1
|
Tucović D, Popov Aleksandrov A, Popović D, Malešević A, Subota V, Brdarić E, Soković Bajić S, Živković M, Kataranovski M, Mirkov I, Stanojević S, Kulaš J. Differential Proneness to Obesity in Two Rat Strains with Diverse Immune Responses. BIOLOGY 2025; 14:557. [PMID: 40427746 PMCID: PMC12109429 DOI: 10.3390/biology14050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/16/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025]
Abstract
Although obesity and metabolic syndrome (comprising at least three of the following traits-abdominal obesity, elevated blood pressure, triglycerides and glucose/insulin resistance, and reduced high-density lipoprotein cholesterol in serum) are known to impact immune system activity, these conditions are often not considered when immune response characteristics are investigated in various rodent strains. In this work, metabolic syndrome indices are compared in 3 month-old (young) and 6 month-old (adult) rats of Dark Agouti (DA) and Albino Oxford (AO) strains, while parameters of coagulation, inflammation and oxidative stress were determined in young animals. Study reveals that both young and adult AO rats are obese, intolerant to glucose with higher levels of triglycerides and lower levels of high-density lipoprotein cholesterol when compared to age-matched DA rats. Parameters of coagulation, inflammation and oxidative stress that may contribute to the worsening of metabolic syndrome during aging are also higher in young AO rats. Metabolic syndrome observed in young and intensified in adult AO rats should be taken into consideration when analyzing alterations in immune reactivity during aging in this rat strain.
Collapse
Affiliation(s)
- Dina Tucović
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (D.T.); (A.P.A.); (D.P.); (A.M.); (M.K.); (I.M.); (S.S.)
| | - Aleksandra Popov Aleksandrov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (D.T.); (A.P.A.); (D.P.); (A.M.); (M.K.); (I.M.); (S.S.)
| | - Dušanka Popović
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (D.T.); (A.P.A.); (D.P.); (A.M.); (M.K.); (I.M.); (S.S.)
| | - Anastasija Malešević
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (D.T.); (A.P.A.); (D.P.); (A.M.); (M.K.); (I.M.); (S.S.)
| | - Vesna Subota
- Institute for Medical Biochemistry, Military Medical Academy, 11000 Belgrade, Serbia;
| | - Emilija Brdarić
- Group for Probiotics and Microbiota-Host Interaction, Department for Microbiology and Plant Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia; (E.B.); (S.S.B.); (M.Ž.)
| | - Svetlana Soković Bajić
- Group for Probiotics and Microbiota-Host Interaction, Department for Microbiology and Plant Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia; (E.B.); (S.S.B.); (M.Ž.)
| | - Milica Živković
- Group for Probiotics and Microbiota-Host Interaction, Department for Microbiology and Plant Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia; (E.B.); (S.S.B.); (M.Ž.)
| | - Milena Kataranovski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (D.T.); (A.P.A.); (D.P.); (A.M.); (M.K.); (I.M.); (S.S.)
| | - Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (D.T.); (A.P.A.); (D.P.); (A.M.); (M.K.); (I.M.); (S.S.)
| | - Stanislava Stanojević
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (D.T.); (A.P.A.); (D.P.); (A.M.); (M.K.); (I.M.); (S.S.)
| | - Jelena Kulaš
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (D.T.); (A.P.A.); (D.P.); (A.M.); (M.K.); (I.M.); (S.S.)
| |
Collapse
|
2
|
Lee HS, Kim BK, Lee SY, Kwon H, Park HW. Essential role of Card11 in airway hyperresponsiveness in high-fat diet-induced obese mice. Exp Mol Med 2024; 56:2747-2754. [PMID: 39672814 DOI: 10.1038/s12276-024-01367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 12/15/2024] Open
Abstract
A high-fat diet (HFD) can induce airway hyperresponsiveness (AHR) in obese mice, independent of allergic sensitization. This study aimed to identify the key molecules related to AHR in HFD-induced obese mice. In a cluster analysis of time series gene expression in the adipose and lung tissues of HFD-induced obese mice, we identified the Caspase Recruitment Domain Family Member 11 (Card11) gene as an essential molecule. We measured CARD11 expression in peripheral blood mononuclear cells (PBMCs) from obese individuals with asthma and performed Card11 signal inhibition in HFD-induced obese mice via Card11 siRNA. Card11 expression was significantly increased in M1 macrophages (IL-1β+CD11c+CD206- in CD11b+) in adipose tissue and in ILC3s (RORγt+ in IL7R+ of Lin-) in lung tissue from HFD-induced obese mice. In addition, CARD11+ populations among ILC3s and LPS-stimulated IL-1β+CD16+ monocytes from the PBMCs of obese individuals with asthma were significantly greater than those from obese controls or nonobese individuals with asthma. AHR in HFD-induced obese mice disappeared when we inhibited the Card11 signaling pathway by administering Card11 siRNA during the first or last seven weeks of the 13-week HFD feeding. Finally, we confirmed that Card11 siRNA decreased the number of M1 macrophages in adipose tissue and the number of ILC3s in lung tissue in vitro. Card11 significantly contributes to the development of AHR in HFD-induced obese mice by affecting immune cells in both adipose and lung tissues. The middle stage of HFD feeding seemed to be critical for these processes.
Collapse
Affiliation(s)
- Hyun-Seung Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byung-Keun Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Suh-Young Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyuktae Kwon
- Department of Family Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Heung-Woo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Hongfang G, Khan R, El-Mansi AA. Bioinformatics Analysis of miR-181a and Its Role in Adipogenesis, Obesity, and Lipid Metabolism Through Review of Literature. Mol Biotechnol 2024; 66:2710-2724. [PMID: 37773313 DOI: 10.1007/s12033-023-00894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
The miRNAs regulate various biological processes in the mammalian body system. The role of miR-181a in the development, progression, and expansion of cancers is well-documented. However, the role of miR-181a in adipogenesis; lipid metabolism; obesity; and obesity-related issues such as diabetes mellitus needs to be explored. Therefore, in the present study, the literature was searched and bioinformatics tools were applied to explore the role of miR-181a in adipogenesis. The list of adipogenic and lipogenic target genes validated through different publications were extracted and compiled. The network and functional analysis of these target genes was performed through in-silico analysis. The mature sequence of miR-181a of different species were extracted from and were found highly conserved among the curated species. Additionally, we also used various bioinformatics tools such as target gene extraction from Targetscan, miRWalk, and miRDB, and the list of the target genes from these different databases was compared, and common target genes were predicted. These common target genes were further subjected to the enrichment score and KEGG pathways analysis. The enrichment score of the vital KEGG pathways of the target genes is the key regulator of adipogenesis, lipogenesis, obesity, and obesity-related syndromes in adipose tissues. Therefore, the information presented in the current review will explore the regulatory roles of miR-181a in fat tissues and its associated functions and manifestations.
Collapse
Affiliation(s)
- Guo Hongfang
- Medical College of Xuchang University, No.1389, Xufan Road, Xuchang City, 461000, Henan Province, People's Republic of China
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, 25130, Pakistan.
| | - Ahmed A El-Mansi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
4
|
Sejdic A, Hartling HJ, Gitz Holler J, Klingen Gjærde L, Matovu Dungu A, Engel Møller ME, Svanberg Teglgaard R, Utoft Niemann CU, Brooks PT, Mogensen TH, Weis N, Podlekareva D, Baum Jørgensen ML, Ortved Gang A, Stampe Hersby D, Hald A, Dam Nielsen S, Lebech AM, Helleberg M, Lundgren J, Træholt Franck K, Fischer TK, Harboe ZB, Marquart HV, Rye Ostrowski S, Lindegaard B. Deep immune cell phenotyping and induced immune cell responses at admission stratified by BMI in patients hospitalized with COVID-19: An observational multicenter cohort pilot study. Clin Immunol 2024; 267:110336. [PMID: 39117044 DOI: 10.1016/j.clim.2024.110336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024]
Abstract
INTRODUCTION Overweight and obesity are linked to increased hospitalization and mortality in COVID-19 patients. This study aimed to characterize induced immune responses and deep immune cell profiles stratified by BMI in hospitalized COVID-19 patients. METHODS AND RESULTS This observational multicenter cohort pilot study included 122 adult patients with PCR-confirmed COVID-19 in Denmark, stratified by BMI (normal weight, overweight, obese). Inflammation was assessed using TruCulture® and immune cell profiles by flow cytometry with a customized antibody panel (DuraClone®). Patients with obesity had a more pro-inflammatory phenotype with increased TNF-α, IL-8, IL-17, and IL-10 levels post-T cell stimulation, and altered B cell profiles. Patients with obesity showed higher concentrations of naïve, transitional, and non-isotype switched memory B cells, and plasmablasts compared to normal weight patients and healthy controls. CONCLUSIONS Obesity in hospitalized COVID-19 patients may correlate with elevated pro-inflammatory cytokines, anti-inflammatory IL-10, and increased B cell subset activation, highlighting the need for further studies.
Collapse
Affiliation(s)
- Adin Sejdic
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital - North Zealand, Hillerød, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Hans Jakob Hartling
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jon Gitz Holler
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital - North Zealand, Hillerød, Denmark
| | - Lars Klingen Gjærde
- Department of Haematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Arnold Matovu Dungu
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital - North Zealand, Hillerød, Denmark
| | | | | | - Carsten Utoft Utoft Niemann
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Haematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Patrick Terrence Brooks
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nina Weis
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital - Hvidovre, Copenhagen, Denmark
| | - Daria Podlekareva
- Department of Respiratory Medicine and Infectious Disease, Copenhagen University Hospital - Bispebjerg, Denmark
| | - Marie Louise Baum Jørgensen
- Department of Respiratory Medicine and Infectious Disease, Copenhagen University Hospital - Bispebjerg, Denmark
| | - Anne Ortved Gang
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Haematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ditte Stampe Hersby
- Department of Haematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Annemette Hald
- Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Susanne Dam Nielsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anne-Mette Lebech
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Marie Helleberg
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jens Lundgren
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Thea K Fischer
- Department of Clinical Research, Copenhagen University Hospital - North Zealand, Hillerød, Denmark; Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Zitta Barrella Harboe
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital - North Zealand, Hillerød, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Vibeke Marquart
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Birgitte Lindegaard
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital - North Zealand, Hillerød, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Soedono S, Julietta V, Nawaz H, Cho KW. Dynamic Roles and Expanding Diversity of Adipose Tissue Macrophages in Obesity. J Obes Metab Syndr 2024; 33:193-212. [PMID: 39324219 PMCID: PMC11443328 DOI: 10.7570/jomes24030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024] Open
Abstract
Adipose tissue macrophages (ATMs) are key regulators of adipose tissue (AT) inflammation and insulin resistance in obesity, and the traditional M1/M2 characterization of ATMs is inadequate for capturing their diversity in obese conditions. Single-cell transcriptomic profiling has revealed heterogeneity among ATMs that goes beyond the old paradigm and identified new subsets with unique functions. Furthermore, explorations of their developmental origins suggest that multiple differentiation pathways contribute to ATM variety. These advances raise concerns about how to define ATM functions, how they are regulated, and how they orchestrate changes in AT. This review provides an overview of the current understanding of ATMs and their updated categorization in both mice and humans during obesity. Additionally, diverse ATM functions and contributions in the context of obesity are discussed. Finally, potential strategies for targeting ATM functions as therapeutic interventions for obesity-induced metabolic diseases are addressed.
Collapse
Affiliation(s)
- Shindy Soedono
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Vivi Julietta
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Hadia Nawaz
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Kae Won Cho
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| |
Collapse
|
6
|
Ruan H, Long M, Li J, Zhang D, Feng N, Zhang Y. Sustained-Release Hydrogen-Powered Bilateral Microneedles Integrating CD-MOFs for In Situ Treating Allergic Rhinitis. Adv Healthc Mater 2024; 13:e2400637. [PMID: 38749484 DOI: 10.1002/adhm.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Indexed: 05/23/2024]
Abstract
Glucocorticoids are widely used for treating allergic rhinitis, but conventional intranasal administration encounters unfavorable nasal cilia clearance and nasal mucosal barrier. Herein, a bilateral microneedle patch is fabricated for delivering cyclodextrin-based metal-organic frameworks (CD-MOF) encapsulating dexamethasone (DXMS) and paeonol (Pae), while NaH particles are mounted on the basal part of each microneedle. By intranasal administration, the microneedles are propelled into the nasal mucosa by NaH-generated hydrogen and then swell to form a hydrogel for sustainedly releasing drugs. The DXMS/Pae combination is demonstrated to be superior to more than the twofold dose of DXMS alone for improving allergic rhinitis in rats. It involves reducing mast cell degranulation and modulating Treg/Th17 cell homeostasis, whereas inhibiting Th1 to Th2 differentiation is associated with regulating the GATA3/T-bet pathway, as well as repairing epithelial barrier function by increasing MUC1 and downregulating periostin. In addition, this delivery system modulates the lipid metabolism of the nasal mucosa. Notably, the newly designed device significantly enhances the drug's therapeutic effect, and NaH-generated hydrogen may have the potential adjunctive therapeutic effect. Collectively, such an emerging microneedle-mediated nasal drug delivery creates a new form for alleviating immune inflammation and contributes a promising solution to reduce clinical glucocorticoid abuse.
Collapse
Affiliation(s)
- Hang Ruan
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Meng Long
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Jiaqi Li
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Di Zhang
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Nianping Feng
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Yongtai Zhang
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| |
Collapse
|
7
|
Brunelli DT, Bonfante ILP, Boldrini VO, Scolfaro PG, Duft RG, Mateus K, Fatori RF, Chacon-Mikahil MPT, Farias AS, Teixeira AM, Cavaglieri CR. Combined Training Improves Gene Expression Related to Immunosenescence in Obese Type 2 Diabetic Individuals. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:730-739. [PMID: 38319611 DOI: 10.1080/02701367.2023.2299716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/21/2023] [Indexed: 02/07/2024]
Abstract
Purpose: The aim of this study was to investigate the effects of moderate combined training (CT) on both the gene expression of pro- and anti-inflammatory markers and senescence in the immune system in peripheral blood mononuclear cells (PBMCs) and subcutaneous adipose tissue (SAT) of obese middle-aged individuals with type 2 diabetes (T2D). Methods: Thirty obese individuals (50.2 ± 9.4 years; body mass index: 31.8 ± 2.3 kg/m²) with T2D underwent 16 weeks of a CT group [CT; aerobic (50-60% of VO2max) plus resistance (50-75% of 1RM) training; 3 times/week, 70 min/session; n = 16)] or a control group (CG, n = 14). Nutritional patterns, muscle strength (1RM), cardiorespiratory fitness (VO2max), waist circumference (WC), body composition (Air Displacement Plethysmograph) and blood collections for biochemical (serum leptin, IL-2, IL-4, IL-6, IL-10, TNF-α and anti-CMV) and molecular (gene expression of leptin, IL-2, IL-4, IL-6, IL-10, TNF-α, PD-1, P16ink4a, CCR7, CD28 and CD27 in PBMCs and SAT) analyses were assessed before (Pre) and after (Post) the 16 weeks of the experimental period. Results: Significant decreases were observed in WC and IL4, TNF-α, PD-1 and CD27 expression in PBMCs for CT. Furthermore, significant increases were observed in 1RM and VO2max for CT after the experimental period. Conclusion: Moderate CT contributed to a reduction in the gene expression of markers associated to chronic inflammation and immunosenescence in PBMCs of obese middle-aged individuals with T2D.
Collapse
|
8
|
Smeehuijzen L, Gijbels A, Nugteren-Boogaard JP, Vrieling F, Boutagouga Boudjadja M, Trouwborst I, Jardon KM, Hul GB, Feskens EJM, Blaak EE, Goossens GH, Afman LA, Stienstra R. Immunometabolic Signatures of Circulating Monocytes in Humans With Obesity and Insulin Resistance. Diabetes 2024; 73:1112-1121. [PMID: 38656918 DOI: 10.2337/db23-0970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
Obesity is associated with chronic inflammation and metabolic complications, including insulin resistance (IR). Immune cells drive inflammation through the rewiring of intracellular metabolism. However, the impact of obesity-related IR on the metabolism and functionality of circulating immune cells, like monocytes, remains poorly understood. To increase insight into the interindividual variation of immunometabolic signatures among individuals and their role in the development of IR, we assessed systemic and tissue-specific IR and circulating immune markers, and we characterized metabolic signatures and cytokine secretion of circulating monocytes from 194 individuals with a BMI ≥25 kg/m2. Monocyte metabolic signatures were defined using extracellular acidification rates (ECARs) to estimate glycolysis and oxygen consumption rates (OCRs) for oxidative metabolism. Although monocyte metabolic signatures and function based on cytokine secretion varied greatly among study participants, they were strongly associated with each other. The ECAR-to-OCR ratio, representing the balance between glycolysis and oxidative metabolism, was negatively associated with fasting insulin levels, systemic IR, and liver-specific IR. These results indicate that monocytes from individuals with IR were relatively more dependent on oxidative metabolism, whereas monocytes from more insulin-sensitive individuals were more dependent on glycolysis. Additionally, circulating CXCL11 was negatively associated with the degree of systemic IR and positively with the ECAR-to-OCR ratio in monocytes, suggesting that individuals with high IR and a monocyte metabolic dependence on oxidative metabolism also have lower levels of circulating CXCL11. Our findings suggest that monocyte metabolism is related to obesity-associated IR progression and deepen insights into the interplay between innate immune cell metabolism and IR development in humans. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Lisa Smeehuijzen
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Anouk Gijbels
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
- Top Institute Food and Nutrition, Wageningen, the Netherlands
| | | | - Frank Vrieling
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | | | - Inez Trouwborst
- Top Institute Food and Nutrition, Wageningen, the Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Kelly M Jardon
- Top Institute Food and Nutrition, Wageningen, the Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gabby B Hul
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Lydia A Afman
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Rinke Stienstra
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
- Department of Internal Medicine (463), Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
9
|
Bahman F, Al-Roub A, Akhter N, Al Madhoun A, Wilson A, Almansour N, Al-Rashed F, Sindhu S, Al-Mulla F, Ahmad R. TNF-α/Stearate Induced H3K9/18 Histone Acetylation Amplifies IL-6 Expression in 3T3-L1 Mouse Adipocytes. Int J Mol Sci 2024; 25:6776. [PMID: 38928498 PMCID: PMC11203872 DOI: 10.3390/ijms25126776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Extensive evidence supports the connection between obesity-induced inflammation and the heightened expression of IL-6 adipose tissues. However, the mechanism underlying the IL-6 exacerbation in the adipose tissue remains unclear. There is general agreement that TNF-α and stearate concentrations are mildly elevated in adipose tissue in the state of obesity. We hypothesize that TNF-α and stearate co-treatment induce the increased expression of IL-6 in mouse adipocytes. We therefore aimed to determine IL-6 gene expression and protein production by TNF-α/stearate treated adipocytes and investigated the mechanism involved. To test our hypothesis, 3T3-L1 mouse preadipocytes were treated with TNF-α, stearate, or TNF-α/stearate. IL-6 gene expression was assessed by quantitative real-time qPCR. IL-6 protein production secreted in the cell culture media was determined by ELISA. Acetylation of histone was analyzed by Western blotting. Il6 region-associated histone H3 lysine 9/18 acetylation (H3K9/18Ac) was determined by ChIP-qPCR. 3T3-L1 mouse preadipocytes were co-challenged with TNF-α and stearate for 24 h, which led to significantly increased IL-6 gene expression (81 ± 2.1 Fold) compared to controls stimulated with either TNF-α (38 ± 0.5 Fold; p = 0.002) or stearate (56 ± 2.0 Fold; p = 0.013). As expected, co-treatment of adipocytes with TNF-α and stearate significantly increased protein production (338 ± 11 pg/mL) compared to controls stimulated with either TNF-α (28 ± 0.60 pg/mL; p = 0.001) or stearate (53 ± 0.20 pg/mL, p = 0.0015). Inhibition of histone acetyltransferases (HATs) with anacardic acid or curcumin significantly reduced the IL-6 gene expression and protein production by adipocytes. Conversely, TSA-induced acetylation substituted the stimulatory effect of TNF-α or stearate in their synergistic interaction for driving IL-6 gene expression and protein production. Mechanistically, TNF-α/stearate co-stimulation increased the promoter-associated histone H3 lysine 9/18 acetylation (H3K9/18Ac), rendering a transcriptionally permissive state that favored IL-6 expression at the transcriptional and translational levels. Our data represent a TNF-α/stearate cooperativity model driving IL-6 expression in 3T3-L1 cells via the H3K9/18Ac-dependent mechanism, with implications for adipose IL-6 exacerbations in obesity.
Collapse
Affiliation(s)
- Fatemah Bahman
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
| | - Areej Al-Roub
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
| | - Nadeem Akhter
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Ajit Wilson
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
| | - Nourah Almansour
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
| | - Fatema Al-Rashed
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
| | - Sardar Sindhu
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Fahd Al-Mulla
- Translational Research Department, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
| |
Collapse
|
10
|
Jamal A, Brettle H, Jamil DA, Tran V, Diep H, Bobik A, van der Poel C, Vinh A, Drummond GR, Thomas CJ, Jelinic M, Al-Aubaidy HA. Reduced Insulin Resistance and Oxidative Stress in a Mouse Model of Metabolic Syndrome following Twelve Weeks of Citrus Bioflavonoid Hesperidin Supplementation: A Dose-Response Study. Biomolecules 2024; 14:637. [PMID: 38927040 PMCID: PMC11201492 DOI: 10.3390/biom14060637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Metabolic syndrome (MetS) is a cluster of metabolic abnormalities affecting ~25% of adults and is linked to chronic diseases such as cardiovascular disease, cancer, and neurodegenerative diseases. Oxidative stress and inflammation are key drivers of MetS. Hesperidin, a citrus bioflavonoid, has demonstrated antioxidant and anti-inflammatory properties; however, its effects on MetS are not fully established. We aimed to determine the optimal dose of hesperidin required to improve oxidative stress, systemic inflammation, and glycemic control in a novel mouse model of MetS. Male 5-week-old C57BL/6 mice were fed a high-fat, high-salt, high-sugar diet (HFSS; 42% kcal fat content in food and drinking water with 0.9% saline and 10% high fructose corn syrup) for 16 weeks. After 6 weeks of HFSS, mice were randomly allocated to either the placebo group or low- (70 mg/kg/day), mid- (140 mg/kg/day), or high-dose (280 mg/kg/day) hesperidin supplementation for 12 weeks. The HFSS diet induced significant metabolic disturbances. HFSS + placebo mice gained almost twice the weight of control mice (p < 0.0001). Fasting blood glucose (FBG) increased by 40% (p < 0.0001), plasma insulin by 100% (p < 0.05), and HOMA-IR by 150% (p < 0.0004), indicating insulin resistance. Hesperidin supplementation reduced plasma insulin by 40% at 140 mg/kg/day (p < 0.0001) and 50% at 280 mg/kg/day (p < 0.005). HOMA-IR decreased by 45% at both doses (p < 0.0001). Plasma hesperidin levels significantly increased in all hesperidin groups (p < 0.0001). Oxidative stress, measured by 8-OHdG, was increased by 40% in HFSS diet mice (p < 0.001) and reduced by 20% with all hesperidin doses (p < 0.005). In conclusion, hesperidin supplementation reduced insulin resistance and oxidative stress in HFSS-fed mice, demonstrating its dose-dependent therapeutic potential in MetS.
Collapse
Affiliation(s)
- Abdulsatar Jamal
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
| | - Holly Brettle
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
| | - Dina A. Jamil
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
- NewMed Education Australia, Hamilton, QLD 4007, Australia
| | - Vivian Tran
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
| | - Henry Diep
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
| | - Alexander Bobik
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
- Baker Heart and Diabetes Research Institute, Melbourne, VIC 3004, Australia
| | - Chris van der Poel
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
- Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
| | - Colleen J. Thomas
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Maria Jelinic
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
| | - Hayder A. Al-Aubaidy
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
- NewMed Education Australia, Hamilton, QLD 4007, Australia
| |
Collapse
|
11
|
Rodón J, Demanse D, Rugo HS, Burris HA, Simó R, Farooki A, Wellons MF, André F, Hu H, Vuina D, Quadt C, Juric D. A risk analysis of alpelisib-induced hyperglycemia in patients with advanced solid tumors and breast cancer. Breast Cancer Res 2024; 26:36. [PMID: 38439079 PMCID: PMC10913434 DOI: 10.1186/s13058-024-01773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/18/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Hyperglycemia is an on-target effect of PI3Kα inhibitors. Early identification and intervention of treatment-induced hyperglycemia is important for improving management of patients receiving a PI3Kα inhibitor like alpelisib. Here, we characterize incidence of grade 3/4 alpelisib-related hyperglycemia, along with time to event, management, and outcomes using a machine learning model. METHODS Data for the risk model were pooled from patients receiving alpelisib ± fulvestrant in the open-label, phase 1 X2101 trial and the randomized, double-blind, phase 3 SOLAR-1 trial. The pooled population (n = 505) included patients with advanced solid tumors (X2101, n = 221) or HR+/HER2- advanced breast cancer (SOLAR-1, n = 284). External validation was performed using BYLieve trial patient data (n = 340). Hyperglycemia incidence and management were analyzed for SOLAR-1. RESULTS A random forest model identified 5 baseline characteristics most associated with risk of developing grade 3/4 hyperglycemia (fasting plasma glucose, body mass index, HbA1c, monocytes, age). This model was used to derive a score to classify patients as high or low risk for developing grade 3/4 hyperglycemia. Applying the model to patients treated with alpelisib and fulvestrant in SOLAR-1 showed higher incidence of hyperglycemia (all grade and grade 3/4), increased use of antihyperglycemic medications, and more discontinuations due to hyperglycemia (16.7% vs. 2.6% of discontinuations) in the high- versus low-risk group. Among patients in SOLAR-1 (alpelisib + fulvestrant arm) with PIK3CA mutations, median progression-free survival was similar between the high- and low-risk groups (11.0 vs. 10.9 months). For external validation, the model was applied to the BYLieve trial, for which successful classification into high- and low-risk groups with shorter time to grade 3/4 hyperglycemia in the high-risk group was observed. CONCLUSIONS A risk model using 5 clinically relevant baseline characteristics was able to identify patients at higher or lower probability for developing alpelisib-induced hyperglycemia. Early identification of patients who may be at higher risk for hyperglycemia may improve management (including monitoring and early intervention) and potentially lead to improved outcomes. REGISTRATION ClinicalTrials.gov: NCT01219699 (registration date: October 13, 2010; retrospectively registered), ClinicalTrials.gov: NCT02437318 (registration date: May 7, 2015); ClinicalTrials.gov: NCT03056755 (registration date: February 17, 2017).
Collapse
Affiliation(s)
- Jordi Rodón
- Division of Cancer Medicine, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - David Demanse
- Early Development Biostatistics, Novartis Pharma AG, Basel, Switzerland
| | - Hope S Rugo
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Howard A Burris
- Department of Oncology, Sarah Cannon Research Institute, Tennessee Oncology Professional Limited Liability Corporation, Nashville, TN, USA
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Barcelona, Spain
- Department of Medicine and Endocrinology, Autonomous University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Azeez Farooki
- Endocrinology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Fabrice André
- Department of Medical Oncology, INSERM U981, Gustave Roussy, Université Paris-Sud, Villejuif, France
| | - Huilin Hu
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | - Cornelia Quadt
- Translational Clinical Oncology, Novartis Pharma AG, Basel, Switzerland
| | - Dejan Juric
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| |
Collapse
|
12
|
Domingo E, Marques P, Francisco V, Piqueras L, Sanz MJ. Targeting systemic inflammation in metabolic disorders. A therapeutic candidate for the prevention of cardiovascular diseases? Pharmacol Res 2024; 200:107058. [PMID: 38218355 DOI: 10.1016/j.phrs.2024.107058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death and disability worldwide. While many factors can contribute to CVD, atherosclerosis is the cardinal underlying pathology, and its development is associated with several metabolic risk factors including dyslipidemia and obesity. Recent studies have definitively demonstrated a link between low-grade systemic inflammation and two relevant metabolic abnormalities: hypercholesterolemia and obesity. Interestingly, both metabolic disorders are also associated with endothelial dysfunction/activation, a proinflammatory and prothrombotic phenotype of the endothelium that involves leukocyte infiltration into the arterial wall, one of the earliest stages of atherogenesis. This article reviews the current literature on the intricate relationship between hypercholesterolemia and obesity and the associated systemic inflammation and endothelial dysfunction, and discusses the effectiveness of present, emerging and in-development pharmacological therapies used to treat these metabolic disorders with a focus on their effects on the associated systemic inflammatory state and cardiovascular risk.
Collapse
Affiliation(s)
- Elena Domingo
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Patrice Marques
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Vera Francisco
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Valencia, Spain
| | - Laura Piqueras
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain; CIBERDEM, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute (ISCIII), Spain.
| | - Maria-Jesus Sanz
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain; CIBERDEM, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute (ISCIII), Spain.
| |
Collapse
|
13
|
Jayathilake WMNK, de Laat MA, Furr M, Risco C, Lacombe VA. Prolonged hyperinsulinemia increases the production of inflammatory cytokines in equine digital lamellae but not in striated muscle. Vet J 2024; 303:106053. [PMID: 38043699 DOI: 10.1016/j.tvjl.2023.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Hyperinsulinemia is the key feature of equine metabolic syndrome (EMS) which leads to debilitating sequelae. Hyperinsulinemia-associated laminitis (HAL) is one of the major sequelae of EMS, although the pathophysiological mechanisms are not well elucidated. Using an equine model, we hypothesized that expression of inflammatory markers would be increased in digital lamellae and striated muscle following prolonged hyperinsulinemia. Healthy Standardbred horses (5.4 ± 1.9 years) were alternately assigned to a prolonged euglycemic-hyperinsulinemic clamp (pEHC) or control group (n = 4 per group). Following a 48 h pEHC or a 48 h infusion of a balanced electrolyte solution (controls), biopsies were collected from digital lamellar tissue, skeletal muscle and cardiac muscle were obtained. All hyperinsulinemic horses developed laminitis regardless of previous health status at enrollment. Protein expression was quantified via Western blotting. A significant (P < 0.05) upregulation of the protein expression of heat shock protein 90 (HSP90), alpha 2 macroglobulin (A2M) and fibrinogen (α, β isoforms), as well as inflammatory cytokines including interleukin-1β were detected in digital lamellae following prolonged hyperinsulinemia. In contrast, protein expression of cytokines and acute phase proteins in heart and skeletal muscle was unchanged following hyperinsulinemia. Upregulation of inflammatory cytokines and acute phase proteins in digital lamellae during prolonged hyperinsulinemia may reveal potential biomarkers and novel therapeutic targets for equine endocrinopathic laminitis. Further, the lack of increase of inflammatory proteins and acute phase proteins in striated muscle following prolonged hyperinsulinemia may highlight potential anti-inflammatory and cardioprotective mechanisms in these insulin-sensitive tissues.
Collapse
Affiliation(s)
- W M N K Jayathilake
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - M A de Laat
- School of Biology and Environmental Science, Queensland University of Technology, Queensland, 4001, Australia
| | - M Furr
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - C Risco
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - V A Lacombe
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
14
|
Carobbio S, Pellegrinelli V, Vidal-Puig A. Adipose Tissue Dysfunction Determines Lipotoxicity and Triggers the Metabolic Syndrome: Current Challenges and Clinical Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:231-272. [PMID: 39287854 DOI: 10.1007/978-3-031-63657-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The adipose tissue organ is organised as distinct anatomical depots located all along the body axis, and it is constituted of three different types of adipocytes: white, beige and brown, which are integrated with vascular, immune, neural, and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production. The concerted action of the three types of adipocytes/tissues ensures an optimal metabolic status. However, when one or several of these adipose depots become dysfunctional because of sustained lipid/nutrient overload, then insulin resistance and associated metabolic complications ensue. These metabolic alterations close a vicious cycle that negatively affects the adipose tissue functionality and compromises global metabolic homeostasis. Optimising white adipose tissue expandability and ensuring its functional metabolic flexibility and/or promoting brown/beige mediated thermogenic activity are complementary strategies that counteract obesity and its associated lipotoxic metabolic effects. However, the development of these therapeutic approaches requires a deep understanding of adipose tissue in all broad aspects. In this chapter, we will discuss the characteristics of the different adipose tissue depots with respect to origins and precursors recruitment, plasticity, cellular composition, and expandability capacity potential as well as molecular and metabolic characteristic signatures in both physiological and pathophysiological conditions. Current antilipotoxic strategies for future clinical application are also discussed in this chapter.
Collapse
Affiliation(s)
- Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| | - Vanessa Pellegrinelli
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| |
Collapse
|
15
|
Al-Busaidi A, Alabri O, Alomairi J, ElSharaawy A, Al Lawati A, Al Lawati H, Das S. Gut Microbiota and Insulin Resistance: Understanding the Mechanism of Better Treatment of Type 2 Diabetes Mellitus. Curr Diabetes Rev 2024; 21:e170124225723. [PMID: 38243954 DOI: 10.2174/0115733998281910231231051814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
Gut microbiota refers to the population of trillions of microorganisms present in the human intestine. The gut microbiota in the gastrointestinal system is important for an individual's good health and well-being. The possibility of an intrauterine colonization of the placenta further suggests that the fetal environment before birth may also affect early microbiome development. Various factors influence the gut microbiota. Dysbiosis of microbiota may be associated with various diseases. Insulin regulates blood glucose levels, and disruption of the insulin signaling pathway results in insulin resistance. Insulin resistance or hyperinsulinemia is a pathological state in which the insulin-responsive cells have a diminished response to the hormone compared to normal physiological responses, resulting in reduced glucose uptake by the tissue cells. Insulin resistance is an important cause of type 2 diabetes mellitus. While there are various factors responsible for the etiology of insulin resistance, dysbiosis of gut microbiota may be an important contributing cause for metabolic disturbances. We discuss the mechanisms in skeletal muscles, adipose tissue, liver, and intestine by which insulin resistance can occur due to gut microbiota's metabolites. A better understanding of gut microbiota may help in the effective treatment of type 2 diabetes mellitus and metabolic syndrome.
Collapse
Affiliation(s)
- Alsalt Al-Busaidi
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Omer Alabri
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Jaifar Alomairi
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | | | | | - Hanan Al Lawati
- Pharmacy Program, Department of Pharmaceutics, Oman College of Health Sciences, Muscat 113, Oman
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
16
|
Castro RJ, Pedroza K, Hong MY. The effects of mango consumption on vascular health and immune function. Metabol Open 2023; 20:100260. [PMID: 38115868 PMCID: PMC10728568 DOI: 10.1016/j.metop.2023.100260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 12/21/2023] Open
Abstract
Objectives Heart disease, caused by atherosclerosis, is the leading cause of death. Maintaining vascular integrity is crucial to reducing atherosclerosis risk. Mangos are rich in fiber, vitamins, minerals, and phytochemicals that may offer cardioprotective and immune-boosting benefits. However, their effects on the vasculature and immune system in adults with overweight and obesity remain unclear. The objective of this study was to investigate the effects of mango consumption on vascular health and immune function in adults with overweight and obesity. Methods In a 12-week, crossover study, 27 overweight and obese participants consumed either 100 kcals of mangos daily or isocaloric low-fat cookies daily. Fasting blood samples were collected at baseline, week 4, and week 12 and analyzed for vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), P-selectin, E-selectin, sCD4, sCD8, sCD3E, and sCD45, tumor necrosis factor-alpha (TNF-α), catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD). Results Mango consumption significantly decreased VCAM-1 between baseline and week 4 (P = 0.046) and week 12 (P = 0.004). CAT increased between baseline and week 12 (P = 0.035) with mango consumption. GPx increased at week 12 compared to baseline and week 4 (P < 0.05). At week 12, SOD was higher after mango consumption compared to low-fat cookie consumption (P = 0.046). There were no significant differences in ICAM-1, P-selectin, E-selectin, sCD4, sCD8, sCD3E, sCD45 or TNF-α concentrations (P > 0.05 for all non-significant results). Conclusions This study suggests that 100 kcals of mangos may benefit the integrity of the vasculature by reducing VCAM-1 and increasing SOD, CAT, and GPx levels. Mangos can be an alternative snack for improving atherosclerosis and oxidative stress risk factors.
Collapse
Affiliation(s)
- Robert J. Castro
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA
| | - Kazandra Pedroza
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA
| | - Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA
| |
Collapse
|
17
|
Borg A, Lindblom J, Gomez A, Soltani A, Enman Y, Heintz E, Regardt M, Grannas D, Emamikia S, Parodis I. Obesity is associated with pain and impaired mobility despite therapy in systemic lupus erythematosus. Front Med (Lausanne) 2023; 10:1247354. [PMID: 37692782 PMCID: PMC10484101 DOI: 10.3389/fmed.2023.1247354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
Objective To investigate whether abnormal BMI is associated with health-related quality of life (HRQoL) impairments, defined as patient-reported problems within the different dimensions of the three-level EQ-5D (EQ-5D-3L), before and after treatment for active systemic lupus erythematosus (SLE). Patients and methods We conducted a post-hoc analysis of data from two phase III clinical trials of belimumab in SLE, i.e., BLISS-52 (n = 865) and BLISS-76 (n = 819). Underweight was defined as BMI <18.5 kg/m2, normal weight as BMI ≥18.5 but <25 kg/m2, pre-obesity as BMI ≥25 but <30 kg/m2, and obesity as BMI ≥30 kg/m2. We investigated associations between BMI groups and problems (level 2 or 3) within each one of the five EQ-5D dimensions before treatment initiation and at week 52, using logistic regression analysis adjusting for age, ethnicity, disease activity, and glucocorticoid dose, and for the post-treatment analysis also for belimumab treatment and baseline EQ-5D-3L responses. Results Of 1,684 patients included, 73 (4%) were classified as underweight, 850 (50%) as normal weight, 438 (26%) as pre-obese, and 323 (19%) as obese. At baseline, obesity was associated with mild to severe problems in all EQ-5D dimensions (p < 0.05 for all), yielding the strongest association with problems in mobility (adjusted odds ratio, aOR: 2.1; 95% confidence interval, CI: 1.6-2.8; p < 0.001). Pre-obesity was also associated with problems in mobility (aOR: 1.4; 95% CI: 1.1-1.8; p = 0.005). Post-intervention, obesity was associated with problems in mobility and pain/discomfort, and pre-obesity with problems in mobility and self-care (p < 0.05 for all). Conclusion Our study adds to the evidence that high BMI negatively affects SLE patients' HRQoL, with obesity being associated with pain and impaired mobility despite therapy.
Collapse
Affiliation(s)
- Alexander Borg
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Julius Lindblom
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Alvaro Gomez
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ameneh Soltani
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Yvonne Enman
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Emelie Heintz
- Department of Learning, Informatics, Management and Ethics (LIME), Karolinska Institutet, Stockholm, Sweden
| | - Malin Regardt
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Occupational Therapy and Physiotherapy, Karolinska University Hospital, Stockholm, Sweden
| | - David Grannas
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sharzad Emamikia
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
18
|
Fico BG, Maharaj A, Pena GS, Huang CJ. The Effects of Obesity on the Inflammatory, Cardiovascular, and Neurobiological Responses to Exercise in Older Adults. BIOLOGY 2023; 12:865. [PMID: 37372149 DOI: 10.3390/biology12060865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Obesity with advancing age leads to increased health complications that are involved in various complex physiological processes. For example, inflammation is a critical cardiovascular disease risk factor that plays a role in the stages of atherosclerosis in both aging and obesity. Obesity can also induce profound changes to the neural circuitry that regulates food intake and energy homeostasis with advancing age. Here we discuss how obesity in older adults impacts inflammatory, cardiovascular, and neurobiological functions with an emphasis on how exercise mediates each topic. Although obesity is a reversible disorder through lifestyle changes, it is important to note that early interventions are crucial to prevent pathological changes seen in the aging obese population. Lifestyle modifications such as physical activity (including aerobic and resistance training) should be considered as a main intervention to minimize the synergistic effect of obesity on age-related conditions, such as cerebrovascular disease.
Collapse
Affiliation(s)
- Brandon G Fico
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Arun Maharaj
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Gabriel S Pena
- Department of Kinesiology, University of Maryland, College Park, MD 20742, USA
| | - Chun-Jung Huang
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
19
|
Abstract
The 2019 novel coronavirus disease (COVID-19) triggered a rapidly expanding global pandemic. The presence of obesity in patients with COVID-19 has been established as a risk factor for disease severity, hospital admission, and mortality. Thus, it is imperative those living with obesity be vaccinated against COVID-19. Although there is a timeframe COVID-19 vaccines are efficacious in those living with obesity, more studies need to be conducted to ensure that those long-lasting protection is maintained, as obesity has implications on the immune system.
Collapse
Affiliation(s)
- Priya Jaisinghani
- Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY, USA.
| | - Rekha Kumar
- Division of Endocrinology, New York-Presbyterian Hospital and Weill Cornell Medical Center, New York, NY, USA
| |
Collapse
|
20
|
Grewal T, Buechler C. Adipokines as Diagnostic and Prognostic Markers for the Severity of COVID-19. Biomedicines 2023; 11:1302. [PMID: 37238973 PMCID: PMC10215701 DOI: 10.3390/biomedicines11051302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Accumulating evidence implicates obesity as a risk factor for increased severity of disease outcomes in patients infected with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Obesity is associated with adipose tissue dysfunction, which not only predisposes individuals to metabolic complications, but also substantially contributes to low-grade systemic inflammation, altered immune cell composition, and compromised immune function. This seems to impact the susceptibility and outcome of diseases caused by viruses, as obese people appear more vulnerable to developing infections and they recover later from infectious diseases than normal-weight individuals. Based on these findings, increased efforts to identify suitable diagnostic and prognostic markers in obese Coronavirus disease 2019 (COVID-19) patients to predict disease outcomes have been made. This includes the analysis of cytokines secreted from adipose tissues (adipokines), which have multiple regulatory functions in the body; for instance, modulating insulin sensitivity, blood pressure, lipid metabolism, appetite, and fertility. Most relevant in the context of viral infections, adipokines also influence the immune cell number, with consequences for overall immune cell activity and function. Hence, the analysis of the circulating levels of diverse adipokines in patients infected with SARS-CoV-2 have been considered to reveal diagnostic and prognostic COVID-19 markers. This review article summarizes the findings aimed to correlate the circulating levels of adipokines with progression and disease outcomes of COVID-19. Several studies provided insights on chemerin, adiponectin, leptin, resistin, and galectin-3 levels in SARS-CoV-2-infected patients, while limited information is yet available on the adipokines apelin and visfatin in COVID-19. Altogether, current evidence points at circulating galectin-3 and resistin levels being of diagnostic and prognostic value in COVID-19 disease.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
| |
Collapse
|
21
|
Cimini FA, Tramutola A, Barchetta I, Ceccarelli V, Gangitano E, Lanzillotta S, Lanzillotta C, Cavallo MG, Barone E. Dynamic Changes of BVRA Protein Levels Occur in Response to Insulin: A Pilot Study in Humans. Int J Mol Sci 2023; 24:ijms24087282. [PMID: 37108445 PMCID: PMC10138944 DOI: 10.3390/ijms24087282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Biliverdin reductase-A (BVRA) is involved in the regulation of insulin signaling and the maintenance of glucose homeostasis. Previous research showed that BVRA alterations are associated with the aberrant activation of insulin signaling in dysmetabolic conditions. However, whether BVRA protein levels change dynamically within the cells in response to insulin and/or glucose remains an open question. To this aim, we evaluated changes of intracellular BVRA levels in peripheral blood mononuclear cells (PBMC) collected during the oral glucose tolerance test (OGTT) in a group of subjects with different levels of insulin sensitivity. Furthermore, we looked for significant correlations with clinical measures. Our data show that BVRA levels change dynamically during the OGTT in response to insulin, and greater BVRA variations occur in those subjects with lower insulin sensitivity. Changes of BVRA significantly correlate with indexes of increased insulin resistance and insulin secretion (HOMA-IR, HOMA-β, and insulinogenic index). At the multivariate regression analysis, the insulinogenic index independently predicted increased BVRA area under curve (AUC) during the OGTT. This pilot study showed, for the first time, that intracellular BVRA protein levels change in response to insulin during OGTT and are greater in subjects with lower insulin sensitivity, supporting the role of BVR-A in the dynamic regulation of the insulin signaling pathway.
Collapse
Affiliation(s)
- Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Valentina Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Elena Gangitano
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Simona Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| | | | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
22
|
de Moraes TL, Costa FO, Cabral DG, Fernandes DM, Sangaleti CT, Dalboni MA, Motta E Motta J, de Souza LA, Montano N, Irigoyen MC, Brines M, J Tracey K, Pavlov VA, Consolim Colombo FM. Brief periods of transcutaneous auricular vagus nerve stimulation improve autonomic balance and alter circulating monocytes and endothelial cells in patients with metabolic syndrome: a pilot study. Bioelectron Med 2023; 9:7. [PMID: 36998060 PMCID: PMC10064781 DOI: 10.1186/s42234-023-00109-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/11/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND There is emerging evidence that the nervous system regulates immune and metabolic alterations mediating Metabolic syndrome (MetS) pathogenesis via the vagus nerve. This study evaluated the effects of transcutaneous auricular vagus nerve stimulation (TAVNS) on key cardiovascular and inflammatory components of MetS. METHODS We conducted an open label, randomized (2:1), two-arm, parallel-group controlled trial in MetS patients. Subjects in the treatment group (n = 20) received 30 min of TAVNS with a NEMOS® device placed on the cymba conchae of the left ear, once weekly. Patients in the control group (n = 10) received no stimulation. Hemodynamic, heart rate variability (HRV), biochemical parameters, and monocytes, progenitor endothelial cells, circulating endothelial cells, and endothelial micro particles were evaluated at randomization, after the first TAVNS treatment, and again after 8 weeks of follow-up. RESULTS An improvement in sympathovagal balance (HRV analysis) was observed after the first TAVNS session. Only patients treated with TAVNS for 8 weeks had a significant decrease in office BP and HR, a further improvement in sympathovagal balance, with a shift of circulating monocytes towards an anti-inflammatory phenotype and endothelial cells to a reparative vascular profile. CONCLUSION These results are of interest for further study of TAVNS as treatment of MetS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Michael Brines
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Kevin J Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Valentin A Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Fernanda M Consolim Colombo
- Nove de Julho University - UNINOVE, São Paulo, Brazil.
- University of São Paulo, Hypertension Unit, São Paulo, Brazil.
| |
Collapse
|
23
|
Shirakawa R, Nakajima T, Yoshimura A, Kawahara Y, Orito C, Yamane M, Handa H, Takada S, Furihata T, Fukushima A, Ishimori N, Nakagawa M, Yokota I, Sabe H, Hashino S, Kinugawa S, Yokota T. Enhanced mitochondrial oxidative metabolism in peripheral blood mononuclear cells is associated with fatty liver in obese young adults. Sci Rep 2023; 13:5203. [PMID: 36997629 PMCID: PMC10063628 DOI: 10.1038/s41598-023-32549-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/29/2023] [Indexed: 04/01/2023] Open
Abstract
Systemic inflammation underlies the association between obesity and nonalcoholic fatty liver disease (NAFLD). Here, we investigated functional changes in leukocytes' mitochondria in obese individuals and their associations with NAFLD. We analyzed 14 obese male Japanese university students whose body mass index was > 30 kg/m2 and 15 healthy age- and sex-matched lean university students as controls. We observed that the mitochondrial oxidative phosphorylation (OXPHOS) capacity with complex I + II-linked substrates in peripheral blood mononuclear cells (PBMCs), which was measured using a high-resolution respirometry, was significantly higher in the obese group versus the controls. The PBMCs' mitochondrial complex IV capacity was also higher in the obese subjects. All of the obese subjects had hepatic steatosis defined by a fatty liver index (FLI) score ≥ 60, and there was a positive correlation between their FLI scores and their PBMCs' mitochondrial OXPHOS capacity. The increased PBMCs' mitochondrial OXPHOS capacity was associated with insulin resistance, systemic inflammation, and higher serum levels of interleukin-6 in the entire series of subjects. Our results suggest that the mitochondrial respiratory capacity is increased in the PBMCs at the early stage of obesity, and the enhanced PBMCs' mitochondrial oxidative metabolism is associated with hepatic steatosis in obese young adults.
Collapse
Affiliation(s)
- Ryosuke Shirakawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takayuki Nakajima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Aya Yoshimura
- Health Care Center, Hokkaido University, Sapporo, Japan
| | | | - Chieko Orito
- Health Care Center, Hokkaido University, Sapporo, Japan
| | - Miwako Yamane
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Haruka Handa
- Department of Molecular Biology, Faculty of Medicine and Graduate School of Medicine and Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takaaki Furihata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Arata Fukushima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoki Ishimori
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masao Nakagawa
- Health Care Center, Hokkaido University, Sapporo, Japan
- Department of Hematology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Isao Yokota
- Department of Biostatistics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hisataka Sabe
- Department of Molecular Biology, Faculty of Medicine and Graduate School of Medicine and Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Faculty of Medical Sciences, Research Institute of Angiocardiology, Kyushu University, Fukuoka, Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
- Health Care Center, Hokkaido University, Sapporo, Japan.
- Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Kita-14, Nishi-5, Kita-Ku, Sapporo, 060-8648, Japan.
| |
Collapse
|
24
|
Patel TP, Levine JA, Elizondo DM, Arner BE, Jain A, Saxena A, Lopez-Ocasio M, Dagur PK, Famuyiwa O, Gupta S, Sarrafan-Chaharsoughi Z, Biancotto A, McCoy JP, Demidowich AP, Yanovski JA. Immunomodulatory effects of colchicine on peripheral blood mononuclear cell subpopulations in human obesity: Data from a randomized controlled trial. Obesity (Silver Spring) 2023; 31:466-478. [PMID: 36628649 PMCID: PMC9877161 DOI: 10.1002/oby.23632] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Colchicine is known to reduce inflammation and improve endothelial cell function and atherosclerosis in obesity, but there is little knowledge of the specific circulating leukocyte populations that are modulated by colchicine. METHODS A secondary analysis of a double-blind randomized controlled trial of colchicine 0.6 mg or placebo twice daily for 3 months on circulating leukocyte populations and regulation of the immune secretome in 35 adults with obesity was performed. RESULTS Colchicine altered multiple innate immune cell populations, including dendritic cells and lymphoid progenitor cells, monocytes, and natural killer cells when compared with placebo. Among all subjects and within the colchicine group, changes in natural killer cells were significantly positively associated with reductions in biomarkers of inflammation, including cyclooxygenase 2, pulmonary surfactant-associated protein D, myeloperoxidase, proteinase 3, interleukin-16, and resistin. Changes in dendritic cells were positively correlated with changes in serum heart-type fatty acid-binding protein concentrations. Additionally, colchicine treatment reduced cluster of differentiation (CD) CD4+ T effector cells and CD8+ T cytotoxic cells. Conversely, colchicine increased CD4+ and CD8+ T central memory cells and activated CD38High CD8+ T cells. Changes in CD4+ T effector cells were associated with changes in serum heart-type fatty acid-binding protein. CONCLUSIONS In adults with obesity, colchicine significantly affects circulating leukocyte populations involved in both innate and adaptive immune systems along with the associated inflammatory secretome.
Collapse
Affiliation(s)
- Tushar P. Patel
- Section on Growth and Obesity, Division of Intramural Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jordan A. Levine
- Section on Growth and Obesity, Division of Intramural Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Diana M. Elizondo
- Section on Growth and Obesity, Division of Intramural Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Brooke E. Arner
- Section on Growth and Obesity, Division of Intramural Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Arad Jain
- Section on Growth and Obesity, Division of Intramural Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ankit Saxena
- Flow Cytometry Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Lopez-Ocasio
- Flow Cytometry Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pradeep K. Dagur
- Flow Cytometry Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Olufisola Famuyiwa
- Section on Growth and Obesity, Division of Intramural Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Suryaa Gupta
- Section on Growth and Obesity, Division of Intramural Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Zahra Sarrafan-Chaharsoughi
- Section on Growth and Obesity, Division of Intramural Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Angelique Biancotto
- Center for Human Immunology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, M, USA
| | - J. Philip McCoy
- Flow Cytometry Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew P. Demidowich
- Section on Growth and Obesity, Division of Intramural Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- Johns Hopkins Community Physicians at Howard County General Hospital, Johns Hopkins Medicine, Columbia, MD, USA
| | - Jack A. Yanovski
- Section on Growth and Obesity, Division of Intramural Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
25
|
Zhao D, Liang GH, Pan JK, Zeng LF, Luo MH, Huang HT, Han YH, Lin FZ, Xu NJ, Yang WY, Liu J. Risk factors for postoperative surgical site infections after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Br J Sports Med 2023; 57:118-128. [PMID: 36517215 PMCID: PMC9872252 DOI: 10.1136/bjsports-2022-105448] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The primary aim was to evaluate risk factors for surgical site infections after anterior cruciate ligament reconstruction (ACLR). The secondary aim was to investigate the surgical site infection incidence rate and the mean time to postoperative surgical site infection symptoms. DESIGN Systematic review and meta-analysis. DATA SOURCES PubMed, Embase and Web of Science were searched from database inception to September 2021 and updated in April 2022. ELIGIBILITY CRITERIA Quantitative, original studies reporting potential risk factors for surgical site infections after ACLR were included. RESULTS Twenty-three studies with 3871 infection events from 469 441 ACLRs met the inclusion criteria. Male sex (OR 1.78, p< 0.00001), obesity (OR 1.82, p=0.0005), tobacco use (OR 1.37, p=0.01), diabetes mellitus (OR 3.40, p=0.002), steroid use history (OR 4.80, p<0.00001), previous knee surgery history (OR 3.63, p=0.02), professional athlete (OR 4.56, p=0.02), revision surgery (OR 2.05, p=0.04), hamstring autografts (OR 2.83, p<0.00001), concomitant lateral extra-articular tenodesis (OR 3.92, p=0.0001) and a long operating time (weighted mean difference 8.12, p=0.005) were identified as factors that increased the risk of surgical site infections (superficial and deep) after ACLR. Age, outpatient or inpatient surgery, bone-patellar tendon-bone autografts or allografts and a concomitant meniscus suture did not increase the risk of surgical site infections. The incidence of surgical site infections after ACLR was approximately 1% (95% CI 0.7% to 1.2%). The mean time from surgery to the onset of surgical site infection symptoms was approximately 17.1 days (95% CI 13.2 to 21.0 days). CONCLUSION Male sex, obesity, tobacco use, diabetes mellitus, steroid use history, previous knee surgery history, professional athletes, revision surgery, hamstring autografts, concomitant lateral extra-articular tenodesis and a long operation time may increase the risk of surgical site infections after ACLR. Although the risk of surgical site infections after ACLR is low, raising awareness and implementing effective preventions for risk factors are priorities for clinicians to reduce the incidence of surgical site infections due to its seriousness.
Collapse
Affiliation(s)
- Di Zhao
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Gui-Hong Liang
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
- Department of Sports Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jian-Ke Pan
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
- Department of Sports Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ling-Feng Zeng
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
- Department of Sports Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ming-Hui Luo
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
- Department of Sports Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - He-Tao Huang
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
- Department of Sports Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yan-Hong Han
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
- Department of Sports Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fang-Zheng Lin
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Nan-Jun Xu
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Wei-Yi Yang
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
- Department of Sports Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jun Liu
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
- Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Enginering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
- The fifth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
26
|
Fakhoury HMA, Elahi MA, Al Sarheed S, Al Dubayee M, Alshahrani A, Zhra M, Almassri A, Aljada A. Gene Expression Profiling of Peripheral Blood Mononuclear Cells in Type 2 Diabetes: An Exploratory Study. Medicina (B Aires) 2022; 58:medicina58121829. [PMID: 36557031 PMCID: PMC9787392 DOI: 10.3390/medicina58121829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Background and Objectives: Visceral obesity is associated with chronic low-grade inflammation that predisposes to metabolic syndrome. Indeed, infiltration of adipose tissue with immune-inflammatory cells, including 'classical' inflammatory M1 and anti-inflammatory 'alternative' M2 macrophages, causes the release of a variety of bioactive molecules, resulting in the metabolic complications of obesity. This study examined the relative expression of macrophage phenotypic surface markers, cholesterol efflux proteins, scavenger receptors, and adenosine receptors in human circulating peripheral blood mononuclear cells (PBMCs), isolated from patients with type 2 diabetes mellitus (T2DM), with the aim to phenotypically characterize and identify biomarkers for these ill-defined cells. Materials and Methodology: PBMCs were isolated from four groups of adults: Normal-weight non-diabetic, obese non-diabetic, newly diagnosed with T2DM, and T2DM on metformin. The mRNA expression levels of macrophage phenotypic surface markers (interleukin-12 (IL-12), C-X-C motif chemokine ligand 10 (CXCL10), C-C motif chemokine ligand 17 (CCL17), and C-C motif receptor 7 (CCR7)), cholesterol efflux proteins (ATP-binding cassette transporter-1 (ABCA1), ATP binding cassette subfamily G member 1 (ABCG1), and sterol 27-hydroxylase (CYP27A)), scavenger receptors (scavenger receptor-A (SR-A), C-X-C motif ligand 16 (CXCL16), and lectin-like oxidized LDL receptor-1 (LOX-1)), and adenosine receptors (adenosine A2A receptor (A2AR) and adenosine A3 receptor (A3R)) were measured using qRT-PCR. Results: In PBMCs from T2DM patients, the expression of IL-12, CCR7, ABCA1, and SR-A1 was increased, whereas the expression of CXCL10, CCL17, ABCG1,27-hydroxylase, LOX-1, A2AR and A3R was decreased. On the other hand, treatment with the antidiabetic drug, metformin, reduced the expression of IL-12 and increased the expression of 27-hydroxylase, LOX-1, CXCL16 and A2AR. Conclusions: PBMCs in the circulation of patients with T2DM express phenotypic markers that are different from those typically present in adipose tissue M1 and M2 macrophages and could be representative of metabolically activated macrophages (MMe)-like cells. Our findings suggest that metformin alters phenotypic markers of MMe-like cells in circulation.
Collapse
Affiliation(s)
- Hana M. A. Fakhoury
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Correspondence: (H.M.A.F.); (A.A.)
| | - Muhammad Affan Elahi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Saud Al Sarheed
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Mohammed Al Dubayee
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia
- Department of Medicine, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia
| | - Awad Alshahrani
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia
- Department of Medicine, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia
| | - Mahmoud Zhra
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Arwa Almassri
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Correspondence: (H.M.A.F.); (A.A.)
| |
Collapse
|
27
|
Miyashita D, Inoue R, Tsuno T, Okuyama T, Kyohara M, Nakahashi-Oda C, Nishiyama K, Fukushima S, Inada Y, Togashi Y, Shibuya A, Terauchi Y, Shirakawa J. Protective effects of S100A8 on sepsis mortality: Links to sepsis risk in obesity and diabetes. iScience 2022; 25:105662. [PMID: 36505926 PMCID: PMC9732389 DOI: 10.1016/j.isci.2022.105662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/23/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Obesity and diabetes are independent risk factors for death during sepsis. S100A8, an alarmin, is related to inflammation, obesity, and diabetes. Here, we examine the role of S100A8 in sepsis of obesity and diabetes models. Injection of S100A8 prolongs the survival of septic mice induced by lethal endotoxemia, Escherichia coli injection, or cecal ligation and puncture. S100A8 decrease the LPS-induced expression of proinflammatory cytokines in peritoneal macrophages by inhibiting TLR4-mediated signals in an autocrine manner. db/db, ob/ob, and western diet-fed mice demonstrate reduced upregulation of S100A8 induced by LPS treatment in both serum and peritoneal cells. These mice also show shorter survival after LPS injection, and S100A8 supplementation prolonged the survival. While myelomonocytic cells-specific S100A8-deficient mice (Lyz2 cre :S100A8 floxed/floxed ) exhibit shorter survival after LPS treatment, S100A8 supplementation prolonged the survival. Thus, myelomonocytic cell-derived S100A8 is crucial for protection from sepsis, and S100A8 supplementation improves sepsis, particularly in mice with obesity and diabetes.
Collapse
Affiliation(s)
- Daisuke Miyashita
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Takahiro Tsuno
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Tomoko Okuyama
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Mayu Kyohara
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Chigusa Nakahashi-Oda
- Department of Immunology, Faculty of Medicine, and R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan
| | - Kuniyuki Nishiyama
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Setsuko Fukushima
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Yutaro Inada
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Yu Togashi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, and R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
- Corresponding author
| |
Collapse
|
28
|
van der Valk ES, Mulder DS, Kouwenhoven T, Nagtzaam NMA, van Rossum EFC, Dik WA, Leenen PJM. Monocyte adaptations in patients with obesity during a 1.5 year lifestyle intervention. Front Immunol 2022; 13:1022361. [PMID: 36466916 PMCID: PMC9716348 DOI: 10.3389/fimmu.2022.1022361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/28/2022] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Obesity is associated with chronic, low-grade inflammation, which is reflected in altered peripheral blood monocyte characteristics. The aim of this study was to analyze the monocyte subset composition (classical (CM), intermediate (IM) and non-classical monocytes (NCM)), and their inflammatory marker profile (CD14, CD16, CD36, CD45, CD64, CD300e, HLA-DR) in individuals with obesity during a 1.5 year combined lifestyle intervention (CLI), comprising healthy nutrition, increased exercise and behavioral changes. METHODS We analyzed monocyte subset counts and immunophenotypes in 73 individuals with obesity, and associated these to baseline body mass index (BMI) and waist circumference (WC). The measurements were repeated after 10 weeks and at the end of the intervention (1.5 years). RESULTS Generally, monocyte subset counts were not associated to BMI or WC at baseline, neither did monocyte counts change during the 1.5 year CLI. Immunophenotypically, higher baseline BMI and WC were associated to lower CD14 and higher CD300e expression by all subsets. During CLI there were remarkable changes in marker profiles: expression of CD14, CD36, CD45 and CD64 significantly decreased in CM and IM, as did CD16 (IM and NCM) (p<0.05). CD300e initially decreased after 10 weeks, but increased sharply at 1.5 years (all subsets). We observed no consistent associations between changes in monocyte characteristics and anthropometric changes. CONCLUSION A 1.5 year CLI in individuals with obesity mediates persistent immunophenotypic adaptations related to cellular activation in blood monocytes, whereas changes in subset distribution are limited. Lifestyle-induced changes in the inflammatory profile of monocytes differ from the 'less-severe-obesity'-phenotype, suggesting a novel, 'post-weight-loss' monocyte setpoint.
Collapse
Affiliation(s)
- Eline S. van der Valk
- Obesity Center Centrum Gezond Gewicht (CGG), Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center (MC), Rotterdam, Netherlands
| | - Daniël S. Mulder
- Obesity Center Centrum Gezond Gewicht (CGG), Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Immunology, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Tessa Kouwenhoven
- Obesity Center Centrum Gezond Gewicht (CGG), Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
- Laboratory Medical Immunology, Department of Immunology, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Elisabeth F. C. van Rossum
- Obesity Center Centrum Gezond Gewicht (CGG), Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Willem A. Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Pieter J. M. Leenen
- Department of Immunology, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
29
|
Huang R, Chen Y, Tu M, Wang W. Monocyte to high-density lipoprotein and apolipoprotein A1 ratios are associated with bone homeostasis imbalance caused by chronic inflammation in postmenopausal women with type 2 diabetes mellitus. Front Pharmacol 2022; 13:1062999. [DOI: 10.3389/fphar.2022.1062999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Objective: Emerging evidences demonstrated that chronic inflammation can influence bone metabolism in type 2 diabetes mellitus (T2DM), leading to bone homeostasis imbalance. The aim of this study was to assess the correlations between novel pro-inflammatory indexes like monocyte to high-density lipoprotein (MHR), apolipoprotein A1 (MAR) ratios and bone mineral density (BMD), bone turnover markers in Chinese postmenopausal women with T2DM.Method: In this study, a total of 619 participants with complete data were included in the final analysis. Demographic and anthropometric information was collected. Biochemical parameters and bone turnover markers were determined by standard methods. BMD was measured by dual-energy x-ray absorptiometry. Correlation analysis and regression models were conducted to assess the associations between MHR, MAR and bone turnover markers, BMD. Multiple binomial logistic regression model was used to estimate the independent variables of MHR and MAR for osteoporosis.Results: Overall, the prevalence of osteoporosis was 38.3%. MHR and MAR were significantly correlated with C-terminal cross linking of type I collagen (β-CTX), L1-L4, femoral neck BMD and T scores. These correlations remained significant after adjustment for other confounding factors. Meanwhile, MHR and MAR were also significantly associated with higher odds of osteoporosis, the odds ratios (ORs) (95%CI) were 1.88 (1.49–2.38) and 2.30 (1.72–3.09) respectively. Furthermore, MHR and MAR seemed to have a good identifying value for osteoporosis. The area under the curve of MHR and MAR identifying osteoporosis were 0.791 (95% CI: 0.753–0.828) and 0.843 (95% CI: 0.809–0.877) respectively (p < 0.001). The optimal cut-off values of MHR and MAR were 4.53 × 108/mmol (sensitivity: 60.8%, specificity: 85.9%) and 4.74 × 108/g (sensitivity: 71.7%, specificity: 89.3%) respectively.Conclusion: MHR and MAR were significantly associated with osteoporosis. These two novel pro-inflammatory indexes may be ideal markers to reflect bone homeostasis imbalance caused by chronic inflammation in Chinese postmenopausal women with T2DM.
Collapse
|
30
|
Shi H, Schweren LJS, Ter Horst R, Bloemendaal M, van Rooij D, Vasquez AA, Hartman CA, Buitelaar JK. Low-grade inflammation as mediator between diet and behavioral disinhibition: A UK Biobank study. Brain Behav Immun 2022; 106:100-110. [PMID: 35944739 DOI: 10.1016/j.bbi.2022.07.165] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/19/2022] [Accepted: 07/30/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dietary patterns have been associated with variations in behavior. However, evidence has been limited and mixed, and the underlying mechanism remains unclear. OBJECTIVE Extend a previous study reporting significant associations between food patterns and behavioral disinhibition and explore whether low-grade inflammation is linked to behaviors and mediates the association between diet and behavioral disinhibition. DESIGN Among participants of the UK Biobank (UKB) we extracted a single behavioral disinhibition principal component using the UKB touchscreen questionnaire, Mental Health Questionnaire (MHQ), and registered diagnoses. We identified four dietary patterns (prudent diet, elimination of wheat/dairy/eggs, meat-based diet, full-cream dairy consumption) by using the Food Frequency Questionnaire (FFQ). Immune biomarkers and an aggregated inflammation score (INFLA-score) were used to characterize low-grade inflammation. Associations between dietary patterns and immune biomarkers, between immune biomarkers and disinhibition were assessed, with adjustment for demographics, lifestyle factors, and somatic health conditions. Next, mediation analyses were run to examine whether the association between dietary patterns and disinhibition was partially explained by inflammatory levels. We also conducted subgroup analyses to explore whether associations and the mediation effect differed by sex, age, ethnicity/race, body-mass-index (BMI), and socioeconomic status (SES). RESULTS The prudent diet was negatively, and the meat-based diet was positively associated with several pro-inflammatory biomarkers. Most immune biomarkers were positively associated with disinhibition (numbers of lymphocytes (βstandardized = 0.082, p < 0.001), monocytes (βstandardized = 0.043, p < 0.001), neutrophils (βstandardized = 0.071, p < 0.001), platelets (βstandardized = 0.022, p < 0.001), leukocytes (βstandardized = 0.093, p < 0.001), C-reactive protein (βstandardized = 0.051, p < 0.001), and for INFLA-score (βstandardized = 0.074, p < 0.001). In the mediation model, the INFLA-score mediated the association between prudent diet and meat-based diet and disinhibition score, with a significant indirect effect of low-grade inflammation for the prudent diet-disinhibition association (βstandardized = -0.007, p < 0.001) and for meat-disinhibition association (βstandardized = 0.001, p < 0.001)). Although all effects were small, covariates and interaction term adjustments did not attenuate the effects, and neither did most subgroup-only analyses. CONCLUSIONS The prudent diet was associated with a lower disinhibition score and this effect was partially mediated by the lower inflammation. Reversely, the meat-based diet was linked to more inflammation, which was associated with more disinhibition. Our findings suggest mediating effects of immune function in the relationship between diet and behavioral disinhibition. However further alternative designs such as interventional trials are needed to establish causal effects.
Collapse
Affiliation(s)
- Huiqing Shi
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, Gelderland, the Netherlands.
| | - Lizanne J S Schweren
- Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Rob Ter Horst
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mirjam Bloemendaal
- Department of Psychiatry, and Department of Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Gelderland, the Netherlands
| | - Daan van Rooij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, Gelderland, the Netherlands
| | - Alejandro Arias Vasquez
- Department of Psychiatry, and Department of Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Gelderland, the Netherlands
| | - Catharina A Hartman
- Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, Gelderland, the Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Nijmegen Gelderland, the Netherlands
| |
Collapse
|
31
|
Quarta S, Massaro M, Carluccio MA, Calabriso N, Bravo L, Sarria B, García-Conesa MT. An Exploratory Critical Review on TNF-α as a Potential Inflammatory Biomarker Responsive to Dietary Intervention with Bioactive Foods and Derived Products. Foods 2022; 11:2524. [PMID: 36010524 PMCID: PMC9407274 DOI: 10.3390/foods11162524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
This review collects and critically examines data on the levels of tumour necrosis factor-alpha (TNF-α) in lean, overweight and obese subjects, and the effects of intervention with different foods and food products containing bioactive constituents in overweight/obese individuals. We additionally explore the influence of different single nucleotide polymorphisms (SNPs) on TNF-α levels and compare the response to food products with that to some anti-obesity drugs. Our aim was to provide an overview of the variability, consistency, and magnitude of the reported effects of dietary factors on TNF-α, and to envisage the reliability of measuring changes in the levels of this cytokine as a biomarker responsive to food intervention in association with the reduction in body weight. Regarding the circulating levels of TNF-α, we report: (i) a large intra-group variability, with most coefficients of variation (CV%) values being ≥30% and, in many cases, >100%; (ii) a large between-studies variability, with baseline TNF-α values ranging from <1.0 up to several hundred pg/mL; (iii) highly variable effects of the different dietary approaches with both statistically significant and not significant decreases or increases of the protein, and the absolute effect size varying from <0.1 pg/mL up to ≈50 pg/mL. Within this scenario of variability, it was not possible to discern clear differentiating limits in TNF-α between lean, overweight, and obese individuals or a distinct downregulatory effect on this cytokine by any of the different dietary approaches reviewed, i.e., polyunsaturated fatty acids (PUFAs), Vitamin-D (VitD), mixed (micro)nutrients, (poly)phenols or other phytochemicals. Further, there was not a clear relationship between the TNF-α responses and body weight changes. We found similarities between dietary and pharmacological treatments in terms of variability and limited evidence of the TNF-α response. Different factors that contribute to this variability are discussed and some specific recommendations are proposed to reinforce the need to improve future studies looking at this cytokine as a potential biomarker of response to dietary approaches.
Collapse
Affiliation(s)
- Stefano Quarta
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy
| | - Marika Massaro
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | | | - Nadia Calabriso
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | - Laura Bravo
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
| | - Beatriz Sarria
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
| | - María-Teresa García-Conesa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Spanish National Research Council (CSIC), Campus de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
32
|
Siopis G. Obesity: A comorbidity-acquired immunodeficiency syndrome (CAIDS). Int Rev Immunol 2022; 42:415-429. [PMID: 35666083 DOI: 10.1080/08830185.2022.2083614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/25/2022] [Accepted: 05/20/2022] [Indexed: 12/15/2022]
Abstract
Accumulating data emphasize a strong link between obesity and the severity of coronavirus disease-2019 (COVID-19), including mortality. Obesity interferes with several components of the immune system including lymphoid tissue's integrity, leukocytes' development and function, complement system's activation, and the coordination of innate and adaptive immune responses. Overall, obesity results in a less efficient immune response to infectious agents. Severe acute respiratory syndrome coronavirus 2 exploits this weakened immune system in people with obesity to precipitate COVID-19, and in some cases death. It is therefore the author's recommendation that obesity should be viewed as another form of acquired immunodeficiency syndrome and be treated with the appropriate seriousness. Unlike the previously described acquired immunodeficiency syndrome (AIDS) that is caused by the Human Immunodeficiency Virus (HIV), obesity is a comorbidity-acquired immunodeficiency syndrome. People with AIDS do not die from HIV, but may die from opportunistic pathogens such as Mycobacterium tuberculosis. However, AIDS is ascribed its due importance in the course of deterioration of the patient. Similarly, obesity should be acknowledged further as a risk factor for mortality from COVID-19. Obesity is a modifiable condition and even in people with a strong genetic predisposition, lifestyle modifications can reverse obesity, and even moderate weight loss can improve the inflammatory milieu. Strong public health actions are warranted to promote lifestyle measures to reduce the burden from overweight and obesity that currently affect more than one-third of the global population, with projections alarming this may reach 55-80% within the next thirty years.
Collapse
Affiliation(s)
- George Siopis
- Institute for Physical Activity and Nutrition (IPAN), Burwood, Australia
- Faculty of Health, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| |
Collapse
|
33
|
Upregulated NLRP3 inflammasome activation is attenuated by anthocyanins in patients with nonalcoholic fatty liver disease: A case-control and an intervention study. Clin Res Hepatol Gastroenterol 2022; 46:101843. [PMID: 34922061 DOI: 10.1016/j.clinre.2021.101843] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Despite the recent attention focused on the roles of the NLRP3 inflammasome in the pathogenesis of metabolic and inflammatory diseases, little is known about the activation status of NLRP3 inflammasome in patients with nonalcoholic fatty liver disease (NAFLD). The present study aimed to investigate whether inflammasomes activation is upregulated in patients with NAFLD and the upregulation can be attenuated by anthocyanins, which are polyphenols with known anti-inflammatory activities. METHODS This study included a case-control study and a randomized controlled intervention trial. In the first part, NAFLD patients and healthy controls were recruited from a cohort of railroad workers. In the second part, NAFLD patients were randomly assigned to receive either capsules of anthocyanins (320 mg daily) or placebo for 12 weeks. A series of genes and factors associated with activation of NLRP3 inflammasome in subjects' plasma and peripheral blood mononuclear cells (PBMCs) were analyzed. RESULTS Compared with healthy controls, the mRNA levels of NLRP3 inflammasome components (NLRP3, caspase-1, interleukin (IL)-1β, and IL-18) were significantly upregulated in the PBMCs of NAFLD patients. Consistently, plasma levels of mature IL-1β and IL-18 in NAFLD patients were significantly higher than in controls. After anthocyanin administration, both mRNA expression of NLRP3 inflammasome components (caspase-1, IL-1β, and IL-18) in PBMCs and plasma levels of IL-1β and IL-18 decreased dramatically in NAFLD patients compared with controls. CONCLUSIONS This study has demonstrated that the activation of NLRP3 inflammasome is highly increased in NAFLD patients, but it can be markedly suppressed by anthocyanins, which provides a rationale for the development of anti-inflammatory therapies in NAFLD.
Collapse
|
34
|
Shayo SC, Ogiso K, Kawade S, Hashiguchi H, Deguchi T, Nishio Y. Dietary obesity and glycemic excursions cause a parallel increase in STEAP4 and pro-inflammatory gene expression in murine PBMCs. Diabetol Int 2022; 13:358-371. [PMID: 35463853 PMCID: PMC8980188 DOI: 10.1007/s13340-021-00542-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/05/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The balance between pro-atherogenic and anti-atherogenic factors is very crucial in the development of atherosclerotic lesions. Although the expression of the six-transmembrane epithelial antigen of the prostate 4 (STEAP4) in myeloid cells is known to be atheroprotective, there is not a single study reporting on the status of STEAP4 expression in circulating monocytes in the early stages of diet-induced obesity or in events of glycemic excursions. METHODS We induced glycemic spikes twice daily for a 1-week duration to rats fed on regular chow and western diet, and analyzed gene expression changes in the peripheral blood mononuclear cells (PBMCs). We also conducted experiments on RAW 264.7 cells to gain insight into some of our in vivo findings. RESULTS Diet-induced obesity and glycemic excursions independently caused a significant increase in STEAP4 mRNA expression in PBMCs. This was also accompanied by an induction of a substantial number of pro-inflammatory cytokines, chemokines, and chemokine receptors. However, the combined effect of western diet and hyperglycemic spikes was subtle and non-additive. In the in vitro setting, either glucose spikes, persistent hyperglycemia, or a combination of palmitic acid and insulin resulted in a parallel increase in expression of STEAP4 and pro-inflammatory genes. This was, however, significantly abrogated with 4-octyl itaconate or attenuated by inhibitors of p38MAPK and NF-kB. CONCLUSIONS STEAP4 expression in mononuclear cells is induced by increasing inflammation or oxidative stress. The observed increase in STEAP4 expression in circulating monocytes due to visceral obesity or glycemic excursions is a compensatory response. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13340-021-00542-1.
Collapse
Affiliation(s)
- Sigfrid Casmir Shayo
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Science, 8‑35‑1 Sakuragaoka, Kagoshima, 890‑8520 Japan
- Muhimbili University of Health and Allied Sciences, P.O.BOX 65001, Dar es Salaam, Tanzania
| | - Kazuma Ogiso
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Science, 8‑35‑1 Sakuragaoka, Kagoshima, 890‑8520 Japan
| | - Shigeru Kawade
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Science, 8‑35‑1 Sakuragaoka, Kagoshima, 890‑8520 Japan
| | - Hiroshi Hashiguchi
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Science, 8‑35‑1 Sakuragaoka, Kagoshima, 890‑8520 Japan
| | - Takahisa Deguchi
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Science, 8‑35‑1 Sakuragaoka, Kagoshima, 890‑8520 Japan
| | - Yoshihiko Nishio
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Science, 8‑35‑1 Sakuragaoka, Kagoshima, 890‑8520 Japan
| |
Collapse
|
35
|
Metabolism in atherosclerotic plaques: immunoregulatory mechanisms in the arterial wall. Clin Sci (Lond) 2022; 136:435-454. [PMID: 35348183 PMCID: PMC8965849 DOI: 10.1042/cs20201293] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
Over the last decade, there has been a growing interest to understand the link between metabolism and the immune response in the context of metabolic diseases but also beyond, giving then birth to a new field of research. Termed 'immunometabolism', this interdisciplinary field explores paradigms of both immunology and metabolism to provided unique insights into different disease pathogenic processes, and the identification of new potential therapeutic targets. Similar to other inflammatory conditions, the atherosclerotic inflammatory process in the artery has been associated with a local dysregulated metabolic response. Thus, recent studies show that metabolites are more than just fuels in their metabolic pathways, and they can act as modulators of vascular inflammation and atherosclerosis. In this review article, we describe the most common immunometabolic pathways characterised in innate and adaptive immune cells, and discuss how macrophages' and T cells' metabolism may influence phenotypic changes in the plaque. Moreover, we discuss the potential of targeting immunometabolism to prevent and treat cardiovascular diseases (CVDs).
Collapse
|
36
|
dos Reis EC, Rodrigues P, de Jesus TR, de Freitas Monteiro EL, Virtuoso Junior JS, Bianchi L. Risk of hospitalization and mortality due to COVID-19 in people with obesity: An analysis of data from a Brazilian state. PLoS One 2022; 17:e0263723. [PMID: 35245299 PMCID: PMC8896734 DOI: 10.1371/journal.pone.0263723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 01/25/2022] [Indexed: 12/29/2022] Open
Abstract
The aim of this article is to assess the odds ratio of hospitalization and mortality due to COVID-19 in people with obesity using data from residents of Espírito Santo, Brazil. An observational, quantitative, cross-sectional study was carried out from the database available on the official channel of the State Health Secretariat of Espírito Santo. Crude odds ratio estimates (ORs) referring to the association between variables were calculated, as well as adjusted odds ratios (adjusted odds ratios—OR adj.) and their respective 95% confidence intervals (CI 95%). The results indicate that men, non-white, no education or with lower education level and age over 40 years old were more likely to be hospitalized and died of COVID-19. People with obesity are at risk of hospitalization and death due to COVID-19 54% and 113% higher than people who do not have obesity. People with obesity had a higher chance of hospitalization when they were over 40 years old, had breathing difficulty, and the comorbidities diabetes (2.18 higher) and kidney disease (4.10 higher). The odds ratio of death for people with obesity over 60 years old was 12.51 higher, and those who were hospitalized was 17.9 higher compared to those who were not hospitalized.
Collapse
Affiliation(s)
- Erika Cardoso dos Reis
- Department of Clinical and Social Nutrition, School of Nutrition, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- * E-mail:
| | - Phillipe Rodrigues
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatielle Rocha de Jesus
- Department of Integrated Health Education, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | | | - Lucas Bianchi
- National School of Public Health (ENSP/Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Guzman BV, Elbel B, Jay M, Messito MJ, Curado S. Age-dependent association of obesity with COVID-19 severity in paediatric patients. Pediatr Obes 2022; 17:e12856. [PMID: 34581027 PMCID: PMC8646488 DOI: 10.1111/ijpo.12856] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/06/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Limited research has addressed the obesity-COVID-19 severity association in paediatric patients. OBJECTIVE To determine whether obesity is an independent risk factor for COVID-19 severity in paediatric patients and whether age modifies this association. METHODS SARS-CoV-2-positive patients at NYU Langone Health from 1 March 2020 to 3 January 2021 aged 0-21 years with available anthropometric measurements: weight, length/height and/or body mass index (BMI). Modified log-Poisson models were utilized for the analysis. Main outcomes were 1) hospitalization and 2) critical illness (intensive care unit [ICU] admission). RESULTS One hundred and fifteen of four hundred and ninety-four (23.3%) patients had obesity. Obesity was an independent risk factor for critical illness (adjusted risk ratio [ARR] 2.02, 95% CI 1.17 to 3.48). This association was modified by age, with obesity related to a greater risk for critical illness in adolescents (13-21 years) [ARR 3.09, 95% CI 1.48 to 6.47], but not in children (0-12 years). Obesity was not an independent risk factor for hospitalization for any age. CONCLUSION Obesity was an independent risk factor for critical illness in paediatric patients, and this association was modified by age, with obesity related to a greater risk for critical illness in adolescents, but not in children. These findings are crucial for patient risk stratification and care.
Collapse
Affiliation(s)
- Benedict Vincent Guzman
- NYU Langone Comprehensive Program on ObesityNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Brian Elbel
- NYU Langone Comprehensive Program on ObesityNYU Grossman School of MedicineNew YorkNew YorkUSA,Department of Population HealthNYU Grossman School of MedicineNew YorkNew YorkUSA,NYU Wagner Graduate School of Public ServiceNew YorkNew YorkUSA
| | - Melanie Jay
- NYU Langone Comprehensive Program on ObesityNYU Grossman School of MedicineNew YorkNew YorkUSA,Department of Population HealthNYU Grossman School of MedicineNew YorkNew YorkUSA,Department of MedicineNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Mary Jo Messito
- NYU Langone Comprehensive Program on ObesityNYU Grossman School of MedicineNew YorkNew YorkUSA,Department of PediatricsNYU Grossman School of Medicine, Bellevue Hospital CenterNew YorkNew YorkUSA
| | - Silvia Curado
- NYU Langone Comprehensive Program on ObesityNYU Grossman School of MedicineNew YorkNew YorkUSA,Department of Cell BiologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| |
Collapse
|
38
|
Azarcoya-Barrera J, Wollin B, Veida-Silva H, Makarowski A, Goruk S, Field CJ, Jacobs RL, Richard C. Egg-Phosphatidylcholine Attenuates T-Cell Dysfunction in High-Fat Diet Fed Male Wistar Rats. Front Nutr 2022; 9:811469. [PMID: 35187037 PMCID: PMC8847771 DOI: 10.3389/fnut.2022.811469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is associated with immune dysfunction including an impaired T-cell function characterized by a lower IL-2 (proliferation marker) production after stimulation. Phosphatidylcholine (PC), a form of choline mostly found in eggs, has been shown to beneficially modulate T-cell responses during the lactation period by increasing the production of IL-2. To determine the impact of egg-PC as part of a high-fat diet on immune function we randomly fed male Wistar rats one of three diets containing the same amount of total choline but differing in the form of choline: 1-Control low fat [CLF, 10% wt/wt fat, 100% free choline (FC)]; 2- Control high-fat (CHF, 25% wt/wt fat, 100% FC); 3- PC high-fat (PCHF, 25% wt/wt, 100% PC). After 9 weeks of feeding, rats were euthanized. Cell phenotypes and ex vivo cytokine production by splenocytes stimulated with phorbol 12-myristate 13-acetate plus ionomycin (PMA+I), lipopolysaccharide (LPS) and pokeweed (PWM) were measured by flow cytometry and ELISA, respectively. Rats fed the PCHF diet had a lower proportion of CD3+ cells when compared to both the CLF and the CHF. Following PMA+I stimulation, splenocytes from the CHF group produced less IL-2 and TNF-α compared to CLF and PCHF groups. No significant differences in cytokine production were found among groups after LPS and PWM stimulation. Our results show that feeding a high-fat diet impairs T-cell responses, as measured by ex vivo cytokine production, which can be attenuated by providing egg-PC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the recently published scientific evidence on the effects of diet on diabetes and skeletal health. RECENT FINDINGS The impact of diet on overall health has been a growing topic of interest among researchers. An inappropriate eating habit is a relatively modified risk factor for diabetes in adults. Parallel with the significant increase in the incidence of diabetes mellitus worldwide, many studies have shown the benefits of lifestyle modifications, including diet and exercise for people with, or at risk of developing, diabetes. In the last years, accumulating evidence suggests that diabetes is a risk factor for bone fragility. As lifestyle intervention represents an effective option for diabetes management and treatment, there is potential for an effect on bone health. Healthy lifestyle is critical to prevent bone fragility. However, more studies are needed to fully understand the impact of diet and weight loss on fracture risk in diabetics.
Collapse
Affiliation(s)
- M Faraj
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128, Rome, Italy
| | - N Napoli
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128, Rome, Italy.
- Division of Bone and Mineral Diseases, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
40
|
Hwang SY, An JH, Kim KB, Lee JH, Park SM, Oh YI, Chae HK, Youn HY. Gene expression of adipokines and inflammatory cytokines in peripheral blood mononuclear cells of obese dogs. Vet Med Sci 2022; 8:517-523. [PMID: 35044092 PMCID: PMC8959286 DOI: 10.1002/vms3.713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background Peripheral blood mononuclear cells (PBMCs) have been identified as a possible marker of inflammation in obesity. Understanding the expression of pro‐ and anti‐inflammatory cytokines in PBMCs in obese dogs will help control obesity‐related inflammatory diseases. Objectives The aim of this study was to evaluate the role of PBMCs in obesity‐associated chronic inflammation by analyzing the expression of adipokines and inflammatory cytokines. Methods Blood samples were obtained from 25 subjects and real‐time quantitative polymerase chain reaction determinations were performed to quantify the gene expression levels of adipokines and inflammatory cytokines, including TNF‐α, IL‐17, leptin, MCP‐1, and adiponectin, in the PBMCs. Results The results showed that the gene expression levels of TNF‐α (p < 0.001), IL‐17 (p < 0.0001), and leptin (p < 0.0001) were strongly upregulated in the PBMCs of obese dogs compared to that in non‐obese dogs. Conclusions The changes in gene expression levels of inflammation‐related adipokines and pro‐inflammatory cytokines occur in PBMCs, which may contribute to the low‐grade chronic inflammation that is present in obesity.
Collapse
Affiliation(s)
- Seo-Young Hwang
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Ju-Hyun An
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Bo Kim
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Hwa Lee
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Su-Min Park
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Ye-In Oh
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Hyung Kyu Chae
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
41
|
A Pilot Study of Gene Expression Analysis in Peripheral Blood Mononuclear Cells in Response to a Hypocaloric Mediterranean Diet. DISEASE MARKERS 2022; 2022:3706753. [PMID: 35059043 PMCID: PMC8766194 DOI: 10.1155/2022/3706753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
Background Few studies have examined gene expression in peripheral blood mononuclear cells (PBMCs) after a dietary intervention. Objective Our study is aimed at evaluating in a pilot study the peripheral blood gene expression in obese patients after weight loss secondary to a hypocaloric Mediterranean diet. Design A sample of 11 obese subjects without metabolic syndrome was enrolled. Biochemical, anthropometric parameters and microarray analysis were performed at baseline and after 6 months of dietary intervention. Results The mean age was 43.1 ± 6.3 years, and the mean body mass index (BMI) was 38.6 ± 8.1 kg/m2. All the next improvements were statistically significant: body weight −7.4 ± 1.9 kg, BMI -2.5 ± 0.2 kg, fat mass −5.7 ± 1.2 kg, waist circumference −5.8 ± 1.2 cm, triglycerides −17.4 ± 6.5 mg/dl, C-reactive protein −3.1 ± 1.5 mg/dL, insulin −2.1 ± 1.0 mUI/L, and HOMA-IR −0.7 ± 0.2 units. We identified 634 differentially expressed genes: 262 genes with relative higher expression levels and 372 with lower expression levels. Cluster analysis showed 35 genes in nutritional disease and 17 genes in endocrine system. The most relevant gene was thyroid peroxidase (TPO), and this gene was overexpressed, and the next genes carbonic anhydrase VI (CA6), caveolin protein 1 (CAV1) and solute carrier family type 12 (SLLC12A3), soluble carrier family type 12 (SLLC12A3), beta 3 receptor (ADRB3), and glutamate receptor ionotropic N methyl D aspartate 2 A (GRIN2A) were all underexpressed. Conclusion In PBMC from obese patients after a diet with a Mediterranean pattern, the expression of 634 genes, of the endocrine system and of nutritional disease, is modified.
Collapse
|
42
|
Wang W, Chen ZY, Guo XL, Tu M. Monocyte to High-Density lipoprotein and Apolipoprotein A1 Ratios: Novel Indicators for Metabolic Syndrome in Chinese Newly Diagnosed Type 2 Diabetes. Front Endocrinol (Lausanne) 2022; 13:935776. [PMID: 35909551 PMCID: PMC9330493 DOI: 10.3389/fendo.2022.935776] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Increasing evidence highlighted that chronic inflammation involved in the development of metabolic syndrome (MetS) and Type 2 diabetes mellitus (T2DM). This prospective study was aimed to assess the association between MetS and novel pro-inflammatory indicators like monocyte-to-high-density lipoprotein and monocyte-to-apolipoprotein A1 ratios (MHR and MAR) in Chinese newly diagnosed T2DM. METHOD A total of 605 Chinese newly diagnosed T2DM with complete and available data were enrolled in this study. Demographic and anthropometric information were collected. Laboratory assessments were determined by standard methods. MetS was based on the Chinese Diabetes Society definition. Multiple binomial logistic regression model was used to estimate the independent variables of MHR and MAR for MetS. Receiver operating characteristic (ROC) curve was conducted to assess the optimal cutoff value of MHR and MAR in identifying MetS. RESULTS Overall, the prevalence of MetS was 60.2%. The correlation analysis showed that MHR and MAR were closely correlated with metabolic risk factors like body mass index, waist circumference, triglycerides, high-density lipoprotein cholesterol, systolic blood pressure, diastolic blood pressure, uric acid, and insulin resistance. MHR and MAR were also significantly associated with higher odds of MetS after adjustment for other confounders, the odds ratios (ORs) (95%CI) were 1.50 (1.14-1.97) and 2.26(1.79-2.87) respectively. Furthermore, MHR and MAR were also seemed to have higher area under the curve (AUC) for MetS than ApoA1 and monocyte alone from the ROC curve analysis (P < 0.05). The AUCs of MHR and MAR identifying MetS were 0.804 (95% CI: 0.768-0.839) and 0.840 (95% CI: 0.806-0.873) respectively (P < 0.001). The optimal cutoff values of MHR and MAR were 3.57 × 108/mmol (sensitivity: 76.1%, specificity: 73.4%) and 3.95 × 108/g (sensitivity: 79.7%, specificity: 84.6%), respectively. CONCLUSIONS MHR and MAR were significantly associated with MetS. These two novel pro-inflammatory indicators may be useful markers for MetS in Chinese newly diagnosed T2DM.
Collapse
|
43
|
Alqahtani FY, Aleanizy FS, Mohamed RAEH, Al-Maflehi N, Alrfaei BM, Almangour TA, Alkhudair N, Bawazeer G, Shamlan G, Alanazi MS. Association Between Obesity and COVID-19 Disease Severity in Saudi Population. Diabetes Metab Syndr Obes 2022; 15:1527-1535. [PMID: 35600752 PMCID: PMC9121990 DOI: 10.2147/dmso.s365491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The persistent coronavirus disease 2019 (COVID-19) outbreak has placed a significant burden on the scientific and medical professions. The study examined the association between body mass index (BMI), stratified by category, and severe form of COVID-19, and to explore the influence of demographic characteristics and other known risk factors. METHODS This was a retrospective analysis based on COVID-19 data from the Saudi Arabian Ministry of Health. Data were collected for all patients admitted to three main hospitals in Riyadh region between March 1st and July 30, 2020. The effects of BMI, demographic characteristics, clinical presentation, and comorbidities on infection severity were investigated. RESULTS A total of 950 patients were included in the study (70% male, 85% aged younger than 60 years old). A total of 55 (5.8%) patients were underweight, 263 (27.7%) were normal weight, 351 (37%) were overweight, 161 (17%) were obese class I, 76 (8%) were obese class II, and 44 (4.6%) were obese class III. Cough, fever, and shortness of breath were the most common symptoms among overweight patients. According to the findings of a bivariate logistic regression study, class III obesity was significantly associated with a more severe form of COVID-19 (odds ratio, 2.874; 95% confidence interval, 1.344-6.149). CONCLUSION This study revealed that patients with a BMI ≥40 kg/m2 had a higher risk of severe COVID-19 than those with normal weight. This suggests that obesity is a risk factor for severe COVID-19 and influences disease presentation.
Collapse
Affiliation(s)
- Fulwah Yahya Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Correspondence: Fulwah Yahya Alqahtani, Email
| | - Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rania Ali El Hadi Mohamed
- College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
- Federal Ministry of Health, Khartoum, Sudan
| | - Nassr Al-Maflehi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Bahauddeen M Alrfaei
- Department of Cellular Therapy and Cancer Research, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Thamer A Almangour
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nora Alkhudair
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ghada Bawazeer
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ghalia Shamlan
- Department of Human Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh, 11362, Saudi Arabia
| | - Marzouqah S Alanazi
- Emergency Medicine Consultant, Emergency Department, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia
| |
Collapse
|
44
|
Kotin J, Walther C, Wenzel U, Zyriax BC, Borof K, Schnabel RB, Seedorf U, Jagodzinski A, Heydecke G, Lamprecht R, Smeets R, Beikler T, Aarabi G. Association between periodontitis and the metabolic syndrome in the Hamburg City Health Study. J Periodontol 2021; 93:1150-1160. [PMID: 34967009 DOI: 10.1002/jper.21-0464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Previous studies demonstrated an association between severe chronic periodontitis (CP) and the metabolic syndrome (MetS). However, these studies mostly employed the meanwhile outdated NCEP-ATPIII case definition of the MetS. Additionally, CP was rarely diagnosed based on a full-mouth examination. Thus, the aim of the current study was to re-evaluate the potential association between CP and the MetS in the Hamburg City Health Study (HCHS), a large population-based survey of middle-aged and elderly men and women in Germany, in view of more current definitions of the MetS and CP. METHODS A cross-sectional study was performed with baseline-data from participants of the Hamburg City Health Study (HCHS). Periodontitis severity grades were determined in a random sample of 6,209 participants of which 5,456 had sufficient data to call absence or presence of the MetS. Variables defining the MetS according to the currently valid harmonized definition were determined and a full-mouth examination was performed, including determination of the clinical attachment loss (AL), bleeding on probing (BOP), and dental plaque (PI) index. CP was classified in three grades of severity (none/mild, moderate, and severe). The Kruskal-Wallis test or the Chi-squared test were used for descriptive statistics and multivariate logistic regression models with and without adjustments for potential confounders (age, sex, smoking, high sensitivity C-reactive protein (hsCRP), energy intake, and physical activity) were used to test for associations. RESULTS The prevalence of the MetS (39.0%) increased according to the severity grades of periodontitis (none/mild: 33.6%; moderate: 38.7%, and severe: 46.8%). Multivariate logistic regression analyses demonstrated that severe but not moderate CP was associated with the MetS after adjusting for age and sex (odds ratio [OR]: 1.24; 95% confidence interval [CI]: 1.03-1.48; p = 0.02). However, the association was attenuated after additional adjustment for smoking (OR: 1.19; 95% CI: 0.99-1.43; p = 0.058) and hsCRP, energy intake, and physical activity (OR: 1.11; 95% CI 0.91-1.36; p = 0.294). CONCLUSIONS The use of the more current definitions for the MetS and CP confirmed previous observations of an age- and sex-adjusted association between severe CP and the MetS. Smoking, high energy intake and low physical activity were identified as important lifestyle-related confounders. Abdominal obesity, as indicated by elevated waist circumference, came out as the most important component of the MetS in relation to CP. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jennifer Kotin
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Prosthetic Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carolin Walther
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Prosthetic Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Wenzel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit-Christiane Zyriax
- Midwifery Science - Health Care Research and Prevention, Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Borof
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Prosthetic Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Epidemiological Study Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renate B Schnabel
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Udo Seedorf
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Prosthetic Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Jagodzinski
- Epidemiological Study Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
| | - Guido Heydecke
- Department of Prosthetic Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ragna Lamprecht
- Department of Prosthetic Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ghazal Aarabi
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Prosthetic Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
45
|
Li H, Wu G, Zhao L, Zhang M. Suppressed inflammation in obese children induced by a high-fiber diet is associated with the attenuation of gut microbial virulence factor genes. Virulence 2021; 12:1754-1770. [PMID: 34233588 PMCID: PMC8274444 DOI: 10.1080/21505594.2021.1948252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
In our previous study, a gut microbiota-targeted dietary intervention with a high-fiber diet improved the immune status of both genetically obese (Prader-Willi Syndrome, PWS) and simple obese (SO) children. However, PWS children had higher inflammation levels than SO children throughout the trial, the gut microbiota of the two cohorts was similar. As some virulence factors (VFs) produced by the gut microbiota play a role in triggering host inflammation, this study compared the characteristics and changes of gut microbial VF genes of the two cohorts before and after the intervention using a fecal metagenomic dataset. We found that in both cohorts, the high-fiber diet reduced the abundance of VF, and particularly pathogen-specific, genes. The composition of VF genes was also modulated, especially for offensive and defensive VF genes. Furthermore, genes belonging to invasion, T3SS (type III secretion system), and adherence classes were suppressed. Co-occurrence network analysis detected VF gene clusters closely related to host inflammation in each cohort. Though these cohort-specific clusters varied in VF gene combinations and cascade reactions affecting inflammation, they mainly contained VFs belonging to iron uptake, T3SS, and invasion classes. The PWS group had a lower abundance of VF genes before the trial, which suggested that other factors could also be responsible for the increased inflammation in this cohort. This study provides insight into the modulation of VF gene structure in the gut microbiota by a high-fiber diet, with respect to reduced inflammation in obese children, and differences in VF genes between these two cohorts.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Guojun Wu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition and Health, School of Environmental and Biological Sciences, Rutgers University, NJ, USA
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
46
|
Malesza IJ, Malesza M, Walkowiak J, Mussin N, Walkowiak D, Aringazina R, Bartkowiak-Wieczorek J, Mądry E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021; 10:cells10113164. [PMID: 34831387 PMCID: PMC8619527 DOI: 10.3390/cells10113164] [Citation(s) in RCA: 374] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is responsible for recovering energy from food, providing hosts with vitamins, and providing a barrier function against exogenous pathogens. In addition, it is involved in maintaining the integrity of the intestinal epithelial barrier, crucial for the functional maturation of the gut immune system. The Western diet (WD)—an unhealthy diet with high consumption of fats—can be broadly characterized by overeating, frequent snacking, and a prolonged postprandial state. The term WD is commonly known and intuitively understood. However, the strict digital expression of nutrient ratios is not precisely defined. Based on the US data for 1908–1989, the calory intake available from fats increased from 32% to 45%. Besides the metabolic aspects (hyperinsulinemia, insulin resistance, dyslipidemia, sympathetic nervous system and renin-angiotensin system overstimulation, and oxidative stress), the consequences of excessive fat consumption (high-fat diet—HFD) comprise dysbiosis, gut barrier dysfunction, increased intestinal permeability, and leakage of toxic bacterial metabolites into the circulation. These can strongly contribute to the development of low-grade systemic inflammation. This narrative review highlights the most important recent advances linking HFD-driven dysbiosis and HFD-related inflammation, presents the pathomechanisms for these phenomena, and examines the possible causative relationship between pro-inflammatory status and gut microbiota changes.
Collapse
Affiliation(s)
- Ida Judyta Malesza
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (I.J.M.); (J.W.)
| | - Michał Malesza
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.M.); (J.B.-W.)
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (I.J.M.); (J.W.)
| | - Nadiar Mussin
- Department of General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan;
| | - Dariusz Walkowiak
- Department of Organization and Management in Health Care, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
| | - Raisa Aringazina
- Department of Internal Diseases No. 1, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan;
| | | | - Edyta Mądry
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.M.); (J.B.-W.)
- Correspondence:
| |
Collapse
|
47
|
Khwatenge CN, Pate M, Miller LC, Sang Y. Immunometabolic Dysregulation at the Intersection of Obesity and COVID-19. Front Immunol 2021; 12:732913. [PMID: 34737743 PMCID: PMC8560738 DOI: 10.3389/fimmu.2021.732913] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity prevails worldwide to an increasing effect. For example, up to 42% of American adults are considered obese. Obese individuals are prone to a variety of complications of metabolic disorders including diabetes mellitus, hypertension, cardiovascular disease, and chronic kidney disease. Recent meta-analyses of clinical studies in patient cohorts in the ongoing coronavirus-disease 2019 (COVID-19) pandemic indicate that the presence of obesity and relevant disorders is linked to a more severe prognosis of COVID-19. Given the significance of obesity in COVID-19 progression, we provide a review of host metabolic and immune responses in the immunometabolic dysregulation exaggerated by obesity and the viral infection that develops into a severe course of COVID-19. Moreover, sequela studies of individuals 6 months after having COVID-19 show a higher risk of metabolic comorbidities including obesity, diabetes, and kidney disease. These collectively implicate an inter-systemic dimension to understanding the association between obesity and COVID-19 and suggest an interdisciplinary intervention for relief of obesity-COVID-19 complications beyond the phase of acute infection.
Collapse
Affiliation(s)
- Collins N Khwatenge
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Marquette Pate
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Laura C Miller
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| |
Collapse
|
48
|
Sola-Rodríguez S, Vargas-Hitos JA, Gavilán-Carrera B, Rosales-Castillo A, Ríos-Fernández R, Sabio JM, Soriano-Maldonado A. Physical Fitness Attenuates the Impact of Higher Body Mass and Adiposity on Inflammation in Women With Systemic Lupus Erythematosus. Front Immunol 2021; 12:729672. [PMID: 34721392 PMCID: PMC8552526 DOI: 10.3389/fimmu.2021.729672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022] Open
Abstract
Aims Higher body mass and adiposity represent independent contributors to the systemic low-grade inflammatory state often observed in patients with systemic lupus erythematosus (SLE). This study assessed the role of physical fitness in the association of body mass and adiposity with inflammation in women with SLE. Methods A total of 77 women with SLE were included in this cross-sectional study. We obtained body mass index, waist-to-height ratio, and body fat percentage as indicators of body mass and adiposity. Inflammation was assessed through Serum levels of C-reactive protein, interleukin 6, and leptin. Cardiorespiratory fitness was assessed with the 6-minute walk test, range of motion with the back-scratch test, and muscular strength with handgrip dynamometry. Results Cardiorespiratory fitness attenuated the association of both body mass index and body fat percentage with interleukin 6 (all, P<0.05). Range of motion attenuated the association of body mass index with interleukin 6 (P<0.05) and the association of body fat percentage with C-reactive protein (P<0.05). These interactions indicated that higher fitness was associated with a lower increase in inflammation per unit increase of body mass or adiposity. Muscular strength showed a non-significant trend to attenuate the association of body fat percentage with interleukin 6 (P=0.057) but potentiated the association of body fat percentage with leptin (P<0.05). Conclusion These findings suggest that higher levels of cardiorespiratory fitness and range of motion might attenuate the impact of higher body mass and adiposity on inflammation in women with SLE. The role of muscular strength requires further investigation.
Collapse
Affiliation(s)
- Sergio Sola-Rodríguez
- Department of Education, Faculty of Education Sciences, University of Almería, Almería, Spain.,SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
| | - José Antonio Vargas-Hitos
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, "Virgen de las Nieves" University Hospital, Granada, Spain
| | - Blanca Gavilán-Carrera
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Antonio Rosales-Castillo
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, "Virgen de las Nieves" University Hospital, Granada, Spain
| | - Raquel Ríos-Fernández
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, "San Cecilio" University Hospital, Granada, Spain
| | - José Mario Sabio
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, "Virgen de las Nieves" University Hospital, Granada, Spain
| | - Alberto Soriano-Maldonado
- Department of Education, Faculty of Education Sciences, University of Almería, Almería, Spain.,SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
| |
Collapse
|
49
|
Cimini FA, Barchetta I, Zuliani I, Pagnotta S, Bertoccini L, Dule S, Zampieri M, Reale A, Baroni MG, Cavallo MG, Barone E. Biliverdin reductase-A protein levels are reduced in type 2 diabetes and are associated with poor glycometabolic control. Life Sci 2021; 284:119913. [PMID: 34453944 DOI: 10.1016/j.lfs.2021.119913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
AIM Biliverdin reductase-A (BVR-A) other than its canonical role in the degradation pathway of heme as partner of heme oxygenase-1 (HO1), has recently drawn attention as a protein with pleiotropic functions involved in insulin-glucose homeostasis. However, whether BVR-A expression is altered in type 2 diabetes (T2D) has never been evaluated. MAIN METHODS BVR-A protein levels were evaluated in T2D (n = 44) and non-T2D (n = 29) subjects, who underwent complete clinical workup and routine biochemistry. In parallel, levels HO1, whose expression is regulated by BVR-A as well as levels of tumor necrosis factor α (TNFα), which is a known repressor for BVR-A with pro-inflammatory properties, were also assessed. KEY FINDINGS BVR-A levels were significantly lower in T2D subjects than in non-T2D subjects. Reduced BVR-A levels were associated with greater body mass, systolic blood pressure, fasting blood glucose (FBG), glycated hemoglobin (HbA1c), triglycerides, transaminases and TNFα, and with lower high-density lipoprotein (HDL) levels. Lower BVR-A levels are associated with reduced HO1 protein levels and the multivariate analysis showed that BVR-A represented the main determinant of HO1 levels in T2D after adjustment. In addition, reduced BVR-A levels were able to predict the presence of T2D with AUROC = 0.69. for potential confounders. SIGNIFICANCE Our results demonstrate for the first time that BVR-A protein levels are reduced in T2D individuals, and that this alteration strictly correlates with poor glycometabolic control and a pro-inflammatory state. Hence, these observations reinforce the hypothesis that reduced BVR-A protein levels may represent a key event in the dysregulation of intracellular pathways finally leading to metabolic disorders.
Collapse
Affiliation(s)
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Ilaria Zuliani
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Sara Pagnotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Laura Bertoccini
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Sara Dule
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Michele Zampieri
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Anna Reale
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Marco Giorgio Baroni
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L'Aquila, Italy; Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, Pozzilli, Is, Italy
| | | | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy.
| |
Collapse
|
50
|
Brandão SCS, Godoi ETAM, de Oliveira Cordeiro LH, Bezerra CS, de Oliveira Xavier Ramos J, de Arruda GFA, Lins EM. COVID-19 and obesity: the meeting of two pandemics. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 65:3-13. [PMID: 33320454 PMCID: PMC10528705 DOI: 10.20945/2359-3997000000318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023]
Abstract
COVID-19 and obesity are two pandemic diseases that the world is currently facing. Both activate the immune system and mediate inflammation. A sequence of disease phases in patients with severe COVID-19 results in a cytokine storm, which amplifies the subclinical inflammation that already exists in patients with obesity. Pro-inflammatory cytokines and chemotactic factors increase insulin resistance in obesity. Therefore, a greater systemic inflammatory response is establishe, along with an increased risk of thrombotic phenomena and hyperglycemic conditions. These changes further impair pulmonary, cardiac, hepatic, and renal functions, in addition to hindering glycemic control in people with diabetes and pre-diabetes. This review explains the pathophysiological mechanisms of these two pandemic diseases, provides a deeper understanding of this harmful interaction and lists possible therapeutic strategies for this risk group.
Collapse
Affiliation(s)
- Simone Cristina Soares Brandão
- Departamento de Clínica Médica, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brasil
- Programa de Pós-Graduação em Cirurgia, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Emmanuelle Temório Albuquerque Madruga Godoi
- Departamento de Clínica Médica, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brasil
- Programa de Pós-Graduação em Cirurgia, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | | | - Camila Silva Bezerra
- Programa de Pós-Graduação em Cirurgia, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | | | | | - Esdras Marques Lins
- Programa de Pós-Graduação em Cirurgia, Universidade Federal de Pernambuco, Recife, PE, Brasil
| |
Collapse
|