1
|
Ma C, Yu L, Chen S, Wu X, Yang Y, Xie H, Chen X, Liang X, Peng Q, Huang B, Fan S, Chen H, Li G, He R. Investigating the self-healing potential of polycystic ovary syndrome in a mouse model: Implications for offspring health. Biochem Biophys Res Commun 2025; 747:151266. [PMID: 39787790 DOI: 10.1016/j.bbrc.2024.151266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/08/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025]
Abstract
Polycystic ovarian syndrome (PCOS) is a prevalent metabolic endocrine disorder in reproductive-aged women. This study aims to investigate the self-healing ability of PCOS and its potential impact on offspring. Methods: Female C57 BL/6J mice aged 4-5 weeks were administered letrozole (1 mg/kg/d) and a high-fat diet for 21 days to establish a PCOS model, and a control group was established. After modeling, the mice were divided into a PCOS model group and a self-healing group. After 14 days, the mice were mated, and the growth of their offspring was recorded. Subsequently, all mice were euthanized to collect serum, ovaries, and testes. The results showed that the self-healing group PCOS phenotype has shown improvement when compared to the model group. The findings from the offspring study indicate that all offspring in the model group died, while the self-healing group had offspring with a lower weight at 7 days and higher blood glucose levels. Additionally, the testicular morphology of male offspring in the self-healing group was poor. The conclusion drawn is that, after removing the pathogenic factors, the PCOS model group can self-heal. However, fertility remains impaired, which has an impact on their offspring.
Collapse
Affiliation(s)
- Cunling Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Leyi Yu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Shensi Chen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xin Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuanyuan Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Haibo Xie
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaojiang Chen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaoxia Liang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Qingjie Peng
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Bincheng Huang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shuzhe Fan
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Hua Chen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; General Hospital of Ningxia Medical University, Yinchuan, China
| | - Guangyong Li
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; General Hospital of Ningxia Medical University, Yinchuan, China
| | - Rui He
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
2
|
Chang YT, Chen MJ, Lin WS, Lin CH, Chang JC. Adverse Pregnancy Outcomes in Patients with Polycystic Ovary Syndrome with Pre-Conceptional Hyperandrogenism: A Multi-Institutional Registry-Based Retrospective Cohort Study. J Clin Med 2024; 14:123. [PMID: 39797204 PMCID: PMC11721164 DOI: 10.3390/jcm14010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Women with polycystic ovarian syndrome (PCOS) are at higher risk for pregnancy complications. The PCOS population is heterogeneous, with different phenotypes linked to varying risks of adverse outcomes. However, literature on pre-conceptional hyperandrogenism is limited and based on small sample sizes. Methods: This multi-institutional registry-based retrospective cohort study included pregnant patients diagnosed with PCOS with or without pre-conceptional hyperandrogenism. Utilizing the TriNetX platform, one-to-one propensity score matching was conducted to adjust for confounding factors. Exclusion criteria included multiple pregnancies and patients who received assisted reproductive technology, oral contraceptives, or spironolactone. 571 patients with PCOS and pre-conceptional hyperandrogenism and 13,465 patients with PCOS without hyperandrogenism were identified. Post-propensity matching, each cohort consisted of 564 patients. Results: Pregnant women diagnosed with PCOS and pre-conceptional hyperandrogenism showed a higher risk of large for gestational age (6.6% vs. 3.9%, OR = 1.73, 95% CI [1.007-2.972], p-value = 0.045) and preterm birth (10.3% vs. 5.9%, OR = 1.844, 95% CI [1.183-2.876], p-value = 0.006), but had no significant increase in the risk of gestational hypertension, preeclampsia/eclampsia, gestational diabetes, missed abortion, intrauterine growth restriction, placenta abruption, or cesarean section. Conclusions: Women with PCOS and pre-conceptional hyperandrogenism have an increased risk of pregnancy complications, especially large for gestational age and preterm birth. Further research is needed to clarify the underlying mechanisms, and whether treatment can improve outcomes.
Collapse
Affiliation(s)
- Yi-Ting Chang
- Department of Obstetrics and Gynecology and Women’s Health, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Ming-Jer Chen
- Department of Obstetrics and Gynecology and Women’s Health, Taichung Veterans General Hospital, Taichung 407219, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Wei-Szu Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407219, Taiwan
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung 40704, Taiwan
- Institute of Public Health and Community Medicine Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Jui-Chun Chang
- Department of Obstetrics and Gynecology and Women’s Health, Taichung Veterans General Hospital, Taichung 407219, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
3
|
Dangudubiyyam SV, Hofmann A, Yadav P, Kumar S. Per- and polyfluoroalkyl substances (PFAS) and hypertensive disorders of Pregnancy- integration of epidemiological and mechanistic evidence. Reprod Toxicol 2024; 130:108702. [PMID: 39222887 PMCID: PMC11625001 DOI: 10.1016/j.reprotox.2024.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Hypertensive disorders of pregnancy (HDP) remain a significant global health burden despite medical advancements. HDP prevalence appears to be rising, leading to increased maternal and fetal complications, mortality, and substantial healthcare costs. The etiology of HDP are complex and multifaceted, influenced by factors like nutrition, obesity, stress, metabolic disorders, and genetics. Emerging evidence suggests environmental pollutants, particularly Per- and polyfluoroalkyl substances (PFAS), may contribute to HDP development. OBJECTIVE This review integrates epidemiological and mechanistic data to explore the intricate relationship between PFAS exposure and HDP. EPIDEMIOLOGICAL EVIDENCE Studies show varying degrees of association between PFAS exposure and HDP, with some demonstrating positive correlations, particularly with preeclampsia. Meta-analyses suggest potential fetal sex-specific differences in these associations. MECHANISTIC INSIGHTS Mechanistically, PFAS exposure appears to disrupt vascular hemodynamics, placental development, and critical processes like angiogenesis and sex steroid regulation. Experimental studies reveal alterations in the renin-angiotensin system, trophoblast invasion, oxidative stress, inflammation, and hormonal dysregulation - all of which contribute to HDP pathogenesis. Elucidating these mechanisms is crucial for developing preventive strategies. THERAPEUTIC POTENTIAL Targeted interventions such as AT2R agonists, caspase inhibitors, and modulation of specific microRNAs show promise in mitigating adverse outcomes associated with PFAS exposure during pregnancy. KNOWLEDGE GAPS AND FUTURE DIRECTIONS Further research is needed to comprehensively understand the full spectrum of PFAS-induced placental alterations and their long-term implications for maternal and fetal health. This knowledge will be instrumental in developing effective preventive and therapeutic strategies for HDP in a changing environmental landscape.
Collapse
Affiliation(s)
- Sri Vidya Dangudubiyyam
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Alissa Hofmann
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Pankaj Yadav
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA; Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA.
| |
Collapse
|
4
|
Guo X, Yao Y, Wang T, Wu J, Jiang R. The impact of hyperandrogenemia on pregnancy complications and outcomes in patients with PCOS: a systematic review and meta-analysis. Hypertens Pregnancy 2024; 43:2379389. [PMID: 39004840 DOI: 10.1080/10641955.2024.2379389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/10/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a metabolic and reproductive disorder. Current research findings present conflicting views on the effects of different PCOS phenotypes on outcomes in pregnancy and for newborns. METHODS This research study followed the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA). A thorough search of literature was carried out using the Cochrane Menstrual Disorders and Subfertility Group trials register, Web of Science, and EMBASE databases from their start to December 2023. The search focused on studies examining the links between hyperandrogenic and non-hyperandrogenic PCOS phenotypes and risks in pregnancy and neonatology. Odds ratios (ORs) and 95% confidence intervals (CIs) were computed using either a fixed-effects or random-effects model. RESULTS Our analysis incorporated 10 research studies. Expectant mothers with a hyperandrogenic PCOS subtype had increased ORs for gestational diabetes mellitus (GDM) and preeclampsia (PE) compared to those with a non-hyperandrogenic PCOS subtype, with respective values of 2.14 (95% CI, 1.18-3.88, I2 = 0%) and 2.04 (95% CI, 1.02-4.08, I2 = 53%). Nevertheless, no notable differences were detected in ORs for outcomes like preterm birth, live birth, miscarriage, cesarean delivery, pregnancy-induced hypertension, small for gestational age babies, large for gestational age newborns, and neonatal intensive care unit admissions between pregnant women with hyperandrogenic PCOS phenotype and those without. CONCLUSIONS This meta-analysis highlights that the presence of hyperandrogenism heightens the risks of GDM and PE within the PCOS population. Healthcare providers ought to be aware of this connection for improved patient management.
Collapse
Affiliation(s)
- Xiaohan Guo
- Department of Obstetrics and Gynecology, Women's Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Yingsha Yao
- Department of Obstetrics and Gynecology, Women's Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Wang
- Department of Obstetrics and Gynecology, Women's Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Juanhong Wu
- Department of Obstetrics and Gynecology, Women's Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Ruoan Jiang
- Department of Obstetrics and Gynecology, Women's Hospital Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
- Traditional Chinese Medicine for Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Kumar S, Song R, Mishra JS. Elevated gestational testosterone impacts vascular and uteroplacental function. Placenta 2024; 157:14-20. [PMID: 37977936 PMCID: PMC11087376 DOI: 10.1016/j.placenta.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Maternal vascular adaptations to establish an adequate blood supply to the uterus and placenta are essential for optimal nutrient and oxygen delivery to the developing fetus in eutherian mammals, including humans. Numerous factors contribute to maintaining appropriate hemodynamics and placental vascular development throughout pregnancy. Failure to achieve or sustain these pregnancy-associated changes in women is strongly associated with an increased risk of antenatal complications, such as preeclampsia, a hypertensive disorder of pregnancy. The precise etiology of preeclampsia is unknown, but emerging evidence points to a potential role for androgens. The association between androgens and maternal cardiovascular and placental function merits particular attention due to the notable 2- to 3-fold elevated plasma testosterone (T) levels observed in preeclampsia. T levels in preeclamptic women positively correlate with vascular dysfunction, and preeclampsia is associated with increased androgen receptor (AR) levels in placental tissues. Moreover, animal studies replicating the pattern and magnitude of T increase observed in preeclamptic pregnancies have reproduced key features of preeclampsia, including gestational hypertension, endothelial dysfunction, heightened vasoconstriction to angiotensin II, impaired spiral artery remodeling, placental hypoxia, reduced nutrient transport, and fetal growth restriction. Collectively, these findings suggest that AR-mediated activity plays a significant role in the clinical presentation of preeclampsia. This review critically evaluates this hypothesis, considering both clinical and preclinical evidence.
Collapse
Affiliation(s)
- Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53706, USA; Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53792, USA.
| | - Ruolin Song
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53706, USA
| | - Jay S Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
6
|
Orosz M, Borics F, Rátonyi D, Vida B, Csehely S, Jakab A, Lukács L, Lampé R, Deli T. Pre-Conception Androgen Levels and Obstetric Outcomes in Polycystic Ovary Syndrome: A Single-Center Retrospective Study. Diagnostics (Basel) 2024; 14:2241. [PMID: 39410647 PMCID: PMC11476020 DOI: 10.3390/diagnostics14192241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Hyperandrogenism is a determining diagnostic factor for PCOS. If pregnancy is conceived, it is considered high-risk due to several potential complications, but the correlation between pre-pregnancy androgen levels and obstetric outcomes is poorly characterized. OBJECTIVE To determine if pre-pregnancy serum androgen concentrations and androgen indexes differed when certain obstetric and neonatal outcomes appeared in PCOS. METHODS A single-center, retrospective study was carried out. All patients were treated between 2012 and 2019. A total of 73 patients had all the endocrine and obstetric data available. Pre-pregnancy hormone levels (total testosterone-T, androstenedione-AD, DHEAS (dehydroepiandrosterone sulfate), SHBG (sex-hormone-binding globulin), and TSH (thyroid-stimulating hormone) were collected, and T/SHBG, AD/SHBG, DHEAS/SHBG, T/AD indexes were calculated and compared. RESULTS When miscarriage was present in the history, significantly elevated pre-pregnancy AD levels were observed. Higher pre-pregnancy AD level was noted in PCOS patients delivering female newborns as compared to males. Additionally, a higher T/AD ratio was associated with subsequent preterm delivery, but significance was lost after age adjustment. Maternal age at delivery had a significant negative correlation with pre-pregnancy DHEAS levels and DHEAS/SHBG ratio. Pre-pregnancy SHBG displayed a significant negative correlation, while pre-pregnancy androgen/SHBG ratios exhibited positive correlations with both birth weight and birth weight percentile. CONCLUSIONS Based on our data, AD and the T/AD ratio emerge as distinctive factors in certain outcomes, implying a potential specific role of altered 17-β-HSD (17β-hydroxysteroid dehydrogenase) enzyme activity, possibly influencing offspring outcomes. The pre-pregnancy T/SHBG ratio exhibits a potentially stronger correlation with fetal growth potential compared to SHBG alone. DHEAS and maternal age at delivery are strongly correlated in PCOS patients.
Collapse
Affiliation(s)
- Mónika Orosz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (M.O.); (S.C.)
| | - Fanni Borics
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary;
| | - Dávid Rátonyi
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (M.O.); (S.C.)
| | - Beáta Vida
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (M.O.); (S.C.)
| | - Szilvia Csehely
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (M.O.); (S.C.)
| | - Attila Jakab
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (M.O.); (S.C.)
| | - Luca Lukács
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (M.O.); (S.C.)
| | - Rudolf Lampé
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (M.O.); (S.C.)
| | - Tamás Deli
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (M.O.); (S.C.)
| |
Collapse
|
7
|
Hansel MC, Rosenberg AM, Kinkade CW, Capurro C, Rivera-Núñez Z, Barrett ES. Exposure to Synthetic Endocrine-Disrupting Chemicals in Relation to Maternal and Fetal Sex Steroid Hormones: A Scoping Review. Curr Environ Health Rep 2024; 11:356-379. [PMID: 39037689 PMCID: PMC11324767 DOI: 10.1007/s40572-024-00455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE OF REVIEW Many synthetic endocrine-disrupting chemicals (EDCs) are ubiquitous in the environment and highly detected among pregnant people. These chemicals may disrupt maternal and/or fetal sex steroid hormones, which are critical to pregnancy maintenance and fetal development. Here, we review the epidemiological literature examining prenatal exposure to common synthetic EDCs in relation to maternal and fetal sex steroid hormones. RECENT FINDINGS We performed a literature search using PubMed, SCOPUS, and Embase, ultimately identifying 29 articles for full review. Phenols, parabens, and persistent organic pollutants generally showed inverse associations with androgens, estrogens, and progesterone. Phthalates and per-and polyfluoroalkyl substances tended to be inversely associated with progesterone, while evidence regarding androgens and estrogens was mixed. Inconsistent, but noteworthy, differences by fetal sex and timing of exposure/outcome were observed. Overall, the literature suggests EDCs may disrupt maternal and fetal sex steroid activity, though findings are mixed. Given the pervasive, high-volume production of these synthetic chemicals and the critical functions sex steroid hormones play during gestation, additional research is warranted.
Collapse
Affiliation(s)
- Megan C Hansel
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Abigail M Rosenberg
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY, 14642, USA
| | - Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Camila Capurro
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY, 14642, USA.
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
8
|
Markantes GK, Panagodimou E, Koika V, Mamali I, Kaponis A, Adonakis G, Georgopoulos NA. Placental mRNA Expression of Neurokinin B Is Increased in PCOS Pregnancies with Female Offspring. Biomedicines 2024; 12:334. [PMID: 38397936 PMCID: PMC10886712 DOI: 10.3390/biomedicines12020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Current research suggests that polycystic ovary syndrome (PCOS) might originate in utero and implicates the placenta in its pathogenesis. Kisspeptin (KISS1) and neurokinin B (NKB) are produced by the placenta in high amounts, and they have been implicated in several pregnancy complications associated with placental dysfunction. However, their placental expression has not been studied in PCOS. We isolated mRNA after delivery from the placentae of 31 PCOS and 37 control women with term, uncomplicated, singleton pregnancies. The expression of KISS1, NKB, and neurokinin receptors 1, 2, and 3 was analyzed with real-time polymerase chain reaction, using β-actin as the reference gene. Maternal serum and umbilical cord levels of total testosterone, sex hormone-binding globulin (SHBG), free androgen index (FAI), androstenedione, dehydroepiandrosterone sulfate (DHEAS), Anti-Mullerian hormone (AMH), and estradiol were also assessed. NKB placental mRNA expression was higher in PCOS women versus controls in pregnancies with female offspring. NKB expression depended on fetal gender, being higher in pregnancies with male fetuses, regardless of PCOS. NKB was positively correlated with umbilical cord FAI and AMH, and KISS1 was positively correlated with cord testosterone and FAI; there was also a strong positive correlation between NKB and KISS1 expression. Women with PCOS had higher serum AMH and FAI and lower SHBG than controls. Our findings indicate that NKB might be involved in the PCOS-related placental dysfunction and warrant further investigation. Studies assessing the placental expression of NKB should take fetal gender into consideration.
Collapse
Affiliation(s)
- Georgios K Markantes
- Division of Endocrinology, Department of Internal Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Evangelia Panagodimou
- Department of Obstetrics and Gynecology, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Vasiliki Koika
- Division of Endocrinology, Department of Internal Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Irene Mamali
- Division of Endocrinology, Department of Internal Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Apostolos Kaponis
- Department of Obstetrics and Gynecology, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - George Adonakis
- Department of Obstetrics and Gynecology, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Neoklis A Georgopoulos
- Division of Endocrinology, Department of Internal Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece
| |
Collapse
|
9
|
Meakin AS, Smith M, Morrison JL, Roberts CT, Lappas M, Ellery SJ, Holland O, Perkins A, McCracken SA, Flenady V, Clifton VL. Placenta-Specific Transcripts Containing Androgen Response Elements Are Altered In Silico by Male Growth Outcomes. Int J Mol Sci 2024; 25:1688. [PMID: 38338965 PMCID: PMC10855055 DOI: 10.3390/ijms25031688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
A birthweight centile (BWC) below the 25th is associated with an elevated risk of adverse perinatal outcomes, particularly among males. This male vulnerability may stem from alterations in placenta-specific androgen signalling, a signalling axis that involves the androgen receptor (AR)-mediated regulation of target genes containing androgen response elements (AREs). In this study, we examined global and ARE-specific transcriptomic signatures in term male placentae (≥37 weeks of gestation) across BWC subcategories (<10th, 10th-30th, >30th) using RNA-seq and gene set enrichment analysis. ARE-containing transcripts in placentae with BWCs below the 10th percentile were upregulated compared to those in the 10th-30th and >30th percentiles, which coincided with the enrichment of gene sets related to hypoxia and the suppression of gene sets associated with mitochondrial function. In the absence of ARE-containing transcripts in silico, <10th and 10th-30th BWC subcategory placentae upregulated gene sets involved in vasculature development, immune function, and cell adhesion when compared to those in the >30th BWC subcategory. Collectively, our in silico findings suggest that changes in the expression of ARE-containing transcripts in male placentae may contribute to impaired placental vasculature and therefore result in reduced fetal growth outcomes.
Collapse
Affiliation(s)
- Ashley S. Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
- Mater Medical Research Institute, The University of Queensland, Brisbane, QLD 4101, Australia;
| | - Melanie Smith
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (M.S.); (C.T.R.)
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Claire T. Roberts
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (M.S.); (C.T.R.)
| | - Martha Lappas
- Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, The University of Melbourne, Heidelberg, VIC 3084, Australia;
| | - Stacey J. Ellery
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC 3168, Australia;
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
| | - Olivia Holland
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia; (O.H.); (A.P.)
| | - Anthony Perkins
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia; (O.H.); (A.P.)
- School of Health, University of the Sunshine Coast, Sunshine Coast, QLD 4556, Australia
| | - Sharon A. McCracken
- Women and Babies Research, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Vicki Flenady
- Mater Medical Research Institute, The University of Queensland, Brisbane, QLD 4101, Australia;
| | - Vicki L. Clifton
- Mater Medical Research Institute, The University of Queensland, Brisbane, QLD 4101, Australia;
| |
Collapse
|
10
|
Ruebel ML, Borengasser SJ, Zhong Y, Kang P, Faske J, Shankar K. Maternal Exercise Prior to and during Gestation Induces Sex-Specific Alterations in the Mouse Placenta. Int J Mol Sci 2023; 24:16441. [PMID: 38003633 PMCID: PMC10671464 DOI: 10.3390/ijms242216441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
While exercise (EX) during pregnancy is beneficial for both mother and child, little is known about the mechanisms by which maternal exercise mediates changes in utero. Six-week-old female C57BL/6 mice were divided into two groups: with (exercise, EX; N = 7) or without (sedentary, SED; N = 8) access to voluntary running wheels. EX was provided via 24 h access to wheels for 10 weeks prior to conception until late pregnancy (18.5 days post coitum). Sex-stratified placentas and fetal livers were collected. Microarray analysis of SED and EX placentas revealed that EX affected gene transcript expression of 283 and 661 transcripts in male and female placentas, respectively (±1.4-fold, p < 0.05). Gene Set Enrichment and Ingenuity Pathway Analyses of male placentas showed that EX led to inhibition of signaling pathways, biological functions, and down-regulation of transcripts related to lipid and steroid metabolism, while EX in female placentas led to activation of pathways, biological functions, and gene expression related to muscle growth, brain, vascular development, and growth factors. Overall, our results suggest that the effects of maternal EX on the placenta and presumably on the offspring are sexually dimorphic.
Collapse
Affiliation(s)
- Meghan L. Ruebel
- Microbiome and Metabolism Research Unit, USDA-ARS, Southeast Area, Little Rock, AR 72202, USA;
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (Y.Z.); (J.F.)
| | - Sarah J. Borengasser
- Tobacco Settlement Endowment Trust Health Promotion Research Center, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pediatrics—Endocrinology & Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ying Zhong
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (Y.Z.); (J.F.)
| | - Ping Kang
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (Y.Z.); (J.F.)
| | - Jennifer Faske
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (Y.Z.); (J.F.)
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Guo F, Mao S, Long Y, Zhou B, Gao L, Huang H. The Influences of Perinatal Androgenic Exposure on Cardiovascular and Metabolic Disease of Offspring of PCOS. Reprod Sci 2023; 30:3179-3189. [PMID: 37380913 DOI: 10.1007/s43032-023-01286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
Hyperandrogenism is an endocrine disorder affecting a large population of reproductive-aged women, thus proportionally high number of fetuses are subjected to prenatal androgenic exposure (PNA). The short-term stimulations at critical ontogenetic stages can wield lasting influences on the health. The most commonly diagnosed conditions in reproductive age women is polycystic ovary syndrome (PCOS). PNA may affect the growth and development of many systems in the whole body and disrupts the normal metabolic trajectory in the offspring of PCOS, contributing to the prevalence of cardiovascular and metabolic diseases (CVMD), including myocardial hypertrophy, hypertension, hyperinsulinemia, insulin resistance, hyperglycemia, obesity, and dyslipidemia, which are the leading causes of hospitalizations in young PCOS offspring. In this review, we focus on the effects of prenatal androgenic exposure on the cardiovascular and metabolic diseases in offspring, discuss the possible pathogenesis respectively, and summarize potential management strategies to improve metabolic health of PCOS offspring. It is expected that the incidence of CVMD and the medical burden will be reduced in the future.
Collapse
Affiliation(s)
- Fei Guo
- Department of Reproduction and Development, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Suqing Mao
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yuhang Long
- Department of Reproduction and Development, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Bokang Zhou
- Department of Reproduction and Development, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Ling Gao
- Department of Reproduction and Development, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hefeng Huang
- Department of Reproduction and Development, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
| |
Collapse
|
12
|
Abruzzese GA, Ferreira SR, Ferrer MJ, Silva AF, Motta AB. Prenatal Androgen Excess Induces Multigenerational Effects on Female and Male Descendants. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231196461. [PMID: 37705939 PMCID: PMC10496475 DOI: 10.1177/11795514231196461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/15/2023] [Indexed: 09/15/2023] Open
Abstract
Background It is still unelucidated how hormonal alterations affect developing organisms and their descendants. Particularly, the effects of androgen levels are of clinical relevance as they are usually high in women with Polycystic Ovary Syndrome (PCOS). Moreover, it is still unknown how androgens may affect males' health and their descendants. Objectives We aimed to evaluate the multigenerational effect of prenatal androgen excess until a second generation at early developmental stages considering both maternal and paternal effects. Design And Methods This is an animal model study. Female rats (F0) were exposed to androgens during pregnancy by injections of 1 mg of testosterone to obtain prenatally hyperandrogenized (PH) animals (F1), leading to a well-known animal model that resembles PCOS features. A control (C) group was obtained by vehicle injections. The PH-F1 animals were crossed with C males (m) or females (f) and C animals were also mated, thus obtaining 3 different mating groups: Cf × Cm, PHf × Cm, Cf × PHm and their offspring (F2). Results F1-PHf presented altered glucose metabolism and lipid profile compared to F1-C females. In addition, F1-PHf showed an increased time to mating with control males compared to the C group. At gestational day 14, we found alterations in glucose and total cholesterol serum levels and in the placental size of the pregnant F1-PHf and Cf mated to F1-PHm. The F2 offspring resulting from F1-PH mothers or fathers showed alterations in their growth, size, and glucose metabolism up to early post-natal development in a sex-dependent manner, being the females born to F1-PHf the most affected ones. Conclusion androgen exposure during intrauterine life leads to programing effects in females and males that affect offspring health in a sex-dependent manner, at least up-to a second generation. In addition, this study suggests paternally mediated effects on the F2 offspring development.
Collapse
Affiliation(s)
- Giselle Adriana Abruzzese
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvana Rocio Ferreira
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
- Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Maria José Ferrer
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Aimé Florencia Silva
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
13
|
Saouli A, Adjroud O, Ncir M, Bachir A, El Feki A. Attenuating effects of selenium and zinc against hexavalent chromium-induced oxidative stress, hormonal instability, and placenta damage in preimplanted rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60050-60079. [PMID: 37017835 DOI: 10.1007/s11356-023-26700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/24/2023] [Indexed: 05/10/2023]
Abstract
As a toxic metal, hexavalent chromium (CrVI) has effects on both the reproductive and endocrine systems. This study aimed to evaluate the protective effects of selenium (Se) and zinc (Zn) against the toxicity of chromium on the placenta in pregnant Wistar albino rats. Thirty pregnant Wistar rats were divided into control and four treated groups, receiving subcutaneously (s.c) on the 3rd day of pregnancy, K2Cr2O7 (10 mg/kg body weight (bw)) alone, or in association with Se (0.3 mg/kg bw), ZnCl2 (20 mg/kg bw), or both of them simultaneously. Plasma steroid hormones, placenta histoarchitecture, oxidative stress profile, and developmental parameters were investigated. These results showed that K2Cr2O7 exposure induced a significant increase in the levels of both plasma estradiol (E2) and placenta malondialdehyde (MDA), the number of fetal resorptions, and percent of post-implantation loss. On the other hand, K2Cr2O7 significantly reduced developmental parameters, maternal body and placenta weight, and plasma progesterone (P) and chorionic gonadotropin hormone (β HCG) levels. However, K2Cr2O7 significantly decreased the placenta activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), reduced glutathione (GSH), and nonprotein sulfhydryl (NPSH). These changes have been reinforced by histopathological evaluation of the placenta. Se and/or ZnCl2 supplementation provoked a significant improvement in most indices. These results suggest that the co-treatment with Se or ZnCl2 strongly opposes the placenta cytotoxicity induced by K2Cr2O7 through its antioxidant action.
Collapse
Affiliation(s)
- Asma Saouli
- Laboratory of Cellular and Molecular Physio-Toxicology-Pathology and Biomolecules, Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, 5000, Batna, Algeria.
| | - Ounassa Adjroud
- Laboratory of Cellular and Molecular Physio-Toxicology-Pathology and Biomolecules, Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, 5000, Batna, Algeria
| | - Marwa Ncir
- Animal Eco-Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Achouak Bachir
- Anatomy and Pathology Laboratory, EHS Salim Zemirli, 16200, El Harrach, Algeria
| | - Abdelfattah El Feki
- Animal Eco-Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| |
Collapse
|
14
|
Polycystic Ovary Syndrome: Challenges and Possible Solutions. J Clin Med 2023; 12:jcm12041500. [PMID: 36836035 PMCID: PMC9967025 DOI: 10.3390/jcm12041500] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women of reproductive age. This syndrome not only impairs female fertility but also increases the risk of obesity, diabetes, dyslipidemia, cardiovascular diseases, psychological diseases, and other health problems. Additionality, because of the high clinical heterogeneity, the current pathogenesis of PCOS is still unclear. There is still a large gap in precise diagnosis and individualized treatment. We summarize the present findings concerning the genetics, epigenetics, gut microbiota, corticolimbic brain responses, and metabolomics of the PCOS pathogenesis mechanism, highlight the remaining challenges in PCOS phenotyping and potential treatment approaches, and explain the vicious circle of intergenerational transmission of PCOS, which might provide more thoughts for better PCOS management in the future.
Collapse
|
15
|
de Oliveira FD, Santos PRDS, de Oliveira MF, de Assis AC. Galea spixii embryos have potential to produce steroid hormones. Anim Reprod 2023; 19:e20220091. [PMID: 36686856 PMCID: PMC9844670 DOI: 10.1590/1984-3143-ar2022-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/09/2022] [Indexed: 01/24/2023] Open
Abstract
Estrogens and progestogens are hormones produced by maternal organs and it is required for recognition and maintenance of pregnancy. In addition, the embryo may also be a source. For this, the aim was to identify steroidogenic expression on Galea spixii embryos early in the embryonic period. Embryos were collected on Days 10 and 15 of gestation; some were fixed in 4% paraformaldehyde for morphological and immunohistochemical analysis (P450arom), whereas others had RNA extracted to determine presence of CYP19a1 gene. In addition, for immunochemistry, maternal ovaries were collected as positive control tissues. Maternal tissues had positive staining for aromatase, whereas none of the embryos stained for P450 aromatase. Based on qPCR reactions, CYP19a1 gene were expressed in all embryos. Galea spixii embryos expressed steroidogenic genes during the post-implantation period, indicating they have the potential to produce steroid hormones.
Collapse
Affiliation(s)
- Franceliusa Delys de Oliveira
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Paulo Ramos da Silva Santos
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | - Antônio Chaves de Assis
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil,Corresponding author:
| |
Collapse
|
16
|
Gu F, Wu Y, Tan M, Hu R, Chen Y, Li X, Lin B, Duan Y, Zhou C, Li P, Ma W, Xu Y. Programmed frozen embryo transfer cycle increased risk of hypertensive disorders of pregnancy: a multicenter cohort study in ovulatory women. Am J Obstet Gynecol MFM 2023; 5:100752. [PMID: 36115572 DOI: 10.1016/j.ajogmf.2022.100752] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Although live birth rates were comparable between programmed and natural frozen-thawed embryo transfer cycles, recent data showed that pregnancies after programmed cycle were associated with an increased risk of adverse perinatal outcomes, such as hypertensive disorders of pregnancy. Such a difference might be attributed to selection bias because patients with ovulation disorders are more likely to receive programmed endometrial preparation protocol than natural cycle. OBJECTIVE This study aimed to analyze whether programmed endometrial preparation protocol is associated with an increased risk of adverse perinatal outcomes compared with natural cycle during frozen embryo transfer in ovulatory women. STUDY DESIGN This regional multicenter retrospective cohort study was conducted in 5 reproductive medical centers in Southeast China. Patients with regular cycles (21-35 days), who underwent either programmed or natural cycle blastocyst frozen embryo transfer and delivered singleton live birth babies after 28 weeks of gestation between 2016 and 2019 were analyzed. Each patient only contributed 1 cycle per cohort. The patients' frozen embryo transfer treatment cycles were linked to their obstetrical medication record, and a comprehensive medical record review was conducted to compare the maternal and neonatal outcomes between natural cycle and programmed cycle. Crude and adjusted odds ratios with 95% confidence intervals were calculated, and adjustment was made for relevant confounders. RESULTS Study samples included 499 natural cycle frozen embryo transfer cases and 900 programmed frozen embryo transfer cases. Pregnancies after programmed cycle were associated with increased odds of hypertensive disorders of pregnancy (adjusted odds ratio, 2.71; 95% confidence interval, 1.59-4.91) and preeclampsia (adjusted odds ratio, 2.71; 95% confidence interval, 1.17-6.23) compared with pregnancies after natural cycle. No significant difference was detected regarding other adverse perinatal outcomes between the 2 endometrial protocols. In subgroup analysis, both the subgroups of hormone replacement therapy and hormone replacement therapy with gonadotrophin-releasing hormone analogue pretreatment had increased odds of developing hypertensive disorders of pregnancy than the natural cycle group. The risk of developing preeclampsia was higher in the hormone replacement therapy with gonadotrophin-releasing hormone analogue pretreatment subgroup than in the other 2 groups (adjusted odds ratio, 4.99; 95% confidence interval, 1.94-12.82) (aOR, 2.47; 95% CI, 1.17-5.18). CONCLUSION Pregnancies after programmed frozen embryo transfer were associated with higher risks of hypertensive disorders of pregnancy in ovulatory women. The hormone replacement therapy with gonadotrophin-releasing hormone analogue pretreatment cycle led to the highest risk of preeclampsia among the 3 protocols.
Collapse
Affiliation(s)
- Fang Gu
- Reproductive Medical Center, First Affiliated Hospital, Sun Yat-sen University, Guangdong, China (Drs Gu, Duan, Zhou, and Xu); Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangdong, China (Drs Gu, Zhou, and Xu)
| | - Yaqin Wu
- Assisted Reproductive Technology Center, Foshan Women and Children's Hospital, Guangdong, China (Drs Wu and Ma)
| | - Meiling Tan
- Reproductive Medical Center, Jiangmen Central Hospital, Guangdong, China (Drs Tan and P Li)
| | - Rui Hu
- Department of Reproductive Medicine, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Guangdong, China (Drs Hu and X Li)
| | - Yao Chen
- Reproductive Medical Center, Shunde Women and Children's Hospital, Guangdong Medical University, Guangdong, China (Drs Chen and Lin)
| | - Xuemei Li
- Department of Reproductive Medicine, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Guangdong, China (Drs Hu and X Li)
| | - Bing Lin
- Reproductive Medical Center, Shunde Women and Children's Hospital, Guangdong Medical University, Guangdong, China (Drs Chen and Lin)
| | - Yuwei Duan
- Reproductive Medical Center, First Affiliated Hospital, Sun Yat-sen University, Guangdong, China (Drs Gu, Duan, Zhou, and Xu)
| | - Canquan Zhou
- Reproductive Medical Center, First Affiliated Hospital, Sun Yat-sen University, Guangdong, China (Drs Gu, Duan, Zhou, and Xu); Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangdong, China (Drs Gu, Zhou, and Xu)
| | - Ping Li
- Reproductive Medical Center, Jiangmen Central Hospital, Guangdong, China (Drs Tan and P Li).
| | - Wenmin Ma
- Assisted Reproductive Technology Center, Foshan Women and Children's Hospital, Guangdong, China (Drs Wu and Ma).
| | - Yanwen Xu
- Reproductive Medical Center, First Affiliated Hospital, Sun Yat-sen University, Guangdong, China (Drs Gu, Duan, Zhou, and Xu); Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangdong, China (Drs Gu, Zhou, and Xu).
| |
Collapse
|
17
|
Abruzzese GA, Arbocco FCV, Ferrer MJ, Silva AF, Motta AB. Role of Hormones During Gestation and Early Development: Pathways Involved in Developmental Programming. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:31-70. [PMID: 37466768 DOI: 10.1007/978-3-031-32554-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Accumulating evidence suggests that an altered maternal milieu and environmental insults during the intrauterine and perinatal periods of life affect the developing organism, leading to detrimental long-term outcomes and often to adult pathologies through programming effects. Hormones, together with growth factors, play critical roles in the regulation of maternal-fetal and maternal-neonate interfaces, and alterations in any of them may lead to programming effects on the developing organism. In this chapter, we will review the role of sex steroids, thyroid hormones, and insulin-like growth factors, as crucial factors involved in physiological processes during pregnancy and lactation, and their role in developmental programming effects during fetal and early neonatal life. Also, we will consider epidemiological evidence and data from animal models of altered maternal hormonal environments and focus on the role of different tissues in the establishment of maternal and fetus/infant interaction. Finally, we will identify unresolved questions and discuss potential future research directions.
Collapse
Affiliation(s)
- Giselle Adriana Abruzzese
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Fiorella Campo Verde Arbocco
- Laboratorio de Hormonas y Biología del Cáncer, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, Mendoza, Argentina
- Laboratorio de Reproducción y Lactancia, IMBECU, CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina
| | - María José Ferrer
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Aimé Florencia Silva
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
18
|
Expression of Key Steroidogenic Enzymes in Human Placenta and Associated Adverse Pregnancy Outcomes. MATERNAL-FETAL MEDICINE 2022. [DOI: 10.1097/fm9.0000000000000167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
19
|
Li S, Li J, Ai Q, Liu H. Development and validation of nomograms for predicting adverse neonatal outcomes in women with polycystic ovary syndrome: a retrospective study. J OBSTET GYNAECOL 2022; 42:1922-1930. [PMID: 35603687 DOI: 10.1080/01443615.2022.2054682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shanshan Li
- Department of Medical Ultrasound, The Central Hospital of Enshi Prefecture, En Shi, China
- Department of Obstetrics and Gynecology, People’s Hospital of Henan University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jinlan Li
- Department of Neurology, The Central Hospital of Enshi Prefecture, En Shi, China
| | - Qingxiu Ai
- Department of Medical Ultrasound, The Central Hospital of Enshi Prefecture, En Shi, China
| | - Huichun Liu
- Department of Neurology, The Central Hospital of Enshi Prefecture, En Shi, China
| |
Collapse
|
20
|
Androgens Upregulate Pathogen-Induced Placental Innate Immune Response. Int J Mol Sci 2022; 23:ijms23094978. [PMID: 35563368 PMCID: PMC9104209 DOI: 10.3390/ijms23094978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Group B Streptococcus (GBS) is a leading cause of placental infection, termed chorioamnionitis. Chorioamnionitis is associated with an increased risk of neurobehavioral impairments, such as autism spectrum disorders, which are more prominent in males than in female offspring. In a pre-clinical model of chorioamnionitis, a greater inflammatory response was observed in placenta associated with male rather than female fetuses, correlating with the severity of subsequent neurobehavioral impairments. The reason for this sex difference is not understood. Our hypothesis is that androgens upregulate the placental innate immune response in male fetuses. Lewis dams were injected daily from gestational day (G) 18 to 21 with corn oil (vehicle) or an androgen receptor antagonist (flutamide). On G 19, dams were injected with saline (control) or GBS. Maternal, fetal sera and placentas were collected for protein assays and in situ analyses. Our results showed that while flutamide alone had no effect, a decrease in placental concentration of pro-inflammatory cytokines and infiltration of polymorphonuclear cells was observed in flutamide/infected compared to vehicle/infected groups. These results show that androgens upregulate the placental innate immune response and thus may contribute to the skewed sex ratio towards males observed in several developmental impairments resulting from perinatal infection/inflammation.
Collapse
|
21
|
Abruzzese GA, Silva AF, Velazquez ME, Ferrer MJ, Motta AB. Hyperandrogenism and Polycystic ovary syndrome: Effects in pregnancy and offspring development. WIREs Mech Dis 2022; 14:e1558. [PMID: 35475329 DOI: 10.1002/wsbm.1558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/18/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the major endocrine disorders affecting women of reproductive age. Its etiology remains unclear. It is suggested that environmental factors, and particularly the intrauterine environment, play key roles in PCOS development. Besides the role of androgens in PCOS pathogenesis, exposure to endocrine disruptors, as is Bisphenol A, could also contribute to its development. Although PCOS is considered one of the leading causes of ovarian infertility, many PCOS patients can get pregnant. Some of them by natural conception and others by assisted reproductive technique treatments. As hyperandrogenism (one of PCOS main features) affects ovarian and uterine functions, PCOS women, despite reaching pregnancy, could present high-risk pregnancies, including implantation failure, an increased risk of gestational diabetes, preeclampsia, and preterm birth. Moreover, hyperandrogenism may also be maintained in these women during pregnancy. Therefore, as an altered uterine milieu, including hormonal imbalance, could affect the developing organisms, monitoring these patients throughout pregnancy and their offspring development is highly relevant. The present review focuses on the impact of androgenism and PCOS on fertility issues and pregnancy-related outcomes and offspring development. The evidence suggests that the increased risk of pregnancy complications and adverse offspring outcomes of PCOS women would be due to the factors involved in the syndrome pathogenesis and the related co-morbidities. A better understanding of the involved mechanisms is still needed and could contribute to a better management of these women and their offspring. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology Reproductive System Diseases > Environmental Factors.
Collapse
Affiliation(s)
- Giselle A Abruzzese
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Aimé F Silva
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela E Velazquez
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria-José Ferrer
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia B Motta
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
22
|
Gao Q, Ma C, Meng S, Wang G, Xing Q, Xu Y, He X, Wang T, Cao Y. Exploration of molecular features of PCOS with different androgen levels and immune-related prognostic biomarkers associated with implantation failure. Front Endocrinol (Lausanne) 2022; 13:946504. [PMID: 36060967 PMCID: PMC9439868 DOI: 10.3389/fendo.2022.946504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS), the most common heterogeneous reproductive disease afflicting women of childbearing age, has been recognized as a chronic inflammatory disease recently. Most PCOS patients have hyperandrogenism, indicating a poor prognosis and poor pregnancy outcomes. The molecular mechanism underlying PCOS development is still unknown. In the present study, we investigated the gene expression profiling characteristics of PCOS with hyperandrogenism (HA) or without hyperandrogenism (NHA) and identified immune-related factors that correlated with embryo implantation failure. METHODS PCOS and recurrent implantation failure (RIF) microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. ClueGO software was used to perform enrichment analysis of differentially expressed genes (DEGs) in PCOS with varying androgen levels. The Weighted Co-Expression Network Analysis (WGCNA) was used to identify co-expressed modules and shared gene signatures between HA PCOS and RIF. Moreover, the upregulated DEGs of HA PCOS and RIF were intersected with shared gene signatures screening by WGCNA to excavate further key prognostic biomarkers related to implantation failure of HA PCOS. The selected biomarker was verified by qRT-PCR. RESULTS A total of 271 DEGs were found in HA PCOS granulosa cell samples, and 720 DEGs were found in NHA PCOS. According to CuleGO enrichment analysis, DEGs in HA PCOS are enriched in immune activation and inflammatory response. In contrast, DEGs in NHA PCOS are enriched in mesenchymal cell development and extracellular space. Using WGCNA analysis, we discovered 26 shared gene signatures between HA PCOS and RIF, which were involved in corticosteroid metabolism, bone maturation and immune regulation. DAPK2 was furtherly screened out and verified to be closely related with the development of HA PCOS, acting as an independent predictor biomarker of the embryo implantation failure. DAPK2 expression was negatively correlated to the embryo implantation rate (r=-0.474, P=0.003). The immune infiltration results suggested that upregulated DAPK2 expression was closely related with NK cell infiltration and macrophage M2, playing an essential role in the pathogenesis of implantation failure in HA PCOS. CONCLUSION Our research revealed the expression profiling of PCOS with different androgen levels and identified DAPK2 as a critical prognostic biomarker for implantation failure in PCOS.
Collapse
Affiliation(s)
- Qinyu Gao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
| | - Cong Ma
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Shuyu Meng
- Molecular Pharmacology and Therapeutics, University of Minnesota, Twin Cities, MN, United States
| | - Guanxiong Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Qiong Xing
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Yuping Xu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Xiaojin He
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Tianjuan Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
- *Correspondence: Tianjuan Wang, ; Yunxia Cao,
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
- *Correspondence: Tianjuan Wang, ; Yunxia Cao,
| |
Collapse
|
23
|
Furukawa S, Tsuji N, Hayashi S, Kuroda Y, Kimura M, Hayakawa C, Takeuchi K, Sugiyama A. Effects of testosterone on rat placental development. J Toxicol Pathol 2022; 35:37-44. [PMID: 35221494 PMCID: PMC8828613 DOI: 10.1293/tox.2021-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
We investigated the morphological effects of testosterone on placental development in a
rat model of polycystic ovarian syndrome (PCOS). Testosterone propionate (TP), which was
subcutaneously administered to pregnant rats with 5 mg/animal from gestation day (GD) 14
to GD 18, induced a maternal weight reduction without mortality or clinical signs from GD
19 onwards. A decrease in fetal and placental weight, an increase in intrauterine growth
retardation (IUGR) rates, and histological changes in the placenta were observed on GD 21
but not on GD15 or 17. Histopathologically, on GD 21, the trophoblast septa thickened, and
the maternal sinusoids were narrowed in the labyrinth zone, resulting in a small placenta.
Additionally, the placental weight, thickness, and histological morphology in the
labyrinth zone on GD 21 in the TP-treated group were nearly identical to those on GD 17 in
the control and TP-treated groups. Therefore, it was assumed that the testosterone-induced
small placenta was induced in association with the developmental inhibition of the fetal
part of the placentas from GD 17 onwards.
Collapse
Affiliation(s)
- Satoshi Furukawa
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Naho Tsuji
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Seigo Hayashi
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Yusuke Kuroda
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Masayuki Kimura
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Chisato Hayakawa
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Kazuya Takeuchi
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Akihiko Sugiyama
- Veterinary Clinical Pathology, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari-shi, Ehime 794-8555, Japan
| |
Collapse
|
24
|
Aguilera N, Salas-Pérez F, Ortíz M, Álvarez D, Echiburú B, Maliqueo M. Rodent models in placental research. Implications for fetal origins of adult disease. Anim Reprod 2022; 19:e20210134. [PMID: 35493783 PMCID: PMC9037606 DOI: 10.1590/1984-3143-ar2021-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
|
25
|
Yu P, Chen Y, Ge C, Wang H. Sexual dimorphism in placental development and its contribution to health and diseases. Crit Rev Toxicol 2021; 51:555-570. [PMID: 34666604 DOI: 10.1080/10408444.2021.1977237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
According to the Developmental Origin of Health and Disease (DOHaD), intrauterine exposure to adverse environments can affect fetus and birth outcomes and lead to long-term disease susceptibility. Evidence has shown that neonatal outcomes and the timing and severity of adult diseases are sexually dimorphic. As the link between mother and fetus, the placenta is an essential regulator of fetal development programming. It is found that the physiological development trajectory of the placenta has sexual dimorphism. Furthermore, under pathological conditions, the placental function undergoes sex-specific adaptation to ensure fetal survival. Therefore, the placenta may be an important mediator of sexual dimorphism in neonatal outcomes and adult disease susceptibility. Few systematic reviews have been conducted on sexual dimorphism in placental development and its underlying mechanisms. In this review, sex chromosomes and sex hormones, as the main reasons for sexual differentiation of the placenta, will be discussed. Besides, in the etiology of fetal-originated adult diseases, overexposure to glucocorticoids is closely related to adverse neonatal outcomes and long-term disease susceptibility. Studies have found that prenatal glucocorticoid overexposure leads to sexually dimorphic expression of placental glucocorticoid receptor isoforms, resulting in different sensitivity of the placenta to glucocorticoids, and may further affect fetal development. The present review examines what is currently known about sex differences in placental development and the underlying regulatory mechanisms of this sex bias. This review highlights the importance of placental contributions to the origins of sexual dimorphism in health and diseases. It may help develop personalized diagnosis and treatment strategies for fetal development in pathological pregnancies.
Collapse
Affiliation(s)
- Pengxia Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Yawen Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China.,Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
26
|
Fetal programming by androgen excess impairs liver lipid content and PPARg expression in adult rats. J Dev Orig Health Dis 2021; 13:300-309. [PMID: 34275515 DOI: 10.1017/s2040174421000416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is known that prenatal hyperandrogenization induces alterations since early stages of life, contributing to the development of polycystic ovary syndrome affecting the reproductive axis and the metabolic status, thus promoting others associated disorders, such as dyslipidemia, insulin resistance, liver dysfunction, and even steatosis. In this study, we aimed to evaluate the effect of fetal programming by androgen excess on the hepatic lipid content and metabolic mediators at adult life. Pregnant rats were hyperandrogenized with daily subcutaneous injections of 1 mg of free testosterone from days 16 to 19 of pregnancy. The prenatally hyperandrogenized (PH) female offspring displayed two phenotypes: irregular ovulatory phenotype (PHiov) and anovulatory phenotype (PHanov), with different metabolic and endocrine features. We evaluated the liver lipid content and the main aspect of the balance between fatty acid (FA) synthesis and oxidation. We investigated the status of the peroxisomal proliferator-activated receptors (PPARs) alpha and gamma, which act as lipid mediators, and the adipokine chemerin, one marker of liver alterations. We found that prenatal hyperandrogenization altered the liver lipid profile with increased FAs levels in the PHanov phenotype and decreased cholesterol content in the PHiov phenotype. FA metabolism was also disturbed, including decreased mRNA and protein PPARgamma levels and impaired gene expression of the main enzymes involved in lipid metabolism. Moreover, we found low chemerin protein levels in both PH phenotypes. In conclusion, these data suggest that prenatal hyperandrogenization exerts a negative effect on the liver and alters lipid content and metabolic mediators' expression at adult age.
Collapse
|
27
|
Zhang FF, Zhang Q, Wang YL, Wang FF, Hardiman PJ, Qu F. Intergenerational Influences between Maternal Polycystic Ovary Syndrome and Offspring: An Updated Overview. J Pediatr 2021; 232:272-281. [PMID: 33482217 DOI: 10.1016/j.jpeds.2021.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Fang-Fang Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qing Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan-Lin Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang-Fang Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Paul J Hardiman
- Institute for Women's Health, University College London, London, United Kingdom
| | - Fan Qu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
28
|
Bruni V, Capozzi A, Lello S. The Role of Genetics, Epigenetics and Lifestyle in Polycystic Ovary Syndrome Development: the State of the Art. Reprod Sci 2021; 29:668-679. [DOI: 10.1007/s43032-021-00515-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/21/2021] [Indexed: 12/11/2022]
|
29
|
Sun M, Sun B, Qiao S, Feng X, Li Y, Zhang S, Lin Y, Hou L. Elevated maternal androgen is associated with dysfunctional placenta and lipid disorder in newborns of mothers with polycystic ovary syndrome. Fertil Steril 2021; 113:1275-1285.e2. [PMID: 32482257 DOI: 10.1016/j.fertnstert.2020.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/24/2020] [Accepted: 02/09/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate the placental morphology alterations and identify the clinical characteristics of women with polycystic ovary syndrome (PCOS) and their newborns. Pregnant women with PCOS (n = 12) and pregnant women without PCOS (n = 11) were recruited. Then, the placenta, maternal blood and cord blood were collected after delivery. DESIGN Clinical observational study. SETTING Not applicable. PATIENT(S) In the present study, pregnant women with PCOS and healthy pregnant women were recruited from the clinic of the Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, China, between February 2015 and October 2015. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) A proteomic analysis was performed on the placenta in women with PCOS and healthy women. RESULT(S) The maternal testosterone, androstenedione, dehydroepiandrosterone sulfate, free androgen index, cholesterol, apolipoprotein B, and apolipoprotein B/apolipoprotein A-I levels were significantly higher in the PCOS group than in the control group, and the offspring in the PCOS group had higher dehydroepiandrosterone sulfate, high-density lipoprotein, and cholesterol levels, when compared with the control group. The placenta in the PCOS group demonstrated infarction, calcification, and a greater intervillous space, when compared with the control group. A higher level of estrogen receptor-β protein was observed in the placenta of women with PCOS, when compared with women without PCOS. A total of 258 proteins in the placenta were identified to be significantly different, when the PCOS and control groups were compared, and fibronectin 1 exhibited the closest relationship with other differential proteins. CONCLUSION(S) The overexposure to hyperandrogenism and hyperlipidemia affects the functions of the placenta, which are associated with the development of metabolic disorders in newborns.
Collapse
Affiliation(s)
- Miao Sun
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Bo Sun
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland, New Zealand
| | - Shicong Qiao
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China; Department of Gynecology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China
| | - Xiaoling Feng
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Yan Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Shuwen Zhang
- Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Yuhan Lin
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lihui Hou
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China.
| |
Collapse
|
30
|
Hu S, Xu B, Long R, Jin L. The effect of polycystic ovary syndrome without hyperandrogenism on pregnancy-related outcomes: a retrospective cohort study. BJOG 2021; 128:1003-1010. [PMID: 33021046 DOI: 10.1111/1471-0528.16557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate the effect of polycystic ovary syndrome (PCOS) without hyperandrogenism on pregnancy-related outcomes. DESIGN A retrospective cohort study. SETTING Reproductive Medicine Centre of Tongji Hospital. POPULATION Women without hyperandrogenism undergoing their first single blastocyst transfers in frozen-thawed cycles were divided into a PCOS group and a non-PCOS group according to the Rotterdam criteria. METHODS The pregnancy-related outcomes of women with and without PCOS were compared. Propensity score matching and multiple logistic regression models were used to eliminate essential impacts on pregnancy-related outcomes. MAIN OUTCOME MEASURES Pregnancy-related outcomes included pregnancy loss and abnormal perinatal outcomes. RESULTS A total of 4083 women without hyperandrogenism met the study criteria, among whom 557 met the diagnostic criteria for PCOS. Women with PCOS had higher rates of clinical pregnancy (P = 0.035) and cumulative live births (P = 0.023). However, there were no significant differences in the rates of biochemical pregnancy, twins and pregnancy loss between the two groups. Among women with singleton pregnancies, the incidences of preterm birth, hypertensive disorders of pregnancy, gestational diabetes, placenta praevia, fetal malformation, macrosomia and low birthweight did not differ significantly between the two groups. The results remained unchanged even after adjustments were made for propensity score matching and multiple logistic regression analyses. CONCLUSION Women with PCOS without hyperandrogenism may achieve higher rates of clinical pregnancy and cumulative live birth than those without PCOS, without increases in their rates of biochemical pregnancy, pregnancy loss or other abnormal perinatal outcomes. TWEETABLE ABSTRACT PCOS without hyperandrogenism was not associated with abnormal pregnancy-related outcomes.
Collapse
Affiliation(s)
- Shiqiao Hu
- Reproductive Medicine Centre, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Bei Xu
- Reproductive Medicine Centre, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Rui Long
- Reproductive Medicine Centre, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jin
- Reproductive Medicine Centre, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Glintborg D, Jensen RC, Schmedes AV, Brandslund I, Kyhl HB, Jensen TK, Andersen MS. Anogenital distance in children born of mothers with polycystic ovary syndrome: the Odense Child Cohort. Hum Reprod 2020; 34:2061-2070. [PMID: 31560039 DOI: 10.1093/humrep/dez122] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/18/2019] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Are higher testosterone levels during pregnancy in women with polycystic ovary syndrome (PCOS) associated with longer offspring anogenital distance (AGD)? SUMMARY ANSWER AGD was similar in 3-month-old children born of mothers with PCOS compared to controls. WHAT IS KNOWN ALREADY AGD is considered a marker of prenatal androgenization. STUDY DESIGN, SIZE, DURATION Maternal testosterone levels were measured by mass spectrometry at Gestational Week 28 in 1127 women. Maternal diagnosis of PCOS before pregnancy was defined according to Rotterdam criteria. Offspring measures included AGD from anus to posterior fourchette (AGDaf) and clitoris (AGDac) in girls and to scrotum (AGDas) and penis (AGDap) and penile width in boys and body composition (weight and BMI SD scores) at age 3 months. PARTICIPANTS/MATERIALS, SETTING, METHODS The study was part of the prospective study, Odense Child Cohort (OCC), and included mothers with PCOS (n = 139) and controls (n = 1422). The control population included women with regular menstrual cycles (<35 days) before conception and no signs of androgen excess (hirsutism and/or acne). MAIN RESULTS AND THE ROLE OF CHANCE AGD measures were comparable in offspring of women with PCOS compared to controls (all P > 0.2) despite significantly higher maternal levels of total testosterone (mean: 2.4 versus 2.0 nmol/l) and free testosterone (mean: 0.005 versus 0.004 nmol/l) in women with PCOS versus controls (both P < 0.001). In women with PCOS, maternal testosterone was an independent positive predictor of offspring AGDas and AGDap in boys. Maternal testosterone levels did not predict AGD in girls born of mothers with PCOS or in boys or girls born of women in the control group. LIMITATIONS, REASONS FOR CAUTION The diagnosis of PCOS was based on retrospective information and questionnaires during pregnancy. Women participating in OCC were more ethnically homogenous, leaner, more educated and less likely to smoke compared to the background population. Our study findings, therefore, need to be reproduced in prospective study cohorts with PCOS, in more obese study populations and in women of other ethnicities. WIDER IMPLICATIONS OF THE FINDINGS Our finding of the same AGD in girls born of mothers with PCOS compared to controls expands previous results of studies reporting longer AGD in adult women with PCOS. Our results suggest that longer AGD in adult women with PCOS could be the result of increased testosterone levels in puberty, perhaps in combination with weight gain. STUDY FUNDING/COMPETING INTEREST(S) Financial grants for the study were provided by the Danish Foundation for Scientific Innovation and Technology (09-067180), Ronald McDonald Children Foundation, Odense University Hospital, the Region of Southern Denmark, the Municipality of Odense, the Mental Health Service of the Region of Southern Denmark, The Danish Council for Strategic Research, Program Commission on Health, Food and Welfare (2101-08-0058), Odense Patient data Explorative Network, Novo Nordisk Foundation (grant no. NNF15OC00017734), the Danish Council for Independent Research and the Foundation for research collaboration between Rigshospitalet and Odense University Hospital and the Health Foundation (Helsefonden). There is no conflict of interest of any author that could be perceived as prejudicing the impartiality of the research reported.
Collapse
Affiliation(s)
- Dorte Glintborg
- Department of Endocrinology and Metabolism, Odense University, Odense, Denmark
| | - Richard Christian Jensen
- Department of Endocrinology and Metabolism, Odense University, Odense, Denmark.,Department of Environmental Medicine, Odense University Hospital, Odense, Denmark
| | | | - Ivan Brandslund
- Department of Biochemistry and Immunology, Lillebaelt Hospital, Vejle, Denmark.,Institute of Regional Health Research, SDU, Odense, Denmark
| | - Henriette Boye Kyhl
- Odense Child Cohort, Hans Christian Andersen Hospital for Children and Adolescents, Odense University Hospital, Odense, Denmark.,Odense Patient data Explorative Network (OPEN), University of Southern Denmark, Odense, Denmark
| | - Tina Kold Jensen
- Department of Environmental Medicine, Odense University Hospital, Odense, Denmark.,Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
32
|
Wilson HA, Creighton C, Scharfman H, Choleris E, MacLusky NJ. Endocrine Insights into the Pathophysiology of Autism Spectrum Disorder. Neuroscientist 2020; 27:650-667. [PMID: 32912048 DOI: 10.1177/1073858420952046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders that affects males more frequently than females. Numerous genetic and environmental risk factors have been suggested to contribute to the development of ASD. However, no one factor can adequately explain either the frequency of the disorder or the male bias in its prevalence. Gonadal, thyroid, and glucocorticoid hormones all contribute to normal development of the brain, hence perturbations in either their patterns of secretion or their actions may constitute risk factors for ASD. Environmental factors may contribute to ASD etiology by influencing the development of neuroendocrine and neuroimmune systems during early life. Emerging evidence suggests that the placenta may be particularly important as a mediator of the actions of environmental and endocrine risk factors on the developing brain, with the male being particularly sensitive to these effects. Understanding how various risk factors integrate to influence neural development may facilitate a clearer understanding of the etiology of ASD.
Collapse
Affiliation(s)
- Hayley A Wilson
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada.,Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Carolyn Creighton
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Helen Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, New York University Langone Health, New York, NY, USA.,Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Elena Choleris
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| | - Neil J MacLusky
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
33
|
Mishra JS, Blesson CS, Kumar S. Testosterone Decreases Placental Mitochondrial Content and Cellular Bioenergetics. BIOLOGY 2020; 9:biology9070176. [PMID: 32698476 PMCID: PMC7407169 DOI: 10.3390/biology9070176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 01/13/2023]
Abstract
Placental mitochondrial dysfunction plays a central role in the pathogenesis of preeclampsia. Since preeclampsia is a hyperandrogenic state, we hypothesized that elevated maternal testosterone levels induce damage to placental mitochondria and decrease bioenergetic profiles. To test this hypothesis, pregnant Sprague–Dawley rats were injected with vehicle or testosterone propionate (0.5 mg/kg/day) from gestation day (GD) 15 to 19. On GD20, the placentas were isolated to assess mitochondrial structure, copy number, ATP/ADP ratio, and biogenesis (Pgc-1α and Nrf1). In addition, in vitro cultures of human trophoblasts (HTR-8/SVneo) were treated with dihydrotestosterone (0.3, 1.0, and 3.0 nM), and bioenergetic profiles using seahorse analyzer were assessed. Testosterone exposure in pregnant rats led to a 2-fold increase in plasma testosterone levels with an associated decrease in placental and fetal weights compared with controls. Elevated maternal testosterone levels induced structural damage to the placental mitochondria and decreased mitochondrial copy number. The ATP/ADP ratio was reduced with a parallel decrease in the mRNA and protein expression of Pgc-1α and Nrf1 in the placenta of testosterone-treated rats compared with controls. In cultured trophoblasts, dihydrotestosterone decreased the mitochondrial copy number and reduced PGC-1α, NRF1 mRNA, and protein levels without altering the expression of mitochondrial fission/fusion genes. Dihydrotestosterone exposure induced significant mitochondrial energy deficits with a dose-dependent decrease in basal respiration, ATP-linked respiration, maximal respiration, and spare respiratory capacity. In summary, our study suggests that the placental mitochondrial dysfunction induced by elevated maternal testosterone might be a potential mechanism linking preeclampsia to feto-placental growth restriction.
Collapse
Affiliation(s)
- Jay S. Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA;
| | - Chellakkan S. Blesson
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children’s Hospital, Houston, TX 77030, USA;
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA;
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
- Correspondence:
| |
Collapse
|
34
|
Stener-Victorin E, Padmanabhan V, Walters KA, Campbell RE, Benrick A, Giacobini P, Dumesic DA, Abbott DH. Animal Models to Understand the Etiology and Pathophysiology of Polycystic Ovary Syndrome. Endocr Rev 2020; 41:bnaa010. [PMID: 32310267 PMCID: PMC7279705 DOI: 10.1210/endrev/bnaa010] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
More than 1 out of 10 women worldwide are diagnosed with polycystic ovary syndrome (PCOS), the leading cause of female reproductive and metabolic dysfunction. Despite its high prevalence, PCOS and its accompanying morbidities are likely underdiagnosed, averaging > 2 years and 3 physicians before women are diagnosed. Although it has been intensively researched, the underlying cause(s) of PCOS have yet to be defined. In order to understand PCOS pathophysiology, its developmental origins, and how to predict and prevent PCOS onset, there is an urgent need for safe and effective markers and treatments. In this review, we detail which animal models are more suitable for contributing to our understanding of the etiology and pathophysiology of PCOS. We summarize and highlight advantages and limitations of hormonal or genetic manipulation of animal models, as well as of naturally occurring PCOS-like females.
Collapse
Affiliation(s)
| | - Vasantha Padmanabhan
- Departments of Pediatrics, Obstetrics and Gynecology, and Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Kirsty A Walters
- Fertility & Research Centre, School of Women’s and Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anna Benrick
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Health Sciences and Education, University of Skövde, Skövde, Sweden
| | - Paolo Giacobini
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, California
| | - David H Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
35
|
Puttabyatappa M, Sargis RM, Padmanabhan V. Developmental programming of insulin resistance: are androgens the culprits? J Endocrinol 2020; 245:R23-R48. [PMID: 32240982 PMCID: PMC7219571 DOI: 10.1530/joe-20-0044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Insulin resistance is a common feature of many metabolic disorders. The dramatic rise in the incidence of insulin resistance over the past decade has enhanced focus on its developmental origins. Since various developmental insults ranging from maternal disease, stress, over/undernutrition, and exposure to environmental chemicals can all program the development of insulin resistance, common mechanisms may be involved. This review discusses the possibility that increases in maternal androgens associated with these various insults are key mediators in programming insulin resistance. Additionally, the intermediaries through which androgens misprogram tissue insulin sensitivity, such as changes in inflammatory, oxidative, and lipotoxic states, epigenetic, gut microbiome and insulin, as well as data gaps to be filled are also discussed.
Collapse
Affiliation(s)
| | - Robert M. Sargis
- Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | | |
Collapse
|
36
|
Zong L, Liu P, Zhou L, Wei D, Ding L, Qin Y. Increased risk of maternal and neonatal complications in hormone replacement therapy cycles in frozen embryo transfer. Reprod Biol Endocrinol 2020; 18:36. [PMID: 32366332 PMCID: PMC7199365 DOI: 10.1186/s12958-020-00601-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/24/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The endometrial preparation during frozen embryo transfer (FET) can be performed by natural cycle (NC), hormone replacement therapy (HRT) cycle and cycle with ovulation induction (OI). Whether different FET preparation protocols can affect maternal and neonatal outcomes is still inconclusive. METHODS This was a retrospective cohort study that included 6886 women who delivered singleton live birth babies after 28 weeks of pregnancy underwent FET from January, 2015 to July, 2018. Women were divided into three groups according to the protocols used for endometrial preparation during FET: NC group (N = 4727), HRT group (N = 1642) and OI group (N = 517). RESULTS After adjusting for the effect of age, body mass index (BMI), irregular menstruation, antral follicle count (AFC), endometrial thickness, the levels of testosterone, anti-Müllerian hormone (AMH), preconceptional fasting glucose (PFG), systolic and diastolic pressure et al., the HRT group had higher risk of hypertensive disorders of pregnancy (HDP) compared with the NC group (adjusted odds ratio (aOR) 2.00, 95% confidence interval (CI) 1.54-2.60). Singletons born after HRT FET were at increased risk of low birth weight (LBW) compared to NC group (aOR 1.49, 95%CI 1.09-2.06). The risks of preterm birth (PTB) in the HRT and OI group were elevated compared with the NC group (aOR 1.78, 95%CI 1.39-2.28 and aOR 1.51, 95%CI 1.02-2.23, respectively). CONCLUSIONS The HRT protocol for endometrial preparation during frozen embryo transfer of blastocysts was associated with increased risk of maternal and neonatal complications, compared to the NC and OI protocol.
Collapse
Affiliation(s)
- Liping Zong
- Center for Reproductive Medicine, Shandong University, No.157 Jingliu Road, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University) Ministry of Education, Jinan, China
| | - Peihao Liu
- Center for Reproductive Medicine, Shandong University, No.157 Jingliu Road, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University) Ministry of Education, Jinan, China
| | - Liguang Zhou
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Daimin Wei
- Center for Reproductive Medicine, Shandong University, No.157 Jingliu Road, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University) Ministry of Education, Jinan, China
| | - Lingling Ding
- Center for Reproductive Medicine, Shandong University, No.157 Jingliu Road, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University) Ministry of Education, Jinan, China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, No.157 Jingliu Road, Jinan, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.
- The Key Laboratory of Reproductive Endocrinology (Shandong University) Ministry of Education, Jinan, China.
| |
Collapse
|
37
|
Zhou Y, Zhang A, Gong M, Lu Y, Zhao C, Shen X, Zhang X, Wang L, Chen J, Ju R. Maternal Testosterone Excess Contributes to Reproductive System Dysfunction of Female Offspring Mice. Endocrinology 2020; 161:5611346. [PMID: 31680156 DOI: 10.1210/endocr/bqz011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/03/2019] [Indexed: 12/31/2022]
Abstract
Hyperandrogenism is considered 1 of the most important characteristics of polycystic ovary syndrome, which affects more than 10% of females of reproductive age and is a common cause of infertility. In addition to the effects on patients themselves, maternal androgen excess has also been reported to impair the growth and development of offspring. In our current study, we found that maternal testosterone (T) treatment during different gestational stages increased the percentage of atretic follicle and decreased corpus luteum formation in female offspring. In addition, decreased serum estradiol and increased T levels were also observed in female offspring of T-treated mice during late gestational stage. Further studies revealed that Forkhead box protein L2 (FOXL2) and Cytochrome P450 family 19 subfamily a member 1 (CYP19A1) expression in granulosa cells of these female offspring mice were decreased. By using mouse primary granulosa cells and the KGN cell line, we demonstrated that decreasing FOXL2 and CYP19A1 levels in ovarian granulosa cells partially may contribute to disturbed sex hormone synthesis in female offspring of T-treated mice during the late gestational stage. Findings from our current study highlight a critical role of excess maternal T exposure, especially during the late gestational stage, which could further lead to aberrant ovary development and sex hormone synthesis in female offspring.
Collapse
Affiliation(s)
- Yu Zhou
- Central Laboratory, Translational Medicine Research Center, Nanjing, Jiangsu, China
- Department of Obstetrics and Gynecology, Nanjing, Jiangsu, China
| | - Anhong Zhang
- Department of Obstetrics and Gynecology, Nanjing, Jiangsu, China
| | - Min Gong
- Department of Obstetrics and Gynecology, Nanjing, Jiangsu, China
| | - Yingfei Lu
- Central Laboratory, Translational Medicine Research Center, Nanjing, Jiangsu, China
| | - Chengcheng Zhao
- Central Laboratory, Translational Medicine Research Center, Nanjing, Jiangsu, China
| | - Xia Shen
- Department of Obstetrics and Gynecology, Nanjing, Jiangsu, China
| | - Xiaomei Zhang
- Department of Pathology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Wang
- Department of Pathology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianquan Chen
- Central Laboratory, Translational Medicine Research Center, Nanjing, Jiangsu, China
- Department of Obstetrics and Gynecology, Nanjing, Jiangsu, China
| | - Rong Ju
- Department of Obstetrics and Gynecology, Nanjing, Jiangsu, China
| |
Collapse
|
38
|
Song W, Puttabyatappa M, Zeng L, Vazquez D, Pennathur S, Padmanabhan V. Developmental programming: Prenatal bisphenol A treatment disrupts mediators of placental function in sheep. CHEMOSPHERE 2020; 243:125301. [PMID: 31726260 PMCID: PMC7243413 DOI: 10.1016/j.chemosphere.2019.125301] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 05/09/2023]
Abstract
Gestational Bisphenol A (BPA) exposure is associated with low birth weight. We hypothesized that the low birth weight is the consequence of reduced placental efficiency and a function of BPA-induced inflammatory, oxidative, lipotoxic, angiogenic, steroidal and fibrotic changes involving epigenetic alterations. Placentomes were collected during early (day 65) and mid (day 90) gestation (term ∼147 days) from control and BPA (gestational day 30-90)-treated pregnant sheep. BPA treatment: reduced placental efficiency and fetal weight; increased interleukin 8, lipid peroxidation marker, antioxidants, aromatase, 17 alpha-hydroxylase, estrogen receptor 2, insulin like growth factor (IGF) 2 receptor and IGF binding proteins (IGFBP), and histone deacetylase 1 and 2; reduced tumor necrosis factor alpha and IGF1 receptor at early gestation (Day 65). Gestational BPA-induced mid-gestational changes include: reduced angiogenic factor hypoxia inducible factor 1 alpha; increased IL1beta, oxidative stress markers, triglyceride, 17alpha hydroxylase, IGFBP 1, DNA methyltransferase 3 A and histone deacetylase 1. These findings indicate that gestational BPA, either acting directly or by altering steroidal input, produces early/mid-gestational-specific epigenetic changes culminating in placental disruptions at several levels, in keeping with time-specific/time-lagged pregnancy-associated changes in placental efficiency and fetal weight. The reduced early-gestational placental efficiency may be a function of increased inflammation/oxidative stress and reduced IGF bioavailability with the mid-gestational restoration of placental efficiency likely driven by improved IGF bioavailability and the time-lagged response to antioxidant increase. This compensation, the result of time-lagged response to increases in negative mediators of placental function must have failed with pregnancy advancement to explain the low birthweight outcome.
Collapse
Affiliation(s)
- Wenhui Song
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050011, PR China; Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Lixia Zeng
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Delia Vazquez
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
39
|
Li Q, Li Y, Yin Q, Huang S, Wang K, Zhuo L, Li W, Chang B, Li J. Temporal regulation of prenatal embryonic development by paternal imprinted loci. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1-17. [PMID: 31564034 DOI: 10.1007/s11427-019-9817-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023]
Abstract
Paternal imprinted genes (H19 and Gtl2) are pivotal for prenatal embryonic development in mice. Nongrowing oocytes and sperm- or oocyte-originated haploid embryonic stem cells (haESCs) carrying both H19-DMR (differentially DNA-methylated region) and IG (intergenic)-DMR deletions that partially mimic paternal imprinting of H19-Igf2 and Dlk1-Dio3 can be employed as sperm replacement to efficiently support full-term embryonic development. However, how H19-DMR and IG-DMR act together to regulate embryonic development is still largely unknown. Here, using androgenetic haESC (AG-haESC)-mediated semi-cloned (SC) technology, we showed that paternal H19-DMR and IG-DMR are not essential for pre-implantation development of SC embryos generated through injection of AG-haESCs into oocytes. H19-DMR plays critical roles before 12.5 days of gestation while IG-DMR is essential for late-gestation of SC embryos. Interestingly, we found that combined deletions of H19 and H19-DMR can further improve the efficiency of normal development of SC embryos at mid-gestation compared to DKO SC embryos. Transcriptome and histology analyses revealed that H19 and H19-DMR combined deletions rescue the placental defects. Furthermore, we showed that H19, H19-DMR and IG-DMR deletions (TKO) give rise to better prenatal and postnatal embryonic development of SC embryos compared to DKO. Together, our results indicate the temporal regulation of paternal imprinted loci during embryonic development.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanyuan Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qi Yin
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuo Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Kai Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Liangchai Zhuo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Boran Chang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
40
|
Kelley AS, Smith YR, Padmanabhan V. A Narrative Review of Placental Contribution to Adverse Pregnancy Outcomes in Women With Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2019; 104:5299-5315. [PMID: 31393571 PMCID: PMC6767873 DOI: 10.1210/jc.2019-00383] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/01/2019] [Indexed: 12/29/2022]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is the most common endocrinopathy of reproductive-aged women. In pregnancy, women with PCOS experience increased risk of miscarriage, gestational diabetes, preeclampsia, and extremes of fetal birth weight, and their offspring are predisposed to reproductive and cardiometabolic dysfunction in adulthood. Pregnancy complications, adverse fetal outcomes, and developmental programming of long-term health risks are known to have placental origins. These findings highlight the plausibility of placental compromise in pregnancies of women with PCOS. EVIDENCE SYNTHESIS A comprehensive PubMed search was performed using terms "polycystic ovary syndrome," "placenta," "developmental programming," "hyperandrogenism," "androgen excess," "insulin resistance," "hyperinsulinemia," "pregnancy," and "pregnancy complications" in both human and animal experimental models. CONCLUSIONS There is limited human placental research specific to pregnancy of women with PCOS. Gestational androgen excess and insulin resistance are two clinical hallmarks of PCOS that may contribute to placental dysfunction and underlie the higher rates of maternal-fetal complications observed in pregnancies of women with PCOS. Additional research is needed to prevent adverse maternal and developmental outcomes in women with PCOS and their offspring.
Collapse
Affiliation(s)
- Angela S Kelley
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Yolanda R Smith
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Vasantha Padmanabhan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
- Correspondence and Reprint Requests: Vasantha Padmanabhan, PhD, Department of Pediatrics, University of Michigan, 7510 MSRB 1, 1500 West Medical Center Drive, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
41
|
Prenatal salivary sex hormone levels and birth-weight-for-gestational age. J Perinatol 2019; 39:941-948. [PMID: 31110244 PMCID: PMC6592744 DOI: 10.1038/s41372-019-0385-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/21/2019] [Accepted: 03/11/2019] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine whether prenatal sex hormones from maternal saliva are associated with birth-weight-for-gestational age. STUDY DESIGN We measured salivary progesterone, testosterone, estradiol, dehydroepiandrosterone (DHEA), and cortisone in 504 pregnant women in a Mexico City cohort. We performed linear and modified Poisson regression to examine associations of log-transformed hormones with birth-weight-for-gestational age z-scores and the risk of small-for-gestational age (SGA) and large-for-gestational age (LGA) adjusting for maternal age, sex, BMI, parity, smoking, education, and socioeconomic status. RESULTS In total, 15% of infants were SGA and 2% were LGA. Each interquartile range increment in testosterone/estradiol ratio was associated with a 0.12 decrement in birth-weight-for-gestational age z-score (95% CI: -0.27 to -0.02) and a 50% higher risk of SGA versus appropriate-for-gestational age (AGA) (95% CI: 1.13-1.99). CONCLUSION Higher salivary testosterone/estradiol ratios may affect fetal growth, and identifying the predictors of hormone levels may be important to optimizing fetal growth.
Collapse
|
42
|
Jazwiec PA, Sloboda DM. Nutritional adversity, sex and reproduction: 30 years of DOHaD and what have we learned? J Endocrinol 2019; 242:T51-T68. [PMID: 31013473 DOI: 10.1530/joe-19-0048] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022]
Abstract
It is well established that early life environmental signals, including nutrition, set the stage for long-term health and disease risk - effects that span multiple generations. This relationship begins early, in the periconceptional period and extends into embryonic, fetal and early infant phases of life. Now known as the Developmental Origins of Health and Disease (DOHaD), this concept describes the adaptations that a developing organism makes in response to early life cues, resulting in adjustments in homeostatic systems that may prove maladaptive in postnatal life, leading to an increased risk of chronic disease and/or the inheritance of risk factors across generations. Reproductive maturation and function is similarly influenced by early life events. This should not be surprising, since primordial germ cells are established early in life and thus vulnerable to early life adversity. A multitude of 'modifying' cues inducing developmental adaptations have been identified that result in changes in reproductive development and impairments in reproductive function. Many types of nutritional challenges including caloric restriction, macronutrient excess and micronutrient insufficiencies have been shown to induce early life adaptations that produce long-term reproductive dysfunction. Many pathways have been suggested to underpin these associations, including epigenetic reprogramming of germ cells. While the mechanisms still remain to be fully investigated, it is clear that a lifecourse approach to understanding lifetime reproductive function is necessary. Furthermore, investigations of the impacts of early life adversity must be extended to include the paternal environment, especially in epidemiological and clinical studies of offspring reproductive function.
Collapse
Affiliation(s)
- Patrycja A Jazwiec
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- The Farncombe Family Digestive Diseases Research Institute, McMaster University, Hamilton, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- The Farncombe Family Digestive Diseases Research Institute, McMaster University, Hamilton, Canada
- Department of Pediatrics and Obstetrics and Gynecology, McMaster University, Hamilton, Canada
| |
Collapse
|
43
|
Valdimarsdottir R, Valgeirsdottir H, Wikström AK, Kallak TK, Elenis E, Axelsson O, Ubhayasekhera K, Bergquist J, Piltonen TT, Pigny P, Giacobini P, Poromaa IS. Pregnancy and neonatal complications in women with polycystic ovary syndrome in relation to second-trimester anti-Müllerian hormone levels. Reprod Biomed Online 2019; 39:141-148. [DOI: 10.1016/j.rbmo.2019.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/26/2019] [Accepted: 02/08/2019] [Indexed: 12/16/2022]
|
44
|
Abruzzese GA, Heber MF, Ferrer MJ, Ferreira SR, Silva AF, Motta AB. Effects of in utero androgen excess and metformin treatment on hepatic functions. Mol Cell Endocrinol 2019; 491:110416. [PMID: 30880153 DOI: 10.1016/j.mce.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/27/2022]
Abstract
This study aimed to evaluate the role of prenatal hyperandrogenization in liver functions and the extent of metformin as treatment. Pregnant rats were hyperandrogenized with subcutaneous testosterone (1mg/rat) between 16 and 19 of pregnancy. Prenatally hyperandrogenized (PH) female offspring displayed, at the adult life, two phenotypes; a PH irregular ovulatory phenotype (PHiov) and a PH anovulatory (PHanov) phenotype. From day 70 to the moment of sacrifice (90 days of age), 50% of the animals of each group received a daily oral dose of 50 mg/kg of metformin. We found that both PH phenotypes displayed a hepatic disruptions of insulin and glucose pathway and that metformin treatment reversed some of these alterations in a specific-phenotype manner. Our findings show, for the first time, that androgen excess in utero promotes hepatic dysfunctions and that metformin treatment is able to specifically reverse those hepatic alterations and sheds light on the possible mechanisms of metformin action.
Collapse
Affiliation(s)
- Giselle Adriana Abruzzese
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Florencia Heber
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - María José Ferrer
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvana Rocío Ferreira
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - Aimé Florencia Silva
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
45
|
Prenatal Androgenization Induces Anxiety-Like Behavior in Female Rats, Associated with Reduction of Inhibitory Interneurons and Increased BDNF in Hippocampus and Cortex. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3426092. [PMID: 31281833 PMCID: PMC6590533 DOI: 10.1155/2019/3426092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022]
Abstract
Anxiety is one of the most frequent psychiatric disorders. Despite the fact that most studies describe an anxiolytic effect of testosterone, hyperandrogenemia in mothers is assumed to be related to an increased risk of mood disorders in their offspring. An increasing body of scientific evidence suggests that an altered expression of interneuronal markers of the hippocampus may be the cause of anxiety. The aim of this study was to examine the influence of maternal hyperandrogenemia on behavioral parameters of anxiety-like behavior, neuropeptide Y (NPY) and parvalbumin (PV) expression in the hippocampus, and the level of the brain-derived neurotrophic factor (BDNF) in the hippocampus and cerebral cortex. Pregnant female Wistar albino rats were treated with testosterone undecanoate on the 20th day of gestation. Anxiety-like behavior in adult female offspring was evaluated by the elevated plus maze test and the open field. The number of PV and NPY immunoreactive cells in the hippocampus was determined immunohistochemically. The level of BDNF expression in the hippocampus and cerebral cortex was analyzed with the Western blot test. Prenatal hyperandrogenization increased anxiety-like behavior in female offspring and decreased expression of NPY+ and PV+ in the CA1 region of the hippocampus as compared to the control group. BDNF expression in the hippocampus and cerebral cortex of prenatally androgenized female offspring was significantly increased in comparison with the controls. Prenatal hyperandrogenization may be the cause of anxiety-like behavior in female offspring. Decrease in NPY and PV expression in the hippocampus may explain the possible mechanism of hyperandrogenization induced anxiety.
Collapse
|
46
|
Vanky E, Engen Hanem LG, Abbott DH. Children born to women with polycystic ovary syndrome-short- and long-term impacts on health and development. Fertil Steril 2019; 111:1065-1075. [PMID: 31056313 DOI: 10.1016/j.fertnstert.2019.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022]
Abstract
Maternal PCOS status may negatively influence offspring infant and childhood growth, cardiometabolic health, reproductive health, and neurodevelopment. Current findings across studies are divergent, often because of small numbers of subjects, as well as heterogeneous selection criteria, ethnicities, and definitions of control groups. Coexisting maternal obesity, pregnancy complications, and comorbidity make it difficult to identify the contribution of maternal PCOS. Large, prospective, international, multiethnic studies with standardized investigation protocols and questionnaires on PCOS offspring health and development are needed.
Collapse
Affiliation(s)
- Eszter Vanky
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Gynecology and Obstetrics, St. Olav's Hospital, Trondheim, Norway.
| | - Liv Guro Engen Hanem
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - David H Abbott
- Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
47
|
Fetal programming by androgen excess in rats affects ovarian fuel sensors and steroidogenesis. J Dev Orig Health Dis 2019; 10:645-658. [PMID: 31122307 DOI: 10.1017/s2040174419000126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fetal programming by androgen excess is hypothesized as one of the main factors contributing to the development of polycystic ovary syndrome (PCOS). PCOS is more than a reproductive disorder, as women with PCOS also show metabolic and other endocrine alterations. Since both ovarian and reproductive functions depend on energy balance, the alterations in metabolism may be related to reproductive alterations. The present study aimed to evaluate the effect of androgen excess during prenatal life on ovarian fuel sensors and its consequences on steroidogenesis. To this end, pregnant rats were hyperandrogenized with testosterone and the following parameters were evaluated in their female offspring: follicular development, PPARG levels, adipokines (including leptin, adiponectin, and chemerin as ovarian fuel sensors), serum gonadotropins (LH and FSH), the mRNA of their ovarian receptors, and the expression of steroidogenic mediators. At 60 days of age, the prenatally hyperandrogenized (PH) female offspring displayed both an irregular ovulatory phenotype and an anovulatory phenotype with altered follicular development and the presence of cysts. Both PH groups showed altered levels of both proteins and mRNA of PPARG and a different expression pattern of the adipokines studied. Although serum gonadotropins were not impaired, there were alterations in the mRNA levels of their ovarian receptors. The steroidogenic mediators Star, Cyp11a1, Cyp17a1, and Cyp19a1 were altered differently in each of the PH groups. We concluded that androgen excess during prenatal life leads to developmental programming effects that affect ovarian fuel sensors and steroidogenesis in a phenotype-specific way.
Collapse
|
48
|
Christ JP, Gunning MN, Meun C, Eijkemans MJC, van Rijn BB, Bonsel GJ, Laven JSE, Fauser BCJM. Pre-Conception Characteristics Predict Obstetrical and Neonatal Outcomes in Women With Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2019; 104:809-818. [PMID: 30590587 DOI: 10.1210/jc.2018-01787] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/19/2018] [Indexed: 11/19/2022]
Abstract
CONTEXT Women with polycystic ovary syndrome (PCOS) are at increased risk for obstetric and perinatal complications. At present, it is unknown how characteristics of PCOS relate to the likelihood of these complications. OBJECTIVE To evaluate which preconception features are associated with obstetric and perinatal disease among infertile women with PCOS. DESIGN Data from two prospective cohort studies completed from January 2004 until January 2014 were linked to Dutch Perinatal national registry outcomes. SETTING Two Dutch university medical centers. PARTICIPANTS 2768 women diagnosed with PCOS were included. Participants underwent an extensive standardized preconception screening. Exclusion criteria included: age <18 years or >45 years, language barrier, or failure to meet PCOS criteria. INTERVENTIONS None. MAIN OUTCOME MEASURES Outcome measures were obtained from the Dutch Perinatal national registry and included: preeclampsia, preterm delivery, small for gestational age (SGA), low Apgar score, and any adverse outcome. RESULTS 1715 (62% of participants) women with PCOS were identified as undergoing a pregnancy with live birth after screening. In fully adjusted models, prepregnancy free androgen index was associated with subsequent preeclampsia [OR (95% CI), 1.1 (1.0 to 1.1)]. Fasting glucose [1.4 (1.2 to 1.7)] and testosterone [1.5 (1.2 to 1.7)] predicted preterm delivery. Fasting insulin [1.003 (1.001 to 1.005)], and testosterone [1.2 (1.1 to 1.4)] predicted any adverse outcome. SGA was only predicted by features nonspecific to PCOS. CONCLUSIONS Primary disease characteristics of PCOS, chiefly hyperandrogenism and impaired glucose tolerance, predict suboptimal obstetric and neonatal outcomes. Increased surveillance during pregnancy should focus on women with PCOS and these features to help mitigate disease risk.
Collapse
Affiliation(s)
- Jacob P Christ
- Department of Reproductive Medicine & Gynecology, University Medical Center Utrecht, Utrecht, Netherlands
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio
| | - Marlise N Gunning
- Department of Reproductive Medicine & Gynecology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Cindy Meun
- Division of Reproductive Medicine, Department of Obstetrics and Gynaecology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Marinus J C Eijkemans
- Department of Reproductive Medicine & Gynecology, University Medical Center Utrecht, Utrecht, Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bas B van Rijn
- Department of Obstetrics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Gouke J Bonsel
- Department of Obstetrics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joop S E Laven
- Division of Reproductive Medicine, Department of Obstetrics and Gynaecology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Bart C J M Fauser
- Department of Reproductive Medicine & Gynecology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
49
|
Fornes R, Manti M, Qi X, Vorontsov E, Sihlbom C, Nyström J, Jerlhag E, Maliqueo M, Hirschberg AL, Carlström M, Benrick A, Stener-Victorin E. Mice exposed to maternal androgen excess and diet-induced obesity have altered phosphorylation of catechol-O-methyltransferase in the placenta and fetal liver. Int J Obes (Lond) 2019; 43:2176-2188. [PMID: 30670847 DOI: 10.1038/s41366-018-0314-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/19/2018] [Accepted: 12/19/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND/OBJECTIVES Maternal obesity together with androgen excess in mice negatively affects placental function and maternal and fetal liver function as demonstrated by increased triglyceride content with dysfunctional expression of enzymes and transcription factors involved in de novo lipogenesis and fat storage. To identify changes in molecular pathways that might promote diseases in adulthood, we performed a global proteomic analysis using a liquid-chromatography/mass-spectrometry system to investigate total and phosphorylated proteins in the placenta and fetal liver in a mouse model that combines maternal obesity with maternal androgen excess. METHODS After ten weeks on a control diet (CD) or high fat/high sugar-diet, dams were mated with males fed the CD. Between gestational day (GD) 16.5 and GD 18.5, mice were injected with vehicle or dihydrotestosterone (DHT) and sacrificed at GD 18.5 prior to dissection of the placentas and fetal livers. Four pools of female placentas and fetal livers were subjected to a global proteomic analysis. Total and phosphorylated proteins were filtered by ANOVA q < 0.05, and this was followed by two-way ANOVA to determine the effect of maternal obesity and/or androgen exposure. RESULTS In placenta, phosphorylated ATP-citrate synthase was decreased due to maternal obesity, and phosphorylated catechol-O-methyltransferase (COMT) was differentially expressed due to the interaction between maternal diet and DHT exposure. In fetal liver, five total proteins and 48 proteins phosphorylated in one or more sites, were differentially expressed due to maternal obesity or androgen excess. In fetal liver, phosphorylated COMT expression was higher in fetus exposed to maternal obesity. CONCLUSION These results suggest a common regulatory mechanism of catecholamine metabolism in the placenta and the fetal liver as demonstrated by higher phosphorylated COMT expression in the placenta and fetal liver from animals exposed to diet-induced maternal obesity and lower expression of phosphorylated COMT in animals exposed to maternal androgen excess.
Collapse
Affiliation(s)
- Romina Fornes
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Maria Manti
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Xiaojuan Qi
- Department of Physiology, Qiqihar Medical University, Qiqihar, China
| | - Egor Vorontsov
- Proteomics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Nyström
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Manuel Maliqueo
- Endocrinology and Metabolism, Faculty of Medicine, West division, University of Chile, Santiago, Chile
| | | | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Anna Benrick
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,School of Health and Education, University of Skövde, Skövde, Sweden
| | | |
Collapse
|
50
|
Prenatal exposure to testosterone induces cardiac hypertrophy in adult female rats through enhanced Pkcδ expression in cardiac myocytes. J Mol Cell Cardiol 2019; 128:1-10. [PMID: 30641088 DOI: 10.1016/j.yjmcc.2019.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 10/28/2018] [Accepted: 01/10/2019] [Indexed: 11/23/2022]
Abstract
High circulating androgen in women with polycystic ovary syndrome (PCOS) may increase the risk of cardiovascular disease in offspring. The aim of the present study is to investigate whether maternal androgen excess in the rat PCOS model would lead to cardiac hypertrophy in offspring. Maternal testosterone propionate (maternal-TP)-treated adult female offspring displayed cardiac hypertrophy associated with local high cardiac dihydrotestosterone (DHT). The molecular markers of cardiac hypertrophy along with androgen receptor (AR) and PKCδ, were increased in the Maternal-TP group. Treatment of primary neonatal rat ventricular cardiomyocytes (NRCMs) and H9c2 cells with DHT significantly increased cell size and upregulated PKCδ expression, which could be attenuated by AR antagonist. Treatment with phorbol 12-myristate 13-acetate (PMA), a PKC activator, significantly increased cell size and upregulated myh7 level. Rottlerin, that may inhibit PKCδ, significantly reduced the hypertrophic effect of DHT and PMA on NRCMs and H9c2 cells. Chromatin immunoprecipitation revealed that AR could bind to Pkcδ promoter. Our results indicate that prenatal exposure to testosterone may induce cardiac hypertrophy in adult female rats through enhanced Pkcδ expression in cardiac myocytes.
Collapse
|