1
|
Chen H, Liu L, Wang Y, Hong L, Pan J, Yu X, Dai H. Managing Cardiovascular Risk in Patients with Autoimmune Diseases: Insights from a Nutritional Perspective. Curr Nutr Rep 2024; 13:718-728. [PMID: 39078574 DOI: 10.1007/s13668-024-00563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 07/31/2024]
Abstract
PURPOSE OF REVIEW Autoimmune diseases manifest as an immune system response directed against endogenous antigens, exerting a significant influence on a substantial portion of the population. Notably, a leading contributor to morbidity and mortality in this context is cardiovascular disease (CVD). Intriguingly, individuals with autoimmune disorders exhibit a heightened prevalence of CVD compared to the general population. The meticulous management of CV risk factors assumes paramount importance, given the current absence of a standardized solution to this perplexity. This review endeavors to address this challenge from a nutritional perspective. RECENT FINDINGS Emerging evidence suggests that inflammation, a common thread in autoimmune diseases, also plays a pivotal role in the pathogenesis of CVD. Nutritional interventions aimed at reducing inflammation have shown promise in mitigating cardiovascular risk. The integration of nutritional strategies into the management plans for patients with autoimmune diseases offers a holistic approach to reducing cardiovascular risk. While conventional pharmacological treatments remain foundational, the addition of targeted dietary interventions can provide a complementary pathway to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Huimin Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Lu Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Yi Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Liqiong Hong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Jiahui Pan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Xiongkai Yu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Haijiang Dai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China.
| |
Collapse
|
2
|
Ashique S, Mukherjee T, Mohanty S, Garg A, Mishra N, Kaushik M, Bhowmick M, Chattaraj B, Mohanto S, Srivastava S, Taghizadeh-Hesary F. Blueberries in focus: Exploring the phytochemical potentials and therapeutic applications. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2024; 18:101300. [DOI: 10.1016/j.jafr.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
|
3
|
Liu H, Ren J, Mao L, Xiong C, Zhang X, Wang S, Huang WH, Chen MM. Flexible and Stretchable Photoelectrochemical Sensing toward True-to-Life Monitoring of Hydrogen Peroxide Regulation in Endothelial Mechanotransduction. Anal Chem 2024; 96:16825-16833. [PMID: 39382083 DOI: 10.1021/acs.analchem.4c03550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Hydrogen peroxide (H2O2) levels play a vital role in redox regulation and maintaining the physiological balance of living cells, especially in cell mechanotransduction. Despite the achievements on strain-induced cellular H2O2 monitoring, the applied voltage for H2O2 electrooxidation possibly gave rise to an abnormal expression and inadequate accuracy, which was still an inescapable concern. Hence, we decorated an interlaced CuO@TiO2 nanowires (NWs) semiconductor meshwork onto a polydimethylsiloxane film-supported gold nanotubes substrate (Au NTs/PDMS) to construct a flexible photoelectrochemical (PEC) sensing platform. Under white light irradiation, CuO@TiO2 NWs synergistically exhibited great stretchability and the PEC platform enabled stable photocurrent responses from the reduction of H2O2 even during mechanical deformation. Moreover, the admirable biocompatibility and an almost negligible open circuit voltage of +0.18 V for the CuO@TiO2 NWs/Au NTs/PDMS sensor guaranteed human umbilical vein endothelial cells (HUVECs) adhesion tightly thereon even under continuous illumination for 30 min. Finally, the as-proposed stretchable PEC sensor achieved sensitive and true-to-life monitoring of transient H2O2 release during HUVECs deformation, in which H2O2 release was positively correlated to mechanical strains. This investigation opens a new shade path on in situ cellular sensing and meanwhile greatly expands the application mode of the PEC approach.
Collapse
Affiliation(s)
- Hao Liu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Jiang Ren
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Lebao Mao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chengyi Xiong
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xiuhua Zhang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Shengfu Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Miao-Miao Chen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
4
|
Islam RA, Han X, Shaligram S, Esfandiarei M, Stallone JN, Rahimian R. Sexual Dimorphism in Impairment of Acetylcholine-Mediated Vasorelaxation in Zucker Diabetic Fatty (ZDF) Rat Aorta: A Monogenic Model of Obesity-Induced Type 2 Diabetes. Int J Mol Sci 2024; 25:11328. [PMID: 39457110 PMCID: PMC11508232 DOI: 10.3390/ijms252011328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Several reports, including our previous studies, indicate that hyperglycemia and diabetes mellitus exert differential effects on vascular function in males and females. This study examines sex differences in the vascular effects of type 2 diabetes (T2D) in an established monogenic model of obesity-induced T2D, Zucker Diabetic Fatty (ZDF) rats. Acetylcholine (ACh) responses were assessed in phenylephrine pre-contracted rings before and after apocynin, a NADPH oxidase (NOX) inhibitor. The mRNA expressions of aortic endothelial NOS (eNOS), and key NOX isoforms were also measured. We demonstrated the following: (1) diabetes had contrasting effects on aortic vasorelaxation in ZDF rats, impairing relaxation to ACh in females while enhancing it in male ZDF rats; (2) inhibition of NOX, a major source of superoxide in vasculature, restored aortic vasorelaxation in female ZDF rats; and (3) eNOS and NOX4 mRNA expressions were elevated in female (but not male) ZDF rat aortas compared to their respective leans. This study highlights sexual dimorphism in ACh-mediated vasorelaxation in the aorta of ZDF rats, suggesting that superoxide may play a role in the impaired vasorelaxation observed in female ZDF rats.
Collapse
Affiliation(s)
- Rifat Ara Islam
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA; (R.A.I.); (S.S.)
| | - Xiaoyuan Han
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, Stockton, CA 94115, USA;
| | - Sonali Shaligram
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA; (R.A.I.); (S.S.)
| | - Mitra Esfandiarei
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
| | - John N. Stallone
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute for Comparative Cardiovascular Sciences, School of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4466, USA;
| | - Roshanak Rahimian
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA; (R.A.I.); (S.S.)
| |
Collapse
|
5
|
Khattib A, Shmet M, Levi A, Hayek T, Halabi M, Khatib S. Bioactive lipids improve serum HDL and PON1 activities in coronary artery disease patients: Ex-vivo study. Vascul Pharmacol 2024; 157:107435. [PMID: 39419293 DOI: 10.1016/j.vph.2024.107435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Atherosclerotic cardiovascular disease (CVD) remains a leading cause of vascular disease worldwide. Atherosclerosis is characterized by the accumulation of lipids and oxidized lipids on the blood vessel walls. Coronary artery disease (CAD) is the most common display of atherosclerotic CVD. OBJECTIVES We investigated the effects of the bioactive lipids as lyso-diacylglyceryltrimethylhomoserine (lyso-DGTS (20,5,0)) and its derivative oleoyl-N-trimethyl homoserine amide (oleoyl amide-MHS) on the properties and functionality of HDL and paraoxonase 1 (PON1) activities in the serum of individuals who exhibited arterial plaque as observed by coronary CT angiography (CCTA). METHODS The study included two independent groups comprising 40 patients who had undergone arterial CCTA scans at Ziv Medical Center for various medical indications. The CAD group included 20 patients with coronary artery plaques with luminal stenosis of more than 50 % in a major coronary vessel. The control group consisted of 20 healthy patients (patients without artery plaques). RESULTS Serum samples from CAD patients exhibited lower serum PON1 and cholesterol efflux activities and higher pro-inflammatory than the control group. HDL isolated from CAD patients contains elevated levels of oxidizing lipids (specifically lyso- phosphatidyl ethanolamines and lyso-phosphocholines(compared to the control. However, incubation of the CAD patients' serum with lyso-DGTS and oleoyl amide-MHS restored the antiatherogenic activities of HDL. The lipids increased serum PON1 activities, enhanced apoB-depleted serum cholesterol-efflux activity, and elevated the serum's anti-inflammatory properties. CONCLUSIONS The results of the present study suggest the potential of the bioactive lipids lyso-DGTS and oleoyl amide-MHS to attenuate atherosclerosis via the improvement of dysfunctional HDL properties and PON1 activities. Further, in-vivo experiments are needed to assess the athero-protective effect of the lipids.
Collapse
Affiliation(s)
- Ali Khattib
- Natural Products and Analytical Chemistry Laboratory, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Department of Biotechnology, Tel-Hai College, Upper Galilee, Israel; Technion Israel Institute of Technology, The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Manar Shmet
- Natural Products and Analytical Chemistry Laboratory, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Department of Biotechnology, Tel-Hai College, Upper Galilee, Israel
| | - Achinoam Levi
- Natural Products and Analytical Chemistry Laboratory, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Department of Biotechnology, Tel-Hai College, Upper Galilee, Israel
| | - Tony Hayek
- Technion Israel Institute of Technology, The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | | | - Soliman Khatib
- Natural Products and Analytical Chemistry Laboratory, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Department of Biotechnology, Tel-Hai College, Upper Galilee, Israel.
| |
Collapse
|
6
|
Shin YJ, Chae SY, Lee H, Fang X, Cui S, Lim SW, Lee KI, Lee JY, Li C, Yang CW, Chung BH. CRISPR/Cas9-mediated suppression of A4GALT rescues endothelial cell dysfunction in a fabry disease vasculopathy model derived from human induced pluripotent stem cells. Atherosclerosis 2024; 397:118549. [PMID: 39141976 DOI: 10.1016/j.atherosclerosis.2024.118549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND AND AIMS The objective of this study was to investigate the efficacy of CRISPR/Cas9-mediated A4GALT suppression in rescuing endothelial dysfunction in Fabry disease (FD) endothelial cells (FD-ECs) derived from human induced pluripotent stem cells (hiPSCs). METHODS We differentiated hiPSCs (WT (wild-type), WTC-11), GLA-mutant hiPSCs (GLA-KO, CMC-Fb-002), and CRISPR/Cas9-mediated A4GALT-KO hiPSCs (GLA/A4GALT-KO, Fb-002-A4GALT-KO) into ECs and compared FD phenotypes and endothelial dysfunction. We also analyzed the effect of A4GALT suppression on reactive oxygen species (ROS) formation and transcriptome profiles through RNA sequencing. RESULTS GLA-mutant hiPSC-ECs (GLA-KO and CMC-Fb-002) showed downregulated expression of EC markers and significantly reduced α-GalA expression with increased Gb-3 deposition and intra-lysosomal inclusion bodies. However, CRISPR/Cas9-mediated A4GALT suppression in GLA/A4GALT-KO and Fb-002-A4GALT-KO hiPSC-ECs increased expression levels of EC markers and rescued these FD phenotypes. GLA-mutant hiPSC-ECs failed to form tube-like structure in tube formation assays, showing significantly decreased migration of cells into the scratched wound area. In contrast, A4GALT suppression improved tube formation and cell migration capacity. Western blot analysis revealed that MAPK and AKT phosphorylation levels were downregulated while SOD and catalase were upregulated in GLA-KO hiPSC-ECs. However, suppression of A4GALT restored these protein alterations. RNA sequencing analysis demonstrated significant transcriptome changes in GLA-mutant EC, especially in angiogenesis, cell death, and cellular response to oxidative stress. However, these were effectively restored in GLA/A4GALT-KO hiPSC-ECs. CONCLUSIONS CRISPR/Cas9-mediated A4GALT suppression rescued FD phenotype and endothelial dysfunction in GLA-mutant hiPSC-ECs, presenting a potential therapeutic approach for FD-vasculopathy.
Collapse
Affiliation(s)
- Yoo Jin Shin
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung Yun Chae
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, South Korea
| | - Hanbi Lee
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, South Korea
| | - Xianying Fang
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sheng Cui
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sun Woo Lim
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | | | - Can Li
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Chul Woo Yang
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, South Korea
| | - Byung Ha Chung
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, South Korea.
| |
Collapse
|
7
|
Jeremic N, Pawloff M, Lachinov D, Rokitansky S, Hasun M, Weidinger F, Pollreisz A, Bogunović H, Schmidt-Erfurth U. Severity Stratification of Coronary Artery Disease Using Novel Inner Ellipse-Based Foveal Avascular Zone Biomarkers. Invest Ophthalmol Vis Sci 2024; 65:15. [PMID: 39382880 PMCID: PMC11469242 DOI: 10.1167/iovs.65.12.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Purpose Given the similarities between the retinal and coronary microvasculature, the retina holds promising potential to serve as a non-invasive screening tool for coronary artery disease (CAD). We aimed to develop novel inner ellipse-based metrics and discern whether foveal avascular zone (FAZ) alterations can serve as indicators for CAD presence and severity. Methods Patients admitted to the Department of Cardiology who underwent coronary angiography were included. This resulted in an inclusion of 212 patients, of which 73 had no CAD. During the same visit, 6 × 6-mm (nominal size) fovea-centered optical coherence tomography angiography images of both eyes were acquired. The Gensini score (GS) was utilized to quantify CAD severity. Six known FAZ shape metrics were assessed and three novel biomarkers based on the inner ellipse were defined: absolute inner ellipse difference, Hausdorff distance, and Chamfer distance. Results Eight out of nine metrics showed significant associations with the GS in the left eye. However, significant differences across three CAD severity groups were only demonstrated by the novel metrics. Utilizing the Chamfer distance, age, and sex, patients with and without CAD could be distinguished with an average area under the curve (AUC) of 0.89 (95% confidence interval [CI], 0.84-0.95). Moreover, three CAD severity groups could be discerned with a macro average AUC of 0.77 (95% CI, 0.72-0.84). Conclusions A comprehensive assessment of FAZ shape descriptors was performed, and a strong association with CAD was found. The inner ellipse-based biomarkers especially demonstrated high predictive abilities for CAD presence and severity.
Collapse
Affiliation(s)
- Natasa Jeremic
- Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Maximilian Pawloff
- Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Dmitrii Lachinov
- Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Artificial Intelligence in Retina, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Stephanie Rokitansky
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Matthias Hasun
- Department of Internal Medicine II, Division of Cardiology, Clinic Landstraße, Vienna, Austria
| | - Franz Weidinger
- Department of Internal Medicine II, Division of Cardiology, Clinic Landstraße, Vienna, Austria
| | - Andreas Pollreisz
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Hrvoje Bogunović
- Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Artificial Intelligence in Retina, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Ursula Schmidt-Erfurth
- Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Paronetto MP, Crescioli C. Rethinking of phosphodiesterase 5 inhibition: the old, the new and the perspective in human health. Front Endocrinol (Lausanne) 2024; 15:1461642. [PMID: 39355618 PMCID: PMC11442314 DOI: 10.3389/fendo.2024.1461642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
The phosphodiesterases type 5 (PDE5) are catalytic enzymes converting the second messenger cyclic guanosine monophosphate (cGMP) to 5' GMP. While intracellular cGMP reduction is associated with several detrimental effects, cGMP stabilization associates with numerous benefits. The PDE5 specific inhibitors, PDE5i, found their explosive fortune as first-line treatment for erectile dysfunction (ED), due to their powerful vasoactive properties. The favorable effect for ED emerged as side-effect when PDE5i were originally proposed for coronary artery disease (CAD). From that point on, the use of PDE5i captured the attention of researchers, clinicians, and companies. Indeed, PDE5-induced intracellular cGMP stabilization offers a range of therapeutic opportunities associated not only with vasoactive effects, but also with immune regulatory/anti-inflammatory actions. Chronic inflammation is acknowledged as the common link underlying most non-communicable diseases, including metabolic and cardiac diseases, autoimmune and neurodegenerative disorders, cancer. In this scenario, the clinical exploitation of PDE5i is undeniably beyond ED, representing a potential therapeutic tool in several human diseases. This review aims to overview the biological actions exerted by PDE5i, focusing on their ability as modulators of inflammation-related human diseases, with particular attention to inflammatory-related disorders, like cardiac diseases and cancer.
Collapse
Affiliation(s)
- Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Clara Crescioli
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| |
Collapse
|
9
|
Alp Ç, Doğru MT, Yalçın S, Karal AO. The effects of trastuzumab therapy on endothelial functions of breast cancer patients. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20240517. [PMID: 39292089 DOI: 10.1590/1806-9282.20240517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVE Breast cancer is among the highest causes of morbidity and mortality in women. Trastuzumab therapy, which is known to be significantly cardiotoxic, is mainly used to treat patients with resistant breast cancer, including estrogen receptor-positive type. We aimed to show the effects of trastuzumab therapy on endothelial functions of breast cancer patients. METHODS In this study, a total of 26 participants (24 female and 2 male patients, minimum age: 38 years, maximum age: 79 years, and mean age 57.3±12.7 years) were enrolled in the study. For the statistical evaluation of data, we classified the participants of the study as follows: Pretreatment: Before trastuzumab therapy; Treatment Period 1: 1 month after the first dose of trastuzumab; Treatment Period 2: 4 months after the first dose of trastuzumab; Treatment Period 3: 12 months after the first dose of trastuzumab. We conducted repeated-measures analysis of variance (Greenhouse-Geisser) and paired-sample t-tests to statistically compare the groups using flow-mediated dilation measurements. RESULTS We determined that there are statistically significant differences between flow-mediated hyperemia and ratio values (flow-mediated dilation) of the groups (p<0.009 and p<0.001, respectively). CONCLUSION Our data indicate that trastuzumab therapy could have negative effects on endothelial functions in breast cancer patients.
Collapse
Affiliation(s)
- Çağlar Alp
- Kırıkkale University, Faculty of Medicine, Department of Cardiology - Kırıkkale, Turkey
| | - Mehmet Tolga Doğru
- Kırıkkale University, Faculty of Medicine, Department of Cardiology - Kırıkkale, Turkey
| | - Selim Yalçın
- Kırıkkale University, Faculty of Medicine, Department of Oncology - Kırıkkale, Turkey
| | - Ali Oğuzhan Karal
- Kırıkkale University, Faculty of Medicine, Department of Cardiology - Kırıkkale, Turkey
| |
Collapse
|
10
|
Sagris M, Vlachakis PK, Simantiris S, Theofilis P, Gerogianni M, Karakasis P, Tsioufis K, Tousoulis D. From a Cup of Tea to Cardiovascular Care: Vascular Mechanisms of Action. Life (Basel) 2024; 14:1168. [PMID: 39337950 PMCID: PMC11433009 DOI: 10.3390/life14091168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Tea consumption is increasingly recognized for its potential benefits to cardiovascular health. This study reviews the available research, concentrating on the major components of tea and their mechanisms of action in the cardiovascular system. Tea is abundant in bioactive compounds, such as flavonoids and polysaccharides, which possess significant antioxidant and anti-inflammatory properties. These compounds play a crucial role in mitigating oxidative stress and inflammation, thereby supporting cardiovascular health. They enhance endothelial function, leading to improved vascular relaxation and reduced arterial stiffness, and exhibit antithrombotic effects. Additionally, regular tea consumption is potentially associated with better regulation of blood pressure, improved cholesterol profiles, and effective blood sugar control. It has been suggested that incorporating tea into daily dietary habits could be a practical strategy for cardiovascular disease prevention and management. Despite the promising evidence, more rigorous clinical trials are needed to establish standardized consumption recommendations and fully understand long-term effects. This review offers a more comprehensive analysis of the current evidence based on endothelium function and identifies the gaps that future research should address.
Collapse
Affiliation(s)
- Marios Sagris
- Hippokration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Panayotis K Vlachakis
- Hippokration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Spyridon Simantiris
- Hippokration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Panagiotis Theofilis
- Hippokration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Maria Gerogianni
- Endocrine Unit, 2nd Propaedeutic Department of Internal Medicine, School of Medicine, Research Institute and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, 12641 Athens, Greece
| | - Paschalis Karakasis
- Second Department of Cardiology, Aristotle University of Thessaloniki, General Hospital Hippokration, 54942 Thessaloniki, Greece
| | - Konstantinos Tsioufis
- Hippokration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Dimitris Tousoulis
- Hippokration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece
| |
Collapse
|
11
|
Zhu H, Chen S, Ye Q, Lin W, Li T, Xu Z, Huang Z. Association between composite dietary antioxidant index and erectile dysfunction among American adults: a cross-sectional study. Sci Rep 2024; 14:21230. [PMID: 39261605 PMCID: PMC11390727 DOI: 10.1038/s41598-024-72157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Erectile dysfunction (ED) is closely related to oxidative stress, and antioxidant is a treatment and prevention method for erectile dysfunction. The Compound Dietary Antioxidant Index (CDAI) represents the overall dietary antioxidant intake of the human body. However, the link between CDAI and ED is unclear. The objective of this research was to examine the linkage between CDAI and ED. The research utilized information collected from the National Health and Nutrition Examination Survey (NHANES) spanning the years 2001 to 2004. To assess the association between CDAI and ED, the analysis employed weighted multivariate logistic regression along with weighted restricted cubic splines (RCS). Additionally, subgroup interaction analysis was conducted to confirm the findings. In this investigation, 3184 adults from the U.S., all above the age of 20, were part of the study cohort, with 863 of them identified as having ED. Adjustments for potential confounding variables revealed that the odds ratio (95% confidence interval) of CDAI associating with ED was 0.95 (0.92-0.99; P = 0.01). Besides, compared to the lowest tertile, the highest tertile of CDAI was associated with a lower risk of ED (0.63 [0.46-0.88]; P = 0.01). The application of weighted restricted cubic splines (RCS) analysis delineated a nonlinear inverse relationship between CDAI levels and the probability of ED. Subgroup analysis further demonstrated that the association between CDAI and ED remained consistent across subgroups. This cross-sectional analysis revealed a significant correlation, indicating that elevated levels of CDAI are closely linked with a lower likelihood of ED.
Collapse
Affiliation(s)
- Huajun Zhu
- Department of Pharmacy, Shaoxing Second Hospital, Shaoxing, 312000, Zhejiang, China
| | - Si Chen
- The First Affiliated Hospital of Shantou University Medical College, Medical College of Shantou University, Shantou, 515041, China
| | - Qianyi Ye
- The First Affiliated Hospital of Shantou University Medical College, Medical College of Shantou University, Shantou, 515041, China
| | - Weilong Lin
- The First Affiliated Hospital of Shantou University Medical College, Medical College of Shantou University, Shantou, 515041, China
| | - Taibiao Li
- The First Affiliated Hospital of Shantou University Medical College, Medical College of Shantou University, Shantou, 515041, China
| | - Zhengyuan Xu
- The First Affiliated Hospital of Shantou University Medical College, Medical College of Shantou University, Shantou, 515041, China
| | - Zhuangcheng Huang
- The First Affiliated Hospital of Shantou University Medical College, Medical College of Shantou University, Shantou, 515041, China.
| |
Collapse
|
12
|
Chen S, Yang X, Gu H, Wang Y, Xu Z, Jiang Y, Wang Y. Predictive etiological classification of acute ischemic stroke through interpretable machine learning algorithms: a multicenter, prospective cohort study. BMC Med Res Methodol 2024; 24:199. [PMID: 39256656 PMCID: PMC11384709 DOI: 10.1186/s12874-024-02331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 09/05/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The prognosis, recurrence rates, and secondary prevention strategies varied significantly among different subtypes of acute ischemic stroke (AIS). Machine learning (ML) techniques can uncover intricate, non-linear relationships within medical data, enabling the identification of factors associated with etiological classification. However, there is currently a lack of research utilizing ML algorithms for predicting AIS etiology. OBJECTIVE We aimed to use interpretable ML algorithms to develop AIS etiology prediction models, identify critical factors in etiology classification, and enhance existing clinical categorization. METHODS This study involved patients with the Third China National Stroke Registry (CNSR-III). Nine models, which included Natural Gradient Boosting (NGBoost), Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), Random Forest (RF), Light Gradient Boosting Machine (LGBM), Gradient Boosting Decision Tree (GBDT), Adaptive Boosting (AdaBoost), Support Vector Machine (SVM), and logistic regression (LR), were employed to predict large artery atherosclerosis (LAA), small vessel occlusion (SVO), and cardioembolism (CE) using an 80:20 randomly split training and test set. We designed an SFS-XGB with 10-fold cross-validation for feature selection. The primary evaluation metrics for the models included the area under the receiver operating characteristic curve (AUC) for discrimination and the Brier score (or calibration plots) for calibration. RESULTS A total of 5,213 patients were included, comprising 2,471 (47.4%) with LAA, 2,153 (41.3%) with SVO, and 589 (11.3%) with CE. In both LAA and SVO models, the AUC values of the ML models were significantly higher than that of the LR model (P < 0.001). The optimal model for predicting SVO (AUC [RF model] = 0.932) outperformed the optimal LAA model (AUC [NGB model] = 0.917) and the optimal CE model (AUC [LGBM model] = 0.846). Each model displayed relatively satisfactory calibration. Further analysis showed that the optimal CE model could identify potential CE patients in the undetermined etiology (SUE) group, accounting for 1,900 out of 4,156 (45.7%). CONCLUSIONS The ML algorithm effectively classified patients with LAA, SVO, and CE, demonstrating superior classification performance compared to the LR model. The optimal ML model can identify potential CE patients among SUE patients. These newly identified predictive factors may complement the existing etiological classification system, enabling clinicians to promptly categorize stroke patients' etiology and initiate optimal strategies for secondary prevention.
Collapse
Affiliation(s)
- Siding Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- Changping Laboratory, Beijing, China
| | - Xiaomeng Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Hongqiu Gu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yanzhao Wang
- School of Statistics, Renmin University of China, No. 59 Zhongguancun Street, Haidian District, Beijing, 100872, China
| | - Zhe Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yong Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
- Changping Laboratory, Beijing, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, 100091, China.
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
- Changping Laboratory, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
- Clinical Center for Precision Medicine in Stroke, Capital Medical University, Beijing, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
13
|
Li D, Jovanovski E, Zurbau A, Sievenpiper J, Milicic D, El-Sohemy A, Vuksan V. No Difference between the Efficacy of High-Nitrate and Low-Nitrate Vegetable Supplementation on Blood Pressure after 16 Weeks in Individuals with Early-Stage Hypertension: An Exploratory, Double-Blinded, Randomized, Controlled Trial. Nutrients 2024; 16:3018. [PMID: 39275333 PMCID: PMC11397180 DOI: 10.3390/nu16173018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
Dietary inorganic nitrate lowers blood pressure (BP) in healthy individuals through improved nitric oxide (NO) bioavailability. However, there is limited evidence examining the long-term effects of dietary nitrate for managing hypertension. We aimed to determine whether the sustained intake of dietary nitrate improved BP and cardiovascular disease (CVD) risk factors in individuals with early-stage hypertension. The Dietary Nitrate (NO3) on BP and CVD Risk Factors (DINO3) Trial was a multi-center, double-blinded, parallel, randomized, controlled trial in participants with elevated BP. Participants were supplemented with high-nitrate (HN) (~400 mg nitrate) or low-nitrate (LN) vegetable powder (~50 mg nitrate) on top of their usual diets for 16 weeks. The primary outcome was office systolic BP at 16 weeks. The secondary outcomes were 24 h ambulatory BP, central BP, heart-rate-corrected augmentation index (AIx75), carotid-femoral pulse wave velocity (cf-PWV), lipids, and high-sensitivity C-reactive protein (hs-CRP). Sixty-six participants were randomized at baseline (39M:27F, age: 51.5 ± 10.8 years, BMI:27.9 ± 3.2 kg/m2). In an intention-to-treat analysis, no differences were observed between HN and LN groups in terms of office systolic BP at 16 weeks (3.91 ± 3.52 mmHg, p = 0.27) or secondary outcomes. In this exploratory study, sustained HN vegetable supplementation did not exhibit more favorable vascular effects than LN vegetable supplementation in individuals with elevated BP.
Collapse
Affiliation(s)
- Dandan Li
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1X1, Canada
| | - Elena Jovanovski
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1X1, Canada
| | - Andreea Zurbau
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1X1, Canada
| | - John Sievenpiper
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1X1, Canada
| | - Davor Milicic
- Department of Cardiovascular Diseases, School of Medicine, University of Zagreb, University Hospital Center Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Vladimir Vuksan
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1X1, Canada
| |
Collapse
|
14
|
Wu L, Rodriguez M, Hachem KE, Tang WHW, Krittanawong C. Management of patients with heart failure and chronic kidney disease. Heart Fail Rev 2024; 29:989-1023. [PMID: 39073666 DOI: 10.1007/s10741-024-10415-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Chronic kidney disease (CKD) and heart failure are often co-existing conditions due to a shared pathophysiological process involving neurohormonal activation and hemodynamic maladaptation. A wide range of pharmaceutical and interventional tools are available to patients with CKD, consisting of traditional ones with decades of experience and newer emerging therapies that are rapidly reshaping the landscape of medical care for this population. Management of patients with heart failure and CKD requires a stepwise approach based on renal function and the clinical phenotype of heart failure. This is often challenging due to altered drug pharmacokinetics interactions with various degrees of kidney function and frequent adverse effects from the therapy that lead to poor patient tolerance. Despite a great body of clinical evidence and guidelines that have offered various treatment options for patients with heart failure and CKD, respectively, patients with CKD are still underrepresented in heart failure clinical trials, especially for those with advanced CKD and end-stage renal disease (ESRD). Future studies are needed to better understand the generalizability of these therapeutic options among heart failures with different stages of CKD.
Collapse
Affiliation(s)
- Lingling Wu
- Cardiovascular Division, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mario Rodriguez
- John T Milliken Department of Medicine, Division of Cardiovascular disease, Section of Advanced Heart Failure and Transplant, Barnes-Jewish Hospital, Washington University in St. Louis School of Medicine, St. Louis, USA
| | - Karim El Hachem
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY, USA
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland, Clinic, Cleveland, OH, USA
| | - Chayakrit Krittanawong
- Cardiology Division, Section of Cardiology, NYU Langone Health and NYU School of Medicine, 550 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|
15
|
Yan R, Song A, Zhang C. The Pathological Mechanisms and Therapeutic Molecular Targets in Arteriovenous Fistula Dysfunction. Int J Mol Sci 2024; 25:9519. [PMID: 39273465 PMCID: PMC11395150 DOI: 10.3390/ijms25179519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
The number of patients with end-stage renal disease (ESRD) requiring hemodialysis is increasing worldwide. Although arteriovenous fistula (AVF) is the best and most important vascular access (VA) for hemodialysis, its primary maturation failure rate is as high as 60%, which seriously endangers the prognosis of hemodialysis patients. After AVF establishment, the venous outflow tract undergoes hemodynamic changes, which are translated into intracellular signaling pathway cascades, resulting in an outward and inward remodeling of the vessel wall. Outward remodeling refers to the thickening of the vessel wall and the dilation of the lumen to accommodate the high blood flow in the AVF, while inward remodeling is mainly characterized by intimal hyperplasia. More and more studies have shown that the two types of remodeling are closely related in the occurrence and development of, and jointly determining the final fate of, AVF. Therefore, it is essential to investigate the underlying mechanisms involved in outward and inward remodeling for identifying the key targets in alleviating AVF dysfunction. In this review, we summarize the current clinical diagnosis, monitoring, and treatment techniques for AVF dysfunction and discuss the possible pathological mechanisms related to improper outward and inward remodeling in AVF dysfunction, as well as summarize the similarities and differences between the two remodeling types in molecular mechanisms. Finally, the representative therapeutic targets of potential clinical values are summarized.
Collapse
Affiliation(s)
- Ruiwei Yan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anni Song
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
16
|
Ngcobo NN, Sibiya NH. The role of high mobility group box-1 on the development of diabetes complications: A plausible pharmacological target. Diab Vasc Dis Res 2024; 21:14791641241271949. [PMID: 39271468 PMCID: PMC11406611 DOI: 10.1177/14791641241271949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Diabetes mellitus has emerged as a pressing global concern, with a notable increase in recent years. Despite advancements in treatment, existing medications struggle to halt the progression of diabetes and its associated complications. Increasing evidence underscores inflammation as a significant driver in the onset of diabetes mellitus. Therefore, perspectives on new therapies must consider shifting focus from metabolic stress to inflammation. High mobility group box (HMGB-1), a nuclear protein regulating gene expression, gained attention as an endogenous danger signal capable of sparking inflammatory responses upon release into the extracellular environment in the late 1990s. PURPOSE Given the parallels between inflammatory responses and type 2 diabetes (T2D) development, this review paper explores HMGB-1's potential involvement in onset and progression of diabetes complications. Specifically, we will review and update the understanding of HMGB-1 and its inflammatory pathways in insulin resistance, diabetic nephropathy, diabetic neuropathy, and diabetic retinopathy. CONCLUSIONS HMGB-1 and its receptors i.e. receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLRs) present promising targets for antidiabetic interventions. Ongoing and future projects in this realm hold promise for innovative approaches targeting HMGB-1-mediated inflammation to ameliorate diabetes and its complications.
Collapse
Affiliation(s)
- Nokwanda N Ngcobo
- Discipline of Pharmaceutical Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo H Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
17
|
Kumar N, Yang ML, Sun P, Hunker KL, Li J, Jia J, Fan F, Wang J, Ning X, Gao W, Xu M, Zhang J, Chang L, Chen YE, Huo Y, Zhang Y, Ganesh SK. Genetic variation in CCDC93 is associated with elevated central systolic blood pressure, impaired arterial relaxation, and mitochondrial dysfunction. PLoS Genet 2024; 20:e1011151. [PMID: 39250516 PMCID: PMC11421807 DOI: 10.1371/journal.pgen.1011151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/24/2024] [Accepted: 01/23/2024] [Indexed: 09/11/2024] Open
Abstract
Genetic studies of blood pressure (BP) traits to date have been performed on conventional measures by brachial cuff sphygmomanometer for systolic BP (SBP) and diastolic BP, integrating several physiologic occurrences. Genetic associations with central SBP (cSBP) have not been well-studied. Genetic discovery studies of BP have been most often performed in European-ancestry samples. Here, we investigated genetic associations with cSBP in a Chinese population and functionally validated the impact of a novel associated coiled-coil domain containing 93 (CCDC93) gene on BP regulation. An exome-wide association study (EWAS) was performed using a mixed linear model of non-invasive cSBP and peripheral BP traits in a Han Chinese population (N = 5,954) from Beijing, China genotyped with a customized Illumina ExomeChip array. We identified four SNP-trait associations with three SNPs, including two novel associations (rs2165468-SBP and rs33975708-cSBP). rs33975708 is a coding variant in the CCDC93 gene, c.535C>T, p.Arg179Cys (MAF = 0.15%), and was associated with increased cSBP (β = 29.3 mmHg, P = 1.23x10-7). CRISPR/Cas9 genome editing was used to model the effect of Ccdc93 loss in mice. Homozygous Ccdc93 deletion was lethal prior to day 10.5 of embryonic development. Ccdc93+/- heterozygous mice were viable and morphologically normal, with 1.3-fold lower aortic Ccdc93 protein expression (P = 0.0041) and elevated SBP as compared to littermate Ccdc93+/+ controls (110±8 mmHg vs 125±10 mmHg, P = 0.016). Wire myography of Ccdc93+/- aortae showed impaired acetylcholine-induced relaxation and enhanced phenylephrine-induced contraction. RNA-Seq transcriptome analysis of Ccdc93+/- mouse thoracic aortae identified significantly enriched pathways altered in fatty acid metabolism and mitochondrial metabolism. Plasma free fatty acid levels were elevated in Ccdc93+/- mice (96±7mM vs 124±13mM, P = 0.0031) and aortic mitochondrial dysfunction was observed through aberrant Parkin and Nix protein expression. Together, our genetic and functional studies support a novel role of CCDC93 in the regulation of BP through its effects on vascular mitochondrial function and endothelial function.
Collapse
Affiliation(s)
- Nitin Kumar
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Min-Lee Yang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Pengfei Sun
- Department of Cardiology, Peking University First hospital, Beijing, China
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Kristina L. Hunker
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jianping Li
- Department of Cardiology, Peking University First hospital, Beijing, China
| | - Jia Jia
- Department of Cardiology, Peking University First hospital, Beijing, China
| | - Fangfang Fan
- Department of Cardiology, Peking University First hospital, Beijing, China
| | - Jinghua Wang
- Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xianjia Ning
- Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Gao
- Department of Cardiology, Peking University Third hospital, Beijing, China
| | - Ming Xu
- Department of Cardiology, Peking University Third hospital, Beijing, China
| | - Jifeng Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Lin Chang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Y. Eugene Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Yong Huo
- Department of Cardiology, Peking University First hospital, Beijing, China
| | - Yan Zhang
- Department of Cardiology, Peking University First hospital, Beijing, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
- Hypertension Precision Diagnosis and Treatment Research Center, Peking University First Hospital, Beijing, China
| | - Santhi K. Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
18
|
Feng J, Xie F, Wu Z, Wu Y. Age-related macular degeneration and cardiovascular disease in US population: an observational study. Acta Cardiol 2024; 79:665-671. [PMID: 38126346 DOI: 10.1080/00015385.2023.2295103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/26/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND As far as we know, age-related macular degeneration (AMD) has become one of the predominant causes of visual impairments. Previous studies have revealed that AMD and many cardiovascular diseases (CVDs) share the same pathologic and genotypic factors, making the connection between AMD and CVD a hot topic. However, the conclusions of the available studies on the relationship between them are somewhat divergent. METHODS We screened 5523 eligible participants from the National Health and Nutrition Examination Survey (NHANES) database from 2005 through 2008 for an observational clinical study design. Binary logistic regression modelling was used to estimate the relations between AMD and various CVDs with and without adjustment for demographics, health status, and behaviours related to health. RESULTS Binary logistic regression analyses showed that AMD was able to increase the risk of CVDs in patients both unadjusted and after adjusting for confounding variables. CONCLUSIONS Within this study, preventing the development of AMD might cut down the incidence of several CVDs, in particular, significantly lowering the stroke risk. These findings indicate that interventions to prevent AMD may also help to prevent CVDs. In general, late AMD has a more severe impact on the risk of CVDs compared with early AMD. These results could help clinical ophthalmology and cardiovascular medicine in their clinical education and interventions.
Collapse
Affiliation(s)
- Jie Feng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Feng Xie
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhijian Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Florido MHC, Ziats NP. Endothelial dysfunction and cardiovascular diseases: The role of human induced pluripotent stem cells and tissue engineering. J Biomed Mater Res A 2024; 112:1286-1304. [PMID: 38230548 DOI: 10.1002/jbm.a.37669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Cardiovascular disease (CVD) remains to be the leading cause of death globally today and therefore the need for the development of novel therapies has become increasingly important in the cardiovascular field. The mechanism(s) behind the pathophysiology of CVD have been laboriously investigated in both stem cell and bioengineering laboratories. Scientific breakthroughs have paved the way to better mimic cell types of interest in recent years, with the ability to generate any cell type from reprogrammed human pluripotent stem cells. Mimicking the native extracellular matrix using both organic and inorganic biomaterials has allowed full organs to be recapitulated in vitro. In this paper, we will review techniques from both stem cell biology and bioengineering which have been fruitfully combined and have fueled advances in the cardiovascular disease field. We will provide a brief introduction to CVD, reviewing some of the recent studies as related to the role of endothelial cells and endothelial cell dysfunction. Recent advances and the techniques widely used in both bioengineering and stem cell biology will be discussed, providing a broad overview of the collaboration between these two fields and their overall impact on tissue engineering in the cardiovascular devices and implications for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mary H C Florido
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas P Ziats
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Departments of Biomedical Engineering and Anatomy, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
20
|
Lei S, Liu C, Zheng TX, Fu W, Huang MZ. The relationship of redox signaling with the risk for atherosclerosis. Front Pharmacol 2024; 15:1430293. [PMID: 39148537 PMCID: PMC11324460 DOI: 10.3389/fphar.2024.1430293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Oxidative balance plays a pivotal role in physiological homeostasis, and many diseases, particularly age-related conditions, are closely associated with oxidative imbalance. While the strategic role of oxidative regulation in various diseases is well-established, the specific involvement of oxidative stress in atherosclerosis remains elusive. Atherosclerosis is a chronic inflammatory disorder characterized by plaque formation within the arteries. Alterations in the oxidative status of vascular tissues are linked to the onset, progression, and outcome of atherosclerosis. This review examines the role of redox signaling in atherosclerosis, including its impact on risk factors such as dyslipidemia, hyperglycemia, inflammation, and unhealthy lifestyle, along with dysregulation, vascular homeostasis, immune system interaction, and therapeutic considerations. Understanding redox signal transduction and the regulation of redox signaling will offer valuable insights into the pathogenesis of atherosclerosis and guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sujuan Lei
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chen Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Tian-Xiang Zheng
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Mei-Zhou Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| |
Collapse
|
21
|
Fan X, Yang G, Yang Z, Uhlig S, Sattler K, Bieback K, Hamdani N, El-Battrawy I, Duerschmied D, Zhou X, Akin I. Catecholamine induces endothelial dysfunction via Angiotensin II and intermediate conductance calcium activated potassium channel. Biomed Pharmacother 2024; 177:116928. [PMID: 38889637 DOI: 10.1016/j.biopha.2024.116928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
Endothelial dysfunction contributes to the pathogenesis of Takotsubo syndrome (TTS). However, the exact mechanism underlying endothelial dysfunction in the setting of TTS has not been completely clarified. This study aims to investigate the roles of angiotensin II (Ang II) and intermediate-conductance Ca2+-activated K+ (SK4) channels in catecholamine-induced endothelial dysfunction. Human cardiac microvascular endothelial cells (HCMECs) were exposed to 100 µM epinephrine (Epi), mimicking the setting of TTS. Epi treatment increased the ET-1 concentration and reduced NO levels in HCMECs. Importantly, the effects of Epi were found to be mitigated in the presence of Ang II receptor blockers. Furthermore, Ang II mimicked Epi effects on ET-1 and NO production. Additionally, Ang II inhibited tube formation and increased cell apoptosis. The effects of Ang II could be reversed by an SK4 activator NS309 and mimicked by an SK4 channel blocker TRAM-34. Ang II also inhibited the SK4 channel current (ISK4) without affecting its expression level. Ang II could depolarize the cell membrane potential. Ang II promoted ROS release and reduced protein kinase A (PKA) expression. A ROS blocker prevented Ang II effect on ISK4. The PKA activator Sp-8-Br-cAMPS increased SK4 channel currents. Epinephrine enhanced the activity of ACE by activating the α1 receptor/Gq/PKC signal pathway, thereby promoting the secretion of Ang II. The study suggested that high-level catecholamine can increase Ang II release from endothelial cells by α1 receptors/Gq/PKC signal pathway. Ang II can inhibit SK4 channel current by increasing ROS generation and reducing PKA expression, thereby contributing to endothelial dysfunction.
Collapse
Affiliation(s)
- Xuehui Fan
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany; Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China; European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Mannheim, Germany; Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Guoqiang Yang
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany; Acupuncture and Rehabilitation Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhen Yang
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany
| | - Stefanie Uhlig
- Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katherine Sattler
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany; Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Karen Bieback
- Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nazha Hamdani
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany; Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology and Angiology, Bergmannsheil University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Ibrahim El-Battrawy
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany; Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology and Angiology, Bergmannsheil University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany; Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany; Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China; European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Mannheim, Germany; Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Ibrahim Akin
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany; Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
22
|
Wang Z, Zhong S, Wu M, Shao X, Gu T, Xu M, Yang Q. The Relationship Between Remnant Cholesterol and Visceral Adipose Tissue: A National Cross-Sectional Study. Horm Metab Res 2024. [PMID: 39059415 DOI: 10.1055/a-2357-2579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The aim of our study is to explore the relationship between remnant cholesterol (RC) levels and visceral adipose tissue (VAT) in the US adult population. This cross-sectional study utilized data from 5301 participants aged 20 to 59 years gathered by the National Health and Nutrition Examination Survey (NHANES). RC was determined by deducting both high-density lipoprotein cholesterol (HDL-c) and low-density lipoprotein cholesterol (LDL-c) from total cholesterol (TC), and VAT was measured using dual-energy X-ray absorptiometry. Visceral obesity is defined as a VAT area ≥ 100 cm2. With increasing quartiles of RC levels, the prevalence of visceral obesity rises (16.51% vs. 36.11% vs. 55.66% vs. 74.48%, p<0.001). After adjusting for confounders, RC levels positively correlate with visceral obesity risk (OR=1.039, 95% CI 1.031-1.048, p<0.001). Additionally, individuals with low LDL-c/high RC and those with high LDL-c/low RC showed 2.908-fold (95% CI 1.995-4.241) and 1.310-fold (95% CI 1.022-1.680) higher risk of visceral obesity, respectively, compared to those with low LDL-c/low RC. Receiver Operating Characteristic (ROC) and Decision Curve Analysis (DCA) show RC's superior predictive ability over other lipid markers. Subgroup analysis showed that the relationship between RC and visceral obesity was more ronounced in those with cardiovascular disease. Smooth curve fitting indicated a nonlinear relationship between RC levels and VAT area. Our study highlights that elevated levels of RC are associated with adverse accumulation of VAT. However, the causal relationship between RC and visceral obesity requires additional investigation.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Shao Zhong
- Clinical Nutrition, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Menghuan Wu
- Endocrinology, Shanghai Putuo District Liqun Hospital, Shanghai, China
| | - Xuejing Shao
- Endocrinology, Affiliated Wujin Hospital of Jiangsu University, Changzhou, China
- Endocrinology, Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Tian Gu
- Endocrinology, Affiliated Wujin Hospital of Jiangsu University, Changzhou, China
- Endocrinology, Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Mengjiao Xu
- Endocrinology, Affiliated Wujin Hospital of Jiangsu University, Changzhou, China
- Endocrinology, Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Qichao Yang
- Endocrinology, Affiliated Wujin Hospital of Jiangsu University, Changzhou, China
- Endocrinology, Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| |
Collapse
|
23
|
Xu S, Han X, Wang X, Yu Y, Qu C, Liu X, Yang B. The role of oxidative stress in aortic dissection: a potential therapeutic target. Front Cardiovasc Med 2024; 11:1410477. [PMID: 39070552 PMCID: PMC11272543 DOI: 10.3389/fcvm.2024.1410477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
The incidence of aortic dissection (AD) is steadily increasing, driven by the rising prevalence of chronic conditions such as hypertension and the global aging of the population. Oxidative stress emerges as a pivotal pathophysiological mechanism contributing to the progression of AD. Oxidative stress triggers apoptosis in vascular smooth muscle cells, reshapes the extracellular matrix (ECM), and governs ECM degradation and remodeling, subsequently impacting aortic compliance. Furthermore, oxidative stress not only facilitates the infiltration of macrophages and mononuclear lymphocytes but also disrupts the integral structure and functionality of endothelial cells, thereby inducing endothelial cell dysfunction and furthering the degeneration of the middle layer of the aortic wall. Investigating antioxidants holds promise as a therapeutic avenue for addressing AD.
Collapse
Affiliation(s)
- Shengnan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xueyu Han
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xiukun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Yi Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Le Moli R, Naselli A, Costanzo G, Piticchio T, Tumino D, Pellegriti G, Frasca F, Belfiore A. Determinants of clinical outcome in patients with moderate/severe Graves' orbitopathy undergoing treatment with parenteral glucocorticoids: a retrospective study. Front Endocrinol (Lausanne) 2024; 15:1401155. [PMID: 39027472 PMCID: PMC11254611 DOI: 10.3389/fendo.2024.1401155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Background Graves' orbitopathy (GO) occurs in approximately 25-40% of patients with Graves' disease (GD). High levels of anti-thyrotropin receptor antibodies (TRAbs), smoking habit, sex, older age, longer duration and amount of hyperthyroidism or hypothyroidism are well-recognized risk factors for the occurrence, severity and clinical course of GO. Oxidative stress (OX) has recently been shown to play a role in the pathogenesis of GO, and several clinical conditions related to OX have been investigated regarding the presentation and severity of GO. Aim We aimed to evaluate the impact of clinical conditions related to oxidative stress on the outcome of intravenous glucocorticoid (ivGCs) therapy in a cohort of patients with active moderate to severe GO (AMS-GOs) treated at a single institution. Methods We retrospectively studied a series of patients with AMS-GOs who were treated with ivGCs from January 2013 to May 2022. GO clinical evaluation was performed at baseline and at 6 (W6), 12 (W12) and 24 (W24) weeks after starting ivGCs by the seven-point clinical activity score (CAS) alone and by overall clinical criteria (CI) according to the European Group of Graves' Ophthalmopathy (EUGOGO). Total cholesterol and calculated LDL cholesterol (LDLc), triglyceride, body mass index (BMI), diabetes status, history of hypertension (HoH), smoking status, age and sex were used as covariates for the clinical outcome of GO to ivGCs. Results and conclusions LDLc and HoH negatively and independently modulated the response of AMS-GOs to ivGCs. Notably, slightly elevated LDLc levels (> 130 mg/dl) reduced the response of orbital soft tissue to ivGCs, whereas more elevated LDLc levels (from 175 mg/dl to 190 mg/dl) and HoH were associated with poorer clinical response of eye motility and proptosis.
Collapse
Affiliation(s)
- Rosario Le Moli
- Endocrinology Unit, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Catania, Italy
- Department of Medicine and Surgery, University of Enna "Kore", Enna, Italy
| | - Adriano Naselli
- Endocrinology Unit, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Catania, Italy
| | - Gabriele Costanzo
- Endocrinology Unit, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Catania, Italy
| | - Tommaso Piticchio
- Endocrinology Unit, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Catania, Italy
- Department of Medicine and Surgery, University of Enna "Kore", Enna, Italy
| | - Dario Tumino
- Endocrinology Unit, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Catania, Italy
| | - Gabriella Pellegriti
- Endocrinology Unit, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Catania, Italy
| | - Francesco Frasca
- Endocrinology Unit, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Catania, Italy
| | - Antonino Belfiore
- Endocrinology Unit, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Catania, Italy
| |
Collapse
|
25
|
Alves JV, da Costa RM, Awata WMC, Bruder-Nascimento A, Singh S, Tostes RC, Bruder-Nascimento T. NADPH oxidase 4-derived hydrogen peroxide counterbalances testosterone-induced endothelial dysfunction and migration. Am J Physiol Endocrinol Metab 2024; 327:E1-E12. [PMID: 38690939 PMCID: PMC11390122 DOI: 10.1152/ajpendo.00365.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
High levels of testosterone (Testo) are associated with cardiovascular risk by increasing reactive oxygen species (ROS) formation. NADPH oxidases (NOX) are the major source of ROS in the vasculature of cardiovascular diseases. NOX4 is a unique isotype, which produces hydrogen peroxide (H2O2), and its participation in cardiovascular biology is controversial. So far, it is unclear whether NOX4 protects from Testo-induced endothelial injury. Thus, we hypothesized that supraphysiological levels of Testo induce endothelial NOX4 expression to attenuate endothelial injury. Human mesenteric vascular endothelial cells (HMECs) and human umbilical vein endothelial cells (HUVEC) were treated with Testo (10-7 M) with or without a NOX4 inhibitor [GLX351322 (10-4 M)] or NOX4 siRNA. In vivo, 10-wk-old C57Bl/6J male mice were treated with Testo (10 mg/kg) for 30 days to study endothelial function. Testo increased mRNA and protein levels of NOX4 in HMECs and HUVECs. Testo increased superoxide anion (O2-) and H2O2 production, which were abolished by NOX1 and NOX4 inhibition, respectively. Testo also attenuated bradykinin-induced NO production, which was further impaired by NOX4 inhibition. In vivo, Testo decreased H2O2 production in aortic segments and triggered endothelial dysfunction [decreased relaxation to acetylcholine (ACh)], which was further impaired by GLX351322 and by a superoxide dismutase and catalase mimetic (EUK134). Finally, Testo led to a dysregulated endothelial cell migration, which was exacerbated by GLX351322. These data indicate that supraphysiological levels of Testo increase the endothelial expression and activity of NOX4 to counterbalance the deleterious effects caused by Testo in endothelial function.NEW & NOTEWORTHY By inducing ROS formation, high levels of testosterone play a major role in the pathogenesis of cardiovascular disease. NOXs are the major sources of ROS in the vasculature of cardiovascular diseases. Herein, we describe a novel compensatory mechanism by showing that NOX4 is a protective oxidant enzyme and counterbalances the deleterious effects of testosterone in endothelial cells by modulating hydrogen peroxide formation.
Collapse
Affiliation(s)
- Juliano V Alves
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Rafael M da Costa
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Special Academic Unit of Health Sciences, Federal University of Jatai, Jatai, Brazil
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Wanessa M C Awata
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ariane Bruder-Nascimento
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shubhnita Singh
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Thiago Bruder-Nascimento
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
26
|
Zununi Vahed S, Zuluaga Tamayo M, Rodriguez-Ruiz V, Thibaudeau O, Aboulhassanzadeh S, Abdolalizadeh J, Meddahi-Pellé A, Gueguen V, Barzegari A, Pavon-Djavid G. Functional Mechanisms of Dietary Crocin Protection in Cardiovascular Models under Oxidative Stress. Pharmaceutics 2024; 16:840. [PMID: 39065537 PMCID: PMC11280316 DOI: 10.3390/pharmaceutics16070840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
It was previously reported that crocin, a water-soluble carotenoid isolated from the Crocus sativus L. (saffron), has protective effects on cardiac cells and may neutralize and even prevent the formation of excess number of free radicals; however, functional mechanisms of crocin activity have been poorly understood. In the present research, we aimed to study the functional mechanism of crocin in the heart exposed to oxidative stress. Accordingly, oxidative stress was modeled in vitro on human umbilical vein endothelial cells (HUVECs) and in vivo in mice using cellular stressors. The beneficial effects of crocin were investigated at cellular and molecular levels in HUVECs and mice hearts. Results indicated that oral administration of crocin could have protective effects on HUVECs. In addition, it protects cardiac cells and significantly inhibits inflammation via modulating molecular signaling pathways TLR4/PTEN/AKT/mTOR/NF-κB and microRNA (miR-21). Here we show that crocin not only acts as a direct free radical scavenger but also modifies the gene expression profiles of HUVECs and protects mice hearts with anti-inflammatory action under oxidative stress.
Collapse
Affiliation(s)
- Sepideh Zununi Vahed
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.Z.V.); (S.A.)
| | - Marisol Zuluaga Tamayo
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging, 99 Av. Jean-Baptiste Clément, 93430 Villetaneuse, France (A.M.-P.); (V.G.); (A.B.)
| | - Violeta Rodriguez-Ruiz
- ERRMECe Laboratory, Biomaterials for Health Group, University of Cergy Pontoise, Maison Internationale de la Recherche, I MAT, 1 rue Descartes, 95031 Neuville sur Oise, France;
| | - Olivier Thibaudeau
- Plateau de Morphologie INSERM UMR 1152 Université Paris Diderot, Université Paris Cité, Bichat Hospital, AP-HP, 46 rue H. Huchard, 75018 Paris, France;
| | - Sobhan Aboulhassanzadeh
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.Z.V.); (S.A.)
| | - Jalal Abdolalizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran;
| | - Anne Meddahi-Pellé
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging, 99 Av. Jean-Baptiste Clément, 93430 Villetaneuse, France (A.M.-P.); (V.G.); (A.B.)
| | - Virginie Gueguen
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging, 99 Av. Jean-Baptiste Clément, 93430 Villetaneuse, France (A.M.-P.); (V.G.); (A.B.)
| | - Abolfazl Barzegari
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging, 99 Av. Jean-Baptiste Clément, 93430 Villetaneuse, France (A.M.-P.); (V.G.); (A.B.)
| | - Graciela Pavon-Djavid
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging, 99 Av. Jean-Baptiste Clément, 93430 Villetaneuse, France (A.M.-P.); (V.G.); (A.B.)
| |
Collapse
|
27
|
Rhee M, Lee J, Lee EY, Yoon KH, Lee SH. Lipid Variability Induces Endothelial Dysfunction by Increasing Inflammation and Oxidative Stress. Endocrinol Metab (Seoul) 2024; 39:511-520. [PMID: 38752267 PMCID: PMC11220216 DOI: 10.3803/enm.2023.1915] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/15/2024] [Accepted: 03/14/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGRUOUND This study investigates the impact of fluctuating lipid levels on endothelial dysfunction. METHODS Human aortic and umbilical vein endothelial cells were cultured under varying palmitic acid (PA) concentrations: 0, 50, and 100 μM, and in a variability group alternating between 0 and 100 μM PA every 8 hours for 48 hours. In the lipid variability group, cells were exposed to 100 μM PA during the final 8 hours before analysis. We assessed inflammation using real-time polymerase chain reaction, Western blot, and cytokine enzyme-linked immunosorbent assay (ELISA); reactive oxygen species (ROS) levels with dichlorofluorescin diacetate assay; mitochondrial function through oxygen consumption rates via XF24 flux analyzer; and endothelial cell functionality via wound healing and cell adhesion assays. Cell viability was evaluated using the MTT assay. RESULTS Variable PA levels significantly upregulated inflammatory genes and adhesion molecules (Il6, Mcp1, Icam, Vcam, E-selectin, iNos) at both transcriptomic and protein levels in human endothelial cells. Oscillating lipid levels reduced basal respiration, adenosine triphosphate synthesis, and maximal respiration, indicating mitochondrial dysfunction. This lipid variability also elevated ROS levels, contributing to a chronic inflammatory state. Functionally, these changes impaired cell migration and increased monocyte adhesion, and induced endothelial apoptosis, evidenced by reduced cell viability, increased BAX, and decreased BCL2 expression. CONCLUSION Lipid variability induce endothelial dysfunction by elevating inflammation and oxidative stress, providing mechanistic insights into how lipid variability increases cardiovascular risk.
Collapse
Affiliation(s)
- Marie Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joonyub Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kun-Ho Yoon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hwan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
28
|
Dikalova A, Fehrenbach D, Mayorov V, Panov A, Ao M, Lantier L, Amarnath V, Lopez MG, Billings FT, Sack MN, Dikalov S. Mitochondrial CypD Acetylation Promotes Endothelial Dysfunction and Hypertension. Circ Res 2024; 134:1451-1464. [PMID: 38639088 PMCID: PMC11116043 DOI: 10.1161/circresaha.123.323596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/01/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Nearly half of adults have hypertension, a major risk factor for cardiovascular disease. Mitochondrial hyperacetylation is linked to hypertension, but the role of acetylation of specific proteins is not clear. We hypothesized that acetylation of mitochondrial CypD (cyclophilin D) at K166 contributes to endothelial dysfunction and hypertension. METHODS To test this hypothesis, we studied CypD acetylation in patients with essential hypertension, defined a pathogenic role of CypD acetylation in deacetylation mimetic CypD-K166R mutant mice and endothelial-specific GCN5L1 (general control of amino acid synthesis 5 like 1)-deficient mice using an Ang II (angiotensin II) model of hypertension. RESULTS Arterioles from hypertensive patients had 280% higher CypD acetylation coupled with reduced Sirt3 (sirtuin 3) and increased GCN5L1 levels. GCN5L1 regulates mitochondrial protein acetylation and promotes CypD acetylation, which is counteracted by mitochondrial deacetylase Sirt3. In human aortic endothelial cells, GCN5L1 depletion prevents superoxide overproduction. Deacetylation mimetic CypD-K166R mice were protected from vascular oxidative stress, endothelial dysfunction, and Ang II-induced hypertension. Ang II-induced hypertension increased mitochondrial GCN5L1 and reduced Sirt3 levels resulting in a 250% increase in GCN5L1/Sirt3 ratio promoting CypD acetylation. Treatment with mitochondria-targeted scavenger of cytotoxic isolevuglandins (mito2HOBA) normalized GCN5L1/Sirt3 ratio, reduced CypD acetylation, and attenuated hypertension. The role of mitochondrial acetyltransferase GCN5L1 in the endothelial function was tested in endothelial-specific GCN5L1 knockout mice. Depletion of endothelial GCN5L1 prevented Ang II-induced mitochondrial oxidative stress, reduced the maladaptive switch of vascular metabolism to glycolysis, prevented inactivation of endothelial nitric oxide, preserved endothelial-dependent relaxation, and attenuated hypertension. CONCLUSIONS These data support the pathogenic role of CypD acetylation in endothelial dysfunction and hypertension. We suggest that targeting cytotoxic mitochondrial isolevuglandins and GCN5L1 reduces CypD acetylation, which may be beneficial in cardiovascular disease.
Collapse
Affiliation(s)
- Anna Dikalova
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | - Mingfang Ao
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | | | - Sergey Dikalov
- Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
29
|
Miao L, Zhou Y, Tan D, Zhou C, Ruan CC, Wang S, Wang Y, Vong CT, Cheang WS. Ginsenoside Rk1 improves endothelial function in diabetes through activating peroxisome proliferator-activated receptors. Food Funct 2024; 15:5485-5495. [PMID: 38690748 DOI: 10.1039/d3fo05222b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Ginsenoside Rk1, one kind of ginsenoside, is a minor ginsenoside found in Panax ginseng and used as traditional Chinese medicine for centuries. It exhibits anti-tumor and anti-aggregation effects. However, little research has been done on its effect on endothelial function. This study investigated whether ginsenoside Rk1 improved endothelial dysfunction in diabetes and the underlying mechanisms in vivo and in vitro. Male C57BL/6 mice were fed with a 12 week high-fat diet (60% kcal % fat), whereas treatment groups were orally administered with ginsenoside Rk1 (10 and 20 mg per kg per day) in the last 4 weeks. Aortas isolated from C57BL/6 mice were induced by high glucose (HG; 30 mM) and co-treated with or without ginsenoside Rk1 (1 and 10 μM) for 48 h ex vivo. Moreover, primary rat aortic endothelial cells (RAECs) were cultured and stimulated by HG (44 mM) to mimic hyperglycemia, with or without the co-treatment of ginsenoside Rk1 (10 μM) for 48 h. Endothelium-dependent relaxations of mouse aortas were damaged with elevated oxidative stress and downregulation of three isoforms of peroxisome proliferator-activated receptors (PPARs), PPAR-α, PPAR-β/δ, and PPAR-γ, as well as endothelial nitric oxide synthase (eNOS) phosphorylation due to HG or high-fat diet stimulation, which also existed in RAECs. However, after the treatment with ginsenoside Rk1, these impairments were all ameliorated significantly. Moreover, the vaso-protective and anti-oxidative effects of ginsenoside Rk1 were abolished by PPAR antagonists (GSK0660, GW9662 or GW6471). In conclusion, this study reveals that ginsenoside Rk1 ameliorates endothelial dysfunction and suppresses oxidative stress in diabetic vasculature through activating the PPAR/eNOS pathway.
Collapse
Affiliation(s)
- Lingchao Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| | - Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| | - Dechao Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau SAR, China
| | - Chunxiu Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| | - Cheng-Chao Ruan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau SAR, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau SAR, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau SAR, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
30
|
Zhang M, Perng W, Rifas-Shiman SL, Aris IM, Oken E, Hivert MF. Metabolomic signatures for blood pressure from early to late adolescence: findings from a U.S. cohort. Metabolomics 2024; 20:52. [PMID: 38722414 PMCID: PMC11195684 DOI: 10.1007/s11306-024-02110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/19/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Metabolite signatures for blood pressure (BP) may reveal biomarkers, elucidate pathogenesis, and provide prevention targets for high BP. Knowledge regarding metabolites associated with BP in adolescence remains limited. OBJECTIVES Investigate the associations between metabolites and adolescent BP, both cross-sectionally (in early and late adolescence) and prospectively (from early to late adolescence). METHODS Participants are from the Project Viva prospective cohort. During the early (median: 12.8 years; N = 556) and late (median: 17.4 years; N = 501) adolescence visits, we conducted untargeted plasma metabolomic profiling and measured systolic (SBP) and diastolic BP (DBP). We used linear regression to identify metabolites cross-sectionally associated with BP at each time point, and to assess prospective associations of changes in metabolite levels from early to late adolescence with late adolescence BP. We used Weighted Gene Correlation Network Analysis and Spearman's partial correlation to identify metabolite clusters associated with BP at each time point. RESULTS In the linear models, higher androgenic steroid levels were consistently associated with higher SBP and DBP in early and late adolescence. A cluster of 59 metabolites, mainly composed of androgenic steroids, correlated with higher SBP and DBP in early adolescence. A cluster primarily composed of fatty acid lipids was marginally associated with higher SBP in females in late adolescence. Multiple metabolites, including those in the creatine and purine metabolism sub-pathways, were associated with higher SBP and DBP both cross-sectionally and prospectively. CONCLUSION Our results shed light on the potential metabolic processes and pathophysiology underlying high BP in adolescents.
Collapse
Affiliation(s)
- Mingyu Zhang
- Division of General Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CO-1309, #204, Boston, MA, 02215, USA.
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA.
| | - Wei Perng
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity & Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sheryl L Rifas-Shiman
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Izzuddin M Aris
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
31
|
Ren H, Hu W, Jiang T, Yao Q, Qi Y, Huang K. Mechanical stress induced mitochondrial dysfunction in cardiovascular diseases: Novel mechanisms and therapeutic targets. Biomed Pharmacother 2024; 174:116545. [PMID: 38603884 DOI: 10.1016/j.biopha.2024.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Others and our studies have shown that mechanical stresses (forces) including shear stress and cyclic stretch, occur in various pathological conditions, play significant roles in the development and progression of CVDs. Mitochondria regulate the physiological processes of cardiac and vascular cells mainly through adenosine triphosphate (ATP) production, calcium flux and redox control while promote cell death through electron transport complex (ETC) related cellular stress response. Mounting evidence reveal that mechanical stress-induced mitochondrial dysfunction plays a vital role in the pathogenesis of many CVDs including heart failure and atherosclerosis. This review summarized mitochondrial functions in cardiovascular system under physiological mechanical stress and mitochondrial dysfunction under pathological mechanical stress in CVDs (graphical abstract). The study of mitochondrial dysfunction under mechanical stress can further our understanding of the underlying mechanisms, identify potential therapeutic targets, and aid the development of novel treatments of CVDs.
Collapse
Affiliation(s)
- He Ren
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Weiyi Hu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Tao Jiang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Qingping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Yingxin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Kai Huang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China.
| |
Collapse
|
32
|
Bonanni LJ, Wittkopp S, Long C, Aleman JO, Newman JD. A review of air pollution as a driver of cardiovascular disease risk across the diabetes spectrum. Front Endocrinol (Lausanne) 2024; 15:1321323. [PMID: 38665261 PMCID: PMC11043478 DOI: 10.3389/fendo.2024.1321323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The prevalence of diabetes is estimated to reach almost 630 million cases worldwide by the year 2045; of current and projected cases, over 90% are type 2 diabetes. Air pollution exposure has been implicated in the onset and progression of diabetes. Increased exposure to fine particulate matter air pollution (PM2.5) is associated with increases in blood glucose and glycated hemoglobin (HbA1c) across the glycemic spectrum, including normoglycemia, prediabetes, and all forms of diabetes. Air pollution exposure is a driver of cardiovascular disease onset and exacerbation and can increase cardiovascular risk among those with diabetes. In this review, we summarize the literature describing the relationships between air pollution exposure, diabetes and cardiovascular disease, highlighting how airborne pollutants can disrupt glucose homeostasis. We discuss how air pollution and diabetes, via shared mechanisms leading to endothelial dysfunction, drive increased cardiovascular disease risk. We identify portable air cleaners as potentially useful tools to prevent adverse cardiovascular outcomes due to air pollution exposure across the diabetes spectrum, while emphasizing the need for further study in this particular population. Given the enormity of the health and financial impacts of air pollution exposure on patients with diabetes, a greater understanding of the interventions to reduce cardiovascular risk in this population is needed.
Collapse
Affiliation(s)
- Luke J. Bonanni
- Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - Sharine Wittkopp
- Division of Cardiovascular Disease, Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - Clarine Long
- Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - José O. Aleman
- Division of Endocrinology, Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - Jonathan D. Newman
- Division of Cardiovascular Disease, Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| |
Collapse
|
33
|
Sagris M, Apostolos A, Theofilis P, Ktenopoulos N, Katsaros O, Tsalamandris S, Tsioufis K, Toutouzas K, Tousoulis D. Myocardial Ischemia-Reperfusion Injury: Unraveling Pathophysiology, Clinical Manifestations, and Emerging Prevention Strategies. Biomedicines 2024; 12:802. [PMID: 38672157 PMCID: PMC11048318 DOI: 10.3390/biomedicines12040802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/02/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) remains a challenge in the context of reperfusion procedures for myocardial infarction (MI). While early revascularization stands as the gold standard for mitigating myocardial injury, recent insights have illuminated the paradoxical role of reperfusion, giving rise to the phenomenon known as ischemia-reperfusion injury. This comprehensive review delves into the intricate pathophysiological pathways involved in MIRI, placing a particular focus on the pivotal role of endothelium. Beyond elucidating the molecular intricacies, we explore the diverse clinical manifestations associated with MIRI, underscoring its potential to contribute substantially to the final infarct size, up to 50%. We further navigate through current preventive approaches and highlight promising emerging strategies designed to counteract the devastating effects of the phenomenon. By synthesizing current knowledge and offering a perspective on evolving preventive interventions, this review serves as a valuable resource for clinicians and researchers engaged in the dynamic field of MIRI.
Collapse
Affiliation(s)
- Marios Sagris
- Correspondence: ; Tel.: +30-213-2088099; Fax: +30-2132088676
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jorgensen AN, Rashdan NA, Rao KNS, Delgadillo LF, Kolluru GK, Krzywanski DM, Pattillo CB, Kevil CG, Nam HW. Neurogranin expression regulates mitochondrial function and redox balance in endothelial cells. Redox Biol 2024; 70:103085. [PMID: 38359746 PMCID: PMC10878108 DOI: 10.1016/j.redox.2024.103085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024] Open
Abstract
Endothelial dysfunction and endothelial activation are common early events in vascular diseases and can arise from mitochondrial dysfunction. Neurogranin (Ng) is a 17kD protein well known to regulate intracellular Ca2+-calmodulin (CaM) complex signaling, and its dysfunction is significantly implicated in brain aging and neurodegenerative diseases. We found that Ng is also expressed in human aortic endothelial cells (HAECs), and depleting Ng promotes Ca2+-CaM complex-dependent endothelial activation and redox imbalances. Endothelial-specific Ng knockout (Cre-CDH5-Ngf/f) mice demonstrate a significant delay in the flow-mediated dilation (FMD) response. Therefore, it is critical to characterize how endothelial Ng expression regulates reactive oxygen species (ROS) generation and affects cardiovascular disease. Label-free quantification proteomics identified that mitochondrial dysfunction and the oxidative phosphorylation pathway are significantly changed in the aorta of Cre-CDH5-Ngf/f mice. We found that a significant amount of Ng is expressed in the mitochondrial fraction of HAECs using western blotting and colocalized with the mitochondrial marker, COX IV, using immunofluorescence staining. Seahorse assay demonstrated that a lack of Ng decreases mitochondrial respiration. Treatment with MitoEbselen significantly restores the oxygen consumption rate in Ng knockdown cells. With the RoGFP-Orp1 approach, we identified that Ng knockdown increases mitochondrial-specific hydrogen peroxide (H2O2) production, and MitoEbselen treatment significantly reduced mitochondrial ROS (mtROS) levels in Ng knockdown cells. These results suggest that Ng plays a significant role in mtROS production. We discovered that MitoEbselen treatment also rescues decreased eNOS expression and nitric oxide (NO) levels in Ng knockdown cells, which implicates the critical role of Ng in mtROS-NO balance in the endothelial cells.
Collapse
Affiliation(s)
- Ashton N Jorgensen
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Nabil A Rashdan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - K N Shashanka Rao
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Luisa F Delgadillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Gopi K Kolluru
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - David M Krzywanski
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Hyung W Nam
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA.
| |
Collapse
|
35
|
Liu B, Song F, Zhou X, Wu C, Huang H, Wu W, Li G, Wang Y. NEDD4L is a promoter for angiogenesis and cell proliferation in human umbilical vein endothelial cells. J Cell Mol Med 2024; 28:1-11. [PMID: 38526036 PMCID: PMC10962128 DOI: 10.1111/jcmm.18233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024] Open
Abstract
Dysregulated angiogenesis leads to neovascularization, which can promote or exacerbate various diseases. Previous studies have proved that NEDD4L plays an important role in hypertension and atherosclerosis. Hence, we hypothesized that NEDD4L may be a critical regulator of endothelial cell (EC) function. This study aimed to define the role of NEDD4L in regulating EC angiogenesis and elucidate their underlying mechanisms. Loss- and gain-of-function of NEDD4L detected the angiogenesis and mobility role in human umbilical vein endothelial cells (HUVECs) using Matrigel tube formation assay, cell proliferation and migration. Pharmacological pathway inhibitors and western blot were used to determine the underlying mechanism of NEDD4L-regulated endothelial functions. Knockdown of NEDD4L suppressed tube formation, cell proliferation and cell migration in HUVECs, whereas NEDD4L overexpression promoted these functions. Moreover, NEDD4L-regulated angiogenesis and cell progression are associated with the phosphorylation of Akt, Erk1/2 and eNOS and the expression of VEGFR2 and cyclin D1 and D3. Mechanically, further evidence was confirmed by using Akt blocker MK-2206, Erk1/2 blocker U0126 and eNOS blocker L-NAME. Overexpression NEDD4L-promoted angiogenesis, cell migration and cell proliferation were restrained by these inhibitors. In addition, overexpression NEDD4L-promoted cell cycle-related proteins cyclin D1 and D3 were also suppressed by Akt blocker MK-2206, Erk1/2 blocker U0126 and eNOS blocker L-NAME. Our results demonstrated a novel finding that NEDD4L promotes angiogenesis and cell progression by regulating the Akt/Erk/eNOS pathways.
Collapse
Affiliation(s)
- Binghong Liu
- Medical CollegeGuangxi UniversityNanningGuangxiChina
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Fei Song
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Xiaoxia Zhou
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Chan Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Huizhu Huang
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Weiyin Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Yan Wang
- Medical CollegeGuangxi UniversityNanningGuangxiChina
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| |
Collapse
|
36
|
Choi Y, Kosaki K, Akazawa N, Tanahashi K, Maeda S. Combined effects of sleep and objectively-measured daily physical activity on arterial stiffness in middle-aged and older adults. Exp Gerontol 2024; 188:112397. [PMID: 38461873 DOI: 10.1016/j.exger.2024.112397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Although sleep quality and physical activity (PA) may influence on arterial stiffness, the combined effects of these two factors on arterial stiffness remain unknown. A total of 103 healthy middle-aged and older men and women (aged 50-83 years) with no history of cardiovascular disease and depression were included in this study. Arterial stiffness was measured using carotid-femoral pulse wave velocity (cfPWV), brachial-ankle PWV (baPWV), and femoral-ankle PWV (faPWV). Poor sleepers were defined as those with a Pittsburgh Sleep Quality Index score of >5.5. Using an accelerometer for seven consecutive days, low levels of PA were defined as low moderate-to-vigorous-intensity PA (MVPA) <19.0 min/day and low step counts <7100 steps/day, respectively. Poor sleepers with low PA levels, as determined by MVPA and daily steps, showed higher cfPWV, but not faPWV or baPWV, in middle-aged and older adults. Furthermore, in the analysis of covariance (ANCOVA) analyses adjusted for age, obesity, dyslipidemia, and sedentary behavior, the cfPWV result remained significant. Our study revealed that the coexistence of poor sleep quality and decreased PA (low MVPA or daily steps) might increase central arterial stiffness in middle-aged and older adults. Therefore, adequate sleep (good and sufficient sleep quality) and regular PA, especially at appropriate levels of MVPA (i.e., at least of 7100 steps/day), should be encouraged to decrease central arterial stiffness in middle-aged and older adults.
Collapse
Affiliation(s)
- Youngju Choi
- Institute of Specialized Teaching and Research, Inha University, Incheon, Republic of Korea; Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.
| | - Keisei Kosaki
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan; Advanced Research Initiative for Human High performance (ARIHHP), University of Tsukuba, Tsukuba, Japan.
| | - Nobuhiko Akazawa
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan; Faculty of Sports and Life Sciences, National Institute of Fitness and Sports in KANOYA, Kanoya, Japan.
| | - Koichiro Tanahashi
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan; Department of Health and Sports Sciences, Kyoto Pharmaceutical University, Kyoto, Japan.
| | - Seiji Maeda
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan; Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan.
| |
Collapse
|
37
|
Kennedy KG, Ghugre NR, Roifman I, Qi X, Saul K, McCrindle BW, Macgowan CK, MacIntosh BJ, Goldstein BI. Impaired coronary microvascular reactivity in youth with bipolar disorder. Psychol Med 2024; 54:1196-1206. [PMID: 37905407 DOI: 10.1017/s0033291723003021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is excessively prevalent and premature in bipolar disorder (BD), even after controlling for traditional cardiovascular risk factors. The increased risk of CVD in BD may be subserved by microvascular dysfunction. We examined coronary microvascular function in relation to youth BD. METHODS Participants were 86 youth, ages 13-20 years (n = 39 BD, n = 47 controls). Coronary microvascular reactivity (CMVR) was assessed using quantitative T2 magnetic resonance imaging during a validated breathing-paradigm. Quantitative T2 maps were acquired at baseline, following 60-s of hyperventilation, and every 10-s thereafter during a 40-s breath-hold. Left ventricular structure and function were evaluated based on 12-15 short- and long-axis cardiac-gated cine images. A linear mixed-effects model that controlled for age, sex, and body mass index assessed for between-group differences in CMVR (time-by-group interaction). RESULTS The breathing-paradigm induced a significant time-related increase in T2 relaxation time for all participants (i.e. CMVR; β = 0.36, p < 0.001). CMVR was significantly lower in BD v. controls (β = -0.11, p = 0.002). Post-hoc analyses found lower T2 relaxation time in BD youth after 20-, 30-, and 40 s of breath-holding (d = 0.48, d = 0.72, d = 0.91, respectively; all pFDR < 0.01). Gross left ventricular structure and function (e.g. mass, ejection fraction) were within normal ranges and did not differ between groups. CONCLUSION Youth with BD showed evidence of subclinically impaired coronary microvascular function, despite normal gross cardiac structure and function. These results converge with prior findings in adults with major depressive disorder and post-traumatic stress disorder. Future studies integrating larger samples, prospective follow-up, and blood-based biomarkers are warranted.
Collapse
Affiliation(s)
- Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Nilesh R Ghugre
- Schulich Heart Research Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Idan Roifman
- Schulich Heart Research Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Xiuling Qi
- Schulich Heart Research Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Kayla Saul
- Schulich Heart Research Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Brian W McCrindle
- Division of Pediatric Cardiology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Christopher K Macgowan
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Division of Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Computational Radiology & Artificial Intelligence (CRAI) unit, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
Zhao X, Chen X, Wu Y, Wang J, Lin P, Zhou L, Wang Z. Construction of a super large Stokes shift near-infrared fluorescent probe for detection and imaging of superoxide anion in living cells, zebrafish and mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123806. [PMID: 38154307 DOI: 10.1016/j.saa.2023.123806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
As one of the major reactive oxygen species (ROS), superoxide anion (O2•-) is engaged in maintaining redox homeostasis in the cell microenvironment. To identify the pathological roles in related disorders caused by abnormal expression of O2•-, it is of great significance to monitor and track the fluctuation of O2•- concentration in vivo. However, the low concentration of O2•- and the interference caused by tissue autofluorescence make the development of an ideal detection methodology full of challenges. Herein, a "Turn-On" chemical response near-infrared (NIR) fluorescence probe Dcm-Cu-OTf for O2•- detection in inflamed models, was constructed by conjugating the NIR fluorophore (dicyanisophorone derivative) with an O2•- sensing moiety (trifluoromethanesulfonate). Dcm-Cu-OTf exerted about 140-fold fluorescence enhancement after reacting 200 μM O2•- with an excellent limited of detection (LOD) as low as 149 nM. Additionally, Dcm-Cu-OTf exhibited a super large Stokes shift (260 nm) and high selectivity over other bio-analytes in stimulated conditions. Importantly, Dcm-Cu-OTf showed low toxicity and enabled imaging of the generation of O2•- in the Lipopolysaccharide (LPS)-stimulated HeLa cells, zebrafish, and LPS-induced inflamed mice. The present study provided a potential and reliable detection tool to inspect the physiological and pathological progress of O2•- in living biosystems.
Collapse
Affiliation(s)
- Xiongjie Zhao
- College of Chemistry and Biological Engineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China.
| | - Xinyi Chen
- College of Chemistry and Biological Engineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China
| | - You Wu
- College of Chemistry and Biological Engineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China
| | - Jing Wang
- College of Chemistry and Biological Engineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China
| | - Pengxu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zongcheng Wang
- College of Chemistry and Biological Engineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China.
| |
Collapse
|
39
|
Mostafa MA, Abueissa MA, Soliman MZ, Ahmad MI, Soliman EZ. Association between Blood Lead Levels and Silent Myocardial Infarction in the General Population. J Clin Med 2024; 13:1582. [PMID: 38541807 PMCID: PMC10970933 DOI: 10.3390/jcm13061582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 07/25/2024] Open
Abstract
Background: Although the link between lead exposure and patterns of cardiovascular disease (CVD) has been reported, its association with silent myocardial infarction (SMI) remains unexplored. We aimed to assess the association between blood lead levels (BLLs) and SMI risk. Methods: We included 7283 (mean age 56.1 ± 2.52 years, 52.5% women) participants free of CVD from the Third National Health and Nutrition Examination Survey. BLL was measured using graphite-furnace atomic absorption spectrophotometry. SMI was defined as ECG evidence of myocardial infarction (MI) without history of MI. The association between SMI and BLLs was examined using multivariable logistic regression. Results: SMI was detected in 120 participants with an unweighted prevalence of 1.65%. Higher BLL correlated with higher SMI prevalence across BLL tertiles. In multivariable-adjusted models, participants in the third BLL tertile had more than double the odds of SMI (OR: 3.42, 95%CI: 1.76-6.63) compared to the first tertile. Each 1 µg/dL increase in BLL was linked to a 9% increase in SMI risk. This association was consistent across age, sex, and race subgroups. Conclusions: Higher BLLs are associated with higher odds of SMI in the general population. These results underscore the significance of the ongoing efforts to mitigate lead exposure and implement screening strategies for SMI in high-risk populations.
Collapse
Affiliation(s)
- Mohamed A. Mostafa
- Epidemiological Cardiology Research Center (EPICARE), Department of Internal Medicine, Section Cardiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Mohammed A. Abueissa
- Department of Cardiothoracic Surgery, Al Manial Specialized Cairo University Hospital, Cairo 11956, Egypt;
| | | | - Muhammad Imtiaz Ahmad
- Department of Internal Medicine, Section on Hospital Medicine, Medical College of Wisconsin, Wauwatosa, WI 53226, USA;
| | - Elsayed Z. Soliman
- Epidemiological Cardiology Research Center (EPICARE), Department of Internal Medicine, Section Cardiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| |
Collapse
|
40
|
Vezzoli A, Mrakic-Sposta S, Brizzolari A, Balestra C, Camporesi EM, Bosco G. Oxy-Inflammation in Humans during Underwater Activities. Int J Mol Sci 2024; 25:3060. [PMID: 38474303 DOI: 10.3390/ijms25053060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Underwater activities are characterized by an imbalance between reactive oxygen/nitrogen species (RONS) and antioxidant mechanisms, which can be associated with an inflammatory response, depending on O2 availability. This review explores the oxidative stress mechanisms and related inflammation status (Oxy-Inflammation) in underwater activities such as breath-hold (BH) diving, Self-Contained Underwater Breathing Apparatus (SCUBA) and Closed-Circuit Rebreather (CCR) diving, and saturation diving. Divers are exposed to hypoxic and hyperoxic conditions, amplified by environmental conditions, hyperbaric pressure, cold water, different types of breathing gases, and air/non-air mixtures. The "diving response", including physiological adaptation, cardiovascular stress, increased arterial blood pressure, peripheral vasoconstriction, altered blood gas values, and risk of bubble formation during decompression, are reported.
Collapse
Affiliation(s)
- Alessandra Vezzoli
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20142 Milano, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20142 Milano, Italy
| | - Andrea Brizzolari
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
| | | | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
41
|
Singh S. Antioxidant nanozymes as next-generation therapeutics to free radical-mediated inflammatory diseases: A comprehensive review. Int J Biol Macromol 2024; 260:129374. [PMID: 38242389 DOI: 10.1016/j.ijbiomac.2024.129374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Recent developments in exploring the biological enzyme mimicking properties in nanozymes have opened a separate avenue, which provides a suitable alternative to the natural antioxidants and enzymes. Due to high and tunable catalytic activity, low cost of synthesis, easy surface modification, and good biocompatibility, nanozymes have garnered significant research interest globally. Several inorganic nanomaterials have been investigated to exhibit catalytic activities of some of the key natural enzymes, including superoxide dismutase (SOD), catalase, glutathione peroxidase, peroxidase, and oxidase, etc. These nanozymes are used for diverse biomedical applications including therapeutics, imaging, and biosensing in various cells/tissues and animal models. In particular, inflammation-related diseases are closely associated with reactive oxygen and reactive nitrogen species, and therefore effective antioxidants could be excellent therapeutics due to their free radical scavenging ability. Although biological enzymes and other artificial antioxidants could perform well in scavenging the reactive oxygen and nitrogen species, however, suffer from several drawbacks such as the requirement of strict physiological conditions for enzymatic activity, limited stability in the environment beyond their optimum pH and temperature, and high cost of synthesis, purification, and storage make then unattractive for broad-spectrum applications. Therefore, this review systematically and comprehensively presents the free radical-mediated evolution of various inflammatory diseases (inflammatory bowel disease, mammary gland fibrosis, and inflammation, acute injury of the liver and kidney, mammary fibrosis, and cerebral ischemic stroke reperfusion) and their mitigation by various antioxidant nanozymes in the biological system. The mechanism of free radical scavenging by antioxidant nanozymes under in vitro and in vivo experimental models and catalytic efficiency comparison with corresponding natural enzymes has also been presented.
Collapse
Affiliation(s)
- Sanjay Singh
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India.
| |
Collapse
|
42
|
Coelho Ferraz A, Bueno da Silva Menegatto M, Lameira Souza Lima R, Samuel Ola-Olub O, Caldeira Costa D, Carlos de Magalhães J, Maurício Rezende I, Desiree LaBeaud A, P Monath T, Augusto Alves P, Teixeira de Carvalho A, Assis Martins-Filho O, P Drumond B, Magalhães CLDB. Yellow fever virus infection in human hepatocyte cells triggers an imbalance in redox homeostasis with increased reactive oxygen species production, oxidative stress, and decreased antioxidant enzymes. Free Radic Biol Med 2024; 213:266-273. [PMID: 38278309 PMCID: PMC10911966 DOI: 10.1016/j.freeradbiomed.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 01/28/2024]
Abstract
Yellow fever (YF) presents a wide spectrum of severity, with clinical manifestations in humans ranging from febrile and self-limited to fatal cases. Although YF is an old disease for which an effective and safe vaccine exists, little is known about the viral- and host-specific mechanisms that contribute to liver pathology. Several studies have demonstrated that oxidative stress triggered by viral infections contributes to pathogenesis. We evaluated whether yellow fever virus (YFV), when infecting human hepatocytes cells, could trigger an imbalance in redox homeostasis, culminating in oxidative stress. YFV infection resulted in a significant increase in reactive oxygen species (ROS) levels from 2 to 4 days post infection (dpi). When measuring oxidative parameters at 4 dpi, YFV infection caused oxidative damage to lipids, proteins, and DNA, evidenced by an increase in lipid peroxidation/8-isoprostane, carbonyl protein, and 8-hydroxy-2'-deoxyguanosine, respectively. Furthermore, there was a significant reduction in the activity of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx), in addition to a reduction in the ratio of reduced to oxidized glutathione (GSH/GSSG), indicating a pro-oxidant environment. However, no changes were observed in the enzymatic activity of the enzyme catalase (CAT) or in the gene expression of SOD isoforms (1/2/3), CAT, or GPx. Therefore, our results show that YFV infection generates an imbalance in redox homeostasis, with the overproduction of ROS and depletion of antioxidant enzymes, which induces oxidative damage to cellular constituents. Moreover, as it has been demonstrated that oxidative stress is a conspicuous event in YFV infection, therapeutic strategies based on antioxidant biopharmaceuticals may be new targets for the treatment of YF.
Collapse
Affiliation(s)
- Ariane Coelho Ferraz
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Marília Bueno da Silva Menegatto
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Rafaela Lameira Souza Lima
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Oluwashola Samuel Ola-Olub
- Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Daniela Caldeira Costa
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - José Carlos de Magalhães
- Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de São João del-Rei, Ouro Branco, Minas Gerais, Brazil
| | - Izabela Maurício Rezende
- Pandemic Preparedenss Hub, Divison of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Angelle Desiree LaBeaud
- Division of Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, California, United States
| | | | - Pedro Augusto Alves
- Imunologia de Doenças Virais, Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira de Carvalho
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Betânia P Drumond
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cintia Lopes de Brito Magalhães
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
43
|
Dong H, Sun Y, Nie L, Cui A, Zhao P, Leung WK, Wang Q. Metabolic memory: mechanisms and diseases. Signal Transduct Target Ther 2024; 9:38. [PMID: 38413567 PMCID: PMC10899265 DOI: 10.1038/s41392-024-01755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Metabolic diseases and their complications impose health and economic burdens worldwide. Evidence from past experimental studies and clinical trials suggests our body may have the ability to remember the past metabolic environment, such as hyperglycemia or hyperlipidemia, thus leading to chronic inflammatory disorders and other diseases even after the elimination of these metabolic environments. The long-term effects of that aberrant metabolism on the body have been summarized as metabolic memory and are found to assume a crucial role in states of health and disease. Multiple molecular mechanisms collectively participate in metabolic memory management, resulting in different cellular alterations as well as tissue and organ dysfunctions, culminating in disease progression and even affecting offspring. The elucidation and expansion of the concept of metabolic memory provides more comprehensive insight into pathogenic mechanisms underlying metabolic diseases and complications and promises to be a new target in disease detection and management. Here, we retrace the history of relevant research on metabolic memory and summarize its salient characteristics. We provide a detailed discussion of the mechanisms by which metabolic memory may be involved in disease development at molecular, cellular, and organ levels, with emphasis on the impact of epigenetic modulations. Finally, we present some of the pivotal findings arguing in favor of targeting metabolic memory to develop therapeutic strategies for metabolic diseases and provide the latest reflections on the consequences of metabolic memory as well as their implications for human health and diseases.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuezhang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aimin Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Wai Keung Leung
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
44
|
Kaneko T, Yoshioka M, Kawahara F, Nishitani N, Mori S, Park J, Tarumi T, Kosaki K, Maeda S. Effects of plant- and animal-based-protein meals for a day on serum nitric oxide and peroxynitrite levels in healthy young men. Endocr J 2024; 71:119-127. [PMID: 38220201 DOI: 10.1507/endocrj.ej23-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Plant-based diets that replace animal-based proteins with plant-based proteins have received increased attention for cardiovascular protection. Nitric oxide (NO) plays an essential role in the maintenance of endothelial function. However, under higher oxidative stress, NO generation produces peroxynitrite, a powerful oxidant and vasoconstrictor. Diet-replaced protein sources has been reported to decrease oxidative stress. However, the effects of plant-based protein on NO and peroxynitrite have not yet been clarified. Therefore, this study aimed to compare the effects of plant- and animal-based-protein meals for a day on NO, peroxynitrite, and NO/peroxynitrite balance. A crossover trial of two meal conditions involving nine healthy men was performed. Participants ate standard meals during day 1. On day 2, baseline measurements were performed and the participants were provided with plant-based-protein meals or animal-based-protein meals. The standard and test meals consisted of breakfast, lunch, and dinner and were designed to be isocaloric. Plant-based-protein meals contained no animal protein. Blood samples were collected in the morning after overnight fasting before and after the test meals consumption. In the plant-based-protein meal condition, serum NOx levels (the sum of serum nitrite and nitrate) significantly increased, while serum peroxynitrite levels did not change significantly. Animal-based-protein meals significantly increased serum peroxynitrite levels but showed a trend of reduction in the serum NOx levels. Furthermore, serum NO/peroxynitrite balance significantly increased after plant-based-protein meals consumption, but significantly decreased after animal-based-protein meals consumption. These results suggest that, compared with animal-based-protein meals, plant-based-protein meals increase NO levels and NO/peroxynitrite balance, which reflects increased endothelial function.
Collapse
Affiliation(s)
- Tomoko Kaneko
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Masaki Yoshioka
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
- Japan Society for the Promotion of Science, Tokyo 102-8472, Japan
| | - Futo Kawahara
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Natsumi Nishitani
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Shoya Mori
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Jiyeon Park
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Takashi Tarumi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | - Keisei Kosaki
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Seiji Maeda
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
- Faculty of Sport Sciences, Waseda University, Saitama 359-1192, Japan
| |
Collapse
|
45
|
Ciarambino T, Crispino P, Minervini G, Giordano M. Role of Helicobacter pylori Infection in Pathogenesis, Evolution, and Complication of Atherosclerotic Plaque. Biomedicines 2024; 12:400. [PMID: 38398002 PMCID: PMC10886498 DOI: 10.3390/biomedicines12020400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/11/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The therapeutic management of atherosclerosis focuses almost exclusively on the reduction of plasma cholesterol levels. An important role in the genesis and evolution of atherosclerosis is played by chronic inflammation in promoting thrombosis phenomena after atheroma rupture. This review aims to take stock of the knowledge so far accumulated on the role of endemic HP infection in atherosclerosis. The studies produced so far have demonstrated a causal relationship between Helicobacter pylori (HP) and CVD. In a previous study, we demonstrated in HP-positive patients that thrombin and plasma fragment 1 + 2 production was proportionally related to tumor necrosis factor-alpha levels and that eradication of the infection resulted in a reduction of inflammation. At the end of our review, we can state that HP slightly affects the risk of CVD, particularly if the infection is associated with cytotoxic damage, and HP screening could have a clinically significant role in patients with a high risk of CVD. Considering the high prevalence of HP infection, an infection screening could be of great clinical utility in patients at high risk of CVD.
Collapse
Affiliation(s)
- Tiziana Ciarambino
- Internal Medicine Department, Hospital of Marcianise, ASL Caserta, 81037 Caserta, Italy
| | - Pietro Crispino
- Internal Medicine Department, Hospital of Latina, ASL Latina, 04100 Latina, Italy;
| | - Giovanni Minervini
- Internal Medicine Department, Hospital of Lagonegro, AOR San Carlo, 85042 Lagonegro, Italy;
| | - Mauro Giordano
- Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, 81100 Naples, Italy;
| |
Collapse
|
46
|
Mazzacane F, Vaghi G, Cotta Ramusino M, Perini G, Costa A. Arterial hypertension in the chronic evolution of migraine: bystander or risk factor? An overview. J Headache Pain 2024; 25:13. [PMID: 38311745 PMCID: PMC10840219 DOI: 10.1186/s10194-024-01720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Several risk factors are associated with the chronic evolution of migraine. Clinical and preclinical studies have provided data about the role of hypertension (HT) as one of the potential modifiable risk factors of chronic migraine (CM). This review is focused on the biological and clinical evidence supporting common mechanisms underlying HT and migraine and the potential role of HT in the transition from episodic to chronic migraine. METHODS We conducted a narrative review from a literature search covering the available evidence from studies investigating: i) the role of HT in the transition to CM in clinical practice; ii) the biological mechanisms potentially underpinning the association between HT and evolution to CM; iii) the role of antihypertensive medications in migraine prophylaxis. RESULTS HT proved to be at the base of multiple mechanisms underlying migraine and migraine chronicization. Endothelial dysfunction, blood-brain barrier alterations, calcitonin gene-related peptide signaling, and renin-angiotensin-aldosterone system dysregulation are involved in the worsening effect of HT on migraine frequency, and the role of HT in the transition to CM is supported by clinical observations. CONCLUSIONS The observed evidence supports HT contribution to CM evolution due to shared pathophysiologic mechanisms. While a bidirectional influence appears to be ascertained, data are still lacking about the one-way role of HT as direct risk factor for CM transition. Further research is needed to confirm a causal role of HT in this process.
Collapse
Affiliation(s)
- Federico Mazzacane
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Gloria Vaghi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy.
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, 27100, Pavia, Italy.
| | - Matteo Cotta Ramusino
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Giulia Perini
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Alfredo Costa
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| |
Collapse
|
47
|
Toprak K, Kaplangoray M, Özen K, Koyuncu İ, Taşcanov MB, Altıparmak İH, Biçer A, Demirbağ R. Disruption of the endothelial glycocalyx layer is associated with idiopathic complete atrioventricular block in the elderly population: An observational pilot study. J Investig Med 2024; 72:233-241. [PMID: 38102740 DOI: 10.1177/10815589231222239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Idiopathic atrioventricular block (iCAVB) is the most common reason for the need for a permanent pacemaker in the elderly population. The fibrotic process that occurs in the conduction system of the heart with aging is the main pathogenesis in the development of iCAVB. However, the processes that trigger the development of iCAVB in the elderly population have not been fully elucidated. In this study, we aimed to reveal the possible relationship between the endothelial glycocalyx (EG) layer and idiopathic complete atrioventricular block. A group of 68 consecutive patients who developed iCAVB and a group of 68 healthy subjects matched for age, sex, and cardiovascular risk factors were included in the study. The groups were compared for clinical, laboratory, and levels of Syndecan-1 (SDC1), an EG layer marker. In the study, SDC1 levels were found to be significantly higher in the iCAVB group compared to the control group (23.7 ± 7.5 vs 16.7 ± 5.2; p = 0.009). In multivariable regression analysis, SDC1 was determined as an independent potential predictor for iCAVB (OR: 1.200; 95% CI: 1.119-1.287; p < 0.001). In the receiver operating characteristic curve analysis, SDC1 predicted iCAVB with 74% sensitivity and 72% specificity at the best cut-off value of 18.5 ng/mL (area under the curve: 0.777; confidence interval: 0.698-0.856; p < 0.001). Disruption of the endothelial glycolic layer may be one of the main triggering factors for the process leading to iCAVB.
Collapse
Affiliation(s)
- Kenan Toprak
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Mustafa Kaplangoray
- Department of Cardiology, Faculty of Medicine, Şeyh Edebali University, Bilecik, Turkey
| | - Kaya Özen
- Department of Cardiology, Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey
| | - İsmail Koyuncu
- Department of Clinical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | | | | | - Asuman Biçer
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Recep Demirbağ
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| |
Collapse
|
48
|
Shaked I, Foo C, Mächler P, Liu R, Cui Y, Ji X, Broggini T, Kaminski T, Suryakant Jadhav S, Sundd P, Firer M, Devor A, Friedman B, Kleinfeld D. A lone spike in blood glucose can enhance the thrombo-inflammatory response in cortical venules. J Cereb Blood Flow Metab 2024; 44:252-271. [PMID: 37737093 PMCID: PMC10993879 DOI: 10.1177/0271678x231203023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
How transient hyperglycemia contributes to cerebro-vascular disease has been a challenge to study under controlled physiological conditions. We use amplified, ultrashort laser-pulses to physically disrupt brain-venule endothelium at targeted locations. This vessel disruption is performed in conjunction with transient hyperglycemia from a single injection of metabolically active D-glucose into healthy mice. The observed real-time responses to laser-induced disruption include rapid serum extravasation, platelet aggregation, and neutrophil recruitment. Thrombo-inflammation is pharmacologically ameliorated by a platelet inhibitor, by a scavenger of reactive oxygen species, and by a nitric oxide donor. As a control, vessel thrombo-inflammation is significantly reduced in mice injected with metabolically inert L-glucose. Venules in mice with diabetes show a similar response to laser-induced disruption and damage is reduced by restoration of normo-glycemia. Our approach provides a controlled method to probe synergies between transient metabolic and physical vascular perturbations and can reveal new aspects of brain pathophysiology.
Collapse
Affiliation(s)
- Iftach Shaked
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
- The Adelson Medical School, Ariel University, Ariel, Israel
| | - Conrad Foo
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Philipp Mächler
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Rui Liu
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Yingying Cui
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Xiang Ji
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Thomas Broggini
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Tomasz Kaminski
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Prithu Sundd
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Firer
- The Adelson Medical School, Ariel University, Ariel, Israel
| | - Anna Devor
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Beth Friedman
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
- Department of Neurobiology, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
49
|
More SA, Deore RS, Pawar HD, Sharma C, Nakhate KT, Rathod SS, Ojha S, Goyal SN. CB2 Cannabinoid Receptor as a Potential Target in Myocardial Infarction: Exploration of Molecular Pathogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:1683. [PMID: 38338960 PMCID: PMC10855244 DOI: 10.3390/ijms25031683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The lipid endocannabinoid system has recently emerged as a novel therapeutic target for several inflammatory and tissue-damaging diseases, including those affecting the cardiovascular system. The primary targets of cannabinoids are cannabinoid type 1 (CB1) and 2 (CB2) receptors. The CB2 receptor is expressed in the cardiomyocytes. While the pathological changes in the myocardium upregulate the CB2 receptor, genetic deletion of the receptor aggravates the changes. The CB2 receptor plays a crucial role in attenuating the advancement of myocardial infarction (MI)-associated pathological changes in the myocardium. Activation of CB2 receptors exerts cardioprotection in MI via numerous molecular pathways. For instance, delta-9-tetrahydrocannabinol attenuated the progression of MI via modulation of the CB2 receptor-dependent anti-inflammatory mechanisms, including suppression of pro-inflammatory cytokines like IL-6, TNF-α, and IL-1β. Through similar mechanisms, natural and synthetic CB2 receptor ligands repair myocardial tissue damage. This review aims to offer an in-depth discussion on the ameliorative potential of CB2 receptors in myocardial injuries induced by a variety of pathogenic mechanisms. Further, the modulation of autophagy, TGF-β/Smad3 signaling, MPTP opening, and ROS production are discussed. The molecular correlation of CB2 receptors with cardiac injury markers, such as troponin I, LDH1, and CK-MB, is explored. Special attention has been paid to novel insights into the potential therapeutic implications of CB2 receptor activation in MI.
Collapse
Affiliation(s)
- Sagar A. More
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| | - Rucha S. Deore
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| | - Harshal D. Pawar
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Kartik T. Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| | - Sumit S. Rathod
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sameer N. Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| |
Collapse
|
50
|
Nucera S, Serra M, Caminiti R, Ruga S, Passacatini LC, Macrì R, Scarano F, Maiuolo J, Bulotta R, Mollace R, Bosco F, Guarnieri L, Oppedisano F, Ilari S, Muscoli C, Palma E, Mollace V. Non-essential heavy metal effects in cardiovascular diseases: an overview of systematic reviews. Front Cardiovasc Med 2024; 11:1332339. [PMID: 38322770 PMCID: PMC10844381 DOI: 10.3389/fcvm.2024.1332339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Introduction Cardiovascular diseases (CVDs) are the most important cause of premature death and disability worldwide. Environmental degradation and cardiovascular diseases are two keys to health challenges, characterized by a constant evolution in an industrialized world that exploits natural resources regardless of the consequences for health. The etiological risk factors of CVDs are widely known and include dyslipidemia, obesity, diabetes, and chronic cigarette consumption. However, one component that is often underestimated is exposure to heavy metals. The biological perspective explains that different metals play different roles. They are therefore classified into essential heavy metals, which are present in organisms where they perform important vital functions, especially in various physiological processes, or non-essential heavy metals, with a no biological role but, nonetheless, remain in the environment in which they are absorbed. Although both types of metal ions are many times chemically similar and can bind to the same biological ligands, the attention given today to nonessential metals in several eukaryotic species is starting to raise strong concerns due to an exponential increase in their concentrations. The aim of this systematic review was to assess possible correlations between exposure to nonessential heavy metals and increased incidence of cardiovascular disease, reporting the results of studies published in the last 5 years through March 2023. Methods The studies includes reviews retrieved from PubMed, Medline, Embase, and Web of Science databases, in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement and following the PICO (Population Intervention Comparison Outcome Population) framework. Results Eight reviews, including a total of 153 studies, were identified. Seven of these review enlighted the association between CVDs and non-essential heavy metals chronic exposure. Discussion It is evident that exposure to heavy metals represent a risk factor for CVDs onset. However, further studies are needed to better understand the effects caused by these metals.
Collapse
Affiliation(s)
- Saverio Nucera
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rosamaria Caminiti
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Stefano Ruga
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | | | - Roberta Macrì
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Federica Scarano
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Jessica Maiuolo
- Department of Health Sciences, Laboratory of Pharmaceutical Biology, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rosamaria Bulotta
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rocco Mollace
- Department of Systems Medicine, University “Tor Vergata” of Rome, Rome, Italy
| | - Francesca Bosco
- Science of Health Department, Section of Pharmacology, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Lorenza Guarnieri
- Science of Health Department, Section of Pharmacology, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Sara Ilari
- Physiology and Pharmacology of Pain, IRCCS San Raffaele Roma, Rome, Italy
| | - Carolina Muscoli
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Physiology and Pharmacology of Pain, IRCCS San Raffaele Roma, Rome, Italy
| | - Ernesto Palma
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Department of Health Sciences, Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Renato Dulbecco Institute, Catanzaro, Italy
| |
Collapse
|