1
|
Weng C, Groh AM, Yaqubi M, Cui QL, Stratton JA, Moore GRW, Antel JP. Heterogeneity of mature oligodendrocytes in the central nervous system. Neural Regen Res 2025; 20:1336-1349. [PMID: 38934385 PMCID: PMC11624867 DOI: 10.4103/nrr.nrr-d-24-00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/26/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system. Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons. Despite the recognition of potential heterogeneity in mature oligodendrocyte function, a comprehensive summary of mature oligodendrocyte diversity is lacking. We delve into early 20 th -century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes. Indeed, recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences. Furthermore, modern molecular investigations, employing techniques such as single cell/nucleus RNA sequencing, consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region. Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis, Alzheimer's disease, and psychiatric disorders. Nevertheless, caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations. Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity. Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species, sex, central nervous system region, age, and disease, hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.
Collapse
Affiliation(s)
- Chao Weng
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Adam M.R. Groh
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Qiao-Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - G. R. Wayne Moore
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jack P. Antel
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Sapienza J, Martini F, Comai S, Cavallaro R, Spangaro M, De Gregorio D, Bosia M. Psychedelics and schizophrenia: a double-edged sword. Mol Psychiatry 2025; 30:679-692. [PMID: 39294303 DOI: 10.1038/s41380-024-02743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
Psychedelics have shown promising effects in several psychiatric diseases as demonstrated by multiple clinical trials. However, no clinical experiments on patients with schizophrenia have been conducted up to date, except for some old semi-anecdotal studies mainly performed in the time-span '50s-'60s. Notably, these studies reported interesting findings, particularly on the improvement of negative symptoms and social cognition. With no doubts the lack of modern clinical studies is due to the psychomimetic properties of psychedelics, a noteworthy downside that could worsen positive symptoms. However, a rapidly increasing body of evidence has suggested that the mechanisms of action of such compounds partially overlaps with the pathogenic underpinnings of schizophrenia but in an opposite way. These findings suggest that, despite being a controversial issue, the use of psychedelics in the treatment of schizophrenia would be based on a strong biological rationale. Therefore, the aim of our perspective paper is to provide a background on the old experiments with psychedelics performed on patients with schizophrenia, interpreting them in the light of recent molecular findings on their ability to induce neuroplasticity and modulate connectivity, the immune and TAARs systems, neurotransmitters, and neurotropic factors. No systematic approach was adopted in reviewing the evidence given the difficulty to retrieve and interpret old findings. Interestingly, we identified a therapeutic potential of psychedelics in schizophrenia adopting a critical point of view, particularly on negative symptoms and social cognition, and we summarized all the relevant findings. We also identified an eligible subpopulation of chronic patients predominantly burdened by negative symptoms, outlining possible therapeutic strategies which encompass very low doses of psychedelics (microdosing), carefully considering safety and feasibility, to pave the way to future clinical trials.
Collapse
Affiliation(s)
- Jacopo Sapienza
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy
| | | | - Stefano Comai
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Roberto Cavallaro
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Danilo De Gregorio
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Bosia
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Wang X, Fu J, Wang H, Liu C, Zhang Y, Song C, Wang C. Glia dysfunction in schizophrenia: evidence of possible therapeutic effects of nervonic acid in a preclinical model. Psychopharmacology (Berl) 2024; 241:2271-2287. [PMID: 39433690 DOI: 10.1007/s00213-024-06632-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 06/03/2024] [Indexed: 10/23/2024]
Abstract
RATIONALE Neuroinflammation may inhibit oligodendrocyte and astrocyte differentiation, which causes demyelination and synaptic degeneration. The myelin component nervonic acid (NA) may improve demyelinating and neurodegenerative diseases. OBJECTIVES This study firstly explored relationships between glial cell dysfunction and demyelination or synaptic degeneration in schizophrenia patients, and secondly determined nervonic acid therapeutic effects in a preclinical schizophrenia model of mice. METHODS Plasma samples were collected from 18 male healthy controls and 18 male schizophrenic patients (diagnosed by DSM-V) at aged 18-55. Mouse brain samples were collected from a maternal immune activation (MIA) model of schizophrenia via injecting 5 mg/kg polyinosinic-polycytidylic acid. Male mouse offspring (age 2.5 months, n = 12) were treated by clozapine (15 mg/kg/day) or fed 0.5% NA for 6 weeks. Cytokine and dopamine (DA) concentrations, and glial phenotypes and myelin markers were measured in both human plasma and mouse brain samples. RESULTS In patient plasma, increased proinflammatory cytokines were associated with reactive microglia (Iba-1) up-regulation, while decreased anti-inflammatory cytokines were related to microglia (CD206) downregulation. Decreased astrocyte marker (p11) concentrations were accompanied by reduced concentrations of oligodendrocyte and synaptic markers. However, NA and DA contents were increased. Compared with control mice, SZ-like behaviors appeared in MIA male mice. Changes in microglia and astrocytes markers, and cytokine concentrations in the frontal cortex were consistent with those observed in patients' plasma. Hippocampal oligodendrocyte and synaptic marker expression were also decreased. DA content and DA/metabolite (DAPOC) were increased in MIA mouse brains. Most of these changes were normalized by both clozapine and NA. Even though some NA effects were more pronounced than clozapine, only clozapine restored cytokine function. CONCLUSION The data suggest a possible therapeutic route for schizophrenia patients.
Collapse
Affiliation(s)
- Xiaona Wang
- Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
- The Second Affiliated Hospital of Xinxiang Medical College, Xinxiang, 453002, Henan, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical College, Xinxiang, 453002, Henan, China
| | - Jiacheng Fu
- The Second Affiliated Hospital of Xinxiang Medical College, Xinxiang, 453002, Henan, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical College, Xinxiang, 453002, Henan, China
| | - Huiying Wang
- The Second Affiliated Hospital of Xinxiang Medical College, Xinxiang, 453002, Henan, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical College, Xinxiang, 453002, Henan, China
| | - Cong Liu
- The Second Affiliated Hospital of Xinxiang Medical College, Xinxiang, 453002, Henan, China
| | - Yongping Zhang
- Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
- The Second Affiliated Hospital of Xinxiang Medical College, Xinxiang, 453002, Henan, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China
| | - Cai Song
- The Second Affiliated Hospital of Xinxiang Medical College, Xinxiang, 453002, Henan, China.
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical College, Xinxiang, 453002, Henan, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China.
| | - Changhong Wang
- The Second Affiliated Hospital of Xinxiang Medical College, Xinxiang, 453002, Henan, China.
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical College, Xinxiang, 453002, Henan, China.
| |
Collapse
|
4
|
Chamera K, Curzytek K, Kamińska K, Leśkiewicz M, Basta-Kaim A. Prenatal Immune Challenge Differentiates the Effect of Aripiprazole and Risperidone on CD200-CD200R and CX3CL1-CX3CR1 Dyads and Microglial Polarization: A Study in Organotypic Cortical Cultures. Life (Basel) 2024; 14:721. [PMID: 38929704 PMCID: PMC11205240 DOI: 10.3390/life14060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Microglia are the primary innate immune cells of the central nervous system and extensively contribute to brain homeostasis. Dysfunctional or excessive activity of microglia may be associated with several neuropsychiatric disorders, including schizophrenia. Therefore, we examined whether aripiprazole and risperidone could influence the expression of the Cd200-Cd200r and Cx3cl1-Cx3cr1 axes, which are crucial for the regulation of microglial activity and interactions of these cells with neurons. Additionally, we evaluated the impact of these drugs on microglial pro- and anti-inflammatory markers (Cd40, Il-1β, Il-6, Cebpb, Cd206, Arg1, Il-10 and Tgf-β) and cytokine release (IL-6, IL-10). The research was executed in organotypic cortical cultures (OCCs) prepared from the offspring of control rats (control OCCs) or those exposed to maternal immune activation (MIA OCCs), which allows for the exploration of schizophrenia-like disturbances in animals. All experiments were performed under basal conditions and after additional stimulation with lipopolysaccharide (LPS), following the "two-hit" hypothesis of schizophrenia. We found that MIA diminished the mRNA level of Cd200r and affected the OCCs' response to additional LPS exposure in terms of this parameter. LPS downregulated the Cx3cr1 expression and profoundly changed the mRNA levels of pro- and anti-inflammatory microglial markers in both types of OCCs. Risperidone increased Cd200 expression in MIA OCCs, while aripiprazole treatment elevated the gene levels of the Cx3cl1-Cx3cr1 dyad in control OCCs. The antipsychotics limited the LPS-generated increase in the expression of proinflammatory factors (Il-1β and Il-6) and enhanced the mRNA levels of anti-inflammatory components (Cd206 and Tgf-β) of microglial polarization, mostly in the absence of the MIA procedure. Finally, we observed a more pronounced modulating impact of aripiprazole on the expression of pro- and anti-inflammatory cytokines when compared to risperidone in MIA OCCs. In conclusion, our data suggest that MIA might influence microglial activation and crosstalk of microglial cells with neurons, whereas aripiprazole and risperidone could beneficially affect these changes in OCCs.
Collapse
Affiliation(s)
| | | | | | | | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| |
Collapse
|
5
|
Noel SC, Madranges JF, Gothié JDM, Ewald J, Milnerwood AJ, Kennedy TE, Scott ME. Maternal gastrointestinal nematode infection alters hippocampal neuroimmunity, promotes synaptic plasticity, and improves resistance to direct infection in offspring. Sci Rep 2024; 14:10773. [PMID: 38730262 PMCID: PMC11087533 DOI: 10.1038/s41598-024-60865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
The developing brain is vulnerable to maternal bacterial and viral infections which induce strong inflammatory responses in the mother that are mimicked in the offspring brain, resulting in irreversible neurodevelopmental defects, and associated cognitive and behavioural impairments. In contrast, infection during pregnancy and lactation with the immunoregulatory murine intestinal nematode, Heligmosomoides bakeri, upregulates expression of genes associated with long-term potentiation (LTP) of synaptic networks in the brain of neonatal uninfected offspring, and enhances spatial memory in uninfected juvenile offspring. As the hippocampus is involved in spatial navigation and sensitive to immune events during development, here we assessed hippocampal gene expression, LTP, and neuroimmunity in 3-week-old uninfected offspring born to H. bakeri infected mothers. Further, as maternal immunity shapes the developing immune system, we assessed the impact of maternal H. bakeri infection on the ability of offspring to resist direct infection. In response to maternal infection, we found an enhanced propensity to induce LTP at Schaffer collateral synapses, consistent with RNA-seq data indicating accelerated development of glutamatergic synapses in uninfected offspring, relative to those from uninfected mothers. Hippocampal RNA-seq analysis of offspring of infected mothers revealed increased expression of genes associated with neurogenesis, gliogenesis, and myelination. Furthermore, maternal infection improved resistance to direct infection of H. bakeri in offspring, correlated with transfer of parasite-specific IgG1 to their serum. Hippocampal immunohistochemistry and gene expression suggest Th2/Treg biased neuroimmunity in offspring, recapitulating peripheral immunoregulation of H. bakeri infected mothers. These findings indicate maternal H. bakeri infection during pregnancy and lactation alters peripheral and neural immunity in uninfected offspring, in a manner that accelerates neural maturation to promote hippocampal LTP, and upregulates the expression of genes associated with neurogenesis, gliogenesis, and myelination.
Collapse
Affiliation(s)
- Sophia C Noel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, 3801 University Street, Montreal, QC, H3A 2B4, Canada.
- Institute of Parasitology, McGill University (Macdonald Campus), 21,111 Lakeshore Road, Sainte-Anne de Bellevue, QC, H9X 3V9, Canada.
| | - Jeanne F Madranges
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Jean-David M Gothié
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Jessica Ewald
- Institute of Parasitology, McGill University (Macdonald Campus), 21,111 Lakeshore Road, Sainte-Anne de Bellevue, QC, H9X 3V9, Canada
| | - Austen J Milnerwood
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Marilyn E Scott
- Institute of Parasitology, McGill University (Macdonald Campus), 21,111 Lakeshore Road, Sainte-Anne de Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
6
|
Yan R, Ma D, Liu Y, Wang R, Fan L, Yan Q, Chen C, Wang W, Ren Z, Ku T, Ning X, Sang N. Developmental Toxicity of Fine Particulate Matter: Multifaceted Exploration from Epidemiological and Laboratory Perspectives. TOXICS 2024; 12:274. [PMID: 38668497 PMCID: PMC11054511 DOI: 10.3390/toxics12040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Particulate matter of size ≤ 2.5 μm (PM2.5) is a critical environmental threat that considerably contributes to the global disease burden. However, accompanied by the rapid research progress in this field, the existing research on developmental toxicity is still constrained by limited data sources, varying quality, and insufficient in-depth mechanistic analysis. This review includes the currently available epidemiological and laboratory evidence and comprehensively characterizes the adverse effects of PM2.5 on developing individuals in different regions and various pollution sources. In addition, this review explores the effect of PM2.5 exposure to individuals of different ethnicities, genders, and socioeconomic levels on adverse birth outcomes and cardiopulmonary and neurological development. Furthermore, the molecular mechanisms involved in the adverse health effects of PM2.5 primarily encompass transcriptional and translational regulation, oxidative stress, inflammatory response, and epigenetic modulation. The primary findings and novel perspectives regarding the association between public health and PM2.5 were examined, highlighting the need for future studies to explore its sources, composition, and sex-specific effects. Additionally, further research is required to delve deeper into the more intricate underlying mechanisms to effectively prevent or mitigate the harmful effects of air pollution on human health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China; (R.Y.); (D.M.); (Y.L.); (R.W.); (L.F.); (Q.Y.); (C.C.); (W.W.); (Z.R.); (X.N.); (N.S.)
| | | | | |
Collapse
|
7
|
Kikinis Z, Castañeyra-Perdomo A, González-Mora JL, Rushmore RJ, Toppa PH, Haggerty K, Papadimitriou G, Rathi Y, Kubicki M, Kikinis R, Heller C, Yeterian E, Besteher B, Pallanti S, Makris N. Investigating the structural network underlying brain-immune interactions using combined histopathology and neuroimaging: a critical review for its relevance in acute and long COVID-19. Front Psychiatry 2024; 15:1337888. [PMID: 38590789 PMCID: PMC11000670 DOI: 10.3389/fpsyt.2024.1337888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024] Open
Abstract
Current views on immunity support the idea that immunity extends beyond defense functions and is tightly intertwined with several other fields of biology such as virology, microbiology, physiology and ecology. It is also critical for our understanding of autoimmunity and cancer, two topics of great biological relevance and for critical public health considerations such as disease prevention and treatment. Central to this review, the immune system is known to interact intimately with the nervous system and has been recently hypothesized to be involved not only in autonomic and limbic bio-behaviors but also in cognitive function. Herein we review the structural architecture of the brain network involved in immune response. Furthermore, we elaborate upon the implications of inflammatory processes affecting brain-immune interactions as reported recently in pathological conditions due to SARS-Cov-2 virus infection, namely in acute and post-acute COVID-19. Moreover, we discuss how current neuroimaging techniques combined with ad hoc clinical autopsies and histopathological analyses could critically affect the validity of clinical translation in studies of human brain-immune interactions using neuroimaging. Advances in our understanding of brain-immune interactions are expected to translate into novel therapeutic avenues in a vast array of domains including cancer, autoimmune diseases or viral infections such as in acute and post-acute or Long COVID-19.
Collapse
Affiliation(s)
- Zora Kikinis
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Agustin Castañeyra-Perdomo
- Universidad de La Laguna, Área de Anatomía y Fisiología. Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
| | - José Luis González-Mora
- Universidad de La Laguna, Área de Anatomía y Fisiología. Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
- Universidad de La Laguna, Instituto Universitario de Neurosciencias, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
| | - Richard Jarrett Rushmore
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, San Cristobal de la Laguna, Spain
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Poliana Hartung Toppa
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kayley Haggerty
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - George Papadimitriou
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yogesh Rathi
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Marek Kubicki
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ron Kikinis
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Carina Heller
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Edward Yeterian
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Psychology, Colby College, Waterville, ME, United States
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Stefano Pallanti
- Department of Psychiatry and Behavioural Science, Albert Einstein College of Medicine, Bronx, NY, United States
- Istituto di Neuroscienze, Florence, Italy
| | - Nikos Makris
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Universidad de La Laguna, Área de Anatomía y Fisiología. Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
- Universidad de La Laguna, Instituto Universitario de Neurosciencias, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
- Department of Anatomy and Neurobiology, Boston University School of Medicine, San Cristobal de la Laguna, Spain
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Corley E, Gleeson C, Godfrey E, Cowman M, Patlola SR, Cannon DM, McKernan DP, Kelly JP, Hallahan B, McDonald C, Morris DW, Burke T, Donohoe G. Corpus callosum microstructural organization mediates the effects of physical neglect on social cognition in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110875. [PMID: 37844774 DOI: 10.1016/j.pnpbp.2023.110875] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Exposure to early life adversity is associated with both increased risk of developing schizophrenia and poorer performance on measures of social cognitive functioning. In this study, we examined whether interleukin-6 (IL-6) and Corpus Callosum (CC) microstructure mediated the association between childhood physical neglect and social cognition. Fifty-eight patients with a diagnosis of schizophrenia were included. The CANTAB emotion recognition task (unbiased hit rate) was used to assess social cognition. We found that the microstructural organization of the CC significantly mediated the association between physical neglect and emotion recognition. Furthermore, in a sequential mediation analysis that also considered the role of inflammatory response, the association between physical neglect, and lower emotion recognition performance was sequentially mediated by higher IL-6 and lower fractional anisotropy of the CC. This mediating effect of IL-6 was only present when simultaneously considering the effects of CC microstructural organization and remained significant while controlling for the effects of sex, BMI and medication dosage (but not age). Overall, the findings suggest that the association between physical neglect and poorer emotion recognition in schizophrenia occurs, at least in part, via its association with white matter microstructure.
Collapse
Affiliation(s)
- Emma Corley
- School of Psychology, University of Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland
| | - Christina Gleeson
- School of Psychology, University of Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland
| | - Emmet Godfrey
- School of Psychology, University of Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland
| | - Megan Cowman
- School of Psychology, University of Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland
| | | | - Dara M Cannon
- Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland; Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Ireland
| | - Declan P McKernan
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Ireland
| | - John P Kelly
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Ireland
| | - Brian Hallahan
- Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland; Department of Psychiatry, Clinical Science Institute, University of Galway, Ireland
| | - Colm McDonald
- Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland; Department of Psychiatry, Clinical Science Institute, University of Galway, Ireland
| | - Derek W Morris
- Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland; School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Tom Burke
- School of Psychology, University of Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland
| | - Gary Donohoe
- School of Psychology, University of Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland.
| |
Collapse
|
9
|
Sapienza J, Agostoni G, Dall'Acqua S, Sut S, Nasini S, Martini F, Marchesi A, Bechi M, Buonocore M, Cocchi F, Cavallaro R, Spangaro M, Comai S, Bosia M. The kynurenine pathway in treatment-resistant schizophrenia at the crossroads between pathophysiology and pharmacotherapy. Schizophr Res 2024; 264:71-80. [PMID: 38101180 DOI: 10.1016/j.schres.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/28/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Two cardinal elements in the complex and multifaceted pathophysiology of schizophrenia (SCZ) are neuroinflammation and dysregulation of glutamatergic neurotransmission, with the latter being especially involved in treatment-resistant schizophrenia (TRS). Interestingly, the Kynurenine (KYN) pathway (KP) is at the crossroad between them, constituting a potential causal link and a therapeutic target. Although there is preclinical and clinical evidence indicating a dysregulation of KP associated with the clinical phenotype of SCZ, clinical studies investigating the possible relationship between changes in biomarkers of the KP and response to pharmacotherapy are still limited. Therefore, we have studied possible differences in the circulating levels of biomarkers of the metabolism of tryptophan along the KP in 43 responders to first-line treatments (FLR) and 32 TRS patients treated with clozapine, and their possible associations with psychopathology in the two subgroups. Plasma levels of KYN were significantly higher in TRS patients than in FLR patients, indicating a greater activation of KP. Furthermore, the levels of quinolinic (NMDA receptor agonist) and kynurenic acid (NMDA negative allosteric modulator) showed a negative and a positive correlation with several dimensions and the overall symptomatology in the whole sample and in FLR, but not in TRS, suggesting a putative modulating effect of clozapine elicited through the NMDA receptors. Despite the cross-sectional design of the study that prevents us from demonstrating causation, these findings show a significant relationship among circulating KP biomarkers, psychopathology, and response to pharmacotherapy in SCZ. Therefore, plasma KP biomarkers should be further investigated for developing personalized medicine approaches in SCZ.
Collapse
Affiliation(s)
- Jacopo Sapienza
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy
| | - Giulia Agostoni
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Sofia Nasini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Francesca Martini
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Marchesi
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Bechi
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mariachiara Buonocore
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Cocchi
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Cavallaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Spangaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy; Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Biomedical Sciences, University of Padua, Padua, Italy.
| | - Marta Bosia
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
10
|
Lotfi N, Rezaei N, Rastgoo E, Khodadoustan Shahraki B, Zahedi G, Jafarinia M. Schizophrenia Etiological Factors and Their Correlation with the Imbalance of the Immune System: An Update. Galen Med J 2023; 12:1-16. [PMID: 39553412 PMCID: PMC11568428 DOI: 10.31661/gmj.v12i.3109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 11/19/2024] Open
Abstract
Schizophrenia (SZ) is a severe psychiatric disorder associated with a dysregulation of the immune system. Immune-related genes and environmental factors including stress, food, infections, and microbiota, alter the immune system's homeostasis and play a role in SZ pathogenesis. The most distinctive feature in the pathophysiology of the disease is a shift in the T helper 1(Th1)/Th2 balance toward Th2 dominance in the immune system. Also, microglial and Th17 cell activation cause inflammatory responses in the central nervous system (CNS). Antibodies play a role in the pathophysiology of SZ and give more evidence of a link between humoral immune reactivity and the disease. Accordingly, an imbalance in cytokine activities and neuroinfl ammation has been considered the main contributor to the pathogenesis of the SZ. Overall, the deregulation of the immune system caused by genetic, environmental, and neurochemical effects may all play a role in the etiology of SZ. This review summarized the etiological factors for SZ and discussed the role of immune responses and their interaction with genetic and environmental factors in SZ pathogenesis.
Collapse
Affiliation(s)
- Noushin Lotfi
- Department of Immunology, School of Medicine, Isfahan University of Medical
Sciences, Isfahan, Iran
| | - Nahid Rezaei
- Department of Immunology, School of Medicine, Lorestan University of Medical
Sciences, Khorramabad, Iran
| | - Elham Rastgoo
- Department of Radiology, School of Medicine, Shiraz University of Medical Sciences,
Shiraz, Iran
| | | | - Ghazaleh Zahedi
- Department of General Psychology, Iran University of Medical Sciences, Thran, Iran
| | - Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz,
Iran
| |
Collapse
|
11
|
Grycel K, Larsen NY, Feng Y, Qvortrup K, Jensen PH, Fayyaz M, Madsen MG, Midtgaard J, Xu Z, Hasselholt S, Nyengaard JR. CRMP2 conditional knockout changes axonal function and ultrastructure of axons in mice corpus callosum. Mol Cell Neurosci 2023; 126:103882. [PMID: 37479154 DOI: 10.1016/j.mcn.2023.103882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023] Open
Abstract
Collapsin response mediator protein 2 (CRMP2) is a member of a protein family, which is highly involved in neurodevelopment, but most of its members become heavily downregulated in adulthood. CRMP2 is an important factor in neuronal polarization, axonal formation and growth cone collapse. The protein remains expressed in adulthood, but is more region specific. CRMP2 is present in adult corpus callosum (CC) and in plastic areas like prefrontal cortex and hippocampus. CRMP2 has been implicated as one of the risk-genes for Schizophrenia (SZ). Here, a CRMP2 conditional knockout (CRMP2-cKO) mouse was used as a model of SZ to investigate how it could affect the white matter and therefore brain connectivity. Multielectrode electrophysiology (MEA) was used to study the function of corpus callosum showing an increase in conduction velocity (CV) measured as Compound Action Potentials (CAPs) in acute brain slices. Light- and electron-microscopy, specifically Serial Block-face Scanning Electron Microscopy (SBF-SEM), methods were used to study the structure of CC in CRMP2-cKO mice. A decrease in CC volume of CRMP2-cKO mice as compared to controls was observed. No differences were found in numbers nor in the size of CC oligodendrocytes (OLs). Similarly, no differences were found in myelin thickness or in node of Ranvier (NR) structure. In contrast, abnormally smaller axons were measured in the CRMP2-cKO mice. Using these state-of-the-art methods it was possible to shed light on specific parts of the dysconnectivity aspect of deletion of CRMP2 related to SZ and add details to previous findings helping further understanding the disease. This paper substantiates the white matter changes in the absence of CRMP2 and ties it to the role it plays in this complex disorder.
Collapse
Affiliation(s)
- Katarzyna Grycel
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; Sino-Danish College (SDC), University of Chinese Academy of Sciences, China.
| | - Nick Y Larsen
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.
| | - Yinghang Feng
- Sino-Danish College (SDC), University of Chinese Academy of Sciences, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Klaus Qvortrup
- Core Facility for Integrated Microscopy, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Poul Henning Jensen
- DANDRITE, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark.
| | - Mishal Fayyaz
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; Sino-Danish College (SDC), University of Chinese Academy of Sciences, China
| | - Malene G Madsen
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.
| | - Jens Midtgaard
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Stine Hasselholt
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.
| | - Jens R Nyengaard
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; Sino-Danish College (SDC), University of Chinese Academy of Sciences, China; Department of Pathology, Aarhus University Hospital, 8200 Aarhus N, Denmark.
| |
Collapse
|
12
|
Sharma K, Dev KK. The Effects of Antipsychotics in Experimental Models of Krabbe Disease. Biomedicines 2023; 11:biomedicines11051313. [PMID: 37238985 DOI: 10.3390/biomedicines11051313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The role of altered myelin in the onset and development of schizophrenia and changes in myelin due to antipsychotics remains unclear. Antipsychotics are D2 receptor antagonists, yet D2 receptor agonists increase oligodendrocyte progenitor numbers and limit oligodendrocyte injury. Conflicting studies suggest these drugs promote the differentiation of neural progenitors to oligodendrocyte lineage, while others report antipsychotics inhibit the proliferation and differentiation of oligodendrocyte precursors. Here, we utilised in-vitro (human astrocytes), ex-vivo (organotypic slice cultures) and in-vivo (twitcher mouse model) experimental study designs of psychosine-induced demyelination, a toxin that accumulates in Krabbe disease (KD), to investigate direct effects of antipsychotics on glial cell dysfunction and demyelination. Typical and atypical antipsychotics, and selective D2 and 5HT2A receptor antagonists, attenuated psychosine-induced cell viability, toxicity, and morphological aberrations in human astrocyte cultures. Haloperidol and clozapine reduced psychosine-induced demyelination in mouse organotypic cerebellar slices. These drugs also attenuated the effects of psychosine on astrocytes and microglia and restored non-phosphorylated neurofilament levels, indicating neuroprotective effects. In the demyelinating twitcher mouse model of KD, haloperidol improved mobility and significantly increased the survival of these animals. Overall, this study suggests that antipsychotics directly regulate glial cell dysfunction and exert a protective effect on myelin loss. This work also points toward the potential use of these pharmacological agents in KD.
Collapse
Affiliation(s)
- Kapil Sharma
- Drug Development Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Kumlesh K Dev
- Drug Development Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| |
Collapse
|
13
|
Adraoui FW, Douw L, Martens GJM, Maas DA. Connecting Neurobiological Features with Interregional Dysconnectivity in Social-Cognitive Impairments of Schizophrenia. Int J Mol Sci 2023; 24:ijms24097680. [PMID: 37175387 PMCID: PMC10177877 DOI: 10.3390/ijms24097680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Schizophrenia (SZ) is a devastating psychiatric disorder affecting about 1% of the world's population. Social-cognitive impairments in SZ prevent positive social interactions and lead to progressive social withdrawal. The neurobiological underpinnings of social-cognitive symptoms remain poorly understood, which hinders the development of novel treatments. At the whole-brain level, an abnormal activation of social brain regions and interregional dysconnectivity within social-cognitive brain networks have been identified as major contributors to these symptoms. At the cellular and subcellular levels, an interplay between oxidative stress, neuroinflammation and N-methyl-D-aspartate receptor hypofunction is thought to underly SZ pathology. However, it is not clear how these molecular processes are linked with interregional dysconnectivity in the genesis of social-cognitive symptoms. Here, we aim to bridge the gap between macroscale (connectivity analyses) and microscale (molecular and cellular mechanistic) knowledge by proposing impaired myelination and the disinhibition of local microcircuits as possible causative biological pathways leading to dysconnectivity and abnormal activity of the social brain. Furthermore, we recommend electroencephalography as a promising translational technique that can foster pre-clinical drug development and discuss attractive drug targets for the treatment of social-cognitive symptoms in SZ.
Collapse
Affiliation(s)
- Florian W Adraoui
- Biotrial, Preclinical Pharmacology Department, 7-9 rue Jean-Louis Bertrand, 35000 Rennes, France
| | - Linda Douw
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan, 1081 HZ Amsterdam, The Netherlands
| | - Gerard J M Martens
- Donders Centre for Neuroscience (DCN), Department of Molecular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 GA Nijmegen, The Netherlands
- NeuroDrug Research Ltd., 6525 ED Nijmegen, The Netherlands
| | - Dorien A Maas
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
14
|
Schmitt A, Falkai P, Papiol S. Neurodevelopmental disturbances in schizophrenia: evidence from genetic and environmental factors. J Neural Transm (Vienna) 2023; 130:195-205. [PMID: 36370183 PMCID: PMC9660136 DOI: 10.1007/s00702-022-02567-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Since more than 3 decades, schizophrenia (SZ) has been regarded as a neurodevelopmental disorder. The neurodevelopmental hypothesis proposes that SZ is associated with genetic and environmental risk factors, which influence connectivity in neuronal circuits during vulnerable developmental periods. We carried out a non-systematic review of genetic/environmental factors that increase SZ risk in light of its neurodevelopmental hypothesis. We also reviewed the potential impact of SZ-related environmental and genetic risk factors on grey and white matter pathology and brain function based on magnetic resonance imaging and post-mortem studies. Finally, we reviewed studies that have used patient-derived neuronal models to gain knowledge of the role of genetic and environmental factors in early developmental stages. Taken together, these studies indicate that a variety of environmental factors may interact with genetic risk factors during the pre- or postnatal period and/or during adolescence to induce symptoms of SZ in early adulthood. These risk factors induce disturbances of macro- and microconnectivity in brain regions involving the prefrontal, temporal and parietal cortices and the hippocampus. On the molecular and cellular level, a disturbed synaptic plasticity, loss of oligodendrocytes and impaired myelination have been shown in brain regions of SZ patients. These cellular/histological phenotypes are related to environmental risk factors such as obstetric complications, maternal infections and childhood trauma and genetic risk factors identified in recent genome-wide association studies. SZ-related genetic risk may contribute to active processes interfering with synaptic plasticity in the adult brain. Advances in stem cell technologies are providing promising mechanistic insights into how SZ risk factors impact the developing brain. Further research is needed to understand the timing of the different complex biological processes taking place as a result of the interplay between genetic and environmental factors.
Collapse
Affiliation(s)
- Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstr. 7, 80336, Munich, Germany.
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil.
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstr. 7, 80336, Munich, Germany
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, Munich, Germany
| | - Sergi Papiol
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstr. 7, 80336, Munich, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
15
|
Hanson KL, Grant SE, Funk LH, Schumann CM, Bauman MD. Impact of Maternal Immune Activation on Nonhuman Primate Prefrontal Cortex Development: Insights for Schizophrenia. Biol Psychiatry 2022; 92:460-469. [PMID: 35773097 PMCID: PMC9888668 DOI: 10.1016/j.biopsych.2022.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 02/02/2023]
Abstract
Late adolescence is a period of dynamic change in the brain as humans learn to navigate increasingly complex environments. In particular, prefrontal cortical (PFC) regions undergo extensive remodeling as the brain is fine-tuned to orchestrate cognitive control over attention, reasoning, and emotions. Late adolescence also presents a uniquely vulnerable period as neurodevelopmental illnesses, such as schizophrenia, become evident and worsen into young adulthood. Challenges in early development, including prenatal exposure to infection, may set the stage for a cascade of maladaptive events that ultimately result in aberrant PFC connectivity and function before symptoms emerge. A growing body of research suggests that activation of the mother's immune system during pregnancy may act as a disease primer, in combination with other environmental and genetic factors, contributing to an increased risk of neurodevelopmental disorders, including schizophrenia. Animal models provide an invaluable opportunity to examine the course of brain and behavioral changes in offspring exposed to maternal immune activation (MIA). Although the vast majority of MIA research has been carried out in rodents, here we highlight the translational utility of the nonhuman primate (NHP) as a model species more closely related to humans in PFC structure and function. In this review, we consider the protracted period of brain and behavioral maturation in the NHP, describe emerging findings from MIA NHP offspring in the context of rodent preclinical models, and lastly explore the translational relevance of the NHP MIA model to expand understanding of the etiology and developmental course of PFC pathology in schizophrenia.
Collapse
Affiliation(s)
- Kari L Hanson
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California
| | - Simone E Grant
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Lucy H Funk
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California.
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California; California National Primate Research Center, University of California, Davis, Davis, California.
| |
Collapse
|
16
|
Brisch R, Wojtylak S, Saniotis A, Steiner J, Gos T, Kumaratilake J, Henneberg M, Wolf R. The role of microglia in neuropsychiatric disorders and suicide. Eur Arch Psychiatry Clin Neurosci 2022; 272:929-945. [PMID: 34595576 PMCID: PMC9388452 DOI: 10.1007/s00406-021-01334-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
This narrative review examines the possible role of microglial cells, first, in neuroinflammation and, second, in schizophrenia, depression, and suicide. Recent research on the interactions between microglia, astrocytes and neurons and their involvement in pathophysiological processes of neuropsychiatric disorders is presented. This review focuses on results from postmortem, positron emission tomography (PET) imaging studies, and animal models of schizophrenia and depression. Third, the effects of antipsychotic and antidepressant drug therapy, and of electroconvulsive therapy on microglial cells are explored and the upcoming development of therapeutic drugs targeting microglia is described. Finally, there is a discussion on the role of microglia in the evolutionary progression of human lineage. This view may contribute to a new understanding of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ralf Brisch
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Szymon Wojtylak
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Arthur Saniotis
- Department of Anthropology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Department of Pharmacy, Knowledge University, Erbil, Kurdistan Region, Iraq
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University, Magdeburg, Germany
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Jaliya Kumaratilake
- Biological Anthropology and Comparative Anatomy Research Unit, Medical School, The University of Adelaide, Adelaide, Australia
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Research Unit, Medical School, The University of Adelaide, Adelaide, Australia
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Rainer Wolf
- Department of Nursing and Health, Hochschule Fulda, University of Applied Sciences, Fulda, Germany.
| |
Collapse
|
17
|
Vanes LD, Murray RM, Nosarti C. Adult outcome of preterm birth: Implications for neurodevelopmental theories of psychosis. Schizophr Res 2022; 247:41-54. [PMID: 34006427 DOI: 10.1016/j.schres.2021.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
Preterm birth is associated with an elevated risk of developmental and adult psychiatric disorders, including psychosis. In this review, we evaluate the implications of neurodevelopmental, cognitive, motor, and social sequelae of preterm birth for developing psychosis, with an emphasis on outcomes observed in adulthood. Abnormal brain development precipitated by early exposure to the extra-uterine environment, and exacerbated by neuroinflammation, neonatal brain injury, and genetic vulnerability, can result in alterations of brain structure and function persisting into adulthood. These alterations, including abnormal regional brain volumes and white matter macro- and micro-structure, can critically impair functional (e.g. frontoparietal and thalamocortical) network connectivity in a manner characteristic of psychotic illness. The resulting executive, social, and motor dysfunctions may constitute the basis for behavioural vulnerability ultimately giving rise to psychotic symptomatology. There are many pathways to psychosis, but elucidating more precisely the mechanisms whereby preterm birth increases risk may shed light on that route consequent upon early neurodevelopmental insult.
Collapse
Affiliation(s)
- Lucy D Vanes
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, King's College London, UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, King's College London, UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
18
|
Abbah J, Vacher CM, Goldstein EZ, Li Z, Kundu S, Talbot B, Bhattacharya S, Hashimoto-Torii K, Wang L, Banerjee P, Scafidi J, Smith NA, Chew LJ, Gallo V. Oxidative Stress-Induced Damage to the Developing Hippocampus Is Mediated by GSK3β. J Neurosci 2022; 42:4812-4827. [PMID: 35589394 PMCID: PMC9188427 DOI: 10.1523/jneurosci.2389-21.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/10/2022] [Accepted: 04/17/2022] [Indexed: 11/30/2022] Open
Abstract
Neonatal brain injury renders the developing brain vulnerable to oxidative stress, leading to cognitive deficit. However, oxidative stress-induced damage to hippocampal circuits and the mechanisms underlying long-term changes in memory and learning are poorly understood. We used high oxygen tension or hyperoxia (HO) in neonatal mice of both sexes to investigate the role of oxidative stress in hippocampal damage. Perinatal HO induces reactive oxygen species and cell death, together with reduced interneuron maturation, inhibitory postsynaptic currents, and dentate progenitor proliferation. Postinjury interneuron stimulation surprisingly improved inhibitory activity and memory tasks, indicating reversibility. With decreased hippocampal levels of Wnt signaling components and somatostatin, HO aberrantly activated glycogen synthase kinase 3 β activity. Pharmacological inhibition or ablation of interneuron glycogen synthase kinase 3 β during HO challenge restored progenitor cell proliferation, interneuron development, inhibitory/excitatory balance, as well as hippocampal-dependent behavior. Biochemical targeting of interneuron function may benefit learning deficits caused by oxidative damage.SIGNIFICANCE STATEMENT Premature infants are especially vulnerable to oxidative stress, as their antioxidant defenses are underdeveloped. Indeed, high oxygen tension is associated with poor neurologic outcomes. Because of its sustained postnatal development and role in learning and memory, the hippocampus is especially vulnerable to oxidative damage in premature infants. However, the role of oxidative stress in the developing hippocampus has yet to be explored. With ever-rising rates of neonatal brain injury and no universally viable approach to maximize functional recovery, a better understanding of the mechanisms underlying neonatal brain injury is needed. Addressing this need, this study uses perinatal hyperoxia to study cognitive deficits, pathophysiology, and molecular mechanisms of oxidative damage in the developing hippocampus.
Collapse
Affiliation(s)
- Joseph Abbah
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010
| | - Claire-Marie Vacher
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010
| | - Evan Z Goldstein
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010
| | - Zhen Li
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010
| | - Srikanya Kundu
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010
| | - Brooke Talbot
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010
| | - Surajit Bhattacharya
- Center for Genetic Medicine, Children's National Research Institute, Children's National Hospital, Washington, DC 20010
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010
| | - Li Wang
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010
| | - Payal Banerjee
- Bioinformatics Core, Children's National Research Institute, Children's National Hospital, Washington, DC 20010
| | - Joseph Scafidi
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010
| | - Nathan A Smith
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010
| | - Li-Jin Chew
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010
| |
Collapse
|
19
|
Namvarpour Z, Ranaei E, Amini A, Roudafshani Z, Fahanik-Babaei J. Effects of prenatal exposure to inflammation coupled with prepubertal stress on prefrontal white matter structure and related molecules in adult mouse offspring. Metab Brain Dis 2022; 37:1655-1668. [PMID: 35347584 DOI: 10.1007/s11011-022-00968-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
Abstract
Maternal immune activation (MIA) by inflammatory agents such as lipopolysaccharide (LPS) and prepubertal stress (PS) may individually and collectively affect the central nervous system (CNS) during adulthood. Here, we intended to assess the effects of MIA, alone or combined with PS, on prefrontal white matter structure and its related molecules in adult mice offspring. Pregnant mice received either an i.p. dose of LPS (50 μg/kg) on gestational day 17 (GD17) or normal saline. Their pups were exposed to stress from postnatal days (PD) 30 to PD38 or no stress during prepubertal development. We randomly chose 56-day-old male offspring (n = 2 offspring per mother) from each group and isolated their prefrontal areas according to relevant protocols. The tissue samples were prepared for structural, histological, and molecular examinations. The LPS + stress group had evidence of increased damage in the white matter structures compared to the control, stress, and LPS groups (p < 0.05). The LPS + stress group also had significant downregulation of the genes involved in white matter formation (Sox10, Olig1, myelin regulatory factor, and Wnt compared with the control, stress, and LPS groups (p < 0.05). In conclusion, although each manipulation individually resulted in small changes in myelination, their combined effects were more pronounced. These changes were parallel to abnormal expression levels of the molecular factors that contribute to myelination.
Collapse
Affiliation(s)
- Zahra Namvarpour
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute for Cognitive Sciences Students (ICSS), Tehran, Iran
| | - Elahe Ranaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Roudafshani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Central Lab, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, 1985717443, Tehran, Iran
| |
Collapse
|
20
|
Smigielski L, Stämpfli P, Wotruba D, Buechler R, Sommer S, Gerstenberg M, Theodoridou A, Walitza S, Rössler W, Heekeren K. White matter microstructure and the clinical risk for psychosis: A diffusion tensor imaging study of individuals with basic symptoms and at ultra-high risk. Neuroimage Clin 2022; 35:103067. [PMID: 35679786 PMCID: PMC9178487 DOI: 10.1016/j.nicl.2022.103067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 12/29/2022]
Abstract
This DTI cross-sectional study compared UHR, basic symptom & control groups (n = 112). The splenium of UHR individuals exhibited differences in fractional anisotropy (FA). Basic symptoms alone were not associated with white matter microstructure changes. Large differences in FA & radial diffusivity were found in converters to psychosis. Regional FA was inversely correlated with the general psychopathology domain.
Background Widespread white matter abnormalities are a frequent finding in chronic schizophrenia patients. More inconsistent results have been provided by the sparser literature on at-risk states for psychosis, i.e., emerging subclinical symptoms. However, considering risk as a homogenous construct, an approach of earlier studies, may impede our understanding of neuro-progression into psychosis. Methods An analysis was conducted of 3-Tesla MRI diffusion and symptom data from 112 individuals (mean age, 21.97 ± 4.19) within two at-risk paradigm subtypes, only basic symptoms (n = 43) and ultra-high risk (n = 37), and controls (n = 32). Between-group comparisons (involving three study groups and further split based on the subsequent transition to schizophrenia) of four diffusion-tensor-imaging-derived scalars were performed using voxelwise tract-based spatial statistics, followed by correlational analyses with Structured Interview for Prodromal Syndromes responses. Results Relative to controls, fractional anisotropy was lower in the splenium of the corpus callosum of ultra-high-risk individuals, but only before stringent multiple-testing correction, and negatively correlated with General Symptom severity among at-risk individuals. At-risk participants who transitioned to schizophrenia within 3 years, compared to those that did not transition, had more severe WM differences in fractional anisotropy and radial diffusivity (particularly in the corpus callosum, anterior corona radiata, and motor/sensory tracts), which were even more extensive compared to healthy controls. Conclusions These findings align with the subclinical symptom presentation and more extensive disruptions in converters, suggestive of severity-related demyelination or axonal pathology. Fine-grained but detectable differences among ultra-high-risk subjects (i.e., with brief limited intermittent and/or attenuated psychotic symptoms) point to the splenium as a discrete site of emerging psychopathology, while basic symptoms alone were not associated with altered fractional anisotropy.
Collapse
Affiliation(s)
- Lukasz Smigielski
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; MR-Center of the Psychiatric Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Diana Wotruba
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roman Buechler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland
| | - Stefan Sommer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; MR-Center of the Psychiatric Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Miriam Gerstenberg
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anastasia Theodoridou
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Campus Charité Mitte, Berlin, Germany; Laboratory of Neuroscience (LIM 27), Institute of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Karsten Heekeren
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry and Psychotherapy I, LVR-Hospital, Cologne, Germany
| |
Collapse
|
21
|
Rauf A, Badoni H, Abu-Izneid T, Olatunde A, Rahman MM, Painuli S, Semwal P, Wilairatana P, Mubarak MS. Neuroinflammatory Markers: Key Indicators in the Pathology of Neurodegenerative Diseases. Molecules 2022; 27:molecules27103194. [PMID: 35630670 PMCID: PMC9146652 DOI: 10.3390/molecules27103194] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, a protective response of the central nervous system (CNS), is associated with the pathogenesis of neurodegenerative diseases. The CNS is composed of neurons and glial cells consisting of microglia, oligodendrocytes, and astrocytes. Entry of any foreign pathogen activates the glial cells (astrocytes and microglia) and overactivation of these cells triggers the release of various neuroinflammatory markers (NMs), such as the tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-1β (IL-10), nitric oxide (NO), and cyclooxygenase-2 (COX-2), among others. Various studies have shown the role of neuroinflammatory markers in the occurrence, diagnosis, and treatment of neurodegenerative diseases. These markers also trigger the formation of various other factors responsible for causing several neuronal diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), multiple sclerosis (MS), ischemia, and several others. This comprehensive review aims to reveal the mechanism of neuroinflammatory markers (NMs), which could cause different neurodegenerative disorders. Important NMs may represent pathophysiologic processes leading to the generation of neurodegenerative diseases. In addition, various molecular alterations related to neurodegenerative diseases are discussed. Identifying these NMs may assist in the early diagnosis and detection of therapeutic targets for treating various neurodegenerative diseases.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
- Correspondence: (A.R.); (P.W.); (M.S.M.)
| | - Himani Badoni
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Premnagar, Dehradun 248006, India;
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences Department, College of Pharmacy, Al Ain University for Science and Technology, Al Ain 64141, United Arab Emirates;
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi 740272, Nigeria;
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Sakshi Painuli
- Uttarakhand Council for Biotechnology (UCB), Premnagar, Dehradun 248007, India;
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era (Deemed To Be University), Dehradun 248002, India;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (A.R.); (P.W.); (M.S.M.)
| | - Mohammad S. Mubarak
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
- Correspondence: (A.R.); (P.W.); (M.S.M.)
| |
Collapse
|
22
|
Cuenod M, Steullet P, Cabungcal JH, Dwir D, Khadimallah I, Klauser P, Conus P, Do KQ. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry 2022; 27:1886-1897. [PMID: 34759358 PMCID: PMC9126811 DOI: 10.1038/s41380-021-01374-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
A growing body of evidence has emerged demonstrating a pathological link between oxidative stress and schizophrenia. This evidence identifies oxidative stress as a convergence point or "central hub" for schizophrenia genetic and environmental risk factors. Here we review the existing experimental and translational research pinpointing the complex dynamics of oxidative stress mechanisms and their modulation in relation to schizophrenia pathophysiology. We focus on evidence supporting the crucial role of either redox dysregulation, N-methyl-D-aspartate receptor hypofunction, neuroinflammation or mitochondria bioenergetics dysfunction, initiating "vicious circles" centered on oxidative stress during neurodevelopment. These processes would amplify one another in positive feed-forward loops, leading to persistent impairments of the maturation and function of local parvalbumin-GABAergic neurons microcircuits and myelinated fibers of long-range macrocircuitry. This is at the basis of neural circuit synchronization impairments and cognitive, emotional, social and sensory deficits characteristic of schizophrenia. Potential therapeutic approaches that aim at breaking these different vicious circles represent promising strategies for timely and safe interventions. In order to improve early detection and increase the signal-to-noise ratio for adjunctive trials of antioxidant, anti-inflammatory and NMDAR modulator drugs, a reverse translation of validated circuitry approach is needed. The above presented processes allow to identify mechanism based biomarkers guiding stratification of homogenous patients groups and target engagement required for successful clinical trials, paving the way towards precision medicine in psychiatry.
Collapse
Affiliation(s)
- Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland.
| |
Collapse
|
23
|
Abnormal oligodendrocyte function in schizophrenia explains the long latent interval in some patients. Transl Psychiatry 2022; 12:120. [PMID: 35338111 PMCID: PMC8956594 DOI: 10.1038/s41398-022-01879-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022] Open
Abstract
A puzzling feature of schizophrenia, is the long latency between the beginning of neuropathological changes and the clinical presentation that may be two decades later. Abnormalities in oligodendrocyte function may explain this latency, because mature oligodendrocytes produce myelination, and if myelination were abnormal from the outset, it would cause the synaptic dysfunction and abnormal neural tracts that are underpinning features of schizophrenia. The hypothesis is that latency is caused by events that occur in some patients as early as in-utero or infancy, because clones of abnormal, myelinating oligodendrocytes may arise at that time; their number doubles every ~2 years, so their geometric increase between birth and age twenty, when clinical presentation occurs, is about 1000-fold plus the effect of compounding. For those patients in particular, the long latency is because of a small but ongoing increase in volume of the resulting, abnormally myelinated neural tracts until, after a long latent interval, a critical mass is reached that allows the full clinical features of schizophrenia. During latency, there may be behavioral aberrancies because of abnormally myelinated neural tracts but they are insufficiently numerous for the clinical syndrome. The occurrence of behavioral symptoms during the long latent period, substantiates the hypothesis that abnormal oligodendrocytes explain the latency in some patients. Treatment with fingolimod or siponimod benefits both oligodendrocytes and neural tracts. Clinical trial would validate their potential benefit in appropriate patients with schizophrenia and, concurrently, would validate the hypothesis.
Collapse
|
24
|
Markert F, Storch A. Hyperoxygenation During Mid-Neurogenesis Accelerates Cortical Development in the Fetal Mouse Brain. Front Cell Dev Biol 2022; 10:732682. [PMID: 35372333 PMCID: PMC8969024 DOI: 10.3389/fcell.2022.732682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Oxygen tension is well-known to affect cortical development. Fetal brain hyperoxygenation during mid-neurogenesis in mice (embryonic stage E14.5. to E16.5) increases brain size evoked through an increase of neuroprecursor cells. Nevertheless, it is unknown whether these effects can lead to persistent morphological changes within the highly orchestrated brain development. To shed light on this, we used our model of controlled fetal brain hyperoxygenation in time-pregnant C57BL/6J mice housed in a chamber with 75% atmospheric oxygen from E14.5 to E16.5 and analyzed the brains from E14.5, E16.5, P0.5, and P3.5 mouse embryos and pups via immunofluorescence staining. Mid-neurogenesis hyperoxygenation led to an acceleration of cortical development by temporal expansion of the cortical plate with increased NeuN+ neuron counts in hyperoxic brains only until birth. More specifically, the number of Ctip2+ cortical layer 5 (L5) neurons was increased at E16.5 and at birth in hyperoxic brains but normalized in the early postnatal stage (P3.5). The absence of cleaved caspase 3 within the extended Ctip2+ L5 cell population largely excluded apoptosis as a major compensatory mechanism. Timed BrdU/EdU analyses likewise rule out a feedback mechanism. The normalization was, on the contrary, accompanied by an increase of active microglia within L5 targeting Ctip2+ neurons without any signs of apoptosis. Together, hyperoxygenation during mid-neurogenesis phase of fetal brain development provoked a specific transient overshoot of cortical L5 neurons leading to an accelerated cortical development without detectable persistent changes. These observations provide insight into cortical and L5 brain development.
Collapse
Affiliation(s)
- Franz Markert
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
- *Correspondence: Alexander Storch,
| |
Collapse
|
25
|
Zhang J, Wang M, Wei B, Shi J, Yu T. Research Progress in the Study of Startle Reflex to Disease States. Neuropsychiatr Dis Treat 2022; 18:427-435. [PMID: 35237036 PMCID: PMC8884703 DOI: 10.2147/ndt.s351667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/06/2022] [Indexed: 11/23/2022] Open
Abstract
The startle reflex is considered a primitive physiological reflex, a defense response that occurs in the organism when the body feels sudden danger and uneasiness, characterized by habituation and sensitization effects, and studies on the startle reflex often deal with pre-pulse inhibition (PPI) and sensorimotor gating. Under physiological conditions, the startle reflex is stable at a certain level, and when the organism is in a pathological state, such as stroke, spinal cord injury, schizophrenia, and other diseases, the reflex undergoes a series of changes, making it closely related to the progress of disease. This paper summarizes the startle reflex in physiological and pathological states by reviewing the databases of PubMed, Web of Science, Cochrane Library, EMBASE, China Biology Medicine, China National Knowledge Infrastructure, VIP Database for Chinese Technical Periodical, Wanfang Data, and identifies and analyzes the startle reflex and excessive startle reaction disorder.
Collapse
Affiliation(s)
- Junfeng Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People's Republic of China
| | - Meng Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China
| | - Baoyu Wei
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Jiangwei Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China
| | - Tao Yu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China
| |
Collapse
|
26
|
Uranova N, Vikhreva O, Rakhmanova V. Specific interactions between microglia and oligodendrocytes in white matter in continuous schizophrenia. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:128-137. [DOI: 10.17116/jnevro2022122121128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Tao B, Xiao Y, Cao H, Zhang W, Yang C, Lencer R, Gong Q, Lui S. Characteristics of the corpus callosum in chronic schizophrenia treated with clozapine or risperidone and those never-treated. BMC Psychiatry 2021; 21:538. [PMID: 34715831 PMCID: PMC8556985 DOI: 10.1186/s12888-021-03552-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The corpus callosum (CC) deficits have been well documented in chronic schizophrenia. However, the long-term impacts of antipsychotic monotherapies on callosal anatomy remain unclear. This cross-sectional study sought to explore micro- and macro-structural characteristics of the CC in never-treated patients and those with long-term mono-antipsychotic treatment. METHODS The study included 23 clozapine-treated schizophrenia patients (CT-SCZ), 19 risperidone-treated schizophrenia patients (RT-SCZ), 23 never-treated schizophrenia patients (NT-SCZ), and 35 healthy controls (HCs). High resolution structural images and diffusion tensor imaging (DTI) data for each participant were obtained via a 3.0 T MR scanner. FreeSurfer was used to examine the volumes and fractional anisotropy (FA) values of the CC for each participant. RESULTS There were significant deficits in the total and sub-regional CC volume and white matter integrity in NT-SCZ in comparison with healthy subjects. Compared with NT-SCZ, both CT-SCZ and RT-SCZ showed significantly increased FA values in the anterior CC region, while only RT-SCZ showed significantly increased volume in the mid-anterior CC region. Moreover, the volume of the mid-anterior CC region was significantly smaller in CT-SCZ compared to HCs. No correlations of clinical symptoms with callosal metrics were observed in schizophrenia patients. CONCLUSIONS Our findings provide insight into micro- and macro-structural characteristics of the CC in chronic schizophrenia patients with or without antipsychotics. These results suggest that the pathology itself is responsible for cerebral abnormalities in schizophrenia and that chronic exposure to antipsychotics may have an impact on white matter structure of schizophrenia patients, especially in those with risperidone treatment.
Collapse
Affiliation(s)
- Bo Tao
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xuexiang, Chengdu, 610041 China ,grid.412901.f0000 0004 1770 1022Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xuexiang, Chengdu, 610041 China ,grid.412901.f0000 0004 1770 1022Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Hengyi Cao
- grid.250903.d0000 0000 9566 0634Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY USA ,grid.440243.50000 0004 0453 5950Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY USA
| | - Wenjing Zhang
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xuexiang, Chengdu, 610041 China ,grid.412901.f0000 0004 1770 1022Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Chengmin Yang
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xuexiang, Chengdu, 610041 China ,grid.412901.f0000 0004 1770 1022Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Rebekka Lencer
- grid.4562.50000 0001 0057 2672Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Qiyong Gong
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xuexiang, Chengdu, 610041 China ,grid.412901.f0000 0004 1770 1022Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xuexiang, Chengdu, 610041, China. .,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
28
|
Iliuta FP, Manea MC, Budisteanu M, Andrei E, Linca F, Rad F, Cergan R, Ciobanu AM. Magnetic resonance imaging of brain anomalies in adult and pediatric schizophrenia patients: Experience of a Romanian tertiary hospital. Exp Ther Med 2021; 22:1098. [PMID: 34504552 PMCID: PMC8383773 DOI: 10.3892/etm.2021.10532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/29/2021] [Indexed: 11/27/2022] Open
Abstract
Schizophrenia is a severe mental illness with a significant impact on the life of both the patient and the patient's family. Magnetic resonance imaging has proven a useful tool for studying structural changes of the brain in schizophrenia. However, interpreting the published literature presents several challenges. Despite thorough research in recent years, which has included anatomopathological, imaging, electrophysiological, and genetic studies, the intimate pathophysiological mechanisms of this disease are not yet fully elucidated. The present study included patients with schizophrenia diagnosed in the psychiatric clinics from the ‘Prof. Dr. Alexandru Obregia’ Clinical Psychiatry Hospital between September 2019 and December 2020. Three Tesla magnetic resonance neuroimaging studies were performed. In a significant number of cases, the neuroimaging studies showed association of cerebral modifications such as enlargement of the Virchow spaces, lesions of the white matter with demyelinating appearance, and inflammatory sinus reactions. Cortical atrophy and hemosiderotic spots were present in a statistically significant proportion in the patient group with an age range of 29-61 years. MRI is indicated as a useful technique in the follow-up process of schizophrenia patients. However, whether the anomalies revealed in this disorder can be utilised as diagnostic biomarkers is still being debated.
Collapse
Affiliation(s)
- Floris Petru Iliuta
- Department of Psychiatry, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania.,Department of Psychiatry and Psychology, Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 010221 Bucharest, Romania
| | - Mihnea Costin Manea
- Department of Psychiatry, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania.,Department of Psychiatry and Psychology, Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 010221 Bucharest, Romania
| | - Magdalena Budisteanu
- Psychiatry Research Laboratory, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania.,Laboratory of Medical Genetics, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Medical Genetics, Faculty of Medicine, 'Titu Maiorescu' University, 031593 Bucharest, Romania
| | - Emanuela Andrei
- Psychiatry Research Laboratory, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Florentina Linca
- Psychiatry Research Laboratory, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Florina Rad
- Department of Child and Adolescent Psychiatry, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania.,Discipline of Child and Adolescent Psychiatry, Department of Neurosciences, 050474 Bucharest, Romania
| | - Romica Cergan
- Department of Anatomy, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Radiology and Imaging, Clinical Hospital of Orthopedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Adela Magdalena Ciobanu
- Department of Psychiatry, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania.,Discipline of Psychiatry, Department of Neurosciences, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
29
|
Dawidowski B, Górniak A, Podwalski P, Lebiecka Z, Misiak B, Samochowiec J. The Role of Cytokines in the Pathogenesis of Schizophrenia. J Clin Med 2021; 10:jcm10173849. [PMID: 34501305 PMCID: PMC8432006 DOI: 10.3390/jcm10173849] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a chronic mental illness of unknown etiology. A growing and compelling body of evidence implicates immunologic dysfunction as the key element in its pathomechanism. Cytokines, whose altered levels have been increasingly reported in various patient populations, are the major mediators involved in the coordination of the immune system. The available literature reports both elevated levels of proinflammatory as well as reduced levels of anti-inflammatory cytokines, and their effects on clinical status and neuroimaging changes. There is evidence of at least a partial genetic basis for the association between cytokine alterations and schizophrenia. Two other factors implicated in its development include early childhood trauma and disturbances in the gut microbiome. Moreover, its various subtypes, characterized by individual symptom severity and course, such as deficit schizophrenia, seem to differ in terms of changes in peripheral cytokine levels. While the use of a systematic review methodology could be difficult due to the breadth and diversity of the issues covered in this review, the applied narrative approach allows for a more holistic presentation. The aim of this narrative review was to present up-to-date evidence on cytokine dysregulation in schizophrenia, its effect on the psychopathological presentation, and links with antipsychotic medication. We also attempted to summarize its postulated underpinnings, including early childhood trauma and gut microbiome disturbances, and propose trait and state markers of schizophrenia.
Collapse
Affiliation(s)
- Bartosz Dawidowski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (B.D.); (A.G.); (J.S.)
| | - Adrianna Górniak
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (B.D.); (A.G.); (J.S.)
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (B.D.); (A.G.); (J.S.)
- Correspondence: ; Tel.: +48-510-091-466
| | - Zofia Lebiecka
- Department of Health Psychology, Pomeranian Medical University, 71-210 Szczecin, Poland;
| | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Medical University, 50-367 Wroclaw, Poland;
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (B.D.); (A.G.); (J.S.)
| |
Collapse
|
30
|
The effect of antipsychotic medications on white matter integrity in first-episode drug-naïve patients with psychosis: A review of DTI studies. Asian J Psychiatr 2021; 61:102688. [PMID: 34000500 DOI: 10.1016/j.ajp.2021.102688] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Psychotic episodes have been associated with damage to both grey matter (GM) and white matter (WM). Although a recent meta-analysis suggest that in long term treatment, first generation antipsychotics (FGA) are associated with progressive reduction in GM, second generation antipsychotics (SGA) seem to have benefits to WM microstructure. METHODS A search was conducted to identify controlled trials published from January 2000 to January 2021, which assessed WM integrity as measured by DTI in drug-naïve patients with FEP before and after antipsychotic administration. RESULTS 3 studies met the criteria for inclusion. All studies demonstrated lower FA in psychotic patients vs HC. A 6-week study reported that antipsychotic medication results in a further decrease in FA within the bilateral ACG and right ACR, regions important in emotional processing. An 8-week study found that antipsychotic treatment increase FA in the SLF, resulting in improved symptoms and increased processing speed. A 3rd study found an increase in FA in several regions along with a negative correlation between FA and PANSS at remission. CONCLUSIONS Drug-naïve FEP patients have WM dysfunction at baseline and antipsychotic medications appear to alter or improve WM especially at remission. More controlled trials are warranted to validate these conclusions.
Collapse
|
31
|
Velasco B, Mohamed E, Sato-Bigbee C. Endogenous and exogenous opioid effects on oligodendrocyte biology and developmental brain myelination. Neurotoxicol Teratol 2021; 86:107002. [PMID: 34126203 DOI: 10.1016/j.ntt.2021.107002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022]
Abstract
The elevated presence of opioid receptors and their ligands throughout the developing brain points to the existence of maturational functions of the endogenous opioid system that still remain poorly understood. The alarmingly increasing rates of opioid use and abuse underscore the urgent need for clear identification of those functions and the cellular bases and molecular mechanisms underlying their physiological roles under normal and pathological conditions. This review is focused on current knowledge on the direct and indirect regulatory roles that opioids may have on oligodendrocyte development and their generation of myelin, a complex insulating membrane that not only facilitates rapid impulse conduction but also participates in mechanisms of brain plasticity and adaptation. Information is examined in relation to the importance of endogenous opioid function, as well as direct and indirect effects of opioid analogues, which like methadone and buprenorphine are used in medication-assisted therapies for opioid addiction during pregnancy and pharmacotherapy in neonatal abstinence syndrome. Potential opioid effects are also discussed regarding late myelination of the brain prefrontal cortex in adolescents and young adults. Such knowledge is fundamental for the design of safer pharmacological interventions for opioid abuse, minimizing deleterious effects in the developing nervous system.
Collapse
Affiliation(s)
- Brandon Velasco
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Esraa Mohamed
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Carmen Sato-Bigbee
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
32
|
Wang D, Zhuo K, Sun Y, Xiang Q, Guo X, Wang J, Xu Y, Liu D, Li Y. Middle temporal corpus callosum impairment as a predictor of eight-week treatment outcome of drug-naïve first-episode psychosis patients: A pilot longitudinal study. Schizophr Res 2021; 232:95-97. [PMID: 34029947 DOI: 10.1016/j.schres.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Danni Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Kaiming Zhuo
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yu Sun
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Zhejiang 310052, China; Department of Radiology, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang 310052, China
| | - Qiong Xiang
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiaoyun Guo
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jinhong Wang
- Department of Medical Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yifeng Xu
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Institute of Mental Health, Fudan University, Shanghai 200030, China
| | - Dengtang Liu
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Institute of Mental Health, Fudan University, Shanghai 200030, China.
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
33
|
Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs-Influence of Smoking Behavior and Inflammation on Pharmacokinetics. Pharmaceuticals (Basel) 2021; 14:ph14060514. [PMID: 34071813 PMCID: PMC8230242 DOI: 10.3390/ph14060514] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
Both inflammation and smoking can influence a drug’s pharmacokinetic properties, i.e., its liberation, absorption, distribution, metabolism, and elimination. Depending on, e.g., pharmacogenetics, these changes may alter treatment response or cause serious adverse drug reactions and are thus of clinical relevance. Antipsychotic drugs, used in the treatment of psychosis and schizophrenia, should be closely monitored due to multiple factors (e.g., the narrow therapeutic window of certain psychotropic drugs, the chronicity of most mental illnesses, and the common occurrence of polypharmacotherapy in psychiatry). Therapeutic drug monitoring (TDM) aids with drug titration by enabling the quantification of patients’ drug levels. Recommendations on the use of TDM during treatment with psychotropic drugs are presented in the Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology; however, data on antipsychotic drug levels during inflammation or after changes in smoking behavior—both clinically relevant in psychiatry—that can aid clinical decision making are sparse. The following narrative review provides an overview of relevant literature regarding TDM in psychiatry, particularly in the context of second- and third-generation antipsychotic drugs, inflammation, and smoking behavior. It aims to spread awareness regarding TDM (most pronouncedly of clozapine and olanzapine) as a tool to optimize drug safety and provide patient-tailored treatment.
Collapse
|
34
|
Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs—Influence of Smoking Behavior and Inflammation on Pharmacokinetics. Pharmaceuticals (Basel) 2021. [DOI: 10.3390/ph14060514
expr 938544256 + 801362328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Both inflammation and smoking can influence a drug’s pharmacokinetic properties, i.e., its liberation, absorption, distribution, metabolism, and elimination. Depending on, e.g., pharmacogenetics, these changes may alter treatment response or cause serious adverse drug reactions and are thus of clinical relevance. Antipsychotic drugs, used in the treatment of psychosis and schizophrenia, should be closely monitored due to multiple factors (e.g., the narrow therapeutic window of certain psychotropic drugs, the chronicity of most mental illnesses, and the common occurrence of polypharmacotherapy in psychiatry). Therapeutic drug monitoring (TDM) aids with drug titration by enabling the quantification of patients’ drug levels. Recommendations on the use of TDM during treatment with psychotropic drugs are presented in the Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology; however, data on antipsychotic drug levels during inflammation or after changes in smoking behavior—both clinically relevant in psychiatry—that can aid clinical decision making are sparse. The following narrative review provides an overview of relevant literature regarding TDM in psychiatry, particularly in the context of second- and third-generation antipsychotic drugs, inflammation, and smoking behavior. It aims to spread awareness regarding TDM (most pronouncedly of clozapine and olanzapine) as a tool to optimize drug safety and provide patient-tailored treatment.
Collapse
|
35
|
Moschny N, Hefner G, Grohmann R, Eckermann G, Maier HB, Seifert J, Heck J, Francis F, Bleich S, Toto S, Meissner C. Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs-Influence of Smoking Behavior and Inflammation on Pharmacokinetics. Pharmaceuticals (Basel) 2021; 14:514. [PMID: 34071813 PMCID: PMC8230242 DOI: 10.3390/ph14060514&set/a 947965394+957477086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Both inflammation and smoking can influence a drug's pharmacokinetic properties, i.e., its liberation, absorption, distribution, metabolism, and elimination. Depending on, e.g., pharmacogenetics, these changes may alter treatment response or cause serious adverse drug reactions and are thus of clinical relevance. Antipsychotic drugs, used in the treatment of psychosis and schizophrenia, should be closely monitored due to multiple factors (e.g., the narrow therapeutic window of certain psychotropic drugs, the chronicity of most mental illnesses, and the common occurrence of polypharmacotherapy in psychiatry). Therapeutic drug monitoring (TDM) aids with drug titration by enabling the quantification of patients' drug levels. Recommendations on the use of TDM during treatment with psychotropic drugs are presented in the Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology; however, data on antipsychotic drug levels during inflammation or after changes in smoking behavior-both clinically relevant in psychiatry-that can aid clinical decision making are sparse. The following narrative review provides an overview of relevant literature regarding TDM in psychiatry, particularly in the context of second- and third-generation antipsychotic drugs, inflammation, and smoking behavior. It aims to spread awareness regarding TDM (most pronouncedly of clozapine and olanzapine) as a tool to optimize drug safety and provide patient-tailored treatment.
Collapse
Affiliation(s)
- Nicole Moschny
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
- Correspondence: ; Tel.: +49-511-532-3656
| | - Gudrun Hefner
- Department of Psychiatry and Psychotherapy, Vitos Clinic for Forensic Psychiatry, Kloster-Eberbach-Str. 4, 65346 Eltville, Germany;
| | - Renate Grohmann
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Nussbaum-Str. 7, 80336 Munich, Germany;
| | - Gabriel Eckermann
- Department of Forensic Psychiatry and Psychotherapy, Hospital Kaufbeuren, Kemnater-Str. 16, 87600 Kaufbeuren, Germany;
| | - Hannah B Maier
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Johanna Seifert
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Johannes Heck
- Institute for Clinical Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
| | - Flverly Francis
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Sermin Toto
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Catharina Meissner
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| |
Collapse
|
36
|
Lanjewar SN, Sloan SA. Growing Glia: Cultivating Human Stem Cell Models of Gliogenesis in Health and Disease. Front Cell Dev Biol 2021; 9:649538. [PMID: 33842475 PMCID: PMC8027322 DOI: 10.3389/fcell.2021.649538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Glia are present in all organisms with a central nervous system but considerably differ in their diversity, functions, and numbers. Coordinated efforts across many model systems have contributed to our understanding of glial-glial and neuron-glial interactions during nervous system development and disease, but human glia exhibit prominent species-specific attributes. Limited access to primary samples at critical developmental timepoints constrains our ability to assess glial contributions in human tissues. This challenge has been addressed throughout the past decade via advancements in human stem cell differentiation protocols that now offer the ability to model human astrocytes, oligodendrocytes, and microglia. Here, we review the use of novel 2D cell culture protocols, 3D organoid models, and bioengineered systems derived from human stem cells to study human glial development and the role of glia in neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Steven A. Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
37
|
Çakici N, Sutterland AL, Penninx BWJH, de Haan L, van Beveren NJM. Changes in peripheral blood compounds following psychopharmacological treatment in drug-naïve first-episode patients with either schizophrenia or major depressive disorder: a meta-analysis. Psychol Med 2021; 51:538-549. [PMID: 33653423 PMCID: PMC8020491 DOI: 10.1017/s0033291721000155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/27/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND This meta-analysis on peripheral blood compounds in drug-naïve first-episode patients with either schizophrenia or major depressive disorder (MDD) examined which compounds change following psychopharmacological treatment. METHODS The Embase, PubMed and PsycINFO databases were systematically searched for longitudinal studies reporting measurements of blood compounds in drug-naïve first-episode schizophrenia or MDD. RESULTS For this random-effects meta-analysis, we retrieved a total of 31 studies comprising 1818 schizophrenia patients, and 14 studies comprising 469 MDD patients. Brain-derived neurotrophic factor (BDNF) increased following treatment in schizophrenia (Hedges' g (g): 0.55; 95% confidence interval (CI) 0.39-0.70; p < 0.001) and MDD (g: 0.51; CI 0.06-0.96; p = 0.027). Interleukin (IL)-6 levels decreased in schizophrenia (g: -0.48; CI -0.85 to -0.11; p = 0.011), and for MDD a trend of decreased IL-6 levels was observed (g: -0.39; CI -0.87 to 0.09; p = 0.115). Tumor necrosis factor alpha (TNFα) also decreased in schizophrenia (g: -0.34; CI -0.68 to -0.01; p = 0.047) and in MDD (g: -1.02; CI -1.79 to -0.25; p = 0.009). Fasting glucose levels increased only in schizophrenia (g: 0.26; CI 0.07-0.44; p = 0.007), but not in MDD. No changes were found for C-reactive protein, IL-1β, IL-2 and IL-4. CONCLUSIONS Psychopharmacological treatment has modulating effects on BDNF and TNFα in drug-naïve first-episode patients with either schizophrenia or MDD. These findings support efforts for further research into transdiagnostic preventive strategies and augmentation therapy for those with immune dysfunctions.
Collapse
Affiliation(s)
- Nuray Çakici
- Department of Psychiatry and Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZAmsterdam, the Netherlands
- Parnassia Academy, Parnassia Psychiatric Institute, Kiwistraat 43, 2552 DHThe Hague, the Netherlands
| | - Arjen L. Sutterland
- Department of Psychiatry and Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZAmsterdam, the Netherlands
| | - Brenda W. J. H. Penninx
- Department of Psychiatry, Amsterdam Public Health Research Institute and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1105, 1081 HVAmsterdam, the Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry and Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZAmsterdam, the Netherlands
| | - Nico J. M. van Beveren
- Parnassia Academy, Parnassia Psychiatric Institute, Kiwistraat 43, 2552 DHThe Hague, the Netherlands
- Department of Psychiatry, Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GDRotterdam, the Netherlands
- Department of Neuroscience, Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GDRotterdam, the Netherlands
| |
Collapse
|
38
|
Active psychosis and pro-inflammatory cytokines in first-episode of psychosis. J Psychiatr Res 2021; 134:150-157. [PMID: 33385633 DOI: 10.1016/j.jpsychires.2020.12.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/19/2020] [Accepted: 12/19/2020] [Indexed: 11/23/2022]
Abstract
Higher levels of pro-inflammatory cytokines are consistently found in the serum of first episode psychosis (FEP) patients and this immune dysfunction could contribute to neural harm. On the other hand, lengthy periods of active psychosis during the early phases of the illness appear to be associated to worst functional outcome. We aim to explore the possible relationship between lengthy periods of active psychosis during early phases of the illness and the levels of pro-inflammatory cytokines. This is a prospective clinical study consisting of a 3-year clinical follow-up. We assessed the relation between the duration of active psychosis in patients with FEP and the serum levels of 21 cytokines at baseline and 3 months after initiating antipsychotic medication. We used the Human High Sensitivity T Cell Magnetic Bead Panel protocol from the Milliplex® Map Kit. The sample consisted of 59 patients with a FEP. The percentage of variation of the serum levels of the chemokine MIP-3α during the first 3 months of antipsychotic treatment and the score in negative psychotic symptoms 3 months after the initiation of antipsychotic medication, acted as predictors of the initial time to remission of positive psychotic symptoms. Our findings open the possibility to investigating the potential use of the variation in chemokine MIP-3α serum levels during the first months of antipsychotic treatment to identify a subtype of FEP patients that could benefit from an add-on treatment with immune modulators. CLINICALTRIALS.GOV ID: NCT02897167. DATE OF FIRST REGISTRATION: September 13, 2016. "Study of the Activation of Proinflammatory Pathways of Toll-like Receptors in Schizophrenia Patients (PAFIP_TLR)". https://clinicaltrials.gov/ct2/show/NCT02897167.
Collapse
|
39
|
Lyall AE, Nägele FL, Pasternak O, Gallego JA, Malhotra AK, McNamara RK, Kubicki M, Peters BD, Robinson DG, Szeszko PR. A 16-week randomized placebo-controlled trial investigating the effects of omega-3 polyunsaturated fatty acid treatment on white matter microstructure in recent-onset psychosis patients concurrently treated with risperidone. Psychiatry Res Neuroimaging 2021; 307:111219. [PMID: 33221631 PMCID: PMC8127861 DOI: 10.1016/j.pscychresns.2020.111219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 11/19/2022]
Abstract
We examined the impact of treatment with fish oil (FO), a rich source of omega-3 polyunsaturated fatty acids (n-3 PUFA), on white matter in 37 recent-onset psychosis patients receiving risperidone in a double-blind placebo-controlled randomized clinical trial. Patients were scanned at baseline and randomly assigned to receive 16-weeks of treatment with risperidone + FO or risperidone + placebo. Eighteen patients received follow-up MRIs (FO, n = 10/Placebo, n = 8). Erythrocyte levels of n-3 PUFAs eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and docosapentaenoic acid (DPA) were obtained at both time points. We employed Free Water Imaging metrics representing the extracellular free water fraction (FW) and fractional anisotropy of the tissue (FA-t). Analyses were conducted using Tract-Based-Spatial-Statistics and nonparametric permutation-based tests with family-wise error correction. There were significant positive correlations of FA-t with DHA and DPA among all patients at baseline. Patients treated with risperidone + placebo demonstrated reductions in FA-t and increases in FW, whereas patients treated with risperidone + FO exhibited no significant changes in FW and FA-t reductions were largely attenuated. The correlations of DPA and DHA with baseline FA-t support the hypothesis that n-3 PUFA intake or biosynthesis are associated with white matter abnormalities in psychosis. Adjuvant FO treatment may partially mitigate against white matter alterations observed in recent-onset psychosis patients following risperidone treatment.
Collapse
Affiliation(s)
- Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Felix L Nägele
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Juan A Gallego
- Departments of Psychiatry and of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States; Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Anil K Malhotra
- Departments of Psychiatry and of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States; Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, Lipidomics Research Program, University of Cincinnati, United States
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Bart D Peters
- Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Delbert G Robinson
- Departments of Psychiatry and of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States; Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Philip R Szeszko
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, United States
| |
Collapse
|
40
|
Cyclooxygenase Inhibition Safety and Efficacy in Inflammation-Based Psychiatric Disorders. Molecules 2020; 25:molecules25225388. [PMID: 33217958 PMCID: PMC7698629 DOI: 10.3390/molecules25225388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
According to the World Health Organization, the major psychiatric and neurodevelopmental disorders include major depression, bipolar disorder, schizophrenia, and autism spectrum disorder. The potential role of inflammation in the onset and progression of these disorders is increasingly being studied. The use of non-steroidal anti-inflammatory drugs (NSAIDs), well-known cyclooxygenase (COX) inhibitors, combined with first-choice specific drugs have been long investigated. The adjunctive administration of COX inhibitors to classic clinical treatments seems to improve the prognosis of people who suffer from psychiatric disorders. In this review, a broad overview of the use of COX inhibitors in the treatment of inflammation-based psychiatric disorders is provided. For this purpose, a critical analysis of the use of COX inhibitors in the last ten years of clinical trials of the major psychiatric disorders was carried out.
Collapse
|
41
|
Lv Y, Wu S, Lin Y, Wang X, Wang J, Cai S, Huang L. Association of rs1059004 polymorphism in the OLIG2 locus with functional brain network in first-episode negative schizophrenia. Psychiatry Res Neuroimaging 2020; 303:111130. [PMID: 32563948 DOI: 10.1016/j.pscychresns.2020.111130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 05/29/2020] [Accepted: 06/11/2020] [Indexed: 01/10/2023]
Abstract
Schizophrenia has often been viewed as a disorder of connectivity. The single nucleotide polymorphism rs1059004 in the oligodendrocyte lineage transcription factor 2 gene locus has been reported to be associated with schizophrenia. We measured the functional connectivity and functional brain network topology properties in 49 schizophrenic patients and 47 healthy controls. We compared the strength and diversity of the functional connectivity and topological properties of functional networks between different genotypes. The correlations among functional connectivity, topological properties and behavioral performances were also investigated in this study. We found that the connectivity strength of schizophrenic patients carrying the risk A allele was generally decreased whereas connectivity diversity was increased. Regarding topological properties, all groups showed small-world properties, the nodal efficiency showed significant differences in the right precuneus and left middle temporal pole between different genotypes in schizophrenic patients. Moreover, the nodal efficiency in the left middle temporal pole was positively correlated with the neuropsychological assessment battery results of the schizophrenic patients who were homozygous for the C allele. Our results elucidate the contribution of rs1059004 to the functional brain network, and may help enhance the present understanding of the role of risk gene in the functional dysconnectivity of schizophrenia.
Collapse
Affiliation(s)
- Yahui Lv
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Sijia Wu
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yanyan Lin
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Xuwen Wang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai jiaotong university, Shanghai 200030, China
| | - Suping Cai
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| | - Liyu Huang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| |
Collapse
|
42
|
Çakici N, Sutterland AL, Penninx BWJH, Dalm VA, de Haan L, van Beveren NJM. Altered peripheral blood compounds in drug-naïve first-episode patients with either schizophrenia or major depressive disorder: a meta-analysis. Brain Behav Immun 2020; 88:547-558. [PMID: 32330592 DOI: 10.1016/j.bbi.2020.04.039] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 03/30/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022] Open
Abstract
IMPORTANCE Schizophrenia and major depressive disorder (MDD) are associated with increased risks of immunologic disease and metabolic syndrome. It is unclear to what extent growth, immune or glucose dysregulations are similarly present in these disorders without the influence of treatment or chronicity. OBJECTIVE To conduct a meta-analysis investigating whether there are altered peripheral growth, immune or glucose metabolism compounds in drug-naïve first-episode patients with schizophrenia or MDD compared with controls. DATA SOURCES AND STUDY SELECTION Case-control studies reporting compound measures in drug-naïve first-episode patients with schizophrenia or MDD compared with controls in the Embase, PubMed and PsycINFO databases. DATA EXTRACTION AND SYNTHESIS Two independent authors extracted data for a random-effects meta-analysis. MAIN OUTCOMES AND MEASURES Peripheral growth, immune or glucose metabolism compounds in schizophrenia or MDD compared with controls. Standardized mean differences were quantified with Hedges' g (g). RESULTS 74 studies were retrieved comprising 3453 drug-naïve first-episode schizophrenia patients and 4152 controls, and 29 studies were retrieved comprising 1095 drug-naïve first-episode MDD patients and 1399 controls. Growth factors: brain-derived neurotrophic factor (BDNF) (g = -0.77, P < .001) and nerve growth factor (NGF) (g = -2.51, P = .03) were decreased in schizophrenia. For MDD, we observed a trend toward decreased BDNF (g = -0.47, P = .19) and NGF (g = -0.33, P = .08) levels, and elevated vascular endothelial growth factor levels (g = 0.40, P = .03). Immune factors: interleukin (IL)-6 (g = 0.95, P < .001), IL-8 (g = 0.59, P = .001) and tumor necrosis factor alpha (TNFα) (g = 0.48, P = .002) were elevated in schizophrenia. For C-reactive protein (CRP) (g = 0.57, P = .09), IL-4 (g = 0.44, P = .10) and interferon gamma (g = 0.33, P = .11) we observed a trend toward elevated levels in schizophrenia. In MDD, IL-6 (g = 0.62, P = .007), TNFα (g = 1.21, P < .001), CRP (g = 0.53, P < .001), IL-1β (g = 1.52, P = .009) and IL-2 (g = 4.41, P = .04) were elevated, whereas IL-8 (g = -0.84, P = .01) was decreased. The fasting glucose metabolism factors glucose (g = 0.24, P = .003) and insulin (g = 0.38, P = .003) were elevated in schizophrenia. CONCLUSIONS AND RELEVANCE Both schizophrenia and MDD show alterations in growth and immune factors from disease onset. An altered glucose metabolism seems to be present from onset in schizophrenia. These findings support efforts for further research into transdiagnostic preventive strategies and augmentation therapy for those with immune or metabolic dysfunctions.
Collapse
Affiliation(s)
- Nuray Çakici
- Department of Psychiatry and Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Parnassia Academy, Parnassia Psychiatric Institute, The Hague, the Netherlands.
| | - Arjen L Sutterland
- Department of Psychiatry and Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health Research Institute and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Virgil A Dalm
- Department of Internal Medicine, Division of Clinical Immunology and Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry and Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nico J M van Beveren
- Parnassia Academy, Parnassia Psychiatric Institute, The Hague, the Netherlands; Department of Psychiatry, Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
43
|
Rudzki L, Maes M. The Microbiota-Gut-Immune-Glia (MGIG) Axis in Major Depression. Mol Neurobiol 2020; 57:4269-4295. [DOI: 10.1007/s12035-020-01961-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/28/2020] [Indexed: 02/08/2023]
|
44
|
Dietz AG, Goldman SA, Nedergaard M. Glial cells in schizophrenia: a unified hypothesis. Lancet Psychiatry 2020; 7:272-281. [PMID: 31704113 PMCID: PMC7267935 DOI: 10.1016/s2215-0366(19)30302-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
The cellular neurobiology of schizophrenia remains poorly understood. We discuss neuroimaging studies, pathological findings, and experimental work supporting the idea that glial cells might contribute to the development of schizophrenia. Experimental studies suggest that abnormalities in the differentiation competence of glial progenitor cells lead to failure in the morphological and functional maturation of oligodendrocytes and astrocytes. We propose that immune activation of microglial cells during development, superimposed upon genetic risk factors, could contribute to defective differentiation competence of glial progenitor cells. The resulting hypomyelination and disrupted white matter integrity might contribute to transmission desynchronisation and dysconnectivity, whereas the failure of astrocytic differentiation results in abnormal glial coverage and support of synapses. The delayed and deficient maturation of astrocytes might, in parallel, lead to disruption of glutamatergic, potassium, and neuromodulatory homoeostasis, resulting in dysregulated synaptic transmission. By highlighting a role for glial cells in schizophrenia, these studies potentially point to new mechanisms for disease modification.
Collapse
Affiliation(s)
- Andrea G Dietz
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steven A Goldman
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
45
|
Almeida PG, Nani JV, Oses JP, Brietzke E, Hayashi MA. Neuroinflammation and glial cell activation in mental disorders. Brain Behav Immun Health 2020; 2:100034. [PMID: 38377429 PMCID: PMC8474594 DOI: 10.1016/j.bbih.2019.100034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 02/07/2023] Open
Abstract
Mental disorders (MDs) are highly prevalent and potentially debilitating complex disorders which causes remain elusive. Looking into deeper aspects of etiology or pathophysiology underlying these diseases would be highly beneficial, as the scarce knowledge in mechanistic and molecular pathways certainly represents an important limitation. Association between MDs and inflammation/neuroinflammation has been widely discussed and accepted by many, as high levels of pro-inflammatory cytokines were reported in patients with several MDs, such as schizophrenia (SCZ), bipolar disorder (BD) and major depression disorder (MDD), among others. Correlation of pro-inflammatory markers with symptoms intensity was also reported. However, the mechanisms underlying the inflammatory dysfunctions observed in MDs are not fully understood yet. In this context, microglial dysfunction has recently emerged as a possible pivotal player, as during the neuroinflammatory response, microglia can be over-activated, and excessive production of pro-inflammatory cytokines, which can modify the kynurenine and glutamate signaling, is reported. Moreover, microglial activation also results in increased astrocyte activity and consequent glutamate release, which are both toxic to the Central Nervous System (CNS). Also, as a result of increased microglial activation in MDs, products of the kynurenine pathway were shown to be changed, influencing then the dopaminergic, serotonergic, and glutamatergic signaling pathways. Therefore, in the present review, we aim to discuss how neuroinflammation impacts on glutamate and kynurenine signaling pathways, and how they can consequently influence the monoaminergic signaling. The consequent association with MDs main symptoms is also discussed. As such, this work aims to contribute to the field by providing insights into these alternative pathways and by shedding light on potential targets that could improve the strategies for pharmacological intervention and/or treatment protocols to combat the main pharmacologically unmatched symptoms of MDs, as the SCZ.
Collapse
Key Words
- AMPA, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
- APCs, antigen presenting cells
- BBB, blood-brain barrier
- BD, bipolar disorder
- CCL, C–C motif chemokine ligand
- CLRs, C-type lectin receptors
- CNS, central nervous system
- CSF, cerebrospinal fluid
- CXCL, X–C motif chemokine ligand
- Glia
- IDO, indolamine 2,3-dioxygenase
- IFN, interferon
- IL, interleukin
- IRF, interferon regulatory factor
- Inflammation
- KYNA, kynurenic acid
- MD, mental disorders
- MDD, major depression disorder
- MRI, magnetic resonance imaging
- Mental disorders
- Microglial activation
- NF, necrosis factor
- NMDA, N-methyl-D-aspartate
- NMR, nuclear magnetic resonance
- PPI, prepulse inhibition
- PRRs, pattern recognition receptors
- QUIN, quinolinic acid
- SCZ, schizophrenia
- Schizophrenia
- TGF, tumor growth factor
- TLRs, toll-like receptors
- TNF, tumor necrosis factor
- α7-nAchR, alpha 7 nicotinic acetylcholine receptor
Collapse
Affiliation(s)
- Priscila G.C. Almeida
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - João Victor Nani
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Jean Pierre Oses
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Instituto de Biociências, Universidade Federal do Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Elisa Brietzke
- Department of Psychiatry, Queen’s University School of Medicine, Kingston, ON, Canada
| | - Mirian A.F. Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
46
|
Uranova NA, Vikhreva OV, Rakhmanova VI, Orlovskaya DD. Dystrophy of Oligodendrocytes and Adjacent Microglia in Prefrontal Gray Matter in Schizophrenia. Front Psychiatry 2020; 11:204. [PMID: 32292358 PMCID: PMC7135882 DOI: 10.3389/fpsyt.2020.00204] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Some evidence support the notion that microglia activation in acute state of schizophrenia might contribute to damage of oligodendrocytes and myelinated fibers. Previously we found dystrophic changes of oligodendrocytes in prefrontal white matter in schizophrenia subjects displaying predominantly positive symptoms as compared to controls. The aim of the study was to verify whether microglial activation might contribute to dystrophic changes of oligodendrocytes in prefrontal gray matter in this clinical subgroup. METHODS Transmission electron microscopy and morphometry of microglia and adjacent oligodendrocytes were performed in layer 5 of the prefrontal cortex (BA10) in the schizophrenia subjects displaying predominantly positive symptoms (SPPS, n = 12), predominantly negative symptoms (SPNS, n = 9) and healthy controls (n = 20). RESULTS Qualitative study showed microglial activation and dystrophic alterations of microglia and oligodendrocytes adjacent to each other in both subgroups as compared to controls. A significant reduction in volume density (Vv) and the number (N) of mitochondria and an increase in N of lipofuscin granules were found in oligodendrocytes and adjacent microglia in both subgroups. Vv of lipofuscin granules, Vv and N of vacuoles of endoplasmic reticulum in microglia were increased significantly in the SPPS subgroup as compared to controls. In the SPPS subgroup Vv and N of mitochondria in microglia were correlated with N of vacuoles in microglia (r = -0.61, p < 0.05) and with Vv (r = 0.79, p < 0.01) and N (r = 0.59, p < 0.05) of mitochondria in oligodendrocytes. Vv of mitochondria in microglia was also correlated with Vv and N of vacuoles in oligodendrocytes in the SPPS subgroup (r = 0.76, p < 0.01). Area of nucleus of microglial cells was correlated negatively with age (r = -0.76, p < 0.01) and age at illness onset (r = -0.65, p < 0.05) in the SPPS subgroup. In the SPNS subgroup N of mitochondria in microglia was correlated with Vv of lipofuscin granules in oligodendrocytes (r = -0.9, p < 0.01). There were no significant correlations between these parameters in the control group. DISCUSSION Microglial dystrophy might contribute to oligodendrocyte dystrophy in the schizophrenia subjects with predominantly positive symptoms during relapse. Mitochondria in microglia and oligodendrocytes may be a target for treatment strategy of schizophrenia.
Collapse
Affiliation(s)
- Natalya A Uranova
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Moscow, Russia
| | - Olga V Vikhreva
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Moscow, Russia
| | | | - Diana D Orlovskaya
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Moscow, Russia
| |
Collapse
|
47
|
Yang L, Su Y, Guo F, Zhang H, Zhao Y, Huang Q, Xu H. Deep rTMS Mitigates Behavioral and Neuropathologic Anomalies in Cuprizone-Exposed Mice Through Reducing Microglial Proinflammatory Cytokines. Front Integr Neurosci 2020; 14:556839. [PMID: 33250722 PMCID: PMC7674917 DOI: 10.3389/fnint.2020.556839] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/05/2020] [Indexed: 02/05/2023] Open
Abstract
In comparison to conventional repetitive transcranial magnetic stimulation (rTMS), theta burst stimulation is stronger and more effective as a brain stimulation approach within short periods. Although this deep rTMS technique is being applied in treating neuropsychiatric disorders, few animal studies have attempted to clarify the neurobiological mechanisms underlying its beneficial effects. This animal study examined the effects of deep rTMS on the cuprizone-induced neuropathologic and behavioral anomalies and explored the underlying mechanism. Adolescent male C57BL/6 mice were fed a rodent chow without or with cuprizone (CPZ; 0.2% w/w) for 5 weeks. Another two groups of mice were subjected to deep rTMS or sham rTMS once a day during weeks 2-5 of the CPZ-feeding period. The behaviors of all mice were assessed after the withdrawal of CPZ before neuropathological and immunological analyses. Compared to the CNT group, mice in CPZ and CPZ + Sham groups showed deficits in social recognition and spatial working memory as well as anxiety-like behavior, in addition to myelin breakdown and OL loss in the corpus callosum (CC), caudate putamen, cerebral cortex, and hippocampus of the brain. Deep rTMS effectively reduced behavioral anomalies and blocked myelin breakdown and OL loss in CPZ-fed mice. Besides, it also dampened microglia activation at lesion sites and rectified cytokines levels (IL-1β, IL-6, and IL-10) in CPZ-affected regions. The most significant effect was seen in the cerebral cortex where alleviated neuropathology co-existed with less microglia activation and higher IL-10 level. These data provided experimental evidence for the beneficial effects of deep rTMS in CPZ-fed mice and revealed a neurobiological mechanism of the modality.
Collapse
Affiliation(s)
- Liu Yang
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Yawen Su
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Fannv Guo
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Handi Zhang
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Yinglin Zhao
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Qinjun Huang
- The Mental Health Center, Shantou University Medical College, Shantou, China
- *Correspondence: Qinjun Huang Haiyun Xu
| | - Haiyun Xu
- The Mental Health Center, Shantou University Medical College, Shantou, China
- The School of Psychiatry, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qinjun Huang Haiyun Xu
| |
Collapse
|
48
|
Çakici N, van Beveren NJM, Judge-Hundal G, Koola MM, Sommer IEC. An update on the efficacy of anti-inflammatory agents for patients with schizophrenia: a meta-analysis. Psychol Med 2019; 49:2307-2319. [PMID: 31439071 PMCID: PMC6763537 DOI: 10.1017/s0033291719001995] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/04/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Accumulating evidence shows that a propensity towards a pro-inflammatory status in the brain plays an important role in schizophrenia. Anti-inflammatory drugs might compensate this propensity. This study provides an update regarding the efficacy of agents with some anti-inflammatory actions for schizophrenia symptoms tested in randomized controlled trials (RCTs). METHODS PubMed, Embase, the National Institutes of Health website (http://www.clinicaltrials.gov), and the Cochrane Database of Systematic Reviews were systematically searched for RCTs that investigated clinical outcomes. RESULTS Our search yielded 56 studies that provided information on the efficacy of the following components on symptom severity: aspirin, bexarotene, celecoxib, davunetide, dextromethorphan, estrogens, fatty acids, melatonin, minocycline, N-acetylcysteine (NAC), pioglitazone, piracetam, pregnenolone, statins, varenicline, and withania somnifera extract. The results of aspirin [mean weighted effect size (ES): 0.30; n = 270; 95% CI (CI) 0.06-0.54], estrogens (ES: 0.78; n = 723; CI 0.36-1.19), minocycline (ES: 0.40; n = 946; CI 0.11-0.68), and NAC (ES: 1.00; n = 442; CI 0.60-1.41) were significant in meta-analysis of at least two studies. Subgroup analysis yielded larger positive effects for first-episode psychosis (FEP) or early-phase schizophrenia studies. Bexarotene, celecoxib, davunetide, dextromethorphan, fatty acids, pregnenolone, statins, and varenicline showed no significant effect. CONCLUSIONS Some, but not all agents with anti-inflammatory properties showed efficacy. Effective agents were aspirin, estrogens, minocycline, and NAC. We observed greater beneficial results on symptom severity in FEP or early-phase schizophrenia.
Collapse
Affiliation(s)
- N. Çakici
- Department of Psychiatry and Amsterdam Neuroscience, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Antes Center for Mental Health Care, Albrandswaardsedijk 74, 3172 AA, Poortugaal, the Netherlands
| | - N. J. M. van Beveren
- Antes Center for Mental Health Care, Albrandswaardsedijk 74, 3172 AA, Poortugaal, the Netherlands
- Department of Psychiatry, Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
- Department of Neuroscience, Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - G. Judge-Hundal
- Antes Center for Mental Health Care, Albrandswaardsedijk 74, 3172 AA, Poortugaal, the Netherlands
- Department of Psychiatry and Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Deusinglaan 2, 9713AW Groningen, the Netherlands
| | - M. M. Koola
- Department of Psychiatry and Behavioral Sciences, George Washington University School of Medicine and Health Sciences, 2300I St NW, Washington, DC 20052, USA
| | - I. E. C. Sommer
- Department of Psychiatry and Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Deusinglaan 2, 9713AW Groningen, the Netherlands
| |
Collapse
|
49
|
Madigand J, Tréhout M, Delcroix N, Dollfus S, Leroux E. Corpus callosum microstructural and macrostructural abnormalities in schizophrenia according to the stage of disease. Psychiatry Res Neuroimaging 2019; 291:63-70. [PMID: 31401547 DOI: 10.1016/j.pscychresns.2019.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022]
Abstract
Corpus callosum (CC) volume and surface (macrostructural) studies remain controversial and have not considered the illness duration (ID) systematically. Regardless of ID, some CC macrostructural studies have shown no difference between SZ patients and healthy controls (HC), whereas others have reported macrostructural abnormalities in SZ. Conversely, CC microstructural studies are more in agreement with alterations in CC integrity regardless of the patients' ID, but the direction and degree of these abnormalities over time remain unknown. Moreover, no study has explored both the micro- and macrostructure of the CC in SZ by considering the stage of disease. Both CC micro- and macrostructural data were investigated in 43 SZ patients and compared between two patient groups (21 patients with a short ID and 22 with a long ID) and HC (23 participants) using diffusion tensor and structural imaging. CC microstructural alterations were detected in both SZ groups compared to the HC group, without differences between the SZ groups. In contrast, CC macrostructural alterations were only found in the long ID group. CC microstructural alterations might be detected in schizophrenia at an early stage, without an increase of magnitude thereafter, while CC macrostructural alterations might become apparent at later stages of the illness.
Collapse
Affiliation(s)
- Jérémy Madigand
- Normandie Univ, UNICAEN, ISTS EA 7466, GIP CYCERON, Caen F-14000, France; CHU de Caen, Service de psychiatrie Adulte, Centre Esquirol, Caen F-14000, France; Normandie Univ, UNICAEN, UFR de Médecine (Medical School), Caen F-14000, France.
| | - Maxime Tréhout
- Normandie Univ, UNICAEN, ISTS EA 7466, GIP CYCERON, Caen F-14000, France; CHU de Caen, Service de psychiatrie Adulte, Centre Esquirol, Caen F-14000, France; Normandie Univ, UNICAEN, UFR de Médecine (Medical School), Caen F-14000, France.
| | - Nicolas Delcroix
- Normandie Univ, UNICAEN, CNRS, UMS GIP CYCERON, Caen F-14000, France.
| | - Sonia Dollfus
- Normandie Univ, UNICAEN, ISTS EA 7466, GIP CYCERON, Caen F-14000, France; CHU de Caen, Service de psychiatrie Adulte, Centre Esquirol, Caen F-14000, France; Normandie Univ, UNICAEN, UFR de Médecine (Medical School), Caen F-14000, France.
| | - Elise Leroux
- Normandie Univ, UNICAEN, ISTS EA 7466, GIP CYCERON, Caen F-14000, France.
| |
Collapse
|
50
|
Barnett BR, Anderson JM, Torres-Velázquez M, Yi SY, Rowley PA, Yu JPJ. Exercise ameliorates deficits in neural microstructure in a Disc1 model of psychiatric illness. Magn Reson Imaging 2019; 61:90-96. [PMID: 31103832 PMCID: PMC6663582 DOI: 10.1016/j.mri.2019.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 01/06/2023]
Abstract
Recent studies have investigated the effectiveness of aerobic exercise to improve physical and mental health outcomes in schizophrenia; however, few have explicitly explored the impact of aerobic exercise on neural microstructure, which is hypothesized to mediate the behavioral changes observed. Neural microstructure is influenced by numerous genetic factors including DISC1, which is a major molecular scaffold protein that interacts with partners like GSK3β, NDEL1, and PDE4. DISC1 has been shown to play a role in neurogenesis, neuronal migration, neuronal maturation, and synaptic signaling. As with other genetic variants that present an increased risk for disease, mutations of the DISC1 gene have been implicated in the molecular intersection of schizophrenia and numerous other major psychiatric illnesses. This study investigated whether short-term exercise recovers deficits in neural microstructure in a novel genetic Disc1 svΔ2 rat model. Disc1 svΔ2 animals and age- and sex-matched controls were subjected to a treadmill exercise protocol. Subsequent ex-vivo diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) compared neural microstructure in regions of interest (ROI) between sedentary and exercise wild-type animals and between sedentary and exercise Disc1 svΔ2 animals. Short-term exercise uncovered no significant differences in neural microstructure between sedentary and exercise control animals but did lead to significant differences between sedentary and exercise Disc1 svΔ2 animals in neocortex, basal ganglia, corpus callosum, and external capsule, suggesting a positive benefit derived from a short-term exercise regimen. Our findings suggest that Disc1 svΔ2 animals are more sensitive to the effects of short-term exercise and highlight the ameliorating potential of positive treatment interventions such as exercise on neural microstructure in genetic backgrounds of psychiatric disease susceptibility.
Collapse
Affiliation(s)
- Brian R Barnett
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jacqueline M Anderson
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Maribel Torres-Velázquez
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sue Y Yi
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paul A Rowley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - John-Paul J Yu
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|