1
|
Lin HY, Lu JH, Lin RJ, Chueh KS, Juan TJ, Mao JW, Lee YC, Chuang SM, Shen MC, Sun TW, Juan YS. Effects of Nitric Oxide on Bladder Detrusor Overactivity through the NRF2 and HIF-1α Pathways: A Rat Model Induced by Metabolic Syndrome and Ovarian Hormone Deficiency. Int J Mol Sci 2024; 25:11103. [PMID: 39456884 PMCID: PMC11507610 DOI: 10.3390/ijms252011103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic syndrome (MetS) includes cardiovascular risk factors like obesity, dyslipidemia, hypertension, and glucose intolerance, which increase the risk of overactive bladder (OAB), characterized by urgency, frequency, urge incontinence, and nocturia. Both MetS and ovarian hormone deficiency (OHD) are linked to bladder overactivity. Nitric oxide (NO) is known to reduce inflammation and promote healing but its effect on bladder overactivity in MetS and OHD is unclear. This study aimed to investigate NO's impact on detrusor muscle hyperactivity in rats with MetS and OHD. Female Sprague-Dawley rats were divided into seven groups based on diet and treatments involving L-arginine (NO precursor) and L-NAME (NOS inhibitor). After 12 months on a high-fat, high-sugar diet with or without OVX, a cystometrogram and tracing analysis of voiding behavior were used to identify the symptoms of detrusor hyperactivity. The MetS with or without OHD group had a worse bladder contractile response while L-arginine ameliorated bladder contractile function. In summary, MetS with or without OHD decreased NO production, reduced angiogenesis, and enhanced oxidative stress to cause bladder overactivity, mediated through the NF-kB signaling pathway, whereas L-arginine ameliorated the symptoms of detrusor overactivity and lessened oxidative damage via the NRF2/HIF-1α signaling pathway in MetS with or without OHD-induced OAB.
Collapse
Affiliation(s)
- Hung-Yu Lin
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 84001, Taiwan;
- Division of Urology, Department of Surgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824005, Taiwan
- Division of Urology, Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Jian-He Lu
- Center for Agricultural, Forestry, Fishery, Livestock and Aquaculture Carbon Emission Inventory and Emerging Compounds, General Research Service Center, National Pingtung University of Science and Technology, Pingtung County 912301, Taiwan;
| | - Rong-Jyh Lin
- Department of Parasitology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Kuang-Shun Chueh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80661, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (J.-W.M.); (S.-M.C.); (M.-C.S.); (T.-W.S.)
| | - Tai-Jui Juan
- Kaohsiung Armed Forces General Hospital, Kaohsiung 802301, Taiwan
- Department of Thoracic Surgery Division, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Jing-Wen Mao
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (J.-W.M.); (S.-M.C.); (M.-C.S.); (T.-W.S.)
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Shu-Mien Chuang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (J.-W.M.); (S.-M.C.); (M.-C.S.); (T.-W.S.)
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Mei-Chen Shen
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (J.-W.M.); (S.-M.C.); (M.-C.S.); (T.-W.S.)
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Ting-Wei Sun
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (J.-W.M.); (S.-M.C.); (M.-C.S.); (T.-W.S.)
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Yung-Shun Juan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (J.-W.M.); (S.-M.C.); (M.-C.S.); (T.-W.S.)
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
2
|
Thompson JA, Kashon ML, McKinney W, Fedan JS. High-fat Western diet alters crystalline silica-induced airway epithelium ion transport but not airway smooth muscle reactivity. BMC Res Notes 2024; 17:13. [PMID: 38172968 PMCID: PMC10765734 DOI: 10.1186/s13104-023-06672-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVES Silicosis is an irreversible occupational lung disease resulting from crystalline silica inhalation. Previously, we discovered that Western diet (HFWD)-consumption increases susceptibility to silica-induced pulmonary inflammation and fibrosis. This study investigated the potential of HFWD to alter silica-induced effects on airway epithelial ion transport and smooth muscle reactivity. METHODS Six-week-old male F344 rats were fed a HFWD or standard rat chow (STD) and exposed to silica (Min-U-Sil 5®, 15 mg/m3, 6 h/day, 5 days/week, for 39 d) or filtered air. Experimental endpoints were measured at 0, 4, and 8 weeks post-exposure. Transepithelial potential difference (Vt), short-circuit current (ISC) and transepithelial resistance (Rt) were measured in tracheal segments and ion transport inhibitors [amiloride, Na+ channel blocker; NPPB; Cl- channel blocker; ouabain, Na+, K+-pump blocker] identified changes in ion transport pathways. Changes in airway smooth muscle reactivity to methacholine (MCh) were investigated in the isolated perfused trachea preparation. RESULTS Silica reduced basal ISC at 4 weeks and HFWD reduced the ISC response to amiloride at 0 week compared to air control. HFWD + silica exposure induced changes in ion transport 0 and 4 weeks after treatment compared to silica or HFWD treatments alone. No effects on airway smooth muscle reactivity to MCh were observed.
Collapse
Affiliation(s)
- Janet A Thompson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV, 26508, USA.
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Jeffrey S Fedan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| |
Collapse
|
3
|
Preuss HG, Kaats GR, Mrvichin N, Bagchi D, Aruoma OI, Preuss JM. Probing the Relationship Between Declining Renal Glomerular Filtration Over the Life Span and General Biological Aging: Does the Former Provide Means to Estimate the Latter? JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:3-14. [PMID: 34651567 DOI: 10.1080/07315724.2021.1977734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
While a consistent, gradual decline in the renal glomerular filtration rate (GFR) is a characteristic occurrence over the human life span, the exact pathophysiology behind this event remains unresolved. Evidence to date suggests that the endogenous glucose-insulin system could be involved at some level. Diabetic-induced nephropathy, one of the most prevalent chronic renal diseases, is closely linked to a severe form of insulin resistance (IR). Nevertheless, it is less certain that the ubiquitous milder forms of IR in nondiabetics ascribed customarily to routine, poor choices in diet and exercise management can over time diminish GFR and adversely influence other renal functions to any perceptible extent. Baseline data for cross-sectional analyses were obtained from a cohort of healthy, nondiabetic volunteers (fasting blood glucose [FBG] ≤ 125 mg/dL) involved in prior clinical studies. Slope-based rather than threshold analyses were mainly employed. These measurements were applied for the most part to correlate age, FBG levels used as an estimate of IR activity, and systolic blood pressure (SBP) to a variety of metabolic parameters during aging with a primary focus on GFR. Considering cause and effect, FBG and SBP correlate positively with the diminishing GFR over a major part of the life span. The decline in GFR begins somewhere around the mid-20s and coincides with key temporal increases in FBG and SBP levels. A close time-based setting suggests that IR plays a prominent role in the declining GFR that occurs over the life span. This is perhaps due in part through deleterious effects of rising levels of insulin, glucose, and SBP individually or combined that are also popular proposed causative factors for human aging in general. On the philosophical side, the latter fact suggests that the declining GFR might provide a practical way to estimate the rate of overall human biological aging.
Collapse
Affiliation(s)
- Harry G Preuss
- Department of Biochemistry, Georgetown University Medical Center, Washington, DC, USA
| | | | - Nate Mrvichin
- Integrative Health Technologies, San Antonio, Texas, USA
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | - Okezie I Aruoma
- Department of Chemistry and Biochemistry, California State University, Los Angeles, California, USA
| | - Jeffrey M Preuss
- Emergency Department, Veterans Administration Medical Center, Salem, Virginia, USA
| |
Collapse
|
4
|
Liver-Derived Exosomes Induce Inflammation and Lipogenesis in Mice Fed High-Energy Diets. Nutrients 2022; 14:nu14235124. [PMID: 36501154 PMCID: PMC9739891 DOI: 10.3390/nu14235124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
The liver is an endocrine organ and is the first organ exposed to nutrients when they are absorbed into the body before being metabolized by the distal organs. Although the liver plays an essential role in the interactions between the metabolic organs, their regulatory mechanisms have not been elucidated. Exosomes mediate communication between cells and primarily enable the transport of lipids, mRNAs, miRNAs, and proteins between cells. In this study, we investigated the effects of lipid metabolism on the liver and adipose tissue between mice fed high-fat (HF) and high-fat/sucrose (HFS) diets and determined the effects of liver tissue-derived exosomes on adipocytes to understand the underlying mechanisms associated with obesity-related metabolic diseases. Normal, HF, and HFS diets were fed to the mice for 12 weeks to compare differences based on dietary patterns. We showed different lipid metabolism effects on the liver and adipose tissue between HF- and HFS-fed mice. In the liver, fibrosis, inflammation, and lipogenesis were activated at higher levels in the HFS than in the HF group, and lipolysis was activated at higher levels in the HF than in the HFS group. In adipose tissue, adipogenesis, fatty acid transport, and lipolysis were activated at higher levels in the HF than in the HFS group, and inflammation and lipogenesis were activated at higher levels in the HFS than in the HF group. This result followed a similar trend reported in 3T3-L1 cells treated with liver-derived exosomes. In addition, the TG content of the liver-derived exosomes was significantly higher, and lipid accumulation was accelerated in the HFS than in the HF group. Based on these results, continuous exposure to HF and HFS diets induces lipid accumulation mediated by liver-derived exosomes; however, there is a difference in lipid metabolism. These results contribute to the elucidation of the mechanisms of exosome function in relation to obesity-related metabolic diseases and the metabolic relationship between tissues.
Collapse
|
5
|
Lugarà R, Renner S, Wolf E, Liesegang A, Bruckmaier R, Giller K. Crossbred Sows Fed a Western Diet during Pre-Gestation, Gestation, Lactation, and Post-Lactation Periods Develop Signs of Lean Metabolic Syndrome That Are Partially Attenuated by Spirulina Supplementation. Nutrients 2022; 14:nu14173574. [PMID: 36079836 PMCID: PMC9460909 DOI: 10.3390/nu14173574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Excessive dietary intake of fats and sugars (“Western diet”, WD) is one of the leading causes of obesity. The consumption of the microalga Arthrospira platensis (spirulina, Sp) is increasing due to its presumed health benefits. Both WD and Sp are also consumed by pregnant and breastfeeding women. This study investigated if gestating and lactating domestic pigs are an appropriate model for WD-induced metabolic disturbances similar to those observed in humans and if Sp supplementation may attenuate any of these adverse effects. Pigs were fed a WD high in fat, sugars, and cholesterol or a control diet. Half of the animals per diet group were supplemented with 20 g Sp per day. The WD did not increase body weight or adipose tissue accumulation but led to metabolic impairments such as higher cholesterol concentration in plasma, lower IGF1 plasma levels, and signs of hepatic damage compared to the control group. Spirulina supplementation could not reduce all the metabolic impairments observed in WD-fed animals. These findings indicate limited suitability of gestating and lactating domestic pigs as a model for WD but a certain potential of low-dose Sp supplementation to partially attenuate negative WD effects.
Collapse
Affiliation(s)
- Rosamaria Lugarà
- Animal Nutrition, ETH Zurich, Eschikon 27, 8315 Lindau, Switzerland
| | - Simone Renner
- German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- Molecular Animal Breeding and Biotechnology, Department of Veterinary Sciences, Ludwig-Maximilian University Munich, Gene Center, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Eckhard Wolf
- German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- Molecular Animal Breeding and Biotechnology, Department of Veterinary Sciences, Ludwig-Maximilian University Munich, Gene Center, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Annette Liesegang
- Animal Nutrition, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 270, 8057 Zurich, Switzerland
| | - Rupert Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001 Bern, Switzerland
| | - Katrin Giller
- Animal Nutrition, ETH Zurich, Eschikon 27, 8315 Lindau, Switzerland
- Correspondence: ; Tel.: +41-52-3549209
| |
Collapse
|
6
|
Preuss HG, Kaats GR, Mrvichin N, Bagchi D, Scheckenbach R, Preuss JM. Assessing Genders Separately in Nondiabetic Persons Regarding Links Between Insulin Resistance and Fat Mass With Elements Related to the Metabolic Syndrome. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2022; 41:435-443. [PMID: 35584266 DOI: 10.1080/07315724.2021.1911718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Initial results gathered from previously published observations dealing with nondiabetic volunteers reveal that both the fasting blood glucose (FBG) level employed as a surrogate for insulin resistance (IR) and the amount of body fat mass (FM) correlate significantly with the strength and pathological direction of many harmful elements making up the metabolic syndrome (MS). These initial results were obtained using combined data from both females and males. How the two markers correlate with specific metabolic parameters in each gender separately was not established. METHOD Baseline data from more than 700 volunteers were examined mainly using correlations to compare whether the breadth of IR estimated by FBG levels and/or the accumulation of body FM on the early development and progression of many chronic metabolic derangements differ to any meaningful extent between nondiabetic females and males. RESULTS The following significant positive correlations were found in the data on females employing either FBG or FM as independent variables regarding development of elements associated with MS: in body composition (scale weight, fat free mass [FFM]); in blood chemistries (triglycerides, high-sensitivity C-reactive protein [hsCRP], alanine aminotransferase [ALT]); and in blood counts (white blood cells [WBC], neutrophils). Also consistent with MS, high-density lipoprotein cholesterol levels declined significantly. In males, findings with FBG as the independent variable differ from females in some respects. These major exceptions are lack of significant correlations with FFM and high-density lipoprotein cholesterol as well as a weaker link with ALT. Despite a positive hsCRP linkage, a poorer response of WBC and neutrophils appeared in males when correlations were made. The latter disassociations disappeared when FM replaced FBG as the independent variable. CONCLUSIONS Progression of many chronic metabolic derangements differ only slightly in females and males.
Collapse
Affiliation(s)
- Harry G Preuss
- Department of Biochemistry, Georgetown University Medical Center, Washington, DC, USA
| | | | - Nate Mrvichin
- Integrative Health Technologies, San Antonio, Texas, USA
| | - Debasis Bagchi
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | | | - Jeffrey M Preuss
- Emergency Department, Veterans Administration Medical Center, Salem, Virginia, USA
| |
Collapse
|
7
|
Abot A, Brochot A, Pomié N, Wemelle E, Druart C, Régnier M, Delzenne NM, de Vos WM, Knauf C, Cani PD. Camu-Camu Reduces Obesity and Improves Diabetic Profiles of Obese and Diabetic Mice: A Dose-Ranging Study. Metabolites 2022; 12:metabo12040301. [PMID: 35448490 PMCID: PMC9025096 DOI: 10.3390/metabo12040301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
Overweight, obesity, and their comorbidities are currently considered a major public health concern. Today considerable efforts are still needed to develop efficient strategies able to attenuate the burden of these diseases. Nutritional interventions, some with plant extracts, present promising health benefits. In this study, we evaluated the action of Camu-Camu (Myrciaria dubia), an Amazonian fruit rich in polyphenols and vitamin C, on the prevention of obesity and associated disorders in mice and the abundance of Akkermansia muciniphila in both cecum and feces. Methods: We investigated the dose-response effects of Camu-Camu extract (CCE) in the context of high-fat-diet (HFD)-induced obesity. After 5 weeks of supplementation, we demonstrated that the two doses of CCE differently improved glucose and lipid homeostasis. The lowest CCE dose (62.5 mg/kg) preferentially decreased non-HDL cholesterol and free fatty acids (FFA) and increased the abundance of A. muciniphila without affecting liver metabolism, while only the highest dose of CCE (200 mg/kg) prevented excessive body weight gain, fat mass gain, and hepatic steatosis. Both doses decreased fasting hyperglycemia induced by HFD. In conclusion, the use of plant extracts, and particularly CCE, may represent an additional option in the support of weight management strategies and glucose homeostasis alteration by mechanisms likely independent from the modulation of A. muciniphila abundance.
Collapse
Affiliation(s)
- Anne Abot
- Enterosys SAS, 31670 Labège, France; (A.A.); (N.P.)
| | - Amandine Brochot
- A-Mansia Biotech SA, The Akkermansia Company, 1435 Mont-Saint-Guibert, Belgium; (A.B.); (C.D.)
| | | | - Eve Wemelle
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Institut de Recherche en Santé Digestive et Nutrition (IRSD), Université Paul Sabatier (UPS), 31000 Toulouse, France;
- NeuroMicrobiota Lab, International Research Program (IRP) INSERM, 31000 Toulouse, France
| | - Céline Druart
- A-Mansia Biotech SA, The Akkermansia Company, 1435 Mont-Saint-Guibert, Belgium; (A.B.); (C.D.)
| | - Marion Régnier
- WELBIO—Walloon Excellence in Life Sciences and BIOtechnology, Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.R.); (N.M.D.)
| | - Nathalie M. Delzenne
- WELBIO—Walloon Excellence in Life Sciences and BIOtechnology, Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.R.); (N.M.D.)
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, The Netherlands;
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Claude Knauf
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Institut de Recherche en Santé Digestive et Nutrition (IRSD), Université Paul Sabatier (UPS), 31000 Toulouse, France;
- NeuroMicrobiota Lab, International Research Program (IRP) INSERM, 31000 Toulouse, France
- Correspondence: (C.K.); (P.D.C.)
| | - Patrice D. Cani
- NeuroMicrobiota Lab, International Research Program (IRP) INSERM, 31000 Toulouse, France
- WELBIO—Walloon Excellence in Life Sciences and BIOtechnology, Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.R.); (N.M.D.)
- Correspondence: (C.K.); (P.D.C.)
| |
Collapse
|
8
|
Lin Y, Fan R, Hao Z, Li J, Yang X, Zhang Y, Xia Y. The Association Between Physical Activity and Insulin Level Under Different Levels of Lipid Indices and Serum Uric Acid. Front Physiol 2022; 13:809669. [PMID: 35185617 PMCID: PMC8847671 DOI: 10.3389/fphys.2022.809669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/06/2022] [Indexed: 12/21/2022] Open
Abstract
Objectives Insulin resistance (IR) has been shown to play important role in the pathogenesis of type 2 diabetes mellitus (T2DM). There is an intricate interplay between IR, dyslipidemia, and serum uric acid (SUA) in people with and without diabetes. Physical activity has a positive impact on insulin sensitivity in insulin-resistant populations. However, the effect of different intensities of physical activity on insulin levels under different lipid indices and SUA levels is unclear. Methods To explore the association between physical activity and insulin, we enrolled 12,982 participants aged above 18 years from the National Health and Nutrition Examination Survey (NHANES) conducted between 2009 and 2018. Next, we conducted multivariate logistic regression analyses, generated fitted smoothing curves, and visualized the data using generalized additive models. Results Increased intensities of physical activity can significantly reduce insulin levels. The association between physical activity and insulin persisted even after adjusting for confounding factors, with β value (95% CI) = −17.10 (−21.64, −12.56) in moderate group, β value (95% CI) = −28.60 (−33.08, −24.11) in high group, respectively. High-intensity physical activity significantly lowered insulin levels in the lower and higher SUA tertiles, and three tertiles of LDL-c, HDL-c, and TG. Moreover, the link between physical activity and insulin was stronger in male individuals. Conclusion This study shows that physical activity can significantly lower insulin levels, and high-intensity physical activity still has additional potential benefits for insulin levels, even in the condition of dyslipidemia and hyperuricemia.
Collapse
|
9
|
Thompson JA, Krajnak K, Johnston RA, Kashon ML, McKinney W, Fedan JS. High-fat western diet-consumption alters crystalline silica-induced serum adipokines, inflammatory cytokines and arterial blood flow in the F344 rat. Toxicol Rep 2022; 9:12-21. [PMID: 34976743 PMCID: PMC8683385 DOI: 10.1016/j.toxrep.2021.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 02/06/2023] Open
Abstract
Silica reduced serum leptin and adiponectin, no effects on body or fat pad weight. HFWD-consumption altered pro-inflammatory cytokines in silica-exposed animals. Silica altered pulse frequency; HFWD increased mean blood flow; effects additive. HFWD affected silica-induced metabolic effects.
Adipose tissue (AT) plays a central role in the maintenance of whole-body energy homeostasis through release of adipokines. High-fat Western diet (HFWD)-consumption contributes to obesity, disruption of adipocyte metabolism, chronic systemic inflammation, and metabolic dysfunction (MetDys). MetDys is associated with impaired lung function, pulmonary hypertension, and asthma. Thirty-five percent of adults in the U.S. have MetDys, yet the impact of MetDys on susceptibility to occupational hazards is unknown. The aim of this study was to determine the potential of HFWD-consumption to alter inhaled crystalline silica dust-induced metabolic responses. Six-wk old male F344 rats were fed a HFWD (45 kcal % fat, sucrose 22.2 % by weight) or standard rat chow (STD, controls), and exposed to silica-inhalation (6 h/d, 5 d/wk, 39 d; Min-U-Sil 5®, 15 mg/m3) or filtered air. Indices of MetDys and systemic inflammation were measured at 0, 4, and 8 wk following cessation of silica exposure. At 8 wk post-exposure, silica reduced serum leptin and adiponectin levels, and increased arterial pulse frequency. HFWD-consumption induced weight gain, altered adipokines, liver, kidney, and pancreatic function, and increased tail artery blood flow. At 8 wk in HFWD + SIL-treated animals, the levels of serum pro-inflammatory cytokines (IFN-γ, CXCL-1, TNF-α, IL-1β, IL-4, IL-5, IL-6, IL-10 and IL-13) were increased compared to STD + SIL but were less than HFWD + AIR-induced levels. In conclusion, consumption of a HFWD altered silica-induced metabolic responses and silica exposure disrupted AT endocrine function. These findings demonstrate previously unknown interactions between HFWD-consumption and occupational silica exposure.
Collapse
Affiliation(s)
- Janet A Thompson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States
| | - Kristine Krajnak
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States
| | - Richard A Johnston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States
| | - Jeffrey S Fedan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States
| |
Collapse
|
10
|
Preuss HG, Kaats GR, Mrvichin N, Bagchi D. Analyzing Blood Pressure Ascent during Aging in Non-Diabetics: Focusing on Links to Insulin Resistance and Body Fat Mass. J Am Coll Nutr 2021; 40:317-326. [PMID: 33998967 DOI: 10.1080/07315724.2021.1875339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND A gradual upward progression of blood pressure (BP) occurs regularly in most humans during aging. This is unfortunate, because it is generally recognized that elevation of BP, even when relatively mild, is eventually detrimental to human health. Accordingly, considerably more understanding of the pathophysiology behind such a phenomenon is important in order to institute the correct remedies. Two components of the ubiquitous metabolic syndrome (MS) with nutritional implications, elevated insulin resistance (IR) and excess body fat mass (FM), are often postulated to be critical driving forces behind the elevated BP that is common with aging. The current study, therefore, focuses on the presence and importance of IR and/or body FM in BP regulation of non-diabetics over the lifespan. METHODOLOGY In cross sectional analyses, baseline data obtained from healthy, non-diabetic volunteers involved in prior clinical studies were analyzed by examining links between FBG measurements used as a surrogate for IR and body FM through their individual and combined effects on BP. RESULTS A significant positive correlation was found between FBG and FM and also between each employed individually as independent variables to the dependent BP and heart rate (HR) variables. In volunteers with higher body FM compared to lower, average systolic BP (SBP) values are increased to some extent at the same FBG measurement suggesting that other factors related to FM in addition to IR are the basis for slight pressure differences. Considering quartiles based upon levels of FM and FBG, low FM-low FBG display significantly reduced average SBP, diastolic blood pressure (DBP), and HR compared to the upper FM-FBG quartiles. While readings of FBG and FM display a decline in elderly subjects after age 70 years (aging paradox), such does not occur with SBP. CONCLUSIONS IR is a major driving force behind BP regulation even in non-diabetics. FM influences BP substantially through its relationship with IR and also via other mechanisms directly linked to FM.
Collapse
Affiliation(s)
- Harry G Preuss
- Department of Biochemistry, Georgetown University Medical Center, Washington, D.C., USA
| | | | - Nate Mrvichin
- Integrative Health Technologies, San Antonio, Texas, USA
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, Texas, USA
| |
Collapse
|
11
|
Ribeiro de Lima JG, Abud GF, Freitas ECD, Bueno Júnior CR. Effects of the COVID-19 pandemic on the global health of women aged 50 to 70 years. Exp Gerontol 2021; 150:111349. [PMID: 33892133 PMCID: PMC8058051 DOI: 10.1016/j.exger.2021.111349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 01/22/2023]
Abstract
Aim/background The most recent pandemic caused by the new coronavirus disease (COVID-19) urged dramatic changes in people's lives. Potentially, the COVID-19 pandemic affects physical and mental health as well as behavioral and social aspects. However, the direct impacts of the COVID-19 pandemic on health-related parameters are not yet known. The present study aimed to evaluate the effect of 16 weeks during the COVID-19 pandemic on health-related parameters of physically inactive women aged 50 to 70 years. Methods Thirty-four physically inactive women participated in the study. We performed tests to evaluate aerobic capacity and muscle strength, anthropometric measurements, blood pressure (BP), blood parameters, diet, and physical activity levels. All evaluations were carried out before and 16 weeks after the initial phase of the COVID-19 pandemic in Brazil (i.e., from March to July 2020). Results Systolic BP (p < .0001; effect size (ES) = 0.62), diastolic BP (p < .0001; ES = 0.71), grip strength of the right (p < .05; ES = 0.43) and left hand (p < .05; ES = 0.49), performance in six-minute walk test (p < .05; ES = 0.46), free time physical activity levels (p < .05; ES = 0.40), domestic physical activity levels (p < .05; ES = 0.39), platelet count (p < .0001; ES = 0.48), and mean corpuscular hemoglobin concentration (p < .0001; ES = 1.14) reduced in comparison to the period before the pandemic. In contrast, glycated hemoglobin levels (p < .0001; ES = 0.77), triglycerides (p < .05; ES = 0.40), and insulin levels (p < .05; ES = 0.60) increased in comparison to the period before the pandemic. Conclusion The COVID-19 pandemic negatively impacted the general health status of physically inactive women aged 50 to 70, potentially increasing their susceptibility to comorbidities, such as type 2 diabetes and hypertriglyceridemia.
Collapse
Affiliation(s)
- João G Ribeiro de Lima
- Department of Internal Medicine, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Gabriela F Abud
- Department of Food and Nutrition, Faculty of Pharmaceutical Sciences of Araraquara, Paulista State University, SP, Brazil
| | - Ellen C de Freitas
- Department of Food and Nutrition, Faculty of Pharmaceutical Sciences of Araraquara, Paulista State University, SP, Brazil; School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Carlos R Bueno Júnior
- Department of Internal Medicine, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
12
|
Etemadi A, Alizadeh R, Sirousazar M. The Influence of Natural Basil Seed Gum Coats on the Kinetics of Osmotic Dehydration of Apple Rings. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02492-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Kopp W. Development of Obesity: The Driver and the Passenger. Diabetes Metab Syndr Obes 2020; 13:4631-4642. [PMID: 33281458 PMCID: PMC7709141 DOI: 10.2147/dmso.s280146] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Obesity has reached epidemic proportions and is one of the greatest challenges for public health in the twenty-first century. The macronutrient composition of diets, in particular the amount and ratio of carbohydrates, fat and protein, have received considerable attention in recent decades due to its potential relevance to the development of obesity and weight loss. The effects of various macronutrients on body weight regulation are still under debate. High-carbohydrate diets, and particularly high-fat diets, have been blamed for the increase in the prevalence of obesity. This paper shows that neither fat nor carbohydrates are fattening per se. Mixed diets with substantial amounts of fat and high-glycemic carbohydrates, like current WDs, are required to promote weight gain and obesity. High-glycemic carbohydrates are the active partner (the "driver"), which promotes fat storage through its insulinogenic effect, while fat is the passive partner (the "passenger") on the way to obesity. Elevated insulin levels (postprandial, but more importantly due to hypersecretion and hyperinsulinemia) promote fat storage and play a key role in obesogenesis and the obesity epidemic. Furthermore, mixed diets high in high-glycemic carbohydrates and fat promote fetal programming, with long-term adverse impacts on the offspring, including insulin hypersecretion, (childhood) obesity and metabolic diseases. Maternal obesity and high weight gain during pregnancy have also been linked to deleterious effects on fetal programming. As the global obesity epidemic increasingly affects women of reproductive age, a significant percentage of fetuses will experience fetal programming with a tendency towards obesity - a self-reinforcing process that further fuels the epidemic. A change in lifestyle and diet composition is needed to prevent or limit the development of obesity and related diseases.
Collapse
Affiliation(s)
- Wolfgang Kopp
- Diagnostikzentrum Graz, Graz, 8043, Austria
- Correspondence: Wolfgang Kopp Former Head of Diagnostikzentrum (retired), Mariatrosterstraße 41, Graz8043, Austria Email
| |
Collapse
|
14
|
Guadagnini D, Rocha GZ, Santos A, Assalin HB, Hirabara SM, Curi R, Oliveira AG, Prada PO, Saad MJA. Microbiota determines insulin sensitivity in TLR2-KO mice. Life Sci 2019; 234:116793. [PMID: 31465735 DOI: 10.1016/j.lfs.2019.116793] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/17/2019] [Accepted: 08/25/2019] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Environmental factors have a key role in the control of gut microbiota and obesity. TLR2 knockout (TLR2-/-) mice in some housing conditions are protected from diet-induced insulin resistance. However, in our housing conditions these animals are not protected from diet-induced insulin-resistance. AIM The aim of the present study was to investigate the influence of our animal housing conditions on the gut microbiota, glucose tolerance and insulin sensitivity in TLR2-/- mice. MATERIAL AND METHODS The microbiota was investigated by metagenomics, associated with hyperinsulinemic euglycemic clamp and GTT associated with insulin signaling through immunoblotting. RESULTS The results showed that TLR2-/- mice in our housing conditions presented a phenotype of metabolic syndrome characterized by insulin resistance, glucose intolerance and increase in body weight. This phenotype was associated with differences in microbiota in TLR2-/- mice that showed a decrease in the Proteobacteria and Bacteroidetes phyla and an increase in the Firmicutesphylum, associated with and in increase in the Oscillospira and Ruminococcus genera. Furthermore there is also an increase in circulating LPS and subclinical inflammation in TLR2-/-. The molecular mechanism that account for insulin resistance was an activation of TLR4, associated with ER stress and JNK activation. The phenotype and metabolic behavior was reversed by antibiotic treatment and reproduced in WT mice by microbiota transplantation. CONCLUSIONS Our data show, for the first time, that the intestinal microbiota can induce insulin resistance and obesity in an animal model that is genetically protected from these processes.
Collapse
Affiliation(s)
- Dioze Guadagnini
- Department of Internal Medicine-FCM, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Guilherme Zweig Rocha
- Department of Internal Medicine-FCM, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Andrey Santos
- Department of Internal Medicine-FCM, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Heloisa Balan Assalin
- Department of Internal Medicine-FCM, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Sandro Massao Hirabara
- Interdisciplinary Post-Graduate Program in Health Science, Cruzeiro do Sul University, Sao Paulo, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Science, Cruzeiro do Sul University, Sao Paulo, Brazil
| | - Alexandre Gabarra Oliveira
- Department of Internal Medicine-FCM, University of Campinas-UNICAMP, Campinas, SP, Brazil.; Department of Physical Education, Biosciences Institute, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Patricia O Prada
- Graduate Program in Nutritional and Sport Sciences and Metabolism, School of Applied Sciences, University of Campinas- UNICAMP, Campinas, Brazil
| | - Mario J A Saad
- Department of Internal Medicine-FCM, University of Campinas-UNICAMP, Campinas, SP, Brazil..
| |
Collapse
|
15
|
Mogane C, Mokotedi LP, Millen AME, Michel FS. Increased systolic blood pressure associated with hypertriglyceridemia in female Sprague-Dawley rats. Can J Physiol Pharmacol 2019; 97:971-979. [PMID: 31247146 DOI: 10.1139/cjpp-2019-0121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of hyperlipidemia on the cardiovascular system is uncertain in females. The aim of the present study was to determine whether administration of a lipogenic diet alters cardiovascular parameters in female rats. Fifty female Sprague-Dawley rats were assigned into 2 groups of rats receiving a standard or a high-fat, high-sucrose diet (HFHS) for 6 weeks (n = 25 per group). Body mass, blood lipids concentrations, triglycerides clearance, blood pressures (BPs), systolic and diastolic functions, as well as vascular reactivity were assessed at the end of the diet intervention. At termination, body mass was similar between the 2 groups. Fasting blood triglycerides concentration (BTG) was greater in the HFHS group. Triglycerides clearance was impaired in the HFHS group. High-density lipoprotein (HDL) cholesterol concentration was lower in the HFHS group. The early-to-late diastolic filling velocity ratio (E/A) was lower in the HFHS group and negatively associated with BTG. The sensitivity (EC50) of mesenteric arteries to phenylephrine was greater in HFHS and was negatively associated with BTG, but not HDL. Systolic BP was higher in the HFHS group and was positively associated with BTG and HDL. The association between systolic BP and BTG was independent of other lipids measured. In conclusion, hypertriglyceridemia may have increased resistance arteries responsiveness to alpha-agonist and systolic BP in female rats.
Collapse
Affiliation(s)
- Conrad Mogane
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lebogang P Mokotedi
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Aletta M E Millen
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Frederic S Michel
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
16
|
Heese AJ, Roberts CK, Hofheins JC, Brown JD, Ruegsegger GN, Toedebusch RG, Booth FW. Rats Selectively Bred for High Voluntary Physical Activity Behavior are Not Protected from the Deleterious Metabolic Effects of a Western Diet When Sedentary. Curr Dev Nutr 2019; 3:nzz017. [PMID: 31111117 PMCID: PMC6517781 DOI: 10.1093/cdn/nzz017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Physical activity and diet are well-established modifiable factors that influence chronic disease risk. We developed a selectively bred, polygenic model for high and low voluntary running (HVR and LVR, respectively) distances. After 8 generations, large differences in running distance were noted. Despite these inherent behavioral differences in physical activity levels, it is unknown whether HVR rats would be inherently protected from diet-induced metabolic dysfunction. OBJECTIVES The aim of this study was to determine whether HVR rats without voluntary running wheels would be inherently protected from diet-induced metabolic dysfunction. METHODS Young HVR, LVR, and a wild-type (WT) control group were housed with no running wheel access and fed either a normal diet (ND) or a high-sugar/fat Western diet (WD) for 8 wk. Body weight, percentage body fat (by dual-energy X-ray absorptiometry scan), blood lipids [total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides (TGs), nonesterified fatty acids], and hepatic TG content were measured, and indices of insulin sensitivity were determined via an intravenous glucose tolerance test. Additionally, weekly energy intake and feed efficiency were calculated. RESULTS After 8 wk, significant differences in body weight and body fat percentage were noted in all WD animals compared with ND animals, with the LVR-WD exhibiting the greatest increase due, in part, to their enhanced feed efficiency. Lipid dysregulation was present in all WD rat lines compared with ND counterparts. Furthermore, LVR-WD rats had higher total cholesterol, HDL cholesterol, and TG concentrations, and higher areas under the curve (AUC) for insulin than HVR-WD and WT-WD, although HVR-WD animals had higher AUCglucose than both LVR-WD and WT-WD and higher LDL than WT-WD. CONCLUSIONS In the absence of high voluntary running behavior, the genetic predisposition for high running in HVR did not largely protect them from the deleterious effects of a WD compared with LVR, suggesting genetic factors influencing physical activity levels may, in part, be independent from genes influencing metabolism.
Collapse
Affiliation(s)
- Alexander J Heese
- Departments of Biomedical Sciences, University of Missouri, Columbia, MO
| | - Christian K Roberts
- Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - John C Hofheins
- Departments of Biomedical Sciences, University of Missouri, Columbia, MO
| | - Jacob D Brown
- Departments of Biomedical Sciences, University of Missouri, Columbia, MO
| | | | - Ryan G Toedebusch
- Departments of Biomedical Sciences, University of Missouri, Columbia, MO
| | - Frank W Booth
- Departments of Biomedical Sciences, University of Missouri, Columbia, MO
- Departments of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
- Departments of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
| |
Collapse
|
17
|
E4orf1 protein reduces the need for endogenous insulin. Nutr Diabetes 2019; 9:17. [PMID: 31127081 PMCID: PMC6534626 DOI: 10.1038/s41387-019-0085-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 11/11/2022] Open
Abstract
Background E4orf1 protein derived from adenovirus-36 reduces glucose excursion in mice, and lowers endogenous insulin response, suggesting a reduced need for insulin. We tested if the E4orf1-mediated lowering of insulin response is due to increased tissue sensitivity to insulin, reduced ability to produce or release insulin, or a reduced need for insulin release. Methods Experiment 1: hyperinsulinemic–euglycemic clamps (HEC) and glucose tolerance test (GTT) were performed in high fat fed transgenic mice expressing E4orf1 or non-transgenic littermates (n = 12 each), for 4 weeks. Experiments 2, 3, and 4: E4orf1 or null vectors were expressed in rat-pancreatic β-cell line (INS-1) for 72 h, and cells were exposed to varying levels of glucose. Cell lysates and media were collected. Experiment 5: 3T3L1-preadipocytes that express E4orf1 upon doxycycline induction, or null vector were induced with doxycycline and then exposed to protein transport inhibitor. Supernatant and cell lysate were collected. Experiment 6: 3T3L1-preadipocytes that express E4orf1 upon doxycycline induction, or null vector were co-cultured with INS-1 cells for 24 h. Media was collected. Results Experiment 1: E4orf1 transgenic mice cleared glucose faster compared to non-transgenic mice during GTT. HEC showed that E4orf1 did not alter tissue sensitivity to exogenous insulin in mice. Experiments 2, 3, and 4: in INS1 cells, E4orf1 did not alter Glut2 abundance or Akt activation, suggesting no reduction in glucose sensing or insulin synthesis, respectively. E4orf1 did not influence glucose-stimulated insulin secretion in media by INS1 cells. Experiment 5: E4orf1 was present in cell lysate, but not in media, indicating it is not a secretory protein. Experiment 6: INS1 cells released less insulin in media when co-cultured in the presence of E4orf1-expressing 3T3-L1 cells. Conclusions Our studies support the working hypothesis that the E4orf1-mediated lowering of insulin response is not due to increased tissue sensitivity to insulin, or reduced ability to produce or release insulin, but likely to be due to a reduced need for insulin release.
Collapse
|
18
|
Nasias D, Evangelakos I, Nidris V, Vassou D, Tarasco E, Lutz TA, Kardassis D. Significant changes in hepatic transcriptome and circulating miRNAs are associated with diet-induced metabolic syndrome in apoE3L.CETP mice. J Cell Physiol 2019; 234:20485-20500. [PMID: 31016757 DOI: 10.1002/jcp.28649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
Long-term exposure to excess dietary fat leads to obesity and the metabolic syndrome (MetS). The purpose of the present study was to identify global changes in liver gene expression and circulating miRNAs in a humanized mouse model of diet-induced MetS. Male apoE3L.CETP mice received a high-fat diet (HFD) or a low-fat diet (LFD) for different time periods and the progression of MetS pathology was monitored. A separate group of mice was divided into responders (R) or nonresponders (NR) and received HFD for 16 weeks. We found that mice receiving the HFD developed manifestations of MetS and displayed an increasing number of differentially expressed transcripts at 4, 8, and 12 weeks compared with mice receiving the LFD. Significantly changed genes were functionally annotated to metabolic diseases and pathway analysis revealed the downregulation of genes in cholesterol and fatty acid biosynthesis and upregulation of genes related to lipid droplet formation, which was in line with the development of hepatic steatosis. In the serum of the apoE3L.CETP mice we identified three miRNAs that were upregulated specifically in the HFD group. We found that responder mice have a distinct gene signature that differentiates them from nonresponders. Comparison of the two diet intervention studies revealed a limited number of common differentially expressed genes but the expression of these common genes was affected in a similar way in both studies. In conclusion, the characteristic hepatic gene signatures and serum miRNAs identified in the present study provide novel insights to MetS pathology and could be exploited for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Dimitris Nasias
- Laboratory of Biochemistry, Division of Basic Sciences, University of Crete Medical School, Heraklion, Greece.,Gene Regulation and Epigenetics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Ioannis Evangelakos
- Laboratory of Biochemistry, Division of Basic Sciences, University of Crete Medical School, Heraklion, Greece.,Gene Regulation and Epigenetics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Vasilis Nidris
- Laboratory of Biochemistry, Division of Basic Sciences, University of Crete Medical School, Heraklion, Greece.,Gene Regulation and Epigenetics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Despoina Vassou
- Genomics Facility, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Erika Tarasco
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Dimitris Kardassis
- Laboratory of Biochemistry, Division of Basic Sciences, University of Crete Medical School, Heraklion, Greece.,Gene Regulation and Epigenetics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| |
Collapse
|
19
|
Pepper I, Vinik A, Lattanzio F, McPheat W, Dobrian A. Countering the Modern Metabolic Disease Rampage With Ancestral Endocannabinoid System Alignment. Front Endocrinol (Lausanne) 2019; 10:311. [PMID: 31156558 PMCID: PMC6533883 DOI: 10.3389/fendo.2019.00311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/30/2019] [Indexed: 12/18/2022] Open
Abstract
When primitive vertebrates evolved from ancestral members of the animal kingdom and acquired complex locomotive and neurological toolsets, a constant supply of energy became necessary for their continued survival. To help fulfill this need, the endocannabinoid (eCB) system transformed drastically with the addition of the cannabinoid-1 receptor (CB1R) to its gene repertoire. This established an eCB/CB1R signaling mechanism responsible for governing the whole organism's energy balance, with its activation triggering a shift toward energy intake and storage in the brain and the peripheral organs (i.e., liver and adipose). Although this function was of primal importance for humans during their pre-historic existence as hunter-gatherers, it became expendable following the successive lifestyle shifts of the Agricultural and Industrial Revolutions. Modernization of the world has further increased food availability and decreased energy expenditure, thus shifting the eCB/CB1R system into a state of hyperactive deregulated signaling that contributes to the 21st century metabolic disease pandemic. Studies from the literature supporting this perspective come from a variety of disciplines, including biochemistry, human medicine, evolutionary/comparative biology, anthropology, and developmental biology. Consideration of both biological and cultural evolution justifies the design of improved pharmacological treatments for obesity and Type 2 diabetes (T2D) that focus on peripheral CB1R antagonism. Blockade of peripheral CB1Rs, which universally promote energy conservation across the vertebrate lineage, represents an evolutionary medicine strategy for clinical management of present-day metabolic disorders.
Collapse
Affiliation(s)
- Ian Pepper
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
- *Correspondence: Ian Pepper
| | - Aaron Vinik
- Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Frank Lattanzio
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| | - William McPheat
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Anca Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
20
|
Kopp W. How Western Diet And Lifestyle Drive The Pandemic Of Obesity And Civilization Diseases. Diabetes Metab Syndr Obes 2019; 12:2221-2236. [PMID: 31695465 PMCID: PMC6817492 DOI: 10.2147/dmso.s216791] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Westernized populations are plagued by a plethora of chronic non-infectious degenerative diseases, termed as "civilization diseases", like obesity, diabetes, cardiovascular diseases, cancer, autoimmune diseases, Alzheimer's disease and many more, diseases which are rare or virtually absent in hunter-gatherers and other non-westernized populations. There is a growing awareness that the cause of this amazing discrepancy lies in the profound changes in diet and lifestyle during recent human history. This paper shows that the transition from Paleolithic nutrition to Western diets, along with lack of corresponding genetic adaptations, cause significant distortions of the fine-tuned metabolism that has evolved over millions of years of human evolution in adaptation to Paleolithic diets. With the increasing spread of Western diet and lifestyle worldwide, overweight and civilization diseases are also rapidly increasing in developing countries. It is suggested that the diet-related key changes in the developmental process include an increased production of reactive oxygen species and oxidative stress, development of hyperinsulinemia and insulin resistance, low-grade inflammation and an abnormal activation of the sympathetic nervous system and the renin-angiotensin system, all of which play pivotal roles in the development of diseases of civilization. In addition, diet-related epigenetic changes and fetal programming play an important role. The suggested pathomechanism is also able to explain the well-known but not completely understood close relationship between obesity and the wide range of comorbidities, like type 2 diabetes mellitus, cardiovascular disease, etc., as diseases of the same etiopathology. Changing our lifestyle in accordance with our genetic makeup, including diet and physical activity, may help prevent or limit the development of these diseases.
Collapse
Affiliation(s)
- Wolfgang Kopp
- Retired Head, Diagnostikzentrum Graz, Graz8043, Austria
- Correspondence: Wolfgang Kopp Mariatrosterstraße 41, Graz8043, Austria Email
| |
Collapse
|
21
|
Marei WFA, Alvarez MA, Van Hoeck V, Gutierrez-Adan A, Bols PEJ, Leroy JLMR. Effect of nutritionally induced hyperlipidaemia on in vitro bovine embryo quality depends on the type of major fatty acid in the diet. Reprod Fertil Dev 2018; 29:1856-1867. [PMID: 27832581 DOI: 10.1071/rd16297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/10/2016] [Indexed: 12/24/2022] Open
Abstract
The present study examined whether the effects of dietary-induced hyperlipidaemia on preimplantation embryo development depend on the predominant fatty acid (FA) type in the diet. In a combined in vivo-in vitro bovine model, two groups of cows (n=3 in each group) were fed with three diets consecutively (4 weeks feeding for each): (1) a maintenance control diet (CONT); (2) a high-starch diet rich in saturated fat (SAT); and (3) a high-starch diet rich in omega-3 unsaturated fat (UNSAT). Two feeding sequences were used to test for carry-over effects: Group A was fed CONT, SAT1 and then UNSAT2, whereas Group B was fed CONT, UNSAT1 and then SAT2. Serum was collected after each dietary period, analysed and tested in bovine in vitro embryo culture. Introducing SAT and UNSAT diets induced hyperlipidaemia (specifically hypercholesterolaemia and elevated free FAs) and reduced insulin sensitivity. Carry-over effects in serum metabolites and FA profile were dependent on the diet and feeding sequence. SAT1 and SAT2 serum decreased blastocyst rates and altered blastocyst mRNA expression related to apoptosis and oxidative stress. UNSAT1 and UNSAT2 serum resulted in normal embryo development and quality. Other in vitro effects depended on the sequence of feeding. In conclusion, substitution of saturated fat with omega-3 fat in a high-caloric diet induced hyperlipidaemia with an FA profile yielding similar rates and quality of blastocysts compared with normolipidaemic controls.
Collapse
Affiliation(s)
- Waleed F A Marei
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Maria Arias Alvarez
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Veerle Van Hoeck
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Alfonso Gutierrez-Adan
- Departamento de Reproduccion Animal, Instituto nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. De la CorunaKm 5.9, Madrid 28040, Spain
| | - Peter E J Bols
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Jo L M R Leroy
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| |
Collapse
|
22
|
Nakajima K, Tokita Y, Tanaka A. Hypothesis: Postprandial remnant lipoproteins are the causal factors that induce the insulin resistance associated with obesity. Clin Chim Acta 2018; 485:126-132. [PMID: 29958888 DOI: 10.1016/j.cca.2018.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/16/2018] [Accepted: 06/21/2018] [Indexed: 11/17/2022]
Abstract
We have long thought that remnant lipoproteins (RLP) in plasma are significantly increased as the result of disturbed lipoprotein metabolism followed by obesity and insulin resistance. Therefore, it was believed that insulin resistance causes and enhances RLP formation. In contrast, this hypothesis states that RLP induces insulin resistance as the result of obesity associated with the excessive fat intake. The majority of plasma TG increased after fat intake is TG in RLP (RLP-TG) and the majority of postprandial RLP is VLDL remnants, not CM remnants. RLP is newly formed lipoproteins primarily for energy supply against starvation, like blood sugar after carbohydrate intake. Since RLP bearing apoE, LPL and Lp(a) function as ligands for the VLDL receptor, RLP interacts with the VLDL receptor in visceral fat adipocytes and stored as TG similar to excessive blood sugar. However, the excessive VLDL remnants induces obesity and its associated insulin resistance, which plays a major role as the initiator of metabolic domino effects, similar to blood sugar primarily serving as an energy supply to protect against starvation.
Collapse
Affiliation(s)
- Katsuyuki Nakajima
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan.
| | - Yoshiharu Tokita
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan; Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan
| | - Akira Tanaka
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan
| |
Collapse
|
23
|
Panchal SK, Bliss E, Brown L. Capsaicin in Metabolic Syndrome. Nutrients 2018; 10:E630. [PMID: 29772784 PMCID: PMC5986509 DOI: 10.3390/nu10050630] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022] Open
Abstract
Capsaicin, the major active constituent of chilli, is an agonist on transient receptor potential vanilloid channel 1 (TRPV1). TRPV1 is present on many metabolically active tissues, making it a potentially relevant target for metabolic interventions. Insulin resistance and obesity, being the major components of metabolic syndrome, increase the risk for the development of cardiovascular disease, type 2 diabetes, and non-alcoholic fatty liver disease. In vitro and pre-clinical studies have established the effectiveness of low-dose dietary capsaicin in attenuating metabolic disorders. These responses of capsaicin are mediated through activation of TRPV1, which can then modulate processes such as browning of adipocytes, and activation of metabolic modulators including AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α (PPARα), uncoupling protein 1 (UCP1), and glucagon-like peptide 1 (GLP-1). Modulation of these pathways by capsaicin can increase fat oxidation, improve insulin sensitivity, decrease body fat, and improve heart and liver function. Identifying suitable ways of administering capsaicin at an effective dose would warrant its clinical use through the activation of TRPV1. This review highlights the mechanistic options to improve metabolic syndrome with capsaicin.
Collapse
Affiliation(s)
- Sunil K Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba QLD 4350, Australia.
| | - Edward Bliss
- Functional Foods Research Group, University of Southern Queensland, Toowoomba QLD 4350, Australia.
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba QLD 4350, Australia.
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba QLD 4350, Australia.
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba QLD 4350, Australia.
| |
Collapse
|
24
|
Morelli NR, Scavuzzi BM, Miglioranza LHDS, Lozovoy MAB, Simão ANC, Dichi I. Metabolic syndrome components are associated with oxidative stress in overweight and obese patients. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2018; 62:309-318. [PMID: 29791650 PMCID: PMC10118790 DOI: 10.20945/2359-3997000000036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/15/2017] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The aim of this study is to evaluate the influence of the body mass index (BMI) and the metabolic syndrome (MetS) parameters on oxidative and nitrosative stress in overweight and obese subjects. SUBJECTS AND METHODS Individuals were divided into three groups: the control group (G1, n = 131) with a BMI between 20 and 24.9 kg/m2, the overweight group (G2, n = 120) with a BMI between 25 and 29.9 kg/m2 and the obese group (G3, n = 79) with a BMI ≥ 30 kg/m2. RESULTS G3 presented higher advanced oxidation protein products (AOPPs) in relation to G1 and G2 (p = 0.001 and p = 0.011, respectively) whereas G2 and G3 had lower levels of nitric oxide (NO) (p = 0.009 and p = 0.048, respectively) compared to G1. Adjusted for the presence of MetS to evaluate its influence, the levels of AOPPs did not differ between the groups, whereas NO remained significantly lower. Data adjusted by the BMI showed that subjects with higher triacylglycerol levels had higher AOPPs (p = 0.001) and decreased total radical-trapping antioxidant parameter/uric Acid (p = 0.036). Subjects with lower high-density lipoprotein (HDL) levels and patients with higher blood pressure showed increased AOPPs (p = 0.001 and p = 0.034, respectively) and lower NO levels (p = 0.017 and p = 0.043, respectively). Subjects who presented insulin resistance had higher AOPPs (p = 0.024). CONCLUSIONS Nitrosative stress was related to BMI, and protein oxidation and nitrosative stress were related to metabolic changes and hypertension. MetS components were essential participants in oxidative and nitrosative stress in overweight and obese subjects.
Collapse
Affiliation(s)
- Nayara Rampazzo Morelli
- Departamento de Pós-Graduação em Ciências da Saúde, Universidade Estadual de Londrina (UEL), Londrina, PR, Brasil
| | - Bruna Miglioranza Scavuzzi
- Departamento de Pós-Graduação em Ciências da Saúde, Universidade Estadual de Londrina (UEL), Londrina, PR, Brasil
| | | | | | - Andréa Name Colado Simão
- Departamento de Patologia, Análises Clínicas e Toxicológicas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brasil
| | - Isaias Dichi
- Departamento de Medicina Interna, Universidade Estadual de Londrina (UEL), Londrina, PR, Brasil
| |
Collapse
|
25
|
Kopp W. Diet-Induced Hyperinsulinemia as a Key Factor in the Etiology of Both Benign Prostatic Hyperplasia and Essential Hypertension? Nutr Metab Insights 2018; 11:1178638818773072. [PMID: 30455570 PMCID: PMC6238249 DOI: 10.1177/1178638818773072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/04/2018] [Indexed: 01/09/2023] Open
Abstract
Benign prostatic hyperplasia and hypertension are common age-related comorbidities. Although the etiology of benign prostatic hyperplasia (BPH) is still largely unresolved and poorly understood, a significant age-independent association was found between BPH and hypertension, indicating a common pathophysiological factor for both diseases. It has previously been suggested that the development of essential hypertension may be related to diet-induced hyperinsulinemia. This study follows the question, whether BPH may develop due to the same mechanism, thereby explaining the well-known comorbidity of these 2 disorders. The scientific evidence presented shows that BPH and hypertension share the same pathophysiological changes, with hyperinsulinemia as the driving force. It further shows that significant dietary changes during human history cause disruption of a finely tuned metabolic balance that has evolved over millions of years of evolution: high-insulinemic food, typical of current “Western” diets, has the potential to cause hyperinsulinemia and insulin resistance, as well as an abnormally increased activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system, alterations that play a pivotal role in the pathogenesis of BPH and hypertension.
Collapse
Affiliation(s)
- Wolfgang Kopp
- Former head of the Diagnostikzentrum Graz, Graz, Austria
| |
Collapse
|
26
|
Wei S, Cheng D, Yu H, Wang X, Song S, Wang C. Millet-enriched diets attenuate high salt-induced hypertension and myocardial damage in male rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
27
|
Marei WFA, De Bie J, Mohey-Elsaeed O, Wydooghe E, Bols PEJ, Leroy JLMR. Alpha-linolenic acid protects the developmental capacity of bovine cumulus-oocyte complexes matured under lipotoxic conditions in vitro. Biol Reprod 2018; 96:1181-1196. [PMID: 28520897 DOI: 10.1093/biolre/iox046] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/17/2017] [Indexed: 12/22/2022] Open
Abstract
Elevated concentrations of free fatty acids (FFAs), predominantly palmitic, stearic, and oleic acids (PSO), exert detrimental effects on oocyte developmental competence. This study examined the effects of omega-3 alpha-linolenic acid (ALA) during in vitro oocyte maturation (IVM) in the presence of PSO on subsequent embryo development and quality, and the cellular mechanisms that might be involved. Bovine cumulus-oocyte complexes (COCs) were supplemented during IVM with ALA (50 μM), PSO (425 μM), or PSO+ALA. Compared with FFA-free controls (P < 0.05), PSO increased embryo fragmentation and decreased good quality embryos on day 2 postfertilization. Day 7 blastocyst rate was also reduced. Day 8 blastocysts had lower cell counts and higher apoptosis but normal metabolic profile. In the PSO group, cumulus cell (CC) expansion was inhibited with an increased CC apoptosis while COC metabolism was not affected. Mitochondrial inner membrane potential (MMP; JC-1 staining) was reduced in the CCs and oocytes. Heat shock protein 70 (HSP70) but not glucose-regulated protein 78 kDa (GRP78, known as BiP; an endoplasmic reticulum stress marker) was upregulated in the CCs. Higher reactive oxygen species levels (DCHFDA staining) were detected in the oocytes. In contrast, adding ALA in the presence of PSO normalized embryo fragmentation, cleavage, blastocyst rates, and blastocyst quality compared to controls (P > 0.05). Combined treatment with ALA also reduced CC apoptosis, partially recovered CC expansion, abrogated the reduction in MMP in the CCs but not in the oocytes, and reduced BiP and HSP70 expression in CCs, compared with PSO only (P < 0.05). In conclusion, ALA supplementation protected oocyte developmental capacity under lipotoxic conditions mainly by protecting cumulus cell viability.
Collapse
Affiliation(s)
- Waleed F A Marei
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium.,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Jessie De Bie
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Omnia Mohey-Elsaeed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eline Wydooghe
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Peter E J Bols
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Jo L M R Leroy
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
28
|
Preuss HG, Kaats GR, Mrvichin N, Swaroop A, Bagchi D, Clouatre D, Preuss JM. Examining the Relationship Between Nonalcoholic Fatty Liver Disease and the Metabolic Syndrome in Nondiabetic Subjects. J Am Coll Nutr 2018; 37:457-465. [PMID: 29652564 DOI: 10.1080/07315724.2018.1443292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD) is considered by some to be the hepatic manifestation of the metabolic syndrome (MS). However, others believe NAFLD is a distinct entity that actually initiates MS. Whichever is true, a definite linkage exists between both is generally accepted based upon the frequency of common occurrence and realization that insulin resistance (IR) is and realization that. The objective is to better understand the relationship between NAFLD and MS. Specifically, is there any concrete evidence that development of NAFLD precedes MS or vice versa? Another goal was to better comprehend capabilities of circulating aminotransferases (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]) and their ratio used commonly for diagnosis of NAFLD. METHODS Data from 288 participants with fasting blood glucose (FBG) levels below the diabetic level (<125 mg/dL) and AST and ALT values in the normal range (<40 U/L) were examined. Correlations between ALT and AST and their ratio as independent variables with a variety of metabolic parameter were evaluated and compared. RESULTS Like FBG, many significant positive correlations among glucose-insulin indices, body composition, blood pressure, dyslipidemias, and inflammation were discovered using ALT, and less so with AST, as the independent variable. In some cases, even stronger correlations in a negative direction with IR and MS were found with the ratio AST/ALT. Corroboration occurred when values in the lowest and highest quartiles of ALT and AST/ALT readings showed appropriate statistically significant differences. CONCLUSIONS The findings here suggest that both NAFLD and the MS very early in development have a common inciting mechanism(s)-most likely IR. Accordingly, the early concurrent temporal results are consistent with the concept that NAFLD is a hepatic manifestation of the IR associated with the MS. They do not exclude the possibility that once some liver functional adjustments take place, several aspects of the MS are bolstered further, perhaps via intensified heightening of IR.
Collapse
Affiliation(s)
- Harry G Preuss
- a Department of Biochemistry , Georgetown University Medical Center , Washington, DC , USA
| | - Gilbert R Kaats
- b Integrative Health Technologies , San Antonio , Texas , USA
| | - Nate Mrvichin
- b Integrative Health Technologies , San Antonio , Texas , USA
| | - Anand Swaroop
- c Cepham Research Center , Piscataway , New Jersey , USA
| | - Debasis Bagchi
- c Cepham Research Center , Piscataway , New Jersey , USA.,d Department of Pharmacological and Pharmaceutical Services , University of Houston , Houston , Texas , USA
| | | | - Jeffrey M Preuss
- f Emergency Department , Veterans Administration Medical Center , Salem , Virginia , USA
| |
Collapse
|
29
|
Cheng J, Xue F, Zhang M, Cheng C, Qiao L, Ma J, Sui W, Xu X, Gao C, Hao P, Zhang M, Zhang Y. TRIM31 Deficiency Is Associated with Impaired Glucose Metabolism and Disrupted Gut Microbiota in Mice. Front Physiol 2018; 9:24. [PMID: 29497383 PMCID: PMC5818424 DOI: 10.3389/fphys.2018.00024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/09/2018] [Indexed: 12/29/2022] Open
Abstract
Tripartite motif-containing protein 31 (TRIM31), an E3 ubiquitin ligase of the tripartite motif family, plays an important role in the innate immune response. It can reduce the activity of the nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome. However, little information is about glucose metabolic health of TRIM31-deficient mice, and investigations about gut microbiota in TRIM31-deficient mice is limited. Thus, we aimed to compare glucose metabolic parameters, gut microbiota composition and inflammatory cytokine levels between TRIM31-/- and wild-type (WT) mice, and further investigate whether or not certain gut microbiota taxon correlates with specific metabolic parameters and inflammation cytokines in TRIM31-deficient mice. TRIM31-/- mice showed glucose intolerance and insulin resistance, with a significant difference in gut microbiota composition, characterized by increased abundance of Prevotellaceae and Veillonellaceae. TRIM31-/- mice with impaired glucose metabolism was accompanied by elevated serum tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β) concentrations, as well as upregulated caecal TNF-α, IL-1β, caspase-1, and NLRP3 expressions. Furthermore, elevated p-IRS-1/IRS-1 protein expression, and decreased Akt Thr308 phosphorylation were observed in TRIM31-/- mice. Prevotellaceae abundance was positively associated with caecal IL-1β mRNA expression, and Veillonellaceae was associated with higher TNF-α mRNA expression and serum insulin concentration. In conclusion, our study is novel in showing that TRIM31 deficiency is associated with impaired glucose metabolism and disrupted gut microbiota in mice. This study contributes to the theoretical foundation on the potential relationship between TRIM31 deficiency and the development of abnormal glucose metabolism.
Collapse
Affiliation(s)
- Jing Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Shandong University Qilu Hospital, Jinan, China
| | - Fei Xue
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Shandong University Qilu Hospital, Jinan, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Shandong University Qilu Hospital, Jinan, China
| | - Cheng Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Shandong University Qilu Hospital, Jinan, China
| | - Lei Qiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Shandong University Qilu Hospital, Jinan, China
| | - Jing Ma
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Shandong University Qilu Hospital, Jinan, China
| | - Wenhai Sui
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Shandong University Qilu Hospital, Jinan, China
| | - Xingli Xu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Shandong University Qilu Hospital, Jinan, China
| | - Chengjiang Gao
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Panpan Hao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Shandong University Qilu Hospital, Jinan, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Shandong University Qilu Hospital, Jinan, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Shandong University Qilu Hospital, Jinan, China
| |
Collapse
|
30
|
lyoussi B, Cherkaoui-Tangi K, Morel N, Wibo M. Characterization of vascular dysregulation in meriones shawi after high-calorie diet feeding. Clin Exp Hypertens 2018; 40:353-362. [DOI: 10.1080/10641963.2017.1377219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Badiaa lyoussi
- Laboratoire de physiologie-pharmacologie et santé environnementale, Faculté des Sciences Dhar-Mahraz, Université Sidi Mohamed Ben Abdallah, POBox 1976 Fès Atlas, Fès, Morocco
| | - khadija Cherkaoui-Tangi
- Laboratoire de physiologie-pharmacologie et santé environnementale, Faculté des Sciences Dhar-Mahraz, Université Sidi Mohamed Ben Abdallah, POBox 1976 Fès Atlas, Fès, Morocco
- Secteur des Sciences de la Santé, Université catholique de Louvain, Bruxelles, Belgium
| | - Nicole Morel
- Secteur des Sciences de la Santé, Université catholique de Louvain, Bruxelles, Belgium
| | - Maurice Wibo
- Secteur des Sciences de la Santé, Université catholique de Louvain, Bruxelles, Belgium
| |
Collapse
|
31
|
A maternal high-fat, high-sucrose diet alters insulin sensitivity and expression of insulin signalling and lipid metabolism genes and proteins in male rat offspring: effect of folic acid supplementation. Br J Nutr 2017; 118:580-588. [PMID: 29056104 DOI: 10.1017/s0007114517002501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A maternal high-fat, high-sucrose (HFS) diet alters offspring glucose and lipid homoeostasis through unknown mechanisms and may be modulated by folic acid. We investigated the effect of a maternal HFS diet on glucose homoeostasis, expression of genes and proteins associated with insulin signalling and lipid metabolism and the effect of prenatal folic acid supplementation (HFS/F) in male rat offspring. Pregnant Sprague-Dawley rats were randomly fed control (CON), HFS or HFS/F diets. Offspring were weaned on CON; at postnatal day 70, fasting plasma insulin and glucose and liver and skeletal muscle gene and protein expression were measured. Treatment effects were assessed by one-way ANOVA. Maternal HFS diet induced higher fasting glucose in offspring v. HFS/F (P=0·027) and down-regulation (P<0·05) of genes coding for v-Akt murine thymoma viral oncogene homolog 2, resistin and v-Raf-1 murine leukaemia viral oncogene homolog 1 (Raf1) in offspring skeletal muscle and acetyl-CoA carboxylase (Acaca), fatty acid synthase and phosphatidylinositol-4,5-biphosphate 3-kinase, catalytic subunit β in offspring liver. Skeletal muscle neuropeptide Y and hepatic Kruppel-like factor 10 were up-regulated in HFS v. CON offspring (P<0·05). Compared with CON, Acaca and Raf1 protein expression levels were significantly lower in HFS offspring. Maternal HFS induced higher homoeostasis model of assessment index of insulin resistance v. CON (P=0·030) and HFS/F was associated with higher insulin (P=0·016) and lower glucose (P=0·025). Maternal HFS diet alters offspring insulin sensitivity and de novo hepatic lipogenesis via altered gene and protein expression, which appears to be potentiated by folate supplementation.
Collapse
|
32
|
Paalvast Y, Gerding A, Wang Y, Bloks VW, van Dijk TH, Havinga R, Willems van Dijk K, Rensen PCN, Bakker BM, Kuivenhoven JA, Groen AK. Male apoE*3-Leiden.CETP mice on high-fat high-cholesterol diet exhibit a biphasic dyslipidemic response, mimicking the changes in plasma lipids observed through life in men. Physiol Rep 2017; 5:e13376. [PMID: 29038350 PMCID: PMC5641925 DOI: 10.14814/phy2.13376] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022] Open
Abstract
Physiological adaptations resulting in the development of the metabolic syndrome in man occur over a time span of several decades. This combined with the prohibitive financial cost and ethical concerns to measure key metabolic parameters repeatedly in subjects for the major part of their life span makes that comprehensive longitudinal human data sets are virtually nonexistent. While experimental mice are often used, little is known whether this species is in fact an adequate model to better understand the mechanisms that drive the metabolic syndrome in man. We took up the challenge to study the response of male apoE*3-Leiden.CETP mice (with a humanized lipid profile) to a high-fat high-cholesterol diet for 6 months. Study parameters include body weight, food intake, plasma and liver lipids, hepatic transcriptome, VLDL - triglyceride production and importantly the use of stable isotopes to measure hepatic de novo lipogenesis, gluconeogenesis, and biliary/fecal sterol secretion to assess metabolic fluxes. The key observations include (1) high inter-individual variation; (2) a largely unaffected hepatic transcriptome at 2, 3, and 6 months; (3) a biphasic response curve of the main metabolic features over time; and (4) maximum insulin resistance preceding dyslipidemia. The biphasic response in plasma triglyceride and total cholesterol appears to mimic that of men in cross-sectional studies. Combined, these observations suggest that studies such as these can help to delineate the causes of metabolic derangements in patients suffering from metabolic syndrome.
Collapse
Affiliation(s)
- Yared Paalvast
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert Gerding
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Yanan Wang
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
- Department Medicine, Division Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Theo H van Dijk
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Rick Havinga
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Ko Willems van Dijk
- Department Medicine, Division Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department Medicine, Division Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine Leiden University Medical Center, Leiden, The Netherlands
| | - Barbara M Bakker
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert K Groen
- Department of Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
- Department of Vascular Medicine, Amsterdam Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Preuss HG, Clouatre D, Swaroop A, Bagchi M, Bagchi D, Kaats GR. Blood Pressure Regulation: Reviewing Evidence for Interplay Between Common Dietary Sugars and Table Salt. J Am Coll Nutr 2017; 36:677-684. [PMID: 28960144 DOI: 10.1080/07315724.2017.1345338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A popular concept is that the significant global progression in prevalence and intensification of elevated blood pressure (BP) levels is due in part to dietary indiscretions. Excess intake of several food sources causing overweight/obesity plays an important role in BP perturbations. However, certain nutrients are involved in ways other than via body fat accumulation, particularly table salt (sodium chloride) and popular refined carbohydrates like dietary sugars (sucrose, fructose, high fructose corn syrup). In nondiabetics and diabetics, several functions of salt and sugar influence BP and metabolism. For example, salt intake is linked to volume expansion, insulin resistance, and hypertension, while sugar intake is associated with enhanced salt sensitivity via urinary sodium retention, insulin resistance, and hypertension. The key postulate evaluated here is that when two popular nutrients-salt and dietary sugars-are consumed together in adequate amounts, their respective individual BP effects are significantly amplified. In previous laboratory studies, a sugar challenge did not increase BP in the face of marked sodium depletion, and combining sugar and salt challenges caused a synergistic BP elevation. Among examples of amplification on the clinical side, the greatest increases in BP following sugar challenges were seen in diabetic subjects having the highest sodium excretion. Interplay between table salt and common dietary sugars in BP regulation is a reasonable postulate and should be carefully considered when developing optimal prevention and treatment regimens to ameliorate the worldwide crisis arising from harmful elevated BP levels.
Collapse
Affiliation(s)
- Harry G Preuss
- a Department of Biochemistry , Georgetown University Medical Center , Washington , DC , USA
| | | | - Anand Swaroop
- c Cepham Research Center , Piscataway , New Jersey , USA
| | | | - Debasis Bagchi
- c Cepham Research Center , Piscataway , New Jersey , USA.,e Department of Pharmacological and Pharmaceutical Services , University of Houston , Houston , Texas , USA
| | - Gilbert R Kaats
- f Integrative Health Technologies , San Antonio , Texas , USA
| |
Collapse
|
34
|
Pancreatic and renal function in streptozotocin-induced type 2 diabetic rats administered combined inositol hexakisphosphate and inositol supplement. Biomed Pharmacother 2017; 96:72-77. [PMID: 28965010 DOI: 10.1016/j.biopha.2017.09.126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/23/2017] [Accepted: 09/24/2017] [Indexed: 11/23/2022] Open
Abstract
Diabetes mellitus, as a result of microvascular and macrovascular injury, causes organ dysfunction in a wide variety of tissues. The objective of this study was to investigate the effect of combined inositol hexakisphosphate and inositol supplement on renal and pancreatic integrity in type 2 diabetic rats. Thirty male Sprague-Dawley rats were divided into five groups (n=6 per group). Type 2 diabetes was induced in three groups using high-fat diet combined with a single dose of streptozotocin (35mg/kg body weight, intraperitoneally). Two of the diabetic groups were treated with combined IP6 and inositol or glibenclamide. Serum biochemical markers of kidney damage kidney, antioxidant status (superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH) and lipid peroxidation were measured. Histomorphological and morphometric examinations of the H&E stained pancreas were also carried out. The administration of combined IP6 and inositol supplement resulted in 64% and 27% increase in CAT activities and GSH levels respectively and a 25% decrease in lipid peroxidation level compared to the diabetic control. Serum uric acid, creatinine and BUN levels in the combination treated group was comparable to the normal control. Examination of H&E stained pancreatic sections showed a significant increase (107%) in the number of islets in the combined IP6 and inositol treated group compared to the untreated diabetic group. Overall, the treatment of type 2 diabetic rats with combined IP6 and inositol supplement resulted in the improvement of renal and pancreatic function.
Collapse
|
35
|
Differential response of rat strains to obesogenic diets underlines the importance of genetic makeup of an individual towards obesity. Sci Rep 2017; 7:9162. [PMID: 28831087 PMCID: PMC5567335 DOI: 10.1038/s41598-017-09149-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/24/2017] [Indexed: 11/23/2022] Open
Abstract
Obesity, a multifactorial disorder, results from a chronic imbalance of energy intake vs. expenditure. Apart from excessive consumption of high calorie diet, genetic predisposition also seems to be equally important for the development of obesity. However, the role of genetic predisposition in the etiology of obesity has not been clearly delineated. The present study addresses this problem by selecting three rat strains (WNIN, F-344, SD) with different genetic backgrounds and exposing them to high calorie diets. Rat strains were fed HF, HS, and HFS diets and assessed for physical, metabolic, biochemical, inflammatory responses, and mRNA expression. Under these conditions: significant increase in body weight, visceral adiposity, oxidative stress and systemic pro-inflammatory status; the hallmarks of central obesity were noticed only in WNIN. Further, they developed altered glucose and lipid homeostasis by exhibiting insulin resistance, impaired glucose tolerance, dyslipidemia and fatty liver condition. The present study demonstrates that WNIN is more prone to develop obesity and associated co-morbidities under high calorie environment. It thus underlines the cumulative role of genetics (nature) and diet (nurture) towards the development of obesity, which is critical for understanding this epidemic and devising new strategies to control and manage this modern malady.
Collapse
|
36
|
Zafirovic S, Obradovic M, Sudar-Milovanovic E, Jovanovic A, Stanimirovic J, Stewart AJ, Pitt SJ, Isenovic ER. 17β-Estradiol protects against the effects of a high fat diet on cardiac glucose, lipid and nitric oxide metabolism in rats. Mol Cell Endocrinol 2017; 446:12-20. [PMID: 28163099 DOI: 10.1016/j.mce.2017.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/17/2017] [Accepted: 02/01/2017] [Indexed: 12/26/2022]
Abstract
The aim of this study was to investigate the in vivo effects of 17β-estradiol (E2) on myocardial metabolism and inducible nitric oxide synthase (iNOS) expression/activity in obese rats. Male Wistar rats were fed with a normal or a high fat (HF) diet (42% fat) for 10 weeks. Half of the HF fed rats were treated with a single dose of E2 while the other half were placebo-treated. 24 h after treatment animals were sacrificed. E2 reduced cardiac free fatty acid (FFA) (p < 0.05), L-arginine (p < 0.01), iNOS mRNA (p < 0.01), and protein (p < 0.05) levels and translocation of the FFA transporter (CD36) (p < 0.01) to the plasma membrane (PM) in HF fed rats. In contrast, Akt phosphorylation at Thr308 (p < 0.05) and translocation of the glucose transporter GLUT4 (p < 0.05) to the PM increased after E2 treatment in HF rats. Our results indicate that E2 acts via the PI3K/Akt signalling pathway to partially protect myocardial metabolism by attenuating the detrimental effects of increased iNOS expression/activity in HF fed rats.
Collapse
Affiliation(s)
- Sonja Zafirovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Milan Obradovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Emina Sudar-Milovanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Aleksandra Jovanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Julijana Stanimirovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Alan J Stewart
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, United Kingdom.
| | - Samantha J Pitt
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, United Kingdom.
| | - Esma R Isenovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| |
Collapse
|
37
|
Karot SS, Surenahalli VG, Kishore A, Mudgal J, Nandakumar K, Chirayil MT, Mathew G, Nampurath GK. Dose-related antihyperglycemic and hypolipidemic effects of two novel thiazolidin-4-ones in a rodent model of metabolic syndrome. J Diabetes 2016; 8:629-39. [PMID: 26345135 DOI: 10.1111/1753-0407.12341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 07/28/2015] [Accepted: 08/17/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The replacement of the thiazolidinedione moiety with a thiazolidinone may yield antidiabetic compounds with similar pleiotropic effects. Hence, the aim of the present study was to explore the dose-related antihyperglycemic and hypolipidemic effects of two synthesized novel thiazolidin-4-one derivatives, one with a nicotinamide and the other with a p-chlorophenoxyacetamide substitution at the N3 position of the thiazolidinone ring (NAT1 and PAT1, respectively), in a rodent model of metabolic syndrome (MetS). METHODS Metabolic syndrome was induced in Wistar rats by neonatal administration of monosodium glutamate (i.p.) on 4 consecutive days followed by high-sucrose diet feeding for 6 months. The effects of NAT1 (33 and 66 mg/kg) and molar equivalent doses of PAT1 (40 and 80 mg/kg) on relevant biochemical parameters were evaluated. Because MetS is a state of chronic low-grade inflammation, we also evaluated the effects of these compounds on proinflammatory markers, namely interleukin (IL)-6, tumor necrosis factor (TNF)-α, reactive oxygen species (ROS), and nitric oxide (NO). RESULTS Both NAT1 and PAT1 attenuated hyperglycemia, hypertriglyceridemia, hypoalphalipoproteinemia, and glucose intolerance. PAT1 exhibited superior antihyperglycemic and antihypoalphalipoproteinemic effects than NAT1. However, NAT1 had a better triglyceride-lowering effect. At the lower dose tested, both compounds significantly reduced elevated malondialdehyde levels. In addition, PAT1 (80 mg/kg) restored hepatic superoxide dismutase enzyme levels. There was a tendency for NAT1 and PAT1 to inhibit elevated hepatic IL-6 and TNF-α levels, but the differences did not reach statistical significance. In addition, PAT1 exhibited in vitro anti-inflammatory activity by reducing proinflammatory ROS and NO levels in RAW264.7 macrophages. CONCLUSIONS The novel thiazolidin-4-ones NAT1 and PAT1 could be potential pleiotropic drug candidates targeting MetS.
Collapse
Affiliation(s)
- Sarine Sebastian Karot
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, India
| | - Vasantharaju Gowdra Surenahalli
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, India
| | - Magith Thambi Chirayil
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, India
| | - Geetha Mathew
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, India
| | - Gopalan Kutty Nampurath
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, India
| |
Collapse
|
38
|
Lavet C, Martin A, Linossier MT, Vanden Bossche A, Laroche N, Thomas M, Gerbaix M, Ammann P, Fraissenon A, Lafage-Proust MH, Courteix D, Vico L. Fat and Sucrose Intake Induces Obesity-Related Bone Metabolism Disturbances: Kinetic and Reversibility Studies in Growing and Adult Rats. J Bone Miner Res 2016; 31:98-115. [PMID: 26175082 DOI: 10.1002/jbmr.2596] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/19/2015] [Accepted: 06/29/2015] [Indexed: 01/01/2023]
Abstract
Metabolic and bone effects were investigated in growing (G, n = 45) and mature (M, n = 45) rats fed a high-fat/high-sucrose diet (HFS) isocaloric to the chow diet of controls (C, n = 30 per group). At week 19, a subset of 15 rats in each group (HFS or C, at both ages) was analyzed. Then one-half of the remaining 30 HFS rats in each groups continued HFS and one-half were shifted to C until week 27. Although no serum or bone marrow inflammation was seen, HFS increased visceral fat, serum leptin and insulin at week 19 and induced further alterations in lipid profile, serum adiponectin, and TGFβ1, TIMP1, MMP2, and MMP9, suggesting a prediabetic phenotype and cardiovascular dysfunction at week 27 more pronounced in M than G. These events were associated with dramatic reduction of osteoclastic and osteoid surfaces with accelerated mineralizing surfaces in both HFS age groups. Mineral metabolism and its major regulators were disturbed, leading to hyperphosphatemia and hypocalcemia. These changes were associated with bone alterations in the weight-bearing tibia, not in the non-weight-bearing vertebra. Indeed in fat rats, tibia trabecular bone accrual increased in G whereas loss of trabecular bone in M was alleviated. At diaphysis cortical porosity increased in G and even more in M at week 27. After the diet switch, metabolic and bone cellular disturbances fully reversed in G, but not in M. Trabecular benefit of the obese was preserved in both age groups and in M the age-related bone loss was even lighter after the diet switch than in prolonged HFS. At the diaphysis, cortical porosity normalized in G but not in M. Hypocalcemia in G and M was irreversible. Thus, the mild metabolic syndrome induced by isocaloric HFS is able to alter bone cellular activities and mineral metabolism, reinforce trabecular bone, and affect cortical bone porosity in an irreversible manner in older rats.
Collapse
Affiliation(s)
- Cédric Lavet
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1059, Laboratoire de Biologie intégrative du Tissu Osseux, Lyon University, Saint-Étienne, France
| | - Aline Martin
- Division of Nephrology, Center for Translational Metabolism and Health Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marie-Thérèse Linossier
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1059, Laboratoire de Biologie intégrative du Tissu Osseux, Lyon University, Saint-Étienne, France
| | - Arnaud Vanden Bossche
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1059, Laboratoire de Biologie intégrative du Tissu Osseux, Lyon University, Saint-Étienne, France
| | - Norbert Laroche
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1059, Laboratoire de Biologie intégrative du Tissu Osseux, Lyon University, Saint-Étienne, France
| | - Mireille Thomas
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1059, Laboratoire de Biologie intégrative du Tissu Osseux, Lyon University, Saint-Étienne, France
| | - Maude Gerbaix
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1059, Laboratoire de Biologie intégrative du Tissu Osseux, Lyon University, Saint-Étienne, France
| | - Patrick Ammann
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital, Geneva, Switzerland
| | - Antoine Fraissenon
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1059, Laboratoire de Biologie intégrative du Tissu Osseux, Lyon University, Saint-Étienne, France
| | - Marie-Hélène Lafage-Proust
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1059, Laboratoire de Biologie intégrative du Tissu Osseux, Lyon University, Saint-Étienne, France
| | - Daniel Courteix
- Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological conditions (AME2P, EA3533), Blaise Pascal University, Clermont University, Clermont Ferrand, France
| | - Laurence Vico
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1059, Laboratoire de Biologie intégrative du Tissu Osseux, Lyon University, Saint-Étienne, France
| |
Collapse
|
39
|
Cheng D, Zhang X, Meng M, Han L, Li Z, Hou L, Qi W, Wang C. The protective effect of a buckwheat-enriched diet on renal injury in high salt-induced hypertension in rats. Food Funct 2016; 7:3548-54. [DOI: 10.1039/c6fo00296j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An excess of dietary salt is the most common factor that contributes to the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Dai Cheng
- Key Laboratory of Food Safety and Sanitation
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin
| | - Xinyu Zhang
- Key Laboratory of Food Safety and Sanitation
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin
| | - Meng Meng
- Key Laboratory of Food Safety and Sanitation
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin
| | - Lirong Han
- Key Laboratory of Food Safety and Sanitation
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin
| | - Zheng Li
- Key Laboratory of Food Safety and Sanitation
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin
| | - Lihua Hou
- Key Laboratory of Food Safety and Sanitation
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin
| | - Wentao Qi
- Academy of State Administration of Grain
- Beijing
- People's Republic of China
| | - Chunling Wang
- Key Laboratory of Food Safety and Sanitation
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin
| |
Collapse
|
40
|
Yook JS, Kim KA, Park JE, Lee SH, Cha YS. Microalgal Oil Supplementation Has an Anti-Obesity Effect in C57BL/6J Mice Fed a High Fat Diet. Prev Nutr Food Sci 2015; 20:230-7. [PMID: 26770909 DOI: 10.3746/pnf.2015.20.4.230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/04/2015] [Indexed: 01/22/2023] Open
Abstract
This study investigated the impact of microalgal oil (MO) on body weight management in C57BL/6J mice. Obesity was induced for 8 weeks and animals were orally supplemented with the following for 8 additional weeks: beef tallow (BT), corn oil, fish oil (FO), microalgal oil (MO), or none, as a high fat diet control group (HD). A normal control group was fed with a normal diet. After completing the experiment, the FO and MO groups showed significant decreases in body weight gain, epididymal fat pad weights, serum triglycerides, and total cholesterol levels compared to the HD and BT groups. A lower mRNA expression level of lipid anabolic gene and higher levels of lipid catabolic genes were observed in both FO and MO groups. Serum insulin and leptin concentrations were lower in the MO group. These results indicated that microalgal oil has an anti-obesity effect that can combat high fat diet-induced obesity in mice.
Collapse
Affiliation(s)
- Jin-Seon Yook
- Department of Food Science and Human Nutrition, Brain Korea 21 Plus, Chonbuk National University, Jeonbuk 54896, Korea
| | - Kyung-Ah Kim
- Department of Food and Nutrition, Songwon University, Gwanju 61756, Korea
| | - Jeong Eun Park
- Department of Food Science and Human Nutrition, Brain Korea 21 Plus, Chonbuk National University, Jeonbuk 54896, Korea
| | - Seon-Hwa Lee
- Department of Food Science and Human Nutrition, Brain Korea 21 Plus, Chonbuk National University, Jeonbuk 54896, Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Brain Korea 21 Plus, Chonbuk National University, Jeonbuk 54896, Korea
| |
Collapse
|
41
|
Zhang H, Thoonen R, Yao V, Buys ES, Popovich J, Su YR, Wang TJ, Scherrer-Crosbie M. Regulation of B-type natriuretic peptide synthesis by insulin in obesity in male mice. Exp Physiol 2015; 101:113-23. [PMID: 26446173 DOI: 10.1113/ep085091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 09/25/2015] [Indexed: 01/07/2023]
Abstract
Human studies suggest that insulin resistance and obesity are associated with a decrease in B-type natriuretic peptide (BNP) plasma concentrations. The objective of the study was to gain insights into the mechanisms involved in the association between insulin resistance and decreased BNP plasma concentrations. Mice fed a high-fat, high-fructose (HFHF) diet for 4 weeks developed mild obesity and systemic insulin resistance. Elevated plasma concentrations of insulin, glucose and triglycerides were noted. The HFHF diet was also associated with myocardial insulin resistance, characterized by an impaired response of the phosphoinositide 3-kinase-AKT (PI3K-AKT) pathway to insulin in the left ventricle. Myocardial BNP expression and protein were decreased in HFHF-fed mice compared with control animals. Exposure of cardiomyocytes to 100 nm insulin activated PI3K-AKT signalling (15 min) and induced a 1.9 ± 0.3-fold increase in BNP gene expression (6 h). Prolonged exposure of cardiomyocytes to a high insulin concentration (100 nm) for 48 h induced insulin resistance, characterized by an impaired response of the PI3K-AKT signalling pathway and a decreased response of the BNP gene expression to insulin. The decreased response in BNP gene expression was reproduced by treating cardiomyocytes for 7 h with a PI3-kinase inhibitor (wortmannin). In conclusion, HFHF diet in vivo, prolonged exposure to an elevated concentration of insulin or inhibition of the PI3K-AKT pathway in vitro all decrease BNP mRNA levels; this decrease may in turn contribute to the decreased BNP peptide concentrations in plasma observed in insulin-resistant individuals.
Collapse
Affiliation(s)
- Haihua Zhang
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robrecht Thoonen
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vincent Yao
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emmanuel S Buys
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John Popovich
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yan Ru Su
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN, USA
| | - Thomas J Wang
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN, USA
| | - Marielle Scherrer-Crosbie
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Cardiac Ultrasound Laboratory, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Obradovic M, Zafirovic S, Jovanovic A, Milovanovic ES, Mousa SA, Labudovic-Borovic M, Isenovic ER. Effects of 17β-estradiol on cardiac Na(+)/K(+)-ATPase in high fat diet fed rats. Mol Cell Endocrinol 2015; 416:46-56. [PMID: 26284496 DOI: 10.1016/j.mce.2015.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/28/2015] [Accepted: 08/14/2015] [Indexed: 01/04/2023]
Abstract
The aim of this study was to investigate in vivo effects of estradiol on Na(+)/K(+)-ATPase activity/expression in high fat (HF) diet fed rats. Adult male Wistar rats were fed normally (Control, n = 7) or with a HF diet (Obese, n = 14) for 10 weeks. After 10 weeks, half of the obese rats were treated with estradiol (Obese + Estradiol, n = 7, 40 μg/kg, i.p.) as a bolus injection and 24 h after treatment all the rats were sacrificed. Estradiol in vivo in obese rats in comparison with obese non-treated rats led to a statistically significant increase in concentration of serum Na(+) (p < 0.05), Na(+)/K(+)-ATPase activity (p < 0.01), expression of α1 (p < 0.01) and α2 (p < 0.05) subunit of Na(+)/K(+)-ATPase, both PI3K subunits p85 (p < 0.01), p110 (p < 0.05), and association of IRS-1 with p85 (p < 0.05), while significantly decrease expression of AT1 (p < 0.05) and Rho A (p < 0.01) proteins. Our results suggest that estradiol in vivo in pathophysiological conditions, such as obesity accompanied with insulin resistance stimulates activity and expression of Na(+)/K(+)-ATPase by a mechanism that involves the participation of IRS-1/PI3K/Akt signaling. In addition, the decreasing level of AT1 and Rho A proteins estradiol probably attenuates the detrimental effect of obesity to decreased IRS-1/PI3K association and consequently reduce Na(+)/K(+)-ATPase activity/expression.
Collapse
Affiliation(s)
- Milan Obradovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Sonja Zafirovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Aleksandra Jovanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Emina Sudar Milovanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144, USA.
| | - Milica Labudovic-Borovic
- Institute of Histology and Embryology "Aleksandar Đ. Kostić", Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Esma R Isenovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| |
Collapse
|
43
|
Association between anthropometric indices and cardiometabolic risk factors in pre-school children. BMC Pediatr 2015; 15:170. [PMID: 26546280 PMCID: PMC4636828 DOI: 10.1186/s12887-015-0500-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/02/2015] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The world health organization (WHO) and the Identification and prevention of dietary- and lifestyle-induced health effects in children and infants- study (IDEFICS), released anthropometric reference values obtained from normal body weight children. This study examined the relationship between WHO [body mass index (BMI) and triceps- and subscapular-skinfolds], and IDEFICS (waist circumference, waist to height ratio and fat mass index) anthropometric indices with cardiometabolic risk factors in pre-school children ranging from normal body weight to obesity. METHODS A cross-sectional study with 232 children (aged 4.1 ± 0.05 years) was performed. Anthropometric measurements were collected and BMI, waist circumference, waist to height ratio, triceps- and subscapular-skinfolds sum and fat mass index were calculated. Fasting glucose, fasting insulin, homeostasis model analysis insulin resistance (HOMA-IR), blood lipids and apolipoprotein (Apo) B-100 (Apo B) and Apo A-I were determined. Pearson's correlation coefficient, multiple regression analysis and the receiver-operating characteristic (ROC) curve analysis were run. RESULTS 51% (n = 73) of the boys and 52% (n = 47) of the girls were of normal body weight, 49% (n = 69) of the boys and 48% (n = 43) of the girls were overweight or obese. Anthropometric indices correlated (p < 0.001) with insulin: [BMI (r = 0.514), waist circumference (r = 0.524), waist to height ratio (r = 0.304), triceps- and subscapular-skinfolds sum (r = 0.514) and fat mass index (r = 0.500)], and HOMA-IR: [BMI (r = 0.509), waist circumference (r = 0.521), waist to height ratio (r = 0.296), triceps- and subscapular-skinfolds sum (r = 0.483) and fat mass index (r = 0.492)]. Similar results were obtained after adjusting by age and sex. The areas under the curve (AUC) to identify children with insulin resistance were significant (p < 0.001) and similar among anthropometric indices (AUC > 0.68 to AUC < 0.76). CONCLUSIONS WHO and IDEFICS anthropometric indices correlated similarly with fasting insulin and HOMA-IR. The diagnostic accuracy of the anthropometric indices as a proxy to identify children with insulin resistance was similar. These data do not support the use of waist circumference, waist to height ratio, triceps- and subscapular- skinfolds sum or fat mass index, instead of the BMI as a proxy to identify pre-school children with insulin resistance, the most frequent alteration found in children ranging from normal body weight to obesity.
Collapse
|
44
|
Ottum MS, Mistry AM. Advanced glycation end-products: modifiable environmental factors profoundly mediate insulin resistance. J Clin Biochem Nutr 2015; 57:1-12. [PMID: 26236094 PMCID: PMC4512899 DOI: 10.3164/jcbn.15-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/13/2015] [Indexed: 12/25/2022] Open
Abstract
Advanced glycation end-products are toxic by-products of metabolism and are also acquired from high-temperature processed foods. They promote oxidative damage to proteins, lipids and nucleotides. Aging and chronic diseases are strongly associated with markers for oxidative stress, especially advanced glycation end-products, and resistance to peripheral insulin-mediated glucose uptake. Modifiable environmental factors including high levels of refined and simple carbohydrate diets, hypercaloric diets and sedentary lifestyles drive endogenous formation of advanced glycation end-products via accumulation of highly reactive glycolysis intermediates and activation of the polyol/aldose reductase pathway producing high intracellular fructose. High advanced glycation end-products overwhelm innate defenses of enzymes and receptor-mediated endocytosis and promote cell damage via the pro-inflammatory and pro-oxidant receptor for advanced glycation end-products. Oxidative stress disturbs cell signal transduction, especially insulin-mediated metabolic responses. Here we review emerging evidence that restriction of dietary advanced glycation end-products significantly reduces total systemic load and insulin resistance in animals and humans in diabetes, polycystic ovary syndrome, healthy populations and dementia. Of clinical importance, this insulin sensitizing effect is independent of physical activity, caloric intake and adiposity level.
Collapse
Affiliation(s)
- Mona S Ottum
- Dietetics and Human Nutrition Program, 318 Marshall Building, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Anahita M Mistry
- Dietetics and Human Nutrition Program, 318 Marshall Building, Eastern Michigan University, Ypsilanti, MI 48197, USA
| |
Collapse
|
45
|
Kshirsagar RP, Kothamasu MV, Patil MA, Reddy GB, Kumar BD, Diwan PV. Geranium oil ameliorates endothelial dysfunction in high fat high sucrose diet induced metabolic complications in rats. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
46
|
Hu H, Xu Y, Liu C, Zhao H, Zhang H, Wang L. Changes in behavior and in brain glucose metabolism in rats after nine weeks on a high fat diet: a randomized controlled trial. SHANGHAI ARCHIVES OF PSYCHIATRY 2014; 26:129-37. [PMID: 25114487 PMCID: PMC4118009 DOI: 10.3969/j.issn.1002-0829.2014.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 05/22/2014] [Indexed: 11/30/2022]
Abstract
Background A high-fat diet (HFD) is a well-known risk factor for cardio-cerebrovascular disease but the relationship between a HFD and depressive symptoms remains unknown. Objective Compare changes in behavioral and measures of brain glucose metabolism in rats fed a HFD to those of rats fed a standard diet. Methods Twenty male Sprague-Dawley rats were randomly assigned to a study group (n=10) that received a high fat diet for 9 weeks or a control group (n=10) that received a standard diet for 9 weeks. At baseline and at the end of the 9-week trial assessments included body weight, serum lipids (total cholesterol, triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol), the sucrose preference test, and the open field test. The rate of brain glucose metabolism in different brain regions (assessed using micro-positron emission tomography) at the end of the trial was also compared between the two groups of rats. Results Nine weeks of a HFD in rats resulted in the expected increase in weight and changes in serum lipid levels, but it was also associated with a decreased preference for sucrose (which may be due to a loss of interest in pleasurable activities), increased weight-adjusted water intake, and a significant deactivation of the right thalamus and right striatum (based on decreased rates of glucose metabolism). In the HFD group the magnitude of the drop in the sucrose preference was strongly correlated to the magnitude of the deactivation of the right thalamus (r=0.78) and the right striatum (r=0.81). Conclusions These findings support hypotheses about the role of a HFD in the causal pathway for depressive symptoms. Further work is needed to clarify the underling mechanism, but it appears that the interaction between the content of the diet and the limbic system-striatum-thalamus circuit plays a role in both eating behavior and depressive symptoms.
Collapse
Affiliation(s)
- Hua Hu
- Department of Neurology, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province, China ; Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, China
| | - Yeqing Xu
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, China
| | - Chunfeng Liu
- Department of Neurology, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province, China
| | - Heqing Zhao
- Department of Neurology, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province, China
| | - Hong Zhang
- Department of Nuclear Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Liwei Wang
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Sudhakara G, Mallaiah P, Sreenivasulu N, Sasi Bhusana Rao B, Rajendran R, Saralakumari D. Beneficial effects of hydro-alcoholic extract of Caralluma fimbriata against high-fat diet-induced insulin resistance and oxidative stress in Wistar male rats. J Physiol Biochem 2014; 70:311-20. [DOI: 10.1007/s13105-013-0304-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 12/02/2013] [Indexed: 12/17/2022]
|
48
|
Xun P, Wu Y, He Q, He K. Fasting insulin concentrations and incidence of hypertension, stroke, and coronary heart disease: a meta-analysis of prospective cohort studies. Am J Clin Nutr 2013; 98:1543-54. [PMID: 24132974 PMCID: PMC3831539 DOI: 10.3945/ajcn.113.065565] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Insulin resistance is a precursor of numerous chronic diseases, including cardiovascular disease (CVD). The fasting insulin concentration is considered a reasonable surrogate of insulin resistance, especially among nondiabetic individuals. OBJECTIVE We aimed to quantitatively summarize the literature on the association of fasting insulin concentrations with risk of hypertension, stroke, and coronary heart disease (CHD) by conducting a meta-analysis of prospective cohort studies. DESIGN Eligible studies were identified by searching PubMed and EMBASE through January 2013. Additional information was retrieved through Google Scholar or a hand review of the reference lists from relevant articles. Prospective cohort studies that reported RRs and corresponding 95% CIs for the association of interest were identified. Data were extracted independently by 2 investigators, and the weighted RRs and 95% CIs for the associations were obtained by using a random-effects model. RESULTS Of the 22 identified studies, 10 reported results on hypertension (36,617 individuals and 4491 cases), 7 on stroke (27,887 individuals and 1550 cases), and 9 on CHD (22,379 individuals and 1986 cases). Comparison of the highest with the lowest quantile of fasting insulin concentrations showed a pooled RR (95% CI) of 1.63 (1.35, 1.97) for hypertension, 1.18 (0.87, 1.60) for stroke, and 1.50 (1.28, 1.77) for CHD. Each 50-pmol/L increment in fasting insulin was associated with a 25% increase in risk of hypertension [RR: 1.25 (1.14, 1.36)] and a 16% increase in risk of CHD [RR: 1.16 (1.10, 1.22)] but was not associated with risk of stroke [RR: 0.999 (0.99, 1.01)]. CONCLUSIONS A higher fasting insulin concentration or hyperinsulinemia was significantly associated with an increased risk of hypertension and CHD but not stroke. This meta-analysis suggests that early fasting insulin ascertainment in the general population may help clinicians identify those who are potentially at high risk of CVD.
Collapse
Affiliation(s)
- Pengcheng Xun
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN (PX and KH); the Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC (YW); and the Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (QH)
| | | | | | | |
Collapse
|
49
|
Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr Physiol 2013; 3:1-58. [PMID: 23720280 DOI: 10.1002/cphy.c110062] [Citation(s) in RCA: 270] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metabolic syndrome (MS) is a collection of cardiometabolic risk factors that includes obesity, insulin resistance, hypertension, and dyslipidemia. Although there has been significant debate regarding the criteria and concept of the syndrome, this clustering of risk factors is unequivocally linked to an increased risk of developing type 2 diabetes and cardiovascular disease. Regardless of the true definition, based on current population estimates, nearly 100 million have MS. It is often characterized by insulin resistance, which some have suggested is a major underpinning link between physical inactivity and MS. The purpose of this review is to: (i) provide an overview of the history, causes and clinical aspects of MS, (ii) review the molecular mechanisms of insulin action and the causes of insulin resistance, and (iii) discuss the epidemiological and intervention data on the effects of exercise on MS and insulin sensitivity.
Collapse
Affiliation(s)
- Christian K Roberts
- Exercise and Metabolic Disease Research Laboratory, Translational Sciences Section, School of Nursing, University of California at Los Angeles, Los Angeles, California, USA.
| | | | | |
Collapse
|
50
|
The effect of high fat diet and saturated fatty acids on insulin signaling in the amygdala and hypothalamus of rats. Brain Res 2013; 1537:191-200. [DOI: 10.1016/j.brainres.2013.09.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/13/2013] [Accepted: 09/19/2013] [Indexed: 12/22/2022]
|