G2 is a requirement for Vpr to induce apoptosis. We investigated the role of the mitochondrial permeability transition pore by knockdown of its essential component, the adenine nucleotide translocator. We found that Vpr-induced apoptosis was unaffected by knockdown of ANT. Instead, apoptosis is triggered through a different mitochondrial pore protein, Bax. In support of the idea that checkpoint activation and apoptosis induction are functionally linked, we show that Bax activation by Vpr was ablated when ATR or GADD45α was knocked down. Certain mutants of Vpr, such as R77Q and I74A, identified in long-term nonprogressors, have been proposed to inefficiently induce apoptosis while activating the G2 checkpoint in a normal manner. We tested the in vitro phenotypes of these mutants and found that their abilities to induce apoptosis and G2 arrest are indistinguishable from those of HIV-1NL4–3vpr, providing additional support to the idea that G2 arrest and apoptosis induction are mechanistically linked. HIV-1 encodes a small gene known as vpr (viral protein regulatory) whose product is a 96–amino acid protein. HIV-1 infects cells of the immune system, such as CD4-positive lymphocytes. When cells become infected with HIV-1, two deleterious effects result from expression of the vpr gene. One effect of vpr is to manipulate the cell cycle by blocking the cells in G2 (the phase of the cell cycle immediately preceding mitosis). Thus, cells infected with HIV-1 cease to proliferate, due to the action of vpr. A second effect of vpr is the induction of cell death by a process known as apoptosis or programmed cell death. When cells die by apoptosis, they do so following activation of a cellular set of genes and proteins whose primary function is to inactivate various cellular functions that are needed in order to maintain cellular viability. In this study, Andersen et al. demonstrate that the above two effects of vpr are linked. In particular, the authors show that the blockade in cell proliferation in G2 is a requirement toward the onset of programmed cell death. Programmed cell death can be accomplished by a number of cellular proteins known as “executioners.” Various executioner proteins reside on the mitochondrial membranes and may trigger release of factors from the mitochondria, which in turn will precipitate the onset of apoptosis. In this work Anderson et al. identify the mitochondrial protein, Bax, as the key executioner of apoptosis in the context of HIV-1 vpr. The authors' findings provide important mechanistic understanding of how the vpr gene contributes to HIV-1–induced cell death.
Collapse
Affiliation(s)
- Joshua L Andersen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jason L DeHart
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Erik S Zimmerman
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Orly Ardon
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Baek Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Guillaume Jacquot
- Departement de Maladies Infectieuses, Institut Cochin, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Serge Benichou
- Departement de Maladies Infectieuses, Institut Cochin, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Vicente Planelles
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Bolton DL, Lenardo MJ. Vpr cytopathicity independent of G2/M cell cycle arrest in human immunodeficiency virus type 1-infected CD4+ T cells. J Virol 2007; 81:8878-90. [PMID: 17553871 PMCID: PMC1951439 DOI: 10.1128/jvi.00122-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism of CD4(+) T-cell depletion in human immunodeficiency virus type 1 (HIV-1)-infected individuals remains unknown, although mounting evidence suggests that direct viral cytopathicity contributes to this loss. The HIV-1 Vpr accessory protein causes cell death and arrests cells in the G(2)/M phase; however, the molecular mechanism underlying these properties is not clear. Mutation of hydrophobic residues on the surface of its third alpha-helix disrupted Vpr toxicity, G(2)/M arrest induction, nuclear localization, and self-association, implicating this region in multiple Vpr functions. Cytopathicity by virion-delivered mutant Vpr protein correlated with G(2)/M arrest induction but not nuclear localization or self-association. However, infection with whole virus encoding these Vpr mutants did not abrogate HIV-1-induced cell killing. Rather, mutant Vpr proteins that are impaired for G(2)/M block still prevented infected cell proliferation, and this property correlated with the death of infected cells. Chemical agents that inhibit infected cells from entering G(2)/M also did not reduce HIV-1 cytopathicity. Combined, these data implicate Vpr in HIV-1 killing through a mechanism involving inhibiting cell division but not necessarily in G(2)/M. Thus, the hydrophobic region of the third alpha-helix of Vpr is crucial for mediating G(2)/M arrest, nuclear localization, and self-association but dispensable for HIV-1 cytopathicity due to residual cell proliferation blockade mediated by a separate region of the protein.
Collapse
MESH Headings
- Amino Acid Substitution/genetics
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/virology
- Cell Cycle
- Cell Death
- Cell Line, Tumor
- Cytopathogenic Effect, Viral
- Gene Products, vpr/chemistry
- Gene Products, vpr/genetics
- Gene Products, vpr/physiology
- HIV-1/pathogenicity
- Humans
- Hydrophobic and Hydrophilic Interactions
- Jurkat Cells
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation, Missense
- Protein Binding/genetics
- Protein Structure, Secondary
- Protein Transport/genetics
- vpr Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Diane L Bolton
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Rm. 11N311, 10 Center Dr., Bethesda, MD 20892-1892, USA
| | | |
Collapse
|
23
|
Cheng X, Cheng X, Mukhtar M, Acheampong EA, Srinivasan A, Rafi M, Pomerantz RJ, Parveen Z. HIV-1 Vpr potently induces programmed cell death in the CNS in vivo. DNA Cell Biol 2007; 26:116-31. [PMID: 17328670 DOI: 10.1089/dna.2006.0541] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The human immunodeficiency virus type I (HIV-1) accessory protein Vpr has been associated with the induction of programmed cell death (apoptosis) and cell-cycle arrest. Studies have shown the apoptotic effect of Vpr on primary and established cell lines and on diverse tissues including the central nervous system (CNS) in vitro. However, the relevance of the effect of Vpr observed in vitro to HIV-1 neuropathogenesis in vivo, remains unknown. Due to the narrow host range of HIV-1 infection, no animal model is currently available. This has prompted us to consider a small animal model to evaluate the effects of Vpr on CNS in vivo through surrogate viruses expressing HIV-1Vpr. A single round of replication competent viral vectors, expressing Vpr, were used to investigate the apoptosis-inducing capabilities of HIV-1Vpr in vivo. Viral particles pseudotyped with VSV-G or N2c envelopes were generated from spleen necrosis virus (SNV) and HIV-1-based vectors to transduce CNS cells. The in vitro studies have demonstrated that Vpr generated by SNV vectors had less apoptotic effects on CNS cells compared with Vpr expressed by HIV-1 vectors. The in vivo study has suggested that viral particles, expressing Vpr generated by HIV-1-based vectors, when delivered through the ventricle, caused loss of neurons and dendritic processes in the cortical region. The apoptotic effect was extended beyond the cortical region and affected the hippocampus neurons, the lining of the choroids plexus, and the cerebellum. However, the effect of Vpr, when delivered through the cortex, showed neuronal damage only around the site of injection. Interestingly, the number of apoptotic neurons were significantly higher with HIV-1 vectors expressing Vpr than by the SNV vectors. This may be due to the differences in the proteins expressed by these viral vectors. These results suggest that Vpr induces apoptosis in CNS cells in vitro and in vivo. To our knowledge, this is the first study to investigate the apoptosis-inducing capabilities of HIV-1Vpr in vivo in neonatal mice. We propose that this, in expensive animal model, may be of value to design-targeted neuroprotective therapeutics.
Collapse
Affiliation(s)
- Xiaodong Cheng
- The Dorrance H. Hamilton Laboratories, Division of Infectious Diseases and Environmental Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Benko Z, Liang D, Agbottah E, Hou J, Taricani L, Young PG, Bukrinsky M, Zhao RY. Antagonistic interaction of HIV-1 Vpr with Hsf-mediated cellular heat shock response and Hsp16 in fission yeast (Schizosaccharomyces pombe). Retrovirology 2007; 4:16. [PMID: 17341318 PMCID: PMC1828740 DOI: 10.1186/1742-4690-4-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 03/07/2007] [Indexed: 01/08/2023] Open
Abstract
Background Expression of the HIV-1 vpr gene in human and fission yeast cells displays multiple highly conserved activities, which include induction of cell cycle G2 arrest and cell death. We have previously characterized a yeast heat shock protein 16 (Hsp16) that suppresses the Vpr activities when it is overproduced in fission yeast. Similar suppressive effects were observed when the fission yeast hsp16 gene was overexpressed in human cells or in the context of viral infection. In this study, we further characterized molecular actions underlying the suppressive effect of Hsp16 on the Vpr activities. Results We show that the suppressive effect of Hsp16 on Vpr-dependent viral replication in proliferating T-lymphocytes is mediated through its C-terminal end. In addition, we show that Hsp16 inhibits viral infection in macrophages in a dose-dependent manner. Mechanistically, Hsp16 suppresses Vpr activities in a way that resembles the cellular heat shock response. In particular, Hsp16 activation is mediated by a heat shock factor (Hsf)-dependent mechanism. Interestingly, vpr gene expression elicits a moderate increase of endogenous Hsp16 but prevents its elevation when cells are grown under heat shock conditions that normally stimulate Hsp16 production. Similar responsive to Vpr elevation of Hsp and counteraction of this elevation by Vpr were also observed in our parallel mammalian studies. Since Hsf-mediated elevation of small Hsps occurs in all eukaryotes, this finding suggests that the anti-Vpr activity of Hsps is a conserved feature of these proteins. Conclusion These data suggest that fission yeast could be used as a model to further delineate the potential dynamic and antagonistic interactions between HIV-1 Vpr and cellular heat shock responses involving Hsps.
Collapse
Affiliation(s)
- Zsigmond Benko
- Children's Memorial Research Center, Departments of Pediatrics, Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dong Liang
- Children's Memorial Research Center, Departments of Pediatrics, Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Departments of Pathology, Microbiology-Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Emmanuel Agbottah
- Department of Microbiology and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Jason Hou
- Children's Memorial Research Center, Departments of Pediatrics, Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lorena Taricani
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Paul G Young
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Michael Bukrinsky
- Department of Microbiology and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Richard Y Zhao
- Children's Memorial Research Center, Departments of Pediatrics, Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Departments of Pathology, Microbiology-Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Zhang S, Joseph G, Pollok K, Berthoux L, Sastry L, Luban J, Cornetta K. G2 cell cycle arrest and cyclophilin A in lentiviral gene transfer. Mol Ther 2006; 14:546-54. [PMID: 16901758 DOI: 10.1016/j.ymthe.2006.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 05/22/2006] [Accepted: 05/31/2006] [Indexed: 11/19/2022] Open
Abstract
Lentiviral vectors derived from the human immunodeficiency virus-1 (HIV-1) have a higher propensity to transduce nondividing cells compared to vectors based on oncoretroviruses. We report here that genistein, a previously known protein tyrosine kinase (PTK) inhibitor and G2 cell cycle arrest inducer, significantly enhanced lentiviral transduction in a dose-dependent manner. Increased transduction, as measured by vector expression, was seen in a variety of human cell lines, murine primary lymphocytes, and primary human CD34(+) peripheral blood progenitor cells as well. Increased vector expression was also associated with an increase in vector DNA copy number, as assessed by quantitative PCR. Genistein-mediated G2 cell cycle arrest, rather than PTK inhibition, appears to be the major factor responsible for increased gene transfer. Genistein also increases cyclophilin A (CypA) protein, a cellular protein important for efficient HIV-1 infection. While we show that CypA(-/-) Jurkat cells transduce poorly with lentiviral vectors, genistein does increase gene transfer in CypA-deficient cells. CypA and G2 cell cycle arrest appear to be two independent factors important for efficient lentiviral gene transfer. The role of genistein and other G2-arresting agents may be useful for improving the efficiency of lentiviral gene therapy.
Collapse
Affiliation(s)
- Shangming Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 West Walnut Street, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Kamata M, Wu RP, An DS, Saxe JP, Damoiseaux R, Phelps ME, Huang J, Chen ISY. Cell-based chemical genetic screen identifies damnacanthal as an inhibitor of HIV-1 Vpr induced cell death. Biochem Biophys Res Commun 2006; 348:1101-6. [PMID: 16904642 PMCID: PMC1761125 DOI: 10.1016/j.bbrc.2006.07.158] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 07/25/2006] [Indexed: 11/30/2022]
Abstract
Viral protein R (Vpr), one of the human immunodeficiency virus type 1 (HIV-1) accessory proteins, contributes to multiple cytopathic effects, G2 cell cycle arrest and apoptosis. The mechanisms of Vpr have been intensely studied because it is believed that they underlie HIV-1 pathogenesis. We here report a cell-based small molecule screen on Vpr induced cell death in the context of HIV-1 infection. From the screen of 504 bioactive compounds, we identified damnacanthal (Dam), a component of noni [corrected] as an inhibitor of Vpr induced cell death. Our studies illustrate a novel efficient platform for drug discovery and development in anti-HIV therapy which should also be applicable to other viruses.
Collapse
Affiliation(s)
- Masakazu Kamata
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Muthumani K, Choo AY, Premkumar A, Hwang DS, Thieu KP, Desai BM, Weiner DB. Human immunodeficiency virus type 1 (HIV-1) Vpr-regulated cell death: insights into mechanism. Cell Death Differ 2006; 12 Suppl 1:962-70. [PMID: 15832179 DOI: 10.1038/sj.cdd.4401583] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The destruction of CD4(+) T cells and eventual induction of immunodeficiency is a hallmark of the human immunodeficiency virus type 1 infection (HIV-1). However, the mechanism of this destruction remains unresolved. Several auxiliary proteins have been proposed to play a role in this aspect of HIV pathogenesis including a 14 kDa protein named viral protein R (Vpr). Vpr has been implicated in the regulation of various cellular functions including apoptosis, cell cycle arrest, differentiation, and immune suppression. However, the mechanism(s) involved in Vpr-mediated apoptosis remains unresolved, and several proposed mechanisms for these effects are under investigation. In this review, we discuss the possibility that some of these proposed pathways might converge to modulate Vpr's behavior. Further, we also discuss caveats and future directions for investigation of the interesting biology of this HIV accessory gene.
Collapse
Affiliation(s)
- K Muthumani
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Ardon O, Zimmerman ES, Andersen JL, DeHart JL, Blackett J, Planelles V. Induction of G2 arrest and binding to cyclophilin A are independent phenotypes of human immunodeficiency virus type 1 Vpr. J Virol 2006; 80:3694-700. [PMID: 16571786 PMCID: PMC1440437 DOI: 10.1128/jvi.80.8.3694-3700.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cyclophilin A (CypA) is a member of a family of cellular proteins that share a peptidyl prolyl cis-trans isomerase (PPIase) activity. CypA was previously reported to be required for the biochemical stability and function (specifically, induction of G2 arrest) of the human immunodeficiency virus type 1 (HIV-1) protein R (Vpr). In the present study, we examine the role of the Vpr-CypA interaction on Vpr-induced G2 arrest. We find that Vpr coimmunoprecipitates with CypA and that this interaction is disrupted by substitution of proline-35 of Vpr as well as incubation with the CypA inhibitor cyclosporine A (CsA). Surprisingly, the presence of CypA or its binding to Vpr is dispensable for the ability of Vpr to induce G2 arrest. Vpr expression in CypA-/- cells leads to induction of G2 arrest in a manner that is indistinguishable from that in CypA+ cells. CsA abolished CypA-Vpr binding but had no effect on induction of G2 arrest or Vpr steady-state levels. In view of these results, we propose that the interaction with CypA is independent of the ability of Vpr to induce cell cycle arrest. The interaction between Vpr and CypA is intriguing, and further studies should examine its potential effects on other functions of Vpr.
Collapse
Affiliation(s)
- Orly Ardon
- Division of Cellular Biology and Immunology, Department of Pathology, University of Utah School of Medicine, 30 N 1900 East, SOM 5C210, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | |
Collapse
|
29
|
Le Rouzic E, Benichou S. The Vpr protein from HIV-1: distinct roles along the viral life cycle. Retrovirology 2005; 2:11. [PMID: 15725353 PMCID: PMC554975 DOI: 10.1186/1742-4690-2-11] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 02/22/2005] [Indexed: 12/30/2022] Open
Abstract
The genomes of human and simian immunodeficiency viruses (HIV and SIV) encode the gag, pol and env genes and contain at least six supplementary open reading frames termed tat, rev, nef, vif, vpr, vpx and vpu. While the tat and rev genes encode regulatory proteins absolutely required for virus replication, nef, vif, vpr, vpx and vpu encode for small proteins referred to "auxiliary" (or "accessory"), since their expression is usually dispensable for virus growth in many in vitro systems. However, these auxiliary proteins are essential for viral replication and pathogenesis in vivo. The two vpr- and vpx-related genes are found only in members of the HIV-2/SIVsm/SIVmac group, whereas primate lentiviruses from other lineages (HIV-1, SIVcpz, SIVagm, SIVmnd and SIVsyk) contain a single vpr gene. In this review, we will mainly focus on vpr from HIV-1 and discuss the most recent developments in our understanding of Vpr functions and its role during the virus replication cycle.
Collapse
Affiliation(s)
- Erwann Le Rouzic
- Institut Cochin, Department of Infectious Diseases, INSERM U567, CNRS UMR8104, Université Paris 5, Paris, France
| | - Serge Benichou
- Institut Cochin, Department of Infectious Diseases, INSERM U567, CNRS UMR8104, Université Paris 5, Paris, France
| |
Collapse
|
30
|
Benko Z, Liang D, Agbottah E, Hou J, Chiu K, Yu M, Innis S, Reed P, Kabat W, Elder RT, Di Marzio P, Taricani L, Ratner L, Young PG, Bukrinsky M, Zhao RY. Anti-Vpr activity of a yeast chaperone protein. J Virol 2004; 78:11016-29. [PMID: 15452222 PMCID: PMC521794 DOI: 10.1128/jvi.78.20.11016-11029.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) exerts multiple effects on viral and host cellular activities during viral infection, including nuclear transport of the proviral integration complex, induction of cell cycle G(2) arrest, and cell death. In this report, we show that a fission yeast chaperone protein Hsp16 inhibits HIV-1 by suppressing these Vpr activities. This protein was identified through three independent genome-wide screens for multicopy suppressors of each of the three Vpr activities. Consistent with the properties of a heat shock protein, heat shock-induced elevation or overproduction of Hsp16 suppressed Vpr activities through direct protein-protein interaction. Even though Hsp16 shows a stronger suppressive effect on Vpr in fission yeast than in mammalian cells, similar effects were also observed in human cells when fission yeast hsp16 was expressed either in vpr-expressing cells or during HIV-1 infection, indicating a possible highly conserved Vpr suppressing activity. Furthermore, stable expression of hsp16 prior to HIV-1 infection inhibits viral replication in a Vpr-dependent manner. Together, these data suggest that Hsp16 inhibits HIV-1 by suppressing Vpr-specific activities. This finding could potentially provide a new approach to studying the contribution of Vpr to viral pathogenesis and to reducing Vpr-mediated detrimental effects in HIV-infected patients.
Collapse
Affiliation(s)
- Zsigmond Benko
- Children's Memorial Institute for Education and Research, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 2430 N. Halsted St. #218, Chicago, IL 60614, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yuan H, Kamata M, Xie YM, Chen ISY. Increased levels of Wee-1 kinase in G(2) are necessary for Vpr- and gamma irradiation-induced G(2) arrest. J Virol 2004; 78:8183-90. [PMID: 15254189 PMCID: PMC446131 DOI: 10.1128/jvi.78.15.8183-8190.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Vpr induces cell cycle arrest at the G(2)/M transition and subsequently apoptosis. Here we examined the potential involvement of Wee-1 in Vpr-induced G(2) arrest. Wee-1 is a cellular protein kinase that inhibits Cdc2 activity, thereby preventing cells from proceeding through mitosis. We previously showed that the levels of Wee-1 correlate with Vpr-mediated apoptosis. Here, we demonstrate that Vpr-induced G(2) arrest correlated with delayed degradation of Wee-1 at G(2)/M. Experimental depletion of Wee-1 by a small interfering RNA directed to wee-1 mRNA alleviated Vpr-induced G(2) arrest and allowed apparently normal progression through M into G(1). Similar results were observed when cells were arrested at G(2) following gamma irradiation. Thus, Wee-1 is integrally involved as a key cellular regulatory protein in the signal transduction pathway for HIV-1 Vpr-induced cell cycle arrest.
Collapse
Affiliation(s)
- Huidong Yuan
- Department of Microbiology, David Geffen School of Medicine, UCLA AIDS Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Human immunodeficiency virus type I (HIV-1) infection leads to penetration of the central nervous system (CNS) in virtually all infected individuals and HIV-1-induced encephalopathy in a significant number of untreated patients. The molecular mechanisms by which HIV-1 enters the CNS and yields CNS dysfunction are still unclear. Our laboratories and others have begun to explore the direct effects of prioritized HIV-1-specific proteins on diverse human CNS cell types. One of these proteins, the accessory HIV-1 protein Vpr, is a critical moiety in these studies, and will be discussed in this article.
Collapse
Affiliation(s)
- Roger J Pomerantz
- Biochemistry and Molecular Pharmacology, Division of Infectious Disease and Environmental Medicine, Center for Human Virology and Biodefense, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|
33
|
Roshal M, Kim B, Zhu Y, Nghiem P, Planelles V. Activation of the ATR-mediated DNA damage response by the HIV-1 viral protein R. J Biol Chem 2003; 278:25879-86. [PMID: 12738771 DOI: 10.1074/jbc.m303948200] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA damage is a universal inducer of cell cycle arrest at the G2 phase. Infection by the human immunodeficiency virus type 1 (HIV-1) also blocks cellular proliferation at the G2 phase. The HIV-1 accessory gene vpr encodes a conserved 96-amino acid protein (Vpr) that is necessary and sufficient for the HIV-1-induced block of cellular proliferation. In the present study, we examined a recently identified DNA damage-signaling protein, the ATM- and Rad3-related protein, ATR, for its potential role in the induction of G2 arrest by Vpr. We show that inhibition of ATR by pharmacological inhibitors, by expression of the dominant-negative form of ATR, or by RNA interference inhibits Vpr-induced cell cycle arrest. As with DNA damage, activation of ATR by Vpr results in phosphorylation of Chk1. This study provides conclusive evidence of activation of the ATR-initiated DNA damage-signaling pathway by a viral gene product. These observations are important toward understanding how HIV infection promotes cell cycle disruption, cell death, and ultimately, CD4+ lymphocyte depletion.
Collapse
Affiliation(s)
- Mikhail Roshal
- Department of Microbiology and Immunology, University of Rochester Cancer Center, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
34
|
Poon B, Chen ISY. Human immunodeficiency virus type 1 (HIV-1) Vpr enhances expression from unintegrated HIV-1 DNA. J Virol 2003; 77:3962-72. [PMID: 12634356 PMCID: PMC150668 DOI: 10.1128/jvi.77.7.3962-3972.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Retroviral DNA synthesized prior to integration, termed unintegrated viral DNA, is classically believed to be transcriptionally inert and to serve only as a precursor to the transcriptionally active integrated proviral DNA form. However, it has recently been found to be expressed under some circumstances during human immunodeficiency virus type 1 (HIV-1) replication and may play a significant role in HIV-1 pathogenesis. HIV-1 Vpr is a virion-associated accessory protein that is critical for HIV-1 replication in nondividing cells and induces cell cycle arrest and apoptosis. We find that Vpr, either expressed de novo or released from virions following viral entry, is essential for unintegrated viral DNA expression. HIV-1 mutants defective for integration in either the integrase catalytic domain or the cis-acting att sites can express unintegrated viral DNA at levels similar to that of wild-type HIV-1, but only in the presence of Vpr. In the absence of Vpr, the expression of unintegrated viral DNA decreases 10- to 20-fold. Vpr does not affect the efficiency of integration from integrase-defective HIV-1. Vpr-mediated enhancement of expression from integrase-defective HIV-1 requires that the viral DNA be generated in cells through infection and is mediated via a template that declines over time. Vpr activation of expression does not require exclusive nuclear localization of Vpr nor does it correlate with Vpr-mediated cell cycle arrest. These results attribute a new function to HIV-1 Vpr and implicate Vpr as a critical component in expression from unintegrated HIV-1 DNA.
Collapse
Affiliation(s)
- Betty Poon
- Department of Microbiology, David Geffen School of Medicine at UCLA, UCLA AIDS Institute and Jonsson Comprehensive Cancer Center, Los Angeles, California 90095, USA
| | | |
Collapse
|
35
|
Yao XJ, Lemay J, Rougeau N, Clément M, Kurtz S, Belhumeur P, Cohen EA. Genetic selection of peptide inhibitors of human immunodeficiency virus type 1 Vpr. J Biol Chem 2002; 277:48816-26. [PMID: 12379652 DOI: 10.1074/jbc.m207982200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) encodes a gene product, Vpr, that facilitates the nuclear uptake of the viral pre-integration complex in non-dividing cells and causes infected cells to arrest in the G(2) phase of the cell cycle. Vpr was also shown to cause mitochondrial dysfunction in human cells and budding yeasts, an effect that was proposed to lead to growth arrest and cell killing in budding yeasts and apoptosis in human cells. In this study, we used a genetic selection in Saccharomyces cerevisiae to identify hexameric peptides that suppress the growth arrest phenotype mediated by Vpr. Fifteen selected glutathione S-transferase (GST)-fused peptides were found to overcome to different extents Vpr-mediated growth arrest. Amino acid analysis of the inhibitory peptide sequences revealed the conservation of a di-tryptophan (diW) motif. DiW-containing GST-peptides interacted with Vpr in GST pull-down assays, and their level of interaction correlated with their ability to overcome Vpr-mediated growth arrest. Importantly, Vpr-binding GST-peptides were also found to alleviate Vpr-mediated apoptosis and G(2) arrest in HIV-1-producing CD4(+) T cell lines. Furthermore, they co-localized with Vpr and interfered with its nuclear translocation. Overall, this study defines a class of diW-containing peptides that inhibit HIV-1 Vpr biological activities most likely by interacting with Vpr and interfering with critical protein interactions.
Collapse
Affiliation(s)
- Xiao-Jian Yao
- Laboratoire de Rétrovirologie Humaine, Département de Microbiologie et Immunologie, Faculté de Médecine, Université de Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Davy CE, Jackson DJ, Wang Q, Raj K, Masterson PJ, Fenner NF, Southern S, Cuthill S, Millar JBA, Doorbar J. Identification of a G(2) arrest domain in the E1 wedge E4 protein of human papillomavirus type 16. J Virol 2002; 76:9806-18. [PMID: 12208959 PMCID: PMC136512 DOI: 10.1128/jvi.76.19.9806-9818.2002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) is the most common cause of cervical carcinoma. Cervical cancer develops from low-grade lesions that support the productive stages of the virus life cycle. The 16E1 wedge E4 protein is abundantly expressed in such lesions and can be detected in cells supporting vegetative viral genome amplification. Using an inducible mammalian expression system, we have shown that 16E1 wedge E4 arrests HeLa cervical epithelial cells in G(2). 16E1 wedge E4 also caused a G(2) arrest in SiHa, Saos-2 and Saccharomyces pombe cells and, as with HeLa cells, was found in the cytoplasm. However, whereas 16E1 wedge E4 is found on the keratin networks in HeLa and SiHa cells, in Saos-2 and S. pombe cells that lack keratins, 16E1 wedge E4 had a punctate distribution. Mutagenesis studies revealed a proline-rich region between amino acids 17 and 45 of 16E1 wedge E4 to be important for arrest. This region, which we have termed the "arrest domain," contains a putative nuclear localization signal, a cyclin-binding motif, and a single cyclin-dependent kinase (Cdk) phosphorylation site. A single point mutation in the putative Cdk phosphorylation site (T23A) abolished 16E1 wedge E4-mediated G(2) arrest. Arrest did not involve proteins regulating the phosphorylation state of Cdc2 and does not appear to involve the activation of the DNA damage or incomplete replication checkpoint. G(2) arrest was also mediated by the E1 wedge E4 protein of HPV11, a low-risk mucosal HPV type that also causes cervical lesions. The E1 wedge E4 protein of HPV1, which is more distantly related to that of HPV16, did not cause G(2) arrest. We conclude that, like other papillomavirus proteins, 16E1 wedge E4 affects cell cycle progression and that it targets a conserved component of the cell cycle machinery.
Collapse
Affiliation(s)
- Clare E Davy
- Division of Virology, National Institute for Medical Research, London NW7 1AA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Elder RT, Yu M, Chen M, Zhu X, Yanagida M, Zhao Y. HIV-1 Vpr induces cell cycle G2 arrest in fission yeast (Schizosaccharomyces pombe) through a pathway involving regulatory and catalytic subunits of PP2A and acting on both Wee1 and Cdc25. Virology 2001; 287:359-70. [PMID: 11531413 DOI: 10.1006/viro.2001.1007] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Viral protein R (Vpr) of human immunodeficiency virus type 1 induces G2 arrest in cells from distantly related eukaryotes including human and fission yeast through inhibitory phosphorylation of tyrosine 15 (Tyr15) on Cdc2. Since the DNA damage and DNA replication checkpoints also induce G2 arrest through phosphorylation of Tyr15, it seemed possible that Vpr induces G2 arrest through the checkpoint pathways. However, Vpr does not use either the early or the late checkpoint genes that are required for G2 arrest in response to DNA damage or inhibition of DNA synthesis indicating that Vpr induces G2 arrest by an alternative pathway. It was found that protein phosphatase 2A (PP2A) plays an important role in the induction of G2 arrest by Vpr since mutations in genes coding for a regulatory or catalytic subunit of PP2A reduce Vpr-induced G2 arrest. Vpr was also found to upregulate PP2A, supporting a model in which Vpr activates the PP2A holoenzyme to induce G2 arrest. PP2A is known to interact genetically in fission yeast with the Wee1 kinase and Cdc25 phosphatase that act on Tyr15 of Cdc2. Both Wee1 and Cdc25 play a role in Vpr-induced G2 arrest since a wee1 deletion reduces Vpr-induced G2 arrest and a direct in vivo assay shows that Vpr inhibits Cdc25. Additional support for both Wee1 and Cdc25 playing a role in Vpr-induced G2 arrest comes from a genetic screen, which identified genes whose overexpression affects Vpr-induced G2 arrest. For this genetic screen, a strain was constructed in which cell killing by Vpr was nearly eliminated while the effect of Vpr on the cell cycle was clearly indicated by an increase in cell length. Overexpression of the wos2 gene, an inhibitor of Wee1, suppresses Vpr-induced G2 arrest while overexpression of rad25, an inhibitor of Cdc25, enhances Vpr-induced G2 arrest. These two genes may be part of the uncharacterized pathway for Vpr-induced G2 arrest in which Vpr upregulates PP2A to activate Wee1 and inhibit Cdc25.
Collapse
Affiliation(s)
- R T Elder
- Children's Memorial Institute for Education and Research, Children's Memorial Hospital, Chicago, Illinois 60614, USA
| | | | | | | | | | | |
Collapse
|
38
|
Gaynor EM, Chen IS. Analysis of apoptosis induced by HIV-1 Vpr and examination of the possible role of the hHR23A protein. Exp Cell Res 2001; 267:243-57. [PMID: 11426943 DOI: 10.1006/excr.2001.5247] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The HIV-1 Vpr protein induces apoptosis of cells, the mechanism of which is unknown. To clarify how this function may be related to other Vpr functions, we simultaneously assessed the effects of multiple point mutations upon various Vpr properties. Our data suggest that induction of arrest by Vpr may be unnecessary for induction of apoptosis. This is exemplified by a C-terminal mutant, R80A, that does not arrest cells, yet induces low but significant levels of apoptosis. We also show that mutation of Vpr at both of its nuclear localization sequences (within its alpha-helices and the overlapping leucine zipper-like domain) does not affect induction of either apoptosis or cell cycle arrest. This indicates that neither sequence is essential for these two functions of Vpr. It further suggests that multimerization of Vpr, which maps to residues 60 and 67 within the leucine-rich region, is unnecessary for initiation of apoptosis and arrest. We previously found that the Vpr-binding protein, hHR23A, can partially alleviate induction of arrest. We now show that overexpression of hHR23A itself causes apoptosis of cells. Mutation of its C-terminal UBA( 2 ) domain that is responsible for binding Vpr disrupts the apoptotic effect. This suggests that Vpr may induce apoptosis through a pathway involving hHR23A.
Collapse
Affiliation(s)
- E M Gaynor
- UCLA AIDS Institute, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-1678, USA
| | | |
Collapse
|
39
|
Zhu Y, Gelbard HA, Roshal M, Pursell S, Jamieson BD, Planelles V. Comparison of cell cycle arrest, transactivation, and apoptosis induced by the simian immunodeficiency virus SIVagm and human immunodeficiency virus type 1 vpr genes. J Virol 2001; 75:3791-801. [PMID: 11264368 PMCID: PMC114870 DOI: 10.1128/jvi.75.8.3791-3801.2001] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All primate lentiviruses known to date contain one or two open reading frames with homology to the human immunodeficiency virus type 1 (HIV-1) vpr gene. HIV-1 vpr encodes a 96-amino-acid protein with multiple functions in the viral life cycle. These functions include modulation of the viral replication kinetics, transactivation of the long terminal repeat, participation in the nuclear import of preintegration complexes, induction of G2 arrest, and induction of apoptosis. The simian immunodeficiency virus (SIV) that infects African green monkeys (SIVagm) contains a vpr homologue, which encodes a 118-amino-acid protein. SIVagm vpr is structurally and functionally related to HIV-1 vpr. The present study focuses on how three specific functions (transactivation, induction of G2 arrest, and induction of apoptosis) are related to one another at a functional level, for HIV-1 and SIVagm vpr. While our study supports previous reports demonstrating a causal relationship between induction of G2 arrest and transactivation for HIV-1 vpr, we demonstrate that the same is not true for SIVagm vpr. Transactivation by SIVagm vpr is independent of cell cycle perturbation. In addition, we show that induction of G2 arrest is necessary for the induction of apoptosis by HIV-1 vpr but that the induction of apoptosis by SIVagm vpr is cell cycle independent. Finally, while SIVagm vpr retains its transactivation function in human cells, it is unable to induce G2 arrest or apoptosis in such cells, suggesting that the cytopathic effects of SIVagm vpr are species specific. Taken together, our results suggest that while the multiple functions of vpr are conserved between HIV-1 and SIVagm, the mechanisms leading to the execution of such functions are divergent.
Collapse
Affiliation(s)
- Y Zhu
- Department of Medicine, University of Rochester Cancer Center, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
40
|
An DS, Chen IS. Envelope gene of the human endogenous retrovirus HERV-W encodes a functional retrovirus envelope. J Virol 2001; 75:3488-9. [PMID: 11238877 PMCID: PMC114144 DOI: 10.1128/jvi.75.7.3488-3489.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A member of the human endogenous retrovirus (HERV) family termed HERV-W encodes a highly fusogenic membrane glycoprotein that appears to be expressed specifically in the placenta. It is unclear whether the glycoproteins of the HERVs can serve as functional retrovirus envelope proteins to confer infectivity on retrovirus particles. We found that the HERV-W envelope glycoprotein can form pseudotypes with human immunodeficiency virus type 1 virions and confers tropism for CD4-negative cells. Thus, the HERV-W env gene represents the first HERV env gene demonstrated to encode the functional properties of a retrovirus envelope glycoprotein.
Collapse
Affiliation(s)
- D S An
- Department of Microbiology, Immunology, Molecular Genetics, and Medicine, UCLA AIDS Institute, University of California-Los Angeles, Los Angeles, California 90095, USA
| | | |
Collapse
|
41
|
Liu J, Shu W, Fagan MB, Nunberg JH, Lu M. Structural and functional analysis of the HIV gp41 core containing an Ile573 to Thr substitution: implications for membrane fusion. Biochemistry 2001; 40:2797-807. [PMID: 11258890 DOI: 10.1021/bi0024759] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The envelope glycoprotein of HIV-1 consists of the surface subunit gp120 and the transmembrane subunit gp41. Binding of gp120 to target cell receptors induces a conformational change in gp41, which then mediates the fusion of viral and cellular membranes. A buried isoleucine (Ile573) in a central trimeric coiled coil within the fusion-active gp41 ectodomain core is thought to favor this conformational activation. The role of Ile573 in determining the structure and function of the gp120-gp41 complex was investigated by mutating this residue to threonine, a nonconservative substitution in HIV-1 that occurs naturally in SIV. While the introduction of Thr573 markedly destabilized the gp41 core, the three-dimensional structure of the mutant trimer of hairpins was very similar to that of the wild-type molecule. A new hydrogen-bonding interaction between the buried Thr573 and Thr569 residues appears to allow formation of the trimer-of-hairpins structure at physiological temperature. The mutant envelope glycoprotein expressed in 293T cells and incorporated within pseudotyped virions displayed only a moderate reduction in syncytium-inducing capacity and virus infectivity, respectively. Our results demonstrate that the proper folding of the gp41 core underlies the membrane fusion properties of the gp120-gp41 complex. An understanding of the gp41 activation process may suggest novel strategies for vaccine and antiviral drug development.
Collapse
Affiliation(s)
- J Liu
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
42
|
Watanabe N, Yamaguchi T, Akimoto Y, Rattner JB, Hirano H, Nakauchi H. Induction of M-phase arrest and apoptosis after HIV-1 Vpr expression through uncoupling of nuclear and centrosomal cycle in HeLa cells. Exp Cell Res 2000; 258:261-9. [PMID: 10896777 DOI: 10.1006/excr.2000.4908] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) accessory protein Vpr induces cell cycle arrest in the G2 phase of the cell cycle followed by apoptosis. The mechanism of the arrest is unknown but the arrest is believed to facilitate viral replication. In the present study, we have established cell lines that allow conditional expression of Vpr, and have examined the mechanism of cell death following Vpr expression. We found that cells expressing Vpr enter M phase after long G2 arrest but formed aberrant multipolar spindles that were incapable of completing karyokinesis or cytokinesis. This abnormality provided the basis for apoptosis, which always followed in these cells. The multipolar spindles formed in response to abnormal centrosomal duplication that occurred during the G2 arrest but did not occur in cells arrested in G2 by irradiation. Thus, the expression of Vpr appears to be responsible for abnormal centrosome duplication, which in turn contributes in part to the rapid cell death following HIV-1 infection.
Collapse
Affiliation(s)
- N Watanabe
- Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Elder RT, Yu M, Chen M, Edelson S, Zhao Y. Cell cycle G2 arrest induced by HIV-1 Vpr in fission yeast (Schizosaccharomyces pombe) is independent of cell death and early genes in the DNA damage checkpoint. Virus Res 2000; 68:161-73. [PMID: 10958988 DOI: 10.1016/s0168-1702(00)00167-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HIV-1 Vpr induces cell cycle G2 arrest, morphological changes and cell death in human and fission yeast cells. The cellular targets for G2 arrest were expected to be the inhibitory phosphorylation sites of Cdc2, as G2 arrest correlates with hyperphosphorylation and decreased activity of Cdc2 in both human and fission yeast cells. In this study, we present direct evidence of genetic suppression of Vpr-induced G2 arrest by cdc2 mutations. Mutations in cdc2 (cdc2-1w and cdc2-3w) reduce the ability of Vpr to induce G2 arrest. A strain with a mutation changing the Tyr15 of Cdc2 to the non-phosphorylated Phe (Y15F) eliminated Vpr-induced G2 arrest indicating that Tyr15 of Cdc2 is the sole target for induction of G2 arrest by Vpr. Although the G2 arrest induced by DNA damage also proceeds through phosphorylation of Tyr15, the rad1, rad3, rad9 and rad17 mutations, which eliminate the G2 checkpoint for DNA damage, did not block the G2 arrest induced by Vpr. Furthermore, Vpr expression did not alter sensitivity of these rad mutants to UV radiation. Thus, the pathways for the induction of G2 arrest by DNA damage and Vpr are not identical. Interestingly, Vpr still induces cell death and morphological changes in the Y15F Cdc2 strain indicating that G2 arrest is not required for morphological changes and cell death. This conclusion was further supported by the observation that mutations in Vpr, which have lost their ability to induce G2 arrest, retained the ability to kill cells.
Collapse
Affiliation(s)
- R T Elder
- Children's Memorial Institute for Education and Research, Northwestern University Medical School, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
44
|
Kulkosky J, Bouhamdan M, Geist A, Nunnari G, Phinney DG, Pomerantz RJ. Pathogenesis of HIV-1 infection within bone marrow cells. Leuk Lymphoma 2000; 37:497-515. [PMID: 11042510 DOI: 10.3109/10428190009058502] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mononuclear phagocytic cells and CD4+ T lymphocytes represent the major targets for infection by HIV-1 in vivo. The most severe pathogenic features associated with HIV-1 infection can be attributed to malfunction or premature death of these cells that are of hematopoietic origin. Patients with acquired immunodeficiency syndrome (AIDS), suffer from many hematologic disorders, particularly those persons with long-term infection of HIV-1. These disorders include anemia, lymphocytopenia, thrombocytopenia and neutropenia. The mechanisms that lead to the induction of these disorders are multi-factorial. However, sufficient evidence has accumulated which suggests that HIV-1 infection of cells within the microenvironment of the bone marrow can lead to the induction of hematopoietic deficits. Most studies indicate that marrow-derived hematopoietic stem cells cannot be infected by HIV-1 until they undergo modest differentiation in order to express the appropriate receptors to enable virus entry and subsequent replication. Some cells within the mixed environment of the marrow stroma appear to support HIV-1 replication however. These cells include marrow microvascular endothelial cells, sometimes referred to as blanket cells, stromal fibroblasts, as well as mononuclear phagocytes. Our recent experiments suggest that the HIV-1 accessory protein, Vpr, plays some role in the activation of marrow-derived mononuclear phagocytes which appears to result in premature phagocytosis of non-adherent marrow cells present in the in vitro cultures. This phenomenon could account, in part, for the induction of cytopenias that are typical of individuals infected by HIV-1.
Collapse
Affiliation(s)
- J Kulkosky
- Dorrance H. Hamilton Laboratories, Center for Human Virology, Division of Infectious Diseases, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA. 19107, USA
| | | | | | | | | | | |
Collapse
|
45
|
Camerini D, Su HP, Gamez-Torre G, Johnson ML, Zack JA, Chen IS. Human immunodeficiency virus type 1 pathogenesis in SCID-hu mice correlates with syncytium-inducing phenotype and viral replication. J Virol 2000; 74:3196-204. [PMID: 10708436 PMCID: PMC111820 DOI: 10.1128/jvi.74.7.3196-3204.2000] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) patient isolates and molecular clones were used to analyze the determinants responsible for human CD4(+) thymocyte depletion in SCID-hu mice. Non-syncytium-inducing, R5 or R3R5 HIV-1 isolates from asymptomatic infected people showed little or no human CD4(+) thymocyte depletion in SCID-hu mice, while syncytium-inducing (SI), R5X4 or R3R5X4 HIV-1 isolates from the same individuals, isolated just prior to the onset of AIDS, rapidly and efficiently eliminated CD4-bearing human thymocytes. We have mapped the ability of one SI HIV-1 isolate to eliminate CD4(+) human cells in SCID-hu mice to a region of the env gene including the three most amino-terminal variable regions (V1 to V3). We find that for all of the HIV-1 isolates that we studied, a nonlinear relationship exists between viral replication and the depletion of CD4(+) cells. This relationship can best be described mathematically with a Hill-type plot indicating that a threshold level of viral replication, at which cytopathic effects begin to be seen, exists for HIV-1 infection of thymus/liver grafts in SCID-hu mice. This threshold level is 1 copy of viral DNA for every 11 cells (95% confidence interval = 1 copy of HIV-1 per 67 cells to 1 copy per 4 cells). Furthermore, while SI viruses more frequently achieve this level of replication, replication above this threshold level correlates best with cytopathic effects in this model system. We used GHOST cells to map the coreceptor specificity and relative entry efficiency of these early- and late-stage patient isolates of HIV-1. Our studies show that coreceptor specificity and entry efficiency are critical determinants of HIV-1 pathogenesis in vivo.
Collapse
Affiliation(s)
- D Camerini
- Department of Microbiology and Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Masuda M, Nagai Y, Oshima N, Tanaka K, Murakami H, Igarashi H, Okayama H. Genetic studies with the fission yeast Schizosaccharomyces pombe suggest involvement of wee1, ppa2, and rad24 in induction of cell cycle arrest by human immunodeficiency virus type 1 Vpr. J Virol 2000; 74:2636-46. [PMID: 10684278 PMCID: PMC111752 DOI: 10.1128/jvi.74.6.2636-2646.2000] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accessory protein Vpr of human immunodeficiency virus type 1 (HIV-1) arrests cell cycling at G(2)/M phase in human and simian cells. Recently, it has been shown that Vpr also causes cell cycle arrest in the fission yeast Schizosaccharomyces pombe, which shares the cell cycle regulatory mechanisms with higher eukaryotes including humans. In this study, in order to identify host cellular factors involved in Vpr-induced cell cycle arrest, the ability of Vpr to cause elongated cellular morphology (cdc phenotype) typical of G(2)/M cell cycle arrest in wild-type and various mutant strains of S. pombe was examined. Our results indicated that Vpr caused the cdc phenotype in wild-type S. pombe as well as in strains carrying mutations, such as the cdc2-3w, Deltacdc25, rad1-1, Deltachk1, Deltamik1, and Deltappa1 strains. However, other mutants, such as the cdc2-1w, Deltawee1, Deltappa2, and Deltarad24 strains, failed to show a distinct cdc phenotype in response to Vpr expression. Results of these genetic studies suggested that Wee1, Ppa2, and Rad24 might be required for induction of cell cycle arrest by HIV-1 Vpr. Cell proliferation was inhibited by Vpr expression in all of the strains examined including the ones that did not show the cdc phenotype. The results supported the previously suggested possibility that Vpr affects the cell cycle and cell proliferation through different pathways.
Collapse
Affiliation(s)
- M Masuda
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Accola MA, Bukovsky AA, Jones MS, Göttlinger HG. A conserved dileucine-containing motif in p6(gag) governs the particle association of Vpx and Vpr of simian immunodeficiency viruses SIV(mac) and SIV(agm). J Virol 1999; 73:9992-9. [PMID: 10559313 PMCID: PMC113050 DOI: 10.1128/jvi.73.12.9992-9999.1999] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vpr is a small accessory protein of human and simian immunodeficiency viruses (HIV and SIV) that is specifically incorporated into virions. Members of the HIV-2/SIV(sm)/SIV(mac) lineage of primate lentiviruses also incorporate a related protein designated Vpx. We previously identified a highly conserved L-X-X-L-F sequence near the C terminus of the p6 domain of the Gag precursor as the major virion association motif for HIV-1 Vpr. In the present study, we show that a different leucine-containing motif (D-X-A-X-X-L-L) in the N-terminal half of p6(gag) is required for the incorporation of SIV(mac) Vpx. Similarly, the uptake of SIV(mac) Vpr depended primarily on the D-X-A-X-X-L-L motif. SIV(mac) Vpr was unstable when expressed alone, but its intracellular steady-state levels increased significantly in the presence of wild-type Gag or of the proteasome inhibitor lactacystin. Collectively, our results indicate that the interaction with the Gag precursor via the D-X-A-X-X-L-L motif diverts SIV(mac) Vpr away from the proteasome-degradative pathway. While absent from HIV-1 p6(gag), the D-X-A-X-X-L-L motif is conserved in both the HIV-2/SIV(sm)/SIV(mac) and SIV(agm) lineages of primate lentiviruses. We found that the incorporation of SIV(agm) Vpr, like that of SIV(mac) Vpx, is absolutely dependent on the D-X-A-X-X-L-L motif, while the L-X-X-L-F motif used by HIV-1 Vpr is dispensable. The similar requirements for the incorporation of SIV(mac) Vpx and SIV(agm) Vpr provide support for their proposed common ancestry.
Collapse
Affiliation(s)
- M A Accola
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
48
|
Sert V, Cans C, Tasca C, Bret-Bennis L, Oswald E, Ducommun B, De Rycke J. The bacterial cytolethal distending toxin (CDT) triggers a G2 cell cycle checkpoint in mammalian cells without preliminary induction of DNA strand breaks. Oncogene 1999; 18:6296-304. [PMID: 10597228 DOI: 10.1038/sj.onc.1203007] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The bacterial cytolethal distending toxin (CDT) was previously shown to arrest the tumor-derived HeLa cell line in the G2-phase of the cell cycle through inactivation of CDK1, a cyclin-dependent kinase whose state of activation determines entry into mitosis. We have analysed the effects induced in HeLa cells by CDT, in comparison to those induced by etoposide, a prototype anti-tumoral agent that triggers a G2 cell cycle checkpoint by inducing DNA damage. Both CDT and etoposide inhibit cell proliferation and induces the formation of enlarged mononucleated cells blocked in G2. In both cases, CDK1 from arrested cells could be reactivated both in vitro by dephosphorylation by recombinant Cdc25B phosphatase and in vivo by caffeine. However, the cell cycle arrest triggered by CDT, unlike etoposide, did not originate from DNA strand breaks as demonstrated in the single cell gel electrophoresis assay and by the absence of slowing down of S phase in synchronized cells. Together with additional observations on synchronized HeLa cells, our results suggest that CDT triggers a G2 cell cycle checkpoint that is initiated during DNA replication and that is independent of DNA damage.
Collapse
Affiliation(s)
- V Sert
- Unité associée de Microbiologie Moléculaire, Institut National de la Recherche Agronomique et Ecole Nationale Vétérinaire, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Stewart SA, Poon B, Jowett JB, Xie Y, Chen IS. Lentiviral delivery of HIV-1 Vpr protein induces apoptosis in transformed cells. Proc Natl Acad Sci U S A 1999; 96:12039-43. [PMID: 10518572 PMCID: PMC18408 DOI: 10.1073/pnas.96.21.12039] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Most current anticancer therapies act by inducing tumor cell stasis followed by apoptosis. HIV-1 Vpr effectively induces apoptosis of T cells after arrest of cells at a G(2)/M checkpoint. Here, we investigated whether this property of Vpr could be exploited for use as a potential anticancer agent. As a potentially safer alternative to transfer of genes encoding Vpr, we developed a method to efficiently introduce Vpr protein directly into cells. Vpr packaged into HIV-1 virions lacking a genome induced efficient cell cycle arrest and apoptosis. Introduction of Vpr into tumor cell lines of various tissue origin, including those bearing predisposing mutations in p53, XPA, and hMLH1, induced cell cycle arrest and apoptosis with high efficiency. Significantly, apoptosis mediated by virion-associated Vpr was more effective on rapidly dividing cells compared with slow-growing cells, thus, in concept, providing a potential differential effect between some types of tumor cells and surrounding normal cells. This model system provides a rationale and proof of concept for the development of potential cancer therapeutic agents based on the growth-arresting and apoptotic properties of Vpr.
Collapse
Affiliation(s)
- S A Stewart
- Department of Microbiology, University of California School of Medicine, University of California AIDS Institute, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
50
|
Jowett JB, Xie YM, Chen IS. The presence of human immunodeficiency virus type 1 Vpr correlates with a decrease in the frequency of mutations in a plasmid shuttle vector. J Virol 1999; 73:7132-7. [PMID: 10438799 PMCID: PMC104236 DOI: 10.1128/jvi.73.9.7132-7137.1999] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Vpr protein induces cell cycle arrest at the border of G(2) and M similar to the arrest caused by agents which damage DNA. We determined whether the presence of Vpr would affect the ability of cells to repair DNA. We developed a shuttle vector system to analyze the effect of Vpr upon the repair of UV-damaged DNA. Our results demonstrated that the presence of Vpr decreased the rate of deletions in this system. Of note, cells arrested in G(2) by other genotoxic agents also increased the frequency of DNA repair of UV-damaged shuttle vectors. We did not observe any direct effect of Vpr upon the rate of double-strand break repair and/or nucleotide excision repair of genomic DNA in cells. Our results suggest a role for HIV-1 Vpr in altering the frequency of DNA repair, a property which may have importance for HIV-1 replication and pathogenesis.
Collapse
Affiliation(s)
- J B Jowett
- Departments of Microbiology & Immunology and Medicine, University of California-Los Angeles School of Medicine, Los Angeles, California 90095-1678, USA
| | | | | |
Collapse
|