1
|
Witwit H, Betancourt CA, Cubitt B, Khafaji R, Kowalski H, Jackson N, Ye C, Martinez-Sobrido L, de la Torre JC. Cellular N-Myristoyl Transferases Are Required for Mammarenavirus Multiplication. Viruses 2024; 16:1362. [PMID: 39339839 PMCID: PMC11436053 DOI: 10.3390/v16091362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The mammarenavirus matrix Z protein plays critical roles in virus assembly and cell egress. Meanwhile, heterotrimer complexes of a stable signal peptide (SSP) together with glycoprotein subunits GP1 and GP2, generated via co-and post-translational processing of the surface glycoprotein precursor GPC, form the spikes that decorate the virion surface and mediate virus cell entry via receptor-mediated endocytosis. The Z protein and the SSP undergo N-terminal myristoylation by host cell N-myristoyltransferases (NMT1 and NMT2), and G2A mutations that prevent myristoylation of Z or SSP have been shown to affect the Z-mediated virus budding and GP2-mediated fusion activity that is required to complete the virus cell entry process. In the present work, we present evidence that the validated on-target specific pan-NMT inhibitor DDD85646 exerts a potent antiviral activity against the prototypic mammarenavirus lymphocytic choriomeningitis virus (LCMV) that correlates with reduced Z budding activity and GP2-mediated fusion activity as well as with proteasome-mediated degradation of the Z protein. The potent anti-mammarenaviral activity of DDD85646 was also observed with the hemorrhagic-fever-causing Junin (JUNV) and Lassa (LASV) mammarenaviruses. Our results support the exploration of NMT inhibition as a broad-spectrum antiviral against human pathogenic mammarenaviruses.
Collapse
Affiliation(s)
- Haydar Witwit
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (H.W.); (C.A.B.); (B.C.); (R.K.)
| | - Carlos Alberto Betancourt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (H.W.); (C.A.B.); (B.C.); (R.K.)
| | - Beatrice Cubitt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (H.W.); (C.A.B.); (B.C.); (R.K.)
| | - Roaa Khafaji
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (H.W.); (C.A.B.); (B.C.); (R.K.)
| | - Heinrich Kowalski
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| | - Nathaniel Jackson
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (N.J.); (L.M.-S.)
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (N.J.); (L.M.-S.)
| | | | - Juan C. de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (H.W.); (C.A.B.); (B.C.); (R.K.)
| |
Collapse
|
2
|
Witwit H, Betancourt C, Cubitt B, Khafaji R, Kowalski H, Jackson N, Ye C, Martinez-Sobrido L, de la Torre JC. Cellular N-myristoyl transferases Are Required for Mammarenavirus Multiplication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606235. [PMID: 39211253 PMCID: PMC11361045 DOI: 10.1101/2024.08.01.606235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mammarenavirus matrix Z protein plays critical roles in virus assembly and cell egress, whereas heterotrimer complexes of a stable signal peptide (SSP) together with glycoprotein subunits GP1 and GP2, generated via co-and post-translational processing of the surface glycoprotein precursor GPC, form the spikes that decorate the virion surface and mediate virus cell entry via receptor-mediated endocytosis. The Z protein and SSP undergo N-terminal myristoylation by host cell N-myristoyltransferases (NMT1 and NMT2), and G2A mutations that prevent myristoylation of Z or SSP have been shown to affect Z mediated virus budding and GP2 mediated fusion activity required to complete the virus cell entry process. In the present work, we present evidence that the validated on-target specific pan NMT inhibitor DDD85464 exerts a potent antiviral activity against the prototypic mammarenavirus lymphocytic choriomeningitis virus (LCMV) that correlated with reduced Z budding activity and GP2 mediated fusion activity, as well as proteasome mediated degradation of the Z protein. The potent anti-mammarenaviral activity of DDD85646 was also observed with the hemorrhagic fever causing mammarenaviruses Junin (JUNV) and Lassa (LASV) viruses. Our results support exploration of NMT inhibition as a broad-spectrum antiviral against human pathogenic mammarenaviruses.
Collapse
|
3
|
Shaw AB, Tse HN, Byford O, Plahe G, Moon-Walker A, Hover SE, Saphire EO, Whelan SPJ, Mankouri J, Fontana J, Barr JN. Cellular endosomal potassium ion flux regulates arenavirus uncoating during virus entry. mBio 2024; 15:e0168423. [PMID: 38874413 PMCID: PMC11253613 DOI: 10.1128/mbio.01684-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/21/2024] [Indexed: 06/15/2024] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) is an enveloped and segmented negative-sense RNA virus classified within the Arenaviridae family of the Bunyavirales order. LCMV is associated with fatal disease in immunocompromised populations and, as the prototypical arenavirus member, acts as a model for the many highly pathogenic members of the Arenaviridae family, such as Junín, Lassa, and Lujo viruses, all of which are associated with devastating hemorrhagic fevers. To enter cells, the LCMV envelope fuses with late endosomal membranes, for which two established requirements are low pH and interaction between the LCMV glycoprotein (GP) spike and secondary receptor CD164. LCMV subsequently uncoats, where the RNA genome-associated nucleoprotein (NP) separates from the Z protein matrix layer, releasing the viral genome into the cytosol. To further examine LCMV endosome escape, we performed an siRNA screen which identified host cell potassium ion (K+) channels as important for LCMV infection, with pharmacological inhibition confirming K+ channel involvement during the LCMV entry phase completely abrogating productive infection. To better understand the K+-mediated block in infection, we tracked incoming virions along their entry pathway under physiological conditions, where uncoating was signified by separation of NP and Z proteins. In contrast, K+ channel blockade prevented uncoating, trapping virions within Rab7 and CD164-positive endosomes, identifying K+ as a third LCMV entry requirement. K+ did not increase GP-CD164 binding or alter GP-CD164-dependent fusion. Thus, we propose that K+ mediates uncoating by modulating NP-Z interactions within the virion interior. These results suggest K+ channels represent a potential anti-arenaviral target.IMPORTANCEArenaviruses can cause fatal human disease for which approved preventative or therapeutic options are not available. Here, using the prototypical LCMV, we identified K+ channels as critical for arenavirus infection, playing a vital role during the entry phase of the infection cycle. We showed that blocking K+ channel function resulted in entrapment of LCMV particles within late endosomal compartments, thus preventing productive replication. Our data suggest K+ is required for LCMV uncoating and genome release by modulating interactions between the viral nucleoprotein and the matrix protein layer inside the virus particle.
Collapse
Affiliation(s)
- Amelia B. Shaw
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Hiu Nam Tse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Owen Byford
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Grace Plahe
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Alex Moon-Walker
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
| | - Samantha E. Hover
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Sean P. J. Whelan
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - John N. Barr
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
4
|
Iyer K, Yan Z, Ross SR. Entry inhibitors as arenavirus antivirals. Front Microbiol 2024; 15:1382953. [PMID: 38650890 PMCID: PMC11033450 DOI: 10.3389/fmicb.2024.1382953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Arenaviruses belonging to the Arenaviridae family, genus mammarenavirus, are enveloped, single-stranded RNA viruses primarily found in rodent species, that cause severe hemorrhagic fever in humans. With high mortality rates and limited treatment options, the search for effective antivirals is imperative. Current treatments, notably ribavirin and other nucleoside inhibitors, are only partially effective and have significant side effects. The high lethality and lack of treatment, coupled with the absence of vaccines for all but Junín virus, has led to the classification of these viruses as Category A pathogens by the Centers for Disease Control (CDC). This review focuses on entry inhibitors as potential therapeutics against mammarenaviruses, which include both New World and Old World arenaviruses. Various entry inhibition strategies, including small molecule inhibitors and neutralizing antibodies, have been explored through high throughput screening, genome-wide studies, and drug repurposing. Notable progress has been made in identifying molecules that target receptor binding, internalization, or fusion steps. Despite promising preclinical results, the translation of entry inhibitors to approved human therapeutics has faced challenges. Many have only been tested in in vitro or animal models, and a number of candidates showed efficacy only against specific arenaviruses, limiting their broader applicability. The widespread existence of arenaviruses in various rodent species and their potential for their zoonotic transmission also underscores the need for rapid development and deployment of successful pan-arenavirus therapeutics. The diverse pool of candidate molecules in the pipeline provides hope for the eventual discovery of a broadly effective arenavirus antiviral.
Collapse
Affiliation(s)
| | | | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois, College of Medicine, Chicago, IL, United States
| |
Collapse
|
5
|
Ali Z, Cardoza JV, Basak S, Narsaria U, Bhattacharjee S, G UM, Isaac SP, Franca TCC, LaPlante SR, George SS. A Multi-epitope Vaccine Candidate Against Bolivian Hemorrhagic fever Caused by Machupo Virus. Appl Biochem Biotechnol 2024; 196:2137-2160. [PMID: 37479961 DOI: 10.1007/s12010-023-04604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/23/2023]
Abstract
Bolivian hemorrhagic fever (BHF) caused by Machupo virus (MACV) is a New World arenavirus having a reported mortality rate of 25-35%. The BHF starts with fever, followed by headache, and nausea which rapidly progresses to severe hemorrhagic phase within 7 days of disease onset. One of the key promoters for MACV viral entry into the cell followed by viral propagation is performed by the viral glycoprotein (GPC). GPC is post-transcriptionally cleaved into GP1, GP2 and a signal peptide. These proteins all take part in the viral infection in host body. Therefore, GPC protein is an ideal target for developing therapeutics against MACV infection. In this study, GPC protein was considered to design a multi-epitope, multivalent vaccine containing antigenic and immunogenic CTL and HTL epitopes. Different structural validations and physicochemical properties were analysed to validate the vaccine. Docking and molecular dynamics simulations were conducted to understand the interactions of the vaccine with various immune receptors. Finally, the vaccine was codon optimised in silico and along with which immune simulation studies was performed in order to evaluate the vaccine's effectiveness in triggering an efficacious immune response against MACV.
Collapse
Affiliation(s)
- Zeeshan Ali
- Krupanidhi College of Physiotherapy, Bangalore, Karnataka, 560035, India
| | | | | | | | | | | | - Samuel Paul Isaac
- Krupanidhi College of Physiotherapy, Bangalore, Karnataka, 560035, India
| | - Tanos C C Franca
- Military Institute of Engineering, Rio de Janerio, Brazil
- INRS - Centre Armand-Frappier Santé Biotechnologie, Université de Québec, Laval, Québec, H7V 1B7, Canada
- University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Steven R LaPlante
- INRS - Centre Armand-Frappier Santé Biotechnologie, Université de Québec, Laval, Québec, H7V 1B7, Canada
| | - Sudhan S George
- Krupanidhi College of Physiotherapy, Bangalore, Karnataka, 560035, India.
| |
Collapse
|
6
|
Byford O, Shaw AB, Tse HN, Todd EJAA, Álvarez-Rodríguez B, Hewson R, Fontana J, Barr JN. Lymphocytic choriomeningitis arenavirus requires cellular COPI and AP-4 complexes for efficient virion production. J Virol 2024; 98:e0200623. [PMID: 38334330 PMCID: PMC10949467 DOI: 10.1128/jvi.02006-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) is a bisegmented negative-sense RNA virus classified within the Arenaviridae family of the Bunyavirales order. LCMV is associated with fatal disease in immunocompromized populations, and as the prototypical arenavirus, acts as a model for the many serious human pathogens within this group. Here, we examined the dependence of LCMV multiplication on cellular trafficking components using a recombinant LCMV expressing enhanced green fluorescent protein in conjunction with a curated siRNA library. The screen revealed a requirement for subunits of both the coat protein 1 (COPI) coatomer and adapter protein 4 (AP-4) complexes. By rescuing a recombinant LCMV harboring a FLAG-tagged glycoprotein (GP-1) envelope spike (rLCMV-GP1-FLAG), we showed infection resulted in marked co-localization of individual COPI and AP-4 components with both LCMV nucleoprotein (NP) and GP-1, consistent with their involvement in viral processes. To further investigate the role of both COPI and AP-4 complexes during LCMV infection, we utilized the ARF-I inhibitor brefeldin A (BFA) that prevents complex formation. Within a single 12-h cycle of virus multiplication, BFA pre-treatment caused no significant change in LCMV-specific RNA synthesis, alongside no significant change in LCMV NP expression, as measured by BFA time-of-addition experiments. In contrast, BFA addition resulted in a significant drop in released virus titers, approaching 50-fold over the same 12-h period, rising to over 600-fold over 24 h. Taken together, these findings suggest COPI and AP-4 complexes are important host cell factors required for the formation and release of infectious LCMV. IMPORTANCE Arenaviruses are rodent-borne, segmented, negative-sense RNA viruses, with several members responsible for fatal human disease, with the prototypic member lymphocytic choriomeningitis virus (LCMV) being under-recognised as a pathogen capable of inflicting neurological infections with fatal outcome. A detailed understanding of how arenaviruses subvert host cell processes to complete their multiplication cycle is incomplete. Here, using a combination of gene ablation and pharmacological inhibition techniques, we showed that host cellular COPI and AP-4 complexes, with native roles in cellular vesicular transport, were required for efficient LCMV growth. We further showed these complexes acted on late stages of the multiplication cycle, post-gene expression, with a significant impact on infectious virus egress. Collectively, our findings improve the understanding of arenaviruses host-pathogen interactions and reveal critical cellular trafficking pathways required during infection.
Collapse
Affiliation(s)
- Owen Byford
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Amelia B. Shaw
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Hiu Nam Tse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Eleanor J. A. A. Todd
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Beatriz Álvarez-Rodríguez
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Roger Hewson
- Virology and Pathogenesis Group, National Infection Service, Public Health England, Porton Down, United Kingdom
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - John N. Barr
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
7
|
Katz M, Diskin R. The underlying mechanisms of arenaviral entry through matriglycan. Front Mol Biosci 2024; 11:1371551. [PMID: 38516183 PMCID: PMC10955480 DOI: 10.3389/fmolb.2024.1371551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Matriglycan, a recently characterized linear polysaccharide, is composed of alternating xylose and glucuronic acid subunits bound to the ubiquitously expressed protein α-dystroglycan (α-DG). Pathogenic arenaviruses, like the Lassa virus (LASV), hijack this long linear polysaccharide to gain cellular entry. Until recently, it was unclear through what mechanisms LASV engages its matriglycan receptor to initiate infection. Additionally, how matriglycan is synthesized onto α-DG by the Golgi-resident glycosyltransferase LARGE1 remained enigmatic. Recent structural data for LARGE1 and for the LASV spike complex informs us about the synthesis of matriglycan as well as its usage as an entry receptor by arenaviruses. In this review, we discuss structural insights into the system of matriglycan generation and eventual recognition by pathogenic viruses. We also highlight the unique usage of matriglycan as a high-affinity host receptor compared with other polysaccharides that decorate cells.
Collapse
Affiliation(s)
| | - Ron Diskin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Olivieri NR, Othman L, Flannery DD, Gordon SM. Transmission, seroprevalence, and maternal-fetal impact of lymphocytic choriomeningitis virus. Pediatr Res 2024; 95:456-463. [PMID: 37857846 DOI: 10.1038/s41390-023-02859-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Congenital infections can have devastating short- and long-term impacts on the developing fetus. Lymphocytic choriomeningitis virus (LCMV) is a zoonotic pathogen of concern that causes a severe congenital syndrome but is under-recognized and under-studied. Herein we review data on the natural animal reservoirs of LCMV, modes of transmission to humans, seroprevalence of LCMV worldwide in both pregnant and non-pregnant individuals, mechanisms of viral dissemination to placenta and fetus, and impact of climate change on viral transmission. We highlight opportunities to enhance awareness of congenital LCMV and provide recommendations for prevention and monitoring among at-risk pregnant people. IMPACT: Key message of the article: LCMV is a zoonotic virus that poses a major threat to maternal-fetal health. Adds to the existing literature: We comprehensively address transmission of LCMV from the natural reservoir to the pregnant individual, placenta, and fetus. Impact: Available data call for enhanced patient and provider awareness about congenital LCMV during pregnancy, as well as a need for efforts to better define the seroprevalence and impact of congenital LCMV worldwide.
Collapse
Affiliation(s)
- Natalie R Olivieri
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Loui Othman
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dustin D Flannery
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott M Gordon
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Löw K, Möller R, Stegmann C, Becker M, Rehburg L, Obernolte H, Schaudien D, Oestereich L, Braun A, Kunz S, Gerold G. Luminescent reporter cells enable the identification of broad-spectrum antivirals against emerging viruses. J Med Virol 2023; 95:e29211. [PMID: 37975336 DOI: 10.1002/jmv.29211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/29/2023] [Accepted: 10/21/2023] [Indexed: 11/19/2023]
Abstract
The emerging viruses SARS-CoV-2 and arenaviruses cause severe respiratory and hemorrhagic diseases, respectively. The production of infectious particles of both viruses and virus spread in tissues requires cleavage of surface glycoproteins (GPs) by host proprotein convertases (PCs). SARS-CoV-2 and arenaviruses rely on GP cleavage by PCs furin and subtilisin kexin isozyme-1/site-1 protease (SKI-1/S1P), respectively. We report improved luciferase-based reporter cell lines, named luminescent inducible proprotein convertase reporter cells that we employ to monitor PC activity in its authentic subcellular compartment. Using these sensor lines we screened a small compound library in high-throughput manner. We identified 23 FDA-approved small molecules, among them monensin which displayed broad activity against furin and SKI-1/S1P. Monensin inhibited arenaviruses and SARS-CoV-2 in a dose-dependent manner. We observed a strong reduction in infectious particle release upon monensin treatment with little effect on released genome copies. This was reflected by inhibition of SARS-CoV-2 spike processing suggesting the release of immature particles. In a proof of concept experiment using human precision cut lung slices, monensin potently inhibited SARS-CoV-2 infection, evidenced by reduced infectious particle release. We propose that our PC sensor pipeline is a suitable tool to identify broad-spectrum antivirals with therapeutic potential to combat current and future emerging viruses.
Collapse
Affiliation(s)
- Karin Löw
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Rebecca Möller
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Cora Stegmann
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Miriam Becker
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Laura Rehburg
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Helena Obernolte
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, (CIMD), Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH) Research Network, Hannover, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, (CIMD), Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH) Research Network, Hannover, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Lisa Oestereich
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infectious Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, (CIMD), Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH) Research Network, Hannover, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Stefan Kunz
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Gisa Gerold
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Clinical Microbiology, Umeå University, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Sweden
| |
Collapse
|
10
|
Gorzkiewicz M, Cramer J, Xu HC, Lang PA. The role of glycosylation patterns of viral glycoproteins and cell entry receptors in arenavirus infection. Biomed Pharmacother 2023; 166:115196. [PMID: 37586116 DOI: 10.1016/j.biopha.2023.115196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023] Open
Abstract
Mammarenaviruses are enveloped RNA viruses that can be associated with rodent-transmitted diseases in humans. Their virions are composed of a nucleocapsid surrounded by a lipid bilayer with glycoprotein (GP) spikes interacting with receptors on target cells. Both the GP and receptors are highly glycosylated, with glycosylation patterns being crucial for virus binding and cell entry, viral tropism, immune responses, or therapy strategies. These effects have been previously described for several different viruses. In case of arenaviruses, they remain insufficiently understood. Thus, it is important to determine the mechanisms of glycosylation of viral proteins and receptors responsible for infection, in order to fully understand the biology of arenaviruses. In this article, we have summarized and critically evaluated the available literature data on the glycosylation of mammarenavirus-associated proteins to facilitate further research in this field.
Collapse
Affiliation(s)
- Michal Gorzkiewicz
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.
| | - Jonathan Cramer
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Haifeng C Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
11
|
Moon-Walker A, Zhang Z, Zyla DS, Buck TK, Li H, Diaz Avalos R, Schendel SL, Hastie KM, Crotty S, Saphire EO. Structural basis for antibody-mediated neutralization of lymphocytic choriomeningitis virus. Cell Chem Biol 2023; 30:403-411.e4. [PMID: 36990092 PMCID: PMC11090681 DOI: 10.1016/j.chembiol.2023.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/23/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023]
Abstract
The mammarenavirus lymphocytic choriomeningitis virus (LCMV) is a globally distributed zoonotic pathogen that can be lethal in immunocompromised patients and can cause severe birth defects if acquired during pregnancy. The structure of the trimeric surface glycoprotein, essential for entry, vaccine design, and antibody neutralization, remains unknown. Here, we present the cryoelectron microscopy (cryo-EM) structure of the LCMV surface glycoprotein (GP) in its trimeric pre-fusion assembly both alone and in complex with a rationally engineered monoclonal neutralizing antibody termed 18.5C-M28 (M28). Additionally, we show that passive administration of M28, either as a prophylactic or therapeutic, protects mice from LCMV clone 13 (LCMVcl13) challenge. Our study illuminates not only the overall structural organization of LCMV GP and the mechanism for its inhibition by M28 but also presents a promising therapeutic candidate to prevent severe or fatal disease in individuals who are at risk of infection by a virus that poses a threat worldwide.
Collapse
Affiliation(s)
- Alex Moon-Walker
- La Jolla Institute for Immunology; La Jolla, CA 92037, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MI 63110, USA
| | - Zeli Zhang
- La Jolla Institute for Immunology; La Jolla, CA 92037, USA
| | - Dawid S Zyla
- La Jolla Institute for Immunology; La Jolla, CA 92037, USA
| | - Tierra K Buck
- La Jolla Institute for Immunology; La Jolla, CA 92037, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Haoyang Li
- La Jolla Institute for Immunology; La Jolla, CA 92037, USA
| | | | | | | | - Shane Crotty
- La Jolla Institute for Immunology; La Jolla, CA 92037, USA.
| | | |
Collapse
|
12
|
Bost C, Hartlaub J, Pinho Dos Reis V, Strecker T, Seidah NG, Groschup MH, Diederich S, Fischer K. The proprotein convertase SKI-1/S1P is a critical host factor for Nairobi sheep disease virus infectivity. Virus Res 2023; 329:199099. [PMID: 36948228 DOI: 10.1016/j.virusres.2023.199099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
Nairobi sheep disease virus (NSDV) belongs to the Orthonairovirus genus in the Bunyavirales order and is genetically related to human-pathogenic Crimean-Congo hemorrhagic fever virus (CCHFV). NSDV is a zoonotic pathogen transmitted by ticks and primarily affects naïve small ruminants in which infection leads to severe and often fatal hemorrhagic gastroenteritis. Despite its veterinary importance and the striking similarities in the clinical picture between NSDV-infected ruminants and CCHFV patients, the molecular pathogenesis of NSDV and its interactions with the host cell are largely unknown. Here, we identify the membrane-bound proprotein convertase site-1 protease (S1P), also known as subtilisin/kexin-isozyme-1 (SKI-1), as a host factor affecting NSDV infectivity. Absence of S1P in SRD-12B cells, a clonal CHO-K1 cell variant with a genetic defect in the S1P gene (MBTPS1), results in significantly decreased NSDV infectivity while transient complementation of SKI-1/S1P rescues NSDV infection. SKI-1/S1P is dispensable for virus uptake but critically required for production of infectious virus progeny. Moreover, we provide evidence that SKI-1/S1P is involved in the posttranslational processing of the NSDV glycoprotein precursor. Our results demonstrate the role of SKI-1/S1P in the virus life cycle of NSDV and suggest that this protease is a common host factor for orthonairoviruses and may thus represent a promising broadly-effective, indirect antiviral target.
Collapse
Affiliation(s)
- Caroline Bost
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Julia Hartlaub
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | | | - Thomas Strecker
- Institute for Virology, Philipps-University Marburg, Germany
| | - Nabil G Seidah
- Montreal Clinical Research Institute (IRCM), affiliated to the University of Montreal, Laboratory of Biochemical Neuroendocrinology, Montreal, Quebec H2W 1R7, Canada
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Sandra Diederich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Kerstin Fischer
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
13
|
Molecular Engineering of a Mammarenavirus with Unbreachable Attenuation. J Virol 2023; 97:e0138522. [PMID: 36533953 PMCID: PMC9888291 DOI: 10.1128/jvi.01385-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several mammarenaviruses cause severe hemorrhagic fever (HF) disease in humans and pose important public health problems in their regions of endemicity. There are no United States (US) Food and Drug Administration (FDA)-approved mammarenavirus vaccines, and current anti-mammarenavirus therapy is limited to an off-label use of ribavirin that has limited efficacy. Mammarenaviruses are enveloped viruses with a bi-segmented negative-strand RNA genome. Each genome segment contains two open reading frames (ORF) separated by a noncoding intergenic region (IGR). The large (L) segment encodes the RNA dependent RNA polymerase, L protein, and the Z matrix protein, whereas the small (S) segment encodes the surface glycoprotein precursor (GPC) and nucleoprotein (NP). In the present study, we document the generation of a recombinant form of the prototypic mammarenavirus lymphocytic choriomeningitis virus (LCMV) expressing a codon deoptimized (CD) GPC and containing the IGR of the S segment in both the S and L segments (rLCMV/IGR-CD). We show that rLCMV/IGR-CD is fully attenuated in C57BL/6 (B6) mice but able to provide complete protection upon a single administration against a lethal challenge with LCMV. Importantly, rLCMV/IGR-CD exhibited an unbreachable attenuation for its safe implementation as a live-attenuated vaccine (LAV). IMPORTANCE Several mammarenaviruses cause severe disease in humans and pose important public health problems in their regions of endemicity. Currently, no FDA-licensed mammarenavirus vaccines are available, and anti-mammarenaviral therapy is limited to an off-label use of ribavirin whose efficacy is controversial. Here, we describe the generation of recombinant version of the prototypic mammarenavirus lymphocytic choriomeningitis virus (rLCMV) combining the features of a codon deoptimized (CD) GPC and the noncoding intergenic region (IGR) of the S segment in both S and L genome segments, called rLCMV/IGR-CD. We present evidence that rLCMV/IGR-CD has excellent safety and protective efficacy features as live-attenuated vaccine (LAV). Importantly, rLCMV/IGR-CD prevents, in coinfected mice, the generation of LCMV reassortants with increased virulence. Our findings document a well-defined molecular strategy for the generation of mammarenavirus LAV candidates able to trigger long-term protective immunity, upon a single immunization, while exhibiting unique enhanced safety features, including unbreachable attenuation.
Collapse
|
14
|
Mammarenavirus Genetic Diversity and Its Biological Implications. Curr Top Microbiol Immunol 2023; 439:265-303. [PMID: 36592249 DOI: 10.1007/978-3-031-15640-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Members of the family Arenaviridae are classified into four genera: Antennavirus, Hartmanivirus, Mammarenavirus, and Reptarenavirus. Reptarenaviruses and hartmaniviruses infect (captive) snakes and have been shown to cause boid inclusion body disease (BIBD). Antennaviruses have genomes consisting of 3, rather than 2, segments, and were discovered in actinopterygian fish by next-generation sequencing but no biological isolate has been reported yet. The hosts of mammarenaviruses are mainly rodents and infections are generally asymptomatic. Current knowledge about the biology of reptarenaviruses, hartmaniviruses, and antennaviruses is very limited and their zoonotic potential is unknown. In contrast, some mammarenaviruses are associated with zoonotic events that pose a threat to human health. This review will focus on mammarenavirus genetic diversity and its biological implications. Some mammarenaviruses including lymphocytic choriomeningitis virus (LCMV) are excellent experimental model systems for the investigation of acute and persistent viral infections, whereas others including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa fever (LF) and Argentine hemorrhagic fever (AHF), respectively, are important human pathogens. Mammarenaviruses were thought to have high degree of intra-and inter-species amino acid sequence identities, but recent evidence has revealed a high degree of mammarenavirus genetic diversity in the field. Moreover, closely related mammarenavirus can display dramatic phenotypic differences in vivo. These findings support a role of genetic variability in mammarenavirus adaptability and pathogenesis. Here, we will review the molecular biology of mammarenaviruses, phylogeny, and evolution, as well as the quasispecies dynamics of mammarenavirus populations and their biological implications.
Collapse
|
15
|
Pseudotyped Viruses for Mammarenavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:279-297. [PMID: 36920703 DOI: 10.1007/978-981-99-0113-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Mammarenaviruses are classified into New World arenaviruses (NW) and Old World arenaviruses (OW). The OW arenaviruses include the first discovered mammarenavirus-lymphocytic choriomeningitis virus (LCMV) and the highly lethal Lassa virus (LASV). Mammarenaviruses are transmitted to human by rodents, resulting in severe acute infections and hemorrhagic fever. Pseudotyped viruses have been widely used as a tool in the study of mammarenaviruses. HIV-1, SIV, FIV-based lentiviral vectors, VSV-based vectors, MLV-based vectors, and reverse genetic approaches have been applied in the construction of pseudotyped mammarenaviruses. Pseudotyped mammarenaviruses are commonly used in receptor research, neutralizing antibody detection, inhibitor screening, viral virulence studies, functional analysis of N-linked glycans, and studies of viral infection, endocytosis, and fusion mechanisms.
Collapse
|
16
|
Genome-Wide Knockout Screen Identifies Human Sialomucin CD164 as an Essential Entry Factor for Lymphocytic Choriomeningitis Virus. mBio 2022; 13:e0020522. [PMID: 35502904 PMCID: PMC9239079 DOI: 10.1128/mbio.00205-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) is a well-studied mammarenavirus that can be fatal in congenital infections. However, our understanding of LCMV and its interactions with human host factors remains incomplete. Here, host determinants affecting LCMV infection were investigated through a genome-wide CRISPR knockout screen in A549 cells, a human lung adenocarcinoma line. We identified and validated a variety of novel host factors that play a functional role in LCMV infection. Among these, knockout of the sialomucin CD164, a heavily glycosylated transmembrane protein, was found to ablate infection with multiple LCMV strains but not other hemorrhagic mammarenaviruses in several cell types. Further characterization revealed a dependency of LCMV entry on the cysteine-rich domain of CD164, including an N-linked glycosylation site at residue 104 in that region. Given the documented role of LCMV with respect to transplacental human infections, CD164 expression was investigated in human placental tissue and placental cell lines. CD164 was found to be highly expressed in the cytotrophoblast cells, an initial contact site for pathogens within the placenta, and LCMV infection in placental cells was effectively blocked using a monoclonal antibody specific to the cysteine-rich domain of CD164. Together, this study identifies novel factors associated with LCMV infection of human tissues and highlights the importance of CD164, a sialomucin that previously had not been associated with viral infection. IMPORTANCE Lymphocytic choriomeningitis virus (LCMV) is a human-pathogenic mammarenavirus that can be fatal in congenital infections. Although frequently used in the study of persistent infections in the field of immunology, aspects of this virus's life cycle remain incomplete. For example, while viral entry has been shown to depend on a cell adhesion molecule, DAG1, genetic knockout of this gene allows for residual viral infection, implying that additional receptors can mediate cell entry. The significance of our study is the identification of host factors important for successful infection, including the sialomucin CD164, which had not been previously associated with viral infection. We demonstrated that CD164 is essential for LCMV entry into human cells and can serve as a possible therapeutic target for treatment of congenital infection.
Collapse
|
17
|
Deng L, Liang P, Cui H. Pseudotyped lentiviral vectors: Ready for translation into targeted cancer gene therapy? Genes Dis 2022. [PMID: 37492721 PMCID: PMC10363566 DOI: 10.1016/j.gendis.2022.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gene therapy holds great promise for curing cancer by editing the deleterious genes of tumor cells, but the lack of vector systems for efficient delivery of genetic material into specific tumor sites in vivo has limited its full therapeutic potential in cancer gene therapy. Over the past two decades, increasing studies have shown that lentiviral vectors (LVs) modified with different glycoproteins from a donating virus, a process referred to as pseudotyping, have altered tropism and display cell-type specificity in transduction, leading to selective tumor cell killing. This feature of LVs together with their ability to enable high efficient gene delivery in dividing and non-dividing mammalian cells in vivo make them to be attractive tools in future cancer gene therapy. This review is intended to summarize the status quo of some typical pseudotypings of LVs and their applications in basic anti-cancer studies across many malignancies. The opportunities of translating pseudotyped LVs into clinic use in cancer therapy have also been discussed.
Collapse
|
18
|
Abstract
Lymphocytic choriomeningitis virus (LCMV) is the prototypic arenavirus and has been utilized for decades as a model to understand the host immune response against viral infection. LCMV infection can lead to fatal meningitis in immunocompromised people and can lead to congenital birth defects and spontaneous abortion if acquired during pregnancy. Using a genetic screen, we uncover host factors involved in LCMV entry that were previously unknown and are candidate therapeutic targets to combat LCMV infection. This study expands our understanding of the entry pathway of LCMV, revealing that its glycoprotein switches from utilizing the known receptor α-DG and heparan sulfate at the plasma membrane to binding the lysosomal mucin CD164 at pH levels found in endolysosomal compartments, facilitating membrane fusion. Lymphocytic choriomeningitis virus (LCMV) is a rodent-borne zoonotic arenavirus that causes congenital abnormalities and can be fatal for transplant recipients. Using a genome-wide loss-of-function screen, we identify host factors required for LCMV entry into cells. We identify the lysosomal mucin CD164, glycosylation factors, the heparan sulfate biosynthesis machinery, and the known receptor alpha-dystroglycan (α-DG). Biochemical analysis revealed that the LCMV glycoprotein binds CD164 at acidic pH and requires a sialylated glycan at residue N104. We demonstrate that LCMV entry proceeds by the virus switching binding from heparan sulfate or α-DG at the plasma membrane to CD164 prior to membrane fusion, thus identifying additional potential targets for therapeutic intervention.
Collapse
|
19
|
Pennington H, Lee J. Lassa virus glycoprotein complex review: insights into its unique fusion machinery. Biosci Rep 2022; 42:BSR20211930. [PMID: 35088070 PMCID: PMC8844875 DOI: 10.1042/bsr20211930] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Lassa virus (LASV), an arenavirus endemic to West Africa, causes Lassa fever-a lethal hemorrhagic fever. Entry of LASV into the host cell is mediated by the glycoprotein complex (GPC), which is the only protein located on the viral surface and comprises three subunits: glycoprotein 1 (GP1), glycoprotein 2 (GP2), and a stable signal peptide (SSP). The LASV GPC is a class one viral fusion protein, akin to those found in viruses such as human immunodeficiency virus (HIV), influenza, Ebola virus (EBOV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These viruses are enveloped and utilize membrane fusion to deliver their genetic material to the host cell. Like other class one fusion proteins, LASV-mediated membrane fusion occurs through an orchestrated sequence of conformational changes in its GPC. The receptor-binding subunit, GP1, first engages with a host cell receptor then undergoes a unique receptor switch upon delivery to the late endosome. The acidic pH and change in receptor result in the dissociation of GP1, exposing the fusion subunit, GP2, such that fusion can occur. These events ultimately lead to the formation of a fusion pore so that the LASV genetic material is released into the host cell. Interestingly, the mature GPC retains its SSP as a third subunit-a feature that is unique to arenaviruses. Additionally, the fusion domain contains two separate fusion peptides, instead of a standard singular fusion peptide. Here, we give a comprehensive review of the LASV GPC components and their unusual features.
Collapse
Affiliation(s)
- Hallie N. Pennington
- Department of Chemistry and Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, MD 20740, U.S.A
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, MD 20740, U.S.A
| |
Collapse
|
20
|
Abstract
Reverse genetics systems provide a powerful tool to generate recombinant arenavirus expressing reporters to facilitate the investigation of the arenavirus life cycle and also for the discovery of antiviral countermeasures. The plasmid-encoded viral ribonucleoprotein components initiate the transcription and replication of a plasmid-driven full-length viral genome, resulting in infectious virus. Thereby, this approach is ideal for the generation of recombinant arenaviruses expressing reporter genes that can be used as valid surrogates for virus replication. By splitting the small viral segment (S) into two viral segments (S1 and S2), each of them encoding a reporter gene, recombinant tri-segmented arenavirus can be rescued. Bi-reporter-expressing recombinant tri-segmented arenaviruses represent an excellent tool to study the biology of arenaviruses, including the identification and characterization of both prophylactic and therapeutic countermeasures for the treatment of arenaviral infections. In this chapter, we describe a detailed protocol on the generation and in vitro characterization of recombinant arenaviruses containing a tri-segment genome expressing two reporter genes based on the prototype member in the family, lymphocytic choriomeningitis virus (LCMV). Similar experimental approaches can be used for the generation of bi-reporter-expressing tri-segment recombinant viruses for other members in the arenavirus family.
Collapse
Affiliation(s)
- Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | |
Collapse
|
21
|
Murphy HL, Ly H. Pathogenicity and virulence mechanisms of Lassa virus and its animal modeling, diagnostic, prophylactic, and therapeutic developments. Virulence 2021; 12:2989-3014. [PMID: 34747339 PMCID: PMC8923068 DOI: 10.1080/21505594.2021.2000290] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lassa fever (LF) is a deadly viral hemorrhagic disease that is endemic to West Africa. The causative agent of LF is Lassa virus (LASV), which causes approximately 300,000 infections and 5,000 deaths annually. There are currently no approved therapeutics or FDA-approved vaccines against LASV. The high genetic variability between LASV strains and immune evasion mediated by the virus complicate the development of effective therapeutics and vaccines. Here, we aim to provide a comprehensive review of the basic biology of LASV and its mechanisms of disease pathogenesis and virulence in various animal models, as well as an update on prospective vaccines, therapeutics, and diagnostics for LF. Until effective vaccines and/or therapeutics are available for use to prevent or treat LF, a better level of understanding of the basic biology of LASV, its natural genetic variations and immune evasion mechanisms as potential pathogenicity factors, and of the rodent reservoir-vector populations and their geographical distributions, is necessary for the development of accurate diagnostics and effective therapeutics and vaccines against this deadly human viral pathogen.
Collapse
Affiliation(s)
- Hannah L Murphy
- Department of Veterinary & Biomedical Sciences, Comparative & Molecular Biosciences Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, Comparative & Molecular Biosciences Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities
| |
Collapse
|
22
|
Danyukova T, Schöneck K, Pohl S. Site-1 and site-2 proteases: A team of two in regulated proteolysis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119138. [PMID: 34619164 DOI: 10.1016/j.bbamcr.2021.119138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/12/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022]
Abstract
The site-1 and site-2 proteases (S1P and S2P) were identified over 20 years ago, and the functions of both have been addressed in numerous studies ever since. Whereas S1P processes a set of substrates independently of S2P, the latter acts in concert with S1P in a mechanism, called regulated intramembrane proteolysis, that controls lipid metabolism and response to unfolded proteins. This review summarizes the molecular roles that S1P and S2P jointly play in these processes. As S1P and S2P deficiencies mainly affect connective tissues, yet with varying phenotypes, we discuss the segregated functions of S1P and S2P in terms of cell homeostasis and maintenance of the connective tissues. In addition, we provide experimental data that point at S2P, but not S1P, as a critical regulator of cell adaptation to proteotoxicity or lipid imbalance. Therefore, we hypothesize that S2P can also function independently of S1P activity.
Collapse
Affiliation(s)
- Tatyana Danyukova
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Kenneth Schöneck
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Sandra Pohl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
23
|
Seidah NG, Pasquato A, Andréo U. How Do Enveloped Viruses Exploit the Secretory Proprotein Convertases to Regulate Infectivity and Spread? Viruses 2021; 13:v13071229. [PMID: 34202098 PMCID: PMC8310232 DOI: 10.3390/v13071229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
Inhibition of the binding of enveloped viruses surface glycoproteins to host cell receptor(s) is a major target of vaccines and constitutes an efficient strategy to block viral entry and infection of various host cells and tissues. Cellular entry usually requires the fusion of the viral envelope with host plasma membranes. Such entry mechanism is often preceded by “priming” and/or “activation” steps requiring limited proteolysis of the viral surface glycoprotein to expose a fusogenic domain for efficient membrane juxtapositions. The 9-membered family of Proprotein Convertases related to Subtilisin/Kexin (PCSK) serine proteases (PC1, PC2, Furin, PC4, PC5, PACE4, PC7, SKI-1/S1P, and PCSK9) participate in post-translational cleavages and/or regulation of multiple secretory proteins. The type-I membrane-bound Furin and SKI-1/S1P are the major convertases responsible for the processing of surface glycoproteins of enveloped viruses. Stefan Kunz has considerably contributed to define the role of SKI-1/S1P in the activation of arenaviruses causing hemorrhagic fever. Furin was recently implicated in the activation of the spike S-protein of SARS-CoV-2 and Furin-inhibitors are being tested as antivirals in COVID-19. Other members of the PCSK-family are also implicated in some viral infections, such as PCSK9 in Dengue. Herein, we summarize the various functions of the PCSKs and present arguments whereby their inhibition could represent a powerful arsenal to limit viral infections causing the present and future pandemics.
Collapse
Affiliation(s)
- Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology Montreal Clinical Research Institute, University of Montreal, Montreal, QC H2W1R7, Canada;
- Correspondence: ; Tel.: +1-514-987-5609
| | - Antonella Pasquato
- Antonella Pasquato, Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy;
| | - Ursula Andréo
- Laboratory of Biochemical Neuroendocrinology Montreal Clinical Research Institute, University of Montreal, Montreal, QC H2W1R7, Canada;
| |
Collapse
|
24
|
Second-Generation Live-Attenuated Candid#1 Vaccine Virus Resists Reversion and Protects against Lethal Junín Virus Infection in Guinea Pigs. J Virol 2021; 95:e0039721. [PMID: 33952638 DOI: 10.1128/jvi.00397-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Live-attenuated virus vaccines are highly effective in preventing viral disease but carry intrinsic risks of residual virulence and reversion to pathogenicity. The classically derived Candid#1 virus protects seasonal field workers in Argentina against zoonotic infection by Junín virus (JUNV) but is not approved in the United States, in part due to the potential for reversion at the attenuating locus, a phenylalanine-to-isoleucine substitution at position 427 in the GP2 subunit of the GPC envelope glycoprotein. Previously, we demonstrated facile reversion of recombinant Candid#1 (rCan) in cell culture and identified an epistatic interaction between the attenuating I427 and a secondary K33S mutation in the stable signal peptide (SSP) subunit of GPC that imposes an evolutionary barrier to reversion. The magnitude of this genetic barrier is manifest in our repeated failures to rescue the hypothetical revertant virus. In this study, we show that K33S rCan is safe and attenuated in guinea pigs and capable of eliciting potent virus-neutralizing antibodies. Immunized animals are fully protected against lethal challenge with virulent JUNV. In addition, we employed a more permissive model of infection in neonatal mice to investigate genetic reversion. RNA sequence analysis of the recovered virus identified revertant viruses in pups inoculated with the parental rCan virus and none in mice receiving K33S rCan (P < 0.0001). Taken together, our findings support the further development of K33S rCan as a safe second-generation JUNV vaccine. IMPORTANCE Our most successful vaccines comprise weakened strains of virus that initiate a limited and benign infection in immunized persons. The live-attenuated Candid#1 strain of Junín virus (JUNV) was developed to protect field workers in Argentina from rodent-borne hemorrhagic fever but is not licensed in the United States, in part due to the likelihood of genetic reversion to virulence. A single-amino-acid change in the GPC envelope glycoprotein of the virus is responsible for attenuation, and a single nucleotide change may regenerate the pathogenic virus. Here, we take advantage of a unique genetic interaction between GPC subunits to design a mutant Candid#1 virus that establishes an evolutionary barrier to reversion. The mutant virus (K33S rCan) is fully attenuated and protects immunized guinea pigs against lethal JUNV infection. We find no instances of reversion in mice inoculated with K33S rCan. This work supports the further development of K33S rCan as a second-generation JUNV vaccine.
Collapse
|
25
|
Wan W, Zhu S, Li S, Shang W, Zhang R, Li H, Liu W, Xiao G, Peng K, Zhang L. High-Throughput Screening of an FDA-Approved Drug Library Identifies Inhibitors against Arenaviruses and SARS-CoV-2. ACS Infect Dis 2021; 7:1409-1422. [PMID: 33183004 PMCID: PMC7671101 DOI: 10.1021/acsinfecdis.0c00486] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Arenaviruses are a large family of enveloped negative-strand RNA viruses that include several causative agents of severe hemorrhagic fevers. Currently, there are no FDA-licensed drugs to treat arenavirus infection except for the off-labeled use of ribavirin. Here, we performed antiviral drug screening against the Old World arenavirus lymphocytic choriomeningitis virus (LCMV) using an FDA-approved drug library. Five drug candidates were identified, including mycophenolic acid, benidipine hydrochloride, clofazimine, dabrafenib, and apatinib, for having strong anti-LCMV effects. Further analysis indicated that benidipine hydrochloride inhibited LCMV membrane fusion, and an adaptive mutation on the LCMV glycoprotein D414 site was found to antagonize the anti-LCMV activity of benidipine hydrochloride. Mycophenolic acid inhibited LCMV replication by depleting GTP production. We also found mycophenolic acid, clofazimine, dabrafenib, and apatinib can inhibit the newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Owing to their FDA-approved status, these drug candidates can potentially be used rapidly in the clinical treatment of arenavirus and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Weiwei Wan
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
- University of Chinese
Academy of Sciences, Beijing 100049, PR
China
| | - Shenglin Zhu
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
| | - Shufen Li
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
| | - Weijuan Shang
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
| | - Ruxue Zhang
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
| | - Hao Li
- Beijing Institute of
Microbiology and Epidemiology, State Key
Laboratory of Pathogen and Biosecurity, Beijing 100071, PR
China
| | - Wei Liu
- Beijing Institute of
Microbiology and Epidemiology, State Key
Laboratory of Pathogen and Biosecurity, Beijing 100071, PR
China
| | - Gengfu Xiao
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
- University of Chinese
Academy of Sciences, Beijing 100049, PR
China
| | - Ke Peng
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
- University of Chinese
Academy of Sciences, Beijing 100049, PR
China
| | - Leike Zhang
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
- University of Chinese
Academy of Sciences, Beijing 100049, PR
China
| |
Collapse
|
26
|
Umthong S, Lynch B, Timilsina U, Waxman B, Ivey EB, Stavrou S. Elucidating the Antiviral Mechanism of Different MARCH Factors. mBio 2021; 12:e03264-20. [PMID: 33653895 PMCID: PMC8092282 DOI: 10.1128/mbio.03264-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
The membrane-associated RING-CH (MARCH) proteins belong to a family of E3 ubiquitin ligases, whose main function is to remove transmembrane proteins from the plasma membrane. Recent work has shown that the human MARCH1, 2, and 8 are antiretroviral factors that target the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins by reducing their incorporation in the budding virions. Nevertheless, the dearth of information regarding the antiviral mechanism of this family of proteins necessitates further examination. In this study, using both the human MARCH proteins and their mouse homologues, we provide a comprehensive analysis of the antiretroviral mechanism of this family of proteins. Moreover, we show that human MARCH proteins restrict to various degrees the envelope glycoproteins of a diverse number of viruses. This report sheds light on the important antiviral function of MARCH proteins and their significance in cell intrinsic immunity.IMPORTANCE This study examines the mechanism utilized by different MARCH proteins to restrict retrovirus infection. MARCH proteins block the incorporation of envelope glycoproteins to the budding virions. In this report, by comparing the human and mouse MARCH genes and using murine leukemia virus (MLV) and HIV-1, we identify differences in the mechanism of restriction among MARCH proteins. Furthermore, we perform a comprehensive analysis on a number of envelope glycoproteins and show that MARCH proteins have broad antiviral functions.
Collapse
Affiliation(s)
- Supawadee Umthong
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Brian Lynch
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Uddhav Timilsina
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Brandon Waxman
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Emily B Ivey
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Spyridon Stavrou
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
27
|
Hulswit RJG, Paesen GC, Bowden TA, Shi X. Recent Advances in Bunyavirus Glycoprotein Research: Precursor Processing, Receptor Binding and Structure. Viruses 2021; 13:353. [PMID: 33672327 PMCID: PMC7926653 DOI: 10.3390/v13020353] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 01/04/2023] Open
Abstract
The Bunyavirales order accommodates related viruses (bunyaviruses) with segmented, linear, single-stranded, negative- or ambi-sense RNA genomes. Their glycoproteins form capsomeric projections or spikes on the virion surface and play a crucial role in virus entry, assembly, morphogenesis. Bunyavirus glycoproteins are encoded by a single RNA segment as a polyprotein precursor that is co- and post-translationally cleaved by host cell enzymes to yield two mature glycoproteins, Gn and Gc (or GP1 and GP2 in arenaviruses). These glycoproteins undergo extensive N-linked glycosylation and despite their cleavage, remain associated to the virion to form an integral transmembrane glycoprotein complex. This review summarizes recent advances in our understanding of the molecular biology of bunyavirus glycoproteins, including their processing, structure, and known interactions with host factors that facilitate cell entry.
Collapse
Affiliation(s)
- Ruben J. G. Hulswit
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (R.J.G.H.); (G.C.P.)
| | - Guido C. Paesen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (R.J.G.H.); (G.C.P.)
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (R.J.G.H.); (G.C.P.)
| | - Xiaohong Shi
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
28
|
Development of Reverse Genetics for the Prototype New World Mammarenavirus Tacaribe Virus. J Virol 2020; 94:JVI.01014-20. [PMID: 32669332 DOI: 10.1128/jvi.01014-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/02/2020] [Indexed: 11/20/2022] Open
Abstract
The New World mammarenavirus Tacaribe virus (TCRV) has been isolated from fruit bats, mosquitoes, and ticks, whereas all other known New World mammarenaviruses are maintained in rodents. TCRV has not been linked to human disease, but it has been shown to protect against Argentine hemorrhagic fever-like disease in marmosets infected with the New World mammarenavirus Junín virus (JUNV), indicating the potential of TCRV as a live-attenuated vaccine for the treatment of Argentine hemorrhagic fever. Implementation of TCRV as a live-attenuated vaccine or a vaccine vector would be facilitated by the establishment of reverse genetics systems for the genetic manipulation of the TCRV genome. In this study, we developed, for the first time, reverse genetics approaches for the generation of recombinant TCRV (rTCRV). We successfully rescued a wild-type (WT) rTCRV (a trisegmented form of TCRV expressing two reporter genes [r3TCRV]) and a bisegmented TCRV expressing a single reporter gene from a bicistronic viral mRNA (rTCRV/GFP). These reverse genetics approaches represent an excellent tool to investigate the biology of TCRV and to explore its potential use as a live-attenuated vaccine or a vaccine vector for the treatment of other viral infections. Notably, we identified a 39-nucleotide (nt) deletion (Δ39) in the noncoding intergenic region (IGR) of the viral large (L) segment that is required for optimal virus multiplication. Accordingly, an rTCRV containing this 39-nt deletion in the L-IGR (rTCRV/Δ39) exhibited decreased viral fitness in cultured cells, suggesting the feasibility of using this deletion in the L-IGR as an approach to attenuate TCRV, and potentially other mammarenaviruses, for their implementation as live-attenuated vaccines or vaccine vectors.IMPORTANCE To date, no Food and Drug Administration (FDA)-approved vaccines are available to combat hemorrhagic fever caused by mammarenavirus infections in humans. Treatment of mammarenavirus infections is limited to the off-label use of ribavirin, which is partially effective and associated with significant side effects. Tacaribe virus (TCRV), the prototype member of the New World mammarenaviruses, is nonpathogenic in humans but able to provide protection against Junín virus (JUNV), the causative agent of Argentine hemorrhagic fever, demonstrating the feasibility of using TCRV as a live-attenuated vaccine vector for the treatment of JUNV and potentially other viral infections. Here, we describe for the first time the feasibility of generating recombinant TCRV (rTCRV) using reverse genetics approaches, which paves the way to study the biology of TCRV and also its potential use as a live-attenuated vaccine or a vaccine vector for the treatment of mammarenavirus and/or other viral infections in humans.
Collapse
|
29
|
Müller H, Fehling SK, Dorna J, Urbanowicz RA, Oestereich L, Krebs Y, Kolesnikova L, Schauflinger M, Krähling V, Magassouba N, Fichet-Calvet E, Ball JK, Kaufmann A, Bauer S, Becker S, von Messling V, Strecker T. Adjuvant formulated virus-like particles expressing native-like forms of the Lassa virus envelope surface glycoprotein are immunogenic and induce antibodies with broadly neutralizing activity. NPJ Vaccines 2020; 5:71. [PMID: 32802410 PMCID: PMC7403343 DOI: 10.1038/s41541-020-00219-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/10/2020] [Indexed: 01/11/2023] Open
Abstract
Lassa mammarenavirus (LASV) is a rodent-borne arenavirus endemic to several West African countries. It is the causative agent of human Lassa fever, an acute viral hemorrhagic fever disease. To date, no therapeutics or vaccines against LASV have obtained regulatory approval. Polyclonal neutralizing antibodies derived from hyperimmunized animals may offer a useful strategy for prophylactic and therapeutic intervention to combat human LASV infections. The LASV envelope surface glycoprotein complex (GP) is the major target for neutralizing antibodies, and it is the main viral antigen used for the design of an LASV vaccine. Here, we assessed the immunogenic potential of mammalian cell-derived virus-like particles (VLPs) expressing GP from the prototypic LASV strain Josiah in a native-like conformation as the sole viral antigen. We demonstrate that an adjuvanted prime-boost immunization regimen with GP-derived VLPs elicited neutralizing antibody responses in rabbits, suggesting that effective antigenic epitopes of GP were displayed. Notably, these antibodies exhibited broad reactivity across five genetic lineages of LASV. VLP-based immunization strategies may represent a powerful approach for generating polyclonal sera containing cross-reactive neutralizing antibodies against LASV.
Collapse
Affiliation(s)
- Helena Müller
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | | | - Jens Dorna
- Institute of Immunology, Philipps University Marburg, Marburg, Germany
| | - Richard A Urbanowicz
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham, UK.,School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Lisa Oestereich
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Sites Gießen-Marburg-Langen and Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
| | - Yvonne Krebs
- Veterinary Medicine Division, Paul-Ehrlich-Institut, Langen, Germany
| | | | | | - Verena Krähling
- Institute of Virology, Philipps University Marburg, Marburg, Germany.,German Center for Infection Research (DZIF), Partner Sites Gießen-Marburg-Langen and Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
| | | | - Elisabeth Fichet-Calvet
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Sites Gießen-Marburg-Langen and Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
| | - Jonathan K Ball
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham, UK.,School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Andreas Kaufmann
- Institute of Immunology, Philipps University Marburg, Marburg, Germany
| | - Stefan Bauer
- Institute of Immunology, Philipps University Marburg, Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Marburg, Germany.,German Center for Infection Research (DZIF), Partner Sites Gießen-Marburg-Langen and Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
| | - Veronika von Messling
- German Center for Infection Research (DZIF), Partner Sites Gießen-Marburg-Langen and Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany.,Veterinary Medicine Division, Paul-Ehrlich-Institut, Langen, Germany.,Present Address: Federal Ministry for Education and Research, Berlin, Germany
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
30
|
Biological Characterization of Conserved Residues within the Cytoplasmic Tail of the Pichinde Arenaviral Glycoprotein Subunit 2 (GP2). J Virol 2019; 93:JVI.01277-19. [PMID: 31462569 DOI: 10.1128/jvi.01277-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Several mammarenaviruses can cause deadly hemorrhagic fever infections in humans, with limited preventative and therapeutic measures available. Arenavirus cell entry is mediated by the viral glycoprotein (GP) complex, which consists of the stable signal peptide (SSP), the receptor-binding subunit GP1, and the transmembrane subunit GP2. The GP2 cytoplasmic tail (CT) is relatively conserved among arenaviruses and is known to interact with the SSP to regulate GP processing and membrane fusion, but its biological role in the context of an infectious virus has not been fully characterized. Using a Pichinde virus (PICV) GP expression vector and a PICV reverse genetics system, we systematically characterized the functional roles of 12 conserved residues within the GP2 CT in GP processing, trafficking, assembly, and fusion, as well as in viral replication. Except for P478A and K505A R508A, alanine substitutions at conserved residues abolished GP processing and membrane fusion in plasmid-transfected cells. Six invariant H and C residues and W503 are essential for viral replication, as evidenced by the fact that their mutant viruses could not be rescued. Both P480A and R482A mutant viruses were rescued, grew similarly to wild-type (WT) virus, and produced evidently processed GP1 and GP2 subunits in virus-infected cells, despite the fact that the same mutations abolished GP processing and membrane fusion in a plasmid-based protein expression system, illustrating the importance of using an infectious-virus system for analyzing viral glycoprotein function. In summary, our results demonstrate an essential biological role of the GP2 CT in arenavirus replication and suggest it as a potential novel target for developing antivirals and/or attenuated viral vaccine candidates.IMPORTANCE Several arenaviruses, such as Lassa virus (LASV), can cause severe and lethal hemorrhagic fever diseases with high mortality and morbidity, for which no FDA-approved vaccines or therapeutics are available. Viral entry is mediated by the arenavirus GP complex, which consists of the stable signal peptide (SSP), the receptor-binding subunit GP1, and the transmembrane subunit GP2. The cytoplasmic tail (CT) of GP2 is highly conserved among arenaviruses, but its functional role in viral replication is not completely understood. Using a reverse genetics system of a prototypic arenavirus, Pichinde virus (PICV), we show that the GP2 CT contains certain conserved residues that are essential for virus replication, implicating it as a potentially good target for developing antivirals and live-attenuated viral vaccines against deadly arenavirus pathogens.
Collapse
|
31
|
[Arenavirus research and antiviral candidate]. Uirusu 2019; 68:51-62. [PMID: 31105135 DOI: 10.2222/jsv.68.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Arenavirus is a genetic term for viruses belonging to the family Arenaviridae and is presented from lymphocytic choriomeningitis virus (LCMV), which shows almost no pathogenicity to humans, to Lassa virus, Junin virus, Machupo virus, Chapare virus, Lujo virus, Sabia virus, and Guanarito virus, which shows high pathogenicity to humans. These viruses except for LCMV are risk group 4 pathogens specified by World Health Organization. Based on this designation, it is designated as Class I pathogens in Japan. Although there have been no reports excluding one imported case of the Lassa fever patient, it is not surprising whenever imported cases occur in our country. Considering the disease severity and mortality rate, it is an urgent matter to develop vaccines and therapeutic drugs in endemic areas, and maintenances of these are also important in countries other than endemic areas. However, basic research on highly pathogenic arenavirus infections and development of therapeutic drugs are not easily progressed, because handling in highly safe research facilities is indispensable. In this article, we will outline the current knowledge from the recent basic research on arenavirus to the development situation of antivirals against arenaviruses.
Collapse
|
32
|
Shulman A, Katz M, Cohen-Dvashi H, Greenblatt HM, Levy Y, Diskin R. Variations in Core Packing of GP2 from Old World Mammarenaviruses in their Post-Fusion Conformations Affect Membrane-Fusion Efficiencies. J Mol Biol 2019; 431:2095-2111. [PMID: 31004664 DOI: 10.1016/j.jmb.2019.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 11/19/2022]
Abstract
Lassa virus (LASV) is a notorious human pathogen in West Africa. Its class I trimeric spike complex displays a distinct architecture, and its cell entry mechanism involves unique attributes not shared by other related viruses. We determined the crystal structure of the GP2 fusion glycoprotein from the spike complex of LASV (GP2LASV) in its post-fusion conformation. GP2LASV adopts a canonical helical bundle configuration similarly to other viruses in its family. The core packing of GP2LASV, however, is more organized compared to GP2 from other viruses reducing the formation of internal hydrophobic cavities. We demonstrate a link between the formation of such unfavorable hydrophobic cavities and the efficiencies of membrane fusion and cell entry. Our study suggests that LASV has evolved a more efficient membrane fusogen compared to other viruses from its family by optimizing the post-fusion configuration of its GP2 module.
Collapse
Affiliation(s)
- Anastasiya Shulman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Katz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Cohen-Dvashi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Harry M Greenblatt
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Diskin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
33
|
Brisse ME, Ly H. Hemorrhagic Fever-Causing Arenaviruses: Lethal Pathogens and Potent Immune Suppressors. Front Immunol 2019; 10:372. [PMID: 30918506 PMCID: PMC6424867 DOI: 10.3389/fimmu.2019.00372] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Hemorrhagic fevers (HF) resulting from pathogenic arenaviral infections have traditionally been neglected as tropical diseases primarily affecting African and South American regions. There are currently no FDA-approved vaccines for arenaviruses, and treatments have been limited to supportive therapy and use of non-specific nucleoside analogs, such as Ribavirin. Outbreaks of arenaviral infections have been limited to certain geographic areas that are endemic but known cases of exportation of arenaviruses from endemic regions and socioeconomic challenges for local control of rodent reservoirs raise serious concerns about the potential for larger outbreaks in the future. This review synthesizes current knowledge about arenaviral evolution, ecology, transmission patterns, life cycle, modulation of host immunity, disease pathogenesis, as well as discusses recent development of preventative and therapeutic pursuits against this group of deadly viral pathogens.
Collapse
Affiliation(s)
- Morgan E Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
34
|
Sequencing and genetic characterization of two strains Paramushir virus obtained from the Tyuleniy Island in the Okhotsk Sea (2015). Ticks Tick Borne Dis 2019; 10:269-279. [DOI: 10.1016/j.ttbdis.2018.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/14/2018] [Accepted: 11/08/2018] [Indexed: 01/16/2023]
|
35
|
Hoffmann HH, Schneider WM, Blomen VA, Scull MA, Hovnanian A, Brummelkamp TR, Rice CM. Diverse Viruses Require the Calcium Transporter SPCA1 for Maturation and Spread. Cell Host Microbe 2018; 22:460-470.e5. [PMID: 29024641 DOI: 10.1016/j.chom.2017.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/05/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
Respiratory and arthropod-borne viral infections are a global threat due to the lack of effective antivirals and vaccines. A potential strategy is to target host proteins required for viruses but non-essential for the host. To identify such proteins, we performed a genome-wide knockout screen in human haploid cells and identified the calcium pump SPCA1. SPCA1 is required by viruses from the Paramyxoviridae, Flaviviridae, and Togaviridae families, including measles, dengue, West Nile, Zika, and chikungunya viruses. Calcium transport activity is required for SPCA1 to promote virus spread. SPCA1 regulates proteases within the trans-Golgi network that require calcium for their activity and are critical for virus glycoprotein maturation. Consistent with these findings, viral glycoproteins fail to mature in SPCA1-deficient cells preventing viral spread, which is evident even in cells with partial loss of SPCA1. Thus, SPCA1 is an attractive antiviral host target for a broad spectrum of established and emerging viral infections.
Collapse
Affiliation(s)
- H-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Vincent A Blomen
- Biochemistry Division, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Margaret A Scull
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Alain Hovnanian
- INSERM UMR 1163 and Imagine Institute, 75015 Paris, France; Université Paris V Descartes - Sorbonne Paris Cité, 75006 Paris, France; Department of Genetics, Necker Hospital, 75015 Paris, France
| | - Thijn R Brummelkamp
- Biochemistry Division, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; Cancer Genomics Centre, 3584 CG Utrecht, The Netherlands
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
36
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Characterization of Proprotein Convertases and Their Involvement in Virus Propagation. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122180 DOI: 10.1007/978-3-319-75474-1_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
37
|
York J, Nunberg JH. A Cell-Cell Fusion Assay to Assess Arenavirus Envelope Glycoprotein Membrane-Fusion Activity. Methods Mol Biol 2018; 1604:157-167. [PMID: 28986831 DOI: 10.1007/978-1-4939-6981-4_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
For many viruses that enter their target cells through pH-dependent fusion of the viral and endosomal membranes, cell-cell fusion assays can provide an experimental platform for investigating the structure-function relationships that promote envelope glycoprotein membrane-fusion activity. Typically, these assays employ effector cells expressing the recombinant envelope glycoprotein on the cell surface and target cells engineered to quantitatively report fusion with the effector cell. In the protocol described here, Vero cells are transfected with a plasmid encoding the arenavirus envelope glycoprotein complex GPC and infected with the vTF7-3 vaccinia virus expressing the bacteriophage T7 RNA polymerase. These effector cells are mixed with target cells infected with the vCB21R-lacZ vaccinia virus encoding a β-galactosidase reporter under the control of the T7 promoter. Cell-cell fusion is induced upon exposure to low-pH medium (pH 5.0), and the resultant expression of the β-galactosidase reporter is quantitated using a chemiluminescent substrate. We have utilized this robust microplate cell-cell fusion assay extensively to study arenavirus entry and its inhibition by small-molecule fusion inhibitors.
Collapse
Affiliation(s)
- Joanne York
- Montana Biotechnology Center, University of Montana, Science Complex Room 221, Missoula, MT, 59812, USA
| | - Jack H Nunberg
- Montana Biotechnology Center, University of Montana, Science Complex Room 221, Missoula, MT, 59812, USA.
| |
Collapse
|
38
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Cleavage of the Glycoprotein of Arenaviruses. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7121819 DOI: 10.1007/978-3-319-75474-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The arenaviruses are a large family of emerging negative-stranded RNA viruses that include several severe human pathogens causing hemorrhagic fevers with high mortality. During the arenavirus life cycle, processing of the viral envelope glycoprotein precursor (GPC) by the cellular subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P) is crucial for productive infection. The ability of newly emerging arenaviruses to hijack human SKI-1/S1P is a key factor for zoonotic transmission and human disease potential. Apart from being an essential host factor for arenavirus infection, SKI-1/S1P is involved in the regulation of important physiological processes and linked to major human diseases. This chapter provides an overview of the mechanisms of arenavirus GPC processing by SKI-1/S1P including recent findings. We will highlight to what extent the molecular mechanisms of SKI-1/S1P cleavage of viral GPC differ from processing of SKI-1/S1P’s cellular substrates and discuss the implications for virus-host interaction and coevolution. Moreover, we will show how the use of the viral GPC as a “molecular probe” uncovered novel and unusual aspects of SKI-1/S1P biosynthesis and maturation. The crucial role of SKI-1/S1P in arenavirus infection and other major human diseases combined with its nature as an enzyme makes SKI-1/S1P further an attractive target for therapeutic intervention. In the last part, we will therefore cover past and present efforts to identify specific SKI-1/S1P inhibitors.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
39
|
Assays to Assess Arenaviral Glycoprotein Function. Methods Mol Biol 2017. [PMID: 28986832 DOI: 10.1007/978-1-4939-6981-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Arenaviruses, such as Lassa virus (LASV) and Pichindé virus (PICV), are enveloped viruses with a bi-segmented ambisense RNA genome. The large (L) genomic segment encodes the Z matrix protein and the L RNA-dependent RNA polymerase, whereas the small (S) genomic segment encodes the nucleoprotein (NP) and the glycoprotein precursor complex (GPC). GPC is processed by signal peptidase in the endoplasmic reticulum into the stable signal peptide (SSP) and GP1/GP2, which is further cleaved by the Golgi-resident subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P) into the cellular receptor-recognition subunit GP1 and the transmembrane subunit GP2, which helps promote the membrane fusion reaction to allow virus entry into the cell. This article describes assays to assess PICV GPC expression, proteolytic processing, fusion function, and GPC-mediated virus-like particle (VLP) entry into cells under tissue-culture conditions.
Collapse
|
40
|
Acciani M, Alston JT, Zhao G, Reynolds H, Ali AM, Xu B, Brindley MA. Mutational Analysis of Lassa Virus Glycoprotein Highlights Regions Required for Alpha-Dystroglycan Utilization. J Virol 2017; 91:e00574-17. [PMID: 28679759 PMCID: PMC5571257 DOI: 10.1128/jvi.00574-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/22/2017] [Indexed: 12/27/2022] Open
Abstract
Lassa virus (LASV) is an enveloped RNA virus endemic to West Africa and responsible for severe cases of hemorrhagic fever. Virus entry is mediated by the glycoprotein complex consisting of a stable-signal peptide, a receptor-binding subunit, GP1, and a viral-host membrane fusion subunit, GP2. Several cellular receptors can interact with the GP1 subunit and mediate viral entry, including alpha-dystroglycan (αDG) and lysosome-associated membrane protein 1 (LAMP1). In order to define the regions within GP1 that interact with the cellular receptors, we implemented insertional mutagenesis, carbohydrate shielding, and alanine scanning mutagenesis. Eighty GP constructs were engineered and evaluated for GP1-GP2 processing, surface expression, and the ability to mediate cell-to-cell fusion after low-pH exposure. To examine virus-to-cell entry, 49 constructs were incorporated onto vesicular stomatitis virus (VSV) pseudoparticles and transduction efficiencies were monitored in HAP1 and HAP1-ΔDAG1 cells that differentially produce the αDG cell surface receptor. Seven constructs retained efficient transduction in HAP1-ΔDAG1 cells yet poorly transduced HAP1 cells, suggesting that they are involved in αDG utilization. Residues H141, N146, F147, and Y150 cluster at the predicted central core of the trimeric interface and are important for GP-αDG interaction. Additionally, H92A-H93A, 150HA, 172HA, and 230HA displayed reduced transduction in both HAP1 and HAP1-ΔDAG1 cells, despite efficient cell-to-cell fusion activity. These mutations may interfere with interactions with the endosomal receptor LAMP1 or interfere at another stage in entry that is common to both cell lines. Insight gained from these data can aid in the development of more-effective entry inhibitors by blocking receptor interactions.IMPORTANCE Countries in which Lassa virus is endemic, such as Nigeria, Sierra Leone, Guinea, and Liberia, usually experience a seasonal outbreak of the virus from December to March. Currently, there is neither a preventative vaccine nor a therapeutic available to effectively treat severe Lassa fever. One way to thwart virus infection is to inhibit interaction with cellular receptors. It is known that the GP1 subunit of the Lassa glycoprotein complex plays a critical role in receptor recognition. Our results highlight a region within the Lassa virus GP1 protein that interacts with the cellular receptor alpha-dystroglycan. This information may be used for future development of new Lassa virus antivirals.
Collapse
Affiliation(s)
- Marissa Acciani
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jacob T Alston
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Guohui Zhao
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Hayley Reynolds
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Afroze M Ali
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Brian Xu
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Melinda A Brindley
- Department of Infectious Diseases, Department of Population Health, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
41
|
Manning JT, Seregin AV, Yun NE, Koma T, Huang C, Barral J, de la Torre JC, Paessler S. Absence of an N-Linked Glycosylation Motif in the Glycoprotein of the Live-Attenuated Argentine Hemorrhagic Fever Vaccine, Candid #1, Results in Its Improper Processing, and Reduced Surface Expression. Front Cell Infect Microbiol 2017; 7:20. [PMID: 28220142 PMCID: PMC5292626 DOI: 10.3389/fcimb.2017.00020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/16/2017] [Indexed: 11/27/2022] Open
Abstract
Junin virus (JUNV), a highly pathogenic New World arenavirus, is the causative agent of Argentine hemorrhagic fever (AHF). The live-attenuated Candid #1 (Can) strain currently serves as a vaccine for at-risk populations. We have previously shown that the Can glycoprotein (GPC) gene is the primary gene responsible for attenuation in a guinea pig model of AHF. However, the mechanisms through which the GPC contributes to the attenuation of the Can strain remain unknown. A more complete understanding of the mechanisms underlying the attenuation and immunogenicity of the Can strain will potentially allow for the rational design of additional safe and novel vaccines. Here, we provide a detailed comparison of both RNA and protein expression profiles between both inter- and intra-segment chimeric JUNV recombinant clones expressing combinations of genes from the Can strain and the pathogenic Romero (Rom) strain. The recombinant viruses that express Can GPC, which were shown to be attenuated in guinea pigs, displayed different RNA levels and GPC processing patterns as determined by Northern and Western blot analyses, respectively. Analysis of recombinant viruses containing amino acid substitutions selected at different mouse brain passages during the generation of Can revealed that altered Can GPC processing was primarily due to the T168A substitution within G1, which eliminates an N-linked glycosylation motif. Incorporation of the T168A substitution in the Rom GPC resulted in a Can-like processing pattern of Rom GPC. In addition, JUNV GPCs containing T168A substitution were retained within the endoplasmic reticulum (ER) and displayed significantly lower cell surface expression than wild-type Rom GPC. Interestingly, the reversion A168T in Can GPC significantly increased GPC expression at the cell surface. Our results demonstrate that recombinant JUNV (rJUNV) expressing Can GPC display markedly different protein expression and elevated genomic RNA expression when compared to viruses expressing Rom GPC. Additionally, our findings indicate that the N-linked glycosylation motif at amino acid positions 166–168 is important for trafficking of JUNV GPC to the cell surface, and the elimination of this motif interferes with the GPC release from the ER.
Collapse
Affiliation(s)
- John T Manning
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Alexey V Seregin
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Nadezhda E Yun
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Takaaki Koma
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Cheng Huang
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - José Barral
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Juan C de la Torre
- Department of Immunology and Microbial Science, Scripps Research Institute La Jolla, CA, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| |
Collapse
|
42
|
Ferron F, Weber F, de la Torre JC, Reguera J. Transcription and replication mechanisms of Bunyaviridae and Arenaviridae L proteins. Virus Res 2017; 234:118-134. [PMID: 28137457 PMCID: PMC7114536 DOI: 10.1016/j.virusres.2017.01.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/17/2017] [Accepted: 01/21/2017] [Indexed: 12/15/2022]
Abstract
Bunyavirus and arenavirus are important public health threats. Bunyavirus and arenavirus molecular biology, common and differential features. Implications of LACV L protein structure for understanding viral RNA synthesis. Current state and future perspectives on bunya- and arenavirus antivirals.
Bunyaviridae and Arenaviridae virus families include an important number of highly pathogenic viruses for humans. They are enveloped viruses with negative stranded RNA genomes divided into three (bunyaviruses) or two (arenaviruses) segments. Each genome segment is coated by the viral nucleoproteins (NPs) and the polymerase (L protein) to form a functional ribonucleoprotein (RNP) complex. The viral RNP provides the necessary context on which the L protein carries out the biosynthetic processes of RNA replication and gene transcription. Decades of research have provided a good understanding of the molecular processes underlying RNA synthesis, both RNA replication and gene transcription, for these two families of viruses. In this review we will provide a global view of the common features, as well as differences, of the molecular biology of Bunyaviridae and Arenaviridae. We will also describe structures of protein and protein-RNA complexes so far determined for these viral families, mainly focusing on the L protein, and discuss their implications for understanding the mechanisms of viral RNA replication and gene transcription within the architecture of viral RNPs, also taking into account the cellular context in which these processes occur. Finally, we will discuss the implications of these structural findings for the development of antiviral drugs to treat human diseases caused by members of the Bunyaviridae and Arenaviridae families.
Collapse
Affiliation(s)
- François Ferron
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, D-35392 Giessen, Germany
| | | | - Juan Reguera
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France; INSERM, AFMB UMR 7257, 13288 Marseille, France.
| |
Collapse
|
43
|
Abstract
The development of arenavirus reverse genetics has provided investigators with a novel and powerful approach for the investigation of the arenavirus molecular and cell biology. The use of cell-based minigenome systems has allowed examining the cis- and trans-acting factors involved in arenavirus replication and transcription, and the identification of novel anti-arenaviral drug targets without requiring the use of live forms of arenaviruses. Likewise, it is now feasible to rescue infectious arenaviruses entirely from cloned cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis. These advances in arenavirus genetics have also facilitated screens to identify anti-arenaviral drugs and the pursuit of novel strategies to generate live-attenuated arenavirus vaccine candidates. Moreover, the generation of tri-segmented (r3) arenaviruses expressing foreign genes of interest (GOI) has opened the possibility of implementing live-attenuated arenaviruses-based vaccine vector approaches. In this chapter, we will summarize the implementation of plasmid-based reverse genetics techniques for the development of r3 arenaviruses expressing foreign GOI for their implementation as vaccine vectors.
Collapse
Affiliation(s)
- Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
44
|
Cheng BYH, Nogales A, de la Torre JC, Martínez-Sobrido L. Development of live-attenuated arenavirus vaccines based on codon deoptimization of the viral glycoprotein. Virology 2016; 501:35-46. [PMID: 27855284 DOI: 10.1016/j.virol.2016.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 11/18/2022]
Abstract
Several arenaviruses, chiefly Lassa (LASV) in West Africa, cause hemorrhagic fever (HF) disease in humans and pose important public health problems in their endemic regions. To date, there are no FDA-approved arenavirus vaccines and current anti-arenaviral therapy is limited to the use of ribavirin that has very limited efficacy. In this work we document that a recombinant prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) with a codon deoptimized (CD) surface glycoprotein (GP), rLCMV/CD, exhibited wild type (WT)-like growth properties in cultured cells despite barely detectable GP expression levels in rLCMV/CD-infected cells. Importantly, rLCMV/CD was highly attenuated in vivo but able to induce complete protection against a subsequent lethal challenge with rLCMV/WT. Our findings support the feasibility of implementing an arenavirus GP CD-based approach for the development of safe and effective live-attenuated vaccines (LAVs) to combat diseases caused by human pathogenic arenaviruses.
Collapse
Affiliation(s)
- Benson Y H Cheng
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
45
|
Characterization of the Glycoprotein Stable Signal Peptide in Mediating Pichinde Virus Replication and Virulence. J Virol 2016; 90:10390-10397. [PMID: 27630230 DOI: 10.1128/jvi.01154-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/02/2016] [Indexed: 11/20/2022] Open
Abstract
Arenaviruses can cause lethal hemorrhagic fevers in humans with few preventative and therapeutic measures. The arenaviral glycoprotein stable signal peptide (SSP) is unique among signal peptides in that it is an integral component of the mature glycoprotein complex (GPC) and plays important roles not only in GPC expression and processing but also in the membrane fusion process during viral entry. Using the Pichinde virus (PICV) reverse genetics system, we analyzed the effects of alanine substitutions at many conserved residues within the SSP on viral replication in cell culture and in a guinea pig infection model. Our data showed that the K33A, F49A, and C57A mutations abolished GPC-mediated cell entry and therefore could not allow for the generation of viable recombinant viruses, demonstrating that these residues are essential for the PICV life cycle. The G2A mutation caused a marked reduction of cell entry at the membrane fusion step, and while this mutant virus was viable, it was significantly attenuated in vitro and in vivo The N20A mutation also reduced membrane fusion activity and viral virulence in guinea pigs, but it did not significantly affect cell entry or viral growth in cell culture. Two other mutations (N37A and R55A) did not affect membrane fusion or viral growth in vitro but significantly reduced viral virulence in vivo Taken together, our data suggest that the GPC SSP plays an essential role in mediating viral entry and also contributes to viral virulence in vivo IMPORTANCE: Several arenaviruses, such as Lassa fever virus, can cause severe and lethal hemorrhagic fever diseases with high mortality and morbidity, and no FDA-approved vaccines or therapies are currently available. Viral entry into cells is mediated by arenavirus GPC that consists of an SSP, the receptor-binding GP1, and transmembrane GP2 protein subunits. Using a reverse genetics system of a prototypic arenavirus, Pichinde virus (PICV), we have shown for the first time in the context of virus infections of cell culture and of guinea pigs that the SSP plays an essential role in mediating the membrane fusion step as well as in other yet-to-be-determined processes during viral infection. Our study provides important insights into the biological roles of GPC SSP and implicates it as a good target for the development of antivirals against deadly human arenavirus pathogens.
Collapse
|
46
|
Myristoylation of the Arenavirus Envelope Glycoprotein Stable Signal Peptide Is Critical for Membrane Fusion but Dispensable for Virion Morphogenesis. J Virol 2016; 90:8341-50. [PMID: 27412594 DOI: 10.1128/jvi.01124-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/01/2016] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED Arenaviruses are responsible for severe and often fatal hemorrhagic disease. In the absence of effective antiviral therapies and vaccines, these viruses pose serious threats to public health and biodefense. Arenaviruses enter the host cell by fusion of the viral and endosomal membranes, a process mediated by the virus envelope glycoprotein GPC. Unlike other class I viral fusion proteins, GPC retains its stable signal peptide (SSP) as an essential third subunit in the mature complex. SSP spans the membrane twice and is myristoylated at its cytoplasmic N terminus. Mutations that abolish SSP myristoylation have been shown to reduce pH-induced cell-cell fusion activity of ectopically expressed GPC to ∼20% of wild-type levels. In order to examine the role of SSP myristoylation in the context of the intact virus, we used reverse genetics to generate Junín viruses (Candid #1 isolate) in which the critical glycine-2 residue in SSP was either replaced by alanine (G2A) or deleted (ΔG2). These mutant viruses produced smaller foci of infection in Vero cells and showed an ∼5-fold reduction in specific infectivity, commensurate with the defect in cell-cell fusion. However, virus assembly and GPC incorporation into budded virions were unaffected. Our findings suggest that the myristate moiety is cryptically disposed in the prefusion GPC complex and may function late in the fusion process to promote merging of the viral and cellular membranes. IMPORTANCE Hemorrhagic fever arenaviruses pose significant threats to public health and biodefense. Arenavirus entry into the host cell is promoted by the virus envelope glycoprotein GPC. Unlike other viral envelope glycoproteins, GPC contains a myristoylated stable signal peptide (SSP) as an essential third subunit. Myristoylation has been shown to be important for the membrane fusion activity of recombinantly expressed GPC. Here, we use reverse genetics to study the role of SSP myristoylation in the context of the intact virion. We find that nonmyristoylated GPC mutants of the Candid #1 strain of Junín virus display a commensurate deficiency in their infectivity, albeit without additional defects in virion assembly and budding. These results suggest that SSP myristoylation may function late in the fusion process to facilitate merging of the viral and cellular membranes. Antiviral agents that target this novel aspect of GPC membrane fusion may be useful in the treatment of arenavirus hemorrhagic fevers.
Collapse
|
47
|
Wang W, Zhou Z, Zhang L, Wang S, Xiao G. Structure-function relationship of the mammarenavirus envelope glycoprotein. Virol Sin 2016; 31:380-394. [PMID: 27562602 DOI: 10.1007/s12250-016-3815-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/27/2016] [Indexed: 12/29/2022] Open
Abstract
Mammarenaviruses, including lethal pathogens such as Lassa virus and Junín virus, can cause severe hemorrhagic fever in humans. Entry is a key step for virus infection, which starts with binding of the envelope glycoprotein (GP) to receptors on target cells and subsequent fusion of the virus with target cell membranes. The GP precursor is synthesized as a polypeptide, and maturation occurs by two cleavage events, yielding a tripartite GP complex (GPC) formed by a stable signal peptide (SSP), GP1 and GP2. The unique retained SSP interacts with GP2 and plays essential roles in virion maturation and infectivity. GP1 is responsible for binding to the cell receptor, and GP2 is a class I fusion protein. The native structure of the tripartite GPC is unknown. GPC is critical for the receptor binding, membrane fusion and neutralization antibody recognition. Elucidating the molecular mechanisms underlining the structure-function relationship of the three subunits is the key for understanding their function and can facilitate novel avenues for combating virus infections. This review summarizes the basic aspects and recent research of the structure-function relationship of the three subunits. We discuss the structural basis of the receptor-binding domain in GP1, the interaction between SSP and GP2 and its role in virion maturation and membrane fusion, as well as the mechanism by which glycosylation stabilizes the GPC structure and facilitates immune evasion. Understanding the molecular mechanisms involved in these aspects will contribute to the development of novel vaccines and treatment strategies against mammarenaviruses infection.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Zheng Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shaobo Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
48
|
Reporter-Expressing, Replicating-Competent Recombinant Arenaviruses. Viruses 2016; 8:v8070197. [PMID: 27447662 PMCID: PMC4974532 DOI: 10.3390/v8070197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/28/2016] [Accepted: 07/08/2016] [Indexed: 02/07/2023] Open
Abstract
Several arenaviruses cause hemorrhagic fever (HF) disease in humans and pose an important public health problem in their endemic regions. To date, no Food and Drug Administration (FDA)-licensed vaccines are available to combat human arenavirus infections, and current anti-arenaviral drug therapy is limited to an off-label use of ribavirin that is only partially effective. The development of arenavirus reverse genetic approaches has provided investigators with a novel and powerful approach for the study of arenavirus biology including virus–host interactions underlying arenavirus induced disease. The use of cell-based minigenome systems has allowed examining the cis- and trans-acting factors involved in arenavirus replication and transcription, as well as particle assembly and budding. Likewise, it is now feasible to rescue infectious arenaviruses containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis. The use of reverse genetics approaches has also allowed the generation of recombinant arenaviruses expressing additional genes of interest. These advances in arenavirus molecular genetics have also facilitated the implementation of novel screens to identify anti-arenaviral drugs, and the development of novel strategies for the generation of arenavirus live-attenuated vaccines. In this review, we will summarize the current knowledge on reporter-expressing, replicating-competent arenaviruses harboring reporter genes in different locations of the viral genome and their use for studying and understanding arenavirus biology and the identification of anti-arenaviral drugs to combat these important human pathogens.
Collapse
|
49
|
Small-Molecule Fusion Inhibitors Bind the pH-Sensing Stable Signal Peptide-GP2 Subunit Interface of the Lassa Virus Envelope Glycoprotein. J Virol 2016; 90:6799-807. [PMID: 27194767 DOI: 10.1128/jvi.00597-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/10/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Arenavirus species are responsible for severe life-threatening hemorrhagic fevers in western Africa and South America. Without effective antiviral therapies or vaccines, these viruses pose serious public health and biodefense concerns. Chemically distinct small-molecule inhibitors of arenavirus entry have recently been identified and shown to act on the arenavirus envelope glycoprotein (GPC) to prevent membrane fusion. In the tripartite GPC complex, pH-dependent membrane fusion is triggered through a poorly understood interaction between the stable signal peptide (SSP) and the transmembrane fusion subunit GP2, and our genetic studies have suggested that these small-molecule inhibitors act at this interface to antagonize fusion activation. Here, we have designed and synthesized photoaffinity derivatives of the 4-acyl-1,6-dialkylpiperazin-2-one class of fusion inhibitors and demonstrate specific labeling of both the SSP and GP2 subunits in a native-like Lassa virus (LASV) GPC trimer expressed in insect cells. Photoaddition is competed by the parental inhibitor and other chemically distinct compounds active against LASV, but not those specific to New World arenaviruses. These studies provide direct physical evidence that these inhibitors bind at the SSP-GP2 interface. We also find that GPC containing the uncleaved GP1-GP2 precursor is not susceptible to photo-cross-linking, suggesting that proteolytic maturation is accompanied by conformational changes at this site. Detailed mapping of residues modified by the photoaffinity adducts may provide insight to guide the further development of these promising lead compounds as potential therapeutic agents to treat Lassa hemorrhagic fever. IMPORTANCE Hemorrhagic fever arenaviruses cause lethal infections in humans and, in the absence of licensed vaccines or specific antiviral therapies, are recognized to pose significant threats to public health and biodefense. Lead small-molecule inhibitors that target the arenavirus envelope glycoprotein (GPC) have recently been identified and shown to block GPC-mediated fusion of the viral and cellular endosomal membranes, thereby preventing virus entry into the host cell. Genetic studies suggest that these inhibitors act through a unique pH-sensing intersubunit interface in GPC, but atomic-level structural information is unavailable. In this report, we utilize novel photoreactive fusion inhibitors and photoaffinity labeling to obtain direct physical evidence for inhibitor binding at this critical interface in Lassa virus GPC. Future identification of modified residues at the inhibitor-binding site will help elucidate the molecular basis for fusion activation and its inhibition and guide the development of effective therapies to treat arenaviral hemorrhagic fevers.
Collapse
|
50
|
Pasquato A, Kunz S. Novel drug discovery approaches for treating arenavirus infections. Expert Opin Drug Discov 2016; 11:383-93. [PMID: 26882218 DOI: 10.1517/17460441.2016.1153626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Arenaviruses are enveloped negative stranded viruses endemic in Africa, Europe and the Americas. Several arenaviruses cause severe viral hemorrhagic fever with high mortality in humans and pose serious public health threats. So far, there are no FDA-approved vaccines and therapeutic options are restricted to the off-label use of ribavirin. The major human pathogenic arenaviruses are classified as Category A agents and require biosafety level (BSL)-4 containment. AREAS COVERED Herein, the authors cover the recent progress in the development of BSL2 surrogate systems that recapitulate the entire or specific steps of the arenavirus life cycle and are serving as powerful platforms for drug discovery. Furthermore, they highlight the identification of selected novel drugs that target individual steps of arenavirus multiplication describing their discovery, their targets, and mode of action. EXPERT OPINION The lack of effective drugs against arenaviruses is an unmatched challenge in current medical virology. Novel technologies have provided important insights into the basic biology of arenaviruses and the mechanisms underlying virus-host cell interaction. Significant progress of our understanding of how the virus invades the host cell paved the way to develop powerful novel screening platforms. Recent efforts have provided a range of promising drug candidates currently under evaluation for therapeutic intervention in vivo.
Collapse
Affiliation(s)
- Antonella Pasquato
- a Institute of Microbiology , University Hospital Center and University of Lausanne , Lausanne , Switzerland
| | - Stefan Kunz
- a Institute of Microbiology , University Hospital Center and University of Lausanne , Lausanne , Switzerland
| |
Collapse
|