1
|
Mada Hatsa T, Jillo DG, Srinivasan B. Utilization of Fish Skin Gelatin for Nutritional Value Enhancement of Avocado-Based Low-Fat Ice Cream. Food Sci Nutr 2024; 12:10494-10506. [PMID: 39723072 PMCID: PMC11666907 DOI: 10.1002/fsn3.4566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 12/28/2024] Open
Abstract
Gelatin is one of the most widely used food ingredients, with wide applications in the food industry as stabilizing, gelling, and foaming agents. Fish skin is the basic source of gelatin, which contains a high amount of protein. The results show that the proximate compositions (protein, fat, ash, moisture, fiber, carbohydrate, and total energy) of the optimized ice cream product with ingredient compositions of (30% milk, 40% avocado pulp, 10% sugar, 15% gelatin, and 5% cream) show values of 3.26 ± 0.35, 9.32 ± 0.22, 2.79 ± 0.02, 57.83 ± 0.14, 3.46 ± 0.24, 23.26 ± 0.71, and 190.54 ± 0.02, respectively. Also, the microbe load in the optimized ice cream product was not detected up to 1 week, while total plate count and Staphylococcus aureus bacteria were starting to grow up after a week, and the results of panelists from sensory values indicate high acceptability of products with the aim of assessing the influence of fish skin gelatin on the nutritional values of avocado-based low-fat ice cream. Considering the results, gelatin has a significant effect on the nutritional and rheological properties of ice cream, specifically striking visibility on protein composition.
Collapse
Affiliation(s)
- Tanje Mada Hatsa
- Department of Chemistry (Food and Sugar Technology Stream)Arba Minch UniversityArba MinchEthiopia
| | - Dambe Genesho Jillo
- Department of Chemistry (Food and Sugar Technology Stream)Arba Minch UniversityArba MinchEthiopia
| | - Babuskin Srinivasan
- Department of Chemistry (Food and Sugar Technology Stream)Arba Minch UniversityArba MinchEthiopia
| |
Collapse
|
2
|
Luo X, Zhang M, Dai W, Xiao X, Li X, Zhu Y, Shi X, Li Z. Targeted nanoparticles triggered by plaque microenvironment for atherosclerosis treatment through cascade effects of reactive oxygen species scavenging and anti-inflammation. J Nanobiotechnology 2024; 22:440. [PMID: 39061065 PMCID: PMC11282716 DOI: 10.1186/s12951-024-02652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory factors and reactive oxygen species (ROS) are risk factors for atherosclerosis. Many existing therapies use ROS-sensitive delivery systems to alleviate atherosclerosis, which achieved certain efficacy, but cannot eliminate excessive ROS. Moreover, the potential biological safety concerns of carrier materials through chemical synthesis cannot be ignored. Herein, an amphiphilic low molecular weight heparin- lipoic acid conjugate (LMWH-LA) was used as a ROS-sensitive carrier material, which consisted of injectable drug molecules used clinically, avoiding unknown side effects. LMWH-LA and curcumin (Cur) self-assembled to form LLC nanoparticles (LLC NPs) with LMWH as shell and LA/Cur as core, in which LMWH could target P-selectin on plaque endothelial cells and competitively block the migration of monocytes to endothelial cells to inhibit the origin of ROS and inflammatory factors, and LA could be oxidized to trigger hydrophilic-hydrophobic transformation and accelerate the release of Cur. Cur released within plaques further exerted anti-inflammatory and antioxidant effects, thereby suppressing ROS and inflammatory factors. We used ultrasound imaging, pathology and serum analysis to evaluate the therapeutic effect of nanoparticles on atherosclerotic plaques in apoe-/- mice, and the results showed that LLC showed significant anti-atherosclerotic effects. Our finding provided a promising therapeutic nanomedicine for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xianghong Luo
- Department of Echocardiography, Shanghai General Hospital, School of Medicine, Shanghai Jiao tong University, Shanghai, 200080, China
| | - Mengjiao Zhang
- Department of Medical Imaging, Weifang Medical University, Weifang, 261053, Shandong, China
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Waicong Dai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xianghao Xiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xinyi Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- School of Life Sciences, Hubei University, Hubei, China
| | - Yingjian Zhu
- Department of Urology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201803, China.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China.
| | - Zhaojun Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiao tong University School of Medicine, Shanghai, 201803, China.
| |
Collapse
|
3
|
Kong X, Wang W. Associations between the composite dietary antioxidant index and abdominal aortic calcification among United States adults: A cross-sectional study. JPEN J Parenter Enteral Nutr 2024; 48:571-579. [PMID: 38734926 DOI: 10.1002/jpen.2638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Oxidative stress has previously been shown to play a pivotal role in the pathogenesis of vascular calcification. In the present study, we aimed to investigate the association between the composite dietary antioxidant index (CDAI) and abdominal aortic calcification (AAC). METHODS We conducted a cross-sectional study of United States adults using data from the 2013-2014 National Health and Nutrition Examination Survey. The CDAI was calculated from vitamins A, C, E, selenium, zinc, and caretenoid through two rounds of 24-h dietary recall interviews. AAC was assessed by a lateral dual-energy x-ray absorptiometry scan of the thoraco-lumbar spine. The association between CDAI and AAC was evaluated with weighted multivariable logistic regression. RESULTS Overall, an unweighted 1081 participants were analyzed, including 110 with AAC and 971 without AAC. In the multivariable fully adjusted logistic regression model, CDAI was significantly associated with AAC (odds ratio = 0.89, 95% CI 0.81-0.98; P = 0.02). Compared with the lowest quartile, the highest quartile of CDAI was related to a 0.33-fold risk of AAC (95% CI 0.12-0.90; P = 0.03). Subgroup analysis showed that the significant association between CDAI and AAC was only observed in participants without hypertension (P for interaction = 0.002). CONCLUSION A higher CDAI was associated with a lower prevalence of AAC among adults without hypertension in the US. Further large-scale prospective studies are required to analyze the protective role of the CDAI in AAC progression.
Collapse
Affiliation(s)
- Xiufang Kong
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Nephrology, Shanghai Tenth People's Hospital, Shanghai, China
| |
Collapse
|
4
|
Zhu L, Zhong Y, Yan M, Ni S, Zhao X, Wu S, Wang G, Zhang K, Chi Q, Qin X, Li C, Huang X, Wu W. Macrophage Membrane-Encapsulated Dopamine-Modified Poly Cyclodextrin Multifunctional Biomimetic Nanoparticles for Atherosclerosis Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32027-32044. [PMID: 38867426 DOI: 10.1021/acsami.4c04431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Atherosclerotic plaques exhibit high cholesterol deposition and oxidative stress resulting from high reactive oxygen species (ROS). These are the major components in plaques and the main pro-inflammatory factor. Therefore, it is crucial to develop an effective therapeutic strategy that can simultaneously address the multiple pro-inflammatory factors via removing cholesterol and inhibiting the overaccumulated ROS. In this study, we constructed macrophage membrane-encapsulated biomimetic nanoparticles (MM@DA-pCD@MTX), which not only alleviate cholesterol deposition at the plaque lesion via reverse cholesterol transport but also scavenge the overaccumulated ROS. β-Cyclodextrin (β-CD) and the loaded methotrexate (MTX) act synergistically to induce cholesterol efflux for inhibiting the formation of foam cells. Among them, MTX up-regulated the expression of ABCA1, CYP27A1, and SR-B1. β-CD increased the solubility of cholesterol crystals. In addition, the ROS scavenging property of dopamine (DA) was perfectly preserved in MM@DA-pCD@MTX, which could scavenge the overaccumulated ROS to alleviate the oxidative stress at the plaque lesion. Last but not least, MM-functionalized "homing" targeting of atherosclerotic plaques not only enables the targeted drug delivery but also prolongs in vivo circulation time and drug half-life. In summary, MM@DA-pCD@MTX emerges as a potent, multifunctional therapeutic platform for AS treatment, offering a high degree of biosafety and efficacy in addressing the complex pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Meng Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Sheng Ni
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Xiong Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Shuai Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Jin Feng Laboratory, Chongqing 401329, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Qingjia Chi
- Department of Engineering Structure and Mechanics, School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Xian Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Chuanwei Li
- Department of Cardiology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing 400042, China
| | - Xiaobei Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Jin Feng Laboratory, Chongqing 401329, China
| |
Collapse
|
5
|
Zeng CR, Gao JW, Wu MX, You S, Chen ZT, Gao QY, Cai ZX, Liu PM, Cai YW, Liang XT, Cai JW, Liao GH, Chen N, Huang ZG, Wang JF, Zhang HF, Chen YX. Dietary vitamin C and vitamin E with the risk of aortic aneurysm and dissection: A prospective population-based cohort study. Nutr Metab Cardiovasc Dis 2024; 34:1407-1415. [PMID: 38664127 DOI: 10.1016/j.numecd.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/24/2023] [Accepted: 01/19/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND AND AIMS The associations between dietary vitamin C (VC), vitamin E (VE) intake and aortic aneurysm and dissection (AAD) remain unclear. This study aimed to prospectively investigate the associations between dietary VC and VE with the incident risk of AAD. METHODS AND RESULTS A total of 139 477 participants of UK Biobank cohort were included in the analysis. Dietary VC and VE consumptions were acquired through a 24-h recall questionnaire. Cox proportional regression models were used to examine the associations between VC, VE intake and the risk of AAD. Incident AAD was ascertained through hospital inpatient records and death registers. During a median follow-up of 12.5 years, 962 incident AAD events were documented. Both dietary VC [adjusted hazard ratio (HR), 0.77; 95 % confidence intervals (CI), 0.63-0.93; P-trend = 0.008] and VE (adjusted HR, 0.70; 95 % CI, 0.57-0.87; P-trend = 0.002) were inversely associated with incident AAD when comparing the participants in the highest quartile with those in the lowest. In subgroup analyses, the associations were more pronounced in participants who were over 60 years old, participants with smoking history, hypertension or hyperlipidemia, who were under the high risk of AAD. CONCLUSION Higher dietary VC and VE intakes are associated with reduced risk of AAD. Our study emphasizes the importance of diet adjustment strategies targeted on VC and VE to lower the incidence rate of AAD especially in the high-risk population.
Collapse
Affiliation(s)
- Chuan-Rui Zeng
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Wei Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mao-Xiong Wu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Si You
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Teng Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing-Yuan Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhao-Xi Cai
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pin-Ming Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang-Wei Cai
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Tian Liang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie-Wen Cai
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guang-Hong Liao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nuo Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ze-Gui Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Feng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Hai-Feng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yang-Xin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Okamura T, Tsukamoto K, Arai H, Fujioka Y, Ishigaki Y, Koba S, Ohmura H, Shoji T, Yokote K, Yoshida H, Yoshida M, Deguchi J, Dobashi K, Fujiyoshi A, Hamaguchi H, Hara M, Harada-Shiba M, Hirata T, Iida M, Ikeda Y, Ishibashi S, Kanda H, Kihara S, Kitagawa K, Kodama S, Koseki M, Maezawa Y, Masuda D, Miida T, Miyamoto Y, Nishimura R, Node K, Noguchi M, Ohishi M, Saito I, Sawada S, Sone H, Takemoto M, Wakatsuki A, Yanai H. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2022. J Atheroscler Thromb 2024; 31:641-853. [PMID: 38123343 DOI: 10.5551/jat.gl2022] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Tomonori Okamura
- Preventive Medicine and Public Health, Keio University School of Medicine
| | | | | | - Yoshio Fujioka
- Faculty of Nutrition, Division of Clinical Nutrition, Kobe Gakuin University
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Hirotoshi Ohmura
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka Metropolitan University Graduate school of Medicine
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital
| | | | - Juno Deguchi
- Department of Vascular Surgery, Saitama Medical Center, Saitama Medical University
| | - Kazushige Dobashi
- Department of Pediatrics, School of Medicine, University of Yamanashi
| | | | | | - Masumi Hara
- Department of Internal Medicine, Mizonokuchi Hospital, Teikyo University School of Medicine
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| | - Takumi Hirata
- Institute for Clinical and Translational Science, Nara Medical University
| | - Mami Iida
- Department of Internal Medicine and Cardiology, Gifu Prefectural General Medical Center
| | - Yoshiyuki Ikeda
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, School of Medicine
- Current affiliation: Ishibashi Diabetes and Endocrine Clinic
| | - Hideyuki Kanda
- Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Shinji Kihara
- Medical Laboratory Science and Technology, Division of Health Sciences, Osaka University graduate School of medicine
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University Hospital
| | - Satoru Kodama
- Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Daisaku Masuda
- Department of Cardiology, Center for Innovative Medicine and Therapeutics, Dementia Care Center, Doctor's Support Center, Health Care Center, Rinku General Medical Center
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine
| | | | - Rimei Nishimura
- Department of Diabetes, Metabolism and Endocrinology, The Jikei University School of Medicine
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Midori Noguchi
- Division of Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Isao Saito
- Department of Public Health and Epidemiology, Faculty of Medicine, Oita University
| | - Shojiro Sawada
- Division of Metabolism and Diabetes, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Minoru Takemoto
- Department of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare
| | | | - Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital
| |
Collapse
|
7
|
Fujiyoshi A, Kohsaka S, Hata J, Hara M, Kai H, Masuda D, Miyamatsu N, Nishio Y, Ogura M, Sata M, Sekiguchi K, Takeya Y, Tamura K, Wakatsuki A, Yoshida H, Fujioka Y, Fukazawa R, Hamada O, Higashiyama A, Kabayama M, Kanaoka K, Kawaguchi K, Kosaka S, Kunimura A, Miyazaki A, Nii M, Sawano M, Terauchi M, Yagi S, Akasaka T, Minamino T, Miura K, Node K. JCS 2023 Guideline on the Primary Prevention of Coronary Artery Disease. Circ J 2024; 88:763-842. [PMID: 38479862 DOI: 10.1253/circj.cj-23-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Affiliation(s)
| | - Shun Kohsaka
- Department of Cardiology, Keio University School of Medicine
| | - Jun Hata
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University
| | - Mitsuhiko Hara
- Department of Health and Nutrition, Wayo Women's University
| | - Hisashi Kai
- Department of Cardiology, Kurume Univeristy Medical Center
| | | | - Naomi Miyamatsu
- Department of Clinical Nursing, Shiga University of Medical Science
| | - Yoshihiko Nishio
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Masatsune Ogura
- Department of General Medical Science, Chiba University School of Medicine
- Department of Metabolism and Endocrinology, Eastern Chiba Medical Center
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | | | - Yasushi Takeya
- Division of Helath Science, Osaka University Gradiate School of Medicine
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine
| | | | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital
| | - Yoshio Fujioka
- Division of Clinical Nutrition, Faculty of Nutrition, Kobe Gakuin University
| | | | - Osamu Hamada
- Department of General Internal Medicine, Takatsuki General Hospital
| | | | - Mai Kabayama
- Division of Health Sciences, Osaka University Graduate School of Medicine
| | - Koshiro Kanaoka
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center
| | - Kenjiro Kawaguchi
- Division of Social Preventive Medical Sciences, Center for Preventive Medical Sciences, Chiba University
| | | | | | | | - Masaki Nii
- Department of Cardiology, Shizuoka Children's Hospital
| | - Mitsuaki Sawano
- Department of Cardiology, Keio University School of Medicine
- Yale New Haven Hospital Center for Outcomes Research and Evaluation
| | | | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Hospital
| | - Takashi Akasaka
- Department of Cardiovascular Medicine, Nishinomiya Watanabe Cardiovascular Cerebral Center
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Meidicine
| | - Katsuyuki Miura
- Department of Preventive Medicine, NCD Epidemiology Research Center, Shiga University of Medical Science
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| |
Collapse
|
8
|
Zheng H, Xu Y, Liehn EA, Rusu M. Vitamin C as Scavenger of Reactive Oxygen Species during Healing after Myocardial Infarction. Int J Mol Sci 2024; 25:3114. [PMID: 38542087 PMCID: PMC10970003 DOI: 10.3390/ijms25063114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 06/26/2024] Open
Abstract
Currently, coronary artery bypass and reperfusion therapies are considered the gold standard in long-term treatments to restore heart function after acute myocardial infarction. As a drawback of these restoring strategies, reperfusion after an ischemic insult and sudden oxygen exposure lead to the exacerbated synthesis of additional reactive oxidative species and the persistence of increased oxidation levels. Attempts based on antioxidant treatment have failed to achieve an effective therapy for cardiovascular disease patients. The controversial use of vitamin C as an antioxidant in clinical practice is comprehensively systematized and discussed in this review. The dose-dependent adsorption and release kinetics mechanism of vitamin C is complex; however, this review may provide a holistic perspective on its potential as a preventive supplement and/or for combined precise and targeted therapeutics in cardiovascular management therapy.
Collapse
Affiliation(s)
- Huabo Zheng
- Department of Cardiology, Angiology and Intensive Care, University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany;
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
| | - Yichen Xu
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
- Department of Histology and Embryology, Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Elisa A. Liehn
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
- National Institute of Pathology “Victor Babes”, Splaiul Independentei Nr. 99-101, 050096 Bucharest, Romania
| | - Mihaela Rusu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| |
Collapse
|
9
|
Vats S, Sundquist K, Sundquist J, Zhang N, Wang X, Acosta S, Gottsäter A, Memon AA. Oxidative stress-related genetic variation and antioxidant vitamin intake in intact and ruptured abdominal aortic aneurysm: a Swedish population-based retrospective cohort study. Eur J Prev Cardiol 2024; 31:61-74. [PMID: 37665957 DOI: 10.1093/eurjpc/zwad271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/06/2023]
Abstract
AIMS The aim of this study is to investigate how genetic variations in genes related to oxidative stress, intake of antioxidant vitamins, and any potential interactions between these factors affect the incidence of intact abdominal aortic aneurysm (AAA) and its rupture (rAAA), accounting for sex differences where possible. METHODS AND RESULTS The present retrospective cohort study (n = 25 252) uses baseline single-nucleotide polymorphisms (SNPs) and total antioxidant vitamin intake data from the large population-based, Malmö Diet and Cancer Study. Cumulative incidence of intact AAA was 1.6% and of rAAA 0.3% after a median follow-up of 24.3 years. A variant in NOX3 (rs3749930) was associated with higher rAAA risk in males [adjusted hazard ratio (aHR): 2.49; 95% confidence interval (CI): 1.36-4.35] and the overall population (aHR: 1.88; 95% CI: 1.05-3.37). Higher intakes of antioxidant vitamins, riboflavin, and folate were associated with 20% and 19% reduced intact AAA incidence, respectively. Interestingly, the inverse associations between riboflavin and vitamin D intake with intact AAA incidence were stronger in the individuals carrying the NOX3 variant as compared with the wild-type recessive genotype, i.e. by 60% and 66%, respectively (P for interaction < 0.05). Higher riboflavin intake was associated with a 33% male-specific intact AAA risk reduction, while higher intake of vitamin B12 intake was associated with 55% female-specific intact AAA risk increase; both these associations were significantly modified by sex (P for interaction < 0.05). CONCLUSIONS Our findings highlight the role of oxidative stress genetic variations and antioxidant vitamin intake in AAA. Although a low AAA/rAAA sample size limited some analyses, especially in females, our findings highlight the need for future randomized controlled trials and mechanistic studies, to explore the potential benefits of antioxidant vitamins while accounting for genetic and sex differences.
Collapse
Affiliation(s)
- Sakshi Vats
- Center for Primary Health Care Research, Wallenberg Laboratory, 5th floor, Inga Marie Nilsson's gata 53, 214 28, Malmö, Sweden
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| | - Kristina Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Community-Based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Matsue, Japan
| | - Jan Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Community-Based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Matsue, Japan
| | - Naiqi Zhang
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| | - Xiao Wang
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| | - Stefan Acosta
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Vascular Centre, Department of Cardiothoracic and Vascular Surgery, Skåne University Hospital, Lund University, Malmö, S-205 02, Sweden
| | - Anders Gottsäter
- Vascular Centre, Department of Cardiothoracic and Vascular Surgery, Skåne University Hospital, Lund University, Malmö, S-205 02, Sweden
| | - Ashfaque A Memon
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| |
Collapse
|
10
|
Keshawarz A, Joehanes R, Ma J, Lee GY, Costeira R, Tsai PC, Masachs OM, Bell JT, Wilson R, Thorand B, Winkelmann J, Peters A, Linseisen J, Waldenberger M, Lehtimäki T, Mishra PP, Kähönen M, Raitakari O, Helminen M, Wang CA, Melton PE, Huang RC, Pennell CE, O’Sullivan TA, Ochoa-Rosales C, Voortman T, van Meurs JB, Young KL, Graff M, Wang Y, Kiel DP, Smith CE, Jacques PF, Levy D. Dietary and supplemental intake of vitamins C and E is associated with altered DNA methylation in an epigenome-wide association study meta-analysis. Epigenetics 2023; 18:2211361. [PMID: 37233989 PMCID: PMC10228397 DOI: 10.1080/15592294.2023.2211361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Dietary intake of antioxidants such as vitamins C and E protect against oxidative stress, and may also be associated with altered DNA methylation patterns. METHODS We meta-analysed epigenome-wide association study (EWAS) results from 11,866 participants across eight population-based cohorts to evaluate the association between self-reported dietary and supplemental intake of vitamins C and E with DNA methylation. EWAS were adjusted for age, sex, BMI, caloric intake, blood cell type proportion, smoking status, alcohol consumption, and technical covariates. Significant results of the meta-analysis were subsequently evaluated in gene set enrichment analysis (GSEA) and expression quantitative trait methylation (eQTM) analysis. RESULTS In meta-analysis, methylation at 4,656 CpG sites was significantly associated with vitamin C intake at FDR ≤ 0.05. The most significant CpG sites associated with vitamin C (at FDR ≤ 0.01) were enriched for pathways associated with systems development and cell signalling in GSEA, and were associated with downstream expression of genes enriched in the immune response in eQTM analysis. Furthermore, methylation at 160 CpG sites was significantly associated with vitamin E intake at FDR ≤ 0.05, but GSEA and eQTM analysis of the top most significant CpG sites associated with vitamin E did not identify significant enrichment of any biological pathways investigated. CONCLUSIONS We identified significant associations of many CpG sites with vitamin C and E intake, and our results suggest that vitamin C intake may be associated with systems development and the immune response.
Collapse
Affiliation(s)
| | - Roby Joehanes
- Framingham Heart Study, Framingham, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jiantao Ma
- Framingham Heart Study, Framingham, Framingham, MA, USA
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Gha Young Lee
- Framingham Heart Study, Framingham, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ricardo Costeira
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Olatz M. Masachs
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Rory Wilson
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, Neuherberg, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Chair of Neurogenetics, School of Medicine, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Chair of Epidemiology, Medical Faculty, Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), München Heart Alliance, Munich, Germany
| | - Jakob Linseisen
- Chair of Epidemiology, University Augsburg at University Hospital Augsburg, Augsburg, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), München Heart Alliance, Munich, Germany
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Pashupati P. Mishra
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Mika Kähönen
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Mika Helminen
- Tays Research Services, Tampere University Hospital, Tampere, Finland
- Faculty of Social Sciences, Health Sciences, Tampere University, Tampere, Finland
| | - Carol A. Wang
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Phillip E. Melton
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Rae-Chi Huang
- Nutrition & Health Innovation Research Institute, Edith Cowan University, Perth, Australia
| | - Craig E. Pennell
- Faculty of Social Sciences, Health Sciences, Tampere University, Tampere, Finland
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | | | - Carolina Ochoa-Rosales
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Centro de Vida Saludable, Universidad de Concepción, Concepción, Chile
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Joyce B.J. van Meurs
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Kristin L. Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Hebrew Senior Life, Chapel Hill, North Carolina, USA
| | - Misa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Hebrew Senior Life, Chapel Hill, North Carolina, USA
| | - Yujie Wang
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Hebrew Senior Life, Chapel Hill, North Carolina, USA
| | - Douglas P. Kiel
- Department of Medicine, Beth Israel Deaconess Medical Center, Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Caren E. Smith
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Paul F. Jacques
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Daniel Levy
- Framingham Heart Study, Framingham, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Lbban E, Kwon K, Ashor A, Stephan B, Idris I, Tsintzas K, Siervo M. Vitamin C supplementation showed greater effects on systolic blood pressure in hypertensive and diabetic patients: an updated systematic review and meta-analysis of randomised clinical trials. Int J Food Sci Nutr 2023; 74:814-825. [PMID: 37791386 DOI: 10.1080/09637486.2023.2264549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Results from randomised controlled trials (RCTs) testing the effect of vitamin C supplementation on blood pressure (BP) have been inconsistent. This systematic review evaluated the effects of vitamin C supplementation on BP and included RCTs testing the effects of vitamin C supplementation alone, on systolic and diastolic BP in adult participants (≥18 years). Random-effect models were conducted to estimate the pooled effects of vitamin C supplementation on BP. A total of 20 studies with 890 participants were included. The median dose of vitamin C was 757.5 mg/d, the median duration was 6 weeks. Vitamin C supplementation was found to reduce systolic BP by -3.0 mmHg (95%CI: -4.7, -1.3 mmHg; p = 0.001). Subgroup analysis showed a more pronounced effect on systolic BP in patients with hypertension (-3.2 mmHg, 95%CI -5.2, -1.2 mmHg, p = 0.002) and diabetes (-4.6 mmHg, 95%CI -8.9, -0.3 mmHg, p = 0.03). Further research needs to evaluate the long-term effect of vitamin C on BP in populations with impaired cardio-metabolic health.
Collapse
Affiliation(s)
- Eazaz Lbban
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
- Department of Physiology, College of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Kee Kwon
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Ammar Ashor
- College of Medicine, University of Al-Mustansiriyah, Baghdad, Iraq
| | - Blossom Stephan
- Curtin Dementia Centre of Excellence, enAble Institute, Curtin University, Perth, Australia
| | - Iskandar Idris
- School of Medicine, The University of Nottingham Medical School, Derby Hospital, Nottingham, UK
| | - Kostas Tsintzas
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
- Curtin Dementia Centre of Excellence, enAble Institute, Curtin University, Perth, Australia
| |
Collapse
|
12
|
Cheung B, Sikand G, Dineen EH, Malik S, Barseghian El-Farra A. Lipid-Lowering Nutraceuticals for an Integrative Approach to Dyslipidemia. J Clin Med 2023; 12:jcm12103414. [PMID: 37240523 DOI: 10.3390/jcm12103414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 05/28/2023] Open
Abstract
Dyslipidemia is a treatable risk factor for atherosclerotic cardiovascular disease that can be addressed through lifestyle changes and/or lipid-lowering therapies. Adherence to statins can be a clinical challenge in some patients due to statin-associated muscle symptoms and other side effects. There is a growing interest in integrative cardiology and nutraceuticals in the management of dyslipidemia, as some patients desire or are actively seeking a more natural approach. These agents have been used in patients with and without established atherosclerotic cardiovascular disease. We provide an updated review of the evidence on many new and emerging nutraceuticals. We describe the mechanism of action, lipid-lowering effects, and side effects of many nutraceuticals, including red yeast rice, bergamot and others.
Collapse
Affiliation(s)
- Brian Cheung
- Susan Samueli Integrative Health Institute, 856 Health Sciences Road, Irvine, CA 92617, USA
- Division of Cardiology, University of California, Irvine, CA 92521, USA
| | - Geeta Sikand
- Division of Cardiology, University of California, Irvine, CA 92521, USA
| | - Elizabeth H Dineen
- Susan Samueli Integrative Health Institute, 856 Health Sciences Road, Irvine, CA 92617, USA
- Division of Cardiology, University of California, Irvine, CA 92521, USA
| | - Shaista Malik
- Susan Samueli Integrative Health Institute, 856 Health Sciences Road, Irvine, CA 92617, USA
- Division of Cardiology, University of California, Irvine, CA 92521, USA
| | - Ailin Barseghian El-Farra
- Susan Samueli Integrative Health Institute, 856 Health Sciences Road, Irvine, CA 92617, USA
- Division of Cardiology, University of California, Irvine, CA 92521, USA
| |
Collapse
|
13
|
Recinella L, Libero ML, Citi V, Chiavaroli A, Martelli A, Foligni R, Mannozzi C, Acquaviva A, Di Simone S, Calderone V, Orlando G, Ferrante C, Veschi S, Piro A, Menghini L, Brunetti L, Leone S. Anti-Inflammatory and Vasorelaxant Effects Induced by an Aqueous Aged Black Garlic Extract Supplemented with Vitamins D, C, and B12 on Cardiovascular System. Foods 2023; 12:foods12071558. [PMID: 37048379 PMCID: PMC10094181 DOI: 10.3390/foods12071558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Multiple studies demonstrated biological activities of aged black garlic, including anti-inflammatory, antioxidant, and cardioprotective effects. We aimed to investigate the protective effects of an aged black garlic water extract (ABGE) alone or in association with multivitamins consisting of combined Vitamins D, C, and B12, on mouse heart specimens exposed to E. coli lipopolysaccharide (LPS). Moreover, we studied the hydrogen sulphide (H2S) releasing properties and the membrane hyperpolarization effect of the Formulation composed by ABGE and multivitamins, using Human Aortic Smooth Muscle Cells (HASMCs). ABGE, vitamins D and C, and the Formulation suppressed LPS-induced gene expression of cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α, interleukin (IL)-6, nuclear factor-kB (NF-kB), and inducible nitric oxide synthase (iNOS) on mouse heart specimens. The beneficial effects induced by the extract could be related to the pattern of polyphenolic composition, with particular regard to gallic acid and catechin. The Formulation also increased fluorescence values compared to the vehicle, and it caused a significant membrane hyperpolarization of HASMCs compared to ABGE. To conclude, our present findings showed that ABGE, alone and in association with multivitamins, exhibited protective effects on mouse heart. Moreover, the Formulation increased intracellular H2S formation, further suggesting its potential use on cardiovascular disease.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| | - Maria Loreta Libero
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, 56126 Pisa, Italy
- CISUP, Centre for Instrumentation Sharing of Pisa University, 56126 Pisa, Italy
| | - Roberta Foligni
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche 10, 60121 Ancona, Italy
| | - Cinzia Mannozzi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche 10, 60121 Ancona, Italy
| | - Alessandra Acquaviva
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
- Veridia Italia Srl, Via Piano di Sacco, 65013 Città Sant'Angelo, Italy
| | - Simonetta Di Simone
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, 56126 Pisa, Italy
- CISUP, Centre for Instrumentation Sharing of Pisa University, 56126 Pisa, Italy
| | - Giustino Orlando
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| | - Serena Veschi
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| | - Anna Piro
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| |
Collapse
|
14
|
Chen X, Dai C, Hu R, Yu L, Chen Y, Zhang B. Engineering ROS-scavenging Prussian blue nanozymes for efficient atherosclerosis nanotherapy. J Mater Chem B 2023; 11:1881-1890. [PMID: 36723250 DOI: 10.1039/d2tb02661a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Atherosclerosis (AS), characterized by a chronic inflammatory disease, is a top cause of morbidity and disability worldwide. During the pathogenesis of AS, the leading process of inflammation highly involves a secondary event of oxidative stress, but limited antioxidants are currently available clinically due to their nonspecific effects, poor biosafety, and rapid in vivo elimination and urinary excretion as well as short retention time within plaque lesions. In this work, Prussian blue nanozymes with a strong reactive oxygen species (ROS)-scavenging ability were rationally engineered for efficient AS nanotherapy. Specifically, the obtained nanozymes with high photothermal performance could behave as potent photoacoustic imaging agents for plaque detection. In addition, these nanozymes featuring multienzyme activities could reduce the cellular ROS level, exert cytoprotective effects against ROS-mediated macrophages apoptosis, and inhibit foam cell formation, significantly boycotting AS development. The underlying mechanism was further verified by transcriptome sequencing at the cellular level and a series of immunohistochemical staining of aortic sinus sections in apoE-/- mice. Finally, the high biocompatibility and biosafety of the engineered Prussian blue nanozymes further guarantee their clinical translation potential for AS management.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Ultrasound, Shanghai East Hospital, Tongji University, Shanghai 200120, P. R. China.
| | - Chen Dai
- Department of Ultrasound, Shanghai East Hospital, Tongji University, Shanghai 200120, P. R. China.
| | - Ruizhi Hu
- Department of Ultrasound, Shanghai East Hospital, Tongji University, Shanghai 200120, P. R. China.
| | - Luodan Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Bo Zhang
- Department of Ultrasound, Shanghai East Hospital, Tongji University, Shanghai 200120, P. R. China.
| |
Collapse
|
15
|
Determination of tissue-specific interaction between vitamin C and vitamin E in vivo using senescence marker protein-30 knockout mice as a vitamin C synthesis deficiency model. Br J Nutr 2022; 128:993-1003. [PMID: 34725010 PMCID: PMC9381305 DOI: 10.1017/s0007114521004384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Vitamin E (α-tocopherol; VE) is known to be regenerated from VE radicals by vitamin C (L-ascorbic acid; VC) in vitro. However, their in vivo interaction in various tissues is still unclear. Therefore, we alternatively examined the in vivo interaction of VC and VE by measurement of their concentrations in various tissues of senescence marker protein-30 (SMP30) knockout (KO) mice as a VC synthesis deficiency model. Male SMP30-KO mice were divided into four groups (VC+/VE+, VC+/VE-, VC-/VE+ and VC-/VE-), fed diets with or without 500 mg/kg VE and given water with or without 1·5 g/l VC ad libitum. Then, VC and VE concentrations in the plasma and various tissues were determined. Further, gene expression levels of transporters associated with VC and VE, such as α-tocopherol transfer protein (α-TTP) and sodium-dependent vitamin C transporters (SVCTs), were examined. These results showed that the VE levels in the VC-depleted (VC-/VE+) group were significantly lower than those in the VC+/VE+ group in the liver and heart; the VC levels in the VE-depleted (VC+/VE-) group were significantly lower than those in the VC+/VE+ group in the kidneys. The α-TTP gene expression in the liver and kidneys was decreased by VC and/or VE depletion. Moreover, SVCT1 gene expression in the liver was decreased by both VC and VE depletion. In conclusion, these results indicate that VC spares VE mainly in the liver and heart and that VE spares VC in the kidneys of SMP30-KO mice. Thus, interaction between VC and VE is likely to be tissue specific.
Collapse
|
16
|
Dou Y, Zhang Y, Lin C, Han R, Wang Y, Wu D, Zheng J, Lu C, Tang L, He Y. pH-responsive theranostic nanoplatform of ferrite and ceria co-engineered nanoparticles for anti-inflammatory. Front Bioeng Biotechnol 2022; 10:983677. [PMID: 36159657 PMCID: PMC9500451 DOI: 10.3389/fbioe.2022.983677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Multiple component integration to achieve both therapy and diagnosis in a single theranostic nanosystem has aroused great research interest in the medical investigator. This study aimed to construct a novel theranostic nanoplatform ferrite and ceria co-engineered mesoporous silica nanoparticles (Fe/Ce-MSN) antioxidant agent though a facile metal Fe/Ce-codoping approach in the MSN framework. The resulted Fe3+-incorporated ceria-based MSN nanoparticles possessing a higher Ce3+-to-Ce4+ ratio than those revealed by ceria-only nanoparticles. The as-prepared Fe/Ce-MSN nanoparticles exhibited an excellent efficiency in scavenging reactive oxygen species (ROS), which is attributed to improving the superoxide dismutase (SOD) mimetics activity by increasing Ce3+ content and maintaining a higher activity of catalase (CAT) mimetics via including ferrite ion in nanoparticles. The fast Fe/Ce-MSN biodegradation, which is sensitive to the mild acidic microenvironment of inflammation, can accelerate Fe/Ce ion release, and the freed Fe ions enhanced T2-weighted magnetic resonance imaging in the inflammation site. PEGylated Fe/Ce-MSN nanoparticles in vitro cell models significantly attenuated ROS-induced inflammation, oxidative stress, and apoptosis in macrophages by scavenging overproduced intracellular ROS. More importantly, Fe/Ce-MSN-PEG NPs exhibited significant anti-inflammatory effects by inhibiting lipopolysaccharide (LPS)-induced expression of tumor necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1β) levels in vitro. Additionally, it can promote the macrophages polarization of pro-inflammatory M1 phenotype towards an anti-inflammatory M2 phenotype. Thus, the novel pH-responsive theranostic nanoplatform shows great promise for inflammation and oxidative stress-associated disease treatment.
Collapse
Affiliation(s)
- Yuanyao Dou
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yimin Zhang
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Caiyu Lin
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Rui Han
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Yubo Wang
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Di Wu
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Jie Zheng
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Conghua Lu
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- *Correspondence: Liling Tang, ; Yong He,
| | - Yong He
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Liling Tang, ; Yong He,
| |
Collapse
|
17
|
Multivitamin/mineral supplementation and the risk of cardiovascular disease: a large prospective study using UK Biobank data. Eur J Nutr 2022; 61:2909-2917. [PMID: 35301588 DOI: 10.1007/s00394-022-02865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/02/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Despite the widespread use of multivitamin/mineral supplements, the effects of multivitamin/mineral on cardiovascular disease (CVD) remain inconclusive. We aimed to prospectively investigate how multivitamin/mineral use is associated with CVD. METHODS This population-based cohort study included 465,278 men and women who participated in the UK Biobank and were free from CVD at baseline. Participants were enrolled between 2006 and 2010 and followed-up until the end of 2018. Data on supplement use including multivitamin/mineral were collected using self-reported questionnaires. Cox proportional hazards models were used to estimate the hazard ratios of CVD events in relation to multivitamin/mineral use. RESULTS During the follow-up, we identified 25,772 cases of CVD events, 4754 cases of CVD mortality, 18,728 cases of coronary heart disease, 6726 cases of myocardial infarction, and 4561 cases of stroke. The multivariable-adjusted hazard ratios associated with multivitamin/mineral use were 0.96 (95% CI: 0.93, 0.99) for CVD events, 0.92 (0.86, 1.00) for CVD mortality, 0.96 (0.93, 0.99) for coronary heart disease, and 0.92 (0.86, 0.97) for myocardial infarction. Subgroup analysis suggested that multivitamin/mineral use was associated with a significantly lower risk of CVD events in participants aged < 60 years and in former and current smokers (P for interaction ≤ 0.01). Sensitivity analyses showed no substantial change in the results when we excluded participants who developed CVD events during the first 2 years of follow-up. CONCLUSION Multivitamin/mineral supplementation was associated with very modest reductions in CVD events. Age and smoking might modify these associations.
Collapse
|
18
|
Gluvic ZM, Zafirovic SS, Obradovic MM, Sudar-Milovanovic EM, Rizzo M, Isenovic ER. Hypothyroidism and Risk of Cardiovascular Disease. Curr Pharm Des 2022; 28:2065-2072. [PMID: 35726428 DOI: 10.2174/1381612828666220620160516] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Thyroid hormones (TH) have a significant impact on cellular oxidative metabolism. Besides that, they maintain vascular homeostasis by positive effects on endothelial and vascular smooth muscle cells. Subclinical (SCH) and clinical (CH) hypothyroidism influences target organs by changing their morphology and function and impaired blood and oxygen supply induced by accelerated atherosclerosis. The increased risk of acceleration and extension of atherosclerosis in patients with SCH and CH could be explained by dyslipidemia, diastolic hypertension, increased arterial stiffness, endothelial dysfunction, and altered blood coagulation. Instability of atherosclerotic plaque in hypothyroidism could cause excessive activity of the elements of innate immunity, which are characterized by: the significant presence of macrophages in atherosclerotic plaques, increased nuclear factor kappa B (NFkB) expression, and elevated levels of tumor necrosis factor α (TNF-α) and matrix metalloproteinase (MMP) 9, with reduced interstitial collagen, which all together creates inflammation milieu resulted in plaque rupture. Optimal substitution by levothyroxine (LT4) restores biochemical euthyroidism. In postmenopausal women and elderly patients with hypothyroidism and associated vascular comorbidity, excessive LT4 substitution could lead to atrial rhythm disorders and osteoporosis. Therefore, it is of interest to maintain thyroid-stimulating hormone (TSH) levels in the reference range, thus eliminating the deleterious effects of lower or higher TSH levels on the cardiovascular system. This review summarizes the recent literature on subclinical and clinical hypothyroidism and atherosclerotic cardiovascular disease and discusses the effects of LT4 replacement therapy on restoring biochemical euthyroidism and atherosclerosis processes.
Collapse
Affiliation(s)
- Zoran M Gluvic
- Department of Endocrinology and Diabetes, Clinic for Internal Medicine, Zemun Clinical Hospital, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sonja S Zafirovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan M Obradovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Emina M Sudar-Milovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Manfredi Rizzo
- Promise Department, School of Medicine, University of Palermo, Italy
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
19
|
High-Dose Vitamin C for Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:ph15060711. [PMID: 35745630 PMCID: PMC9231292 DOI: 10.3390/ph15060711] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the idea that Vitamin C (Vit-C) could be utilized as a form of anti-cancer therapy has generated many contradictory arguments. Recent insights into the physiological characteristics of Vit-C, its pharmacokinetics, and results from preclinical reports, however, suggest that high-dose Vit-C could be effectively utilized in the management of various tumor types. Studies have shown that the pharmacological action of Vit-C can attack various processes that cancerous cells use for their growth and development. Here, we discuss the anti-cancer functions of Vit-C, but also the potential for the use of Vit-C as an epigenetic regulator and immunotherapy enhancer. We also provide a short overview of the current state of systems for scavenging reactive oxygen species (ROS), especially in the context of their influencing high-dose Vit-C toxicity for the inhibition of cancer growth. Even though the mechanisms of Vit-C action are promising, they need to be supported with robust randomized and controlled clinical trials. Moreover, upcoming studies should focus on how to define the most suitable cancer patient populations for high-dose Vit-C treatments and develop effective strategies that combine Vit-C with various concurrent cancer treatment regimens.
Collapse
|
20
|
Conceição AR, Fraiz GM, Rocha DMUP, Bressan J. Can avocado intake improve weight loss in adults with excess weight? A systematic review and meta-analysis of randomized controlled trials. Nutr Res 2022; 102:45-58. [DOI: 10.1016/j.nutres.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 02/09/2023]
|
21
|
Saenz-Medina J, Muñoz M, Rodriguez C, Sanchez A, Contreras C, Carballido-Rodríguez J, Prieto D. Endothelial Dysfunction: An Intermediate Clinical Feature between Urolithiasis and Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms23020912. [PMID: 35055099 PMCID: PMC8778796 DOI: 10.3390/ijms23020912] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED An epidemiological relationship between urolithiasis and cardiovascular diseases has extensively been reported. Endothelial dysfunction is an early pathogenic event in cardiovascular diseases and has been associated with oxidative stress and low chronic inflammation in hypertension, coronary heart disease, stroke or the vascular complications of diabetes and obesity. The aim of this study is to summarize the current knowledge about the pathogenic mechanisms of urolithiasis in relation to the development of endothelial dysfunction and cardiovascular morbidities. METHODS A non-systematic review has been performed mixing the terms "urolithiasis", "kidney stone" or "nephrolithiasis" with "cardiovascular disease", "myocardial infarction", "stroke", or "endothelial dysfunction". RESULTS Patients with nephrolithiasis develop a higher incidence of cardiovascular disease with a relative risk estimated between 1.20 and 1.24 and also develop a higher vascular disease risk scores. Analyses of subgroups have rendered inconclusive results regarding gender or age. Endothelial dysfunction has also been strongly associated with urolithiasis in clinical studies, although no systemic serum markers of endothelial dysfunction, inflammation or oxidative stress could be clearly related. Analysis of urine composition of lithiasic patients also detected a higher expression of proteins related to cardiovascular disease. Experimental models of hyperoxaluria have also found elevation of serum endothelial dysfunction markers. CONCLUSIONS Endothelial dysfunction has been strongly associated with urolithiasis and based on the experimental evidence, should be considered as an intermediate and changeable feature between urolithiasis and cardiovascular diseases. Oxidative stress, a key pathogenic factor in the development of endothelial dysfunction has been also pointed out as an important factor of lithogenesis. Special attention must be paid to cardiovascular morbidities associated with urolithiasis in order to take advantage of pleiotropic effects of statins, angiotensin receptor blockers and allopurinol.
Collapse
Affiliation(s)
- Javier Saenz-Medina
- Department of Urology, Puerta de Hierro-Majadahonda University Hospital, 28222 Majadahonda, Spain
- Department of Medical Specialities and Public Health, Faculty of Health Sciences, King Juan Carlos University, 28933 Móstoles, Spain
- Correspondence:
| | - Mercedes Muñoz
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (A.S.); (C.C.); (D.P.)
| | - Claudia Rodriguez
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (A.S.); (C.C.); (D.P.)
| | - Ana Sanchez
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (A.S.); (C.C.); (D.P.)
| | - Cristina Contreras
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (A.S.); (C.C.); (D.P.)
| | - Joaquín Carballido-Rodríguez
- Department of Urology, Puerta de Hierro-Majadahonda University Hospital, Autonoma University, 08193 Bellaterra, Spain;
| | - Dolores Prieto
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (A.S.); (C.C.); (D.P.)
| |
Collapse
|
22
|
Hamedi-Kalajahi F, Zarezadeh M, Dehghani A, Musazadeh V, Kolahi A, Shabbidar S, Djafarian K. A systematic review and meta-analysis on the impact of oral vitamin E supplementation on apolipoproteins A1 and B100. Clin Nutr ESPEN 2021; 46:106-114. [PMID: 34857183 DOI: 10.1016/j.clnesp.2021.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIM Cardiovascular diseases (CVDs) are the number one cause of mortality worldwide. Apolipoprotein B (ApoB), apolipoprotein A1 (ApoA1), and ApoB/ApoA1 ratio are considered as predictors of CVD alongside with lipid profile. Evidence suggest that nutrients with antioxidant properties, especially vitamin E, are essential for a healthy cardiovascular system. The aim of present meta-analysis was to determine the effect alpha-tocopherol on ApoA1 and ApoB levels. METHODS PubMed-Medline and SCOPUS databases and Google Scholar were searched up to July 2021. Random-effects model was employed to perform meta-analysis. In order to find heterogeneity sources, subgroup analysis was performed. Trim and fill analysis was performed in case of presence of publication bias. Quality assessment was performed using Cochrane Collaboration's tool. RESULTS Seven eligible studies, involving 1284 individuals were included. Mean age of participants ranged between 25.4 and 59 years. There was no significant effect of vitamin E supplementation on Apo A1 (SMD = 0.22 IU/d; 95% CI: -0.38, 0.28; P = 0.481) and Apo B levels (SMD = -0.62 IU/d; 95% CI: -1.94, 0.70; P = 0.360). CONCLUSION No remarkable effect of vitamin E supplementation was observed on ApoA1 and ApoB levels in adults. Additional studies investigating the influence of vitamin E on apolipoproteins as primary outcome with larger sample size are suggested.
Collapse
Affiliation(s)
- Fateme Hamedi-Kalajahi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Azadeh Dehghani
- Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vali Musazadeh
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmadreza Kolahi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Shabbidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Kourosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Prasad K. Current Status of Primary, Secondary, and Tertiary Prevention of Coronary Artery Disease. Int J Angiol 2021; 30:177-186. [PMID: 34776817 PMCID: PMC8580611 DOI: 10.1055/s-0041-1731273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Fifty percent of all death from cardiovascular diseases is due to coronary artery disease (CAD). This is avoidable if early identification is made. Preventive health care has a major role in the fight against CAD. Atherosclerosis and atherosclerotic plaque rupture are involved in the development of CAD. Modifiable risk factors for CAD are dyslipidemia, diabetes, hypertension, cigarette smoking, obesity, chronic renal disease, chronic infection, high C-reactive protein, and hyperhomocysteinemia. CAD can be prevented by modification of risk factors. This paper defines the primary, secondary, and tertiary prevention of CAD. It discusses the mechanism of risk factor-induced atherosclerosis. This paper describes the CAD risk score and its use in the selection of individuals for primary prevention of CAD. Guidelines for primary, secondary, and tertiary prevention of CAD have been described. Modification of risk factors and use of guidelines for prevention of CAD would prevent, regress, and slow down the progression of CAD, improve the quality of life of patient, and reduce the health care cost.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology (APP), College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
24
|
Pizzicannella J, Fonticoli L, Guarnieri S, Marconi GD, Rajan TS, Trubiani O, Diomede F. Antioxidant Ascorbic Acid Modulates NLRP3 Inflammasome in LPS-G Treated Oral Stem Cells through NFκB/Caspase-1/IL-1β Pathway. Antioxidants (Basel) 2021; 10:antiox10050797. [PMID: 34069836 PMCID: PMC8157377 DOI: 10.3390/antiox10050797] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Human gingival mesenchymal stem cells (hGMSCs) and endothelial committed hGMSCs (e-hGMSCs) have considerable potential to serve as an in vitro model to replicate the inflammation sustained by Porphyromonas gingivalis in periodontal and cardiovascular diseases. The present study aimed to investigate the effect of ascorbic acid (AA) on the inflammatory reverting action of lipopolysaccharide (LPS-G) on the cell metabolic activity, inflammation pathway and reactive oxygen species (ROS) generation in hGMSCs and e-hGMSCs. Cells were treated with LPS-G (5 μg mL−1) or AA (50 μg mL−1) and analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay, immunofluorescence and Western blot methods. The rate of cell metabolic activity was decreased significantly in LPS-G-treated groups, while groups co-treated with LPS-G and AA showed a logarithmic cell metabolic activity rate similar to untreated cells. AA treatment attenuated the inflammatory effect of LPS-G by reducing the expression of TLR4/MyD88/NFκB/NLRP3/Caspase-1/IL-1β, as demonstrated by Western blot analysis and immunofluorescence acquisition. LPS-G-induced cells displayed an increase in ROS production, while AA co-treated cells showed a protective effect. In summary, our work suggests that AA attenuated LPS-G-mediated inflammation and ROS generation in hGMSCs and e-hGMSCs via suppressing the NFκB/Caspase-1/IL-1β pathway. These findings indicate that AA may be considered as a potential factor involved in the modulation of the inflammatory pathway triggered by LPS-G in an vitro cellular model.
Collapse
Affiliation(s)
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy; (L.F.); (O.T.)
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy;
| | - Guya D. Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy;
| | | | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy; (L.F.); (O.T.)
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy; (L.F.); (O.T.)
- Correspondence: ; Tel.: +39-08713554080
| |
Collapse
|
25
|
Effects of the Consumption of Low-Fat Cooked Ham with Reduced Salt Enriched with Antioxidants on the Improvement of Cardiovascular Health: A Randomized Clinical Trial. Nutrients 2021; 13:nu13051480. [PMID: 33925704 PMCID: PMC8146046 DOI: 10.3390/nu13051480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of the study was to analyze how cardiovascular risk factors can be modified using nutritionally improved cooked ham enriched with a pool of antioxidants to influence relevant metabolic targets. Sixty-five untreated subjects (49.2% males, 50.8% females, mean age 40.92 ± 9.03 years) with total cholesterol level ≥180 mg/dL or LDL cholesterol ≥130 mg/dL participated in a 8-weeks randomized, double-blind controlled trial. Participant in the intervention group (51.5% males, 48.5% females, mean age 41.6 ± 9.8 years and mean BMI 25.1 ± 3.6 kg/m2) consumed cooked ham enriched with antioxidants (100 g/d) and controls (49.9% males, 53.1% females, mean age 40.2 ± 8.3 years and mean BMI 26.3 ± 3.2 kg/m2) received placebo. At 8 weeks, oxidized LDL decreased significantly between experimental and placebo groups (p < 0.036). Experimental group differences were also significant (p < 0.05). Similar findings in malondialdehyde, total cholesterol, high-sensitivity C-reactive protein, and interleukin 6 were observed in the intervention group. Significant between-group differences in these variables were also found, except for total cholesterol and interleukin 6. The effects on inflammation and oxidation support the direct action of these antioxidants on the etiopathogenic factors of atheromatous plaque. We also observed an improvement in the lipid profiles among the subjects.
Collapse
|
26
|
Ungurianu A, Zanfirescu A, Nițulescu G, Margină D. Vitamin E beyond Its Antioxidant Label. Antioxidants (Basel) 2021; 10:634. [PMID: 33919211 PMCID: PMC8143145 DOI: 10.3390/antiox10050634] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Vitamin E, comprising tocopherols and tocotrienols, is mainly known as an antioxidant. The aim of this review is to summarize the molecular mechanisms and signaling pathways linked to inflammation and malignancy modulated by its vitamers. Preclinical reports highlighted a myriad of cellular effects like modulating the synthesis of pro-inflammatory molecules and oxidative stress response, inhibiting the NF-κB pathway, regulating cell cycle, and apoptosis. Furthermore, animal-based models have shown that these molecules affect the activity of various enzymes and signaling pathways, such as MAPK, PI3K/Akt/mTOR, JAK/STAT, and NF-κB, acting as the underlying mechanisms of their reported anti-inflammatory, neuroprotective, and anti-cancer effects. In clinical settings, not all of these were proven, with reports varying considerably. Nonetheless, vitamin E was shown to improve redox and inflammatory status in healthy, diabetic, and metabolic syndrome subjects. The anti-cancer effects were inconsistent, with both pro- and anti-malignant being reported. Regarding its neuroprotective properties, several studies have shown protective effects suggesting vitamin E as a potential prevention and therapeutic (as adjuvant) tool. However, source and dosage greatly influence the observed effects, with bioavailability seemingly a key factor in obtaining the preferred outcome. We conclude that this group of molecules presents exciting potential for the prevention and treatment of diseases with an inflammatory, redox, or malignant component.
Collapse
Affiliation(s)
- Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Anca Zanfirescu
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Georgiana Nițulescu
- Department Pharmaceutical Technology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| |
Collapse
|
27
|
Gülcan HO, Orhan IE. General Perspectives for the Treatment of Atherosclerosis. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201016154400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Atherosclerosis, a cardiovascular disease, is at the top of the list among the diseases leading
to death. Although the biochemical and pathophysiological cascades involved within the development
of atherosclerosis have been identified clearly, its nature is quite complex to be treated with
a single agent targeting a pathway. Therefore, many natural and synthetic compounds have been
suggested for the treatment of the disease. The majority of the drugs employed target one of the
single components of the pathological outcomes, resulting in many times less effective and longterm
treatments. In most cases, treatment options prevent further worsening of the symptoms rather
than a radical treatment. Consequently, the current review has been prepared to focus on the validated
and non-validated targets of atherosclerosis as well as the alternative treatment options such
as hydroxymethyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors, acyl-CoA cholesterol
acyl transferase (ACAT) inhibitors, lipoprotein lipase stimulants, bile acid sequestrants, and some
antioxidants. Related to the topic, both synthetic compounds designed employing medicinal chemistry
skills and natural molecules becoming more popular in drug development are scrutinized in this
mini review.
Collapse
Affiliation(s)
- Hayrettin Ozan Gülcan
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, TR. North Cyprus, via Mersin 10,Turkey
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara- 06300,Turkey
| |
Collapse
|
28
|
Simsek B, Selte A, Egeli BH, Çakatay U. Effects of vitamin supplements on clinical cardiovascular outcomes: Time to move on! - A comprehensive review. Clin Nutr ESPEN 2021; 42:1-14. [PMID: 33745562 PMCID: PMC9587338 DOI: 10.1016/j.clnesp.2021.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Vitamin supplementations have increasingly been advertised on media and reported to be widely used by the general public to improve cardiovascular health. Due to the COVID-19 pandemic, people have become more interested in ways to improve and maintain their health. Increased awareness of people on healthy lifestyle is translating into inquisition regarding dietary supplements. AIM First, focus on the most commonly used vitamin supplements and comprehensively review the evidence for and against recommending them to patients to improve and/or maintain cardiovascular health. Second, illustrate how the interest in studies shifted over time from Vitamin A, E, C, and B to Vitamin D and observational studies led to randomized controlled trials. METHODS A thorough PubMed search with the phrase: "Vitamin supplements and cardiovascular health" was performed. In the present review, focus was maintained on the evidence for the use of vitamin supplements in the prevention of major cardiovascular events and/or the maintenance of cardiovascular health by comprehensively reviewing all previous studies indexed in PubMed. Studies with clinical 'hard' end-points were included only. RESULTS A total of 87 studies met the inclusion criteria and were reviewed in the present article. High-quality evidence suggesting benefits for the use of vitamin supplements to maintain or improve cardiovascular health in people is minimal to non-existent. CONCLUSIONS Vitamin supplementation does not improve clinical cardiovascular outcomes in general population. Counseling on the importance of maintaining a healthy lifestyle with adequate and nutritious food intake seems more appropriate to improve and maintain cardiovascular health.
Collapse
Affiliation(s)
- Bahadir Simsek
- Cerrahpasa Medical School, Istanbul University-Cerrahpasa, 34098, Fatih/Istanbul, Turkey.
| | - Atakan Selte
- Cerrahpasa Medical School, Istanbul University-Cerrahpasa, 34098, Fatih/Istanbul, Turkey.
| | - Bugra Han Egeli
- Graduate Medical Sciences, Boston University School of Medicine, 72 E Concord St L-317, 02118, Boston, MA, USA.
| | - Ufuk Çakatay
- Cerrahpasa Medical School, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, 34098, Fatih/Istanbul, Turkey.
| |
Collapse
|
29
|
Nishihara T, Yamamoto E, Sueta D, Fujisue K, Usuku H, Oike F, Takae M, Tabata N, Ito M, Yamanaga K, Kanazawa H, Arima Y, Araki S, Takashio S, Nakamura T, Suzuki S, Sakamoto K, Izumiya Y, Kaikita K, Tsujita K. Impact of Reactive Oxidative Metabolites Among New Categories of Nonischemic Heart Failure. J Am Heart Assoc 2021; 10:e016765. [PMID: 33733816 PMCID: PMC8174381 DOI: 10.1161/jaha.120.016765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background We investigated the clinical significance of derivatives of reactive oxygen metabolites (DROMs), a new marker of reactive oxygen species, in patients with nonischemic heart failure (HF) and compared them among new categories of HF. Methods and Results We recruited 201 consecutively hospitalized patients with HF and measured DROM under stable conditions. Then, we divided them according to new categories of HF (HF with reduced ejection fraction [EF], HF with midrangeEF, and HF with preserved EF) without coronary artery disease. In subgroup analysis, we followed EF changes in patients with HF with reduced EF and classified them into HF with recovered EF or nonrecovered EF according to whether EF had improved to >40%. DROMs are significantly and independently associated with HF-related events in patients with NIHF. There were no significant differences in DROM and the probability of HF-related events among HF categories in Kaplan-Meier analysis. However, patients with HF with reduced EF and HF with preserved EF but not HF with midrange EF with HF-related events had higher DROM than those without HF-related events. In subgroup analysis, Kaplan-Meier analysis demonstrated that the probabilities of HF-related events in HF with recovered EF were dramatically decreased. DROM were significantly higher in patients with HF with nonrecovered EF than in HF with recovered EF. In receiver operating characteristic analysis, the cutoff level of DROM for predicting improvements in HF with recovered EF was 347 Carratelli units. Furthermore, the C-statistic value for predicting EF improvement for the DROM levels was 0.703. In multivariable logistic regression analysis, DROM was independently and significantly associated with the prediction of HF with recovered EF. Conclusions DROM measurements can provide important prognostic information for risk stratification in any category of NIHF. Registration URL: https://www.umin.ac.jp/ctr/; Unique identifier: UMIN000035827.
Collapse
Affiliation(s)
- Taiki Nishihara
- Department of Cardiovascular Medicine Faculty of Life Sciences Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA) Kumamoto University Kumamoto Japan
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine Faculty of Life Sciences Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA) Kumamoto University Kumamoto Japan
| | - Daisuke Sueta
- Department of Cardiovascular Medicine Faculty of Life Sciences Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA) Kumamoto University Kumamoto Japan
| | - Koichiro Fujisue
- Department of Cardiovascular Medicine Faculty of Life Sciences Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA) Kumamoto University Kumamoto Japan
| | - Hiroki Usuku
- Department of Cardiovascular Medicine Faculty of Life Sciences Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA) Kumamoto University Kumamoto Japan
| | - Fumi Oike
- Department of Cardiovascular Medicine Faculty of Life Sciences Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA) Kumamoto University Kumamoto Japan
| | - Masafumi Takae
- Department of Cardiovascular Medicine Faculty of Life Sciences Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA) Kumamoto University Kumamoto Japan
| | - Noriaki Tabata
- Department of Cardiovascular Medicine Faculty of Life Sciences Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA) Kumamoto University Kumamoto Japan
| | - Miwa Ito
- Department of Cardiovascular Medicine Faculty of Life Sciences Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA) Kumamoto University Kumamoto Japan
| | - Kenshi Yamanaga
- Department of Cardiovascular Medicine Faculty of Life Sciences Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA) Kumamoto University Kumamoto Japan
| | - Hisanori Kanazawa
- Department of Cardiovascular Medicine Faculty of Life Sciences Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA) Kumamoto University Kumamoto Japan
| | - Yuichiro Arima
- Department of Cardiovascular Medicine Faculty of Life Sciences Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA) Kumamoto University Kumamoto Japan
| | - Satoshi Araki
- Department of Cardiovascular Medicine Faculty of Life Sciences Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA) Kumamoto University Kumamoto Japan
| | - Seiji Takashio
- Department of Cardiovascular Medicine Faculty of Life Sciences Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA) Kumamoto University Kumamoto Japan
| | - Taishi Nakamura
- Department of Cardiovascular Medicine Faculty of Life Sciences Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA) Kumamoto University Kumamoto Japan
| | - Satoru Suzuki
- Department of Cardiovascular Medicine Faculty of Life Sciences Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA) Kumamoto University Kumamoto Japan
| | - Kenji Sakamoto
- Department of Cardiovascular Medicine Faculty of Life Sciences Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA) Kumamoto University Kumamoto Japan
| | - Yasuhiro Izumiya
- Department of Cardiovascular Medicine Faculty of Life Sciences Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA) Kumamoto University Kumamoto Japan
| | - Koichi Kaikita
- Department of Cardiovascular Medicine Faculty of Life Sciences Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA) Kumamoto University Kumamoto Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine Faculty of Life Sciences Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA) Kumamoto University Kumamoto Japan
| |
Collapse
|
30
|
Zhu N, Huang B, Jiang W. Targets of Vitamin C With Therapeutic Potential for Cardiovascular Disease and Underlying Mechanisms: A Study of Network Pharmacology. Front Pharmacol 2021; 11:591337. [PMID: 33603661 PMCID: PMC7884818 DOI: 10.3389/fphar.2020.591337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Vitamin C (ascorbic acid) is a nutrient used to treat cardiovascular disease (CVD). However, the pharmacological targets of vitamin C and the mechanisms underlying the therapeutic effects of vitamin C on CVD remain to be elucidated. In this study, we used network pharmacology approach to investigate the pharmacological mechanisms of vitamin C for the treatment of CVD. The core targets, major hubs, enriched biological processes, and key signaling pathways were identified. A protein-protein interaction network and an interaction diagram of core target-related pathways were constructed. Three core targets were identified, including phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform, signal transducer and activator of transcription-3 (STAT3), and prothrombin. The GO and KEGG analyses identified top 20 enriched biological processes and signaling pathways involved in the therapeutic effects of vitamin C on CVD. The JAK-STAT, STAT, PD1, EGFR, FoxO, and chemokines signaling pathways may be highly involved in the protective effects of vitamin C against CVD. In conclusion, our bioinformatics analyses provided evidence on the possible therapeutic mechanisms of vitamin C in CVD treatment, which may contribute to the development of novel drugs for CVD.
Collapse
Affiliation(s)
- Ning Zhu
- Department of Cardiology, The Third Affiliated Hospital of Shanghai University, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Bingwu Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Shanghai University, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Wenbing Jiang
- Department of Cardiology, The Third Affiliated Hospital of Shanghai University, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| |
Collapse
|
31
|
Vitamin C and Cardiovascular Disease: An Update. Antioxidants (Basel) 2020; 9:antiox9121227. [PMID: 33287462 PMCID: PMC7761826 DOI: 10.3390/antiox9121227] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
The potential beneficial effects of the antioxidant properties of vitamin C have been investigated in a number of pathological conditions. In this review, we assess both clinical and preclinical studies evaluating the role of vitamin C in cardiac and vascular disorders, including coronary heart disease, heart failure, hypertension, and cerebrovascular diseases. Pitfalls and controversies in investigations on vitamin C and cardiovascular disorders are also discussed.
Collapse
|
32
|
Frigerio B, Werba JP, Amato M, Ravani A, Sansaro D, Coggi D, Vigo L, Tremoli E, Baldassarre D. Traditional Risk Factors are Causally Related to Carotid Intima-Media Thickness Progression: Inferences from Observational Cohort Studies and Interventional Trials. Curr Pharm Des 2020; 26:11-24. [PMID: 31838990 DOI: 10.2174/1381612825666191213120339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/02/2019] [Indexed: 12/24/2022]
Abstract
In the present review, associations between traditional vascular risk factors (VRFs) and carotid intimamedial thickness progression (C-IMTp) as well as the effects of therapies for VRFs control on C-IMTp were appraised to infer causality between each VRF and C-IMTp. Cohort studies indicate that smoking, binge drinking, fatness, diabetes, hypertension and hypercholesterolemia are associated with accelerated C-IMTp. An exception is physical activity, with mixed data. Interventions for the control of obesity, diabetes, hypertension and hypercholesterolemia decelerate C-IMTp. Conversely, scarce information is available regarding the effect of smoking cessation, stop of excessive alcohol intake and management of the metabolic syndrome. Altogether, these data support a causative role of several traditional VRFs on C-IMTp. Shortcomings in study design and/or ultrasonographic protocols may account for most negative studies, which underlines the importance of careful consideration of methodological aspects in investigations using C-IMTp as the outcome.
Collapse
Affiliation(s)
| | - José P Werba
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Mauro Amato
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | | | | - Daniela Coggi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita di Milano, Milan, Italy
| | - Lorenzo Vigo
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Elena Tremoli
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita di Milano, Milan, Italy
| | - Damiano Baldassarre
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università di Milano, Milan, Italy
| |
Collapse
|
33
|
Ziegler M, Wallert M, Lorkowski S, Peter K. Cardiovascular and Metabolic Protection by Vitamin E: A Matter of Treatment Strategy? Antioxidants (Basel) 2020; 9:E935. [PMID: 33003543 PMCID: PMC7600583 DOI: 10.3390/antiox9100935] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) cause about 1/3 of global deaths. Therefore, new strategies for the prevention and treatment of cardiovascular events are highly sought-after. Vitamin E is known for significant antioxidative and anti-inflammatory properties, and has been studied in the prevention of CVD, supported by findings that vitamin E deficiency is associated with increased risk of cardiovascular events. However, randomized controlled trials in humans reveal conflicting and ultimately disappointing results regarding the reduction of cardiovascular events with vitamin E supplementation. As we discuss in detail, this outcome is strongly affected by study design, cohort selection, co-morbidities, genetic variations, age, and gender. For effective chronic primary and secondary prevention by vitamin E, oxidative and inflammatory status might not have been sufficiently antagonized. In contrast, acute administration of vitamin E may be more translatable into positive clinical outcomes. In patients with myocardial infarction (MI), which is associated with severe oxidative and inflammatory reactions, decreased plasma levels of vitamin E have been found. The offsetting of this acute vitamin E deficiency via short-term treatment in MI has shown promising results, and, thus, acute medication, rather than chronic supplementation, with vitamin E might revitalize vitamin E therapy and even provide positive clinical outcomes.
Collapse
Affiliation(s)
- Melanie Ziegler
- Department of Cardiology and Angiology, Internal Medicine III, University Clinic of Tübingen, 72076 Tübingen, Germany;
| | - Maria Wallert
- Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany; (M.W.); (S.L.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany; (M.W.); (S.L.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Department of Medicine and Immunology, Monash University, Melbourne, VIC 3800, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3800, Australia
- Department of Cardiology, The Alfred Hospital, Melbourne, VIC 3800, Australia
| |
Collapse
|
34
|
Sharif H, Akash MSH, Rehman K, Irshad K, Imran I. Pathophysiology of atherosclerosis: Association of risk factors and treatment strategies using plant-based bioactive compounds. J Food Biochem 2020; 44:e13449. [PMID: 32851658 DOI: 10.1111/jfbc.13449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Under physiological conditions, endothelial cells act as protective barrier which prevents direct contact of blood with circulating factors via production of tissue plasminogen activator. Risk factors of metabolic disorders are responsible to induce endothelial dysfunction and may consequently lead to prognosis of atherosclerosis. This article summarizes the process of atherosclerosis which involves number of sequences including formation and interaction of AGE-RAGE, activation of polyol pathway, protein kinase C, and hexosamine-mediated pathway. All these mechanisms can lead to the development of oxidative stress which may further aggravate condition. Different pharmacological interventions are being used to treat atherosclerosis, however, these might be associated with mild to severe side effects. Therefore, plant-based bioactive compounds having potential to combat and prevent atherosclerosis in diabetic patients are attaining recent focus. By understanding process of development and mechanisms involved in atherosclerotic plaque formation, these bioactive compounds can be better option for future therapeutic interventions for atherosclerosis treatment. PRACTICAL APPLICATIONS: Atherosclerosis is one of major underlying disorders of cardiovascular diseases which occur through multiple mechanisms and is associated with metabolic disorders. Conventional therapeutic interventions are not only used to treat atherosclerosis, but are also commonly associated with mild to severe side effects. Therefore, nowadays, bioactive compounds having potential to combat and prevent atherosclerosis in diabetic patients are preferred. By understanding mechanisms involved in atherosclerotic plaque formation, bioactive compounds can be better understood for treatment of atherosclerosis. In this manuscript, we have focused on treatment strategies of atherosclerosis using bioactive compounds notably alkaloids and flavonoids having diverse pharmacological and therapeutic potentials with special focus on the mechanism of action of these bioactive compounds suitable for treatment of atherosclerosis. This manuscript will provide the scientific insights of bioactive compounds to researchers who are working in the area of drug discovery and development to control pathogenesis and development of atherosclerosis and its associated cardiometabolic disorders.
Collapse
Affiliation(s)
- Hina Sharif
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Kanwal Irshad
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Imran Imran
- Department of Pharmacology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
35
|
Willeit P, Tschiderer L, Allara E, Reuber K, Seekircher L, Gao L, Liao X, Lonn E, Gerstein HC, Yusuf S, Brouwers FP, Asselbergs FW, van Gilst W, Anderssen SA, Grobbee DE, Kastelein JJP, Visseren FLJ, Ntaios G, Hatzitolios AI, Savopoulos C, Nieuwkerk PT, Stroes E, Walters M, Higgins P, Dawson J, Gresele P, Guglielmini G, Migliacci R, Ezhov M, Safarova M, Balakhonova T, Sato E, Amaha M, Nakamura T, Kapellas K, Jamieson LM, Skilton M, Blumenthal JA, Hinderliter A, Sherwood A, Smith PJ, van Agtmael MA, Reiss P, van Vonderen MGA, Kiechl S, Klingenschmid G, Sitzer M, Stehouwer CDA, Uthoff H, Zou ZY, Cunha AR, Neves MF, Witham MD, Park HW, Lee MS, Bae JH, Bernal E, Wachtell K, Kjeldsen SE, Olsen MH, Preiss D, Sattar N, Beishuizen E, Huisman MV, Espeland MA, Schmidt C, Agewall S, Ok E, Aşçi G, de Groot E, Grooteman MPC, Blankestijn PJ, Bots ML, Sweeting MJ, Thompson SG, Lorenz MW. Carotid Intima-Media Thickness Progression as Surrogate Marker for Cardiovascular Risk: Meta-Analysis of 119 Clinical Trials Involving 100 667 Patients. Circulation 2020; 142:621-642. [PMID: 32546049 PMCID: PMC7115957 DOI: 10.1161/circulationaha.120.046361] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND To quantify the association between effects of interventions on carotid intima-media thickness (cIMT) progression and their effects on cardiovascular disease (CVD) risk. METHODS We systematically collated data from randomized, controlled trials. cIMT was assessed as the mean value at the common-carotid-artery; if unavailable, the maximum value at the common-carotid-artery or other cIMT measures were used. The primary outcome was a combined CVD end point defined as myocardial infarction, stroke, revascularization procedures, or fatal CVD. We estimated intervention effects on cIMT progression and incident CVD for each trial, before relating the 2 using a Bayesian meta-regression approach. RESULTS We analyzed data of 119 randomized, controlled trials involving 100 667 patients (mean age 62 years, 42% female). Over an average follow-up of 3.7 years, 12 038 patients developed the combined CVD end point. Across all interventions, each 10 μm/y reduction of cIMT progression resulted in a relative risk for CVD of 0.91 (95% Credible Interval, 0.87-0.94), with an additional relative risk for CVD of 0.92 (0.87-0.97) being achieved independent of cIMT progression. Taken together, we estimated that interventions reducing cIMT progression by 10, 20, 30, or 40 μm/y would yield relative risks of 0.84 (0.75-0.93), 0.76 (0.67-0.85), 0.69 (0.59-0.79), or 0.63 (0.52-0.74), respectively. Results were similar when grouping trials by type of intervention, time of conduct, time to ultrasound follow-up, availability of individual-participant data, primary versus secondary prevention trials, type of cIMT measurement, and proportion of female patients. CONCLUSIONS The extent of intervention effects on cIMT progression predicted the degree of CVD risk reduction. This provides a missing link supporting the usefulness of cIMT progression as a surrogate marker for CVD risk in clinical trials.
Collapse
Affiliation(s)
- Peter Willeit
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Lena Tschiderer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elias Allara
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
| | - Kathrin Reuber
- Department of Neurology, Goethe University, Frankfurt am Main, Germany
| | - Lisa Seekircher
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lu Gao
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Ximing Liao
- Department of Neurology, Goethe University, Frankfurt am Main, Germany
| | - Eva Lonn
- Department of Medicine and Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Hamilton General Hospital, Hamilton, Ontario, Canada
| | - Hertzel C. Gerstein
- Department of Medicine and Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Hamilton General Hospital, Hamilton, Ontario, Canada
| | - Salim Yusuf
- Department of Medicine and Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Hamilton General Hospital, Hamilton, Ontario, Canada
| | - Frank P. Brouwers
- Department of Cardiology, Haga Teaching Hospital, the Hague, the Netherlands
| | - Folkert W. Asselbergs
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wiek van Gilst
- Department of Experimental Cardiology, University Medical Center Groningen, Groningen, the Netherlands
| | - Sigmund A. Anderssen
- Department of Sports Medicine, Norwegian School of Sports Sciences, Oslo, Norway
| | - Diederick E. Grobbee
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - John J. P. Kastelein
- Department of Vascular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Frank L. J. Visseren
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - George Ntaios
- Department of Medicine, University of Thessaly, Larissa, Greece
| | - Apostolos I. Hatzitolios
- 1st Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Savopoulos
- 1st Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pythia T. Nieuwkerk
- Department of Medical Psychology, Amsterdam UMC- Location AMC, Amsterdam, the Netherlands
| | - Erik Stroes
- Department of Vascular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Matthew Walters
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Peter Higgins
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Paolo Gresele
- Division of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Giuseppe Guglielmini
- Division of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Rino Migliacci
- Division of Internal Medicine, Cortona Hospital, Cortona, Italy
| | - Marat Ezhov
- Laboratory of Lipid Disorders, National Medical Research Center of Cardiology, Moscow, Russia
| | - Maya Safarova
- Atherosclerosis Department, National Medical Research Center of Cardiology, Moscow, Russia
| | - Tatyana Balakhonova
- Ultrasound Vascular Laboratory, National Medical Research Center of Cardiology, Moscow, Russia
| | - Eiichi Sato
- Division of Nephrology, Shinmatsudo Central General Hospital, Chiba, Japan
| | - Mayuko Amaha
- Division of Nephrology, Shinmatsudo Central General Hospital, Chiba, Japan
| | - Tsukasa Nakamura
- Division of Nephrology, Shinmatsudo Central General Hospital, Chiba, Japan
| | - Kostas Kapellas
- Australian Research Centre for Population Oral Health, University of Adelaide, Adelaide, SA, Australia
| | - Lisa M. Jamieson
- Australian Research Centre for Population Oral Health, University of Adelaide, Adelaide, SA, Australia
| | - Michael Skilton
- Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, University of Sydney, Sydney, NSW, Australia
| | - James A. Blumenthal
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Alan Hinderliter
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Andrew Sherwood
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Patrick J. Smith
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Michiel A. van Agtmael
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Peter Reiss
- Department of Global Health, Amsterdam UMC- Location AMC, Amsterdam, the Netherlands
- Amsterdam Institute for Global Health and Development, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage GmbH, Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | | | - Matthias Sitzer
- Department of Neurology, Goethe University, Frankfurt am Main, Germany
- Department of Neurology, Klinikum Herford, Herford, Germany
| | - Coen D. A. Stehouwer
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Heiko Uthoff
- Department of Angiology, University Hospital Basel, Basel, Switzerland
| | - Zhi-Yong Zou
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Ana R. Cunha
- Department of Clinical Medicine, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mario F. Neves
- Department of Clinical Medicine, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Miles D. Witham
- AGE Research Group, NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle-upon-Tyne Hospitals Trust, Newcastle, UK
| | - Hyun-Woong Park
- Department of Internal Medicine, Gyeongsang National University Hospital, Daejeon, South Korea
| | - Moo-Sik Lee
- Department of Internal Medicine, Gyeongsang National University Hospital, Daejeon, South Korea
- Department of Preventive Medicine, Konyang University, Jinju, South Korea
| | - Jang-Ho Bae
- Heart Center, Konyang University Hospital, Daejeon, South Korea
- Department of Cardiology, Konyang University College of Medicine, Daejeon, South Korea
| | - Enrique Bernal
- Infectious Diseases Unit, Reina Sofia Hospital, Murcia, Spain
| | | | | | - Michael H. Olsen
- Department of Internal Medicine, Holbaek Hospital, University of Southern Denmark, Odense, Denmark
| | - David Preiss
- MRC Population Health Research Unit, Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Edith Beishuizen
- Department of Internal Medicine, HMC+ (Bronovo), the Hague, the Netherlands
| | - Menno V. Huisman
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Mark A. Espeland
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Caroline Schmidt
- Wallenberg Laboratory for Cardiovascular Research, University of Gothenburg, Gothenburg, Sweden
| | - Stefan Agewall
- Oslo University Hospital Ullevål and Institute of Clinical Sciences, University of Oslo, Oslo, Norway
| | - Ercan Ok
- Nephrology Department, Ege University School of Medicine, Bornova-Izmir, Turkey
| | - Gülay Aşçi
- Nephrology Department, Ege University School of Medicine, Bornova-Izmir, Turkey
| | - Eric de Groot
- Imagelabonline & Cardiovascular, Eindhoven and Lunteren, the Netherlands
| | | | - Peter J. Blankestijn
- Department of Nephrology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michiel L. Bots
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michael J. Sweeting
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Simon G. Thompson
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
36
|
Nishihara T, Tokitsu T, Sueta D, Oike F, Takae M, Fujisue K, Usuku H, Ito M, Kanazawa H, Araki S, Arima Y, Takashio S, Nakamura T, Sakamoto K, Suzuki S, Kaikita K, Yamamoto E, Tsujita K. Clinical significance of reactive oxidative metabolites in patients with heart failure with reduced left ventricular ejection fraction. J Card Fail 2020; 27:57-66. [PMID: 32791184 DOI: 10.1016/j.cardfail.2020.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND We investigated the clinical significance of the derivative of reactive oxygen metabolites (DROM), a new marker of reactive oxygen species (ROS), in patients with heart failure (HF) with reduced left ventricular ejection fraction (LVEF) (HFrEF). METHODS AND RESULTS Serum DROM concentrations were measured in 201 consecutive patients with HFrEF (EF < 50%) in stable condition. DROM values were significantly higher in patients with HFrEF than in risk-matched patients without HF (P < 0.01). They also correlated significantly with high-sensitivity C-reactive protein and B-type natriuretic peptide. Kaplan-Meier analysis demonstrated significantly higher probabilities of HF-related events in the high-DROM group than in the low-DROM group (log-rank test, P < 0.01). Multivariable Cox hazard analysis revealed that DROM were independent and significant predictors of cardiovascular events. In a subgroup analysis, DROM levels were also measured at the aortic root and coronary sinus in 49 patients. The transcardiac gradient of DROM values was significantly higher in patients with HFrEF than in patients without HF (P = 0.04), indicating an association between DROM production in the coronary circulation and HFrEF development. Changes in DROM following optimal therapy were significantly associated with LVEF improvement (r = 0.34, P = 0.04). CONCLUSIONS The higher levels of DROM and their association with cardiovascular events suggest the clinical benefit of DROM measurements in the risk stratification of patients with HFrEF.
Collapse
Affiliation(s)
- Taiki Nishihara
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Takanori Tokitsu
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Daisuke Sueta
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Fumi Oike
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Masafumi Takae
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Koichiro Fujisue
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Hiroki Usuku
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Miwa Ito
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Hisanori Kanazawa
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Satoshi Araki
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Yuichiro Arima
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Seiji Takashio
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Taishi Nakamura
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Kenji Sakamoto
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Satoru Suzuki
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Koichi Kaikita
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan.
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Graduate School of Medical Science and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
37
|
Artyukov AA, Zelepuga EA, Bogdanovich LN, Lupach NM, Novikov VL, Rutckova TA, Kozlovskaya EP. Marine Polyhydroxynaphthoquinone, Echinochrome A: Prevention of Atherosclerotic Inflammation and Probable Molecular Targets. J Clin Med 2020; 9:E1494. [PMID: 32429179 PMCID: PMC7291202 DOI: 10.3390/jcm9051494] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
The effect of low doses of echinochrome A (EchA), a natural polyhydroxy-1,4-naphthoquinone pigment from the sea urchin Scaphechinus mirabilis, has been studied in clinical trials, when it was used as an active substance of the drug Histochrome® and biologically active supplement Thymarin. Several parameters of lipid metabolism, antioxidant status, and the state of the immune system were analyzed in patients with cardiovascular diseases (CVD), including contaminating atherosclerosis. It has been shown that EchA effectively normalizes lipid metabolism, recovers antioxidant status and reduces atherosclerotic inflammation, regardless of the method of these preparations' administrations. Treatment of EchA has led to the stabilization of patients, improved function of the intracellular matrix and decreased epithelial dysfunction. The increased expression of surface human leukocyte antigen DR isotype (HLA-DR) receptors reflects the intensification of intercellular cooperation of immune cells, as well as an increase in the efficiency of processing and presentation of antigens, while the regulation of CD95 + expression levels suggests the stimulation of cell renewal processes. The immune system goes to a different level of functioning. Computer simulations suggest that EchA, with its aromatic structure of the naphthoquinone nucleus, may be a suitable ligand of the cytosolic aryl cell receptor, which affects the response of the immune system and causes the rapid expression of detoxification enzymes such as CYP and DT diaphorase, which play a protective role with CVD. Therefore, EchA possesses not only an antiradical effect and antioxidant activity, but is also a SOD3 mimetic, producing hydrogen peroxide and controlling the expression of cell enzymes through hypoxia-inducible factors (HIF), peroxisome proliferator-activated receptors (PPARs) and aryl hydrocarbon receptor (AhR).
Collapse
Affiliation(s)
- Aleksandr A. Artyukov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia; (A.A.A.); (E.A.Z.); (V.L.N.); (T.A.R.)
| | - Elena A. Zelepuga
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia; (A.A.A.); (E.A.Z.); (V.L.N.); (T.A.R.)
| | - Larisa N. Bogdanovich
- Medical Association of the Far Eastern Branch of the Russian Academy of Sciences (FEB RAS MO), Kirov Str., 95, Vladivostok 690022, Russia;
| | - Natalia M. Lupach
- Primorye Regional Clinical Hospital No. One (SHI), Aleutskaya Str., 57, Vladivostok, Primorsky Krai 690091, Russia;
| | - Vyacheslav L. Novikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia; (A.A.A.); (E.A.Z.); (V.L.N.); (T.A.R.)
| | - Tatyana A. Rutckova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia; (A.A.A.); (E.A.Z.); (V.L.N.); (T.A.R.)
| | - Emma P. Kozlovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia; (A.A.A.); (E.A.Z.); (V.L.N.); (T.A.R.)
| |
Collapse
|
38
|
Prasad K, Bhanumathy KK. AGE-RAGE Axis in the Pathophysiology of Chronic Lower Limb Ischemia and a Novel Strategy for Its Treatment. Int J Angiol 2020; 29:156-167. [PMID: 33041612 DOI: 10.1055/s-0040-1710045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This review focuses on the role of advanced glycation end products (AGEs) and its cell receptor (RAGE) and soluble receptor (sRAGE) in the pathogenesis of chronic lower limb ischemia (CLLI) and its treatment. CLLI is associated with atherosclerosis in lower limb arteries. AGE-RAGE axis which comprises of AGE, RAGE, and sRAGE has been implicated in atherosclerosis and restenosis. It may be involved in atherosclerosis of lower limb resulting in CLLI. Serum and tissue levels of AGE, and expression of RAGE are elevated, and the serum levels of sRAGE are decreased in CLLI. It is known that AGE, and AGE-RAGE interaction increase the generation of various atherogenic factors including reactive oxygen species, nuclear factor-kappa B, cell adhesion molecules, cytokines, monocyte chemoattractant protein-1, granulocyte macrophage-colony stimulating factor, and growth factors. sRAGE acts as antiatherogenic factor because it reduces the generation of AGE-RAGE-induced atherogenic factors. Treatment of CLLI should be targeted at lowering AGE levels through reduction of dietary intake of AGE, prevention of AGE formation and degradation of AGE, suppression of RAGE expression, blockade of AGE-RAGE binding, elevation of sRAGE by upregulating sRAGE expression, and exogenous administration of sRAGE, and use of antioxidants. In conclusion, AGE-RAGE stress defined as a shift in the balance between stressors (AGE, RAGE) and antistressor (sRAGE) in favor of stressors, initiates the development of atherosclerosis resulting in CLLI. Treatment modalities would include reduction of AGE levels and RAGE expression, RAGE blocker, elevation of sRAGE, and antioxidants for prevention, regression, and slowing of progression of CLLI.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology (APP), College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kalpana K Bhanumathy
- Division of Oncology, Cancer Cluster Unit, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
39
|
Xue Y, Wu Y, Wang Q, Xue L, Su Z, Zhang C. Cellular Vehicles Based on Neutrophils Enable Targeting of Atherosclerosis. Mol Pharm 2019; 16:3109-3120. [PMID: 31082253 DOI: 10.1021/acs.molpharmaceut.9b00342] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Given the multiple interactions between neutrophils (NEs) and atherosclerosis (AS), in this study, we exploited NEs as cellular vehicles loaded with cationic liposomes for actively targeting atherosclerotic sites. The cellular vehicles based on NEs possess efficient internalization of cationic liposomes and sensitive response to the chemotaxis of atherosclerotic inflammatory cells, which ultimately realize the targeted delivery of the cargos into the target cells in vitro. Moreover, these effects also translated to significant enhancement of the accumulation of NEs' cargos into the atherosclerotic plaque in vivo after administering NE vehicles to the AS animal model. Consequently, cellular vehicles based on NEs could be a novel strategy for targeted delivery of payloads into atherosclerotic plaque, which would facilitate theranostics for AS and the development of anti-AS drugs to manage the disease.
Collapse
Affiliation(s)
- Yanan Xue
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| | - Yue Wu
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| | - Qianqian Wang
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| | - Zhigui Su
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| | - Can Zhang
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| |
Collapse
|
40
|
The Use of Nutraceuticals to Counteract Atherosclerosis: The Role of the Notch Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5470470. [PMID: 31915510 PMCID: PMC6935452 DOI: 10.1155/2019/5470470] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Despite the currently available pharmacotherapies, today, thirty percent of worldwide deaths are due to cardiovascular diseases (CVDs), whose primary cause is atherosclerosis, an inflammatory disorder characterized by the buildup of lipid deposits on the inside of arteries. Multiple cellular signaling pathways have been shown to be involved in the processes underlying atherosclerosis, and evidence has been accumulating for the crucial role of Notch receptors in regulating the functions of the diverse cell types involved in atherosclerosis onset and progression. Several classes of nutraceuticals have potential benefits for the prevention and treatment of atherosclerosis and CVDs, some of which could in part be due to their ability to modulate the Notch pathway. In this review, we summarize the current state of knowledge on the role of Notch in vascular health and its modulation by nutraceuticals for the prevention of atherosclerosis and/or treatment of related CVDs.
Collapse
|
41
|
Chen T, Luo W, Wu G, Wu L, Huang S, Li J, Wang J, Hu X, Huang W, Liang G. A novel MyD88 inhibitor LM9 prevents atherosclerosis by regulating inflammatory responses and oxidative stress in macrophages. Toxicol Appl Pharmacol 2019; 370:44-55. [DOI: 10.1016/j.taap.2019.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 02/01/2023]
|
42
|
Ruiz-León AM, Lapuente M, Estruch R, Casas R. Clinical Advances in Immunonutrition and Atherosclerosis: A Review. Front Immunol 2019; 10:837. [PMID: 31068933 PMCID: PMC6491827 DOI: 10.3389/fimmu.2019.00837] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a chronic low-grade inflammatory disease that affects large and medium-sized arteries and is considered to be a major underlying cause of cardiovascular disease (CVD). The high risk of mortality by atherosclerosis has led to the development of new strategies for disease prevention and management, including immunonutrition. Plant-based dietary patterns, functional foods, dietary supplements, and bioactive compounds such as the Mediterranean Diet, berries, polyunsaturated fatty acids, ω-3 and ω-6, vitamins E, A, C, and D, coenzyme Q10, as well as phytochemicals including isoflavones, stilbenes, and sterols have been associated with improvement in atheroma plaque at an inflammatory level. However, many of these correlations have been obtained in vitro and in experimental animals' models. On one hand, the present review focuses on the evidence obtained from epidemiological, dietary intervention and supplementation studies in humans supporting the role of immunonutrient supplementation and its effect on anti-inflammatory response in atherosclerotic disease. On the other hand, this review also analyzes the possible molecular mechanisms underlying the protective action of these supplements, which may lead a novel therapeutic approach to prevent or attenuate diet-related disease, such as atherosclerosis.
Collapse
Affiliation(s)
- Ana María Ruiz-León
- Department of Internal Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Mediterranean Diet Foundation, Barcelona, Spain
| | - María Lapuente
- Department of Internal Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Ramon Estruch
- Department of Internal Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain.,CIBER 06/03: Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Casas
- Department of Internal Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain.,CIBER 06/03: Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
43
|
Xu S, Kamato D, Little PJ, Nakagawa S, Pelisek J, Jin ZG. Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics. Pharmacol Ther 2019; 196:15-43. [PMID: 30439455 PMCID: PMC6450782 DOI: 10.1016/j.pharmthera.2018.11.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the principal cause of cardiovascular death worldwide, is a pathological disease characterized by fibro-proliferation, chronic inflammation, lipid accumulation, and immune disorder in the vessel wall. As the atheromatous plaques develop into advanced stage, the vulnerable plaques are prone to rupture, which causes acute cardiovascular events, including ischemic stroke and myocardial infarction. Emerging evidence has suggested that atherosclerosis is also an epigenetic disease with the interplay of multiple epigenetic mechanisms. The epigenetic basis of atherosclerosis has transformed our knowledge of epigenetics from an important biological phenomenon to a burgeoning field in cardiovascular research. Here, we provide a systematic and up-to-date overview of the current knowledge of three distinct but interrelated epigenetic processes (including DNA methylation, histone methylation/acetylation, and non-coding RNAs), in atherosclerotic plaque development and instability. Mechanistic and conceptual advances in understanding the biological roles of various epigenetic modifiers in regulating gene expression and functions of endothelial cells (vascular homeostasis, leukocyte adhesion, endothelial-mesenchymal transition, angiogenesis, and mechanotransduction), smooth muscle cells (proliferation, migration, inflammation, hypertrophy, and phenotypic switch), and macrophages (differentiation, inflammation, foam cell formation, and polarization) are discussed. The inherently dynamic nature and reversibility of epigenetic regulation, enables the possibility of epigenetic therapy by targeting epigenetic "writers", "readers", and "erasers". Several Food Drug Administration-approved small-molecule epigenetic drugs show promise in pre-clinical studies for the treatment of atherosclerosis. Finally, we discuss potential therapeutic implications and challenges for future research involving cardiovascular epigenetics, with an aim to provide a translational perspective for identifying novel biomarkers of atherosclerosis, and transforming precision cardiovascular research and disease therapy in modern era of epigenetics.
Collapse
Affiliation(s)
- Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
44
|
Kim M, Basharat A, Santosh R, Mehdi SF, Razvi Z, Yoo SK, Lowell B, Kumar A, Brima W, Danoff A, Dankner R, Bergman M, Pavlov VA, Yang H, Roth J. Reuniting overnutrition and undernutrition, macronutrients, and micronutrients. Diabetes Metab Res Rev 2019; 35:e3072. [PMID: 30171821 DOI: 10.1002/dmrr.3072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/20/2018] [Accepted: 08/26/2018] [Indexed: 12/15/2022]
Abstract
Over-nutrition and its late consequences are a dominant theme in medicine today. In addition to the health hazards brought on by over-nutrition, the medical community has recently accumulated a roster of health benefits with obesity, grouped under "obesity paradox." Throughout the world and throughout history until the 20th century, under-nutrition was a dominant evolutionary force. Under-nutrition brings with it a mix of benefits and detriments that are opposite to and continuous with those of over-nutrition. This continuum yields J-shaped or U-shaped curves relating body mass index to mortality. The overweight have an elevated risk of dying in middle age of degenerative diseases while the underweight are at increased risk of premature death from infectious conditions. Micronutrient deficiencies, major concerns of nutritional science in the 20th century, are being neglected. This "hidden hunger" is now surprisingly prevalent in all weight groups, even among the overweight. Because micronutrient replacement is safe, inexpensive, and predictably effective, it is now an exceptionally attractive target for therapy across the spectrum of weight and age. Nutrition-related conditions worthy of special attention from caregivers include excess vitamin A, excess vitamin D, and deficiency of magnesium.
Collapse
Affiliation(s)
- Miji Kim
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Anam Basharat
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Ramchandani Santosh
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Syed F Mehdi
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Zanali Razvi
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Sun K Yoo
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Barbara Lowell
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Amrat Kumar
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Wunnie Brima
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, USA
| | - Ann Danoff
- Department of Medicine, Cpl. Michael J Crescenz Veterans Administration Medical Center, Philadelphia, PA, USA
| | - Rachel Dankner
- Department of Epidemiology and Preventive Medicine, School of Public Health, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Bergman
- Department of Medicine, Division of Endocrinology, NYU School of Medicine, New York, NY, USA
| | - Valentin A Pavlov
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
- Center for Biomedical Science and Center for Bioelectric Medicine, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Huan Yang
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
- Center for Biomedical Science and Center for Bioelectric Medicine, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Jesse Roth
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, USA
- Center for Biomedical Science and Center for Bioelectric Medicine, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| |
Collapse
|
45
|
Khadangi F, Azzi A. Vitamin E - The Next 100 Years. IUBMB Life 2018; 71:411-415. [PMID: 30550633 DOI: 10.1002/iub.1990] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/13/2018] [Accepted: 11/24/2018] [Indexed: 12/16/2022]
Abstract
α-Tocopherol is the only tocopherol that has been shown to prevent the human deficiency disease Ataxia with Isolated Vitamin E Deficiency (AVED), and thus it is the only one that, for humans, can be called vitamin E. Vitamin E in addition to preventing AVED has documented immune boosting properties and an activity against nonalcoholic hepatosteatosis and low-grade inflammation. Epidemiological studies indicating that vitamin E could prevent cardiovascular events, neurodegenerative disease, macular degeneration, and cancer were in general not confirmed by clinical intervention studies. Vitamin E and some of its metabolites modulate cell signaling and gene transcription. Future research is needed to achieve a better understanding of the molecular events leading to gene regulation by vitamin E, especially in its phosphorylated form. Isolation and characterization of the vitamin E kinase and vitamin E phosphate phosphatase will help in the understanding of cell regulation processes modulated by vitamin E. A clarification of the pathogenesis of AVED remains an important goal to be achieved. © 2018 IUBMB Life, 71(4):411-415, 2019.
Collapse
Affiliation(s)
| | - Angelo Azzi
- Vascular Biology Laboratory, JM USDA-HNRCA at Tufts University, Boston, Massachusetts
| |
Collapse
|
46
|
Talari HR, Poladchang S, Hamidian Y, Samimi M, Gilasi HR, Ebrahimi FA, Asemi Z. The Effects of Omega-3 and Vitamin E Co-supplementation on Carotid Intima-media Thickness and Inflammatory Factors in Patients with Polycystic Ovary Syndrome. Oman Med J 2018; 33:473-479. [PMID: 30410689 DOI: 10.5001/omj.2018.88] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objectives We sought to evaluate the effects of omega-3 and vitamin E co-supplementation on carotid intima-media thickness (CIMT) and inflammatory factors in patients with polycystic ovary syndrome (PCOS). Methods This randomized, double-blind, placebo-controlled trial was done among 60 women with PCOS. Participants were randomly assigned into two groups (n = 30 each group) and assigned to take either 1000 mg omega-3 plus 400 IU vitamin E supplements or a placebo for 12 weeks. Results Compared with placebo, omega-3 and vitamin E co-supplementation led to significant decreases in maximum levels of left CIMT (-0.006±0.006 vs. +0.002±0.007 mm, p < 0.001), mean levels of left CIMT (-0.005±0.006 vs. +0.002±0.010 mm, p = 0.010), maximum levels of right CIMT (-0.006±0.010 vs. +0.006±0.010 mm, p = 0.010), and mean levels of right CIMT (-0.005±0.005 vs. +0.001±0.010 mm, p = 0.020). Change in high-sensitivity C-reactive protein (hs-CRP) (-390.6±942.9 vs. +237.0±754.3 ng/mL, p = 0.006) was significantly different between the supplemented patients and placebo group. We did not observe any significant effect in plasma nitric oxide (NO) values following supplementation with omega-3 plus vitamin E compared with the placebo. Conclusions Co-supplementation with omega-3 and vitamin E for 12 weeks among patients with PCOS had beneficial effects on CIMT and serum hs-CRP values, but unchanged NO values.
Collapse
Affiliation(s)
- Hamid Reza Talari
- Department of Radiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Somayyeh Poladchang
- Department of Radiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Yaser Hamidian
- Department of Radiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Mansooreh Samimi
- Department of Gynecology and Obstetrics, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Gilasi
- Department of Epidemiology and Biostatistics, Kashan University of Medical Sciences, Kashan, Iran
| | - Faraneh Afshar Ebrahimi
- Department of Gynecology and Obstetrics, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
47
|
El-Daly M, Pulakazhi Venu VK, Saifeddine M, Mihara K, Kang S, Fedak PW, Alston LA, Hirota SA, Ding H, Triggle CR, Hollenberg MD. Hyperglycaemic impairment of PAR2-mediated vasodilation: Prevention by inhibition of aortic endothelial sodium-glucose-co-Transporter-2 and minimizing oxidative stress. Vascul Pharmacol 2018; 109:56-71. [DOI: 10.1016/j.vph.2018.06.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/05/2018] [Accepted: 06/09/2018] [Indexed: 01/16/2023]
|
48
|
Wang Y, Li L, Zhao W, Dou Y, An H, Tao H, Xu X, Jia Y, Lu S, Zhang J, Hu H. Targeted Therapy of Atherosclerosis by a Broad-Spectrum Reactive Oxygen Species Scavenging Nanoparticle with Intrinsic Anti-inflammatory Activity. ACS NANO 2018; 12:8943-8960. [PMID: 30114351 DOI: 10.1021/acsnano.8b02037] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Atherosclerosis is a leading cause of vascular diseases worldwide. Whereas antioxidative therapy has been considered promising for the treatment of atherosclerosis in view of a critical role of reactive oxygen species (ROS) in the pathogenesis of atherosclerosis, currently available antioxidants showed considerably limited clinical outcomes. Herein, we hypothesize that a broad-spectrum ROS-scavenging nanoparticle can serve as an effective therapy for atherosclerosis, taking advantage of its antioxidative stress activity and targeting effects. As a proof of concept, a broad-spectrum ROS-eliminating material was synthesized by covalently conjugating a superoxide dismutase mimetic agent Tempol and a hydrogen-peroxide-eliminating compound of phenylboronic acid pinacol ester onto a cyclic polysaccharide β-cyclodextrin (abbreviated as TPCD). TPCD could be easily processed into a nanoparticle (TPCD NP). The obtained nanotherapy TPCD NP could be efficiently and rapidly internalized by macrophages and vascular smooth muscle cells (VSMCs). TPCD NPs significantly attenuated ROS-induced inflammation and cell apoptosis in macrophages, by eliminating overproduced intracellular ROS. Also, TPCD NPs effectively inhibited foam cell formation in macrophages and VSMCs by decreasing internalization of oxidized low-density lipoprotein. After intravenous (i.v.) administration, TPCD NPs accumulated in atherosclerotic lesions of apolipoprotein E-deficient (ApoE-/-) mice by passive targeting through the dysfunctional endothelium and translocation via inflammatory cells. TPCD NPs significantly inhibited the development of atherosclerosis in ApoE-/- mice after i.v. delivery. More importantly, therapy with TPCD NPs afforded stabilized plaques with less cholesterol crystals, a smaller necrotic core, thicker fibrous cap, and lower macrophages and matrix metalloproteinase-9, compared with those treated with control drugs previously developed for antiatherosclerosis. The therapeutic benefits of TPCD NPs mainly resulted from reduced systemic and local oxidative stress and inflammation as well as decreased inflammatory cell infiltration in atherosclerotic plaques. Preliminary in vivo tests implied that TPCD NPs were safe after long-term treatment via i.v. injection. Consequently, TPCD NPs can be developed as a potential antiatherosclerotic nanotherapy.
Collapse
Affiliation(s)
- Yuquan Wang
- Department of Cardiology , Affiliated Hospital of North Sichuan Medical College , Nanchong 637000 , China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wada S, Koga M, Toyoda K, Minematsu K, Yasaka M, Nagai Y, Aoki S, Nezu T, Hosomi N, Kagimura T, Origasa H, Kamiyama K, Suzuki R, Ohtsuki T, Maruyama H, Kitagawa K, Uchiyama S, Matsumoto M. Factors Associated with Intima-Media Complex Thickness of the Common Carotid Artery in Japanese Noncardioembolic Stroke Patients with Hyperlipidemia: The J-STARS Echo Study. J Atheroscler Thromb 2017; 25:359-373. [PMID: 29118311 PMCID: PMC5906189 DOI: 10.5551/jat.41533] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aims: There may be ethnic differences in carotid atherosclerosis and its contributing factors between Asian and other populations. The purpose of this study was to examine intima-media complex thickness (IMT) of the carotid artery and associated clinical factors in Japanese stroke patients with hyperlipidemia from a cohort of the Japan Statin Treatment Against Recurrent Stroke Echo Study. Methods: Patients with hyperlipidemia, not on statins, who developed noncardioembolic ischemic stroke were included in this study. Mean IMT and maximum IMT of the distal wall of the common carotid artery were centrally measured using carotid ultrasonography. Significant factors related to mean IMT and maximum IMT were examined using multivariable analysis. Results: In 793 studied patients, mean IMT was 0.89 ± 0.15 mm and maximum IMT was 1.19 ± 0.32 mm. Age (per 10 years, parameter estimate = 0.044, p < 0.001), smoking (0.022, p = 0.004), category of blood pressure (0.022, p = 0.006), HDL cholesterol (per 10 mg/dl, −0.009, p = 0.008), and diabetes mellitus (0.033, p = 0.010) were independently associated with mean IMT. Age (per 10 years, 0.076, p < 0.001), smoking (0.053, p = 0.001), HDL cholesterol (−0.016, p = 0.036), and diabetes mellitus (0.084, p = 0.002) were independently associated with maximum IMT. Conclusion: Baseline mean and maximum values of carotid IMT in Japanese noncardioembolic stroke patients with hyperlipidemia were 0.89 ± 0.15 mm and 1.19 ± 0.32 mm, respectively, which were similar to those previously reported from Western countries. Age, smoking, hypertension, HDL cholesterol, and diabetes mellitus were associated with mean IMT, and those, except for hypertension, were associated with maximum IMT.
Collapse
Affiliation(s)
- Shinichi Wada
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center
| | - Masatoshi Koga
- Division of Stroke Care Unit, National Cerebral and Cardiovascular Center
| | - Kazunori Toyoda
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center
| | - Kazuo Minematsu
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center
| | - Masahiro Yasaka
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, National Hospital Organization Kyushu Medical Center
| | - Yoji Nagai
- Center for Clinical Research, Kobe University Hospital
| | - Shiro Aoki
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Tomohisa Nezu
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Naohisa Hosomi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Tatsuo Kagimura
- Foundation for Biomedical Research and Innovation, Translational Research Informatics Center
| | - Hideki Origasa
- Division of Biostatistics and Clinical Epidemiology, University of Toyama Graduate School of Medicine and Pharmaceutical Science
| | - Kenji Kamiyama
- Department of Neurosurgery and Stroke Center, Nakamura Memorial Hospital
| | - Rieko Suzuki
- Department of Neurology, Kyorin University Hospital
| | - Toshiho Ohtsuki
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences.,Stroke Center, Kinki University
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University
| | - Shinichiro Uchiyama
- Clinical Research Center, International University of Health and Welfare, Center for Brain and Cerebral Vessels, Sanno Hospital and Sanno Medical Center
| | - Masayasu Matsumoto
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences.,Japan Community Healthcare Organization (JCHO) Hoshigaoka Medical Center
| | | |
Collapse
|
50
|
Yang X, Li Y, Li Y, Ren X, Zhang X, Hu D, Gao Y, Xing Y, Shang H. Oxidative Stress-Mediated Atherosclerosis: Mechanisms and Therapies. Front Physiol 2017; 8:600. [PMID: 28878685 PMCID: PMC5572357 DOI: 10.3389/fphys.2017.00600] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022] Open
Abstract
Atherogenesis, the formation of atherosclerotic plaques, is a complex process that involves several mechanisms, including endothelial dysfunction, neovascularization, vascular proliferation, apoptosis, matrix degradation, inflammation, and thrombosis. The pathogenesis and progression of atherosclerosis are explained differently by different scholars. One of the most common theories is the destruction of well-balanced homeostatic mechanisms, which incurs the oxidative stress. And oxidative stress is widely regarded as the redox status realized when an imbalance exists between antioxidant capability and activity species including reactive oxygen (ROS), nitrogen (RNS) and halogen species, non-radical as well as free radical species. This occurrence results in cell injury due to direct oxidation of cellular protein, lipid, and DNA or via cell death signaling pathways responsible for accelerating atherogenesis. This paper discusses inflammation, mitochondria, autophagy, apoptosis, and epigenetics as they induce oxidative stress in atherosclerosis, as well as various treatments for antioxidative stress that may prevent atherosclerosis.
Collapse
Affiliation(s)
- Xinyu Yang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical SciencesBeijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
| | - Yang Li
- Department of Cardiology, General Hospital of People's Liberation ArmyBeijing, China
| | - Yanda Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical SciencesBeijing, China
| | - Xiaomeng Ren
- Guang'anmen Hospital, Chinese Academy of Chinese Medical SciencesBeijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
| | - Xiaoyu Zhang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
| | - Dan Hu
- Masonic Medical Research LaboratoryUtica, NY, United States
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
| | - Yanwei Xing
- Guang'anmen Hospital, Chinese Academy of Chinese Medical SciencesBeijing, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
| |
Collapse
|