1
|
Fryc D, Michnik R. Intrasubject and intersubject variability of stabilography parameters in normal conditions and simulated space mission isolation. J Biomech 2024; 176:112378. [PMID: 39467447 DOI: 10.1016/j.jbiomech.2024.112378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/27/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
The state of isolation and confinement causes several symptoms as a psycho-physiological stressor. The crew's health and condition may play a crucial role in prolonged space sojourns success. However, it's important to distinguish the role of microgravity from the distress aspect to better understand human physiology in training during space missions. Although stabilography is a commonly used biomechanical technique, there is not enough data on the measurement repeatability. It has already been proven that the stabilograms differ between subjects due to multiple anatomical and physiological characteristics but the intersubject variability remains unclear. The study provides statistical data on 10 different stabilography measurements of 18 participants performed on different days during an analog space mission (5 females and 4 males) and in normal conditions (5 females and 4 males). Descriptive statistics and interclass correlation were used to determine intra- and intersubject variability. Mann-Whitney test was used for group comparison. Isolation was found to significantly impact symmetry and forefoot/backfoot index in trials with eyes open and ellipse area and forefoot/backfoot index in trials with eyes closed. The results show a diverse level of stabilography parameters measurement repeatability. The least stable parameter was the ellipse area (%SD = 45.79 %) and the most stable stance symmetry (%SD = 4.60 %). The results confirm ellipse area and center of pressure path poor repeatability and relative stability of parameters describing load distribution. It also proves the importance of performing multiple trials in stabilography studies to reduce the risk of erroneous results caused by intersubject variability.
Collapse
Affiliation(s)
- Dobrochna Fryc
- Silesian University of Technology, Department of Biomechatronics, Roosevelt St. 40, 41-800 Zabrze, Poland.
| | - Robert Michnik
- Silesian University of Technology, Department of Biomechatronics, Roosevelt St. 40, 41-800 Zabrze, Poland.
| |
Collapse
|
2
|
Barbour BN, Twardowska K, Favero N, Ghoddousi P, Hodkinson P. Biopsychosocial Health Considerations for Astronauts in Long-Duration Spaceflight: A Narrative Review. Wilderness Environ Med 2024:10806032241289106. [PMID: 39470395 DOI: 10.1177/10806032241289106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Long-duration spaceflights beyond low-Earth orbit, including missions to the Moon and Mars, pose significant health risks. Although biomedical approaches commonly appear in the literature, considering psychological and social factors alongside physiologic health offers a more holistic approach to astronaut care. Integrating the biopsychosocial (BPS) framework into medical planning addresses complex spaceflight challenges and aids in developing mitigation strategies. This review examined health risks associated with long-duration spaceflight within a BPS framework. Sources included governmental space agencies, academic textbooks, and relevant publications from multiple databases. Considering the National Aeronautics and Space Administration's Human Research Program's 5 main hazards, a conceptual model was developed to highlight the multifactorial BPS effects of spaceflight. In space, astronauts face unique environments and biological adaptations, including fluid shift, plasma volume loss, bone density loss, and muscle atrophy. Noise and the absence of natural light disrupt circadian rhythms, causing sleep disturbances and fatigue, which affect physical and mental health. Studies on crews in isolated and confined extreme environments reveal psychosocial challenges, including impaired mood and cognition, interpersonal tension, and miscommunication. International collaboration in spaceflight introduces differences in communication, problem solving, and social customs due to diverse cultural backgrounds. Upcoming long-distance missions likely will amplify these challenges. This review emphasizes BPS health considerations in long-duration spaceflight. It highlights the interplay among psychological, social, and biological factors, advocating for multidisciplinary teams and a holistic approach to astronaut health and mission planning and the potential added value of BPS perspectives in considering countermeasures.
Collapse
|
3
|
De la Torre GG, Groemer G, Diaz-Artiles A, Pattyn N, Van Cutsem J, Musilova M, Kopec W, Schneider S, Abeln V, Larose T, Ferlazzo F, Zivi P, de Carvalho A, Sandal GM, Orzechowski L, Nicolas M, Billette de Villemeur R, Traon APL, Antunes I. Space Analogs and Behavioral Health Performance Research review and recommendations checklist from ESA Topical Team. NPJ Microgravity 2024; 10:98. [PMID: 39433767 PMCID: PMC11494059 DOI: 10.1038/s41526-024-00437-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024] Open
Abstract
Space analog research has increased over the last few years with new analogs appearing every year. Research in this field is very important for future real mission planning, selection and training of astronauts. Analog environments offer specific characteristics that resemble to some extent the environment of a real space mission. These analog environments are especially interesting from the psychological point of view since they allow the investigation of mental and social variables in very similar conditions to those occurring during real space missions. Analog missions also represent an opportunity to test operational work and obtain information on which combination of processes and team dynamics are most optimal for completing specific aspects of the mission. A group of experts from a European Space Agency (ESA) funded topical team reviews the current situation of topic, potentialities, gaps, and recommendations for appropriate research. This review covers the different domains in space analog research including classification, main areas of behavioral health performance research in these environments and operational aspects. We also include at the end, a section with a list or tool of recommendations in the form of a checklist for the scientific community interested in doing research in this field. This checklist can be useful to maintain optimal standards of methodological and scientific quality, in addition to identifying topics and areas of special interest.
Collapse
Affiliation(s)
- Gabriel G De la Torre
- Neuropsychology and Experimental Psychology Lab. University of Cadiz, Cadiz, Spain.
- Institute of Biomedical Research and Innovation of Cadiz (INIBICA), Cadiz, Spain.
| | | | - Ana Diaz-Artiles
- Bioastronautics and Human Performance Lab. Texas AM University, Houston, TX, USA
| | - Nathalie Pattyn
- VIPER Research Unit, Royal Military Academy, Brussels, Belgium
- Brain, Body and Cognition, Vrije Universiteit, Brussels, Belgium
- Centre de Recherche Avancée en Médecine du Sommeil, Université de Montréal, Montreal, QC, Canada
| | - Jeroen Van Cutsem
- VIPER Research Unit, Royal Military Academy, Brussels, Belgium
- Brain, Body and Cognition, Vrije Universiteit, Brussels, Belgium
| | - Michaela Musilova
- Institute of Robotics and Cybernetics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Wieslaw Kopec
- XR Center, Polish-Japanese Academy of Information Technology, Warsaw, Poland
| | - Stefan Schneider
- Institute for Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | - Vera Abeln
- Institute for Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | - Tricia Larose
- Faculty of Medicine, Institute for Health and Community Medicine. University of Oslo, Oslo, Norway
| | - Fabio Ferlazzo
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Pierpaolo Zivi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | - Anne Pavy-Le Traon
- Institute for Space Medicine and Physiology (MEDES), Toulouse, France
- Department of Neurology, Institute for Neurosciences, Toulouse University Hospital, Toulouse, France
| | - Ines Antunes
- Directorate of Human and Robotic Exploration Programmes (HRE-RS). European Space Agency (ESA), Noordwijk, The Netherlands
| |
Collapse
|
4
|
Ioannou LG, Tsoutsoubi L, Mantzios K, Ciuha U, Kenny GP, Nybo L, Flouris AD, Mekjavic IB. Impact of a simulated multiday heatwave on nocturnal physiology, behavior, and sleep: a 10-day confinement study. Appl Physiol Nutr Metab 2024; 49:1394-1408. [PMID: 38917483 DOI: 10.1139/apnm-2024-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This study investigated the impact of a multiday heatwave on nocturnal physiology, behavior, and sleep under controlled conditions with comprehensive monitoring of environmental factors and participant activities. Seven young healthy males were confined for 10 days in controlled conditions that ranged between hot-to-warm (day: 35.4 °C, night: 26.3 °C) during nights 4-6 and temperate (day: 25.4 °C, night: 22.3 °C) before (nights 1-3) and after (nights 7-10) the heatwave. Measurements included core and skin temperatures, heart rate, sympathovagal balance, vasomotion indicators, urine samples, blanket coverage, subjective sleep assessments, and partial polysomnography. The average nocturnal core temperature was 0.2 °C higher during and after the heatwave compared to the pre-heatwave period, with this difference being more pronounced (+0.3 °C) in the first 2 h of sleep (p < 0.001). For every 0.1 °C rise in overnight core temperature, the total sleep time decreased by 14 min (pseudo-R2 = 0.26, p = 0.01). The elevated core temperatures occurred despite the participants exhibiting evident thermoregulatory behavior, as they covered 30% less body surface during the heatwave compared to pre- and post-heatwave periods (p < 0.001). During the heatwave, mean skin temperature at bedtime was 1.3 °C higher than pre-heatwave and 0.8 °C higher than post-heatwave periods (p < 0.001). No differences in other responses, including heart rate and vasomotion indicators, were observed. The paper details a 20-min sleepwalking episode that was coupled with marked changes in sleepwalker's thermophysiological responses. In conclusion, the simulated heatwave resulted in higher overnight core temperature which was associated with reduced total sleep time. Behavioral thermoregulation during sleep may serve as a defense against these effects, though more research is needed.
Collapse
Affiliation(s)
- Leonidas G Ioannou
- Department of Automatics, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Lydia Tsoutsoubi
- Department of Automatics, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Konstantinos Mantzios
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Ursa Ciuha
- Department of Automatics, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Andreas D Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Igor B Mekjavic
- Department of Automatics, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
5
|
Nickerson CA, McLean RJC, Barrila J, Yang J, Thornhill SG, Banken LL, Porterfield DM, Poste G, Pellis NR, Ott CM. Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability. Microbiol Mol Biol Rev 2024; 88:e0014423. [PMID: 39158275 PMCID: PMC11426028 DOI: 10.1128/mmbr.00144-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches. Here, we review biological and physical mechanisms that regulate microbial responses to spaceflight and spaceflight analog environments from both the microbe and host-microbe perspective that are relevant to human health and habitat sustainability. We highlight instrumentation and technology used in spaceflight microbiology experiments, their limitations, and advances necessary to enable next-generation research. As spaceflight experiments are relatively rare, we discuss ground-based analogs that mimic aspects of microbial responses to reduced gravity in spaceflight, including those that reduce mechanical forces of fluid flow over cell surfaces which also simulate conditions encountered by microorganisms during their terrestrial lifecycles. As spaceflight mission durations increase with traditional astronauts and commercial space programs send civilian crews with underlying health conditions, microorganisms will continue to play increasingly critical roles in health and habitat sustainability, thus defining a new dimension of occupational health. The ability of microorganisms to adapt, survive, and evolve in the spaceflight environment is important for future human space endeavors and provides opportunities for innovative biological and technological advances to benefit life on Earth.
Collapse
Affiliation(s)
- Cheryl A. Nickerson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Laura L. Banken
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - D. Marshall Porterfield
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - George Poste
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, Arizona, USA
| | | | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
6
|
Rasheed M, Tahir A, Maazouzi M, Wang H, Li Y, Chen Z, Deng Y. Interplay of miRNAs and molecular pathways in spaceflight-induced depression: Insights from a rat model using simulated complex space environment. FASEB J 2024; 38:e23831. [PMID: 39037540 DOI: 10.1096/fj.202400420rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Depression is a significant concern among astronauts, yet the molecular mechanisms underlying spaceflight-induced depression remain poorly understood. MicroRNAs (miRNAs) have emerged as potential regulators of neuropsychiatric disorders, including depression, but their specific role in space-induced depression remains unexplored. This study aimed to elucidate the involvement of candidate miRNAs (miR-455-3p, miR-206-3p, miR-132-3p, miR-16-5p, miR-124-3p, and miR-145-3p) and their interaction with differentially expressed genes (DEGs) in the neurobiology of spaceflight-induced depressive behavior. Using a simulated space environmental model (SCSE) for 21 days, depressive behavior was induced in rats, and candidate miRNA expressions and DEGs in the cortex region were analyzed through qRT-PCR and HPLC, respectively. Results showed that SCSE-exposed rats exhibited depressive behaviors, including anhedonia, increased immobility, and anxiousness compared to controls. Further analysis revealed increased hydrogen peroxide levels and decreased superoxide dismutase levels in the SCSE group, indicating abnormal oxidative stress in the cerebral cortex. Moreover, miRNA analysis demonstrated significant upregulation of miR-455-3p, miR-206-3p, miR-132-3p, and miR-16-5p expression. Among the DEGs identified, the in silico analysis highlighted their involvement in crucial pathways such as glutamatergic signaling, GABA synaptic pathway, and calcium signaling, implicating their role in spaceflight-induced depression. Protein-protein interaction analysis identified hub genes, including DLG4, DLG3, GRIN1, GRIN2B, GRIN2A, SYNGAP1, DLGAP1, GRIK2, and GRIN3A, impacting neuronal dysfunction functions in the cortex region of SCSE depressive rats. DLG4 emerged as a core gene regulated by miR-455-3p and miR-206-3p. Overall, this study underscores the potential of miRNAs as biomarkers for mood disorders and neurological abnormalities associated with spaceflight, advancing health sciences, and space health care.
Collapse
Affiliation(s)
- Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Adnan Tahir
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Mohamed Maazouzi
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Han Wang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Yumeng Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Zixuan Chen
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|
7
|
Pacelli C, Ferranti F, Del Bianco M. Special Issue: 'Advances in Space Biology'. Life (Basel) 2024; 14:931. [PMID: 39202673 PMCID: PMC11355448 DOI: 10.3390/life14080931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/12/2024] [Indexed: 09/03/2024] Open
Abstract
As we enter a new era of space exploration, space biology is at the forefront of both robotic and human space programs [...].
Collapse
Affiliation(s)
- Claudia Pacelli
- Italian Space Agency, Via del Politecnico s.n.c., 00133 Rome, Italy
- Centre for Space Life Sciences, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Francesca Ferranti
- Italian Space Agency, Via del Politecnico s.n.c., 00133 Rome, Italy
- Centre for Space Life Sciences, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Marta Del Bianco
- Italian Space Agency, Via del Politecnico s.n.c., 00133 Rome, Italy
- Centre for Space Life Sciences, Viale Regina Elena, 299, 00161 Rome, Italy
| |
Collapse
|
8
|
Seylani A, Galsinh AS, Tasoula A, I AR, Camera A, Calleja-Agius J, Borg J, Goel C, Kim J, Clark KB, Das S, Arif S, Boerrigter M, Coffey C, Szewczyk N, Mason CE, Manoli M, Karouia F, Schwertz H, Beheshti A, Tulodziecki D. Ethical considerations for the age of non-governmental space exploration. Nat Commun 2024; 15:4774. [PMID: 38862473 PMCID: PMC11166968 DOI: 10.1038/s41467-023-44357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 12/05/2023] [Indexed: 06/13/2024] Open
Abstract
Mounting ambitions and capabilities for public and private, non-government sector crewed space exploration bring with them an increasingly diverse set of space travelers, raising new and nontrivial ethical, legal, and medical policy and practice concerns which are still relatively underexplored. In this piece, we lay out several pressing issues related to ethical considerations for selecting space travelers and conducting human subject research on them, especially in the context of non-governmental and commercial/private space operations.
Collapse
Affiliation(s)
- Allen Seylani
- School of Medicine, University of California, Riverside. 92521 Botanical Garden Dr, Riverside, CA, 92507, USA
| | - Aman Singh Galsinh
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Alexia Tasoula
- Department of Life Science Engineering, FH Technikum, Vienna, Austria
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Anu R I
- Department of Cancer Biology and Therapeutics, MVR Cancer Centre and Research Institute, Calicut, India
- Department of Clinical Biochemistry, MVR Cancer Centre and Research Institute, Calicut, India
| | - Andrea Camera
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD2080, Msida, Malta
| | - Joseph Borg
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, MSD2080, Msida, Malta
| | - Chirag Goel
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - JangKeun Kim
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Kevin B Clark
- Cures Within Reach, Chicago, IL, 60602, USA
- Peace Innovation Institute, The Hague 2511, Netherlands & Stanford University, Palo Alto, CA, 94305, USA
- Biometrics and Nanotechnology Councils, Institute for Electrical and Electronics Engineers, New York, NY, 10016-5997, USA
| | - Saswati Das
- Department of Biochemistry, Atal Bihari Vajpayee Institute of Medical Sciences, New Delhi, India
| | - Shehbeel Arif
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Caroline Coffey
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Nathaniel Szewczyk
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Christopher E Mason
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Maria Manoli
- School of Law, University of Aberdeen, Aberdeen, AB24 3UB, UK
| | - Fathi Karouia
- Blue Marble Space Institute for Science, Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
- Space Research Within Reach, San Francisco, CA, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Hansjörg Schwertz
- Molecular Medicine Program at the University of Utah, Salt Lake City, UT, 84112, USA.
- Division of Occupational Medicine at the University of Utah, Salt Lake City, UT, 84112, USA.
- Occupational Medicine at Billings Clinic Bozeman, Bozeman, MT, 59715, USA.
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, US.
| | - Dana Tulodziecki
- Department of Philosophy, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
9
|
Elmoselhi AB, Shankhwar V, Qaisar R, Hamoudi R, Brix B, Salon A, Goswami N. Retinal vascular changes and arterial stiffness during 8-month isolation and confinement: the SIRIUS-21 space analog mission. Front Physiol 2024; 15:1374309. [PMID: 38860111 PMCID: PMC11163205 DOI: 10.3389/fphys.2024.1374309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Introduction Isolation and confinement are significant stressors during space travel that can impact crewmembers' physical and mental health. Space travel has been shown to accelerate vascular aging and increase the risk of cardiovascular and cerebrovascular disorders. However, the effect of prolonged isolation and confinement on microvascular function has not yet been thoroughly investigated. Methods Retinal vascular imaging was conducted on four crewmembers during- and post-8-month SIRIUS-21 space analog mission. Central retinal arteriolar equivalent (CRAE), central retinal venular equivalent (CRVE), and arteriovenous ratio (AVR) were measured. Pulse wave velocity (PWV), an indicator of arterial stiffness, was also measured. Results Data from 4 participants was analyzed. These participants had a mean age of 34.75 ± 5.44 years, height of 170.00 ± 2.00 cm, weight of 74.50 ± 12.53 kg, and average BMI of 25.47 ± 3.94 kg/m2. During- and post-isolation, average CRVE showed an upward trend (Pearson's r 0.784, R-square 0.62), suggesting a dilation of retinal venules, while AVR showed a downward trend (Pearson's r -0.238, R-square 0.057), which is suggestive of a higher risk of cardiovascular and cerebrovascular dysfunctions. But neither of these trends were statistically significant. Additionally, the average PWV showed an upward trend during- and after-isolation across all crew members. Conclusion Isolation and confinement appear to contribute towards retinal vascular damage and arterial stiffness. This cautiously suggests an increased risk of cardiovascular and cerebrovascular disorders due to the contribution of the isolation in space flight. Further studies are needed to confirm and expand on these results as we prepare for future manned missions to the Moon and Mars.
Collapse
Affiliation(s)
- Adel B Elmoselhi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Vishwajeet Shankhwar
- Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Rizwan Qaisar
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Bianca Brix
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology, and Inflammation, Medical University of Graz, Graz, Austria
| | - Adam Salon
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology, and Inflammation, Medical University of Graz, Graz, Austria
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Nandu Goswami
- Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, United Arab Emirates
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology, and Inflammation, Medical University of Graz, Graz, Austria
| |
Collapse
|
10
|
Ferraro S, Dave A, Cereda C, Verduci E, Marcovina S, Zuccotti G. Space research to explore novel biochemical insights on Earth. Clin Chim Acta 2024; 558:119673. [PMID: 38621588 DOI: 10.1016/j.cca.2024.119673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Travel to space has overcome unprecedent technological challenges and this has resulted in transfer of these technological results on Earth to better our lives. Health technology, medical devices, and research advancements in human biology are the first beneficiaries of this transfer. The real breakthrough came with the International Space Station, which endorsed multidisciplinary international scientific collaborations and boosted the research on pathophysiological adaptation of astronauts to life on space. These studies evidenced that life in space appeared to have exposed the astronauts to an accelerated aging-related pathophysiological dysregulation across multiple systems. In this review we emphasize the interaction between several biomarkers and their alteration in concentrations/expression/function by space stress factors. These altered interactions, suggest that different biochemical and hormonal factors, and cell signals, contribute to a complex network of pathophysiological mechanisms, orchestrating the homeostatic dysregulation of various organs/metabolic pathways. The main effects of space travel on altering cell organelles biology, ultrastructure, and cross-talk, have been observed in cell aging as well as in the disruption of metabolic pathways, which are also the causal factor of rare inherited metabolic disorders, one of the major pediatric health issue. The pathophysiologic breakthrough from space research could allow the development of precision health both on Earth and Space by promoting the validation of improved biomarker-based risk scores and the exploration of new pathophysiologic hypotheses and therapeutic targets. Nonstandard abbreviations: International Space Station (ISS), Artificial Intelligence (AI), European Space Agency (ESA), National Aeronautics and Space Agency (NASA), Low Earth Orbit (LEO), high sensitive troponin (hs-cTn), high sensitive troponin I (hs-cTn I), high sensitive troponin T, Brain Natriuretic Peptide (BNP), N terminal Brain Natriuretic Peptide (NT-BNP), cardiovascular disease (CVD), parathyroid hormone (PTH), urinary hydroxyproline (uHP), urinary C- and N-terminal telopeptides (uCTX and uNTX), pyridinoline (PYD), deoxypyridinoline (DPD), half-time (HF), serum Bone Alkaline Phosphatase (sBSAP), serum Alkaline Phosphatase (sAP), Carboxy-terminal Propeptide of Type 1 Procollagen (P1CP), serum Osteocalcin (sOC)), advanced glycation end products (AGEs), glycated hemoglobin A1c (HbA1c), Insulin-like growth factor 1 (IGF1), Growth Hormone (GH), amino acid (AA), β-hydroxy-β methyl butyrate (HMB), maple syrup urine disease (MSUD), non-communicable diseases (NCDs).
Collapse
Affiliation(s)
- Simona Ferraro
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy.
| | - Anilkumar Dave
- Space Economy and Open Innovation, Darwix srl, Venice, Italy
| | - Cristina Cereda
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy; Center of Functional Genomics and Rare Diseases
| | - Elvira Verduci
- Department of Health Sciences, University of Milan, Milan, Italy; Metabolic Diseases Unit, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | | | - Gianvincenzo Zuccotti
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| |
Collapse
|
11
|
Sarma MS, Shelhamer M. The human biology of spaceflight. Am J Hum Biol 2024; 36:e24048. [PMID: 38337152 PMCID: PMC10940193 DOI: 10.1002/ajhb.24048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
To expand the human exploration footprint and reach Mars in the 2030s, we must explore how humans survive and thrive in demanding, unusual, and novel ecologies (i.e., extreme environments). In the extreme conditions encountered during human spaceflight, there is a need to understand human functioning and response in a more rigorous theoretically informed way. Current models of human performance in space-relevant environments and human space science are often operationally focused, with emphasis on acute physiological or behavioral outcomes. However, integrating current perspectives in human biology allows for a more holistic and complete understanding of how humans function over a range of time in an extreme environment. Here, we show how the use of evolution-informed frameworks (i.e., models of life history theory to organize the adaptive pressures of spaceflight and biocultural perspectives) coupled with the use of mixed-methodological toolkits can shape models that better encompass the scope of biobehavioral human adjustment to long-duration space travel and extra-terrestrial habitation. Further, we discuss how we can marry human biology perspectives with the rigorous programmatic structures developed for spaceflight to model other unknown and nascent extremes.
Collapse
Affiliation(s)
- Mallika S. Sarma
- Human Spaceflight Lab, Johns Hopkins School of Medicine, Baltimore, MD 21215
| | - Mark Shelhamer
- Human Spaceflight Lab, Johns Hopkins School of Medicine, Baltimore, MD 21215
| |
Collapse
|
12
|
Cialdai F, Brown AM, Baumann CW, Angeloni D, Baatout S, Benchoua A, Bereiter-Hahn J, Bottai D, Buchheim JI, Calvaruso M, Carnero-Diaz E, Castiglioni S, Cavalieri D, Ceccarelli G, Choukér A, Ciofani G, Coppola G, Cusella G, Degl'Innocenti A, Desaphy JF, Frippiat JP, Gelinsky M, Genchi G, Grano M, Grimm D, Guignandon A, Hahn C, Hatton J, Herranz R, Hellweg CE, Iorio CS, Karapantsios T, van Loon J, Lulli M, Maier J, Malda J, Mamaca E, Morbidelli L, van Ombergen A, Osterman A, Ovsianikov A, Pampaloni F, Pavezlorie E, Pereda-Campos V, Przybyla C, Puhl C, Rettberg P, Risaliti C, Rizzo AM, Robson-Brown K, Rossi L, Russo G, Salvetti A, Santucci D, Sperl M, Strollo F, Tabury K, Tavella S, Thielemann C, Willaert R, Szewczyk NJ, Monici M. How do gravity alterations affect animal and human systems at a cellular/tissue level? NPJ Microgravity 2023; 9:84. [PMID: 37865644 PMCID: PMC10590411 DOI: 10.1038/s41526-023-00330-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
The present white paper concerns the indications and recommendations of the SciSpacE Science Community to make progress in filling the gaps of knowledge that prevent us from answering the question: "How Do Gravity Alterations Affect Animal and Human Systems at a Cellular/Tissue Level?" This is one of the five major scientific issues of the ESA roadmap "Biology in Space and Analogue Environments". Despite the many studies conducted so far on spaceflight adaptation mechanisms and related pathophysiological alterations observed in astronauts, we are not yet able to elaborate a synthetic integrated model of the many changes occurring at different system and functional levels. Consequently, it is difficult to develop credible models for predicting long-term consequences of human adaptation to the space environment, as well as to implement medical support plans for long-term missions and a strategy for preventing the possible health risks due to prolonged exposure to spaceflight beyond the low Earth orbit (LEO). The research activities suggested by the scientific community have the aim to overcome these problems by striving to connect biological and physiological aspects in a more holistic view of space adaptation effects.
Collapse
Affiliation(s)
- Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Res. Div., DSBSC-University of Florence, Florence, Italy
| | - Austin M Brown
- Honors Tutorial College, Ohio University, Athens, OH, USA
| | - Cory W Baumann
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Debora Angeloni
- Inst. of Biorobotics, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN) Boeretang 200, 2400, Mol, Belgium
| | | | - Juergen Bereiter-Hahn
- Inst. for Cell and Neurobiol, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Daniele Bottai
- Dept. Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Judith-Irina Buchheim
- Laboratory of "Translational Research, Stress & Immunity", Department of Anesthesiology, LMU University Hospital Munich, Munich, Germany
| | - Marco Calvaruso
- Inst. Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy
| | - Eugénie Carnero-Diaz
- Inst. Systematic, Evolution, Biodiversity, Sorbonne University, NMNH, CNRS, EPHE, UA, Paris, France
| | - Sara Castiglioni
- Dept. of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Gabriele Ceccarelli
- Dept of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy
| | - Alexander Choukér
- Laboratory of "Translational Research, Stress & Immunity", Department of Anesthesiology, LMU University Hospital Munich, Munich, Germany
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025, Pontedera (PI), Italy
| | - Giuseppe Coppola
- Institute of Applied Science and Intelligent Sistems - CNR, Naples, Italy
| | - Gabriella Cusella
- Dept of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy
| | - Andrea Degl'Innocenti
- Dept Medical Biotechnologies, University of Siena, Siena, Italy
- Smart Bio-Interfaces, IIT, Pontedera (PI), Italy
| | - Jean-Francois Desaphy
- Dept. Precision and Regenerative Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Jean-Pol Frippiat
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, Nancy, France
| | - Michael Gelinsky
- Centre for Translational Bone, Joint & Soft Tissue Research, TU Dresden, Dresden, Germany
| | - Giada Genchi
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025, Pontedera (PI), Italy
| | - Maria Grano
- Dept. Precision and Regenerative Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Daniela Grimm
- Dept. Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Dept of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Alain Guignandon
- SAINBIOSE, INSERM U1059, Université Jean Monnet, F-42000, Saint-Etienne, France
| | | | | | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Christine E Hellweg
- Radiation Biology Dept., Inst. of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | | | | | - Jack van Loon
- Amsterdam University Medical Center, ACTA/VU, Amsterdam, The Netherlands
| | - Matteo Lulli
- Dept. Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Jeanette Maier
- Dept. of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Jos Malda
- Dept. Orthopaedics, Univ. Med. Center Utrecht & Dept. Clinical Sciences, Utrecht Univ, Utrecht, The Netherlands
| | - Emina Mamaca
- European and International Affairs Dept, Ifremer centre Bretagne, Plouzané, France
| | | | | | - Andreas Osterman
- Max von Pettenkofer Institute, Virology, LMU Munich & DZIF, Partner Site Munich, Munich, Germany
| | - Aleksandr Ovsianikov
- 3D Printing and Biofabrication, Inst. Materials Science and Technology, TU Wien, Vienna, Austria
| | - Francesco Pampaloni
- Buchmann Inst. for Molecular Life Sciences, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Elizabeth Pavezlorie
- Ludwig Boltzmann Inst. for Traumatology, Res. Center in Cooperation with AUVA, Vienna, Austria
| | - Veronica Pereda-Campos
- GSBMS/URU EVOLSAN - Medecine Evolutive, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Cyrille Przybyla
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas les Flots, France
| | - Christopher Puhl
- Space Applications NV/SA for European Space Agency, Houston, USA
| | - Petra Rettberg
- DLR, Inst of Aerospace Medicine, Research Group Astrobiology, Köln, Germany
| | - Chiara Risaliti
- ASAcampus Joint Laboratory, ASA Res. Div., DSBSC-University of Florence, Florence, Italy
| | - Angela Maria Rizzo
- Dept. of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Kate Robson-Brown
- Dept of Engineering Mathematics, and Dept of Anthropology and Archaeology, University of Bristol, Bristol, UK
| | - Leonardo Rossi
- Dept. Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giorgio Russo
- Inst. Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy
| | | | - Daniela Santucci
- Center for Behavioural Sciences and Mental Health, Ist. Superiore Sanità, Rome, Italy
| | | | - Felice Strollo
- Endocrinology and Metabolism Unit, IRCCS San Raffaele Pisana, Rome, Italy
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN) Boeretang 200, 2400, Mol, Belgium
| | - Sara Tavella
- IRCCS Ospedale Policlinico San Martino and University of Genoa, DIMES, Genoa, Italy
| | | | - Ronnie Willaert
- Research Group NAMI and NANO, Vrije Universiteit Brussels, Brussels, Belgium
| | | | - Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div., DSBSC-University of Florence, Florence, Italy.
| |
Collapse
|
13
|
Al-Shargie F, Al-Ameri S, Al-Hammadi A, Vladimirovna SD, Tariq U, Al-Nashash H. Detection of Astronaut's Stress Levels During 240-Day Confinement using EEG Signals and Machine Learning . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-6. [PMID: 38082733 DOI: 10.1109/embc40787.2023.10340035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Early detection of mental stress is particularly important in prolonged space missions. In this study, we propose utilizing electroencephalography (EEG) with multiple machine learning models to detect elevated stress levels during a 240-day confinement. We quantified the levels of stress using alpha amylase levels, reaction time (RT) to stimuli, accuracy of target detection, and functional connectivity of EEG estimated by Phase Locking Value (PLV). Our results show that, alpha amylase level increased every 60-days (with 0.76 correlation) In-mission resulting in four elevated levels of stress. The RT and accuracy of target detection did not show any significant difference with time In-mission. The functional connectivity network showed different patterns between the frontal/occipital with other regions, and parietal to central region. The machine learning classifiers differentiate between four levels of stress with classification accuracy of 91.8%, 91.4%, 90.2%, 87.8, and 81% using linear discriminate analysis (LDA), Support Vector Machine (SVM), k-nearest neighbor (KNN), Naïve bayes (NB) and decision trees (DT). Our results suggest that EEG and machine learning can be used to detect elevated levels of mental stress in isolation and confined environments.
Collapse
|
14
|
Scatà C, Carandina A, Della Torre A, Arosio B, Bellocchi C, Dias Rodrigues G, Furlan L, Tobaldini E, Montano N. Social Isolation: A Narrative Review on the Dangerous Liaison between the Autonomic Nervous System and Inflammation. Life (Basel) 2023; 13:1229. [PMID: 37374012 DOI: 10.3390/life13061229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Social isolation and feelings of loneliness are related to higher mortality and morbidity. Evidence from studies conducted during space missions, in space analogs, and during the COVID-19 pandemic underline the possible role of the autonomic nervous system in mediating this relation. Indeed, the activation of the sympathetic branch of the autonomic nervous system enhances the cardiovascular response and activates the transcription of pro-inflammatory genes, which leads to a stimulation of inflammatory activation. This response is adaptive in the short term, in that it allows one to cope with a situation perceived as a threat, but in the long term it has detrimental effects on mental and physical health, leading to mood deflection and an increased risk of cardiovascular disease, as well as imbalances in immune system activation. The aim of this narrative review is to present the contributions from space studies and insights from the lockdown period on the relationship between social isolation and autonomic nervous system activation, focusing on cardiovascular impairment and immune imbalance. Knowing the pathophysiological mechanisms underlying this relationship is important as it enables us to structure effective countermeasures for the new challenges that lie ahead: the lengthening of space missions and Mars exploration, the specter of future pandemics, and the aging of the population.
Collapse
Affiliation(s)
- Costanza Scatà
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Angelica Carandina
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Alice Della Torre
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Chiara Bellocchi
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Gabriel Dias Rodrigues
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Ludovico Furlan
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Eleonora Tobaldini
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Nicola Montano
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
15
|
Zivi P, Sdoia S, Alfonsi V, Gorgoni M, Mari E, Quaglieri A, De Gennaro L, Giannini AM, Ferlazzo F. Decision-Making and Risk-Propensity Changes during and after the COVID-19 Pandemic Lockdown. Brain Sci 2023; 13:brainsci13050793. [PMID: 37239265 DOI: 10.3390/brainsci13050793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The imposition of lockdowns during the COVID-19 pandemic placed individuals under conditions of environmental stress, threatening individual and collective wellbeing. This study aimed to investigate the temporal effects of isolation and confinement during and after the Italian lockdown on decision-making, risk propensity, and cognitive control processes. The present study covered almost the entire Italian lockdown period (each week from the end of March to mid-May 2020), plus a follow-up measure (September 2020). At each time-point, respondents completed online behavioral tasks, which involved measuring risk-propensity (Balloon Analogue Risk Task), decision-making (Iowa Gambling Task), and cognitive flexibility (Category Switch Task). They also filled in questionnaires regarding subjective stress and anxiety. The main findings showed that the decision-making abilities of the respondents were affected as the confinement progressed. Furthermore, individuals who were more subjectively impacted by the lockdown/isolation experience exhibited impaired decision-making, especially during the lockdown. The results of the study highlight that prolonged confinement may affect human decision making, and help understand individuals' misbehaviors during emergencies and develop effective countermeasures aimed at reducing the burden of the healthcare system.
Collapse
Affiliation(s)
- Pierpaolo Zivi
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Stefano Sdoia
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Valentina Alfonsi
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Maurizio Gorgoni
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Emanuela Mari
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Alessandro Quaglieri
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Anna Maria Giannini
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Fabio Ferlazzo
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| |
Collapse
|
16
|
Le Roy B, Martin-Krumm C, Pinol N, Dutheil F, Trousselard M. Human challenges to adaptation to extreme professional environments: A systematic review. Neurosci Biobehav Rev 2023; 146:105054. [PMID: 36682426 DOI: 10.1016/j.neubiorev.2023.105054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
NASA is planning human exploration of the Moon, while preparations are underway for human missions to Mars, and deeper into the solar system. These missions will expose space travelers to unusual conditions, which they will have to adapt to. Similar conditions are found in several analogous environments on Earth, and studies can provide an initial understanding of the challenges for human adaptation. Such environments can be marked by an extreme climate, danger, limited facilities and supplies, isolation from loved ones, or mandatory interaction with others. They are rarely encountered by most human beings, and mainly concern certain professions in limited missions. This systematic review focuses on professional extreme environments and captures data from papers published since 2005. Our findings provide an insight into their physiological, biological, cognitive, and behavioral impacts for better understand how humans adapt or not to them. This study provides a framework for studying adaptation, which is particularly important in light of upcoming longer space expeditions to more distant destinations.
Collapse
Affiliation(s)
- Barbara Le Roy
- Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge Cedex, France; CNES, Paris, France; APEMAC/EPSAM, EA 4360 Metz Cedex, France.
| | - Charles Martin-Krumm
- Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge Cedex, France; APEMAC/EPSAM, EA 4360 Metz Cedex, France; École de Psychologues Praticiens, Catholic Institute of Paris, EA Religion, Culture et société, Paris, France
| | - Nathalie Pinol
- Université Clermont Auvergne, Health Library, Clermont-Ferrand, France
| | - Frédéric Dutheil
- University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Occupational and Environmental Medicine, WittyFit, F 63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, 34 Avenue Carnot, 63 037 Clermont-Ferrand, France
| | - Marion Trousselard
- Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge Cedex, France; APEMAC/EPSAM, EA 4360 Metz Cedex, France; French Military Health Service Academy, Paris, France
| |
Collapse
|
17
|
Ramos RL, Carante MP, Ferrari A, Sala P, Vercesi V, Ballarini F. A Mission to Mars: Prediction of GCR Doses and Comparison with Astronaut Dose Limits. Int J Mol Sci 2023; 24:2328. [PMID: 36768652 PMCID: PMC9916691 DOI: 10.3390/ijms24032328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Long-term human space missions such as a future journey to Mars could be characterized by several hazards, among which radiation is one the highest-priority problems for astronaut health. In this work, exploiting a pre-existing interface between the BIANCA biophysical model and the FLUKA Monte Carlo transport code, a study was performed to calculate astronaut absorbed doses and equivalent doses following GCR exposure under different shielding conditions. More specifically, the interface with BIANCA allowed us to calculate both the RBE for cell survival, which is related to non-cancer effects, and that for chromosome aberrations, related to the induction of stochastic effects, including cancer. The results were then compared with cancer and non-cancer astronaut dose limits. Concerning the stochastic effects, the equivalent doses calculated by multiplying the absorbed dose by the RBE for chromosome aberrations ("high-dose method") were similar to those calculated using the Q-values recommended by ICRP. For a 650-day mission at solar minimum (representative of a possible Mars mission scenario), the obtained values are always lower than the career limit recommended by ICRP (1 Sv), but higher than the limit of 600 mSv recently adopted by NASA. The comparison with the JAXA limits is more complex, since they are age and sex dependent. Concerning the deterministic limits, even for a 650-day mission at solar minimum, the values obtained by multiplying the absorbed dose by the RBE for cell survival are largely below the limits established by the various space agencies. Following this work, BIANCA, interfaced with an MC transport code such as FLUKA, can now predict RBE values for cell death and chromosome aberrations following GCR exposure. More generally, both at solar minimum and at solar maximum, shielding of 10 g/cm2 Al seems to be a better choice than 20 g/cm2 for astronaut protection against GCR.
Collapse
Affiliation(s)
| | - Mario P. Carante
- INFN, Sezione di Pavia, Via Bassi 6, 27100 Pavia, Italy
- Physics Department, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Alfredo Ferrari
- Institute for Astroparticle Physics, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Paola Sala
- INFN, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
| | | | - Francesca Ballarini
- INFN, Sezione di Pavia, Via Bassi 6, 27100 Pavia, Italy
- Physics Department, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| |
Collapse
|
18
|
Pramanik J, Kumar A, Panchal L, Prajapati B. Countermeasures for Maintaining Cardiovascular Health in Space Missions. Curr Cardiol Rev 2023; 19:57-67. [PMID: 37005513 PMCID: PMC10518885 DOI: 10.2174/1573403x19666230330083225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 04/04/2023] Open
Abstract
During space exploration, the human body is subjected to altered atmospheric environments and gravity, exposure to radiation, sleep disturbance, and mental pressures; all these factors are responsible for cardiovascular diseases. Under microgravity, the physiological changes related to cardiovascular diseases are the cephalic fluid shift, dramatic reduction in central venous pressure, changes in blood rheology and endothelial function, cerebrovascular abnormalities, headaches, optic disc edema, intracranial hypertension, congestion of the jugular vein, facial swelling, and loss of taste. Generally, five countermeasures are used to maintain cardiovascular health (during and after space missions), including shielding, nutritional, medicinal, exercise, and artificial gravity. This article concludes with how to reduce space missions' impact on cardiovascular health with the help of various countermeasures.
Collapse
Affiliation(s)
- Jhilam Pramanik
- Department of Food Technology, ITM University, Gwalior, Madhya Pradesh, India
| | - Akash Kumar
- Department of Food Technology, SRM University, Sonipat, Haryana, India
| | - Lakshay Panchal
- Maharishi Markandeshwar Institute of Physiotherapy and Rehabilitation, Maharishi Markandeshwar University, Mullana, Haryana, India
| | - Bhupendra Prajapati
- Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, India
| |
Collapse
|
19
|
Seoane-Viaño I, Ong JJ, Basit AW, Goyanes A. To infinity and beyond: Strategies for fabricating medicines in outer space. Int J Pharm X 2022; 4:100121. [PMID: 35782363 PMCID: PMC9240807 DOI: 10.1016/j.ijpx.2022.100121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
Recent advancements in next generation spacecrafts have reignited public excitement over life beyond Earth. However, to safeguard the health and safety of humans in the hostile environment of space, innovation in pharmaceutical manufacturing and drug delivery deserves urgent attention. In this review/commentary, the current state of medicines provision in space is explored, accompanied by a forward look on the future of pharmaceutical manufacturing in outer space. The hazards associated with spaceflight, and their corresponding medical problems, are first briefly discussed. Subsequently, the infeasibility of present-day medicines provision systems for supporting deep space exploration is examined. The existing knowledge gaps on the altered clinical effects of medicines in space are evaluated, and suggestions are provided on how clinical trials in space might be conducted. An envisioned model of on-site production and delivery of medicines in space is proposed, referencing emerging technologies (e.g. Chemputing, synthetic biology, and 3D printing) being developed on Earth that may be adapted for extra-terrestrial use. This review concludes with a critical analysis on the regulatory considerations necessary to facilitate the adoption of these technologies and proposes a framework by which these may be enforced. In doing so, this commentary aims to instigate discussions on the pharmaceutical needs of deep space exploration, and strategies on how these may be met. Space is a hostile environment that threatens human health and drug stability. Data on the behaviour of medicines in space is critical but lacking. Novel drug manufacturing and delivery strategies are needed to safeguard crewmembers’ safety. Chemputing, synthetic biology, and 3D printing are examples of such emerging technologies. A regulatory framework for space medicines must be implemented to assure quality.
Collapse
Affiliation(s)
- Iria Seoane-Viaño
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Paraquasil Group (GI-2109), Faculty of Pharmacy, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| | - Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK
- Corresponding authors at: Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, The Institute of Materials (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, 15782, Spain
- Corresponding authors at: Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
20
|
Alomari MA, Khabour OF, Alzoubi KH, Keewan E. Changes in dietary habits and eating behaviors during COVID-19 induced confinement: A study from Jordan. HUMAN NUTRITION & METABOLISM 2022; 30:200169. [PMID: 38620861 PMCID: PMC9659356 DOI: 10.1016/j.hnm.2022.200169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/15/2022]
Abstract
Objective This study aimed to evaluate dietary habits (DH) and eating behaviors (EB) among adults during confinement induced by COVID-19 in Jordan. Method In this cross-sectional study, an online survey designed to assess the change in DH and EB during April and May 2020 was distributed using various social media platforms. Results The survey was completed by a total of 1844 adult (18-72 years) participants from the public in Jordan. The results indicated an increase (42.5-61.8%) in most of the DH and EB examined in the current study in the majority of participants. Among these changes, they have increased (p < 0.05) the prevalence of fruit and vegetable, immune boosters, water, and hot beverage consumption, as well as decreased (p < 0.05) eating in restaurants and fatty food consumption, indicating a positive change. Conversely, a larger (p < 0.05) proportion of participants reported increased consumption of high-calorie food and late-night eating, indicating a risky behavior for obesity and subsequent chronic complications. Additionally, age, sex, obesity, education, income, and type of job appeared to contribute (p < 0.05) to changes in DH and EB. Overall, confinement caused by COVID-19 appears to compel adults to adopt a specific DH and EB. Although most of these changes were positive, some were negative. Conclusion This study provides essential information for designing subpopulation recommendations and developmental programs for adults under such conditions.
Collapse
Affiliation(s)
- Mahmoud A Alomari
- Division of Physical Therapy, Department of Rehabilitation Sciences, Jordan University of Science and Technology, Irbid, Jordan
- Department of Physical Education, Qatar University, Doha, Qatar
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Esra'a Keewan
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
21
|
Chaloulakou S, Poulia KA, Karayiannis D. Physiological Alterations in Relation to Space Flight: The Role of Nutrition. Nutrients 2022; 14:nu14224896. [PMID: 36432580 PMCID: PMC9699067 DOI: 10.3390/nu14224896] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Astronauts exhibit several pathophysiological changes due to a variety of stressors related to the space environment, including microgravity, space radiation, isolation, and confinement. Space motion sickness, bone and muscle mass loss, cardiovascular deconditioning and neuro-ocular syndrome are some of the spaceflight-induced effects on human health. Optimal nutrition is of the utmost importance, and-in combination with other measures, such as physical activity and pharmacological treatment-has a key role in mitigating many of the above conditions, including bone and muscle mass loss. Since the beginning of human space exploration, space food has not fully covered astronauts' needs. They often suffer from menu fatigue and present unintentional weight loss, which leads to further alterations. The purpose of this review was to explore the role of nutrition in relation to the pathophysiological effects of spaceflight on the human body.
Collapse
Affiliation(s)
- Stavroula Chaloulakou
- Department of Clinical Nutrition, “Evangelismos” General Hospital of Athens, 10676 Athens, Greece
| | - Kalliopi Anna Poulia
- Laboratory of Dietetics and Quality of Life, Department of Food Science & Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Karayiannis
- Department of Clinical Nutrition, “Evangelismos” General Hospital of Athens, 10676 Athens, Greece
- Correspondence: ; Tel.: +30-213-2045035
| |
Collapse
|
22
|
Kernagis DN, Balcer-Kubiczek E, Bazyar S, Orschell CM, Jackson IL. Medical countermeasures for the hematopoietic-subsyndrome of acute radiation syndrome in space. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:36-43. [PMID: 36336367 DOI: 10.1016/j.lssr.2022.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 06/16/2023]
Abstract
More than 50 years after the Apollo missions ended, the National Aeronautical and Space Administration (NASA) and other international space agencies are preparing a return to the moon as a step towards deep space exploration. At doses ranging from a fraction of a Gray (Gy) to a few Gy, crew will be at risk for developing bone marrow failure associated with the hematopoietic subsyndrome of acute radiation syndrome (H-ARS) requiring pharmacological intervention to reduce risk to life and mission completion. Four medical countermeasures (MCM) in the colony stimulating factor class of drugs are now approved for treatment of myelosuppression associated with ARS. When taken in conjunction with antibiotics, fluids, antidiarrheals, antiemetics, antipyretics, and other treatments for symptomatic illness, the likelihood for recovery and mission completion can be greatly improved. The current review describes the performance and health risks of deep space flight, ionizing radiation exposure during crewed missions to the moon and Mars, and U.S. Food and Drug Administration (FDA)-approved medical interventions to treat ARS. With an expansion of human exploration missions beyond low Earth orbit (LEO), including near-term Lunar and future Mars missions, inclusion of MCMs to counteract ARS in the spaceflight kit will be critical for preserving crew health and performance.
Collapse
Affiliation(s)
- Dawn N Kernagis
- Departmenet of Neurosurgery, University of North Carolina - Chapel Hill, Chapel Hill, NC, United States
| | - Elizabeth Balcer-Kubiczek
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201 United States
| | - Soha Bazyar
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201 United States
| | - Christie M Orschell
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 United States
| | - Isabel L Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201 United States.
| |
Collapse
|
23
|
Rappaport MB, Corbally CJ. Neuroplasticity as a Foundation for Decision-Making in Space. NEUROSCI 2022; 3:457-475. [PMID: 39483427 PMCID: PMC11523684 DOI: 10.3390/neurosci3030033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/04/2022] [Indexed: 11/03/2024] Open
Abstract
This is an exploratory review of two very recent, intersecting segments of space science: neuroplasticity in space, and decision-making in space. The high level of neuroplasticity in humans leads to unfortunate neurological and physical deconditioning while the body adjusts to the new space environment. However, neuroplasticity may also allow recovery and continued functioning of decision-making at a level necessary for mission completion. Cosmic radiation, microgravity, heightened levels of carbon dioxide in spacecraft, and other factors are being explored as root causes of neurological and physical deconditioning in space. The goal of this paper is to explore some of the lines of causation that show how these factors affect the capacity of humans to make decisions in space. Either alone or in groups, it remains essential that humans retain an ability to make decisions that will save lives, protect equipment, complete missions, and return safely to Earth. A final section addresses healthcare, medical intervention, and remediation that could help to "harness" neuroplasticity before, during, and after spaceflight. The dual nature of human neuroplasticity renders it both a cause of problems and also potentially the foundation of remediation. The future of research on both neuroplasticity and human decision-making promises to be full of surprises, both welcome and otherwise. It is an exciting time in research on space medicine.
Collapse
|
24
|
Harris M, Duda PI, Kelman I, Glick N. Addressing disaster and health risks for sustainable outer space. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022. [PMID: 35974682 DOI: 10.1002/ieam.4668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/10/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Any future outer space exploration and exploitation should more fully consider disaster and health risks as part of aiming for sustainability. The advent of the so-called "New Space" race, age, or era characterized by democratization, commercialization, militarization, and overlapping outer space activities such as tourism presents challenges for disaster-related and health-related risks in and for outer space. Such challenges have been extensively researched for earth, but less so for space. This article presents an overview of key aspects for addressing disaster and health risks in outer space within a wider sustainability framing. After an introduction providing background and scope, this article's next section considers some key health and disaster risks within sustainable outer space and offers insights from earth. The following two sections apply this knowledge by focusing on how analogue missions and international legal and voluntary regimes can each be used to reduce risks and potentially make outer space healthier and safer. The findings advocate that there is a wealth of knowledge and experience about mitigating risks to health and disaster risk reduction on earth that can inform spaceflight and exploration. The examples explored include the physical, legal, and regulatory aspects of the "New Space" industry, which highlights the relevance of equating examples on earth. The article concludes that expectations must be managed regarding scenarios for which response, rescue, and recovery are precluded, prompting a necessary focus on prevention and risk reduction. In doing so, earth-based scenarios and aspects of the so-called "Old Space" offer useful insights and should be examined further for "New Space." Integr Environ Assess Manag 2022;00:1-8. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Myles Harris
- UCL Institute for Risk and Disaster Reduction, London, UK
- Space Health Research, London, UK
| | | | - Ilan Kelman
- UCL Institute for Risk and Disaster Reduction, London, UK
- UCL Institute for Global Health, University of Agder, Kristiansand, Norway
| | | |
Collapse
|
25
|
Tran QD, Tran V, Toh LS, Williams PM, Tran NN, Hessel V. Space Medicines for Space Health. ACS Med Chem Lett 2022; 13:1231-1247. [PMID: 35978686 PMCID: PMC9377000 DOI: 10.1021/acsmedchemlett.1c00681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Scientists from around the world are studying the effects of microgravity and cosmic radiation via the "off-Earth" International Space Station (ISS) laboratory platform. The ISS has helped scientists make discoveries that go beyond the basic understanding of Earth. Over 300 medical experiments have been performed to date, with the goal of extending the knowledge gained for the benefit of humanity. This paper gives an overview of these numerous space medical findings, critically identifies challenges and gaps, and puts the achievements into perspective toward long-term space traveling and also adding benefits to our home planet. The medical contents are trifold structured, starting with the well-being of space travelers (astronaut health studies), followed by medical formulation research under space conditions, and then concluding with a blueprint for space pharmaceutical manufacturing. The review covers essential elements of our Earth-based pharmaceutical research such as drug discovery, drug and formulation stability, drug-organ interaction, drug disintegration/bioavailability/pharmacokinetics, pathogen virulence, genome mutation, and body's resistance. The information compiles clinical, medicinal, biological, and chemical research as well as fundamentals and practical applications.
Collapse
Affiliation(s)
- Quy Don Tran
- School
of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
- Andy
Thomas Centre for Space Resources, University
of Adelaide, Adelaide 5005, Australia
| | - Vienna Tran
- Adelaide
Medical School, University of Adelaide, Adelaide 5005, Australia
| | - Li Shean Toh
- Faculty
of Science, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Philip M. Williams
- Faculty
of Science, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Nam Nghiep Tran
- School
of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
- Andy
Thomas Centre for Space Resources, University
of Adelaide, Adelaide 5005, Australia
- Department
of Chemical Engineering, Can Tho University, Can Tho 900000, Vietnam
| | - Volker Hessel
- School
of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
- Andy
Thomas Centre for Space Resources, University
of Adelaide, Adelaide 5005, Australia
- School of
Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
26
|
Monitoring the Impact of Spaceflight on the Human Brain. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071060. [PMID: 35888147 PMCID: PMC9323314 DOI: 10.3390/life12071060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Extended exposure to radiation, microgravity, and isolation during space exploration has significant physiological, structural, and psychosocial effects on astronauts, and particularly their central nervous system. To date, the use of brain monitoring techniques adopted on Earth in pre/post-spaceflight experimental protocols has proven to be valuable for investigating the effects of space travel on the brain. However, future (longer) deep space travel would require some brain function monitoring equipment to be also available for evaluating and monitoring brain health during spaceflight. Here, we describe the impact of spaceflight on the brain, the basic principles behind six brain function analysis technologies, their current use associated with spaceflight, and their potential for utilization during deep space exploration. We suggest that, while the use of magnetic resonance imaging (MRI), positron emission tomography (PET), and computerized tomography (CT) is limited to analog and pre/post-spaceflight studies on Earth, electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and ultrasound are good candidates to be adapted for utilization in the context of deep space exploration.
Collapse
|
27
|
Arshad I, Ferrè ER. Express: Cognition in Zero Gravity: Effects of Non-Terrestrial Gravity on Human Behaviour. Q J Exp Psychol (Hove) 2022; 76:979-994. [PMID: 35786100 PMCID: PMC10119906 DOI: 10.1177/17470218221113935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As humanity prepares for deep space exploration, understanding the impact of spaceflight on bodily physiology is critical. While the effects of non-terrestrial gravity on the body are well established, little is known about its impact on human behaviour and cognition. Astronauts often describe dramatic alterations in sensorimotor functioning, including orientation, postural control and balance. Changes in cognitive functioning as well as in socio-affective processing have also been observed. Here we have reviewed the key literature and explored the impact of non-terrestrial gravity across three key functional domains: sensorimotor, cognition, and socio-affective processing. We have proposed a neuroanatomical model to account for the effects of non-terrestrial gravity in these domains. Understanding the impact of non-terrestrial gravity on human behaviour has never been more timely and it will help mitigate against risks in both commercial and non-commercial spaceflight.
Collapse
Affiliation(s)
- Iqra Arshad
- Department of Psychology, Royal Holloway University of London, Egham, UK 3162
| | - Elisa Raffaella Ferrè
- Department of Psychological Sciences, Birkbeck University of London, London, UK 3162
| |
Collapse
|
28
|
Huff JL, Plante I, Blattnig SR, Norman RB, Little MP, Khera A, Simonsen LC, Patel ZS. Cardiovascular Disease Risk Modeling for Astronauts: Making the Leap From Earth to Space. Front Cardiovasc Med 2022; 9:873597. [PMID: 35665268 PMCID: PMC9161032 DOI: 10.3389/fcvm.2022.873597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
NASA has recently completed several long-duration missions to the International Space Station and is solidifying plans to return to the Moon, with an eye toward Mars and beyond. As NASA pushes the boundaries of human space exploration, the hazards of spaceflight, including space radiation, levy an increasing burden on astronaut health and performance. The cardiovascular system may be especially vulnerable due to the combined impacts of space radiation exposure, lack of gravity, and other spaceflight hazards. On Earth, the risk for cardiovascular disease (CVD) following moderate to high radiation doses is well-established from clinical, environmental, and occupational exposures (largely from gamma- and x-rays). Less is known about CVD risks associated with high-energy charged ions found in space and increasingly used in radiotherapy applications on Earth, making this a critical area of investigation for occupational radiation protection. Assessing CVD risk is complicated by its multifactorial nature, where an individual's risk is strongly influenced by factors such as family history, blood pressure, and lipid profiles. These known risk factors provide the basis for development of a variety of clinical risk prediction models (CPMs) that inform the likelihood of medical outcomes over a defined period. These tools improve clinical decision-making, personalize care, and support primary prevention of CVD. They may also be useful for individualizing risk estimates for CVD following radiation exposure both in the clinic and in space. In this review, we summarize unique aspects of radiation risk assessment for astronauts, and we evaluate the most widely used CVD CPMs for their use in NASA radiation risk assessment applications. We describe a comprehensive dual-use risk assessment framework that supports both clinical care and operational management of space radiation health risks using quantitative metrics. This approach is a first step in using personalized medicine for radiation risk assessment to support safe and productive spaceflight and long-term quality of life for NASA astronauts.
Collapse
Affiliation(s)
- Janice L. Huff
- National Aeronautics and Space Administration, Langley Research Center, Hampton, VA, United States
- *Correspondence: Janice L. Huff
| | - Ianik Plante
- KBR, Houston, TX, United States
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
| | - Steve R. Blattnig
- National Aeronautics and Space Administration, Langley Research Center, Hampton, VA, United States
| | - Ryan B. Norman
- National Aeronautics and Space Administration, Langley Research Center, Hampton, VA, United States
| | - Mark P. Little
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services (DHHS), Radiation Epidemiology Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Amit Khera
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Lisa C. Simonsen
- National Aeronautics and Space Administration, NASA Headquarters, Washington, DC, United States
| | - Zarana S. Patel
- KBR, Houston, TX, United States
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
| |
Collapse
|
29
|
Physical activity to ameliorate the negative mental health effects of COVID-19-induced confinement. INFORMATICS IN MEDICINE UNLOCKED 2022; 31:100976. [PMID: 35637899 PMCID: PMC9132429 DOI: 10.1016/j.imu.2022.100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/28/2022] Open
Abstract
Mental health is strongly affected by physical (PA) and sedentary (SA) activity. In the current study, the relationships of PA and sedentary activity (SA) with mental status amid confinement caused by COVID-19 were examined. The study is self-reporting, survey-based, and cross-sectional in design. The study was conducted in Jordan and included 1744 participants (≥18 years old). The participants' mental status was obtained using the Depression-Anxiety-Stress Scale (DASS). The results showed involvement in both PA and SA during COVID-19-induced confinement. The involvement includes walking (77.2%), running (70.3%), cycling (84.9%), swimming (83.1%), sports (82.9%), weightlifting (86.4%), watching TV (79.4%), using electronics (86.3%), and logging to social media (85.1%). Lower DASS scores were associated (p < 0.05) with lower walking, running, and weightlifting but not (p > 0.05) with cycling and swimming PA. Additionally, DASS scores (p < 0.05) were associated with changes in television viewing but not (p > 0.05) with electronics and social media use during confinement. In conclusion, individuals who experienced higher levels of stress, anxiety, and depression were more likely to turn to more PA and less SA. These findings are important and suggest that individuals during confinement find PA a useful strategy to mitigate the negative mental effects of the pandemic.
Collapse
|
30
|
Feiveson AH, Krieger SS, von Scheven G, Crucian BE, Bürkle A, Stahn AC, Wu H, Moreno-Villanueva M. DNA Damage and Radiosensitivity in Blood Cells from Subjects Undergoing 45 Days of Isolation and Confinement: An Explorative Study. Curr Issues Mol Biol 2022; 44:654-669. [PMID: 35723331 PMCID: PMC8929106 DOI: 10.3390/cimb44020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/02/2022] [Accepted: 01/16/2022] [Indexed: 11/16/2022] Open
Abstract
The effect of confined and isolated experience on astronauts’ health is an important factor to consider for future space exploration missions. The more confined and isolated humans are, the more likely they are to develop negative behavioral or cognitive conditions such as a mood decline, sleep disorder, depression, fatigue and/or physiological problems associated with chronic stress. Molecular mediators of chronic stress, such as cytokines, stress hormones or reactive oxygen species (ROS) are known to induce cellular damage including damage to the DNA. In view of the growing evidence of chronic stress-induced DNA damage, we conducted an explorative study and measured DNA strand breaks in 20 healthy adults. The participants were grouped into five teams (missions). Each team was composed of four participants, who spent 45 days in isolation and confinement in NASA’s Human Exploration Research Analog (HERA). Endogenous DNA integrity, ex-vivo radiation-induced DNA damage and the rates of DNA repair were assessed every week. Our results show a high inter-individual variability as well as differences between the missions, which cannot be explained by inter-individual variability alone. The ages and sex of the participants did not appear to influence the results.
Collapse
Affiliation(s)
- Alan H. Feiveson
- NASA Johnson Space Center, Houston, TX 77058, USA; (A.H.F.); (B.E.C.); (H.W.)
| | | | - Gudrun von Scheven
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (G.v.S.); (A.B.)
| | - Brian E. Crucian
- NASA Johnson Space Center, Houston, TX 77058, USA; (A.H.F.); (B.E.C.); (H.W.)
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (G.v.S.); (A.B.)
| | - Alexander C. Stahn
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 1019 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA;
- Center for Space Medicine and Extreme Environments, Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Honglu Wu
- NASA Johnson Space Center, Houston, TX 77058, USA; (A.H.F.); (B.E.C.); (H.W.)
| | - María Moreno-Villanueva
- NASA Johnson Space Center, Houston, TX 77058, USA; (A.H.F.); (B.E.C.); (H.W.)
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, 78457 Konstanz, Germany
- Correspondence: ; Tel.: +49-753-188-3599
| |
Collapse
|
31
|
Baran R, Marchal S, Garcia Campos S, Rehnberg E, Tabury K, Baselet B, Wehland M, Grimm D, Baatout S. The Cardiovascular System in Space: Focus on In Vivo and In Vitro Studies. Biomedicines 2021; 10:59. [PMID: 35052739 PMCID: PMC8773383 DOI: 10.3390/biomedicines10010059] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/13/2022] Open
Abstract
On Earth, humans are subjected to a gravitational force that has been an important determinant in human evolution and function. During spaceflight, astronauts are subjected to several hazards including a prolonged state of microgravity that induces a myriad of physiological adaptations leading to orthostatic intolerance. This review summarises all known cardiovascular diseases related to human spaceflight and focusses on the cardiovascular changes related to human spaceflight (in vivo) as well as cellular and molecular changes (in vitro). Upon entering microgravity, cephalad fluid shift occurs and increases the stroke volume (35-46%) and cardiac output (18-41%). Despite this increase, astronauts enter a state of hypovolemia (10-15% decrease in blood volume). The absence of orthostatic pressure and a decrease in arterial pressures reduces the workload of the heart and is believed to be the underlying mechanism for the development of cardiac atrophy in space. Cellular and molecular changes include altered cell shape and endothelial dysfunction through suppressed cellular proliferation as well as increased cell apoptosis and oxidative stress. Human spaceflight is associated with several cardiovascular risk factors. Through the use of microgravity platforms, multiple physiological changes can be studied and stimulate the development of appropriate tools and countermeasures for future human spaceflight missions in low Earth orbit and beyond.
Collapse
Affiliation(s)
- Ronni Baran
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark; (R.B.); (D.G.)
| | - Shannon Marchal
- Department of Astronomy, Catholic University of Leuven, 3000 Leuven, Belgium;
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.R.); (K.T.); (B.B.)
| | - Sebastian Garcia Campos
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (S.G.C.); (M.W.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Emil Rehnberg
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.R.); (K.T.); (B.B.)
- Department of Molecular Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.R.); (K.T.); (B.B.)
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.R.); (K.T.); (B.B.)
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (S.G.C.); (M.W.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark; (R.B.); (D.G.)
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (S.G.C.); (M.W.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Sarah Baatout
- Department of Astronomy, Catholic University of Leuven, 3000 Leuven, Belgium;
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.R.); (K.T.); (B.B.)
- Department of Molecular Biotechnology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
32
|
Alomari MA, Alzoubi KH, Khabour OF, Darabseh MZ. Sleeping habits during COVID-19 induced confinement: A study from Jordan. Heliyon 2021; 7:e08545. [PMID: 34877418 PMCID: PMC8641401 DOI: 10.1016/j.heliyon.2021.e08545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/10/2021] [Accepted: 12/01/2021] [Indexed: 12/24/2022] Open
Abstract
Sleep can significantly modulate the immune response to infectious agents. In the current study, changes in sleep quality during COVID-19-induced confinement among adults were investigated. This was a cross-sectional survey study of the public using social media. Participants (n = 1846) were recruited in the study, of which >92% reported a variety of confinement procedures such as self-quarantine, physical distancing, banning of public events, school closure, and lockdown. Majority of the participants (53-59%) reported an increase in most of the sleep parameters except a decrease (49.1%) in daytime sleep. Age was associated with changes in sleeping disturbances during COVID-19 confinement (p < 0.001). Young participants were more likely to experience sleeping disturbance than older ones (p < 0.05). In addition, gender (p < 0.001) is an independent predictor of nighttime sleeping. Being a male is associated with a "decrease" and being a female is associated with an "increase" in nighttime sleeping hours (p < 0.05). Moreover, change in daytime sleeping was related to age, gender, and job type (p < 0.05). In conclusion, changes in sleep quality during COVID-19-induced confinement were reported. Intervention programs and strategies are warranted to further improve sleep during the current and future disease-induced confinement.
Collapse
Affiliation(s)
- Mahmoud A. Alomari
- Department of Physical Education, Qatar University, Doha, Qatar
- Division of Physical Therapy, Department of Rehabilitation Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H. Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F. Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Z. Darabseh
- Division of Physiotherapy, Department of Allied Medical Sciences, Aqaba University of Technology, Aqaba, Jordan
| |
Collapse
|
33
|
Arone A, Ivaldi T, Loganovsky K, Palermo S, Parra E, Flamini W, Marazziti D. The Burden of Space Exploration on the Mental Health of Astronauts: A Narrative Review. CLINICAL NEUROPSYCHIATRY 2021; 18:237-246. [PMID: 34984067 PMCID: PMC8696290 DOI: 10.36131/cnfioritieditore20210502] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Space travel, a topic of global interest, has always been a fascinating matter, as its potential appears to be infinite. The development of advanced technologies has made it possible to achieve objectives previously considered dreams and to widen more and more the limits that the human species can overcome. The dangers that astronauts may face are not minimal, and the impacts on physical and mental health may be significant. Specifically, symptoms of emotional dysregulation, cognitive dysfunction, disruption of sleep-wake rhythms, visual phenomena and significant changes in body weight, along with morphological brain changes, are some of the most frequently reported occurrences during space missions. Given the renewed interest and investment on space explorations, the aim of this paper was thus to summarize the evidence of the currently available literature, and to offer an overview of the factors that might impair the psychological well-being and mental health of astronauts. To achieve the goal of this paper, the authors accessed some of the main databases of scientific literature and collected evidence from articles that successfully fulfilled the purpose of this work. The results of this review demonstrated how the psychological and psychiatric problems occurring during space missions are manifold and related to a multiplicity of variables, thus requiring further attention from the scientific community as new challenges lie ahead, and prevention of mental health of space travelers should be carefully considered.
Collapse
Affiliation(s)
- Alessandro Arone
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy
| | - Tea Ivaldi
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy
| | - Konstantin Loganovsky
- Department of Radiation Psychoneurology, Institute for Clinical Radiology, State Institution “National Research Centre for Radiation Medicine, National Academy of Medical Sciences of Ukraine”
| | - Stefania Palermo
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy
| | - Elisabetta Parra
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy
| | - Walter Flamini
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy
| | - Donatella Marazziti
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy
- Unicamillus—Saint Camillus International University of Medical and Health Sciences, 00131 Rome, Italy
| |
Collapse
|
34
|
Buchheim JI, Billaud JN, Feuerecker M, Strewe C, Dangoisse C, Osterman A, Mehta S, Crucian B, Schelling G, Choukér A. Exploratory RNA-seq analysis in healthy subjects reveals vulnerability to viral infections during a 12- month period of isolation and confinement. Brain Behav Immun Health 2021; 9:100145. [PMID: 34589891 PMCID: PMC8474453 DOI: 10.1016/j.bbih.2020.100145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 11/28/2022] Open
Abstract
Exposure to stressful environments weakens immunity evidenced by a detectable reactivation of dormant viruses. The mechanism behind this observation remains unclear. We performed next generation sequencing from RNA extracted from blood samples of 8 male subjects collected before, during and after a 12-month stay at the Antarctic station Concordia. RNA-seq data analysis was done using QIAGEN Ingenuity Pathway Analysis (IPA) software. Data revealed the inactivation of key immune functions such as chemotaxis and leukocyte recruitment which persisted after return. Next to the activation of the stress response eIF2 pathway, interferon signaling was predicted inactivated due to a downregulation of 14 downstream genes involved in antiviral immunity. Among them, the interferon stimulated genes (ISGs) IFITM2 and 3 as well as IFIT3 exhibited the strongest fold changes and IFIT3 remained downregulated even after return. Impairment of antiviral immunity in winter-over crew can be explained by the downregulation of a battery of ISGs. Whole blood transcriptome analysis during 12-months of isolation in the Antarctic. Data show an inactivation of key immune functions and pathways without recovery. The IFN pathway is most affected showing a downregulation of 14 downstream genes. The results suggest impairment of antiviral immunity and vulnerability to infection.
Collapse
Affiliation(s)
- Judith-Irina Buchheim
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University (LMU), Marchioninistr. 15, 81377, Munich, Germany
| | | | - Matthias Feuerecker
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University (LMU), Marchioninistr. 15, 81377, Munich, Germany
| | - Claudia Strewe
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University (LMU), Marchioninistr. 15, 81377, Munich, Germany
| | - Carole Dangoisse
- Department of Anesthesia and Critical Care, Ysbyty Gwynedd Hospital, Bangor, Wales, UK
| | - Andreas Osterman
- Max von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Germany
| | | | | | - Gustav Schelling
- Department of Anesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University (LMU), Marchioninistr. 15, 81377, Munich, Germany
| | - Alexander Choukér
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University (LMU), Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
35
|
Probiotics maintain the gut microbiome homeostasis during Indian Antarctic expedition by ship. Sci Rep 2021; 11:18793. [PMID: 34552104 PMCID: PMC8458292 DOI: 10.1038/s41598-021-97890-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
Ship voyage to Antarctica is a stressful journey for expedition members. The response of human gut microbiota to ship voyage and a feasible approach to maintain gut health, is still unexplored. The present findings describe a 24-day long longitudinal study involving 19 members from 38th Indian Antarctic Expedition, to investigate the impact of ship voyage and effect of probiotic intervention on gut microbiota. Fecal samples collected on day 0 as baseline and at the end of ship voyage (day 24), were analyzed using whole genome shotgun sequencing. Probiotic intervention reduced the sea sickness by 10% compared to 44% in placebo group. The gut microbiome in placebo group members on day 0 and day 24, indicated significant alteration compared to a marginal change in the microbial composition in probiotic group. Functional analysis revealed significant alterations in carbohydrate and amino acid metabolism. Carbohydrate-active enzymes analysis represented functional genes involved in glycoside hydrolases, glycosyltransferases and carbohydrate binding modules, for maintaining gut microbiome homeostasis. Suggesting thereby the possible mechanism of probiotic in stabilizing and restoring gut microflora during stressful ship journey. The present study is first of its kind, providing a feasible approach for protecting gut health during Antarctic expedition involving ship voyage.
Collapse
|
36
|
de Vries H, Khoury-Hanold W. How the Immune System Deploys Creativity: Why We Can Learn From Astronauts and Cosmonauts. Front Psychol 2021; 12:582083. [PMID: 33981265 PMCID: PMC8107273 DOI: 10.3389/fpsyg.2021.582083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/31/2021] [Indexed: 11/21/2022] Open
Abstract
In this interdisciplinary article, we investigate the relationship between creativity and the immune system; the creative features of the immune system and how the immune system and its role in regulating homeostasis might be related to creative cognition. We argue that within a multivariate approach of creativity, the immune system is a contributing factor. New directions for research are also discussed. When astronauts and cosmonauts venture into the new and extreme environment of outer space, their immune system needs to instantly adapt and find new answers to survive biologically and psychologically. Many astronauts report interest in creative activities and therefore represent an interesting group to investigate creativity in relation with the immune system. Little is known regarding (1) how the immune system interacts with and supports creative cognition and behavior, (2) if an individual's immune system, interacting with cognition, adapts more originally to a new environment compared to another's; in other words, if there is creativity in the domain of the immune system, and (3) the creative properties and functions of the immune system itself.
Collapse
Affiliation(s)
- Henderika de Vries
- Yale Center for Emotional Intelligence, Yale Child Study Center, Yale University, New Haven, CT, United States
| | - William Khoury-Hanold
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
37
|
Hupfeld KE, McGregor HR, Reuter-Lorenz PA, Seidler RD. Microgravity effects on the human brain and behavior: Dysfunction and adaptive plasticity. Neurosci Biobehav Rev 2021; 122:176-189. [PMID: 33454290 DOI: 10.1016/j.neubiorev.2020.11.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/01/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
Emerging plans for travel to Mars and other deep space destinations make it critical for us to understand how spaceflight affects the human brain and behavior. Research over the past decade has demonstrated two co-occurring patterns of spaceflight effects on the brain and behavior: dysfunction and adaptive plasticity. Evidence indicates the spaceflight environment induces adverse effects on the brain, including intracranial fluid shifts, gray matter changes, and white matter declines. Past work also suggests that the spaceflight environment induces adaptive neural effects such as sensory reweighting and neural compensation. Here, we introduce a new conceptual framework to synthesize spaceflight effects on the brain, Spaceflight Perturbation Adaptation Coupled with Dysfunction (SPACeD). We review the literature implicating neurobehavioral dysfunction and adaptation in response to spaceflight and microgravity analogues, and we consider pre-, during-, and post-flight factors that may interact with these processes. We draw several instructive parallels with the aging literature which also suggests co-occurring neurobehavioral dysfunction and adaptive processes. We close with recommendations for future spaceflight research, including: 1) increased efforts to distinguish between dysfunctional versus adaptive effects by testing brain-behavioral correlations, and 2) greater focus on tracking recovery time courses.
Collapse
Affiliation(s)
- K E Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - H R McGregor
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - P A Reuter-Lorenz
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - R D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States; Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
38
|
Rotărescu VS, Matei DB, Mircea IA, Mirescu AM, Nedelescu BG, Nedelea DG, Raluca Neagu AN, Necşulescu AG, Oteşanu GA, Tudor LC. How anxious did you feel during lockdown? The roles resilience, living environment, and gender play on the level of anxiety state during pandemic isolation. RESEARCH IN PSYCHOTHERAPY (MILANO) 2020; 23:496. [PMID: 33585301 PMCID: PMC7875071 DOI: 10.4081/ripppo.2020.496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022]
Abstract
In the unique context of the coronavirus disease 2019 (COVID-19) pandemic, researchers and clinicians alike drew attention to the risks involved by physical and social isolation for mental health. Factors like resilience, gender, urban/rural environment, or preexisting anxiety can impact anxious states produced by home forced isolation. Based on these, we assumed that: i) there are significant differences in the level of anxiety (state) during the pandemic, depending on the living area of the subjects; ii) gender plays a moderating role in the relationship between resilience and anxiety; and iii) anxiety (trait), experiential avoidance, resilience, and family connectedness, determine the level of anxiety (state). The MemoryLab team conducted the present study on 495 subjects (n=411 women, age between 18 and 65). Of these, 350 live in large and medium urban areas, 63 in small urban areas, and 82 in rural areas. As instruments, we used The State-Trait Anxiety Inventory (STAI 2.0), The Acceptance and Action Questionnaire 2 (AAQ-2), The Aggression Questionnaire (AQ), The Family Connectedness Questionnaire, and Connor-Davidson Resilience Scale 10 (CD-RISC-10), as well as the standard division of living areas according to community size. Data collection took place online during the spring peak of the pandemic. According to ANOVA analysis, people living in small urban areas have a higher level of anxiety. The difference is significant compared to those living in large and medium cities and villages. Gender has no moderating role in the relationship between resilience and the anxiety state. Also, experiential avoidance, anxiety (trait), and resilience play a significant role on the level of anxiety (state), measured during social isolation. The results could be an important indicator for understanding psychological mechanisms guiding interventions to support the communities effectively.
Collapse
|
39
|
Shi Z, Qin M, Huang L, Xu T, Chen Y, Hu Q, Peng S, Peng Z, Qu LN, Chen SG, Tuo QH, Liao DF, Wang XP, Wu RR, Yuan TF, Li YH, Liu XM. Human torpor: translating insights from nature into manned deep space expedition. Biol Rev Camb Philos Soc 2020; 96:642-672. [PMID: 33314677 DOI: 10.1111/brv.12671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
During a long-duration manned spaceflight mission, such as flying to Mars and beyond, all crew members will spend a long period in an independent spacecraft with closed-loop bioregenerative life-support systems. Saving resources and reducing medical risks, particularly in mental heath, are key technology gaps hampering human expedition into deep space. In the 1960s, several scientists proposed that an induced state of suppressed metabolism in humans, which mimics 'hibernation', could be an ideal solution to cope with many issues during spaceflight. In recent years, with the introduction of specific methods, it is becoming more feasible to induce an artificial hibernation-like state (synthetic torpor) in non-hibernating species. Natural torpor is a fascinating, yet enigmatic, physiological process in which metabolic rate (MR), body core temperature (Tb ) and behavioural activity are reduced to save energy during harsh seasonal conditions. It employs a complex central neural network to orchestrate a homeostatic state of hypometabolism, hypothermia and hypoactivity in response to environmental challenges. The anatomical and functional connections within the central nervous system (CNS) lie at the heart of controlling synthetic torpor. Although progress has been made, the precise mechanisms underlying the active regulation of the torpor-arousal transition, and their profound influence on neural function and behaviour, which are critical concerns for safe and reversible human torpor, remain poorly understood. In this review, we place particular emphasis on elaborating the central nervous mechanism orchestrating the torpor-arousal transition in both non-flying hibernating mammals and non-hibernating species, and aim to provide translational insights into long-duration manned spaceflight. In addition, identifying difficulties and challenges ahead will underscore important concerns in engineering synthetic torpor in humans. We believe that synthetic torpor may not be the only option for manned long-duration spaceflight, but it is the most achievable solution in the foreseeable future. Translating the available knowledge from natural torpor research will not only benefit manned spaceflight, but also many clinical settings attempting to manipulate energy metabolism and neurobehavioural functions.
Collapse
Affiliation(s)
- Zhe Shi
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.,Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Tao Xu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qin Hu
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, Beijing, 100024, China
| | - Sha Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhuang Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Li-Na Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Shan-Guang Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Qin-Hui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Xiao-Ping Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ren-Rong Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China
| | - Ying-Hui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xin-Min Liu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
40
|
Afshinnekoo E, Scott RT, MacKay MJ, Pariset E, Cekanaviciute E, Barker R, Gilroy S, Hassane D, Smith SM, Zwart SR, Nelman-Gonzalez M, Crucian BE, Ponomarev SA, Orlov OI, Shiba D, Muratani M, Yamamoto M, Richards SE, Vaishampayan PA, Meydan C, Foox J, Myrrhe J, Istasse E, Singh N, Venkateswaran K, Keune JA, Ray HE, Basner M, Miller J, Vitaterna MH, Taylor DM, Wallace D, Rubins K, Bailey SM, Grabham P, Costes SV, Mason CE, Beheshti A. Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration. Cell 2020; 183:1162-1184. [PMID: 33242416 PMCID: PMC8441988 DOI: 10.1016/j.cell.2020.10.050] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
Research on astronaut health and model organisms have revealed six features of spaceflight biology that guide our current understanding of fundamental molecular changes that occur during space travel. The features include oxidative stress, DNA damage, mitochondrial dysregulation, epigenetic changes (including gene regulation), telomere length alterations, and microbiome shifts. Here we review the known hazards of human spaceflight, how spaceflight affects living systems through these six fundamental features, and the associated health risks of space exploration. We also discuss the essential issues related to the health and safety of astronauts involved in future missions, especially planned long-duration and Martian missions.
Collapse
Affiliation(s)
- Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ryan T Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Matthew J MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eloise Pariset
- Universities Space Research Association (USRA), Mountain View, CA 94043, USA; Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Richard Barker
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | | | - Scott M Smith
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Sara R Zwart
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mayra Nelman-Gonzalez
- KBR, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Brian E Crucian
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Sergey A Ponomarev
- Institute for the Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Oleg I Orlov
- Institute for the Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki 305-8505, Japan
| | - Masafumi Muratani
- Transborder Medical Research Center, and Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Stephanie E Richards
- Bionetics, NASA Kennedy Space Center, Kennedy Space Center, Merritt Island, FL 32899, USA
| | - Parag A Vaishampayan
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jacqueline Myrrhe
- European Space Agency, Research and Payloads Group, Data Exploitation and Utilisation Strategy Office, 2200 AG Noordwijk, the Netherlands
| | - Eric Istasse
- European Space Agency, Research and Payloads Group, Data Exploitation and Utilisation Strategy Office, 2200 AG Noordwijk, the Netherlands
| | - Nitin Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Jessica A Keune
- Space Medicine Operations Division, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Hami E Ray
- ASRC Federal Space and Defense, Inc., Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Mathias Basner
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jack Miller
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL 60208, USA; Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Deanne M Taylor
- Department of Biomedical Informatics, The Children's Hospital of Philadelphia, PA 19104, USA; Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen Rubins
- Astronaut Office, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Susan M Bailey
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Peter Grabham
- Center for Radiological Research, Department of Oncology, College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA.
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA; The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY 10021, USA.
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
41
|
Owlett L, Belcher EK, Dionisio-Santos DA, Williams JP, Olschowka JA, O'Banion MK. Space radiation does not alter amyloid or tau pathology in the 3xTg mouse model of Alzheimer's disease. LIFE SCIENCES IN SPACE RESEARCH 2020; 27:89-98. [PMID: 34756235 DOI: 10.1016/j.lssr.2020.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/25/2020] [Accepted: 08/02/2020] [Indexed: 05/27/2023]
Abstract
Space radiation is comprised of highly charged ions (HZE particles) and protons that are able to pass through matter and cause radiation-induced injury, including neuronal damage and degeneration, glial activation, and oxidative stress. Previous work demonstrated a worsening of Alzheimer's disease pathology in the APP/PS1 transgenic mouse model, however effects of space radiation on tau pathology have not been studied. To determine whether tau pathology is altered by HZE particle or proton irradiation, we exposed 3xTg mice, which acquire both amyloid plaque and tau pathology with age, to iron, silicon, or solar particle event (SPE) irradiation at 9 months of age and evaluated behavior and brain pathology at 16 months of age. We found no differences in performance in fear conditioning and novel object recognition tasks between groups of mice exposed to sham, iron (10 and 100 cGy), silicon (10 and 100 cGy), or solar particle event radiation (200 cGy), though female mice had higher freezing responses than males. 200 cGy SPE irradiated female mice had fewer plaques than sham-irradiated females but had no differences in tau pathology. Overall, females had worse amyloid and tau pathology at 16 months of age and demonstrated a reduced neuroinflammatory gene expression response to radiation. These findings uncover differences between mouse models following radiation injury and corroborate prior reports of sex differences within the 3xTg mouse model.
Collapse
Affiliation(s)
- Laura Owlett
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Box 603, Rochester, NY, 14642, USA
| | - Elizabeth K Belcher
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Box 603, Rochester, NY, 14642, USA
| | - Dawling A Dionisio-Santos
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Box 603, Rochester, NY, 14642, USA
| | - Jacqueline P Williams
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Box EHSC, Rochester, NY, 14642, USA
| | - John A Olschowka
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Box 603, Rochester, NY, 14642, USA; Del Monte Neuroscience Institute, University of Rochester Medical Center, 601 Elmwood Ave, Box 603, Rochester, NY, 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Box 603, Rochester, NY, 14642, USA; Del Monte Neuroscience Institute, University of Rochester Medical Center, 601 Elmwood Ave, Box 603, Rochester, NY, 14642, USA; Department of Neurology, University of Rochester Medical Center, 601 Elmwood Ave, Box 673, Rochester, NY, 14642, USA.
| |
Collapse
|
42
|
Choukér A, Stahn AC. COVID-19-The largest isolation study in history: the value of shared learnings from spaceflight analogs. NPJ Microgravity 2020; 6:32. [PMID: 33110938 PMCID: PMC7582843 DOI: 10.1038/s41526-020-00122-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/21/2020] [Indexed: 01/01/2023] Open
Abstract
The world is currently experiencing the largest isolation experiment in history. In an attempt to slow down the spread of the COVID-19 pandemic numerous countries across the world have been shutting down economies, education, and public life. Governments have mandated strict regulations of quarantine and social distancing in an unprecedented manner. The effects of these measures on brain, behavior, neuro-humoral and immunological responses in humans are largely unknown. Life science research for space exploration has a long history in using high-fidelity spaceflight analogs to better understand the effect of prolonged isolation and confinement on genes, molecules, cells, neural circuits, and physiological systems to behavior. We here propose to leverage the extensive experience and data from these studies and build a bridge between spaceflight research and clinical settings to foster transdisciplinary approaches to characterize the neurobehavioral effects on the immune system and vice versa. These approaches are expected to develop innovative and efficient health screening tools, diagnostic systems, and treatments to mitigate health risks associated with isolation and confinement on Earth and during future exploratory spaceflight missions.
Collapse
Affiliation(s)
- Alexander Choukér
- Laboratory of Translational Research “Stress and Immunity”, Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Marchioninistrasse 15, 81377 Munich, Germany
| | - Alexander C. Stahn
- Perelman School of Medicine at the University of Pennsylvania, Department of Psychiatry, Research Section for Behavioral Regulation and Health, 1016 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19004 USA
| |
Collapse
|
43
|
The Influence of COVID-19 Isolation on Physical Activity Habits and Its Relationship with Convergence Insufficiency. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207406. [PMID: 33053701 PMCID: PMC7601297 DOI: 10.3390/ijerph17207406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022]
Abstract
The purpose of this work is to evaluate the effects of confinement due to COVID-19 isolation on visual function, considering insufficient convergence as one of the possible effects of living the whole day in a reduced space. We pass a Convergence Insufficiency Symptom Survey (CISS) among 235 people to detect their habits before and after 25 confinement days. The data collection protocol consisted on a Google forms questionnaire included two parts: the first with current data (isolation period) and a second with pre-isolation period data. Differences between the pre-isolation and isolation period were calculated using the related paired T-tests. When statistically significant differences were found, the effect size was estimated using the Cohen’s d index (d). The reduction in physical activity levels during confinement were related to the increase in total number of minutes of screen consumption from 433.49 min to 623.97 min per day (d = 0.67; 44.01%). The CISS scores were increased by more than 43% during confinement. The increase in convergence insufficiency was 100% after the studied isolation period of 25 days. The 92.19% increase in television use during 25 days of confinement is not responsible for the increase in convergence insufficiency. However, due to the increase in the use of PCs in this period, there is a notable increase in convergence insufficiency. Therefore, we can conclude that not all increases in tasks with electronic devices are responsible for the increase in convergence insufficiency.
Collapse
|
44
|
Carriedo A, Cecchini JA, Fernández-Río J, Méndez-Giménez A. Resilience and physical activity in people under home isolation due to COVID-19: A preliminary evaluation. Ment Health Phys Act 2020; 19:100361. [PMID: 33024452 PMCID: PMC7530639 DOI: 10.1016/j.mhpa.2020.100361] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The recent shelter-in-place order issued by the Spanish government (due to the outbreak of the COVID-19) forced the Spanish population to self-isolate at home. The psychological and social effects of this new situation are unknown. Therefore, this study aimed to examine the impact of such scenario on citizens' resilience, as well as the connections between resilience, physical activity (PA), gender, weight and body mass index (BMI) before and after confinement, and COVID-19-related information. METHODS A total of 1795 people answered an online questionnaire conducted on March 21st, , 2020, seven days after the mandatory shelter-in-place health order was issued. RESULTS Results showed that individuals who regularly engaged in Vigorous PA during the first week of confinement reported higher resilience in terms of higher locus of control, higher self-efficacy, and higher optimism. Moreover, inter-personal resilience differences were observed based on gender, age groups, BMI, weight, and people living with dependent persons or under health risk conditions. CONCLUSION To the best of our knowledge, these findings are the first quantitative evidence pointing towards a link between engagement in Vigorous PA and resilience within the COVID-19 restrictions in Spain. These findings may have important implications for general population during the course of this pandemic, or future ones.
Collapse
Affiliation(s)
- Alejandro Carriedo
- Department of Education Sciences, University of Oviedo, C/ Aniceto Sela, s/n, Oviedo, Spain
| | - José A Cecchini
- Department of Education Sciences, University of Oviedo, C/ Aniceto Sela, s/n, Oviedo, Spain
| | - Javier Fernández-Río
- Department of Education Sciences, University of Oviedo, C/ Aniceto Sela, s/n, Oviedo, Spain
| | - Antonio Méndez-Giménez
- Department of Education Sciences, University of Oviedo, C/ Aniceto Sela, s/n, Oviedo, Spain
| |
Collapse
|
45
|
Alomari MA, Khabour OF, Alzoubi KH. Changes in Physical Activity and Sedentary Behavior Amid Confinement: The BKSQ-COVID-19 Project. Risk Manag Healthc Policy 2020; 13:1757-1764. [PMID: 33061709 PMCID: PMC7526007 DOI: 10.2147/rmhp.s268320] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/14/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Coronavirus disease 19 (COVID-19) has compelled implementing confinement measure across the globe. These measures can potentially lead to many changes in lifestyle. However, no studies examined the effect of COVID-19-induced confinement on physical activity (PA) and sedentary behavior (SB). METHODS During April and May of 2020, the current study surveyed changes in PA and SB induced by COVID-19 confinement. RESULTS The participants of the study were 1844. Among the participants who were regularly involved in PA, the majority (41.8-42.2%) of the participants reported a "decrease" (p<0.05) in walking, jogging, and sports while the majority (46.3-53.1%) reported a "no change" (p<0.05) in swimming, cycling, and weight lifting. With regard to the SB, most of the participants reported an "increase" in watching TV (72.3%), using electronics (82.7%), and logging to social media (81.9%). Additionally, gender, job type, obesity, and being worried to contract the disease were associated (p<0.05) with changes in PA. On the other hand, age, gender, obesity, job type and income were related (p<0.05) to changes in SB. CONCLUSION Results of the current study might enhance knowledge about the impact of COVID-19 on lifestyle, particularly PA and SB. Subsequently, it can also be used to establish strategies to enhance engagement in activities during the current and future pandemics.
Collapse
Affiliation(s)
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
46
|
Roychowdhury D. 2019 Novel Coronavirus Disease, Crisis, and Isolation. Front Psychol 2020; 11:1958. [PMID: 32849147 PMCID: PMC7424012 DOI: 10.3389/fpsyg.2020.01958] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
The highly contagious 2019 novel coronavirus disease (COVID-19) outbreak has not only impacted health systems, economies, and governments, it has also rapidly grown into a global health crisis, which is now threatening the lives of millions of people globally. While, on one hand, medical institutions are critically attempting to find a cure, on the other hand, governments have introduced striking measures and policies to curtail the rapid spread of the disease. Although COVID-19 has achieved pandemic status and is predominantly viewed as a biomedical issue, it is argued that it should also be treated as a psychological crisis. This paper also reviews the literature to examine and comment on the detrimental effects of isolation, which has been enforced as one of the primary preventative measures to manage the spread of COVID-19. This paper further outlines key recommendations that should be addressed across different levels to buffer against the known adverse effects of isolation, which is especially relevant for the current COVID-19 situation, where a large proportion of the global population is isolated, confined, and/or quarantined.
Collapse
|
47
|
Van Ombergen A, Rossiter A, Ngo-Anh TJ. 'White Mars' - nearly two decades of biomedical research at the Antarctic Concordia station. Exp Physiol 2020; 106:6-17. [PMID: 32662901 DOI: 10.1113/ep088352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/10/2020] [Indexed: 12/31/2022]
Abstract
NEW FINDINGS What is the topic of this review? Biomedical research at the Antarctic Concordia Station. What advances does it highlight? Overview of findings in psychology, neuroscience, sleep, cardiovascular physiology and immune system, relevant in isolated, confined and extreme environments and spaceflight. ABSTRACT Extended stays in isolated, confined and extreme (ICE) environments like Antarctica are associated with a whole set of psychological and physiological challenges for the crew. As such, winter-over stays at Antarctica provide an important opportunity to acquire knowledge into the physiological and psychological changes that ICE environments inevitably bring. The European Space Agency (ESA) is particularly interested in conducting research in such an environment, as it is a unique opportunity to translate these results to space crews experiencing very similar issues. In the past two decades, the ESA has supported a total of 36 biomedical research projects at the Concordia station in collaboration with the French and Italian polar institutes. More specifically, studies in the areas of psychology, neuroscience, sleep physiology, cardiovascular physiology and immunology were performed. The outcomes of these studies are directly relevant for people working in ICE environments, but also help to better understand the biomedical challenges of those environments. Consequently, they can help to better prepare for human space exploration and to identify countermeasures to minimize the adverse effects of space environments on astronaut health. The aim of this review is to provide an overview of the biomedical studies that have taken place in the past two decades at the Antarctic Concordia station and to summarize the results and their implication for human spaceflight.
Collapse
Affiliation(s)
- Angelique Van Ombergen
- SciSpacE team, Directorate of Human and Robotic Exploration, European Space Agency, ESTEC, Noordwijk, The Netherlands
| | - Andrea Rossiter
- SciSpacE team, Directorate of Human and Robotic Exploration, European Space Agency, ESTEC, Noordwijk, The Netherlands
| | - Thu Jennifer Ngo-Anh
- SciSpacE team, Directorate of Human and Robotic Exploration, European Space Agency, ESTEC, Noordwijk, The Netherlands
| |
Collapse
|
48
|
Caputo V, Pacilli MG, Arisi I, Mazza T, Brandi R, Traversa A, Casasanta G, Pisa E, Sonnessa M, Healey B, Moggio L, D’Onofrio M, Alleva E, Macrì S. Genomic and physiological resilience in extreme environments are associated with a secure attachment style. Transl Psychiatry 2020; 10:185. [PMID: 32518224 PMCID: PMC7283351 DOI: 10.1038/s41398-020-00869-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 12/31/2022] Open
Abstract
Understanding individual capability to adjust to protracted confinement and isolation may inform adaptive plasticity and disease vulnerability/resilience, and may have long-term implications for operations requiring prolonged presence in distant and restricted environments. Individual coping depends on many different factors encompassing psychological dispositional traits, endocrine reactivity and their underlying molecular mechanisms (e.g. gene expression). A positive view of self and others (secure attachment style) has been proposed to promote individual resilience under extreme environmental conditions. Here, we tested this hypothesis and investigated the underlying molecular mechanisms in 13 healthy volunteers confined and isolated for 12 months in a research station located 1670 km away from the south geographic pole on the Antarctic Plateau at 3233 m above sea level. Study participants, stratified for attachment style, were characterised longitudinally (before, during and after confinement) for their psychological appraisal of the stressful nature of the expedition, diurnal fluctuations in endocrine stress reactivity, and gene expression profiling (transcriptomics). Predictably, a secure attachment style was associated with reduced psychological distress and endocrine vulnerability to stress. In addition, while prolonged confinement and isolation remarkably altered overall patterns of gene expression, such alteration was largely reduced in individuals characterised by a secure attachment style. Furthermore, increased resilience was associated with a reduced expression of genes involved in energy metabolism (mitochondrial function and oxidative phosphorylation). Ultimately, our data indicate that a secure attachment style may favour individual resilience in extreme environments and that such resilience can be mapped onto identifiable molecular substrates.
Collapse
Affiliation(s)
- Viviana Caputo
- grid.7841.aDepartment of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Giuseppina Pacilli
- grid.9027.c0000 0004 1757 3630Department of Political Sciences, University of Perugia, Perugia, Italy
| | - Ivan Arisi
- grid.418911.4Bioinformatics, European Brain Research Institute (EBRI) Fondazione Rita Levi-Montalcini, Rome, Italy ,grid.428504.f0000 0004 1781 0034Institute of Translational Pharmacology (IFT) – CNR, Rome, Italy
| | - Tommaso Mazza
- grid.413503.00000 0004 1757 9135Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Rossella Brandi
- grid.418911.4Genomics - European Brain Research Institute (EBRI) Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Alice Traversa
- grid.413503.00000 0004 1757 9135Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Giampietro Casasanta
- grid.5326.20000 0001 1940 4177Institute of Atmospheric Sciences and Climate, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Edoardo Pisa
- grid.416651.10000 0000 9120 6856Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Sonnessa
- grid.418911.4Genomics - European Brain Research Institute (EBRI) Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Beth Healey
- Biomedical Research, European Space Agency, Concordia, Antarctica
| | - Lorenzo Moggio
- grid.5326.20000 0001 1940 4177Institute of Atmospheric Sciences and Climate, Consiglio Nazionale delle Ricerche, Rome, Italy ,grid.11696.390000 0004 1937 0351Department of Physics, University of Trento, Trento, Italy
| | - Mara D’Onofrio
- grid.428504.f0000 0004 1781 0034Institute of Translational Pharmacology (IFT) – CNR, Rome, Italy ,grid.418911.4Genomics - European Brain Research Institute (EBRI) Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Enrico Alleva
- grid.416651.10000 0000 9120 6856Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
49
|
Psychological Screening for Exceptional Environments: Laboratory Circadian Rhythm and Sleep Research. Clocks Sleep 2020; 2:13. [PMID: 33089194 PMCID: PMC7445832 DOI: 10.3390/clockssleep2020013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/13/2020] [Indexed: 11/17/2022] Open
Abstract
Selecting participants who constitute a representative sample while protecting them from potential adverse outcomes is a concern for clinical researchers. Our research group conducts deep phenotyping studies of the circadian timing system and sleep–wake regulation in long (up to 3 months) laboratory experiments, similar in many ways to “exceptional environment” conditions. Here, we describe the psychological screening process we have used for more than 30 years. We outline our “Select In” and “Select Out” measures within three major categories: psychological, psychophysiological, and psychosocial factors. We describe the screening process, inclusion–exclusion criteria on standard questionnaires, and clinical interview questions. We also describe how we manage the exclusion process during screening, ensure continued psychological health during the laboratory study, and manage study terminations. We present data from one recent study, outlining the number of individuals excluded at each stage of the process and present subjective mood data from the included individuals, showing the trajectory of mood across the five-week laboratory study and the end-of-study debriefing, during which the participants rated their comfort with various aspects of the study and their willingness to return for a future study. While designed for our inpatient research studies, elements of these procedures may also be useful for selecting individuals for other exceptional environments.
Collapse
|
50
|
Yuan M, Custaud MA, Xu Z, Wang J, Yuan M, Tafforin C, Treffel L, Arbeille P, Nicolas M, Gharib C, Gauquelin-Koch G, Arnaud L, Lloret JC, Li Y, Navasiolava N. Multi-System Adaptation to Confinement During the 180-Day Controlled Ecological Life Support System (CELSS) Experiment. Front Physiol 2019; 10:575. [PMID: 31164833 PMCID: PMC6536695 DOI: 10.3389/fphys.2019.00575] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/24/2019] [Indexed: 02/01/2023] Open
Abstract
Confinement experiments are essential to prepare long-term space exploration. The 180-day Chinese CELSS (Controlled Ecological Life Support System) study is unique in its design, including a closed-loop system and mid-mission simulation of Mars-like day-night cycle of 24 h 40 min for 36 days (days 72-108). Our aim was to study physiological and psychological consequences of this confinement in four healthy volunteers (one female). CELSS platform consisted of six interconnected modules including four greenhouses. Life support systems were controlled automatically. Body composition, fluid compartments, metabolic state, heart, large vessels, endothelial function, and muscle tone were studied using biological, functional, and/or morphological measurements. Behavioral activities were studied by ethological monitoring; psychological state was assessed by questionnaires. Body weight decreased by ∼2 kg mostly due to lean mass loss. Plasma volume and volume-regulating hormones were mostly stable. Carotid intima-media thickness (IMT) increased by 10-15%. Endothelium-dependent vasodilation decreased. Masseter tone increased by 6-14% suggesting stress, whereas paravertebral muscle tone diminished by 10 ± 6%. Behavioral flow reflecting global activity decreased 1.5- to 2-fold after the first month. Psychological questionnaires revealed decrease in hostility and negative emotions but increase in emotional adaptation suggesting boredom and monotony. One subject was clearly different with lower fitness, higher levels of stress and anxiety, and somatic signs as back pain, peak in masseter tone, increased blood cortisol and C-reactive protein. Comparison of CELSS experiment with Mars500 confinement program suggests the need for countermeasures to prevent increased IMT and endothelial deconditioning. Daily activity in greenhouse could act as countermeasure against psycho-physiological deconditioning.
Collapse
Affiliation(s)
- Ming Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- Space Institute of Southern China, Shenzhen, China
| | - Marc-Antoine Custaud
- Centre de Recherche Clinique, Centre Hospitalier Universitaire d’Angers, Angers, France
- MitoVasc UMR INSERM 1083-CNRS 6015, Université d’Angers, Angers, France
| | - Zi Xu
- Space Institute of Southern China, Shenzhen, China
| | - Jingyu Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Min Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Carole Tafforin
- Research and Study Group in Human and Space Ethology, Ethospace, Toulouse, France
| | - Loïc Treffel
- Institut Toulousain d’Ostéopathie, Toulouse, France
- Centre de Recherche International en Biomécanique, Lagarde, France
| | - Philippe Arbeille
- Faculté de Médecine, Unité de Médecine et Physiologie Spatiales, Centre Hospitalier Universitaire Trousseau de Tours, Tours, France
| | - Michel Nicolas
- Laboratory of Psychology Psy-DREPI (EA 7458), Sport Sciences Department, University Bourgogne Franche-Comté, Dijon, France
| | - Claude Gharib
- Institut NeuroMyogène, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Nastassia Navasiolava
- Centre de Recherche Clinique, Centre Hospitalier Universitaire d’Angers, Angers, France
| |
Collapse
|