1
|
Papagiannaki M, Kerr MA. Food portion sizes: trends and drivers in an obesogenic environment. Nutr Res Rev 2024:1-17. [PMID: 38213262 DOI: 10.1017/s0954422424000027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The prevalence of overweight and obesity in children and adults has increased worldwide. A strong environmental factor contributing to the obesity epidemic is food portion size (PS). This review evaluates the current evidence linking food PS to obesity, examines the effects of PS on energy intake (EI), and discusses the drivers of food PS selection. The leading causes of the rise in PS include globalisation, intensive farming methods, the impact of World War II, due to shortage of staple foods, and the notion of 'waste not, want not'. Large PS of energy-dense foods may stimulate overconsumption, leading to high EI levels. However, the studies have not shown a cause-and-effect relationship, due to confounding factors. Important mechanisms explaining the attractiveness of larger PS leading to higher EI levels are value for money, portion distortion, labels on food packaging, and tableware. Consumers depend on external rather than internal PS cues to guide consumption, irrespective of satiety levels. Further research is recommended on food consumption patterns to inform policymakers and provide information and insights about changes in diet.
Collapse
Affiliation(s)
- Maria Papagiannaki
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK
- Middlesex University, Department of Natural Sciences, The Burroughs, London, NW4 4BT, UK
| | - Maeve A Kerr
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK
| |
Collapse
|
2
|
Brix JM, Andersen B, Aydinkoc-Tuzcu K, Beckerhinn P, Brossard-Eitzinger A, Cavini A, Ciardi C, Clodi M, Eichner M, Erlacher B, Fahrnberger M, Felsenreich DM, Francesconi C, Göbel B, Hölbing E, Hoppichler F, Huber J, Huber SL, Itariu BK, Jandrasitz B, Kiefer FW, Köhler G, Kruschitz R, Ludvik B, Malzner A, Moosbrugger A, Öfferlbauer-Ernst A, Parzer V, Prager G, Resl M, Ress C, Schelkshorn C, Scherer T, Sourji H, Stechemesser L, Stulnig T, Toplak H, Wakolbinger M, Vonbank A, Weghuber D. [Overweight and obesity in adults: general principles of treatment and conservative management]. Wien Klin Wochenschr 2023; 135:706-720. [PMID: 37821694 PMCID: PMC10567802 DOI: 10.1007/s00508-023-02270-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 10/13/2023]
Abstract
The prevalence of overweight and obesity is steadily increasing in Austria as well as internationally. Obesity in particular is associated with multiple health risks, comorbidities, functional disability, and social stigma. Obesity is an independent, complex, chronic disease and should be treated as such by a multidisciplinary team of appropriately qualified personnel. In addition to recent international guidelines, this consensus paper outlines the overall principles of the management of overweight and obesity and provides guidance for the diagnosis and conservative treatment, focusing on lifestyle modifications and pharmacotherapy. Using the "5A" framework of behavioral health intervention, guidelines for a structured, pragmatic, and patient-centered medical care of adults with overweight or obesity are presented.
Collapse
Affiliation(s)
- Johanna Maria Brix
- 1. Medizinische Abteilung mit Diabetologie, Endokrinologie und Nephrologie, Karl Landsteiner Institut für Adipositas und Stoffwechselerkrankungen, Klinik Landstraße, Wien, Österreich
| | | | - Kadriye Aydinkoc-Tuzcu
- 5. Medizinische Abteilung für Endokrinologie, Rheumatologie und Akutgeriatrie, Klinik Ottakring, Wien, Österreich
| | - Philipp Beckerhinn
- Abteilung für Chirurgie, Landesklinikum Hollabrunn, Hollabrunn, Österreich
| | - Agnes Brossard-Eitzinger
- Universitätsklinik für Innere Medizin I, mit Gastroenterologie Hepatologie, Nephrologie, Stoffwechsel und Diabetologie, Uniklinikum der Paracelsus Medizinischen Privatuniversität, Salzburg, Österreich
| | - Anna Cavini
- kokon – Reha für junge Menschen, Bad Erlach, Österreich
| | - Christian Ciardi
- Abteilung für Innere Medizin, Krankenhaus St. Vinzenz Zams, Zams, Österreich
| | - Martin Clodi
- ICMR – Institute for Cardiovascular and Metabolic Research, Johannes Kepler Universität Linz, Linz, Österreich
- Abteilung für Innere Medizin mit Diabetologie, Gastroenterologie und Hepatologie, Rheumatologie und Intensivmedizin, Konventhospital der Barmherzigen Brüder Linz, Linz, Österreich
| | - Marlies Eichner
- 3. Medizinische Abteilung mit Stoffwechselerkrankungen und Nephrologie, Karl Landsteiner-Institut für Stoffwechselerkrankungen und Nephrologie, Klinik Hietzing, Wien, Österreich
| | - Brigitte Erlacher
- Abteilung Innere Medizin III, Krankenhaus Barmherzige Schwestern, Wien, Österreich
| | | | - Daniel Moritz Felsenreich
- Klinische Abteilung für Viszeralchirurgie, Universitätsklinik für Allgemeinchirurgie, Medizinische Universität Wien, Wien, Österreich
| | | | - Bettina Göbel
- 5. Medizinische Abteilung für Endokrinologie, Rheumatologie und Akutgeriatrie, Klinik Ottakring, Wien, Österreich
| | - Elisabeth Hölbing
- Landeskrankenhaus Hochsteiermark, Standort Leoben, Leoben, Österreich
| | - Friedrich Hoppichler
- Abteilung für Innere Medizin, Krankenhaus der Barmherzigen Brüder Salzburg, Salzburg, Österreich
- Institut SIPCAN – Initiative für ein gesundes Leben, Salzburg, Österreich
| | - Joakim Huber
- Interne Abteilung mit Akutgeriatrie und Palliativmedizin, Franziskus Spital, Standort Landstraße, Wien, Österreich
| | - Simone Leonora Huber
- 1. Medizinische Abteilung mit Diabetologie, Endokrinologie und Nephrologie, Karl Landsteiner Institut für Adipositas und Stoffwechselerkrankungen, Klinik Landstraße, Wien, Österreich
| | - Bianca Karla Itariu
- Klinische Abteilung für Endokrinologie und Stoffwechsel, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
| | - Birgit Jandrasitz
- 3. Medizinische Abteilung mit Stoffwechselerkrankungen und Nephrologie, Karl Landsteiner-Institut für Stoffwechselerkrankungen und Nephrologie, Klinik Hietzing, Wien, Österreich
| | - Florian W. Kiefer
- Klinische Abteilung für Endokrinologie und Stoffwechsel, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
| | - Gerd Köhler
- Rehabilitationszentrum Aflenz für Stoffwechselerkrankungen mit Schwerpunkt Diabetes mellitus und hochgradige Adipositas, Aflenz, Österreich
| | - Renate Kruschitz
- Abteilung für Innere Medizin, Krankenhaus der Elisabethinen Klagenfurt, Klagenfurt, Österreich
| | - Bernhard Ludvik
- 1. Medizinische Abteilung mit Diabetologie, Endokrinologie und Nephrologie, Karl Landsteiner Institut für Adipositas und Stoffwechselerkrankungen, Klinik Landstraße, Wien, Österreich
| | - Andrea Malzner
- Abteilung für Innere Medizin I, Klinikum Wels Grieskirchen, Standort Wels, Wels, Österreich
| | - Alexander Moosbrugger
- Abteilung für Innere Medizin II, Konventhospital der Barmherzigen Brüder Graz-Marschallgasse, Graz, Österreich
| | - Anna Öfferlbauer-Ernst
- Universitätsklinik für Innere Medizin I, mit Gastroenterologie Hepatologie, Nephrologie, Stoffwechsel und Diabetologie, Uniklinikum der Paracelsus Medizinischen Privatuniversität, Salzburg, Österreich
| | - Verena Parzer
- 1. Medizinische Abteilung mit Diabetologie, Endokrinologie und Nephrologie, Karl Landsteiner Institut für Adipositas und Stoffwechselerkrankungen, Klinik Landstraße, Wien, Österreich
| | - Gerhard Prager
- Klinische Abteilung für Viszeralchirurgie, Universitätsklinik für Allgemeinchirurgie, Medizinische Universität Wien, Wien, Österreich
| | - Michael Resl
- ICMR – Institute for Cardiovascular and Metabolic Research, Johannes Kepler Universität Linz, Linz, Österreich
- Abteilung für Innere Medizin mit Diabetologie, Gastroenterologie und Hepatologie, Rheumatologie und Intensivmedizin, Konventhospital der Barmherzigen Brüder Linz, Linz, Österreich
| | - Claudia Ress
- Department für Innere Medizin I, Medizinische Universität Innsbruck, Innsbruck, Österreich
| | | | - Thomas Scherer
- Klinische Abteilung für Endokrinologie und Stoffwechsel, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
| | - Harald Sourji
- Klinische Abteilung für Endokrinologie und Diabetologie, Medizinische Universität Graz, Graz, Österreich
| | - Lars Stechemesser
- Universitätsklinik für Innere Medizin I, mit Gastroenterologie Hepatologie, Nephrologie, Stoffwechsel und Diabetologie, Uniklinikum der Paracelsus Medizinischen Privatuniversität, Salzburg, Österreich
| | - Thomas Stulnig
- 3. Medizinische Abteilung mit Stoffwechselerkrankungen und Nephrologie, Karl Landsteiner-Institut für Stoffwechselerkrankungen und Nephrologie, Klinik Hietzing, Wien, Österreich
| | - Hermann Toplak
- Klinische Abteilung für Endokrinologie und Diabetologie, Medizinische Universität Graz, Graz, Österreich
| | - Maria Wakolbinger
- Abteilung für Sozial- und Präventivmedizin, Zentrum für Public Health, Medizinische Universität Wien, Wien, Österreich
| | - Alexander Vonbank
- Abteilung für Innere Medizin I, Akademisches Lehrkrankenhaus Feldkirch, Feldkirch, Österreich
| | - Daniel Weghuber
- Universitätsklinik für Kinder- und Jugendheilkunde, Uniklinikum der Paracelsus Medizinischen Privatuniversität, Salzburg, Österreich
| |
Collapse
|
3
|
James Stubbs R, Horgan G, Robinson E, Hopkins M, Dakin C, Finlayson G. Diet composition and energy intake in humans. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220449. [PMID: 37661746 PMCID: PMC10475874 DOI: 10.1098/rstb.2022.0449] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 06/16/2023] [Indexed: 09/05/2023] Open
Abstract
Absolute energy from fats and carbohydrates and the proportion of carbohydrates in the food supply have increased over 50 years. Dietary energy density (ED) is primarily decreased by the water and increased by the fat content of foods. Protein, carbohydrates and fat exert different effects on satiety or energy intake (EI) in the order protein > carbohydrates > fat. When the ED of different foods is equalized the differences between fat and carbohydrates are modest. Covertly increasing dietary ED with fat, carbohydrate or mixed macronutrients elevates EI, producing weight gain and vice versa. In more naturalistic situations where learning cues are intact, there appears to be greater compensation for the different ED of foods. There is considerable individual variability in response. Macronutrient-specific negative feedback models of EI regulation have limited capacity to explain how availability of cheap, highly palatable, readily assimilated, energy-dense foods lead to obesity in modern environments. Neuropsychological constructs including food reward (liking, wanting and learning), reactive and reflective decision making, in the context of asymmetric energy balance regulation, give more comprehensive explanations of how environmental superabundance of foods containing mixtures of readily assimilated fats and carbohydrates and caloric beverages elevate EI through combined hedonic, affective, cognitive and physiological mechanisms. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.
Collapse
Affiliation(s)
| | - Graham Horgan
- Biomathematics and Statistics Scotland, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD Scotland, UK
| | - Eric Robinson
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Hopkins
- Institute of Population health, University of Liverpool, Liverpool L69 3GF, UK
| | - Clarissa Dakin
- School of Psychology, Faculty of Medicine and Health and
| | | |
Collapse
|
4
|
Steinhardt J, Lokowandt L, Rasche D, Koch A, Tronnier V, Münte TF, Meyhöfer SM, Wilms B, Brüggemann N. Mechanisms and consequences of weight gain after deep brain stimulation of the subthalamic nucleus in patients with Parkinson's disease. Sci Rep 2023; 13:14202. [PMID: 37648732 PMCID: PMC10468527 DOI: 10.1038/s41598-023-40316-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/08/2023] [Indexed: 09/01/2023] Open
Abstract
Body weight gain in combination with metabolic alterations has been observed after deep brain stimulation (DBS) of subthalamic nucleus (STN) in patients with Parkinson's disease (PD), which potentially counteracts the positive effects of motor improvement. We aimed to identify stimulation-dependent effects on motor activities, body weight, body composition, energy metabolism, and metabolic blood parameters and to determine if these alterations are associated with the local impact of DBS on different STN parcellations. We assessed 14 PD patients who underwent STN DBS (PD-DBS) before as well as 6- and 12-months post-surgery. For control purposes, 18 PD patients under best medical treatment (PD-CON) and 25 healthy controls (H-CON) were also enrolled. Wrist actigraphy, body composition, hormones, and energy expenditure measurements were applied. Electrode placement in the STN was localized, and the local impact of STN DBS was estimated. We found that STN DBS improved motor function by ~ 40% (DBS ON, Med ON). Weight and fat mass increased by ~ 3 kg and ~ 3% in PD-DBS (all P ≤ 0.005). fT3 (P = 0.001) and insulin levels (P = 0.048) increased solely in PD-DBS, whereas growth hormone levels (P = 0.001), daily physical activity, and VO2 during walking were decreased in PD-DBS (all P ≤ 0.002). DBS of the limbic part of the STN was associated with changes in weight and body composition, sedentary activity, insulin levels (all P ≤ 0.040; all r ≥ 0.56), and inversely related to HOMA-IR (P = 0.033; r = - 0.62). Daily physical activity is decreased after STN DBS, which can contribute to weight gain and an unfavorable metabolic profile. We recommend actigraphy devices to provide feedback on daily activities to achieve pre-defined activity goals.
Collapse
Affiliation(s)
- Julia Steinhardt
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Institute of Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Laura Lokowandt
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Dirk Rasche
- Department of Neurosurgery, University of Lübeck, Lübeck, Germany
| | - Andreas Koch
- Section Maritime Medicine, Naval Medical Institute, Kiel, Germany
| | - Volker Tronnier
- Department of Neurosurgery, University of Lübeck, Lübeck, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Sebastian M Meyhöfer
- Institute of Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Britta Wilms
- Institute of Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- Section Maritime Medicine, Naval Medical Institute, Kiel, Germany
| | - Norbert Brüggemann
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
5
|
Ballestero-Arnau M, Rodríguez-Herreros B, Nuño-Bermúdez N, Cunillera T. Sporadic fasting reduces attentional control without altering overall executive function in a binary classification task. Physiol Behav 2023; 260:114065. [PMID: 36549561 DOI: 10.1016/j.physbeh.2022.114065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
Diets with intermittent fasting are an efficient method for producing clinically significant weight loss and preventing the development of obesity. However, individuals following intermittent fasting must face the difficulty of avoiding eating when experiencing the feeling of hunger. In this study, we investigated which aspects of executive function were affected following a prolonged period of food deprivation in participants that have never previously undergone intermittent fasting. Twenty-six participants with normal weight performed two binary classification tasks (Stop Signal (SST) and Go/NoGo) after either a 12 h fasting or a nonfasting period in separate sessions. We measured their performance in several underlying decision-making processes, such as response inhibition and attentional control. In line with previous studies, our results revealed that decision-making processes to resolve the classification task were unaffected by fasting. Response inhibition, as indexed by the stop signal reaction time in the SST, remained as well unaltered after food deprivation. Rather, we observed a higher error rate in NoGo trials following a fasting period, which was associated with disrupted attentional control. Overall, these results indicate that when a hunger feeling reaches consciousness, it induces deficits over certain aspects of attentional control. Our findings hint at the importance of structured behavioral change strategies to cope with fasting-induced difficulties in attentional control, to help achieve weight management goals through successful self-monitoring of food intake.
Collapse
Affiliation(s)
- M Ballestero-Arnau
- Department of Cognition, Development and Educational Psychology. Faculty of Psychology, University of Barcelona; Pg. Vall d'Hebron, 171; 08035, Barcelona, Spain; Institute of Neurosciences (UBNeuro), University of Barcelona, Barcelona, Spain
| | - B Rodríguez-Herreros
- Service des Troubles du Spectre de l'Autisme et apparentés, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - N Nuño-Bermúdez
- Department of Cognition, Development and Educational Psychology. Faculty of Psychology, University of Barcelona; Pg. Vall d'Hebron, 171; 08035, Barcelona, Spain
| | - T Cunillera
- Department of Cognition, Development and Educational Psychology. Faculty of Psychology, University of Barcelona; Pg. Vall d'Hebron, 171; 08035, Barcelona, Spain; Institute of Neurosciences (UBNeuro), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
6
|
Zhu N, LeDuc CA, Fennoy I, Laferr Re B, Doege CA, Shen Y, Chung WK, Leibel RL. Predicted loss of function alleles in Bassoon (BSN) are associated with obesity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.19.23285978. [PMID: 36865254 PMCID: PMC9980265 DOI: 10.1101/2023.02.19.23285978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Bassoon ( BSN ) is a component of a hetero-dimeric presynaptic cytomatrix protein that orchestrates neurotransmitter release with Piccolo ( PCLO ) from glutamatergic neurons throughout the brain. Heterozygous missense variants in BSN have previously been associated with neurodegenerative disorders in humans. We performed an exome-wide association analysis of ultra-rare variants in about 140,000 unrelated individuals from the UK Biobank to search for new genes associated with obesity. We found that rare heterozygous predicted loss of function (pLoF) variants in BSN are associated with higher BMI with log10-p value of 11.78 in the UK biobank cohort. The association was replicated in the All of Us whole genome sequencing data. Additionally, we have identified two individuals (one of whom has a de novo variant) with a heterozygous pLoF variant in a cohort of early onset or extreme obesity at Columbia University. Like the individuals identified in the UKBB and All of us Cohorts, these individuals have no history of neurobehavioral or cognitive disability. Heterozygosity for pLoF BSN variants constitutes a new etiology for obesity.
Collapse
|
7
|
Jaime-Lara RB, Brooks BE, Vizioli C, Chiles M, Nawal N, Ortiz-Figueroa RSE, Livinski AA, Agarwal K, Colina-Prisco C, Iannarino N, Hilmi A, Tejeda HA, Joseph PV. A systematic review of the biological mediators of fat taste and smell. Physiol Rev 2023; 103:855-918. [PMID: 36409650 PMCID: PMC9678415 DOI: 10.1152/physrev.00061.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Taste and smell play a key role in our ability to perceive foods. Overconsumption of highly palatable energy-dense foods can lead to increased caloric intake and obesity. Thus there is growing interest in the study of the biological mediators of fat taste and associated olfaction as potential targets for pharmacologic and nutritional interventions in the context of obesity and health. The number of studies examining mechanisms underlying fat taste and smell has grown rapidly in the last 5 years. Therefore, the purpose of this systematic review is to summarize emerging evidence examining the biological mechanisms of fat taste and smell. A literature search was conducted of studies published in English between 2014 and 2021 in adult humans and animal models. Database searches were conducted using PubMed, EMBASE, Scopus, and Web of Science for key terms including fat/lipid, taste, and olfaction. Initially, 4,062 articles were identified through database searches, and a total of 84 relevant articles met inclusion and exclusion criteria and are included in this review. Existing literature suggests that there are several proteins integral to fat chemosensation, including cluster of differentiation 36 (CD36) and G protein-coupled receptor 120 (GPR120). This systematic review will discuss these proteins and the signal transduction pathways involved in fat detection. We also review neural circuits, key brain regions, ingestive cues, postingestive signals, and genetic polymorphism that play a role in fat perception and consumption. Finally, we discuss the role of fat taste and smell in the context of eating behavior and obesity.
Collapse
Affiliation(s)
- Rosario B. Jaime-Lara
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Brianna E. Brooks
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Carlotta Vizioli
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Mari Chiles
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland,4Section of Neuromodulation and Synaptic Integration, Division of Intramural Research, National Institute of Mental Health, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Nafisa Nawal
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Rodrigo S. E. Ortiz-Figueroa
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Alicia A. Livinski
- 3NIH Library, Office of Research Services, Office of the Director, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Khushbu Agarwal
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Claudia Colina-Prisco
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Natalia Iannarino
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Aliya Hilmi
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Hugo A. Tejeda
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Paule V. Joseph
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland,2Section of Sensory Science and Metabolism, Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|
8
|
Schwartz EKC, Sosner EN, Desmond HE, Lum SJ, Sze JY, Mobbs CV. Serotonin and Dopamine Mimic Glucose-Induced Reinforcement in C. elegans: Potential Role of NSM Neurons and the Serotonin Subtype 4 Receptor. Front Physiol 2022; 12:783359. [PMID: 34987416 PMCID: PMC8721000 DOI: 10.3389/fphys.2021.783359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Food produces powerful reinforcement that can lead to overconsumption and likely contributes to the obesity epidemic. The present studies examined molecular mechanisms mediating food-induced reinforcement in the model system C. elegans. After a 1-h training session during which food (bacteria) is paired with the odorant butanone, odor preference for butanone robustly increased. Glucose mimicked this effect of bacteria. Glucose-induced odor preference was enhanced similarly by prior food withdrawal or blocking glucose metabolism in the presence of food. Food- and glucose-induced odor preference was mimicked by serotonin signaling through the serotonin type-4 (5-HT4) receptor. Dopamine (thought to act primarily through a D1-like receptor) facilitated, whereas the D2 agonist bromocriptine blocked, food- and glucose-induced odor preference. Furthermore, prior food withdrawal similarly influenced reward produced by serotonin, dopamine, or food, implying post-synaptic enhancement of sensitivity to serotonin and dopamine. These results suggest that glucose metabolism plays a key role in mediating both food-induced reinforcement and enhancement of that reinforcement by prior food withdrawal and implicate serotonergic signaling through 5-HT4 receptor in the re-enforcing properties of food.
Collapse
Affiliation(s)
- Elizabeth K C Schwartz
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eitan N Sosner
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hayley E Desmond
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stephanie J Lum
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ji Ying Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Charles V Mobbs
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
9
|
Samson WK, Yosten GLC. A comprehensive review of the neuroscience of ingestion: the physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:319-322. [PMID: 34632806 DOI: 10.1152/physrev.00035.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Willis K Samson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Gina L C Yosten
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
10
|
Fukumura K, Shikano K, Narimatsu Y, Iwakoshi-Ukena E, Furumitsu M, Naito M, Ukena K. Effects of neurosecretory protein GL on food intake and fat accumulation under different dietary nutrient compositions in rats. Biosci Biotechnol Biochem 2021; 85:1514-1520. [PMID: 33851987 DOI: 10.1093/bbb/zbab064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
We recently identified a novel hypothalamic small protein, named neurosecretory protein GL (NPGL), which is involved in energy homeostasis in birds and mammals. However, whether the action of NPGL is influenced by nutritional composition remains unknown. Thus, we investigated the effect of chronic intracerebroventricular infusion of NPGL for 13 days on feeding behavior and body mass gain under a normal chow (NC) diet, high-fat diet, high-sucrose diet (HSD), and medium-fat/medium-sucrose diet (MFSD) in rats. NPGL stimulated food intake of NC and MFSD, especially during the light period. By contrast, NPGL decreased body mass gain under NC and increased total white adipose tissue mass in HSD- and MFSD-fed rats. These data suggest that the effects of NPGL on feeding behavior, body mass gain, and fat accumulation depend on nutrient type. Among them, sucrose in diets seems to contribute to fat accumulation elicited by NPGL.
Collapse
Affiliation(s)
- Keisuke Fukumura
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Kenshiro Shikano
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Department of Neurophysiology, Faculty of Medicine, Oita University, Oita, Japan
| | - Yuki Narimatsu
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Eiko Iwakoshi-Ukena
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Megumi Furumitsu
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Mana Naito
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Kazuyoshi Ukena
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
11
|
Sewaybricker LE, Melhorn SJ, Rosenbaum JL, Askren MK, Tyagi V, Webb MF, De Leon MRB, Grabowski TJ, Schur EA. Reassessing relationships between appetite and adiposity in people at risk of obesity: A twin study using fMRI. Physiol Behav 2021; 239:113504. [PMID: 34147511 DOI: 10.1016/j.physbeh.2021.113504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Neuroimaging studies suggest that appetitive drive is enhanced in obesity. OBJECTIVE To test if appetitive drive varies in direct proportion to the level of body adiposity after accounting for genetic factors that contribute to both brain response and obesity risk. SUBJECTS/METHODS Participants were adult monozygotic (n = 54) and dizygotic (n = 30) twins with at least one member of the pair with obesity. Body composition was assessed by dual-energy X-ray absorptiometry. Hormonal and appetite measures were obtained in response to a standardized meal that provided 20% of estimated daily caloric needs and to an ad libitum buffet meal. Pre- and post-meal functional magnetic resonance imaging (fMRI) assessed brain response to visual food cues in a set of a priori appetite-regulating regions. Exploratory voxelwise analyses outside a priori regions were performed with correction for multiple comparisons. RESULTS In a group of 84 adults, the majority with obesity (75%), body fat mass was not associated with hormonal responses to a meal (glucose, insulin, glucagon-like peptide-1 and ghrelin, all P>0.40), subjective feelings of hunger (β=-0.01 mm [95% CI -0.35, 0.34] P = 0.97) and fullness (β=0.15 mm [-0.15, 0.44] P = 0.33), or buffet meal intake in relation to estimated daily caloric needs (β=0.28% [-0.05, 0.60] P = 0.10). Body fat mass was also not associated with brain response to high-calorie food cues in appetite-regulating regions (Pre-meal β=-0.12 [-0.32, 0.09] P = 0.26; Post-meal β=0.18 [-0.02, 0.37] P = 0.09; Change by a meal β=0.29 [-0.02, 0.61] P = 0.07). Conversely, lower fat mass was associated with being weight reduced (β=-0.05% [-0.07, -0.03] P<0.001) and greater pre-meal activation to high-calorie food cues in the dorsolateral prefrontal cortex (Z = 3.63 P = 0.017). CONCLUSIONS In a large study of adult twins, the majority with overweight or obesity, the level of adiposity was not associated with excess appetitive drive as assessed by behavioral, hormonal, or fMRI measures.
Collapse
Affiliation(s)
- Leticia E Sewaybricker
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Susan J Melhorn
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Jennifer L Rosenbaum
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Mary K Askren
- Departments of Radiology and Neurology, University of Washington, 1959 NE Pacific St. Seattle, WA, 98195 USA
| | - Vidhi Tyagi
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Mary F Webb
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Mary Rosalynn B De Leon
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Thomas J Grabowski
- Departments of Radiology and Neurology, University of Washington, 1959 NE Pacific St. Seattle, WA, 98195 USA
| | - Ellen A Schur
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA.
| |
Collapse
|
12
|
Food is special by itself: Neither valence, arousal, food appeal, nor caloric content modulate the attentional bias induced by food images. Appetite 2020; 156:104984. [PMID: 33017592 DOI: 10.1016/j.appet.2020.104984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/17/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
When food cues appear in a visual context, such information is likely to influence eating behavior by enhancing attention for food cues. We investigated whether active but task-irrelevant information could modulate the attentional bias for food stimuli using a novel paradigm in which participants were purposely deceived by being enrolled in a memory experiment. A set of images were first held in working memory and then used as task-irrelevant distractors in a subsequent single target rapid serial visual presentation (RSVP) task, allowing us to investigate the attentional blink (AB) effect elicited by those images. In Experiment 1, the results revealed that food images elicited a larger AB effect than nonfood images. In three follow-up experiments, we investigated whether valence or arousal (Experiment 2), food preparation (Experiment 3), or food caloric content (Experiment 4) were factors related to the attentional bias for food. Overall, our results demonstrated that when held in working memory, food images can easily capture attention, even in circumstances in which the information retained in memory is irrelevant to solve the task, as indicated by the strong correlation found between items that were recognized in the RSVP task and the AB effect. Nonetheless, none of the food-related properties we examined were found to be associated with this attentional bias for food.
Collapse
|
13
|
Kan C, Herle M, Treasure J, Jones A, Rijsdijk F, Llewellyn C. Common etiological architecture underlying reward responsiveness, externally driven eating behaviors, and BMI in childhood: findings from the Gemini twin cohort. Int J Obes (Lond) 2020; 44:2064-2074. [PMID: 32467612 PMCID: PMC7610375 DOI: 10.1038/s41366-020-0605-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/15/2020] [Accepted: 05/14/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Studies have reported that impulsivity predicts childhood BMI and that the association is mediated by eating behaviors. One aspect of impulsivity-potentially crucial in the obesity context-is reward responsiveness, which may predispose to responsiveness to palatable food cues. The behavioral susceptibility theory hypothesizes that genetic susceptibility to obesity operates partly via genetically determined differences in appetite regulation. Reward responsiveness may therefore be one of the neuro-endophenotypes that mediates genetic susceptibility to obesity. OBJECTIVE To test whether reward responsiveness, eating behaviors, and child BMI share common genetic architecture. METHODS We examined reward responsiveness, eating behaviors, and BMI in 5-year-old children from Gemini, a UK birth cohort of 2402 twin pairs born in 2007. All measures were collected by parent report. Reward responsiveness was derived from the Behavioral Approach System. Compulsion to eat and eating for pleasure was measured with the "food responsiveness" scale of the Child Eating Behavior Questionnaire. Wanting to eat in response to environmental food cues was measured with the "external eating" scale of the Dutch Eating Behavior Questionnaire. Maximum-likelihood structural equation modeling was used to establish underlying common genetic and environmental influences. RESULTS There were significant positive phenotypic correlations between all traits except for reward responsiveness and BMI. Genetic factors explained the majority of the association between food responsiveness and external eating (74%, 95% CI: 61, 87), whereas common shared environmental factors explained the majority of the associations between reward responsiveness with both food responsiveness (55%, 95% CI: 20, 90) and external eating (70%, 95% CI: 39, 100). CONCLUSIONS Our study demonstrates the importance of common environmental factors in the shared etiology between reward responsiveness and childhood eating behaviors. However, the common etiology underlying both reward responsiveness and BMI is unclear, as there was no phenotypic correlation between reward responsiveness and BMI at this age. Further longitudinal research needs to detangle this complex relationship throughout development.
Collapse
Affiliation(s)
- Carol Kan
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Moritz Herle
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Janet Treasure
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Andrew Jones
- Institute of Population Health Sciences, University of Liverpool, Liverpool, UK
| | - Frühling Rijsdijk
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Clare Llewellyn
- Research Department of Behavioral Science and Health, University College London, London, UK
| |
Collapse
|
14
|
Pacheco LS, Blanco E, Burrows R, Correa-Burrows P, Santos JL, Gahagan S. Eating behavior and body composition in Chilean young adults. Appetite 2020; 156:104857. [PMID: 32896575 DOI: 10.1016/j.appet.2020.104857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Notable weight gain is observed during young adulthood, compared to other adult age groups, yet the relation between eating behavior and body composition at this stage remains poorly understood. OBJECTIVE The aim of this cross-sectional study was to assess the association between eating behavior scores (cognitive restraint, uncontrolled eating, and emotional eating), and body composition in a sample of Chilean young adults. METHODS Logistic and linear regression models assessed the independent associations between cognitive restraint, uncontrolled eating, and emotional eating, derived from the Three Factor Eating Questionnaire-R18, and body mass index (BMI), percent body fat by dual-energy X-ray absorptiometry, and central obesity, accounting for demographic covariates, stratified by sex, in a sample of 555 participants of the Santiago Longitudinal Study (mean age 22.6 years [SD 0.4]). RESULTS Cognitive restraint was positively associated with obesity, defined by BMI, % body fat, and central obesity. Emotional eating was related to obesity, defined by % body fat and central obesity in men and women and to obesity, defined by BMI, in women. Cognitive restraint was related to BMI in men and % body fat in women. Uncontrolled eating was not associated with adiposity in men or women. CONCLUSIONS In Chilean young adults, cognitive restraint and emotional eating scores were associated with higher BMI, elevated percent body fat, and greater central obesity.
Collapse
Affiliation(s)
- Lorena S Pacheco
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 655 Huntington Ave Bldg 2 room 302, Boston, MA 02115, USA; Division of Child Development and Community Health, Department of Pediatrics, University of California, 9500 Gilman Dr., MC 0927, La Jolla, CA, 92093-0927, USA.
| | - Estela Blanco
- Division of Child Development and Community Health, Department of Pediatrics, University of California, 9500 Gilman Dr., MC 0927, La Jolla, CA, 92093-0927, USA; University of Chile Doctoral Program in Public Health, Av. Independencia 939, Independencia, Región Metropolitana, Santiago, Chile.
| | - Raquel Burrows
- Public Health Nutrition Unit, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano, 5524, Macul, Región Metropolitana, Santiago, Chile.
| | - Paulina Correa-Burrows
- Public Health Nutrition Unit, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano, 5524, Macul, Región Metropolitana, Santiago, Chile.
| | - Jose L Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile.
| | - Sheila Gahagan
- Division of Child Development and Community Health, Department of Pediatrics, University of California, 9500 Gilman Dr., MC 0927, La Jolla, CA, 92093-0927, USA.
| |
Collapse
|
15
|
Pena-Leon V, Perez-Lois R, Seoane LM. mTOR Pathway is Involved in Energy Homeostasis Regulation as a Part of the Gut-Brain Axis. Int J Mol Sci 2020; 21:ijms21165715. [PMID: 32784967 PMCID: PMC7460813 DOI: 10.3390/ijms21165715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Mammalian, or mechanic, target of rapamycin (mTOR) signaling is a crucial factor in the regulation of the energy balance that functions as an energy sensor in the body. The present review explores how the mTOR/S6k intracellular pathway is involved in modulating the production of different signals such as ghrelin and nesfatin-1 in the gastrointestinal tract to regulate food intake and body weight. The role of gastric mTOR signaling in different physiological processes was studied in depth through different genetic models that allow the modulation of mTOR signaling in the stomach and specifically in gastric X/A type cells. It has been described that mTOR signaling in X/A-like gastric cells has a relevant role in the regulation of glucose and lipid homeostasis due to its interaction with different organs such as liver and adipose tissue. These findings highlight possible therapeutic strategies, with the gut–brain axis being one of the most promising targets in the treatment of obesity.
Collapse
Affiliation(s)
- Veronica Pena-Leon
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (V.P.-L.); (R.P.-L.)
- Centro de Investigacion Biomedica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Raquel Perez-Lois
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (V.P.-L.); (R.P.-L.)
- Centro de Investigacion Biomedica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Luisa Maria Seoane
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (V.P.-L.); (R.P.-L.)
- Centro de Investigacion Biomedica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
- Correspondence:
| |
Collapse
|
16
|
Steinsbekk S, Bjørklund O, Llewellyn C, Wichstrøm L. Temperament as a predictor of eating behavior in middle childhood – A fixed effects approach. Appetite 2020; 150:104640. [DOI: 10.1016/j.appet.2020.104640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/30/2022]
|
17
|
Zakariassen HL, John LM, Lutz TA. Central control of energy balance by amylin and calcitonin receptor agonists and their potential for treatment of metabolic diseases. Basic Clin Pharmacol Toxicol 2020; 127:163-177. [PMID: 32363722 DOI: 10.1111/bcpt.13427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
The prevalence of obesity and associated comorbidities such as type 2 diabetes and cardiovascular disease is increasing globally. Body-weight loss reduces the risk of morbidity and mortality in obese individuals, and thus, pharmacotherapies that induce weight loss can be of great value in improving the health and well-being of people living with obesity. Treatment with amylin and calcitonin receptor agonists reduces food intake and induces weight loss in several animal models, and a number of companies have started clinical testing for peptide analogues in the treatment of obesity and/or type 2 diabetes. Studies predominantly performed in rodent models show that amylin and the dual amylin/calcitonin receptor agonist salmon calcitonin achieve their metabolic effects by engaging areas in the brain associated with regulating homeostatic energy balance. In particular, signalling via neuronal circuits in the caudal hindbrain and the hypothalamus is implicated in mediating effects on food intake and energy expenditure. We review the current literature investigating the interaction of amylin/calcitonin receptor agonists with neurocircuits that induce the observed metabolic effects. Moreover, the status of drug development of amylin and calcitonin receptor agonists for the treatment of metabolic diseases is summarized.
Collapse
Affiliation(s)
- Hannah Louise Zakariassen
- Section of Experimental Animal Models, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.,Obesity Pharmacology, Novo Nordisk A/S, Måløv, Denmark
| | | | | |
Collapse
|
18
|
Berthoud HR, Morrison CD, Münzberg H. The obesity epidemic in the face of homeostatic body weight regulation: What went wrong and how can it be fixed? Physiol Behav 2020; 222:112959. [PMID: 32422162 DOI: 10.1016/j.physbeh.2020.112959] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
Ever since the pioneering discoveries in the mid nineteen hundreds, the hypothalamus was recognized as a crucial component of the neural system controlling appetite and energy balance. The new wave of neuron-specific research tools has confirmed this key role of the hypothalamus and has delineated many other brain areas to be part of an expanded neural system sub serving these crucial functions. However, despite significant progress in defining this complex neural circuitry, many questions remain. One of the key questions is why the sophisticated body weight regulatory system is unable to prevent the rampant obesity epidemic we are experiencing. Why are pathologically obese body weight levels defended, and what can we do about it? Here we try to find answers to these questions by 1) reminding the reader that the neural controls of ingestive behavior have evolved in a demanding, restrictive environment and encompass much of the brain's major functions, far beyond the hypothalamus and brainstem, 2) hypothesizing that the current obesogenic environment impinges mainly on a critical pathway linking hypothalamic areas with the motivational and reward systems to produce uncompensated hyperphagia, and 3) proposing adequate strategies for prevention and treatment.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Christopher D Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
19
|
Lo K, Huang YQ, Liu L, Yu YL, Chen CL, Huang JY, Feng YQ. Serum Vitamin D, Sleep Pattern and Cardiometabolic Diseases: Findings from the National Health and Nutrition Examination Survey. Diabetes Metab Syndr Obes 2020; 13:1661-1668. [PMID: 32523366 PMCID: PMC7234964 DOI: 10.2147/dmso.s256133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/04/2020] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Although poor sleep health and vitamin D deficiency may be associated with diabetes and hypertension, whether this association shows a trend depending on vitamin D concentration is unclear. SUBJECTS AND METHODS We analyzed data from 10,742 participants (4997 men) from the 2007-2014 National Health and Nutrition Examination Survey. Abnormal sleep pattern (ie, short sleep duration, sleep complaint, and/or sleep disorder), lifestyle factors, serum vitamin D level, and the status of diabetes and hypertension were assessed. Logistic regression was performed to estimate the odds ratio (OR) and 95% confidence interval (CI). RESULTS Serum vitamin D significantly interacted with short sleep duration and abnormal sleep pattern (both p = 0.003) on the association with diabetes in men. Short sleep duration (OR: 1.82, 95% CI = 1.29, 2.57) and abnormal sleep pattern (OR: 1.95, 95% CI = 1.38, 2.77) were associated with diabetes in men with serum vitamin D of >75 nmol/L. Serum vitamin D significantly interacted with sleep complaint on the association with hypertension in men and women (both p < 0.05). The magnitude of association between sleep complaint and hypertension in men was stronger when serum vitamin D level was <50 nmol/L (OR: 2.26, 95% CI = 1.57, 3.25) than when the level was >75 nmol/L (OR: 1.28, 95% CI = 0.90, 1.83). Similarly, the magnitude of association between sleep complaint and hypertension in women was stronger when serum vitamin D level was <50 nmol/L (OR: 2.09, 95% CI = 1.53, 2.86) than when the level was >75 nmol/L (OR: 1.64, 95% CI = 0.98, 2.72). No significant interactions were observed between serum vitamin D level and other sleep variables. CONCLUSION Abnormal sleep pattern is associated with a high risk of diabetes and hypertension. The relationship between sleep complaint and hypertension may be strong in people with vitamin D deficiency, and this observation should be verified by prospective studies.
Collapse
Affiliation(s)
- Kenneth Lo
- Department of Cardiology, Guangdong Cardiovascular Institute, Hypertension Research Laboratory, Guangdong Provincial People’s Hospital, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Academy of Medical Sciences, South China University of Technology School of Medicine, Guangzhou, People’s Republic of China
- Centre for Global Cardiometabolic Health, Department of Epidemiology, Brown University, Providence, Rhode Island, USA
- Correspondence: Kenneth Lo; Ying-qing Feng Department of Cardiology, Guangdong Cardiovascular Institute, Hypertension Research Laboratory, Guangdong Provincial People’s Hospital, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Academy of Medical Sciences, South China University of Technology School of Medicine, Guangzhou, People’s Republic of ChinaTel +86-13147550252 Email ;
| | - Yu-qing Huang
- Department of Cardiology, Guangdong Cardiovascular Institute, Hypertension Research Laboratory, Guangdong Provincial People’s Hospital, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Academy of Medical Sciences, South China University of Technology School of Medicine, Guangzhou, People’s Republic of China
| | - Lin Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Hypertension Research Laboratory, Guangdong Provincial People’s Hospital, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Academy of Medical Sciences, South China University of Technology School of Medicine, Guangzhou, People’s Republic of China
| | - Yu-ling Yu
- Department of Cardiology, Guangdong Cardiovascular Institute, Hypertension Research Laboratory, Guangdong Provincial People’s Hospital, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Academy of Medical Sciences, South China University of Technology School of Medicine, Guangzhou, People’s Republic of China
| | - Chao-lei Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Hypertension Research Laboratory, Guangdong Provincial People’s Hospital, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Academy of Medical Sciences, South China University of Technology School of Medicine, Guangzhou, People’s Republic of China
| | - Jia-yi Huang
- Department of Cardiology, Guangdong Cardiovascular Institute, Hypertension Research Laboratory, Guangdong Provincial People’s Hospital, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Academy of Medical Sciences, South China University of Technology School of Medicine, Guangzhou, People’s Republic of China
| | - Ying-qing Feng
- Department of Cardiology, Guangdong Cardiovascular Institute, Hypertension Research Laboratory, Guangdong Provincial People’s Hospital, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Academy of Medical Sciences, South China University of Technology School of Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
20
|
Stern SA, Doerig KR, Azevedo EP, Stoffel E, Friedman JM. Control of non-homeostatic feeding in sated mice using associative learning of contextual food cues. Mol Psychiatry 2020; 25:666-679. [PMID: 29875477 PMCID: PMC6281813 DOI: 10.1038/s41380-018-0072-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/31/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
Feeding is a complex motivated behavior controlled by a distributed neural network that processes sensory information to generate adaptive behavioral responses. Accordingly, studies using appetitive Pavlovian conditioning confirm that environmental cues that are associated with food availability can induce feeding even in satiated subjects. However, in mice, appetitive conditioning generally requires intensive training and thus can impede molecular studies that often require large numbers of animals. To address this, we developed and validated a simple and rapid context-induced feeding (Ctx-IF) task in which cues associated with food availability can later lead to increased food consumption in sated mice. We show that the associated increase in food consumption is driven by both positive and negative reinforcement and that spaced training is more effective than massed training. Ctx-IF can be completed in ~1 week and provides an opportunity to study the molecular mechanisms and circuitry underlying non-homeostatic eating. We have used this paradigm to map brain regions that are activated during Ctx-IF with cFos immunohistochemistry and found that the insular cortex, and other regions, are activated following exposure to cues denoting the availability of food. Finally, we show that inhibition of the insular cortex using GABA agonists impairs performance of the task. Our findings provide a novel assay in mice for defining the functional neuroanatomy of appetitive conditioning and identify specific brain regions that are activated during the development of learned behaviors that impact food consumption.
Collapse
Affiliation(s)
- Sarah A. Stern
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065 USA
| | - Katherine R. Doerig
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065 USA
| | - Estefania P. Azevedo
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065 USA
| | - Elina Stoffel
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065 USA
| | - Jeffrey M. Friedman
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065 USA ,0000 0001 2167 1581grid.413575.1Howard Hughes Medical Institute, Chevy Chase, MD USA
| |
Collapse
|
21
|
Basaure P, Guardia-Escote L, Biosca-Brull J, Blanco J, Cabré M, Peris-Sampedro F, Sánchez-Santed F, Domingo JL, Colomina MT. Exposure to chlorpyrifos at different ages triggers APOE genotype-specific responses in social behavior, body weight and hypothalamic gene expression. ENVIRONMENTAL RESEARCH 2019; 178:108684. [PMID: 31472362 DOI: 10.1016/j.envres.2019.108684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
To date, we have shown that apolipoprotein E (APOE) polymorphisms differentially modulate the neurobehavioral and metabolic effects of chlorpyrifos (CPF), a widely used pesticide, which is detected as residue in food. We previously reported that, after being exposed to CPF, APOE3 subjects exhibit metabolic dysfunctions while APOE4 subjects undergo changes in behavior. In the current study, we investigated the effects of a double exposure to CPF on social behavior and hypothalamic gene expression in apoE-targeted replacement (TR) mice. Male apoE3-and apoE4-TR mice were exposed to CPF at 0 or 1 mg/kg/day on postnatal days 10-15 and then, during adulthood (5 months of age), fed a CPF-supplemented diet (0 or 2 mg/kg/day) for 15 days. During adult exposure to CPF, body weight gain and food intake were monitored. At the end of the adult exposure period, we evaluated social behavior in a three-chamber test, as well as mRNA levels of hypothalamic neuropeptides and receptors related to social behavior and feeding control. Adult CPF exposure increased food intake in general, but only apoE4 mice increased their body weight. Postnatal CPF exposure improved preference for the social contexts in apoE4 mice while adult CPF exposure did the same in apoE3 mice. Anorexigenic-peptide and social-related behavior gene expression decreased as a result of adult CPF exposure in apoE4 mice, and neuropeptide Y was more expressed in apoE4 mice. These results indicate that CPF exposure produces orexigenic and metabolic effects and enlarges individual differences in social behavior, especially in apoE3 mice.
Collapse
Affiliation(s)
- Pia Basaure
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Laia Guardia-Escote
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain; Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Judit Biosca-Brull
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Jordi Blanco
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Maria Cabré
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Fiona Peris-Sampedro
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Maria Teresa Colomina
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain.
| |
Collapse
|
22
|
Lo K, Keung V, Cheung C, Tam W, Lee A. Associations between Sleep Pattern and Quality and Cardiovascular Risk Factors among Macao School Students. Child Obes 2019; 15:387-396. [PMID: 31140858 DOI: 10.1089/chi.2018.0319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: Despite accumulating evidence showing that sleep duration and cardiometabolic health are correlated, the association of sleep regularity and quality with cardiovascular risk factors in children and adolescents remains inconclusive. Therefore, we examined the relationship between sleep regularity/quality and cardiovascular risk factors in children and adolescents in Macao, China. Methods: We conducted a cross-sectional study among primary and secondary school students (age range: 9-18 years) in Macao, China. Body weight, height, waist circumference (WC), and serum lipid levels were measured. Sleep regularity and sleep quality were assessed by using the Pittsburgh Sleep Quality Index. Multivariable logistic regression was conducted to examine the relationship of sleep variables with the increased likelihood of body mass index (BMI)-classified overweight/obesity, WC-classified obesity, and dyslipidemia. Results: A total of 1078 school students were included in the analysis. Differences of >2 hours between weekday and weekend bedtimes were associated with the increased risk of BMI-classified overweight/obesity (odds ratio = 2.58, 95% confidence interval = 1.55-4.31, p < 0.01) after being adjusted for sleep variables and lifestyle factors. No statistically significant association was found between poor sleep quality and any other outcome. Conclusions: Irregular bedtime was associated with elevated body weight regardless of sleep amount and quality. Thus, regular bedtimes are recommended as a simple but practical strategy for preventing obesity.
Collapse
Affiliation(s)
- Kenneth Lo
- 1Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guang Zhou, China.,2Department of Epidemiology, Center for Global Cardiometabolic Health, Brown University, Providence, RI.,3JC School of Public Health and Primary Care, Faculty of Medicine, Shatin, the Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Vera Keung
- 3JC School of Public Health and Primary Care, Faculty of Medicine, Shatin, the Chinese University of Hong Kong, Hong Kong, Hong Kong.,4Center for Health Education and Health Promotion, Shatin, the Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Calvin Cheung
- 3JC School of Public Health and Primary Care, Faculty of Medicine, Shatin, the Chinese University of Hong Kong, Hong Kong, Hong Kong.,4Center for Health Education and Health Promotion, Shatin, the Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Wilson Tam
- 5Alice Lee Center for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Albert Lee
- 3JC School of Public Health and Primary Care, Faculty of Medicine, Shatin, the Chinese University of Hong Kong, Hong Kong, Hong Kong.,4Center for Health Education and Health Promotion, Shatin, the Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
23
|
|
24
|
Haynes A, Hardman CA, Makin AD, Halford JC, Jebb SA, Robinson E. Visual perceptions of portion size normality and intended food consumption: A norm range model. Food Qual Prefer 2019; 72:77-85. [PMID: 30828136 PMCID: PMC6333281 DOI: 10.1016/j.foodqual.2018.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/29/2022]
Abstract
•Smaller portion sizes are associated with lower energy intake.•We test a norm range model of the portion size effect on intended intake.•A wide range of portion sizes were perceived as normal.•Portions perceived as normal did not prompt intended compensatory eating.•Portions perceived as smaller than normal prompted intended compensation.
Collapse
Affiliation(s)
- Ashleigh Haynes
- Institute of Psychology, Health & Society, University of Liverpool, L69 7ZA, UK
| | | | - Alexis D.J. Makin
- Institute of Psychology, Health & Society, University of Liverpool, L69 7ZA, UK
| | - Jason C.G. Halford
- Institute of Psychology, Health & Society, University of Liverpool, L69 7ZA, UK
| | - Susan A. Jebb
- Nuffield Department of Primary Care Health Sciences, University of Oxford, UK
| | - Eric Robinson
- Institute of Psychology, Health & Society, University of Liverpool, L69 7ZA, UK
| |
Collapse
|
25
|
Maniscalco JW, Rinaman L. Vagal Interoceptive Modulation of Motivated Behavior. Physiology (Bethesda) 2019; 33:151-167. [PMID: 29412062 DOI: 10.1152/physiol.00036.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In addition to regulating the ingestion and digestion of food, sensory feedback from gut to brain modifies emotional state and motivated behavior by subconsciously shaping cognitive and affective responses to events that bias behavioral choice. This focused review highlights evidence that gut-derived signals impact motivated behavior by engaging vagal afferents and central neural circuits that generally serve to limit or terminate goal-directed approach behaviors, and to initiate or maintain behavioral avoidance.
Collapse
Affiliation(s)
- J W Maniscalco
- Department of Psychology, University of Illinois at Chicago, Chicago, Illionois
| | - L Rinaman
- Department of Psychology, Florida State University , Tallahassee, Florida
| |
Collapse
|
26
|
Zhu C, Yao Y, Xiong Y, Cheng M, Chen J, Zhao R, Liao F, Shi R, Song S. Somatostatin Neurons in the Basal Forebrain Promote High-Calorie Food Intake. Cell Rep 2018; 20:112-123. [PMID: 28683305 DOI: 10.1016/j.celrep.2017.06.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/24/2017] [Accepted: 05/29/2017] [Indexed: 11/18/2022] Open
Abstract
Obesity has become a global issue, and the overconsumption of food is thought to be a major contributor. However, the regulatory neural circuits that regulate palatable food consumption remain unclear. Here, we report that somatostatin (SOM) neurons and GABAergic (VGAT) neurons in the basal forebrain (BF) play specific roles in regulating feeding. Optogenetic stimulation of BF SOM neurons increased fat and sucrose intake within minutes and promoted anxiety-like behaviors. Furthermore, optogenetic stimulation of projections from BF SOM neurons to the lateral hypothalamic area (LHA) selectively resulted in fat intake. In addition, activation of BF VGAT neurons rapidly induced general food intake and gnawing behaviors. Whole-brain mapping of inputs and outputs showed that BF SOM neurons form bidirectional connections with several brain areas important in feeding and regulation of emotion. Collectively, these results suggest that BF SOM neurons play a selective role in hedonic feeding.
Collapse
Affiliation(s)
- Chen Zhu
- School of Life Science, Tsinghua University, Beijing 10084, China
| | - Yun Yao
- Department of Biomedical Engineering, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing 10084, China
| | - Yan Xiong
- Department of Biomedical Engineering, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing 10084, China
| | - Mingxiu Cheng
- Department of Biomedical Engineering, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing 10084, China
| | - Jing Chen
- Department of Biomedical Engineering, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing 10084, China
| | - Rui Zhao
- Department of Biomedical Engineering, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing 10084, China
| | - Fangzhou Liao
- Department of Biomedical Engineering, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing 10084, China
| | - Runsheng Shi
- School of Life Science, Tsinghua University, Beijing 10084, China
| | - Sen Song
- Department of Biomedical Engineering, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing 10084, China.
| |
Collapse
|
27
|
Novelle MG, Diéguez C. Food Addiction and Binge Eating: Lessons Learned from Animal Models. Nutrients 2018; 10:E71. [PMID: 29324652 PMCID: PMC5793299 DOI: 10.3390/nu10010071] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/26/2017] [Accepted: 01/09/2018] [Indexed: 01/10/2023] Open
Abstract
The feeding process is required for basic life, influenced by environment cues and tightly regulated according to demands of the internal milieu by regulatory brain circuits. Although eating behaviour cannot be considered "addictive" under normal circumstances, people can become "addicted" to this behaviour, similarly to how some people are addicted to drugs. The symptoms, cravings and causes of "eating addiction" are remarkably similar to those experienced by drug addicts, and both drug-seeking behaviour as eating addiction share the same neural pathways. However, while the drug addiction process has been highly characterised, eating addiction is a nascent field. In fact, there is still a great controversy over the concept of "food addiction". This review aims to summarize the most relevant animal models of "eating addictive behaviour", emphasising binge eating disorder, that could help us to understand the neurobiological mechanisms hidden under this behaviour, and to improve the psychotherapy and pharmacological treatment in patients suffering from these pathologies.
Collapse
Affiliation(s)
- Marta G Novelle
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 15786 Santiago de Compostela, Spain.
| | - Carlos Diéguez
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 15786 Santiago de Compostela, Spain.
| |
Collapse
|
28
|
Rodriguez RL, Albeck JG, Taha AY, Ori-McKenney KM, Recanzone GH, Stradleigh TW, Hernandez BC, Tang FYV, Chiang EPI, Cruz-Orengo L. Impact of diet-derived signaling molecules on human cognition: exploring the food-brain axis. NPJ Sci Food 2017; 1:2. [PMID: 31304244 PMCID: PMC6548416 DOI: 10.1038/s41538-017-0002-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 01/02/2023] Open
Abstract
The processes that define mammalian physiology evolved millions of years ago in response to ancient signaling molecules, most of which were acquired by ingestion and digestion. In this way, evolution inextricably linked diet to all major physiological systems including the nervous system. The importance of diet in neurological development is well documented, although the mechanisms by which diet-derived signaling molecules (DSMs) affect cognition are poorly understood. Studies on the positive impact of nutritive and non-nutritive bioactive molecules on brain function are encouraging but lack the statistical power needed to demonstrate strong positive associations. Establishing associations between DSMs and cognitive functions like mood, memory and learning are made even more difficult by the lack of robust phenotypic markers that can be used to accurately and reproducibly measure the effects of DSMs. Lastly, it is now apparent that processes like neurogenesis and neuroplasticity are embedded within layers of interlocked signaling pathways and gene regulatory networks. Within these interdependent pathways and networks, the various transducers of DSMs are used combinatorially to produce those emergent adaptive gene expression responses needed for stimulus-induced neurogenesis and neuroplasticity. Taken together, it appears that cognition is encoded genomically and modified by epigenetics and epitranscriptomics to produce complex transcriptional programs that are exquisitely sensitive to signaling molecules from the environment. Models for how DSMs mediate the interplay between the environment and various neuronal processes are discussed in the context of the food-brain axis.
Collapse
Affiliation(s)
- Raymond L. Rodriguez
- Department of Molecular and Cellular Biology, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
| | - John G. Albeck
- Department of Molecular and Cellular Biology, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
| | - Ameer Y. Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
| | - Kassandra M. Ori-McKenney
- Department of Molecular and Cellular Biology, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
| | - Gregg H. Recanzone
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
- Center for Neuroscience, College of Biological Sciences, University of California, Davis, Davis, CA 95616 USA
| | - Tyler W. Stradleigh
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
- Center for Neuroscience, College of Biological Sciences, University of California, Davis, Davis, CA 95616 USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA 95616 USA
| | - Bronte C. Hernandez
- Department of Molecular and Cellular Biology, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
| | | | - En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Lillian Cruz-Orengo
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
29
|
Pacheco SR, Miranda AM, Coelho R, Monteiro AC, Bragança G, Loureiro HC. Overweight in youth and sleep quality: is there a link? ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2017; 61:367-373. [PMID: 28658343 PMCID: PMC10118936 DOI: 10.1590/2359-3997000000265] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 11/25/2016] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Overweight seems to be related to a higher prevalence of sleep disturbances. Decreased sleep duration and altered sleep quality are risk factors for obesity. Our aim was to compare the sleep pattern of overweight children with that of a matched control group and assess the relationship between sleep quality and obesity. MATERIALS AND METHODS Retrospective cohort study comparing 41 overweight children with a normal-weight control group, both submitted to polysomnography. The samples were matched for age, sex, and apnea-hypopnea index. Body mass index (BMI) z-scores were calculated using World Health Organization (WHO) growth charts. Insulin resistance in the study group was determined using the homeostatic model assessment for insulin resistance (HOMA-IR). Sleep patterns were compared. The statistical analysis was performed using SPSS® version 21. RESULTS The mean age (± standard deviation) of the population was 10 ± 3.4 years (min. 5 years; max. 17 years). Fifty-six percent of the participants in both groups were girls. N3% was lower in the study group (18.95 ± 6.18%) compared with the control group (21.61 ± 7.39%; t (40) = 2.156, p = 0.037). We found a correlation in the study group between HOMA-IR and N3% (Rs = -0.434, p = 0.008). CONCLUSION The present study suggests a link between overweight/obesity and altered sleep quality due to compromised non-rapid eye movement sleep, an indirect marker of sleep quality. There was also a link between slow-wave sleep duration and insulin resistance. We must find a strategy to provide adequate slow-wave sleep duration to reduce the obesity epidemic at young ages. Further research is needed.
Collapse
|
30
|
Delgado MJ, Cerdá-Reverter JM, Soengas JL. Hypothalamic Integration of Metabolic, Endocrine, and Circadian Signals in Fish: Involvement in the Control of Food Intake. Front Neurosci 2017; 11:354. [PMID: 28694769 PMCID: PMC5483453 DOI: 10.3389/fnins.2017.00354] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
The regulation of food intake in fish is a complex process carried out through several different mechanisms in the central nervous system (CNS) with hypothalamus being the main regulatory center. As in mammals, a complex hypothalamic circuit including two populations of neurons: one co-expressing neuropeptide Y (NPY) and Agouti-related peptide (AgRP) and the second one population co-expressing pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) is involved in the integration of information relating to food intake control. The production and release of these peptides control food intake, and the production results from the integration of information of different nature such as levels of nutrients and hormones as well as circadian signals. The present review summarizes the knowledge and recent findings about the presence and functioning of these mechanisms in fish and their differences vs. the known mammalian model.
Collapse
Affiliation(s)
- María J. Delgado
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de MadridMadrid, Spain
| | - José M. Cerdá-Reverter
- Departamento de Fisiología de Peces y Biotecnología, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones CientíficasCastellón, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de VigoVigo, Spain
| |
Collapse
|
31
|
Steinsbekk S, Llewellyn CH, Fildes A, Wichstrøm L. Body composition impacts appetite regulation in middle childhood. A prospective study of Norwegian community children. Int J Behav Nutr Phys Act 2017; 14:70. [PMID: 28558723 PMCID: PMC5450304 DOI: 10.1186/s12966-017-0528-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/22/2017] [Indexed: 01/17/2023] Open
Abstract
Background Research suggests a role for both fat mass and muscle mass in appetite regulation, but the longitudinal relationships between them have not yet been examined in children. The present study therefore aimed to explore the prospective relationships between fat mass, muscle mass and the appetitive traits food responsiveness and satiety responsiveness in middle childhood. Methods Food responsiveness and satiety responsiveness were measured using the parent-reported Children’s Eating Behavior Questionnaire in a representative sample of Norwegian 6 year olds, followed up at 8 and 10 years of age (n = 807). Body composition was measured by bioelectrical impedance. Results Applying a structural equation modeling framework we found that higher fat mass predicted greater increases in food responsiveness over time, whereas greater muscle mass predicted decreases in satiety responsiveness. This pattern was consistent both from ages 6 to 8 and from ages 8 to 10 years. Conclusions Our study is the first to reveal that fat mass and muscle mass predict distinct changes in different appetitive traits over time. Replication of findings in non-European populations are needed, as are studies of children in other age groups. Future studies should also aim to reveal the underlying mechanisms.
Collapse
Affiliation(s)
- Silje Steinsbekk
- Department of Psychology, Norwegian University of Science and Technology (NTNU), Dragvoll, 7491, Trondheim, Norway.
| | - Clare H Llewellyn
- Department of Behavioural Science & Health, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - Alison Fildes
- School of Psychology, University of Leeds, Leeds, LS2 9JT, UK
| | - Lars Wichstrøm
- Department of Psychology, Norwegian University of Science and Technology (NTNU), Dragvoll, 7491, Trondheim, Norway.,NTNU Social Research, 7491, Trondheim, Norway
| |
Collapse
|
32
|
Velasco C, Moreiras G, Conde-Sieira M, Leao JM, Míguez JM, Soengas JL. Ceramide counteracts the effects of ghrelin on the metabolic control of food intake in rainbow trout. ACTA ACUST UNITED AC 2017; 220:2563-2576. [PMID: 28495865 DOI: 10.1242/jeb.159871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/02/2017] [Indexed: 12/31/2022]
Abstract
In mammals, ceramides are involved in the modulation of the orexigenic effects of ghrelin (GHRL). We previously demonstrated in rainbow trout that intracerebroventricular (ICV) treatment with ceramide (2.5 µg/100 g fish) resulted in an anorexigenic response, i.e. a response opposed to that described in mammals, where ceramide treatment is orexigenic. Therefore, we hypothesized that the putative interaction between GHRL and ceramide must be different in fish. Accordingly, in a first experiment, we observed that ceramide levels in the hypothalamus of rainbow trout did not change after ICV treatment with GHRL. In a second experiment, we assessed whether the effects of GHRL treatment on the regulation of food intake in rainbow trout changed in the presence of ceramide. Thus, we injected ICV GHRL and ceramide alone or in combination to evaluate in hypothalamus and hindbrain changes in parameters related to the metabolic control of food intake. The presence of ceramide generally counteracted the effects elicited by GHRL on fatty acid-sensing systems, the capacity of integrative sensors (AMPK, mTOR and SIRT-1), proteins involved in cellular signalling pathways (Akt and FoxO1) and neuropeptides involved in the regulation of food intake (AgRP, NPY, POMC and CART). The results are discussed in the context of regulation of food intake by metabolic and endocrine inputs.
Collapse
Affiliation(s)
- Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, 36310 Vigo, Spain
| | - Guillermo Moreiras
- Departamento de Química Analítica e Alimentaria, Facultade de Química, Universidade de Vigo, 36310 Vigo, Spain
| | - Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, 36310 Vigo, Spain
| | - José M Leao
- Departamento de Química Analítica e Alimentaria, Facultade de Química, Universidade de Vigo, 36310 Vigo, Spain
| | - Jesús M Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, 36310 Vigo, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
33
|
Running Performance With Nutritive and Nonnutritive Sweetened Mouth Rinses. Int J Sports Physiol Perform 2017; 12:1105-1110. [PMID: 28095077 DOI: 10.1123/ijspp.2016-0577] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using mouth rinse (MR) with carbohydrate during exercise has been shown to act as an ergogenic aid. PURPOSE To investigate if nutritive or nonnutritive sweetened MR affects exercise performance and to assess the influence of sweetness intensity on endurance performance during a time trial (TT). METHODS This randomized, single-blinded study had 4 treatment conditions. Sixteen subjects (9 men, 7 women) completed a 12.8-km TT 4 different times. During each TT, subjects mouth-rinsed and expectorated a different solution at time 0 and every 12.5% of the TT. The 4 MR solutions were sucrose (S) (sweet taste and provides energy of 4 kcal/g), a lower-intensity sucralose (S1:1) (artificial sweetener that provides no energy but tastes sweet), a higher-intensity sucralose (S100:1), and water as control (C). Completion times for each TT, heart rate (HR), and ratings of perceived exertion (RPE) were also recorded. RESULTS Completion time for S was faster than for C (1:03:47 ± 00:02:17 vs 1:06:56 ± 00:02:18, respectively; P < .001) and showed a trend to be faster vs S100:1 (1:03:47 ± 00:02:17 vs 1:05:38 ± 00:02:12, respectively; P = .07). No other TT differences were found. Average HR showed a trend to be higher for S vs C (P = .08). The only difference in average or maximum RPE was for higher maximum RPE in C vs S1:1 (P = .02). CONCLUSION A sweet-tasting MR did improve endurance performance compared with water in a significant manner (mean 4.5% improvement; 3+ min.); however, the presence of energy in the sweet MR appeared necessary since the artificial sweeteners did not improve performance more than water alone.
Collapse
|
34
|
Jacobson A, Green E, Haase L, Szajer J, Murphy C. Age-Related Changes in Gustatory, Homeostatic, Reward, and Memory Processing of Sweet Taste in the Metabolic Syndrome: An fMRI Study. Perception 2017; 46:283-306. [PMID: 28056655 DOI: 10.1177/0301006616686097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Age affects the human taste system at peripheral and central levels. Metabolic syndrome is a constellation of risk factors (e.g., abdominal obesity and hypertension) that co-occur, increase with age, and heighten risk for cardiovascular disease, diabetes, and cognitive decline. Little is known about how age, metabolic syndrome, and hunger state interact to influence how the brain processes information about taste. We investigated brain activation during the hedonic evaluation of a pleasant, nutritive stimulus (sucrose) within regions critical for taste, homeostatic energy regulation, and reward, as a function of the interactions among age, metabolic syndrome, and hunger condition. We scanned young and elderly adults, half with risk factors associated with metabolic syndrome twice: Once fasted overnight and once after a preload. Functional magnetic resonance imaging data indicated significant effects of age as well as interactive effects with metabolic syndrome and hunger condition. Age-related differences in activation were dependent on the hunger state in regions critical for homoeostatic energy regulation and basic as well as higher order sensory processing and integration. The effects of age and metabolic syndrome on activation in the insula, orbital frontal cortex, caudate, and the hypothalamus may have particularly important implications for taste processing, energy regulation, and dietary choices.
Collapse
Affiliation(s)
- Aaron Jacobson
- Department of Psychology, San Diego State University, CA, USA
| | - Erin Green
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, CA, USA
| | - Lori Haase
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, CA, USA
| | - Jacquelyn Szajer
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, CA, USA
| | - Claire Murphy
- Department of Psychology, San Diego State University, CA, USA; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, CA, USA; Division of Head and Neck Surgery, University of California San Diego School of Medicine, CA, USA
| |
Collapse
|
35
|
Conde-Sieira M, Soengas JL. Nutrient Sensing Systems in Fish: Impact on Food Intake Regulation and Energy Homeostasis. Front Neurosci 2017; 10:603. [PMID: 28111540 PMCID: PMC5216673 DOI: 10.3389/fnins.2016.00603] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/19/2016] [Indexed: 12/27/2022] Open
Abstract
Evidence obtained in recent years in a few species, especially rainbow trout, supports the presence in fish of nutrient sensing mechanisms. Glucosensing capacity is present in central (hypothalamus and hindbrain) and peripheral [liver, Brockmann bodies (BB, main accumulation of pancreatic endocrine cells in several fish species), and intestine] locations whereas fatty acid sensors seem to be present in hypothalamus, liver and BB. Glucose and fatty acid sensing capacities relate to food intake regulation and metabolism in fish. Hypothalamus is as a signaling integratory center in a way that detection of increased levels of nutrients result in food intake inhibition through changes in the expression of anorexigenic and orexigenic neuropeptides. Moreover, central nutrient sensing modulates functions in the periphery since they elicit changes in hepatic metabolism as well as in hormone secretion to counter-regulate changes in nutrient levels detected in the CNS. At peripheral level, the direct nutrient detection in liver has a crucial role in homeostatic control of glucose and fatty acid whereas in BB and intestine nutrient sensing is probably involved in regulation of hormone secretion from endocrine cells.
Collapse
Affiliation(s)
- Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo Vigo, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo Vigo, Spain
| |
Collapse
|
36
|
Sakamoto K, Matsumura S, Okafuji Y, Eguchi A, Lee S, Adachi SI, Fujitani M, Tsuzuki S, Inoue K, Fushiki T. Mechanisms Involved in Guiding the Preference for Fat Emulsion Differ Depending on the Concentration. J Nutr Sci Vitaminol (Tokyo) 2016; 61:247-54. [PMID: 26226962 DOI: 10.3177/jnsv.61.247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
High-fat foods tend to be palatable and can cause addiction in mice via a reinforcing effect. However, mice showed preference for low fat concentrations that do not elicit a reinforcing effect in a two-bottle choice test with water as the alternative. This behavior indicates the possibility that the mechanism underlying fat palatability may differ depending on the dietary fat content. To address this issue, we examined the influences of the opioid system and olfactory and gustatory transductions on the intake and reinforcing effects of various concentrations of a dietary fat emulsion (Intralipid). We found that the intake and reinforcing effects of fat emulsion were reduced by the administration of an opioid receptor antagonist (naltrexone). Furthermore, the action of naltrexone was only observed at higher concentrations of fat emulsion. The intake and the reinforcing effects of fat emulsion were also reduced by olfactory and glossopharyngeal nerve transections (designated ONX and GLX, respectively). In contrast to naltrexone, the effects of ONX and GLX were mainly observed at lower concentrations of fat emulsion. These results imply that the opioid system seems to have a greater role in determining the palatability of high-fat foods unlike the contribution of olfactory and glossopharyngeal nerves.
Collapse
Affiliation(s)
- Kazuhiro Sakamoto
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rigamonti AE, Piscitelli F, Aveta T, Agosti F, De Col A, Bini S, Cella SG, Di Marzo V, Sartorio A. Anticipatory and consummatory effects of (hedonic) chocolate intake are associated with increased circulating levels of the orexigenic peptide ghrelin and endocannabinoids in obese adults. Food Nutr Res 2015; 59:29678. [PMID: 26546790 PMCID: PMC4636866 DOI: 10.3402/fnr.v59.29678] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/23/2015] [Accepted: 10/05/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hedonic hunger refers to consumption of food just for pleasure and not to maintain energy homeostasis. Recently, consumption of food for pleasure was reported to be associated with increased circulating levels of both the orexigenic peptide ghrelin and the endocannabinoid 2-arachidonoyl-glycerol (2-AG) in normal-weight subjects. To date, the effects of hedonic hunger, and in particular of chocolate craving, on these mediators in obese subjects are still unknown. METHODS To explore the role of some gastrointestinal orexigenic and anorexigenic peptides and endocannabinoids (and some related congeners) in chocolate consumption, we measured changes in circulating levels of ghrelin, glucagon-like peptide 1 (GLP-1), peptide YY (PYY), anandamide (AEA), 2-AG, palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) in 10 satiated severely obese subjects after consumption of chocolate and, on a separate day, of a non-palatable isocaloric food with the same bromatologic composition. Evaluation of hunger and satiety was also performed by visual analogic scale. RESULTS The anticipatory phase and the consumption of food for pleasure were associated with increased circulating levels of ghrelin, AEA, 2-AG, and OEA. In contrast, the levels of GLP-1, PYY, and PEA did not differ before and after the exposure/ingestion of either chocolate or non-palatable foods. Hunger and satiety were higher and lower, respectively, in the hedonic session than in the non-palatable one. CONCLUSIONS When motivation to eat is generated by exposure to, and consumption of, chocolate a peripheral activation of specific endogenous rewarding chemical signals, including ghrelin, AEA, and 2-AG, is observed in obese subjects. Although preliminary, these findings predict the effectiveness of ghrelin and endocannabinoid antagonists in the treatment of obesity.
Collapse
Affiliation(s)
- Antonello E Rigamonti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy;
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Teresa Aveta
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Fiorenza Agosti
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy
| | - Alessandra De Col
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy
| | - Silvia Bini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Silvano G Cella
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy.,Istituto Auxologico Italiano, IRCCS, Division of Metabolic Diseases, Verbania, Italy
| |
Collapse
|
38
|
Ziauddeen H, Alonso-Alonso M, Hill JO, Kelley M, Khan NA. Obesity and the neurocognitive basis of food reward and the control of intake. Adv Nutr 2015; 6:474-86. [PMID: 26178031 PMCID: PMC4496739 DOI: 10.3945/an.115.008268] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
With the rising prevalence of obesity, hedonic eating has become an important theme in obesity research. Hedonic eating is thought to be that driven by the reward of food consumption and not metabolic need, and this has focused attention on the brain reward system and how its dysregulation may cause overeating and obesity. Here, we begin by examining the brain reward system and the evidence for its dysregulation in human obesity. We then consider the issue of how individuals are able to control their hedonic eating in the present obesogenic environment and compare 2 contrasting perspectives on the control of hedonic eating, specifically, enhanced control of intake via higher cognitive control and loss of control over intake as captured by the food addiction model. We conclude by considering what these perspectives offer in terms of directions for future research and for potential interventions to improve control over food intake at the population and the individual levels.
Collapse
Affiliation(s)
- Hisham Ziauddeen
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Wellcome Trust-MRC, Institute of Metabolic Science, Cambridge, United Kingdom; Cambridgeshire and Peterborough Foundation Trust, Cambridge, United Kingdom;
| | - Miguel Alonso-Alonso
- Laboratory of Bariatric and Nutritional Neuroscience, Center for the Study of Nutrition Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - James O Hill
- Anschutz Health and Wellness Center, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Michael Kelley
- Scientific and Regulatory Affairs, Wm. Wrigley Jr. Company, Chicago, IL; and
| | - Naiman A Khan
- Department of Kinesiology and Community Health, University of Illinois, Urbana-Champaign, IL
| |
Collapse
|
39
|
Hakim F, Kheirandish-Gozal L, Gozal D. Obesity and Altered Sleep: A Pathway to Metabolic Derangements in Children? Semin Pediatr Neurol 2015; 22:77-85. [PMID: 26072337 PMCID: PMC4466552 DOI: 10.1016/j.spen.2015.04.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obstructive sleep apnea (OSA) is a frequent disorder in children and is primarily associated with adenotonsillar hypertrophy. The prominent increases in childhood overweight and obesity rates in the world even among youngest of children have translated into parallel increases in the prevalence of OSA, and such trends are undoubtedly associated with deleterious global health outcomes and life expectancy. Even an obesity phenotype in childhood OSA, more close to the adult type, has been recently proposed. Reciprocal interactions between sleep in general, OSA, obesity, and disruptions of metabolic homeostasis have emerged in recent years. These associations have suggested the a priori involvement of complex sets of metabolic and inflammatory pathways, all of which may underlie an increased risk for increased orexigenic behaviors and dysfunctional satiety, hyperlipidemia, and insulin resistance that ultimately favor the emergence of metabolic syndrome. Here, we review some of the critical evidence supporting the proposed associations between sleep disruption and the metabolism-obesity complex. In addition, we describe the more recent evidence linking the potential interactive roles of OSA and obesity on metabolic phenotype.
Collapse
Affiliation(s)
- Fahed Hakim
- Pediatric Pulmonary Institute, Ruth Rappaport Children’s Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Leila Kheirandish-Gozal
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - David Gozal
- Department of Pediatrics, Pritzker School of Medicine, University of Chicago, Chicago, Illinois.
| |
Collapse
|
40
|
Gautron L, Elmquist JK, Williams KW. Neural control of energy balance: translating circuits to therapies. Cell 2015; 161:133-145. [PMID: 25815991 DOI: 10.1016/j.cell.2015.02.023] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Indexed: 12/18/2022]
Abstract
Recent insights into the neural circuits controlling energy balance and glucose homeostasis have rekindled the hope for development of novel treatments for obesity and diabetes. However, many therapies contribute relatively modest beneficial gains with accompanying side effects, and the mechanisms of action for other interventions remain undefined. This Review summarizes current knowledge linking the neural circuits regulating energy and glucose balance with current and potential pharmacotherapeutic and surgical interventions for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Laurent Gautron
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9077, USA.
| | - Joel K Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9077, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9077, USA
| | - Kevin W Williams
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9077, USA; Department of Neuroscience, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9077, USA.
| |
Collapse
|
41
|
Haissaguerre M, Cota D. [Role of the mTOR pathway in the central regulation of energy balance]. Biol Aujourdhui 2015; 209:295-307. [PMID: 27021048 DOI: 10.1051/jbio/2016009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Indexed: 11/14/2022]
Abstract
The pathway of the mammalian (or mechanistic) target of rapamycin kinase (mTOR) responds to different signals such as nutrients and hormones and regulates many cellular functions as the synthesis of proteins and lipids, mitochondrial activity and the organization of the cytoskeleton. At the cellular level, mTOR forms two distinct complexes: mTORC1 and mTORC2. This review intends to summarize the various recent advances on the role of these two protein complexes in the central regulation of energy balance. mTORC1 activity modulates energy balance and metabolic responses by regulating the activity of neuronal populations, such as those located in the arcuate nucleus of the hypothalamus. Recent studies have shown that activity of the hypothalamic mTORC1 pathway varies according to cell and stimulus types, and that this signaling cascade regulates food intake and body weight in response to nutrients, such as leucine, and hormones like leptin, ghrelin and triiodothyronine. On the other hand, mTORC2 seems to be involved in the regulation of neuronal morphology and synaptic activity. However, its function in the central regulation of the energy balance is less known. Dysregulation of mTORC1 and mTORC2 is described in obesity and type 2 diabetes. Therefore, a better understanding of the molecular mechanisms involved in the regulation of energy balance by mTOR may lead to the identification of new therapeutic targets for the treatment of these metabolic pathologies.
Collapse
Affiliation(s)
- Magalie Haissaguerre
- Service Endocrinologie, Hôpital Haut Lévêque, CHU Bordeaux, 33600 Pessac, France
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, 33000 Bordeaux, France - Université de Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, 33000 Bordeaux, France
| |
Collapse
|
42
|
Haissaguerre M, Saucisse N, Cota D. Influence of mTOR in energy and metabolic homeostasis. Mol Cell Endocrinol 2014; 397:67-77. [PMID: 25109278 DOI: 10.1016/j.mce.2014.07.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 01/01/2023]
Abstract
The mechanistic (or mammalian) target of rapamycin couples a variety of different environmental signals, including nutrients and hormones, with the regulation of several energy-demanding cellular functions, spanning from protein and lipid synthesis to mitochondrial activity and cytoskeleton dynamics. mTOR forms two distinct protein complexes in cells, mTORC1 and mTORC2. This review focuses on recent advances made in understanding the roles played by these two complexes in the regulation of whole body metabolic homeostasis. Studies carried out in the past few years have shown that mTORC1 activity in the hypothalamus varies by cell and stimulus type, and that this complex is critically implicated in the regulation of food intake and body weight and in the central actions of both nutrients and hormones, such as leptin, ghrelin and triiodothyronine. As a regulator of cellular anabolic processes, mTORC1 activity in the periphery favors adipogenesis, lipogenesis, glucose uptake and beta-cell mass expansion. Much less is known about the function of mTORC2 in the hypothalamus, while in peripheral organs this second complex exerts roles strikingly similar to those described for mTORC1. Deregulation of mTORC1 and mTORC2 is associated with obesity, type 2 diabetes, cancer and neurodegenerative disorders. Insights on the exact relationship between mTORC1 and mTORC2 in the context of the regulation of metabolic homeostasis and on the specific molecular mechanisms engaged by these two complexes in such regulation may provide new avenues for therapy.
Collapse
Affiliation(s)
- Magalie Haissaguerre
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, F-33000 Bordeaux, France
| | - Nicolas Saucisse
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, F-33000 Bordeaux, France
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, F-33000 Bordeaux, France.
| |
Collapse
|
43
|
Soengas JL. Contribution of glucose- and fatty acid sensing systems to the regulation of food intake in fish. A review. Gen Comp Endocrinol 2014; 205:36-48. [PMID: 24530522 DOI: 10.1016/j.ygcen.2014.01.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/13/2014] [Accepted: 01/28/2014] [Indexed: 01/01/2023]
Abstract
Food intake in fish is a complex process regulated through many different factors including abundance of energy and nutrients. In recent years, evidence have been obtained in several fishes, mainly in rainbow trout, regarding the presence and functioning in brain areas of metabolic sensors informing about changes in the levels of nutrients like glucose and fatty acids. The activity of these sensors relate to the control of food intake through changes in the expression of anorexigenic and orexigenic neuropeptides. The present review will provide a picture of the main results obtained to date in these studies, as well as perspectives for future research in the field.
Collapse
Affiliation(s)
- José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain.
| |
Collapse
|
44
|
Parent MB, Darling JN, Henderson YO. Remembering to eat: hippocampal regulation of meal onset. Am J Physiol Regul Integr Comp Physiol 2014; 306:R701-13. [PMID: 24573183 DOI: 10.1152/ajpregu.00496.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A wide variety of species, including vertebrate and invertebrates, consume food in bouts (i.e., meals). Decades of research suggest that different mechanisms regulate meal initiation (when to start eating) versus meal termination (how much to eat in a meal, also known as satiety). There is a very limited understanding of the mechanisms that regulate meal onset and the duration of the postprandial intermeal interval (ppIMI). In the present review, we examine issues involved in measuring meal onset and some of the limited available evidence regarding how it is regulated. Then, we describe our recent work indicating that dorsal hippocampal neurons inhibit meal onset during the ppIMI and describe the processes that may be involved in this. We also synthesize recent evidence, including evidence from our laboratory, suggesting that overeating impairs hippocampal functioning and that impaired hippocampal functioning, in turn, contributes to the development and/or maintenance of diet-induced obesity. Finally, we identify critical questions and challenges for future research investigating neural controls of meal onset.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, Georgia; and Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Jenna N Darling
- Neuroscience Institute, Georgia State University, Atlanta, Georgia; and
| | - Yoko O Henderson
- Neuroscience Institute, Georgia State University, Atlanta, Georgia; and
| |
Collapse
|
45
|
Buttigieg A, Flores O, Hernández A, Sáez-Briones P, Burgos H, Morgan C. Preference for high-fat diet is developed by young Swiss CD1 mice after short-term feeding and is prevented by NMDA receptor antagonists. Neurobiol Learn Mem 2013; 107:13-8. [PMID: 24211700 DOI: 10.1016/j.nlm.2013.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 10/01/2013] [Accepted: 10/25/2013] [Indexed: 11/30/2022]
Abstract
Obesity is a worldwide epidemic that is increasing at an alarming rate. One of its causes is the increased availability and consumption of diets rich in fat. In the present study, we investigated the effects of short-term consumption of a high fat diet (HFD) on dietary preferences in Swiss CD1 mice and its relation in time to specific metabolic effects. Mice that were weaned 21days postpartum and fed a chow diet for one week were afterward subjected to a diet preference test for 5days, exposed to both a regular diet (RD) and HFD. We found that mice did not show any preferences. In a second experiment, two groups of mice that were weaned 21days postpartum and subjected to a chow diet for one week were fed either RD or HFD for 18days, and a diet preference test was performed for 5days. After this short-term consumption of HFD, mice preferred HFD, while mice subjected to RD did not show any preference. Importantly, no differences in blood glucose levels were found between the groups prior to and after the experiments. The results support our hypothesis that the preference for HFD is not a spontaneous behavior in CD1 mice, but it can be observed after short-term consumption; additionally, this preference develops before metabolic effects appear. Finally, this preference for HFD could not be observed when the mice were i.p. injected daily with low doses of the NMDA receptor antagonists, ketamine, ifenprodil or MK-801 during the HFD feeding period. These data suggest that acquisition of dietary preference for HFD is a NMDA receptor-dependent learning process.
Collapse
Affiliation(s)
- Angie Buttigieg
- Laboratorio de Hormonas y Receptores, sección Neurociencia Nutricional, Unidad de Nutrición Humana, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile
| | - Osvaldo Flores
- Laboratorio de Hormonas y Receptores, sección Neurociencia Nutricional, Unidad de Nutrición Humana, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile
| | - Alejandro Hernández
- Laboratorio de Neurobiología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH)
| | - Patricio Sáez-Briones
- Laboratorio de Neurofarmacología y Comportamiento, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH)
| | - Héctor Burgos
- Escuela de Psicología, Facultad de Humanidades, Universidad de Santiago de Chile (USACH); Escuela de Psicología, Facultad de Ciencias Jurídicas y Sociales, Universidad Autónoma de Chile
| | - Carlos Morgan
- Laboratorio de Hormonas y Receptores, sección Neurociencia Nutricional, Unidad de Nutrición Humana, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile.
| |
Collapse
|
46
|
Holmstrup ME, Fairchild TJ, Keslacy S, Weinstock RS, Kanaley JA. Satiety, but not total PYY, Is increased with continuous and intermittent exercise. Obesity (Silver Spring) 2013; 21:2014-20. [PMID: 23418154 PMCID: PMC3661741 DOI: 10.1002/oby.20335] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/13/2012] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study determined the hormonal and subjective appetite responses to exercise (1-h continuous versus intermittent exercise throughout the day) in obese individuals. DESIGN AND METHODS Eleven obese subjects (>30 kg/m(2) ) underwent three 12-h study days: control condition [sedentary behavior (SED)], continuous exercise condition [(EX) 1-h exercise], and intermittent exercise condition [(INT) 12 hourly, 5-min bouts]. Blood samples (every 10 min) were measured for serum insulin and total peptide YY (PYY) concentrations, with ratings of appetite (visual analog scale [VAS): every 20 min]. Both total area under the curve (AUC), and subjective appetite ratings were calculated. RESULTS No differences were observed in total PYY AUC between conditions, but hunger was reduced with INT (INT < EX; P < 0.05), and satiety was increased with both SED and INT conditions (INT > EX and SED > EX; P < 0.05). A correlation existed between the change in total PYY and insulin levels (r = -0.81; P < 0.05), and total PYY and satiety (r = 0.80; P < 0.05) with the EX condition, not the SED and INT conditions. CONCLUSIONS The total PYY response to meals is not altered over the course of a 12-h day with either intermittent or continuous exercise; however, intermittent exercise increased satiety and reduced hunger to a greater extent than continuous exercise in obese individuals.
Collapse
Affiliation(s)
- M E Holmstrup
- Department of Exercise Science, Syracuse University, Syracuse, New York, USA; Department of Exercise and Rehabilitative Sciences, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
47
|
Gozal D, Kheirandish-Gozal L. Childhood obesity and sleep: relatives, partners, or both?--a critical perspective on the evidence. Ann N Y Acad Sci 2012; 1264:135-41. [PMID: 22882312 PMCID: PMC3464366 DOI: 10.1111/j.1749-6632.2012.06723.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In modern life, children are unlikely to obtain sufficient or regular sleep and waking schedules. Inadequate sleep affects the regulation of homeostatic and hormonal systems underlying somatic growth, maturation, and bioenergetics. Therefore, assessments of the obesogenic lifestyle, including as dietary and physical activity, need to be coupled with accurate evaluation of sleep quality and quantity, and coexistence of sleep apnea. Inclusion of sleep as an integral component of research studies on childhood obesity should be done as part of the study planning process. Although parents and health professionals have quantified normal patterns of activities in children, sleep has been almost completely overlooked. As sleep duration in children appears to have declined, reciprocal obesity rates have increased. Also, increases in pediatric obesity rates have markedly increased the risk of obstructive sleep apnea syndrome (OSAS) in children. Obesity and OSAS share common pathways underlying end-organ morbidity, potentially leading to reciprocal amplificatory effects. The relative paucity of data on the topics covered in the perspective below should serve as a major incentive toward future research on these critically important concepts.
Collapse
Affiliation(s)
- David Gozal
- Department of Pediatrics and Comer Children's Hospital, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
48
|
The reciprocal interaction between obesity and obstructive sleep apnoea. Sleep Med Rev 2012; 17:123-31. [PMID: 22818968 DOI: 10.1016/j.smrv.2012.05.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 05/01/2012] [Accepted: 05/01/2012] [Indexed: 12/13/2022]
Abstract
Obesity is a significant risk factor in the pathogenesis of obstructive sleep apnoea (OSA) altering airway anatomy and collapsibility, and respiratory control. The association between obesity and OSA has led to an increasing focus on the role of weight loss as a potential treatment for OSA. To date, most discussion of obesity and OSA assumes a one-way cause and effect relationship, with obesity contributing to the pathogenesis of OSA. However, OSA itself may contribute to the development of obesity. OSA has a potential role in the development and reinforcement of obesity via changes to energy expenditure during sleep and wake periods, dietary habits, the neurohormonal mechanisms that control satiety and hunger, and sleep duration arising from fragmented sleep. Thus, there is emerging evidence that OSA itself feeds back into a complex mechanism that leads either to the development or reinforcement of the obese state. Whilst current evidence does not confirm that treatment of OSA directly influences weight loss, it does suggest that the potential role OSA plays in obesity and weight loss deserves further research.
Collapse
|
49
|
Amigó-Correig M, Barceló-Batllori S, Soria G, Krezymon A, Benani A, Pénicaud L, Tudela R, Planas AM, Fernández E, Carmona MDC, Gomis R. Anti-obesity sodium tungstate treatment triggers axonal and glial plasticity in hypothalamic feeding centers. PLoS One 2012; 7:e39087. [PMID: 22802935 PMCID: PMC3389016 DOI: 10.1371/journal.pone.0039087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/18/2012] [Indexed: 12/24/2022] Open
Abstract
Objective This study aims at exploring the effects of sodium tungstate treatment on hypothalamic plasticity, which is known to have an important role in the control of energy metabolism. Methods Adult lean and high-fat diet-induced obese mice were orally treated with sodium tungstate. Arcuate and paraventricular nuclei and lateral hypothalamus were separated and subjected to proteomic analysis by DIGE and mass spectrometry. Immunohistochemistry and in vivo magnetic resonance imaging were also performed. Results Sodium tungstate treatment reduced body weight gain, food intake, and blood glucose and triglyceride levels. These effects were associated with transcriptional and functional changes in the hypothalamus. Proteomic analysis revealed that sodium tungstate modified the expression levels of proteins involved in cell morphology, axonal growth, and tissue remodeling, such as actin, CRMP2 and neurofilaments, and of proteins related to energy metabolism. Moreover, immunohistochemistry studies confirmed results for some targets and further revealed tungstate-dependent regulation of SNAP25 and HPC-1 proteins, suggesting an effect on synaptogenesis as well. Functional test for cell activity based on c-fos-positive cell counting also suggested that sodium tungstate modified hypothalamic basal activity. Finally, in vivo magnetic resonance imaging showed that tungstate treatment can affect neuronal organization in the hypothalamus. Conclusions Altogether, these results suggest that sodium tungstate regulates proteins involved in axonal and glial plasticity. The fact that sodium tungstate could modulate hypothalamic plasticity and networks in adulthood makes it a possible and interesting therapeutic strategy not only for obesity management, but also for other neurodegenerative illnesses like Alzheimer’s disease.
Collapse
Affiliation(s)
- Marta Amigó-Correig
- Diabetes and Obesity Laboratory, Institut d’investigacions Biomèdiques August Pi i Sunyer, Endocrinology and Nutrition Unit-Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Sílvia Barceló-Batllori
- Diabetes and Obesity Laboratory, Institut d’investigacions Biomèdiques August Pi i Sunyer, Endocrinology and Nutrition Unit-Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Guadalupe Soria
- Department of Brain Ischemia and Neurodegeneration, Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d’investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Experimental 7T MRI Unit, Institut d’investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Alice Krezymon
- Taste and Food Science Center, UMR 6265-CNRS, 1324-INRA, University of Bourgogne, Dijon, France
| | - Alexandre Benani
- Taste and Food Science Center, UMR 6265-CNRS, 1324-INRA, University of Bourgogne, Dijon, France
| | - Luc Pénicaud
- Taste and Food Science Center, UMR 6265-CNRS, 1324-INRA, University of Bourgogne, Dijon, France
| | - Raúl Tudela
- Experimental 7T MRI Unit, Institut d’investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Group of Biomedical Imaging of the University of Barcelona, Barcelona, Spain
| | - Anna Maria Planas
- Department of Brain Ischemia and Neurodegeneration, Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d’investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Experimental 7T MRI Unit, Institut d’investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Eduardo Fernández
- Bioengineering Institute and Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Miguel Hernández University, Elche, Spain
| | - Maria del Carmen Carmona
- Diabetes and Obesity Laboratory, Institut d’investigacions Biomèdiques August Pi i Sunyer, Endocrinology and Nutrition Unit-Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- * E-mail: (MCC); (RG)
| | - Ramon Gomis
- Diabetes and Obesity Laboratory, Institut d’investigacions Biomèdiques August Pi i Sunyer, Endocrinology and Nutrition Unit-Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- * E-mail: (MCC); (RG)
| |
Collapse
|
50
|
Abstract
Nesfatin-1, a post-translational product of the nucleobindin-2 (NucB2) gene, is produced in several brain areas known to be important in neuroendocrine, autonomic and metabolic function, including the hypothalamus and medulla. The hallmark action of the peptide is its ability at picomole doses to inhibit food and water intake in rodents and, indeed, the effect on water intake is more pronounced than that on food intake. In preliminary studies, we observed a decrease in hypothalamic NucB2 expression in response to overnight water deprivation even when food was present, which reversed when water was returned to the animals. We therefore hypothesised that the effect of nesfatin-1 on water drinking was independent of its anorexigenic action. Indeed, rats administered nesfatin-1 i.c.v. consumed significantly less water than controls in response to a subsequent, dipsogenic dose of angiotensin II, or upon return of water bottles after 18 h of fluid restriction (food present), or in response to a hypertonic challenge. Pretreatment with an antisense oligonucleotide against nesfatin-1 significantly reduced levels of immunoreactive nesfatin-1 in the hypothalamic paraventricular nucleus and resulted in exaggerated drinking responses to angiotensin II. The results obtained in the present study suggest that locally produced nesfatin-1 may be an important component of the hypothalamic mechanisms controlling fluid and electrolyte homeostasis.
Collapse
Affiliation(s)
- G L C Yosten
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St Louis, MO 63104, USA.
| | | | | |
Collapse
|