1
|
Evans F, Alí-Ruiz D, Rego N, Negro-Demontel ML, Lago N, Cawen FA, Pannunzio B, Sanchez-Molina P, Reyes L, Paolino A, Rodríguez-Duarte J, Pérez-Torrado V, Chicote-González A, Quijano C, Marmisolle I, Mulet AP, Schlapp G, Meikle MN, Bresque M, Crispo M, Savio E, Malagelada C, Escande C, Peluffo H. CD300f immune receptor contributes to healthy aging by regulating inflammaging, metabolism, and cognitive decline. Cell Rep 2023; 42:113269. [PMID: 37864797 DOI: 10.1016/j.celrep.2023.113269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023] Open
Abstract
Emerging evidence suggests that immune receptors may participate in many aging-related processes such as energy metabolism, inflammation, and cognitive decline. CD300f, a TREM2-like lipid-sensing immune receptor, is an exceptional receptor as it integrates activating and inhibitory cell-signaling pathways that modulate inflammation, efferocytosis, and microglial metabolic fitness. We hypothesize that CD300f can regulate systemic aging-related processes and ultimately healthy lifespan. We closely followed several cohorts of two strains of CD300f-/- and WT mice of both sexes for 30 months and observed an important reduction in lifespan and healthspan in knockout mice. This was associated with systemic inflammaging, increased cognitive decline, reduced brain glucose uptake observed by 18FDG PET scans, enrichment in microglial aging/neurodegeneration phenotypes, proteostasis alterations, senescence, increased frailty, and sex-dependent systemic metabolic changes. Moreover, the absence of CD300f altered macrophage immunometabolic phenotype. Taken together, we provide strong evidence suggesting that myeloid cell CD300f immune receptor contributes to healthy aging.
Collapse
Affiliation(s)
- Frances Evans
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay; Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Daniela Alí-Ruiz
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay; Faculty of Sciences, UDELAR, Montevideo, Uruguay
| | - María Luciana Negro-Demontel
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay; Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Natalia Lago
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Fabio Andrés Cawen
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Bruno Pannunzio
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay; Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Paula Sanchez-Molina
- Department of Cell Biology, Physiology and Immunology, and Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Reyes
- Uruguayan Center for Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Andrea Paolino
- Uruguayan Center for Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Jorge Rodríguez-Duarte
- Laboratory of Vascular Biology and Drug Development, INDICYO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Valentina Pérez-Torrado
- Metabolic Diseases and Aging Laboratory, INDICYO Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Almudena Chicote-González
- Unitat de Bioquímica i Biologia Molecular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Spain
| | - Celia Quijano
- Departamento de Bioquímica y Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Inés Marmisolle
- Departamento de Bioquímica y Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ana Paula Mulet
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Geraldine Schlapp
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - María Noel Meikle
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Mariana Bresque
- Metabolic Diseases and Aging Laboratory, INDICYO Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Martina Crispo
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Eduardo Savio
- Uruguayan Center for Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Cristina Malagelada
- Unitat de Bioquímica i Biologia Molecular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Spain
| | - Carlos Escande
- Metabolic Diseases and Aging Laboratory, INDICYO Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Hugo Peluffo
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay; Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Unitat de Bioquímica i Biologia Molecular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
2
|
Dobson DA, Holle LA, Lin FC, Huffman JE, Luyendyk JP, Flick MJ, Smith NL, de Vries PS, Morrison AC, Wolberg AS. Novel genetic regulators of fibrinogen synthesis identified by an in vitro experimental platform. J Thromb Haemost 2023; 21:522-533. [PMID: 36696182 PMCID: PMC10111212 DOI: 10.1016/j.jtha.2022.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/26/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Fibrinogen has an established, essential role in both coagulation and inflammatory pathways, and these processes are deeply intertwined in the development of thrombotic and atherosclerotic diseases. Previous studies aimed to better understand the (patho) physiological actions of fibrinogen by characterizing the genomic contribution to circulating fibrinogen levels. OBJECTIVES Establish an in vitro approach to define functional roles between genes within these loci and fibrinogen synthesis. METHODS Candidate genes were selected on the basis of their proximity to genetic variants associated with fibrinogen levels and expression in hepatocytes and HepG2 cells. HepG2 cells were transfected with small interfering RNAs targeting candidate genes and cultured in the absence or presence of the proinflammatory cytokine interleukin-6. Effects on fibrinogen protein production, gene expression, and cell growth were assessed by immunoblotting, real-time polymerase chain reaction, and cell counts, respectively. RESULTS HepG2 cells secreted fibrinogen, and stimulation with interleukin-6 increased fibrinogen production by 3.4 ± 1.2 fold. In the absence of interleukin-6, small interfering RNA knockdown of FGA, IL6R, or EEPD1 decreased fibrinogen production, and knockdown of LEPR, PDIA5, PLEC, SHANK3, or CPS1 increased production. In the presence of interleukin-6, knockdown of FGA, IL6R, or ATXN2L decreased fibrinogen production. Knockdown of FGA, IL6R, EEPD1, LEPR, PDIA5, PLEC, or CPS1 altered transcription of one or more fibrinogen genes. Knocking down ATXN2L suppressed inducible but not basal fibrinogen production via a post-transcriptional mechanism. CONCLUSIONS We established an in vitro platform to define the impact of select gene products on fibrinogen production. Genes identified in our screen may reveal cellular mechanisms that drive fibrinogen production as well as fibrin(ogen)-mediated (patho)physiological mechanisms.
Collapse
Affiliation(s)
- Dre'Von A Dobson
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, NC, USA
| | - Lori A Holle
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, NC, USA
| | - Feng-Chang Lin
- Department of Biostatistics and North Carolina Translational and Clinical Sciences Institute, University of North Carolina at Chapel Hill, NC, USA
| | | | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, NC, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle WA, USA; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle WA, USA; Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle WA, USA; Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul S de Vries
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle WA, USA
| | - Alanna C Morrison
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle WA, USA
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Seltana A, Cloutier G, Reyes Nicolas V, Khalfaoui T, Teller IC, Perreault N, Beaulieu JF. Fibrin(ogen) Is Constitutively Expressed by Differentiated Intestinal Epithelial Cells and Mediates Wound Healing. Front Immunol 2022; 13:916187. [PMID: 35812445 PMCID: PMC9258339 DOI: 10.3389/fimmu.2022.916187] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/13/2022] [Indexed: 11/21/2022] Open
Abstract
Fibrinogen is a large molecule synthesized in the liver and released in the blood. Circulating levels of fibrinogen are upregulated after bleeding or clotting events and support wound healing. In the context of an injury, thrombin activation drives conversion of fibrinogen to fibrin. Fibrin deposition contains tissue damage, stops blood loss, and prevents microbial infection. In most circumstances, fibrin needs to be removed to allow the resolution of inflammation and tissue repair, whereas failure of this may lead to the development of various disorders. However, the contribution of fibrinogen to tissue inflammation and repair is likely to be context-dependent. In this study, the concept that fibrin needs to be removed to allow tissue repair and to reduce inflammation is challenged by our observations that, in the intestine, fibrinogen is constitutively produced by a subset of intestinal epithelial cells and deposited at the basement membrane as fibrin where it serves as a substrate for wound healing under physiological conditions such as epithelial shedding at the tip of the small intestinal villus and surface epithelium of the colon as well as under pathological conditions that require rapid epithelial repair. The functional integrity of the intestine is ensured by the constant renewal of its simple epithelium. Superficial denuding of the epithelial cell layer occurs regularly and is rapidly corrected by a process called restitution that can be influenced by various soluble and insoluble factors. Epithelial cell interaction with the extracellular matrix greatly influences the healing process by acting on cell morphology, adhesion, and migration. The functional contribution of a fibrin(ogen) matrix in the intestine was studied under physiological and pathological contexts. Our results (immunofluorescence, immunoelectron microscopy, and quantitative PCR) show that fibrin(ogen) is a novel component of the basement membrane associated with the differentiated epithelial cell population in both the small intestine and colon. Fibrin(ogen) alone is a weak ligand for epithelial cells and behaves as an anti-adhesive molecule in the presence of type I collagen. Furthermore, the presence of fibrin(ogen) significantly shortens the time required to achieve closure of wounded epithelial cell monolayers and co-cultures in a PI3K-dependent manner. In human specimens with Crohn’s disease, we observed a major accumulation of fibrin(ogen) throughout the tissue and at denuded sites. In mice in which fibrin formation was inhibited with dabigatran treatment, dextran sulfate sodium administration provoked a significant increase in the disease activity index and pathological features such as mucosal ulceration and crypt abscess formation. Taken together, these results suggest that fibrin(ogen) contributes to epithelial healing under both normal and pathological conditions.
Collapse
|
4
|
Association of Genetic Polymorphisms of Fibrinogen, Factor XIII A-Subunit and α 2-Antiplasmin with Fibrinogen Levels in Pregnant Women. Life (Basel) 2021; 11:life11121340. [PMID: 34947871 PMCID: PMC8703568 DOI: 10.3390/life11121340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Fibrinogen synthesis is stimulated by proinflammatory triggers and depends on α-, β- and γ-fibrinogen (FGA, FGB, FGG) genotypes. Constellations of fibrinogen, factor XIII A-subunit (F13A) and α2-antiplasmin (A2AP) genotypes predisposing for dense fibrin gels with high antifibrinolytic capacity (e.g., FGB rs1800790 A-allele carriage in F13A 34Val/Val or A2AP 6Arg/Arg wildtypes) are related with reduced inflammation. As both relationships are likely to influence each other, we tested whether the association of fibrinogen genotypes with fibrinogen levels is influenced by F13A and A2AP genotypes in a population under proinflammatory stress. In total, 639 women were followed during pregnancy (2218 observations). The relationship between fibrinogen genotypes and levels was statistically assessed in univariate and multivariate analyses without and with stratification for F13A Val34Leu and A2AP Arg6Trp. Strong associations with fibrinogen levels could be found for FGB rs1800790G > A, FGA rs2070016T > C and FGG rs1049636T > C. For FGB rs1800790G > A and FGA rs2070016T > C, this relationship significantly depended on F13A Val34Leu and A2AP Arg6Trp genotypes. Specifically, in F13A 34Val/Val wildtypes, carriage of FGB rs1800790A was related to significantly lower fibrinogen levels compared with FGB rs1800790GG wildtypes (p < 0.01). For A2AP 6Arg/Arg wildtypes, a comparable relationship could be found (p < 0.04). As these genotype constellations related to lower fibrinogen levels have previously been shown to be associated with reduced inflammatory activity, these findings suggest that the influence of fibrinogen, F13A and A2AP genotypes on inflammation could affect the control of fibrinogen levels and vice versa.
Collapse
|
5
|
Liu ZC, Wng Q, Zheng Q, Zhao WL, Chen C, Ruan LY, Xu H, Meng HH, Zhao WL, Liu WY, Zhong JG, Luo BZX, Norbu K, Zhou F, Wang JS, Feng X. Acute hepatotoxicity and nephrotoxicity risk assessment of the Tibetan medicine 25 flavors of the turquoise pill based on 1H-NMR metabonomics. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:113916. [PMID: 33571615 DOI: 10.1016/j.jep.2021.113916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 25 flavors of the turquoise pill, a traditional Tibetan medicine for the treatment of various types of hepatitis, has not been investigated on its safety, especially the component mineral turquoise, which is believed to be essential but worried for its potential toxicity. AIM OF THE STUDY To explore the potential acute toxicity and function of 25 flavors of the turquoise pill and turquoise, the possible mechanism of the effects of turquoise and 25 flavors of the turquoise pill were systematically studied based on 1H NMR metabolomics. MATERIALS AND METHODS The rats were administered with turquoise and 25 flavors of the turquoise pill by gavage for 7 days, and samples of serum, liver, and kidney were collected. The potential toxicity and function of turquoise and 25 flavors of the turquoise pill on the liver and kidney of SD rats were evaluated by 1H NMR metabonomics, histopathology, and biochemical indexes. RESULTS The results demonstrated that 25 flavors of the turquoise pill could scavenge free oxygen radicals, strengthen aerobic respiration and inhibit glycolysis in the liver. It did not cause oxidative stress in the kidney with no obvious damage. By modulation of branched-chain amino acids (BCAAs), 25 flavors of the turquoise pill can improve the utilization of glucose and promote aerobic respiration of the kidney. CONCLUSION Considering the high dosage and short duration used in this study relative to their typical clinical usage, administration of 25 flavors of the turquoise pill and its component mineral turquoise are safe to livers and kidneys.
Collapse
Affiliation(s)
- Zhi-Chao Liu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Qian Wng
- Beijing Hospital of Tibetan Medicine, China Tibetology Research Center, Beijing, 100029, China
| | - Qi Zheng
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Wen-Li Zhao
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Cheng Chen
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Ling-Yu Ruan
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Han Xu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Hui-Hui Meng
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Wen-Long Zhao
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Wen-Ya Liu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Jia-Ge Zhong
- Beijing Hospital of Tibetan Medicine, China Tibetology Research Center, Beijing, 100029, China
| | - Bu-Zha-Xi Luo
- Beijing Hospital of Tibetan Medicine, China Tibetology Research Center, Beijing, 100029, China
| | - Kelsang Norbu
- Tibet Ganlu Tibetan Medicine Co., Ltd, Lhasa, 851400, China
| | - Feng Zhou
- Tibet Ganlu Tibetan Medicine Co., Ltd, Lhasa, 851400, China
| | - Jun-Song Wang
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
| | - Xin Feng
- Beijing Hospital of Tibetan Medicine, China Tibetology Research Center, Beijing, 100029, China.
| |
Collapse
|
6
|
Bor MV, Feddersen S, Pedersen IS, Sidelmann JJ, Kristensen SR. Dysfibrinogenemia-Potential Impact of Genotype on Thrombosis or Bleeding. Semin Thromb Hemost 2021; 48:161-173. [PMID: 34261148 DOI: 10.1055/s-0041-1730358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The congenital dysfibrinogenemias, most often associated with bleeding disorders, encompass mutations in the amino-terminal end of fibrinogen α-chain consisting of Gly17-Pro18-Arg19-Val20, known as knob A, which is a critical site for fibrin polymerization. Here we review the studies reporting dysfibrinogenemia due to mutations affecting fibrinogen knob A and identified 29 papers. The number of reports on dysfibrinogenemias related to residues Gly17, Pro18, Arg19, and Val20 is 5, 4, 18, and 2, respectively. Dysfibrinogenemias related to residues Gly17, Pro18, and Val20 are exclusively associated with bleeding tendency. However, the clinical picture associated with dysfibrinogenemia related to residue Arg19 varies, with most patients suffering from bleeding tendencies, but also transitory ischemic attacks and retinal thrombosis may occur. The reason for this variation is unclear. To elaborate the genotype-phenotype associations further, we studied a Danish family with knob A-related dysfibrinogenemia caused by the Aα Arg19Gly (p.Arg19Gly) mutation using whole-exome sequencing and fibrin structure analysis. Our family is the first reported carrying the p.Arg19Gly mutation combined with one or more single nucleotide polymorphisms (SNP)s in FGA, FGB, and/or FGG and increased fibrin fiber thickness and fibrin mass-to-length ratio suffering from pulmonary emboli, suggesting that compound genotypes may contribute to the thrombogenic phenotype of these patients. Our review, accordingly, focuses on significance of SNPs, compound genotypes, and fibrin structure measures affecting the genotype-phenotype associations in fibrinogen knob A mutations.
Collapse
Affiliation(s)
- Mustafa Vakur Bor
- Department of Clinical Biochemistry, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Søren Feddersen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | | | - Johannes Jakobsen Sidelmann
- Department of Clinical Biochemistry, University Hospital of Southern Denmark, Esbjerg, Denmark.,Unit for Thrombosis Research, Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark
| | | |
Collapse
|
7
|
Medina-Leyte DJ, Zepeda-García O, Domínguez-Pérez M, González-Garrido A, Villarreal-Molina T, Jacobo-Albavera L. Endothelial Dysfunction, Inflammation and Coronary Artery Disease: Potential Biomarkers and Promising Therapeutical Approaches. Int J Mol Sci 2021; 22:3850. [PMID: 33917744 PMCID: PMC8068178 DOI: 10.3390/ijms22083850] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
Coronary artery disease (CAD) and its complications are the leading cause of death worldwide. Inflammatory activation and dysfunction of the endothelium are key events in the development and pathophysiology of atherosclerosis and are associated with an elevated risk of cardiovascular events. There is great interest to further understand the pathophysiologic mechanisms underlying endothelial dysfunction and atherosclerosis progression, and to identify novel biomarkers and therapeutic strategies to prevent endothelial dysfunction, atherosclerosis and to reduce the risk of developing CAD and its complications. The use of liquid biopsies and new molecular biology techniques have allowed the identification of a growing list of molecular and cellular markers of endothelial dysfunction, which have provided insight on the molecular basis of atherosclerosis and are potential biomarkers and therapeutic targets for the prevention and or treatment of atherosclerosis and CAD. This review describes recent information on normal vascular endothelium function, as well as traditional and novel potential biomarkers of endothelial dysfunction and inflammation, and pharmacological and non-pharmacological therapeutic strategies aimed to protect the endothelium or reverse endothelial damage, as a preventive treatment for CAD and related complications.
Collapse
Affiliation(s)
- Diana Jhoseline Medina-Leyte
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City 04510, Mexico
| | - Oscar Zepeda-García
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City 04510, Mexico
| | - Mayra Domínguez-Pérez
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
| | - Antonia González-Garrido
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
| | - Teresa Villarreal-Molina
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
| | - Leonor Jacobo-Albavera
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
| |
Collapse
|
8
|
Sherman BT, Hu X, Singh K, Haine L, Rupert AW, Neaton JD, Lundgren JD, Imamichi T, Chang W, Lane HC. Genome-wide association study of high-sensitivity C-reactive protein, D-dimer, and interleukin-6 levels in multiethnic HIV+ cohorts. AIDS 2021; 35:193-204. [PMID: 33095540 PMCID: PMC7789909 DOI: 10.1097/qad.0000000000002738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/28/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Elevated levels of interleukin-6 (IL-6), D-dimer, and C-reactive protein (hsCRP) are associated with increased incidence of comorbid disease and mortality among people living with HIV (PLWH). Prior studies suggest a genetic basis for these biomarker elevations in the general population. The study objectives are to identify the genetic basis for these biomarkers among PLWH. METHODS Baseline levels of hsCRP, D-dimer, and IL-6, and single nucleotide polymorphisms (SNPs) were determined for 7768 participants in three HIV treatment trials. Single variant analysis was performed for each biomarker on samples from each of three ethnic groups [African (AFR), Admixed American (AMR), European (EUR)] within each trial including covariates relevant to biomarker levels. For each ethnic group, the results were pooled across trials, then further pooled across ethnicities. RESULTS The transethnic analysis identified three, two, and one known loci associated with hsCRP, D-dimer, and IL-6 levels, respectively, and two novel loci, FGB and GCNT1, associated with D-dimer levels. Lead SNPs exhibited similar effects across ethnicities. Additionally, three novel, ethnic-specific loci were identified: CATSPERG associated with D-dimer in AFR and PROX1-AS1 and TRAPPC9 associated with IL-6 in AFR and AMR, respectively. CONCLUSION Eleven loci associated with three biomarker levels were identified in PLWH from the three studies including six loci known in the general population and five novel loci associated with D-dimer and IL-6 levels. These findings support the hypothesis that host genetics may partially contribute to chronic inflammation in PLWH and help to identify potential targets for intervention of serious non-AIDS complications.
Collapse
Affiliation(s)
- Brad T. Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick
| | - Xiaojun Hu
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick
| | - Kanal Singh
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Lillian Haine
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Adam W. Rupert
- AIDS Monitoring Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - James D. Neaton
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Jens D. Lundgren
- Centre of Excellence for Health, Immunity and Infections, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick
| | - H. Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| |
Collapse
|
9
|
Morikawa M, Shinoda M, Ota S, Yoshida Y, Hirouchi T, Shinada K, Sasaki O, Sato T, Kamachi K, Shinkai M. Clinical Features of 154 COVID-19 Patients and the Parameters for the Effective Detection of Pneumonia at the Time of the Initial Diagnosis in Japan. Intern Med 2021; 60:31-37. [PMID: 33132330 PMCID: PMC7835458 DOI: 10.2169/internalmedicine.5528-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective We aimed to clarify clinical and laboratory characteristics of coronavirus disease 2019 (COVID-19) patients, and further explore the features to detect COVID-19 pneumonia at the first visit to community-based hospitals. Methods Diagnoses of COVID-19 were based on positive results from real-time reverse-transcription polymerase chain reaction testing of nasopharyngeal-swab specimens. We retrospectively reviewed the medical records of patients showing positive results. The clinical characteristics and results of blood tests were compared between the patients with and without pneumonia. The risk factors associated with pneumonia were then evaluated by a multivariable analysis. Results The study cohort comprised 154 patients, including 117 patients (76.0%) with pneumonia at first visit. Significant differences were seen in age, the frequency of fever, tachycardia, desaturation (peripheral oxygen saturation ≤95%), any comorbidity, neutrocyte count and fraction, lymphocyte count and fraction, platelet count, lactate dehydrogenase (LDH), C-reactive protein (CRP), and fibrinogen between the patients with and without pneumonia. Using a multivariable analysis, CRP ≥0.3 mg/dL and fibrinogen >400 mg/dL were found to be associated with the presence of pneumonia. Conclusion Community-based settings for screening COVID-19 patients should perform chest X-ray and blood tests for white blood cell fractions, fibrinogen, LDH, and CRP. Of these, elevations in the CRP and fibrinogen levels could be critically associated with the presence of COVID-19 pneumonia.
Collapse
Affiliation(s)
- Miwa Morikawa
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, Japan
| | - Masahiro Shinoda
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, Japan
| | - Shinichiro Ota
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, Japan
| | - Yuto Yoshida
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, Japan
| | | | - Kanako Shinada
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, Japan
| | - Osamu Sasaki
- Department of Internal Medicine, Tokyo Shinagawa Hospital, Japan
| | - Takashi Sato
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, Japan
| | | | - Masaharu Shinkai
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, Japan
| |
Collapse
|
10
|
Vilar R, Lukowski SW, Garieri M, Di Sanza C, Neerman-Arbez M, Fish RJ. Chemical Modulators of Fibrinogen Production and Their Impact on Venous Thrombosis. Thromb Haemost 2020; 121:433-448. [PMID: 33302304 DOI: 10.1055/s-0040-1718414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Thrombosis is a leading cause of morbidity and mortality. Fibrinogen, the soluble substrate for fibrin-based clotting, has a central role in haemostasis and thrombosis and its plasma concentration correlates with cardiovascular disease event risk and a prothrombotic state in experimental models. We aimed to identify chemical entities capable of changing fibrinogen production and test their impact on experimental thrombosis. A total of 1,280 bioactive compounds were screened for their ability to alter fibrinogen production by hepatocyte-derived cancer cells and a selected panel was tested in zebrafish larvae. Anthralin and all-trans retinoic acid (RA) were identified as fibrinogen-lowering and fibrinogen-increasing moieties, respectively. In zebrafish larvae, anthralin prolonged laser-induced venous- occlusion times and reduced thrombocyte accumulation at injury sites. RA had opposite effects. Treatment with RA, a nuclear receptor ligand, increased fibrinogen mRNA levels. Using an antisense morpholino oligonucleotide to deplete zebrafish fibrinogen, we correlated a shortening of laser-induced venous thrombosis times with RA treatment and fibrinogen protein levels. Anthralin had little effect on fibrinogen mRNA in zebrafish larvae, despite leading to lower detectable fibrinogen. Therefore, we made a proteomic scan of anthralin-treated cells and larvae. A reduced representation of proteins linked to the canonical secretory pathway was detected, suggesting that anthralin affects protein secretion. In summary, we found that chemical modulation of fibrinogen levels correlates with measured effects on experimental venous thrombosis and could be investigated as a therapeutic avenue for thrombosis prevention.
Collapse
Affiliation(s)
- Rui Vilar
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Samuel W Lukowski
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland.,Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Marco Garieri
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Corinne Di Sanza
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Marguerite Neerman-Arbez
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland.,iGE3, Institute of Genetics and Genomics in Geneva, Geneva, Switzerland
| | - Richard J Fish
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
11
|
Pott J, Beutner F, Horn K, Kirsten H, Olischer K, Wirkner K, Loeffler M, Scholz M. Genome-wide analysis of carotid plaque burden suggests a role of IL5 in men. PLoS One 2020; 15:e0233728. [PMID: 32469969 PMCID: PMC7259763 DOI: 10.1371/journal.pone.0233728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Carotid artery plaque is an established marker of subclinical atherosclerosis with pronounced sex-dimorphism. Here, we aimed to identify genetic variants associated with carotid plaque burden (CPB) and to examine potential sex-specific genetic effects on plaque sizes. METHODS AND RESULTS We defined six operationalizations of CPB considering plaques in common carotid arteries, carotid bulb, and internal carotid arteries. We performed sex-specific genome-wide association analyses for all traits in the LIFE-Adult cohort (n = 727 men and n = 550 women) and tested significantly associated loci for sex-specific effects. In order to identify causal genes, we analyzed candidate gene expression data for correlation with CPB traits and corresponding sex-specific effects. Further, we tested if previously reported SNP associations with CAD and plaque prevalence are also associated with CBP. We found seven loci with suggestive significance for CPB (p<3.33x10-7), explaining together between 6 and 13% of the CPB variance. Sex-specific analysis showed a genome-wide significant hit for men at 5q31.1 (rs201629990, β = -0.401, p = 5.22x10-9), which was not associated in women (β = -0.127, p = 0.093) with a significant difference in effect size (p = 0.008). Analyses of gene expression data suggested IL5 as the most plausible candidate, as it reflected the same sex-specific association with CPBs (p = 0.037). Known plaque prevalence or CAD loci showed no enrichment in the association with CPB. CONCLUSIONS We showed that CPB is a complementary trait in analyzing genetics of subclinical atherosclerosis. We detected a novel locus for plaque size in men only suggesting a role of IL5. Several estrogen response elements in this locus point towards a functional explanation of the observed sex-specific effect.
Collapse
Affiliation(s)
- Janne Pott
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Leipzig University Medical Center, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Frank Beutner
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Heart Center Leipzig, Leipzig, Germany
| | - Katrin Horn
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Kay Olischer
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Kerstin Wirkner
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Leipzig University Medical Center, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| |
Collapse
|
12
|
Hoppe B, Schwedler C, Edelmann A, Pistioli A, Poddubnyy D, Burmester GR, Häupl T. Fibrinogen, factor XIII and α 2-antiplasmin genotypes are associated with inflammatory activity and anti-citrullinated protein antibodies. Thromb Res 2020; 191:90-96. [PMID: 32408093 DOI: 10.1016/j.thromres.2020.04.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/07/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Fibrin(ogen) derivatives, crosslinked fibrin and fibrinolysis play important roles in inflammation and are involved in pathogenesis of rheumatoid arthritis (RA). About 2/3 of RA patients exhibit anti-citrullinated protein antibodies (ACPA) that target deiminated fibrinogen. Genetic variants of β-fibrinogen (FGB) (rs1800790G>A) and factor XIII A-subunit (F13A) Val34Leu (rs5985) are known to influence interactively inflammatory processes. It is hypothesized that predisposition for dense fibrin clots is related to better inflammation control. METHODS To test this hypothetical model a cohort of 924 patients (288 RA and 636 non-RA patients) (3545 observations) was genotyped for FGB (rs1800790G>A, rs1800788C>T), α-fibrinogen (FGA) (rs6050A>G, rs2070006G>A, rs2070016T>C), γ-fibrinogen (FGG) (rs1049636T>C), F13A Val34Leu (rs5985) and α2-antiplasmin (A2AP) Arg6Trp (rs2070863). Genotype constellations potentially predisposing for dense fibrin clots were defined and their relation to inflammatory activity as measured by C-reactive protein (CRP) and disease activity score of 28 joints (DAS28) was assessed in univariate and multivariate analyses. The relation of these genotype constellations with presence of ACPA was tested. RESULTS Genotype constellations involving FGB rs1800790G>A and FGA rs2070016T>C were inversely associated with CRP levels (≥10 mg/L) (OR: 0.49, P < 10-8/7adj = 0.0001; OR: 0.52, P < 0.0005/Padj = 0.01). In RA, both genotype constellations were observed with higher frequencies of low disease activity (DAS28 ≤ 3.2) (OR: 2.66, P = .009; OR 2.78, P = .01) and lower frequencies of high disease activity (DAS28>5.1) (OR: 0.52, P < .03, OR: 0.42, P = .01). Associations with CRP depended on A2AP 6Arg/Arg genotype known to be necessary for optimal anti-fibrinolytic capacity (P = .001). Finally, Genotype constellations involving FGB rs1800790G>A and FGA rs2070016T>C were found to be associated with ACPA-positivity in RA (OR: 2.18, P < .03; OR: 1.95, P = .09). CONCLUSIONS These results support the hypothesis that genotypes, which increase fibrin clot density and anti-fibrinolytic capacity, reduce inflammatory activity and are related to humoral autoimmunity in RA.
Collapse
Affiliation(s)
- Berthold Hoppe
- Institute of Laboratory Medicine, BG Klinikum Unfallkrankenhaus Berlin gGmbH, Warener Straße 7, 12683 Berlin, Germany; Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Christian Schwedler
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Anke Edelmann
- Department of Molecular Diagnostics, Labor Berlin - Charité Vivantes GmbH, Sylter Straße 2, 13353 Berlin, Germany
| | - Anneta Pistioli
- Institute of Laboratory Medicine, BG Klinikum Unfallkrankenhaus Berlin gGmbH, Warener Straße 7, 12683 Berlin, Germany
| | - Denis Poddubnyy
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany; Epidemiology Unit, German Rheumatism Research Centre, Berlin, Charité-Platz 1, 10117 Berlin, Germany
| | - Gerd-Rüdiger Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Charité-Platz 1, 10117 Berlin, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Charité-Platz 1, 10117 Berlin, Germany
| |
Collapse
|
13
|
Çolak Y, Afzal S, Lange P, Nordestgaard BG. Smoking, Systemic Inflammation, and Airflow Limitation: A Mendelian Randomization Analysis of 98 085 Individuals From the General Population. Nicotine Tob Res 2020; 21:1036-1044. [PMID: 29688528 DOI: 10.1093/ntr/nty077] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/20/2018] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Smoking is associated with systemic and local inflammation in the lungs. Furthermore, in chronic obstructive pulmonary disease, which is often caused by smoking, there is often systemic inflammation that is linked to lung function impairment. However, the causal pathways linking smoking, systemic inflammation, and airflow limitation are still unknown. We tested whether higher tobacco consumption is associated with higher systemic inflammation, observationally and genetically and whether genetically higher systemic inflammation is associated with airflow limitation. METHODS We included 98 085 individuals aged 20-100 years from the Copenhagen General Population Study; 36589 were former smokers and 16172 were current smokers. CHRNA3 rs1051730 genotype was used as a proxy for higher tobacco consumption and the IL6R rs2228145 genotype was used for higher systemic inflammation. Airflow limitation was defined as forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) <70%. RESULTS Difference in plasma level of C-reactive protein was 4.8% (95% CI = 4.4% to 5.2%) per 10 pack-year increase and 1.6% (95% CI = 0.4% to 2.8%) per T allele. Corresponding differences were 1.2% (95% CI = 1.1% to 1.3%) and 0.5% (95% CI = 0.3% to 0.8%) for fibrinogen, 1.2% (95% CI = 1.2% to 1.3%) and 0.7% (95% CI = 0.5% to 1.0%) for α1-antitrypsin, 2.0% (95% CI = 1.8% to 2.1%) and 0.7% (95% CI = 0.4% to 1.1%) for leukocytes, 1.9% (95% CI = 1.8% to 2.1%) and 0.8% (95% CI = 0.4% to 1.2%) for neutrophils, and 0.8% (95% CI = 0.7% to 1.0%) and 0.4% (95% CI = 0.1% to 0.7%) for thrombocytes. The differences in these levels were lower for former smokers compared with current smokers. The IL6R rs2228145 genotype was associated with higher plasma acute-phase reactants but not with airflow limitation. Compared with the C/C genotype, the odds ratio for airflow limitation was 0.95 (95% CI = 0.89 to 1.02) for A/C genotype and 0.94 (95% CI = 0.87 to 1.01) for A/A genotype. CONCLUSIONS Higher tobacco consumption is associated with higher systemic inflammation both genetically and observationally, whereas systemic inflammation was not associated with airflow limitation genetically. IMPLICATIONS The association between higher tobacco consumption and higher systemic inflammation may be causal, and the association is stronger among current smokers compared to former smokers, indicating that smoking cessation may reduce the effects of smoking on systemic inflammation. Systemic inflammation does not seem to be a causal driver in development of airflow limitation. These findings can help to understand the pathogenic effects of smoking and the interplay between smoking, systemic inflammation, and airflow limitation and hence development and progression of chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Yunus Çolak
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Shoaib Afzal
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Peter Lange
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Internal Medicine, Section of Respiratory Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Public Health, Section of Social Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Lago N, Kaufmann FN, Negro-Demontel ML, Alí-Ruiz D, Ghisleni G, Rego N, Arcas-García A, Vitureira N, Jansen K, Souza LM, Silva RA, Lara DR, Pannunzio B, Abin-Carriquiry JA, Amo-Aparicio J, Martin-Otal C, Naya H, McGavern DB, Sayós J, López-Vales R, Kaster MP, Peluffo H. CD300f immunoreceptor is associated with major depressive disorder and decreased microglial metabolic fitness. Proc Natl Acad Sci U S A 2020; 117:6651-6662. [PMID: 32152116 PMCID: PMC7104369 DOI: 10.1073/pnas.1911816117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A role for microglia in neuropsychiatric diseases, including major depressive disorder (MDD), has been postulated. Regulation of microglial phenotype by immune receptors has become a central topic in many neurological conditions. We explored preclinical and clinical evidence for the role of the CD300f immune receptor in the fine regulation of microglial phenotype and its contribution to MDD. We found that a prevalent nonsynonymous single-nucleotide polymorphism (C/T, rs2034310) of the human CD300f receptor cytoplasmic tail inhibits the protein kinase C phosphorylation of a threonine and is associated with protection against MDD, mainly in women. Interestingly, CD300f-/- mice displayed several characteristic MDD traits such as augmented microglial numbers, increased interleukin 6 and interleukin 1 receptor antagonist messenger RNA, alterations in synaptic strength, and noradrenaline-dependent and persistent depressive-like and anhedonic behaviors in females. This behavioral phenotype could be potentiated inducing the lipopolysaccharide depression model. RNA sequencing and biochemical studies revealed an association with impaired microglial metabolic fitness. In conclusion, we report a clear association that links the function of the CD300f immune receptor with MDD in humans, depressive-like and anhedonic behaviors in female mice, and altered microglial metabolic reprogramming.
Collapse
MESH Headings
- Anhedonia
- Animals
- Behavior, Animal
- Cohort Studies
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/metabolism
- Depressive Disorder, Major/pathology
- Depressive Disorder, Major/psychology
- Female
- Gene Expression Profiling
- Humans
- Inflammation/etiology
- Inflammation/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia/metabolism
- Microglia/pathology
- Polymorphism, Single Nucleotide
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Synapses
Collapse
Affiliation(s)
- Natalia Lago
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Fernanda N Kaufmann
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, 88040-900 Santa Catarina, Brazil
| | - María Luciana Negro-Demontel
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, 11200 Montevideo, Uruguay
| | - Daniela Alí-Ruiz
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Gabriele Ghisleni
- Department of Life and Health Sciences, Catholic University of Pelotas, 96015-560 Rio Grande do Sul, Brazil
| | - Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Andrea Arcas-García
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebrón Institut de Recerca, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Nathalia Vitureira
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
- Department of Physiology, Facultad de Medicina, Universidad de la República, 11200 Montevideo, Uruguay
| | - Karen Jansen
- Department of Life and Health Sciences, Catholic University of Pelotas, 96015-560 Rio Grande do Sul, Brazil
| | - Luciano M Souza
- Department of Life and Health Sciences, Catholic University of Pelotas, 96015-560 Rio Grande do Sul, Brazil
| | - Ricardo A Silva
- Department of Life and Health Sciences, Catholic University of Pelotas, 96015-560 Rio Grande do Sul, Brazil
| | - Diogo R Lara
- Department of Cellular and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul, 90619-900 Porto Alegre, Brazil
| | - Bruno Pannunzio
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, 11200 Montevideo, Uruguay
| | | | - Jesús Amo-Aparicio
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Celia Martin-Otal
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebrón Institut de Recerca, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Hugo Naya
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebrón Institut de Recerca, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute for Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Joan Sayós
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebrón Institut de Recerca, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Rubèn López-Vales
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Manuella P Kaster
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, 88040-900 Santa Catarina, Brazil
| | - Hugo Peluffo
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay;
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, 11200 Montevideo, Uruguay
| |
Collapse
|
15
|
Li Z, Kong W. Cellular signaling in Abdominal Aortic Aneurysm. Cell Signal 2020; 70:109575. [PMID: 32088371 DOI: 10.1016/j.cellsig.2020.109575] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022]
Abstract
Abdominal aortic aneurysms (AAAs) are highly lethal cardiovascular diseases without effective medications. However, the molecular and signaling mechanisms remain unclear. A series of pathological cellular processes have been shown to contribute to AAA formation, including vascular extracellular matrix remodeling, inflammatory and immune responses, oxidative stress, and dysfunction of vascular smooth muscle cells. Each cellular process involves complex cellular signaling, such as NF-κB, MAPK, TGFβ, Notch and inflammasome signaling. In this review, we discuss how cellular signaling networks function in various cellular processes during the pathogenesis and progression of AAA. Understanding the interaction of cellular signaling networks with AAA pathogenesis as well as the crosstalk of different signaling pathways is essential for the development of novel therapeutic approaches to and personalized treatments of AAA diseases.
Collapse
Affiliation(s)
- Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China.
| |
Collapse
|
16
|
Jia Q, Han Y, Huang P, Woodward NC, Gukasyan J, Kettunen J, Ala‐Korpela M, Anufrieva O, Wang Q, Perola M, Raitakari O, Lehtimäki T, Viikari J, Järvelin M, Boehnke M, Laakso M, Mohlke KL, Fiehn O, Wang Z, Tang WW, Hazen SL, Hartiala JA, Allayee H. Genetic Determinants of Circulating Glycine Levels and Risk of Coronary Artery Disease. J Am Heart Assoc 2019; 8:e011922. [PMID: 31070104 PMCID: PMC6585317 DOI: 10.1161/jaha.119.011922] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
Background Recent studies have revealed sexually dimorphic associations between the carbamoyl-phosphate synthase 1 locus, intermediates of the metabolic pathway leading from choline to urea, and risk of coronary artery disease ( CAD ) in women. Based on evidence from the literature, the atheroprotective association with carbamoyl-phosphate synthase 1 could be mediated by the strong genetic effect of this locus on increased circulating glycine levels. Methods and Results We sought to identify additional genetic determinants of circulating glycine levels by carrying out a meta-analysis of genome-wide association study data in up to 30 118 subjects of European ancestry. Mendelian randomization and other analytical approaches were used to determine whether glycine-associated variants were associated with CAD and traditional risk factors. Twelve loci were significantly associated with circulating glycine levels, 7 of which were not previously known to be involved in glycine metabolism ( ACADM , PHGDH , COX 18- ADAMTS 3, PSPH , TRIB 1, PTPRD , and ABO ). Glycine-raising alleles at several loci individually exhibited directionally consistent associations with decreased risk of CAD . However, these effects could not be attributed directly to glycine because of associations with other CAD -related traits. By comparison, genetic models that only included the 2 variants directly involved in glycine degradation and for which there were no other pleiotropic associations were not associated with risk of CAD or blood pressure, lipid levels, and obesity-related traits. Conclusions These results provide additional insight into the genetic architecture of glycine metabolism, but do not yield conclusive evidence for a causal relationship between circulating levels of this amino acid and risk of CAD in humans.
Collapse
Affiliation(s)
- Qiong Jia
- Department of Preventive MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Department of Biochemistry & Molecular MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
| | - Yi Han
- Department of Preventive MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Department of Biochemistry & Molecular MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
| | - Pin Huang
- Department of Preventive MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Department of Biochemistry & Molecular MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Xiangya School of MedicineCentral South UniversityHunanChina
| | - Nicholas C. Woodward
- Department of Preventive MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Department of Biochemistry & Molecular MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
| | - Janet Gukasyan
- Department of Preventive MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Department of Biochemistry & Molecular MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
| | - Johannes Kettunen
- Computational MedicineFaculty of MedicineUniversity of Oulu and Biocenter OuluOuluFinland
- National Institute for Health and WelfareHelsinkiFinland
| | - Mika Ala‐Korpela
- Computational MedicineFaculty of MedicineUniversity of Oulu and Biocenter OuluOuluFinland
- Systems EpidemiologyBaker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- NMR Metabolomics LaboratorySchool of PharmacyUniversity of Eastern FinlandKuopioFinland
- Population Health ScienceBristol Medical SchoolUniversity of BristolUnited Kingdom
- Medical Research Council Integrative Epidemiology Unit at the University of BristolUnited Kingdom
- Department of Epidemiology and Preventive MedicineSchool of Public Health and Preventive MedicineFaculty of MedicineNursing and Health SciencesThe Alfred HospitalMonash UniversityMelbourneVictoriaAustralia
| | - Olga Anufrieva
- Computational MedicineFaculty of MedicineUniversity of Oulu and Biocenter OuluOuluFinland
| | - Qin Wang
- Computational MedicineFaculty of MedicineUniversity of Oulu and Biocenter OuluOuluFinland
- Systems EpidemiologyBaker Heart and Diabetes InstituteMelbourneVictoriaAustralia
| | - Markus Perola
- National Institute for Health and WelfareHelsinkiFinland
- Estonian Genome CenterUniversity of TartuEstonia
- Institute for Molecular Medicine (FIMM)University of HelsinkiFinland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular MedicineUniversity of TurkuFinland
- Department of Clinical PhysiologyTurku University HospitalTurkuFinland
| | - Terho Lehtimäki
- Department of Clinical ChemistryFimlab Laboratories and Faculty of Medicine and Health TechnologyFinnish Cardiovascular Research Center–TampereTampere UniversityTampereFinland
| | - Jorma Viikari
- Department of MedicineUniversity of TurkuFinland
- Division of MedicineTurku University HospitalTurkuFinland
| | - Marjo‐Riitta Järvelin
- Computational MedicineFaculty of MedicineUniversity of Oulu and Biocenter OuluOuluFinland
- Department of Epidemiology and BiostatisticsSchool of Public HealthMRC‐PHE Centre for Environment and HealthImperial College LondonLondonUnited Kingdom
- Center for Life Course and Systems EpidemiologyUniversity of OuluFinland
- Unit of Primary CareOulu University HospitalOuluFinland
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical GeneticsUniversity of MichiganAnn ArborMI
| | - Markku Laakso
- School of MedicineUniversity of Eastern FinlandKuopioFinland
| | - Karen L. Mohlke
- Department of GeneticsUniversity of North CarolinaChapel HillNC
| | | | - Zeneng Wang
- Department of Cardiovascular MedicineCleveland ClinicClevelandOH
| | - W.H. Wilson Tang
- Department of Cardiovascular MedicineCleveland ClinicClevelandOH
- Department of Cellular & Molecular MedicineCleveland ClinicClevelandOH
| | - Stanley L. Hazen
- Genome CenterUniversity of CaliforniaDavisCA
- Department of Cardiovascular MedicineCleveland ClinicClevelandOH
| | - Jaana A. Hartiala
- Department of Preventive MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Department of Biochemistry & Molecular MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
| | - Hooman Allayee
- Department of Preventive MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Department of Biochemistry & Molecular MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
| |
Collapse
|
17
|
Darst BF, Lu Q, Johnson SC, Engelman CD. Integrated analysis of genomics, longitudinal metabolomics, and Alzheimer's risk factors among 1,111 cohort participants. Genet Epidemiol 2019; 43:657-674. [PMID: 31104335 DOI: 10.1002/gepi.22211] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/04/2019] [Accepted: 04/17/2019] [Indexed: 11/11/2022]
Abstract
Although Alzheimer's disease (AD) is highly heritable, genetic variants are known to be associated with AD only explain a small proportion of its heritability. Genetic factors may only convey disease risk in individuals with certain environmental exposures, suggesting that a multiomics approach could reveal underlying mechanisms contributing to complex traits, such as AD. We developed an integrated network to investigate relationships between metabolomics, genomics, and AD risk factors using Wisconsin Registry for Alzheimer's Prevention participants. Analyses included 1,111 non-Hispanic Caucasian participants with whole blood expression for 11,376 genes (imputed from dense genome-wide genotyping), 1,097 fasting plasma metabolites, and 17 AD risk factors. A subset of 155 individuals also had 364 fastings cerebral spinal fluid (CSF) metabolites. After adjusting each of these 12,854 variables for potential confounders, we developed an undirected graphical network, representing all significant pairwise correlations upon adjusting for multiple testing. There were many instances of genes being indirectly linked to AD risk factors through metabolites, suggesting that genes may influence AD risk through particular metabolites. Follow-up analyses suggested that glycine mediates the relationship between carbamoyl-phosphate synthase 1 and measures of cardiovascular and diabetes risk, including body mass index, waist-hip ratio, inflammation, and insulin resistance. Further, 38 CSF metabolites explained more than 60% of the variance of CSF levels of tau, a detrimental protein that accumulates in the brain of AD patients and is necessary for its diagnosis. These results further our understanding of underlying mechanisms contributing to AD risk while demonstrating the utility of generating and integrating multiple omics data types.
Collapse
Affiliation(s)
- Burcu F Darst
- University of Wisconsin, Madison, Wisconsin.,Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Qiongshi Lu
- University of Wisconsin, Madison, Wisconsin.,Department of Biostatistics & Medical Informatics, Madison, Wisconsin
| | - Sterling C Johnson
- University of Wisconsin, Madison, Wisconsin.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Geriatric Research Education and Clinical Center, William S. Middleton Memorial VA Hospital, Madison, Wisconsin.,Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Corinne D Engelman
- University of Wisconsin, Madison, Wisconsin.,Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
18
|
Assessing the causal association of glycine with risk of cardio-metabolic diseases. Nat Commun 2019; 10:1060. [PMID: 30837465 PMCID: PMC6400990 DOI: 10.1038/s41467-019-08936-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 02/11/2019] [Indexed: 02/02/2023] Open
Abstract
Circulating levels of glycine have previously been associated with lower incidence of coronary heart disease (CHD) and type 2 diabetes (T2D) but it remains uncertain if glycine plays an aetiological role. We present a meta-analysis of genome-wide association studies for glycine in 80,003 participants and investigate the causality and potential mechanisms of the association between glycine and cardio-metabolic diseases using genetic approaches. We identify 27 genetic loci, of which 22 have not previously been reported for glycine. We show that glycine is genetically associated with lower CHD risk and find that this may be partly driven by blood pressure. Evidence for a genetic association of glycine with T2D is weaker, but we find a strong inverse genetic effect of hyperinsulinaemia on glycine. Our findings strengthen evidence for a protective effect of glycine on CHD and show that the glycine-T2D association may be driven by a glycine-lowering effect of insulin resistance.
Collapse
|
19
|
Prognostic role of genetic polymorphisms of the interleukin-6 signaling pathway in patients with severe heart failure. THE PHARMACOGENOMICS JOURNAL 2019; 19:428-437. [DOI: 10.1038/s41397-019-0068-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/04/2018] [Accepted: 12/21/2018] [Indexed: 11/09/2022]
|
20
|
Kara S, Pirela-Morillo GA, Gilliam CT, Wilson GD. Identification of novel susceptibility genes associated with seven autoimmune disorders using whole genome molecular interaction networks. J Autoimmun 2018; 97:48-58. [PMID: 30391024 DOI: 10.1016/j.jaut.2018.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/20/2022]
Abstract
Convergent evidence from multiple and independent genetics studies implicate a small number of genes that predispose individuals to multiple autoimmune disorders (AuD). These intersecting loci reinforced the hypothesis that disorders with overlapping etiology group into a cluster of closely related genes within a whole genome molecular interaction network. We tested the hypothesis that "biological network proximity" within a whole genome molecular interaction network can be used to inform the search for multigene inheritance. Using a set of nine previously published genome wide association studies (GWAS) of AuD genes, we generated AuD-specific molecular interaction networks to identify networks of associated genes. We show that all nine "seed genes" can be connected within a 35-member network via interactions with 26 connecting genes. We show that this network is more connected than expected by chance, and 13 of the connecting genes showed association with multiple AuD upon GWAS reanalysis. Furthermore, we report association of SNPs in five new genes (IL10RA, DGKA, GRB2, STAT5A, and NFATC2) which were not previously considered as AuD candidates, and show significant association in novel disease samples of Crohn's disease and systemic lupus erythematosus. Furthermore, we show that the connecting genes show no association in four non-AuD GWAS. Finally, we test the connecting genes in psoriasis GWAS, and show association to previously identified loci and report new loci. These findings support the hypothesis that molecular interaction networks can be used to inform the search for multigene disease etiology, especially for disorders with overlapping etiology.
Collapse
Affiliation(s)
- Sam Kara
- University of Chicago, Departments of Human Genetics, 920 East 58 th St., Chicago, IL 60637, USA; Radiation Oncology Department, Beaumont Health, 3811 W Thirteen Mile Road, Royal Oak, MI, 48073, USA
| | - Gerardo A Pirela-Morillo
- La Universidad del Zulia, Computer Science Department, Laboratories for Computational Models & Languages, and Bioinformatics, Edif. Grano de Oro, Planta Baja, Departamento de Computación, Ave. Universidad con Ave. 22, Maracaibo, 4002, Venezuela
| | - Conrad T Gilliam
- University of Chicago, Departments of Human Genetics, 920 East 58 th St., Chicago, IL 60637, USA
| | - George D Wilson
- Radiation Oncology Department, Beaumont Health, 3811 W Thirteen Mile Road, Royal Oak, MI, 48073, USA.
| |
Collapse
|
21
|
Peyyala R, Emecen-Huja P, Ebersole JL. Environmental lead effects on gene expression in oral epithelial cells. J Periodontal Res 2018; 53:961-971. [PMID: 30152021 DOI: 10.1111/jre.12594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/20/2018] [Accepted: 07/04/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND OBJECTIVE Host responses in periodontitis span a range of local and emigrating cell types and biomolecules. Accumulating evidence regarding the expression of this disease across the population suggests some component of genetic variation that controls onset and severity of disease, in concert with the qualitative and quantitative parameters of the oral microbiome at sites of disease. However, there remains little information regarding the capacity of accruing environmental stressors or modifiers over a lifespan at both the host genetic and microbial ecology levels to understand fully the population variation in disease. This study evaluated the impact of environmental lead exposure on the responses of oral epithelial cells to challenge with a model pathogenic oral biofilm. METHODS AND RESULTS Using NanoString technology to quantify gene expression profiles of an array of 511 host response-associated genes in the epithelial cells, we identified an interesting primary panel of basal responses of the cells with numerous genes not previously considered as major response markers for epithelial cells, eg, interleukin (IL)-32, CTNNB1, CD59, MIF, CD44 and CD99. Even high levels of environment lead had little effect on these constitutive responses. Challenge of the cells with the biofilms (Streptococcus gordonii/Fusobacterium nucleatum/Porphyromonas gingivalis) resulted in significant increases in an array of host immune-related genes (134 of 511). The greatest magnitude in differential expression was observed with many genes not previously described as major response genes in epithelial cells, including IL-32, CD44, NFKBIA, CTSC, TNFAIP3, IL-1A, IL-1B, IL-8 and CCL20. The effects of environmental lead on responses to the biofilms were mixed, although levels of IL-8, CCL20 and CD70 were significantly decreased at lead concentrations of 1 and/or 5 μmol/L. CONCLUSION The results provided new information on a portfolio of genes expressed by oral epithelial cells, targeted substantial increases in an array of immune-related genes post-biofilm challenge, and a focused impact of environmental lead on these induced responses.
Collapse
Affiliation(s)
- Rebecca Peyyala
- Center for Oral Health Research and Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky
| | - Pinar Emecen-Huja
- Center for Oral Health Research and Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky
| | - Jeffrey L Ebersole
- Center for Oral Health Research and Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
22
|
Cunha MLR, Meijers JCM, Rosendaal FR, Vlieg AVH, Reitsma PH, Middeldorp S. Whole exome sequencing in thrombophilic pedigrees to identify genetic risk factors for venous thromboembolism. PLoS One 2017; 12:e0187699. [PMID: 29117201 PMCID: PMC5695603 DOI: 10.1371/journal.pone.0187699] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Family studies have shown a strong heritability component for venous thromboembolism (VTE), but established genetic risk factors are present in only half of VTE patients. AIM To identify genetic risk factors in two large families with unexplained hereditary VTE. METHODS We performed whole exome sequencing in 10 affected relatives of two unrelated families with an unexplained tendency for VTE. We prioritized variants shared by all affected relatives from both families, and evaluated these in the remaining affected and unaffected individuals. We prioritized variants based on 3 different filter strategies: variants within candidate genes, rare variants across the exome, and SNPs present in patients with familial VTE and with low frequency in the general population. We used whole exome sequencing data available from 96 unrelated VTE cases with a positive family history of VTE from an affected sib study (the GIFT study) to identify additional carriers and compared the risk-allele frequencies with the general population. Variants found in only one individual were also retained for further analysis. Finally, we assessed the association of these variants with VTE in a population-based case-control study (the MEGA study) with 4,291 cases and 4,866 controls. RESULTS Six variants remained as putative disease-risk candidates. These variants are located in 6 genes spread among 3 different loci: 2p21 (PLEKHH2 NM_172069:c.3105T>C, LRPPRC rs372371276, SRBD1 rs34959371), 5q35.2 (UNC5A NM_133369.2:c.1869+23C>A), and 17q25.1 (GPRC5C rs142232982, RAB37 rs556450784). In GIFT, additional carriers were identified only for the variants located in the 2p21 locus. In MEGA, additional carriers for several of these variants were identified in both cases and controls, without a difference in prevalence; no carrier of the UNC5A variant was present. CONCLUSION Despite sequencing of several individuals from two thrombophilic families resulting in 6 candidate variants, we were unable to confirm their relevance as novel thrombophilic defects.
Collapse
Affiliation(s)
- Marisa L. R. Cunha
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Joost C. M. Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Plasma Proteins, Sanquin, Amsterdam, the Netherlands
| | - Frits R. Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid van Hylckama Vlieg
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Pieter H. Reitsma
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Saskia Middeldorp
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Cronjé HT, Nienaber-Rousseau C, Zandberg L, de Lange Z, Green FR, Pieters M. Fibrinogen and clot-related phenotypes determined by fibrinogen polymorphisms: Independent and IL-6-interactive associations. PLoS One 2017; 12:e0187712. [PMID: 29099861 PMCID: PMC5669433 DOI: 10.1371/journal.pone.0187712] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/24/2017] [Indexed: 12/04/2022] Open
Abstract
Interleukin-6 (IL-6) induces the expression of fibrinogen, and polymorphic variation within the fibrinogen genes is believed to alter the magnitude of this expression. The identification of the functional relevance of individual fibrinogen single nucleotide polymorphisms (SNPs) has been hindered by the high linkage disequilibrium (LD) reported in the European fibrinogen gene locus. This study investigated two novel and 12 known fibrinogen SNPs of potential functional relevance, in 2010 Tswana individuals known to have low LD. We aimed to identify functional polymorphisms that contribute to clot-related phenotypes and total and γ’ fibrinogen concentrations independently and through their interaction with IL-6, by taking advantage of the high fibrinogen and IL-6 concentrations and the low LD reported in black South Africans. Fibrinogen was significantly associated with IL-6, thereby mediating associations of IL-6 with clot formation and structure, although attenuating the association of IL-6 with clot lysis time. None of the common European fibrinogen haplotypes was present in this study population. Putative functional fibrinogen SNPs FGB–rs7439150, rs1800789 (–1420G/A) and rs1800787 (–148C/T) were significantly associated with fibrinogen concentration and altered clot properties, with several associations significantly influenced by IL-6 concentrations. The impact of harbouring several minor fibrinogen SNP alleles on the association of IL-6 and fibrinogen concentration was cumulative, with possession of each additional minor allele showing a stronger relationship of IL-6 with fibrinogen. This was also reflected in differences in clot properties, suggesting potential clinical relevance. Therefore, when investigating the effect of fibrinogen genetics on fibrinogen concentrations and CVD outcome, the possible interactions with modulating factors and the fact that SNP effects seem to be additive should be taken into account.
Collapse
Affiliation(s)
- H. Toinét Cronjé
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | | | - Lizelle Zandberg
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Zelda de Lange
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Fiona R. Green
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Marlien Pieters
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
- * E-mail:
| |
Collapse
|
24
|
The Genetic Architecture of Coronary Artery Disease: Current Knowledge and Future Opportunities. Curr Atheroscler Rep 2017; 19:6. [PMID: 28130654 DOI: 10.1007/s11883-017-0641-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW We provide an overview of our current understanding of the genetic architecture of coronary artery disease (CAD) and discuss areas of research that provide excellent opportunities for further exploration. RECENT FINDINGS Large-scale studies in human populations, coupled with rapid advances in genetic technologies over the last decade, have clearly established the association of common genetic variation with risk of CAD. However, the effect sizes of the susceptibility alleles are for the most part modest and collectively explain only a small fraction of the overall heritability. By comparison, evidence that rare variants make a substantial contribution to risk of CAD has been somewhat disappointing thus far, suggesting that other biological mechanisms have yet to be discovered. Emerging data suggests that novel pathways involved in the development of CAD can be identified through complementary and integrative systems genetics strategies in mice or humans. There is also convincing evidence that gut bacteria play a previously unrecognized role in the development of CAD, particularly through metabolism of certain dietary nutrients that lead to proatherogenic metabolites in the circulation. A major effort is now underway to functionally understand the newly discovered genetic and biological associations for CAD, which could lead to the development of potentially novel therapeutic strategies. Other important areas of investigation for understanding the pathophysiology of CAD, including epistatic interactions between genes or with either sex and environmental factors, have not been studied on a broad scope and represent additional opportunities for future studies.
Collapse
|
25
|
Onuki R, Yamaguchi R, Shibuya T, Kanehisa M, Goto S. Revealing phenotype-associated functional differences by genome-wide scan of ancient haplotype blocks. PLoS One 2017; 12:e0176530. [PMID: 28445522 PMCID: PMC5406033 DOI: 10.1371/journal.pone.0176530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/12/2017] [Indexed: 11/18/2022] Open
Abstract
Genome-wide scans for positive selection have become important for genomic medicine, and many studies aim to find genomic regions affected by positive selection that are associated with risk allele variations among populations. Most such studies are designed to detect recent positive selection. However, we hypothesize that ancient positive selection is also important for adaptation to pathogens, and has affected current immune-mediated common diseases. Based on this hypothesis, we developed a novel linkage disequilibrium-based pipeline, which aims to detect regions associated with ancient positive selection across populations from single nucleotide polymorphism (SNP) data. By applying this pipeline to the genotypes in the International HapMap project database, we show that genes in the detected regions are enriched in pathways related to the immune system and infectious diseases. The detected regions also contain SNPs reported to be associated with cancers and metabolic diseases, obesity-related traits, type 2 diabetes, and allergic sensitization. These SNPs were further mapped to biological pathways to determine the associations between phenotypes and molecular functions. Assessments of candidate regions to identify functions associated with variations in incidence rates of these diseases are needed in the future.
Collapse
Affiliation(s)
- Ritsuko Onuki
- Bioinformatics Team, Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, Japan
| | - Rui Yamaguchi
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| | - Tetsuo Shibuya
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| | - Minoru Kanehisa
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Susumu Goto
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
- * E-mail:
| |
Collapse
|
26
|
Lakatos A, Goldberg NRS, Blurton-Jones M. Integrated analysis of genetic, behavioral, and biochemical data implicates neural stem cell-induced changes in immunity, neurotransmission and mitochondrial function in Dementia with Lewy Body mice. Acta Neuropathol Commun 2017; 5:21. [PMID: 28283027 PMCID: PMC5345195 DOI: 10.1186/s40478-017-0421-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/24/2017] [Indexed: 02/08/2023] Open
Abstract
We previously demonstrated that transplantation of murine neural stem cells (NSCs) can improve motor and cognitive function in a transgenic model of Dementia with Lewy Bodies (DLB). These benefits occurred without changes in human α-synuclein pathology and were mediated in part by stem cell-induced elevation of brain-derived neurotrophic factor (BDNF). However, instrastriatal NSC transplantation likely alters the brain microenvironment via multiple mechanisms that may synergize to promote cognitive and motor recovery. The underlying neurobiology that mediates such restoration no doubt involves numerous genes acting in concert to modulate signaling within and between host brain cells and transplanted NSCs. In order to identify functionally connected gene networks and additional mechanisms that may contribute to stem cell-induced benefits, we performed weighted gene co-expression network analysis (WGCNA) on striatal tissue isolated from NSC- and vehicle-injected wild-type and DLB mice. Combining continuous behavioral and biochemical data with genome wide expression via network analysis proved to be a powerful approach; revealing significant alterations in immune response, neurotransmission, and mitochondria function. Taken together, these data shed further light on the gene network and biological processes that underlie the therapeutic effects of NSC transplantation on α-synuclein induced cognitive and motor impairments, thereby highlighting additional therapeutic targets for synucleinopathies.
Collapse
|
27
|
Scerri TS, Quaglieri A, Cai C, Zernant J, Matsunami N, Baird L, Scheppke L, Bonelli R, Yannuzzi LA, Friedlander M, Egan CA, Fruttiger M, Leppert M, Allikmets R, Bahlo M. Genome-wide analyses identify common variants associated with macular telangiectasia type 2. Nat Genet 2017; 49:559-567. [DOI: 10.1038/ng.3799] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023]
|
28
|
van Iperen EPA, Sivapalaratnam S, Holmes MV, Hovingh GK, Zwinderman AH, Asselbergs FW. Genetic analysis of emerging risk factors in coronary artery disease. Atherosclerosis 2016; 254:35-41. [PMID: 27684604 DOI: 10.1016/j.atherosclerosis.2016.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 08/15/2016] [Accepted: 09/07/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Type 2 diabetes (T2D), low-density lipoprotein-cholesterol (LDL-c), body mass index (BMI), blood pressure and smoking are established risk factors that play a causal role in coronary artery disease (CAD). Numerous common genetic variants associating with these and other risk factors have been identified, but their association with CAD has not been comprehensively examined in a single study. Our goal was to comprehensively evaluate the associations of established and emerging risk factors with CAD using genetic variants identified from Genome-wide Association Studies (GWAS). METHODS We tested the effect of 60 traditional and putative risk factors with CAD, using summary statistics obtained in GWAS. We approximated the regression of a response variable onto an additive multi-SNP genetic risk score in the Coronary Artery DIsease Genomewide Replication And Meta-analysis (CARDIoGRAM) consortium dataset weighted by the effect of the SNP on the risk factors. RESULTS The strongest association with risk of CAD was for LDL-c SNPs (p = 3.96E-34). For non-established CAD risk factors, we found significant CAD associations for coronary artery calcification (CAC), Lp(a), LP-PLA2 activity, plaque, vWF and FVIII. In an attempt to identify independent associations between risk factors and CAD, only SNPs with an effect on the target trait were included. This identified CAD associations for Lp(a)(p = 1.77E-21), LDL-c (p = 4.16E-06), triglycerides (TG) (p = 1.94E-05), height (p = 2.06E-05), CAC (p = 3.13E-23) and carotid plaque (p = 2.08E-05). CONCLUSIONS We identified SNPs associated with the emerging risk factors Lp(a), TG, plaque, height and CAC to be independently associated with risk of CAD. This provides further support for-ongoing clinical trials of Lp(a) and TG, and suggests that CAC and plaque could be used as surrogate markers for CAD in clinical trials.
Collapse
Affiliation(s)
- Erik P A van Iperen
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, The Netherlands; Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, The Netherlands.
| | | | - Michael V Holmes
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, United Kingdom
| | - G Kees Hovingh
- Department of Vascular Medicine Academic Medical Center, Amsterdam, The Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, The Netherlands
| | - Folkert W Asselbergs
- Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands; Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom.
| |
Collapse
|
29
|
Genome-wide association study and targeted metabolomics identifies sex-specific association of CPS1 with coronary artery disease. Nat Commun 2016; 7:10558. [PMID: 26822151 PMCID: PMC4740183 DOI: 10.1038/ncomms10558] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 12/29/2015] [Indexed: 12/21/2022] Open
Abstract
Metabolites derived from dietary choline and L-carnitine, such as trimethylamine N-oxide and betaine, have recently been identified as novel risk factors for atherosclerosis in mice and humans. We sought to identify genetic factors associated with plasma betaine levels and determine their effect on risk of coronary artery disease (CAD). A two-stage genome-wide association study (GWAS) identified two significantly associated loci on chromosomes 2q34 and 5q14.1. The lead variant on 2q24 (rs715) localizes to carbamoyl-phosphate synthase 1 (CPS1), which encodes a mitochondrial enzyme that catalyses the first committed reaction and rate-limiting step in the urea cycle. Rs715 is also significantly associated with decreased levels of urea cycle metabolites and increased plasma glycine levels. Notably, rs715 yield a strikingly significant and protective association with decreased risk of CAD in only women. These results suggest that glycine metabolism and/or the urea cycle represent potentially novel sex-specific mechanisms for the development of atherosclerosis. Dietary choline metabolites, such as trimethylamine N-oxide and betaine, have been associated with coronary artery disease (CAD). Here, Hartiala et al. identify two genetic loci for betaine levels on chromosomes 2q34 and 5q14.1 and find that the 2q34 locus was also associated with other pathway intermediates, and decreased risk of CAD in women.
Collapse
|
30
|
Tian L, Choi SC, Lee HN, Murakami Y, Qi CF, Sengottuvelu M, Voss O, Krzewski K, Coligan JE. Enhanced efferocytosis by dendritic cells underlies memory T-cell expansion and susceptibility to autoimmune disease in CD300f-deficient mice. Cell Death Differ 2016; 23:1086-96. [PMID: 26768664 DOI: 10.1038/cdd.2015.161] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/20/2015] [Accepted: 11/19/2015] [Indexed: 12/27/2022] Open
Abstract
Homeostasis requires the immunologically silent clearance of apoptotic cells before they become pro-inflammatory necrotic cells. CD300f (CLM-1) is a phosphatidylserine receptor known to positively regulate efferocytosis by macrophages, and CD300f gene-deficient mice are predisposed to develop a lupus-like disease. Here we show that, in contrast to CD300f function in macrophages, its expression inhibits efferocytosis by DC, and its deficiency leads to enhanced antigen processing and T-cell priming by these DC. The consequences are the expansion of memory T cells and increased ANA levels in aged CD300f-deficient mice, which predispose CD300f-deficient mice to develop an overt autoimmune disease when exposed to an overload of apoptotic cells, or an exacerbated autoimmunity when combined with FcγRIIB deficiency. Thus, our data demonstrates that CD300f helps to maintain immune homeostasis by promoting macrophage clearance of self-antigens, while conversely inhibiting DC uptake and presentation of self-antigens.
Collapse
Affiliation(s)
- L Tian
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - S-C Choi
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - H-N Lee
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Y Murakami
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - C-F Qi
- Pathology Core, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - M Sengottuvelu
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - O Voss
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - K Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - J E Coligan
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| |
Collapse
|
31
|
Koder S, Repnik K, Ferkolj I, Pernat C, Skok P, Weersma RK, Potočnik U. Genetic polymorphism in ATG16L1 gene influences the response to adalimumab in Crohn's disease patients. Pharmacogenomics 2015; 16:191-204. [PMID: 25712183 DOI: 10.2217/pgs.14.172] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM To see if SNPs could help predict response to biological therapy using adalimumab (ADA) in Crohn's disease (CD). MATERIALS & METHODS IBDQ index and CRP levels were used to monitor therapy response. We genotyped 31 CD-associated genes in 102 Slovenian CD patients. RESULTS The strongest association for treatment response defined as decrease in CRP levels was found for ATG16L1 SNP rs10210302. Additional SNPs in 7 out of 31 tested CD-associated genes (PTGER4, CASP9, IL27, C11orf30, CCNY, IL13, NR1I2) showed suggestive association with ADA response. CONCLUSION Our results suggest ADA response in CD patients is genetically predisposed by SNPs in CD risk genes and suggest ATG16L1 as most promising candidate gene for drug response in ADA treatment. Original submitted 24 September 2014; Revision submitted 1 December 2014.
Collapse
Affiliation(s)
- Silvo Koder
- University Medical Centre Maribor, Ljubljanska 5, Maribor, Slovenia
| | | | | | | | | | | | | |
Collapse
|
32
|
de Vries PS, Chasman DI, Sabater-Lleal M, Chen MH, Huffman JE, Steri M, Tang W, Teumer A, Marioni RE, Grossmann V, Hottenga JJ, Trompet S, Müller-Nurasyid M, Zhao JH, Brody JA, Kleber ME, Guo X, Wang JJ, Auer PL, Attia JR, Yanek LR, Ahluwalia TS, Lahti J, Venturini C, Tanaka T, Bielak LF, Joshi PK, Rocanin-Arjo A, Kolcic I, Navarro P, Rose LM, Oldmeadow C, Riess H, Mazur J, Basu S, Goel A, Yang Q, Ghanbari M, Willemsen G, Rumley A, Fiorillo E, de Craen AJM, Grotevendt A, Scott R, Taylor KD, Delgado GE, Yao J, Kifley A, Kooperberg C, Qayyum R, Lopez LM, Berentzen TL, Räikkönen K, Mangino M, Bandinelli S, Peyser PA, Wild S, Trégouët DA, Wright AF, Marten J, Zemunik T, Morrison AC, Sennblad B, Tofler G, de Maat MPM, de Geus EJC, Lowe GD, Zoledziewska M, Sattar N, Binder H, Völker U, Waldenberger M, Khaw KT, Mcknight B, Huang J, Jenny NS, Holliday EG, Qi L, Mcevoy MG, Becker DM, Starr JM, Sarin AP, Hysi PG, Hernandez DG, Jhun MA, Campbell H, Hamsten A, Rivadeneira F, Mcardle WL, Slagboom PE, Zeller T, Koenig W, Psaty BM, Haritunians T, Liu J, Palotie A, Uitterlinden AG, Stott DJ, Hofman A, Franco OH, Polasek O, Rudan I, Morange PE, Wilson JF, Kardia SLR, Ferrucci L, Spector TD, Eriksson JG, Hansen T, Deary IJ, Becker LC, Scott RJ, Mitchell P, März W, Wareham NJ, Peters A, Greinacher A, Wild PS, Jukema JW, Boomsma DI, Hayward C, Cucca F, Tracy R, Watkins H, Reiner AP, Folsom AR, Ridker PM, O'Donnell CJ, Smith NL, Strachan DP, Dehghan A. A meta-analysis of 120 246 individuals identifies 18 new loci for fibrinogen concentration. Hum Mol Genet 2015; 25:358-70. [PMID: 26561523 DOI: 10.1093/hmg/ddv454] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022] Open
Abstract
Genome-wide association studies have previously identified 23 genetic loci associated with circulating fibrinogen concentration. These studies used HapMap imputation and did not examine the X-chromosome. 1000 Genomes imputation provides better coverage of uncommon variants, and includes indels. We conducted a genome-wide association analysis of 34 studies imputed to the 1000 Genomes Project reference panel and including ∼120 000 participants of European ancestry (95 806 participants with data on the X-chromosome). Approximately 10.7 million single-nucleotide polymorphisms and 1.2 million indels were examined. We identified 41 genome-wide significant fibrinogen loci; of which, 18 were newly identified. There were no genome-wide significant signals on the X-chromosome. The lead variants of five significant loci were indels. We further identified six additional independent signals, including three rare variants, at two previously characterized loci: FGB and IRF1. Together the 41 loci explain 3% of the variance in plasma fibrinogen concentration.
Collapse
Affiliation(s)
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA, Harvard Medical School, Boston, MA, USA
| | - Maria Sabater-Lleal
- Department of Medicine, Cardiovascular Genetics and Genomics Group, Atherosclerosis Research Unit and
| | - Ming-Huei Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA, Framingham Heart Study, Population Sciences Branch, Division of Intramural Research National Heart Lung and Blood Institute, National Institutes of Health, Framingham, MA, USA
| | - Jennifer E Huffman
- Framingham Heart Study, Population Sciences Branch, Division of Intramural Research National Heart Lung and Blood Institute, National Institutes of Health, Framingham, MA, USA, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionaledelle Ricerche, Monserrato, Cagliari, Italy
| | - Weihong Tang
- Division of Epidemiology and Community Health and
| | | | - Riccardo E Marioni
- Centre for Cognitive Ageing and Cognitive Epidemiology, Centre for Genomic and Experimental Medicine, Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | | | - Jouke J Hottenga
- Department of Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, The Netherlands
| | - Stella Trompet
- Department of Cardiology, Department of Gerontology and Geriatrics and
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Department of Medicine I, Ludwig-Maximilians-University Munich, Munich, Germany, DZHK (German Centre for Cardiovascular Research) and
| | - Jing Hua Zhao
- MRC Epidemiology Unit, School of Clinical Medicine and
| | | | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor/UCLA Medical Center, Torrance, CA, USA
| | - Jie Jin Wang
- Department of Ophthalmology, Centre for Vision Research, Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - John R Attia
- Public Health Stream and School of Medicine and Public Health and
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tarunveer S Ahluwalia
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences and Copenhagen Prospective Studies on Asthma in Childhood, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, The Danish Pediatric Asthma Center, Gentofte Hospital, The Capital Region, Copenhagen, Denmark
| | - Jari Lahti
- Institute of Behavioural Sciences, Folkhälsan Research Centre, Helsinki, Finland
| | - Cristina Venturini
- Institute of Opthalmology, UCL, London, UK, Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Lawrence F Bielak
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Peter K Joshi
- Centre for Population Health Sciences, Usher Institute of Population Health Sciences and Informatics, Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics
| | - Ares Rocanin-Arjo
- Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1166, Paris F-75013, France, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris F-75013, France, Institute for Cardiometabolism and Nutrition (ICAN), Paris F-75013, France
| | - Ivana Kolcic
- Department of Public Health, Faculty of Medicine
| | - Pau Navarro
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine
| | - Lynda M Rose
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | - Johanna Mazur
- Institute of Medical Biostatistics, Epidemiology and Informatics and
| | - Saonli Basu
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Anuj Goel
- Cardiovascular Medicine Department/Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Qiong Yang
- Framingham Heart Study, Population Sciences Branch, Division of Intramural Research National Heart Lung and Blood Institute, National Institutes of Health, Framingham, MA, USA, Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Mohsen Ghanbari
- Department of Epidemiology, Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gonneke Willemsen
- Department of Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, The Netherlands
| | - Ann Rumley
- Institute of Cardiovascular and Medical Sciences and
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionaledelle Ricerche, Monserrato, Cagliari, Italy
| | | | | | - Robert Scott
- MRC Epidemiology Unit, School of Clinical Medicine and
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences and
| | - Graciela E Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences and
| | - Annette Kifley
- Department of Ophthalmology, Centre for Vision Research, Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
| | | | - Rehan Qayyum
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorna M Lopez
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland, University College Dublin, UCD Conway Institute, Centre for Proteome Research, UCD, Belfield, Dublin, Ireland
| | - Tina L Berentzen
- Institute of Preventive Medicine, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
| | | | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
| | | | - Patricia A Peyser
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Sarah Wild
- Centre for Population Health Sciences, Usher Institute of Population Health Sciences and Informatics
| | - David-Alexandre Trégouët
- Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1166, Paris F-75013, France, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris F-75013, France, Institute for Cardiometabolism and Nutrition (ICAN), Paris F-75013, France
| | - Alan F Wright
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine
| | - Jonathan Marten
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine
| | | | - Alanna C Morrison
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bengt Sennblad
- Department of Medicine, Cardiovascular Genetics and Genomics Group, Atherosclerosis Research Unit and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Geoffrey Tofler
- Royal North Shore Hospital, Sydney University, Sydney, Australia
| | | | - Eco J C de Geus
- Department of Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, The Netherlands, EMGO+ institute, VU University & VU Medical Center, Amsterdam
| | - Gordon D Lowe
- Institute of Cardiovascular and Medical Sciences and
| | - Magdalena Zoledziewska
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionaledelle Ricerche, Monserrato, Cagliari, Italy
| | - Naveed Sattar
- Faculty of Medicine, BHF Glasgow Cardiovascular Research Centre, Glasgow, UK
| | - Harald Binder
- Institute of Medical Biostatistics, Epidemiology and Informatics and
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics and
| | - Melanie Waldenberger
- Institute of Epidemiology II and Research Unit of Molecular Epidemiology, Helmholtz ZentrumMünchen - German Research Center for Environmental Health, Neuherberg, Germany
| | - Kay-Tee Khaw
- Clinical Gerontology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Jie Huang
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | - Elizabeth G Holliday
- Public Health Stream, Hunter Medical Research Institute, School of Medicine and Public Health and
| | - Lihong Qi
- Division of Biostatistics, Department of Public Health Sciences, UC Davis, Davis, CA, USA
| | - Mark G Mcevoy
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - Diane M Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, Alzheimer Scotland Dementia Research Centre and
| | - Antti-Pekka Sarin
- Institute for Molecular Medicine Finland (FIMM) and Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Pirro G Hysi
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
| | - Dena G Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Min A Jhun
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics
| | - Anders Hamsten
- Department of Medicine, Cardiovascular Genetics and Genomics Group, Atherosclerosis Research Unit and
| | - Fernando Rivadeneira
- Department of Epidemiology, Department of Internal Medicine, Erasmus MC, Wytemaweg 80, Rotterdam, The Netherlands
| | - Wendy L Mcardle
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tanja Zeller
- Department of General and Interventional Cardiology, University Heart Centre, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel, Hamburg, Germany
| | - Wolfgang Koenig
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany, Department of Internal Medicine II - Cardiology, University of Ulm Medical Centre, Ulm, Germany, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Bruce M Psaty
- Department of Medicine, Epidemiology, and Health Services and Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
| | - Talin Haritunians
- Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jingmin Liu
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - André G Uitterlinden
- Department of Epidemiology, Department of Internal Medicine, Erasmus MC, Wytemaweg 80, Rotterdam, The Netherlands
| | - David J Stott
- Institute of Cardiovascular and Medical Sciences, Faculty of Medicine, University of Glasgow, Glasgow, UK
| | | | | | - Ozren Polasek
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, Department of Public Health, Faculty of Medicine, Centre for Global Health, University of Split, Split, Croatia
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics
| | - Pierre-Emmanuel Morange
- Laboratory of Haematology, La Timone Hospital, Marseille F-13385, France, INSERM, UMR_S 1062, Nutrition Obesity and Risk of Thrombosis, Marseille F-13385, France, Aix-Marseille University, UMR_S 1062, Nutrition Obesity and Risk of Thrombosis, Marseille F-13385, France
| | - James F Wilson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland, Folkhälsan Research Centre, Helsinki, Finland, National Institute for Health and Welfare, Helsinki, Finland, Unit of General Practice, Helsinki University Central Hospital, Helsinki, Finland
| | - Torben Hansen
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences and
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Lewis C Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rodney J Scott
- Information based Medicine Program, Hunter Medical Research Institute, New Lambton Heights, Australia, School of Biomedical Sciences and Pharmacy, University of Newcastle, New Lambton Heights, Australia
| | - Paul Mitchell
- Department of Ophthalmology, Centre for Vision Research, Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany, Synlab Academy, Synlab Services LLC, Mannheim, Germany, Clinical Institute of Medical, Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | | | - Annette Peters
- Institute of Epidemiology II and DZHK (German Centre for Cardiovascular Research) and
| | - Andreas Greinacher
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Philipp S Wild
- Center for Thrombosis and Hemostasis (CTH), Preventive Cardiology and Preventive Medicine, Department of Medicine 2, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany
| | - J Wouter Jukema
- Department of Cardiology, Durrer Center for Cardiogenetic Research, Amsterdam, The Netherlands, Interuniversity Cardiology Institute of The Netherlands, Utrecht, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, The Netherlands
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionaledelle Ricerche, Monserrato, Cagliari, Italy
| | - Russell Tracy
- Department of Pathology and Laboratory Medicine, Center for Clinical and Translational Sciences, University of Vermont College of Medicine, Colchester, VT, USA
| | - Hugh Watkins
- Cardiovascular Medicine Department/Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alex P Reiner
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA, University of Washington, Seattle, WA, USA
| | | | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA, Harvard Medical School, Boston, MA, USA
| | - Christopher J O'Donnell
- Framingham Heart Study, Population Sciences Branch, Division of Intramural Research National Heart Lung and Blood Institute, National Institutes of Health, Framingham, MA, USA, National Heart, Lung and Blood Institute, Division of Intramural Research, Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA, USA, Institute of Cardiovascular and Medical Sciences, Faculty of Medicine, University of Glasgow, Glasgow, UK, Department of Veterans Affairs, Office of Research and Development, Seattle Epidemiologic Research and Information Center, Seattle, WA, USA and
| | - David P Strachan
- Population Health Research Institute, St George's University of London, London, UK
| | | |
Collapse
|
33
|
Burkhardt R, Kirsten H, Beutner F, Holdt LM, Gross A, Teren A, Tönjes A, Becker S, Krohn K, Kovacs P, Stumvoll M, Teupser D, Thiery J, Ceglarek U, Scholz M. Integration of Genome-Wide SNP Data and Gene-Expression Profiles Reveals Six Novel Loci and Regulatory Mechanisms for Amino Acids and Acylcarnitines in Whole Blood. PLoS Genet 2015; 11:e1005510. [PMID: 26401656 PMCID: PMC4581711 DOI: 10.1371/journal.pgen.1005510] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/17/2015] [Indexed: 01/23/2023] Open
Abstract
Profiling amino acids and acylcarnitines in whole blood spots is a powerful tool in the laboratory diagnosis of several inborn errors of metabolism. Emerging data suggests that altered blood levels of amino acids and acylcarnitines are also associated with common metabolic diseases in adults. Thus, the identification of common genetic determinants for blood metabolites might shed light on pathways contributing to human physiology and common diseases. We applied a targeted mass-spectrometry-based method to analyze whole blood concentrations of 96 amino acids, acylcarnitines and pathway associated metabolite ratios in a Central European cohort of 2,107 adults and performed genome-wide association (GWA) to identify genetic modifiers of metabolite concentrations. We discovered and replicated six novel loci associated with blood levels of total acylcarnitine, arginine (both on chromosome 6; rs12210538, rs17657775), propionylcarnitine (chromosome 10; rs12779637), 2-hydroxyisovalerylcarnitine (chromosome 21; rs1571700), stearoylcarnitine (chromosome 1; rs3811444), and aspartic acid traits (chromosome 8; rs750472). Based on an integrative analysis of expression quantitative trait loci in blood mononuclear cells and correlations between gene expressions and metabolite levels, we provide evidence for putative causative genes: SLC22A16 for total acylcarnitines, ARG1 for arginine, HLCS for 2-hydroxyisovalerylcarnitine, JAM3 for stearoylcarnitine via a trans-effect at chromosome 1, and PPP1R16A for aspartic acid traits. Further, we report replication and provide additional functional evidence for ten loci that have previously been published for metabolites measured in plasma, serum or urine. In conclusion, our integrative analysis of SNP, gene-expression and metabolite data points to novel genetic factors that may be involved in the regulation of human metabolism. At several loci, we provide evidence for metabolite regulation via gene-expression and observed overlaps with GWAS loci for common diseases. These results form a strong rationale for subsequent functional and disease-related studies.
Collapse
Affiliation(s)
- Ralph Burkhardt
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Holger Kirsten
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig Germany
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- Department for Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Frank Beutner
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig Germany
- Heart Center Leipzig, Leipzig, Germany
| | - Lesca M. Holdt
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig Germany
- Institute for Laboratory Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Arnd Gross
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig Germany
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Andrej Teren
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig Germany
- Heart Center Leipzig, Leipzig, Germany
| | - Anke Tönjes
- Medical Department, Clinic for Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | - Susen Becker
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Knut Krohn
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig Germany
- Interdisciplinary Centre for Clinical Research, University of Leipzig, Leipzig, Germany
| | - Peter Kovacs
- Integrated Research and Treatment Center Adiposity Diseases, University of Leipzig, Leipzig Germany
| | - Michael Stumvoll
- Medical Department, Clinic for Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
- Integrated Research and Treatment Center Adiposity Diseases, University of Leipzig, Leipzig Germany
| | - Daniel Teupser
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig Germany
- Institute for Laboratory Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Joachim Thiery
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Uta Ceglarek
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Markus Scholz
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig Germany
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
34
|
Rare and low-frequency variants and their association with plasma levels of fibrinogen, FVII, FVIII, and vWF. Blood 2015; 126:e19-29. [PMID: 26105150 DOI: 10.1182/blood-2015-02-624551] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/27/2015] [Indexed: 12/21/2022] Open
Abstract
Fibrinogen, coagulation factor VII (FVII), and factor VIII (FVIII) and its carrier von Willebrand factor (vWF) play key roles in hemostasis. Previously identified common variants explain only a small fraction of the trait heritabilities, and additional variations may be explained by associations with rarer variants with larger effects. The aim of this study was to identify low-frequency (minor allele frequency [MAF] ≥0.01 and <0.05) and rare (MAF <0.01) variants that influence plasma concentrations of these 4 hemostatic factors by meta-analyzing exome chip data from up to 76,000 participants of 4 ancestries. We identified 12 novel associations of low-frequency (n = 2) and rare (n = 10) variants across the fibrinogen, FVII, FVIII, and vWF traits that were independent of previously identified associations. Novel loci were found within previously reported genes and had effect sizes much larger than and independent of previously identified common variants. In addition, associations at KCNT1, HID1, and KATNB1 identified new candidate genes related to hemostasis for follow-up replication and functional genomic analysis. Newly identified low-frequency and rare-variant associations accounted for modest amounts of trait variance and therefore are unlikely to increase predicted trait heritability but provide new information for understanding individual variation in hemostasis pathways.
Collapse
|
35
|
Gigante B, Strawbridge RJ, Velasquez IM, Golabkesh Z, Silveira A, Goel A, Baldassarre D, Veglia F, Tremoli E, Clarke R, Watkins H, Hamsten A, Humphries SE, de Faire U. Analysis of the role of interleukin 6 receptor haplotypes in the regulation of circulating levels of inflammatory biomarkers and risk of coronary heart disease. PLoS One 2015; 10:e0119980. [PMID: 25781951 PMCID: PMC4364007 DOI: 10.1371/journal.pone.0119980] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 01/28/2015] [Indexed: 02/05/2023] Open
Abstract
Variants at the interleukin 6 receptor (IL6R) gene regulate inflammation and are associated with risk of coronary heart disease (CHD). The aim of the present study was to investigate the effects of IL6R haplotypes on circulating levels of inflammatory biomarkers and risk of CHD. We performed a discovery analysis in SHEEP, a myocardial infarction (MI) case control study (n = 2,774) and replicated our results in two large, independent European populations, PROCARDIS, a CHD case control study (n = 7,998), and IMPROVE (n = 3,711) a prospective cardiovascular cohort study. Two major haplotype blocks (rs12083537A/G and rs4075015A/T—block 1; and rs8192282G/A, rs4553185T/C, rs8192284A/C, rs4240872T/C and rs7514452T/C—block 2) were identified in the IL6R gene. IL6R haplotype associations with C-reactive protein (CRP), fibrinogen, IL6, soluble IL6R (sIL6R), IL6, IL8 and TNF-α in SHEEP, CRP and fibrinogen in PROCARDIS and CRP in IMPROVE as well as association with risk of MI and CHD, were analyzed by THESIAS. Haplotypes in block 1 were associated neither with circulating inflammatory biomarkers nor with the MI/CHD risk. Haplotypes in block 2 were associated with circulating levels of CRP, in all three study populations, with fibrinogen in SHEEP and PROCARDIS, with IL8 and sIL6Rin SHEEP and with a modest, non significant, increase (7%) in MI/CHD risk in the three populations studied. Our results indicate that IL6R haplotypes regulate the circulating levels of inflammatory biomarkers. Lack of association with the risk of CHD may be explained by the combined effect of SNPs with opposite effect on the CHD risk, the sample size as well as by structural changes affecting sIL6R stability in the circulation.
Collapse
Affiliation(s)
- Bruna Gigante
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine (IMM), Stockholm, Sweden
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd University Hospital, Stockholm, Sweden
- * E-mail:
| | - Rona J. Strawbridge
- Cardiovascular Genetics and Genomics Group, Atherosclerosis Research Unit, Department of Medicine Solna, all at Karolinska Institutet, Stockholm, Sweden
| | - Ilais Moreno Velasquez
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine (IMM), Stockholm, Sweden
| | - Zahra Golabkesh
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine (IMM), Stockholm, Sweden
| | - Angela Silveira
- Cardiovascular Genetics and Genomics Group, Atherosclerosis Research Unit, Department of Medicine Solna, all at Karolinska Institutet, Stockholm, Sweden
| | - Anuj Goel
- Department of Cardiovascular Medicine, The Wellcome Trust Centre of Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Damiano Baldassarre
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Milan, Italy
- Centro Cardiologico Monzino, IRCCS, Milan Italy
| | - Fabrizio Veglia
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Milan, Italy
| | - Elena Tremoli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Milan, Italy
- Centro Cardiologico Monzino, IRCCS, Milan Italy
| | - Robert Clarke
- Clinical Trial Service Unit, University of Oxford, Oxford, United Kingdom
| | - Hugh Watkins
- Department of Cardiovascular Medicine, The Wellcome Trust Centre of Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Anders Hamsten
- Cardiovascular Genetics and Genomics Group, Atherosclerosis Research Unit, Department of Medicine Solna, all at Karolinska Institutet, Stockholm, Sweden
- Dept of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Steve E. Humphries
- Centre for Cardiovascular Genetics, University College London, United Kingdom
| | - Ulf de Faire
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine (IMM), Stockholm, Sweden
- Dept of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
36
|
Demirkan A, Henneman P, Verhoeven A, Dharuri H, Amin N, van Klinken JB, Karssen LC, de Vries B, Meissner A, Göraler S, van den Maagdenberg AMJM, Deelder AM, C ’t Hoen PA, van Duijn CM, van Dijk KW. Insight in genome-wide association of metabolite quantitative traits by exome sequence analyses. PLoS Genet 2015; 11:e1004835. [PMID: 25569235 PMCID: PMC4287344 DOI: 10.1371/journal.pgen.1004835] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/16/2014] [Indexed: 12/20/2022] Open
Abstract
Metabolite quantitative traits carry great promise for epidemiological studies, and their genetic background has been addressed using Genome-Wide Association Studies (GWAS). Thus far, the role of less common variants has not been exhaustively studied. Here, we set out a GWAS for metabolite quantitative traits in serum, followed by exome sequence analysis to zoom in on putative causal variants in the associated genes. 1H Nuclear Magnetic Resonance (1H-NMR) spectroscopy experiments yielded successful quantification of 42 unique metabolites in 2,482 individuals from The Erasmus Rucphen Family (ERF) study. Heritability of metabolites were estimated by SOLAR. GWAS was performed by linear mixed models, using HapMap imputations. Based on physical vicinity and pathway analyses, candidate genes were screened for coding region variation using exome sequence data. Heritability estimates for metabolites ranged between 10% and 52%. GWAS replicated three known loci in the metabolome wide significance: CPS1 with glycine (P-value = 1.27×10−32), PRODH with proline (P-value = 1.11×10−19), SLC16A9 with carnitine level (P-value = 4.81×10−14) and uncovered a novel association between DMGDH and dimethyl-glycine (P-value = 1.65×10−19) level. In addition, we found three novel, suggestively significant loci: TNP1 with pyruvate (P-value = 1.26×10−8), KCNJ16 with 3-hydroxybutyrate (P-value = 1.65×10−8) and 2p12 locus with valine (P-value = 3.49×10−8). Exome sequence analysis identified potentially causal coding and regulatory variants located in the genes CPS1, KCNJ2 and PRODH, and revealed allelic heterogeneity for CPS1 and PRODH. Combined GWAS and exome analyses of metabolites detected by high-resolution 1H-NMR is a robust approach to uncover metabolite quantitative trait loci (mQTL), and the likely causative variants in these loci. It is anticipated that insight in the genetics of intermediate phenotypes will provide additional insight into the genetics of complex traits. Human metabolic individuality is under strict control of genetic and environmental factors. In our study, we aimed to find the genetic determinants of circulating molecules in sera of large set of individuals representing the general population. First, we performed a hypothesis-free genome wide screen in this population to identify genetic regions of interest. Our study confirmed four known gene metabolite connections, but also pointed to four novel ones. Genome-wide screens enriched for common intergenic variants may miss causal genetic variations directly changing the protein sequence. To investigate this further, we zoomed into regions of interest and tested whether the association signals obtained in the first stage were direct, or whether they represent causal variations, which were not captured in the initial panel. These subsequent tests showed that protein coding and regulatory variations are involved in metabolite levels. For two genomic regions we also found that genes harbour more than one causal variant influencing metabolite levels independent of each other. We also observed strong connection between markers of cardio-metabolic health and metabolites. Taken together, our novel loci are of interest for further research to investigate the causal relation to for instance type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Ayşe Demirkan
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Peter Henneman
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Aswin Verhoeven
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Harish Dharuri
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jan Bert van Klinken
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Lennart C. Karssen
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Boukje de Vries
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Axel Meissner
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sibel Göraler
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Arn M. J. M. van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - André M. Deelder
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter A. C ’t Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
37
|
Baumert J, Huang J, McKnight B, Sabater-Lleal M, Steri M, Chu AY, Trompet S, Lopez LM, Fornage M, Teumer A, Tang W, Rudnicka AR, Mälarstig A, Hottenga JJ, Kavousi M, Lahti J, Tanaka T, Hayward C, Huffman JE, Morange PE, Rose LM, Basu S, Rumley A, Stott DJ, Buckley BM, de Craen AJM, Sanna S, Masala M, Biffar R, Homuth G, Silveira A, Sennblad B, Goel A, Watkins H, Müller-Nurasyid M, Rückerl R, Taylor K, Chen MH, de Geus EJC, Hofman A, Witteman JCM, de Maat MPM, Palotie A, Davies G, Siscovick DS, Kolcic I, Wild SH, Song J, McArdle WL, Ford I, Sattar N, Schlessinger D, Grotevendt A, Franzosi MG, Illig T, Waldenberger M, Lumley T, Tofler GH, Willemsen G, Uitterlinden AG, Rivadeneira F, Räikkönen K, Chasman DI, Folsom AR, Lowe GD, Westendorp RGJ, Slagboom PE, Cucca F, Wallaschofski H, Strawbridge RJ, Seedorf U, Koenig W, Bis JC, Mukamal KJ, van Dongen J, Widen E, Franco OH, Starr JM, Liu K, Ferrucci L, Polasek O, Wilson JF, Oudot-Mellakh T, Campbell H, Navarro P, Bandinelli S, Eriksson J, Boomsma DI, Dehghan A, Clarke R, Hamsten A, Boerwinkle E, Jukema JW, Naitza S, Ridker PM, Völzke H, Deary IJ, Reiner AP, Trégouët DA, O'Donnell CJ, Strachan DP, Peters A, Smith NL. No evidence for genome-wide interactions on plasma fibrinogen by smoking, alcohol consumption and body mass index: results from meta-analyses of 80,607 subjects. PLoS One 2014; 9:e111156. [PMID: 25551457 PMCID: PMC4281156 DOI: 10.1371/journal.pone.0111156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 09/23/2014] [Indexed: 11/23/2022] Open
Abstract
Plasma fibrinogen is an acute phase protein playing an important role in the blood coagulation cascade having strong associations with smoking, alcohol consumption and body mass index (BMI). Genome-wide association studies (GWAS) have identified a variety of gene regions associated with elevated plasma fibrinogen concentrations. However, little is yet known about how associations between environmental factors and fibrinogen might be modified by genetic variation. Therefore, we conducted large-scale meta-analyses of genome-wide interaction studies to identify possible interactions of genetic variants and smoking status, alcohol consumption or BMI on fibrinogen concentration. The present study included 80,607 subjects of European ancestry from 22 studies. Genome-wide interaction analyses were performed separately in each study for about 2.6 million single nucleotide polymorphisms (SNPs) across the 22 autosomal chromosomes. For each SNP and risk factor, we performed a linear regression under an additive genetic model including an interaction term between SNP and risk factor. Interaction estimates were meta-analysed using a fixed-effects model. No genome-wide significant interaction with smoking status, alcohol consumption or BMI was observed in the meta-analyses. The most suggestive interaction was found for smoking and rs10519203, located in the LOC123688 region on chromosome 15, with a p value of 6.2×10−8. This large genome-wide interaction study including 80,607 participants found no strong evidence of interaction between genetic variants and smoking status, alcohol consumption or BMI on fibrinogen concentrations. Further studies are needed to yield deeper insight in the interplay between environmental factors and gene variants on the regulation of fibrinogen concentrations.
Collapse
Affiliation(s)
- Jens Baumert
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jie Huang
- National Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, Massachusetts, United States of America
- National Heart, Lung and Blood Institute Division of Intramural Research, Bethesda, Maryland, United States of America
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Maria Sabater-Lleal
- Cardiovascular Genetics and Genomics Group, Atherosclerosis Research Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Audrey Y. Chu
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Lorna M. Lopez
- Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, Division of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Alexander Teumer
- Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Weihong Tang
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Alicja R. Rudnicka
- Division of Population Health Sciences & Education, St George's, University of London, Cranmer Terrace, London, United Kingdom
| | - Anders Mälarstig
- Cardiovascular Genetics and Genomics Group, Atherosclerosis Research Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, VU University & EMGO+ institute, VU Medical Centre, Amsterdam, the Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Genomics Initiative (NGI)-Sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, the Netherlands
| | - Jari Lahti
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
- Folkhalsan Research Centre, Helsinki, Finland
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Jennifer E. Huffman
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | | | - Lynda M. Rose
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Saonli Basu
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ann Rumley
- Division of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David J. Stott
- Institute of Cardiovascular and Medical Sciences, Faculty of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Brendan M. Buckley
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Anton J. M. de Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Marco Masala
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Reiner Biffar
- Department of Prosthetic Dentistry, Gerostomatology and Dental Materials, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Angela Silveira
- Cardiovascular Genetics and Genomics Group, Atherosclerosis Research Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Bengt Sennblad
- Cardiovascular Genetics and Genomics Group, Atherosclerosis Research Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Insitutet, Stockholm, Sweden
| | - Anuj Goel
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- Department of Cardiovascular Medicine, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Hugh Watkins
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- Department of Cardiovascular Medicine, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Regina Rückerl
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- ESC-Environmental Science Center, University of Augsburg, Augsburg, Germany
| | - Kent Taylor
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Ming-Huei Chen
- Department of Biostatistics, Boston University, Boston, Massachusetts, United States of America
| | - Eco J. C. de Geus
- Department of Haematology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Genomics Initiative (NGI)-Sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, the Netherlands
| | - Jacqueline C. M. Witteman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Genomics Initiative (NGI)-Sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, the Netherlands
| | | | - Aarno Palotie
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Medical Genetics, University of Helsinki and University Central Hospital, Helsinki, Finland
| | - Gail Davies
- Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
| | - David S. Siscovick
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Ivana Kolcic
- Department of Public Health, University of Split Medical School, Split, Croatia
| | - Sarah H. Wild
- Centre for Population Health Sciences, University of Edinburgh, Teviot Place, Edinburgh, Scotland, United Kingdom
| | - Jaejoon Song
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wendy L. McArdle
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, Glasgow, United Kingdom
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow, United Kingdom
| | - David Schlessinger
- Intramural Research Program, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Anne Grotevendt
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Maria Grazia Franzosi
- Department of Cardiovascular Research, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Lumley
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | | | - Gonneke Willemsen
- Department of Biological Psychology, VU University & EMGO+ institute, VU Medical Centre, Amsterdam, the Netherlands
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Genomics Initiative (NGI)-Sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Fernando Rivadeneira
- Division of Preventive Medicine, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Katri Räikkönen
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Daniel I. Chasman
- Division of Preventive Medicine, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aaron R. Folsom
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gordon D. Lowe
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rudi G. J. Westendorp
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - P. Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Henri Wallaschofski
- Intramural Research Program, National Institute on Aging, Baltimore, Maryland, United States of America
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Rona J. Strawbridge
- Cardiovascular Genetics and Genomics Group, Atherosclerosis Research Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Udo Seedorf
- Leibniz-Institut für Arterioskleroseforschung an der Universität Münster, Münster, Germany
| | - Wolfgang Koenig
- Department of Internal Medicine II - Cardiology, University of Ulm Medical Center, Ulm, Germany
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Kenneth J. Mukamal
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of General Medicine and Primary Care, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Jenny van Dongen
- Department of Biological Psychology, VU University & EMGO+ institute, VU Medical Centre, Amsterdam, the Netherlands
| | - Elisabeth Widen
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Oscar H. Franco
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Genomics Initiative (NGI)-Sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, the Netherlands
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Kiang Liu
- Department of Preventive Medicine, Northwestern University Medical School, Chicago, Illinois, United States of America
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Ozren Polasek
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - James F. Wilson
- Department of Public Health, University of Split Medical School, Split, Croatia
| | - Tiphaine Oudot-Mellakh
- INSERM, UMR_S 1166, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Harry Campbell
- Department of Public Health, University of Split Medical School, Split, Croatia
| | - Pau Navarro
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | | | - Johan Eriksson
- Folkhalsan Research Centre, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Helsinki University Central Hospital, Unit of General Practice, Helsinki, Finland
| | - Dorret I. Boomsma
- Department of Biological Psychology, VU University & EMGO+ institute, VU Medical Centre, Amsterdam, the Netherlands
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Genomics Initiative (NGI)-Sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, the Netherlands
| | - Robert Clarke
- Clinical Trial Service Unit, University of Oxford, Oxford, United Kingdom
| | - Anders Hamsten
- Cardiovascular Genetics and Genomics Group, Atherosclerosis Research Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Eric Boerwinkle
- Human Genetics Center and Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, United States of America
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Durrer Center for Cardiogenetic Research, Amsterdam, the Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Silvia Naitza
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Paul M. Ridker
- Division of Preventive Medicine, Division of Cardiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Ian J. Deary
- Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Alexander P. Reiner
- Department of Medical Genetics, University of Helsinki and University Central Hospital, Helsinki, Finland
| | - David-Alexandre Trégouët
- INSERM, UMR_S 1166, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Christopher J. O'Donnell
- National Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, Massachusetts, United States of America
- National Heart, Lung and Blood Institute Division of Intramural Research, Bethesda, Maryland, United States of America
| | - David P. Strachan
- Division of Population Health Sciences & Education, St George's, University of London, Cranmer Terrace, London, United Kingdom
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich, Munich, Germany
- * E-mail: (A. Peters); (NLS)
| | - Nicholas L. Smith
- Department of Medical Genetics, University of Helsinki and University Central Hospital, Helsinki, Finland
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington, United States of America
- Seattle Epidemiologic Research & Information Center, Veterans Affairs Office of Research & Development, Seattle, Washington, United States of America
- * E-mail: (A. Peters); (NLS)
| |
Collapse
|
38
|
RNA-Seq and ChIP-Seq reveal SQSTM1/p62 as a key mediator of JunB suppression of NF-κB-dependent inflammation. J Invest Dermatol 2014; 135:1016-1024. [PMID: 25501661 PMCID: PMC4366298 DOI: 10.1038/jid.2014.519] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 11/26/2014] [Accepted: 12/04/2014] [Indexed: 11/08/2022]
Abstract
Mice with epidermal deletion of JunB transcription factor displayed a psoriasis-like inflammation. The relevance of these findings to humans and the mechanisms mediating JunB function are not fully understood. Here we demonstrate that impaired JunB function via gene silencing or overexpression of a dominant negative mutant increased human keratinocyte cell proliferation but decreased cell barrier function. RNA-seq revealed over 500 genes affected by JunB loss of function, which included the upregulation of an array of proinflammatory molecules relevant to psoriasis. Among these were tumor necrosis factor α (TNFα), CCL2, CXCL10, IL6R, and SQSTM1, an adaptor protein involved in nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. Chromatin immunoprecipitation (ChIP)-Seq and gene reporter analyses showed that JunB directly suppressed SQSTM1 by binding to a consensus AP-1 cis element located around 2 kb upstream of SQSTM1-transcription start site. Similar to JunB loss of function, SQSTM1-overexpression induced TNFα, CCL2, and CXCL10. Conversely, NF-κB inhibition genetically with a mutant IκBα or pharmacologically with pyrrolidine dithiocarbamate (PDTC) prevented cytokine, but not IL6R, induction by JunB deficiency. Taken together, our findings indicate that JunB controls epidermal growth, barrier formation, and proinflammatory responses through direct and indirect mechanisms, pinpointing SQSTM1 as a key mediator of JunB suppression of NF-κB-dependent inflammation.
Collapse
|
39
|
Hoppe B. Fibrinogen and factor XIII at the intersection of coagulation, fibrinolysis and inflammation. Thromb Haemost 2014; 112:649-58. [PMID: 25182841 DOI: 10.1160/th14-01-0085] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 07/09/2014] [Indexed: 01/07/2023]
Abstract
Fibrinogen and factor XIII are two essential proteins that are involved directly in fibrin gel formation as the final step of a sequence of reactions triggered by a procoagulant stimulus. Haemostasis is the most obvious function of the resulting fibrin clot. Different variables affect the conversion of fibrinogen to fibrin as well as the mode of fibrin polymerisation and fibrin crosslinking, hereby, critically influencing the architecture of the resulting fibrin network and consequently determining its mechanical strength and resistance against fibrinolysis. Due to fibrinogen's structure with a multitude of domains and binding motifs the fibrin gel allows for complex interactions with other coagulation factors, with profibrinolytic as well as antifibrinolyic proteins, with complement factors and with various cellular receptors. These interactions enable the fibrin network to control its own further state (i. e. expansion or degradation), to influence innate immunity, and to function as a scaffold for cell migration processes. During the whole process of fibrin gel formation biologically active peptides and protein fragments are released that additionally influence cellular processes via chemotaxis or by modulating cell-cell interactions. Thus, it is not surprising that fibrinogen and factor XIII in addition to their haemostatic function influence innate immunity as well as cell-mediated reactions like wound healing, response to tissue injury or inflammatory processes. The present review summarises current knowledge of fibrinogen's and factor XIII's function in coagulation and fibrinolysis giving special emphasis on their relation to inflammation control.
Collapse
Affiliation(s)
- Berthold Hoppe
- PD Dr. Berthold Hoppe, Institute of Laboratory Medicine and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany, Tel.: +49 30 40 50 26 209, Fax: +49 30 40 50 26 77 209, E-mail:
| |
Collapse
|
40
|
Simino J, Shi G, Bis JC, Chasman DI, Ehret GB, Gu X, Guo X, Hwang SJ, Sijbrands E, Smith AV, Verwoert GC, Bragg-Gresham JL, Cadby G, Chen P, Cheng CY, Corre T, de Boer RA, Goel A, Johnson T, Khor CC, Lluís-Ganella C, Luan J, Lyytikäinen LP, Nolte IM, Sim X, Sõber S, van der Most PJ, Verweij N, Zhao JH, Amin N, Boerwinkle E, Bouchard C, Dehghan A, Eiriksdottir G, Elosua R, Franco OH, Gieger C, Harris TB, Hercberg S, Hofman A, James AL, Johnson AD, Kähönen M, Khaw KT, Kutalik Z, Larson MG, Launer LJ, Li G, Liu J, Liu K, Morrison AC, Navis G, Ong RTH, Papanicolau GJ, Penninx BW, Psaty BM, Raffel LJ, Raitakari OT, Rice K, Rivadeneira F, Rose LM, Sanna S, Scott RA, Siscovick DS, Stolk RP, Uitterlinden AG, Vaidya D, van der Klauw MM, Vasan RS, Vithana EN, Völker U, Völzke H, Watkins H, Young TL, Aung T, Bochud M, Farrall M, Hartman CA, Laan M, Lakatta EG, Lehtimäki T, Loos RJF, Lucas G, Meneton P, Palmer LJ, Rettig R, Snieder H, Tai ES, Teo YY, van der Harst P, Wareham NJ, Wijmenga C, Wong TY, Fornage M, Gudnason V, Levy D, Palmas W, Ridker PM, Rotter JI, van Duijn CM, Witteman JCM, Chakravarti A, Rao DC. Gene-age interactions in blood pressure regulation: a large-scale investigation with the CHARGE, Global BPgen, and ICBP Consortia. Am J Hum Genet 2014; 95:24-38. [PMID: 24954895 DOI: 10.1016/j.ajhg.2014.05.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 05/20/2014] [Indexed: 01/11/2023] Open
Abstract
Although age-dependent effects on blood pressure (BP) have been reported, they have not been systematically investigated in large-scale genome-wide association studies (GWASs). We leveraged the infrastructure of three well-established consortia (CHARGE, GBPgen, and ICBP) and a nonstandard approach (age stratification and metaregression) to conduct a genome-wide search of common variants with age-dependent effects on systolic (SBP), diastolic (DBP), mean arterial (MAP), and pulse (PP) pressure. In a two-staged design using 99,241 individuals of European ancestry, we identified 20 genome-wide significant (p ≤ 5 × 10(-8)) loci by using joint tests of the SNP main effect and SNP-age interaction. Nine of the significant loci demonstrated nominal evidence of age-dependent effects on BP by tests of the interactions alone. Index SNPs in the EHBP1L1 (DBP and MAP), CASZ1 (SBP and MAP), and GOSR2 (PP) loci exhibited the largest age interactions, with opposite directions of effect in the young versus the old. The changes in the genetic effects over time were small but nonnegligible (up to 1.58 mm Hg over 60 years). The EHBP1L1 locus was discovered through gene-age interactions only in whites but had DBP main effects replicated (p = 8.3 × 10(-4)) in 8,682 Asians from Singapore, indicating potential interethnic heterogeneity. A secondary analysis revealed 22 loci with evidence of age-specific effects (e.g., only in 20 to 29-year-olds). Age can be used to select samples with larger genetic effect sizes and more homogenous phenotypes, which may increase statistical power. Age-dependent effects identified through novel statistical approaches can provide insight into the biology and temporal regulation underlying BP associations.
Collapse
Affiliation(s)
- Jeannette Simino
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Gang Shi
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Georg B Ehret
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cardiology, Department of Specialties of Internal Medicine, Geneva University Hospitals, Geneva 1211, Switzerland
| | - Xiangjun Gu
- Research Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Shih-Jen Hwang
- Framingham Heart Study, Framingham, MA 01702, USA; Center for Population Studies, National Heart, Lung, and Blood Institute, Framingham, MA 01702, USA
| | - Eric Sijbrands
- Department of Internal Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Albert V Smith
- Icelandic Heart Association, 201 Kopavogur, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Germaine C Verwoert
- Department of Internal Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | | | - Gemma Cadby
- Centre for Genetic Origins of Health and Disease, University of Western Australia, Nedlands, WA 6009, Australia; Genetic Epidemiology and Biostatistics Platform, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Samuel Lunenfeld Research Institute, Toronto, ON M5T 3L9, Canada
| | - Peng Chen
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, Singapore; Saw Swee Hock School of Public Health, National University Health System, Singapore 117597, Singapore
| | - Ching-Yu Cheng
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, Singapore; Saw Swee Hock School of Public Health, National University Health System, Singapore 117597, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Department of Ophthalmology, National University Health System, Singapore 119228, Singapore; Singapore Eye Research Institute, Singapore 168751, Singapore; Centre for Quantitative Medicine, Office of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Tanguy Corre
- Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Anuj Goel
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Toby Johnson
- Clinical Pharmacology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Chiea-Chuen Khor
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, Singapore; Saw Swee Hock School of Public Health, National University Health System, Singapore 117597, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Department of Ophthalmology, National University Health System, Singapore 119228, Singapore; Division of Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Department of Paediatrics, National University Health System, Singapore 119074, Singapore
| | - Carla Lluís-Ganella
- Cardiovascular Epidemiology and Genetics, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 30101, Finland; Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere 33101, Finland
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Xueling Sim
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Centre for Molecular Epidemiology, National University of Singapore, Singapore 119260, Singapore
| | - Siim Sõber
- Human Molecular Genetics Group, Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Jing Hua Zhao
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Sciences Center, Houston, TX 77225, USA
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | | | - Roberto Elosua
- Cardiovascular Epidemiology and Genetics, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain; Epidemiology and Public Health Network (CIBERESP), 08036 Barcelona, Spain
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Tamara B Harris
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, NIH, Bethesda, MD 20892, USA
| | - Serge Hercberg
- U557 Institut National de la Santé et de la Recherche Médicale, U1125 Institut National de la Recherche Agronomique, Université Paris 13, 93000 Bobigny, France
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia; School of Medicine and Pharmacology, University of Western Australia, Nedlands, WA 6009, Australia
| | - Andrew D Johnson
- Framingham Heart Study, Framingham, MA 01702, USA; Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere 33521, Finland; Department of Clinical Physiology, University of Tampere School of Medicine, Tampere 33521, Finland
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge CB2 2SR, UK
| | - Zoltan Kutalik
- Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Martin G Larson
- Framingham Heart Study, Framingham, MA 01702, USA; Department of Mathematics, Boston University, Boston, MA 02215, USA
| | - Lenore J Launer
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, NIH, Bethesda, MD 20892, USA
| | - Guo Li
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Jianjun Liu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, Singapore; Saw Swee Hock School of Public Health, National University Health System, Singapore 117597, Singapore; Division of Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Kiang Liu
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alanna C Morrison
- Human Genetics Center, University of Texas Health Sciences Center, Houston, TX 77225, USA
| | - Gerjan Navis
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, Singapore; Saw Swee Hock School of Public Health, National University Health System, Singapore 117597, Singapore
| | - George J Papanicolau
- Division of Cardiovascular Sciences, National Heart, Lung, & Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Brenda W Penninx
- Department of Psychiatry/EMGO Institute/Neuroscience Campus, VU University Medical Centre, 1081 BT Amsterdam, the Netherlands; Department of Psychiatry, Leiden University Medical Centre, 2333 ZD Leiden, the Netherlands; Department of Psychiatry, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA; Department of Epidemiology, University of Washington, Seattle, WA 98195, USA; Department of Health Services, University of Washington, Seattle, WA 98195, USA; Group Health Research Institute, Group Health Cooperative, Seattle, WA 98101, USA
| | - Leslie J Raffel
- Medical Genetics Institute, Cedars-Sinai Medical Center, Pacific Theatres, Los Angeles, CA 90048, USA
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20521, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20521, Finland
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Lynda M Rose
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica, CNR, Monserrato 09042, Italy
| | - Robert A Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - David S Siscovick
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA; Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Ronald P Stolk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Netherland Genomics Inititiative, Netherlands Center for Healthy Aging, The Hague 2509, the Netherlands
| | - Dhananjay Vaidya
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21202, USA
| | - Melanie M van der Klauw
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Ramachandran S Vasan
- Framingham Heart Study, Framingham, MA 01702, USA; Divisions of Epidemiology and Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Eranga Nishanthie Vithana
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Department of Ophthalmology, National University Health System, Singapore 119228, Singapore; Singapore Eye Research Institute, Singapore 168751, Singapore; Neuroscience and Behavioural Disorders (NBD) Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University of Greifswald, 17487 Greifswald, Germany
| | - Hugh Watkins
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Terri L Young
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA; Division of Neuroscience, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Tin Aung
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Department of Ophthalmology, National University Health System, Singapore 119228, Singapore; Singapore Eye Research Institute, Singapore 168751, Singapore
| | - Murielle Bochud
- Institute of Social and Preventive Medicine, Lausanne University Hospital, 1010 Lausanne, Switzerland
| | - Martin Farrall
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Catharina A Hartman
- Interdisciplinary Center for Pathology of Emotions, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Maris Laan
- Human Molecular Genetics Group, Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Bethesda, MD 21224, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 30101, Finland; Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere 33101, Finland
| | - Ruth J F Loos
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK; The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gavin Lucas
- Cardiovascular Epidemiology and Genetics, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Pierre Meneton
- U872 Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Paris 75006, France
| | - Lyle J Palmer
- Genetic Epidemiology and Biostatistics Platform, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Samuel Lunenfeld Research Institute, Toronto, ON M5T 3L9, Canada
| | - Rainer Rettig
- Institute of Physiology, University of Greifswald, 17495 Karlsburg, Germany
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, Singapore; Saw Swee Hock School of Public Health, National University Health System, Singapore 117597, Singapore; Department of Medicine, National University Health System and Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Duke-National University of Singapore Graduate Medical School, Singapore 169857, Singapore
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, Singapore; Saw Swee Hock School of Public Health, National University Health System, Singapore 117597, Singapore; Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Statistics and Applied Probability, National University of Singapore, Singapore 117543, Singapore; Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands; Durrer Center for Cardiogenetic Research, 3501 DG Utrecht, the Netherlands
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Tien Yin Wong
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Department of Ophthalmology, National University Health System, Singapore 119228, Singapore; Singapore Eye Research Institute, Singapore 168751, Singapore
| | - Myriam Fornage
- Research Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA; Human Genetics Center, University of Texas Health Sciences Center, Houston, TX 77225, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201 Kopavogur, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA 01702, USA; Center for Population Studies, National Heart, Lung, and Blood Institute, Framingham, MA 01702, USA; Boston University School of Medicine, Boston, MA 02118, USA
| | - Walter Palmas
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Netherland Genomics Inititiative, Netherlands Center for Healthy Aging, The Hague 2509, the Netherlands; Netherland Genomics Initiative, Centre for Medical Systems Biology, 2300 RC Leiden, the Netherlands
| | - Jacqueline C M Witteman
- Department of Epidemiology, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Dabeeru C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA; Departments of Psychiatry, Genetics, and Mathematics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
41
|
Allin KH, Nordestgaard BG. Pleiotropic effects of HNF1A rs1183910 in a population-based study of 60,283 individuals. Diabetologia 2014; 57:729-37. [PMID: 24442509 DOI: 10.1007/s00125-013-3156-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 12/11/2013] [Indexed: 11/27/2022]
Abstract
AIMS/HYPOTHESIS According to genome-wide association studies (GWAS) a locus in the HNF1A gene has pleiotropic effects on several metabolic traits. In a large single-centre study we used the intronic variant rs1183910 located in a region with no or low recombination rate as an instrument for the HNF1A locus to evaluate pleiotropic effects of this locus on the risk of developing type 2 diabetes, as well as on body composition and levels of non-fasting glucose, lipids, acute-phase reactants, and biomarkers of liver and pancreas function. METHODS We investigated 60,283 individuals from the Danish general population who were all examined in the same laboratory, comprising the Copenhagen General Population Study. RESULTS We confirm previous GWAS findings, namely that the minor rs1183910 A allele is associated with an increased risk of developing type 2 diabetes (p(trend) = 0.003), decreased levels of C-reactive protein (CRP; p(trend) = 6 × 10(-76)) and γ-glutamyltransferase (p(trend) = 4 × 10(-48)), and increased levels of total cholesterol (p(trend) = 3 × 10(-10)) and LDL-cholesterol (p(trend) = 3 × 10(-11)). For the first time, we report that the minor rs1183910 A allele is associated with increased levels of non-fasting plasma glucose (p(trend) = 3 × 10(-5)), apolipoprotein B (ApoB; p(trend) = 1 × 10(-4)) and alkaline phosphatase (p(trend) = 5 × 10(-14)), and decreased levels of bilirubin (p trend = 3 × 10(-5)). Our results suggest that the association with increased risk of type 2 diabetes is driven by high non-fasting glucose levels. CONCLUSIONS/INTERPRETATION The minor rs1183910 A allele prompts a potential adverse metabolic profile with increased levels of non-fasting glucose, total cholesterol, LDL-cholesterol, ApoB, and alkaline phosphatase, but simultaneously has potential beneficial effects through decreased levels of CRP, γ-glutamyltransferase and bilirubin.
Collapse
Affiliation(s)
- Kristine H Allin
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev Ringvej 75, 2730, Herlev, Denmark
| | | |
Collapse
|
42
|
Ganesh SK, Arnett DK, Assimes TL, Basson CT, Chakravarti A, Ellinor PT, Engler MB, Goldmuntz E, Herrington DM, Hershberger RE, Hong Y, Johnson JA, Kittner SJ, McDermott DA, Meschia JF, Mestroni L, O’Donnell CJ, Psaty BM, Vasan RS, Ruel M, Shen WK, Terzic A, Waldman SA. Genetics and Genomics for the Prevention and Treatment of Cardiovascular Disease: Update. Circulation 2013; 128:2813-51. [DOI: 10.1161/01.cir.0000437913.98912.1d] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Harrison SC, Smith AJ, Jones GT, Swerdlow DI, Rampuri R, Bown MJ, Folkersen L, Baas AF, de Borst GJ, Blankensteijn JD, Price JF, van der Graaf Y, McLachlan S, Agu O, Hofman A, Uitterlinden AG, Franco-Cereceda A, Ruigrok YM, van't Hof F, Powell JT, van Rij AM, Casas JP, Eriksson P, Holmes MV, Asselbergs FW, Hingorani AD, Humphries SE. Interleukin-6 receptor pathways in abdominal aortic aneurysm. Eur Heart J 2013; 34:3707-16. [PMID: 23111417 PMCID: PMC3869968 DOI: 10.1093/eurheartj/ehs354] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 08/24/2012] [Accepted: 09/10/2012] [Indexed: 11/25/2022] Open
Abstract
METHODS We conducted a systematic review and meta-analysis of studies reporting circulating IL-6 in AAA, and new investigations of the association between a common non-synonymous functional variant (Asp358Ala) in the IL-6R gene (IL6R) and AAA, followed the analysis of the variant both in vitro and in vivo. Inflammation may play a role in the development of abdominal aortic aneurysms (AAA). Interleukin-6 (IL-6) signalling through its receptor (IL-6R) is one pathway that could be exploited pharmacologically. We investigated this using a Mendelian randomization approach. RESULTS Up to October 2011, we identified seven studies (869 cases, 851 controls). Meta-analysis demonstrated that AAA cases had higher levels of IL-6 than controls [standardized mean difference (SMD) = 0.46 SD, 95% CI = 0.25-0.66, I(2) = 70%, P = 1.1 × 10-5 random effects]. Meta-analysis of five studies (4524 cases/15 710 controls) demonstrated that rs7529229 (which tags the non-synonymous variant Asp358Ala, rs2228145) was associated with a lower risk of AAA, per Ala358 allele odds ratio 0.84, 95% CI: 0.80-0.89, I(2) = 0%, P = 2.7 × 10-11). In vitro analyses in lymphoblastoid cell lines demonstrated a reduction in the expression of downstream targets (STAT3, MYC and ICAM1) in response to IL-6 stimulation in Ala358 carriers. CONCLUSIONS A Mendelian randomization approach provides robust evidence that signalling via the IL-6R is likely to be a causal pathway in AAA. Drugs that inhibit IL-6R may play a role in AAA management.
Collapse
Affiliation(s)
- Seamus C. Harrison
- Department of Cardiovascular Genetics,Institute of Cardiovascular Science, University College London, Rayne Building, University Street, London WC1E 6JJ, UK
- BHF Laboratories, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London (UCL), The Rayne Building, 5 University Street, London WC1E 6JF, UK
| | - Andrew J.P. Smith
- Department of Cardiovascular Genetics,Institute of Cardiovascular Science, University College London, Rayne Building, University Street, London WC1E 6JJ, UK
| | | | | | - Riaz Rampuri
- Department of Cardiovascular Genetics,Institute of Cardiovascular Science, University College London, Rayne Building, University Street, London WC1E 6JJ, UK
| | - Matthew J. Bown
- Department of Cardiovascular Sciences, Leicester University, Leicester LE2 7LX, UK
| | | | - Lasse Folkersen
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institute, Stockholm 171 76, Sweden
| | - Annette F. Baas
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht 3584CG, The Netherlands
| | - Gert Jan de Borst
- Vascular Surgery, UMC Utrecht, PO Box 85500, G04.129, Utrecht 3508GA, The Netherlands
| | - Jan D. Blankensteijn
- Department of Surgery, Vascular Surgery, VU Medical Center, PO Box 7057 ZH F 018, Amsterdam 1007, The Netherlands
| | - Jacqueline F. Price
- Wolfson Unit for Prevention of Peripheral Vascular Diseases, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| | - Yolanda van der Graaf
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht 3584CG, The Netherlands
| | - Stela McLachlan
- Wolfson Unit for Prevention of Peripheral Vascular Diseases, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| | - Obi Agu
- Vascular Surgery, University College London Hospital, London NW1 2BU, UK
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000CA, The Netherlands
| | - Andre G. Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000CA, The Netherlands
| | | | - Ynte M. Ruigrok
- Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht 3508 GA, The Netherlands
| | - F.N. van't Hof
- Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht 3508 GA, The Netherlands
| | - Janet T. Powell
- Vascular Surgery Research Group, Imperial College Charing Cross Hospital, 4th Floor, Fulham Palace Road, London W6 8RF, UK
| | | | - Juan P. Casas
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Per Eriksson
- Department of Cardiovascular Sciences, Leicester University, Leicester LE2 7LX, UK
| | - Michael V. Holmes
- Genetic Epidemiology, University College London, London WC1E 6JJ, UK
| | - Folkert W. Asselbergs
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Medical Genetics, Biomedical Genetics, University Medical Center, Utrecht, The Netherlands
| | | | - Steve E. Humphries
- Department of Cardiovascular Genetics,Institute of Cardiovascular Science, University College London, Rayne Building, University Street, London WC1E 6JJ, UK
| |
Collapse
|
44
|
Sabater-Lleal M, Huang J, Chasman D, Naitza S, Dehghan A, Johnson AD, Teumer A, Reiner AP, Folkersen L, Basu S, Rudnicka AR, Trompet S, Mälarstig A, Baumert J, Bis JC, Guo X, Hottenga JJ, Shin SY, Lopez LM, Lahti J, Tanaka T, Yanek LR, Oudot-Mellakh T, Wilson JF, Navarro P, Huffman JE, Zemunik T, Redline S, Mehra R, Pulanic D, Rudan I, Wright AF, Kolcic I, Polasek O, Wild SH, Campbell H, Curb JD, Wallace R, Liu S, Eaton CB, Becker DM, Becker LC, Bandinelli S, Räikkönen K, Widen E, Palotie A, Fornage M, Green D, Gross M, Davies G, Harris SE, Liewald DC, Starr JM, Williams FM, Grant P, Spector TD, Strawbridge RJ, Silveira A, Sennblad B, Rivadeneira F, Uitterlinden AG, Franco OH, Hofman A, van Dongen J, Willemsen G, Boomsma DI, Yao J, Jenny NS, Haritunians T, McKnight B, Lumley T, Taylor KD, Rotter JI, Psaty BM, Peters A, Gieger C, Illig T, Grotevendt A, Homuth G, Völzke H, Kocher T, Goel A, Franzosi MG, Seedorf U, Clarke R, Steri M, Tarasov KV, Sanna S, Schlessinger D, Stott DJ, Sattar N, Buckley BM, Rumley A, Lowe GD, McArdle WL, Chen MH, Tofler GH, Song J, Boerwinkle E, Folsom AR, Rose LM, Franco-Cereceda A, Teichert M, Ikram MA, Mosley TH, Bevan S, Dichgans M, Rothwell PM, Sudlow CLM, Hopewell JC, Chambers JC, Saleheen D, Kooner JS, Danesh J, Nelson CP, Erdmann J, Reilly MP, Kathiresan S, Schunkert H, Morange PE, Ferrucci L, Eriksson JG, Jacobs D, Deary IJ, Soranzo N, Witteman JCM, de Geus EJC, Tracy RP, Hayward C, Koenig W, Cucca F, Jukema JW, Eriksson P, Seshadri S, Markus HS, Watkins H, Samani NJ, Wallaschofski H, Smith NL, Tregouet D, Ridker PM, Tang W, Strachan DP, Hamsten A, O’Donnell CJ. Multiethnic meta-analysis of genome-wide association studies in >100 000 subjects identifies 23 fibrinogen-associated Loci but no strong evidence of a causal association between circulating fibrinogen and cardiovascular disease. Circulation 2013; 128:1310-24. [PMID: 23969696 PMCID: PMC3842025 DOI: 10.1161/circulationaha.113.002251] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/12/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Estimates of the heritability of plasma fibrinogen concentration, an established predictor of cardiovascular disease, range from 34% to 50%. Genetic variants so far identified by genome-wide association studies explain only a small proportion (<2%) of its variation. METHODS AND RESULTS We conducted a meta-analysis of 28 genome-wide association studies including >90 000 subjects of European ancestry, the first genome-wide association meta-analysis of fibrinogen levels in 7 studies in blacks totaling 8289 samples, and a genome-wide association study in Hispanics totaling 1366 samples. Evaluation for association of single-nucleotide polymorphisms with clinical outcomes included a total of 40 695 cases and 85 582 controls for coronary artery disease, 4752 cases and 24 030 controls for stroke, and 3208 cases and 46 167 controls for venous thromboembolism. Overall, we identified 24 genome-wide significant (P<5×10(-8)) independent signals in 23 loci, including 15 novel associations, together accounting for 3.7% of plasma fibrinogen variation. Gene-set enrichment analysis highlighted key roles in fibrinogen regulation for the 3 structural fibrinogen genes and pathways related to inflammation, adipocytokines, and thyrotrophin-releasing hormone signaling. Whereas lead single-nucleotide polymorphisms in a few loci were significantly associated with coronary artery disease, the combined effect of all 24 fibrinogen-associated lead single-nucleotide polymorphisms was not significant for coronary artery disease, stroke, or venous thromboembolism. CONCLUSIONS We identify 23 robustly associated fibrinogen loci, 15 of which are new. Clinical outcome analysis of these loci does not support a causal relationship between circulating levels of fibrinogen and coronary artery disease, stroke, or venous thromboembolism.
Collapse
|
45
|
Shibata Y, Abe S, Inoue S, Igarashi A, Yamauchi K, Aida Y, Kishi H, Nunomiya K, Nakano H, Sato M, Sato K, Kimura T, Nemoto T, Watanabe T, Konta T, Ueno Y, Kato T, Kayama T, Kubota I. Relationship between plasma fibrinogen levels and pulmonary function in the japanese population: the Takahata study. Int J Med Sci 2013; 10:1530-6. [PMID: 24046528 PMCID: PMC3775111 DOI: 10.7150/ijms.7256] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/16/2013] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Plasma fibrinogen is considered a biomarker of respiratory disease, owing to the relationship between plasma fibrinogen and pulmonary function established in Western populations. However, such a relationship has not yet been confirmed in an Asian population. We assessed this relationship in the general Japanese population. METHODS Totally, 3,257 men and women aged ≥40 years who participated in a community-based annual health checkup in Takahata, Japan, from 2004 to 2006, underwent spirometry, and their plasma fibrinogen levels were determined. RESULTS We found an inverse relationship between spirometric measures (percent predicted forced vital capacity [%FVC] and forced expiratory volume in 1s [%FEV1], and FEV1/FVC) and plasma fibrinogen levels in men, but not in women. The plasma fibrinogen levels were significantly higher in subjects with restrictive, obstructive, and mixed ventilatory disorders than in those with normal spirometry results. Multiple linear regression analysis revealed that in men, plasma fibrinogen levels were predictive for %FVC and %FEV1 (independent of age, body mass index, and cigarette smoking) but not for FEV1/FVC. CONCLUSIONS Plasma fibrinogen was significantly associated with pulmonary function in Japanese men, and as such, plasma fibrinogen might be a potent biomarker for pulmonary dysfunction in men.
Collapse
Affiliation(s)
- Yoko Shibata
- 1. Department of Cardiology, Pulmonology, and Nephrology
| | - Shuichi Abe
- 1. Department of Cardiology, Pulmonology, and Nephrology
| | - Sumito Inoue
- 1. Department of Cardiology, Pulmonology, and Nephrology
| | - Akira Igarashi
- 1. Department of Cardiology, Pulmonology, and Nephrology
| | - Keiko Yamauchi
- 1. Department of Cardiology, Pulmonology, and Nephrology
| | - Yasuko Aida
- 1. Department of Cardiology, Pulmonology, and Nephrology
| | - Hiroyuki Kishi
- 1. Department of Cardiology, Pulmonology, and Nephrology
| | - Keiko Nunomiya
- 1. Department of Cardiology, Pulmonology, and Nephrology
| | - Hiroshi Nakano
- 1. Department of Cardiology, Pulmonology, and Nephrology
| | - Masamichi Sato
- 1. Department of Cardiology, Pulmonology, and Nephrology
| | - Kento Sato
- 1. Department of Cardiology, Pulmonology, and Nephrology
| | - Tomomi Kimura
- 1. Department of Cardiology, Pulmonology, and Nephrology
| | - Takako Nemoto
- 1. Department of Cardiology, Pulmonology, and Nephrology
| | - Tetsu Watanabe
- 1. Department of Cardiology, Pulmonology, and Nephrology
| | - Tsuneo Konta
- 1. Department of Cardiology, Pulmonology, and Nephrology
| | - Yoshiyuki Ueno
- 2. Global Center of Excellence Program Study Group, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Takeo Kato
- 2. Global Center of Excellence Program Study Group, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Takamasa Kayama
- 2. Global Center of Excellence Program Study Group, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Isao Kubota
- 1. Department of Cardiology, Pulmonology, and Nephrology
| |
Collapse
|
46
|
Gaunt TR, Zabaneh D, Shah S, Guyatt A, Ladroue C, Kumari M, Drenos F, Shah T, Talmud PJ, Casas JP, Lowe G, Rumley A, Lawlor DA, Kivimaki M, Whittaker J, Hingorani AD, Humphries SE, Day IN. Gene-centric association signals for haemostasis and thrombosis traits identified with the HumanCVD BeadChip. Thromb Haemost 2013; 110:995-1003. [PMID: 24178511 DOI: 10.1160/th13-02-0087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 08/05/2013] [Indexed: 01/08/2023]
Abstract
Coagulation phenotypes show strong intercorrelations, affect cardiovascular disease risk and are influenced by genetic variants. The objective of this study was to search for novel genetic variants influencing the following coagulation phenotypes: factor VII levels, fibrinogen levels, plasma viscosity and platelet count. We genotyped the British Women's Heart and Health Study (n=3,445) and the Whitehall II study (n=5,059) using the Illumina HumanCVD BeadArray to investigate genetic associations and pleiotropy. In addition to previously reported associations (SH2B3, F7/F10, PROCR, GCKR, FGA/FGB/FGG, IL5), we identified novel associations at GRK5 (rs10128498, p=1.30x10(-6)), GCKR (rs1260326, p=1.63x10(-6)), ZNF259-APOA5 (rs651821, p=7.17x10(-6)) with plasma viscosity; and at CSF1 (rs333948, p=8.88x10(-6)) with platelet count. A pleiotropic effect was identified in GCKR which associated with factor VII (p=2.16x10(-7)) and plasma viscosity (p=1.63x10(-6)), and, to a lesser extent, ZNF259-APOA5 which also associated with factor VII and fibrinogen (p<1.00x10-²) and plasma viscosity (p<1.00x10(-5)). Triglyceride associated variants were overrepresented in factor VII and plasma viscosity associations. Adjusting for triglyceride levels resulted in attenuation of associations at the GCKR and ZNF259-APOA5 loci. In addition to confirming previously reported associations, we identified four single nucleotide polymorphisms (SNPs) associated with plasma viscosity and platelet count and found evidence of pleiotropic effects with SNPs in GCKR and ZNF259-APOA5. These triglyceride-associated, pleiotropic SNPs suggest a possible causal role for triglycerides in coagulation.
Collapse
Affiliation(s)
- Tom R Gaunt
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Delilah Zabaneh
- University College London Genetics Institute, Department of Genetics, Environment and Evolution, Gower St, London WC1E 6BT, UK
| | - Sonia Shah
- University College London Genetics Institute, Department of Genetics, Environment and Evolution, Gower St, London WC1E 6BT, UK
| | - Anna Guyatt
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Christophe Ladroue
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Meena Kumari
- Genetic Epidemiology Group, Department of Epidemiology and Public Health, University College London, 1-19 Torrington Street, London WC1E 6BT, UK
| | - Fotios Drenos
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, 5 University St, London WC1E 6JF, UK
| | - Tina Shah
- Genetic Epidemiology Group, Department of Epidemiology and Public Health, University College London, 1-19 Torrington Street, London WC1E 6BT, UK
| | - Philippa J Talmud
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, 5 University St, London WC1E 6JF, UK
| | - Juan Pablo Casas
- Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.,Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Gordon Lowe
- Institute of Cardiovascular & Medical Sciences, Room 335, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Ann Rumley
- Institute of Cardiovascular & Medical Sciences, Room 335, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Debbie A Lawlor
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Mika Kivimaki
- Genetic Epidemiology Group, Department of Epidemiology and Public Health, University College London, 1-19 Torrington Street, London WC1E 6BT, UK
| | - John Whittaker
- Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.,Quantitative Sciences, GlaxoSmithKline, Stevenage, UK
| | - Aroon D Hingorani
- Genetic Epidemiology Group, Department of Epidemiology and Public Health, University College London, 1-19 Torrington Street, London WC1E 6BT, UK
| | - Steve E Humphries
- University College London Genetics Institute, Department of Genetics, Environment and Evolution, Gower St, London WC1E 6BT, UK.,Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, 5 University St, London WC1E 6JF, UK
| | - Ian N Day
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| |
Collapse
|
47
|
Rhee EP, Ho JE, Chen MH, Shen D, Cheng S, Larson MG, Ghorbani A, Shi X, Helenius IT, O'Donnell CJ, Souza AL, Deik A, Pierce KA, Bullock K, Walford GA, Vasan RS, Florez JC, Clish C, Yeh JRJ, Wang TJ, Gerszten RE. A genome-wide association study of the human metabolome in a community-based cohort. Cell Metab 2013; 18:130-43. [PMID: 23823483 PMCID: PMC3973158 DOI: 10.1016/j.cmet.2013.06.013] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/10/2013] [Accepted: 06/18/2013] [Indexed: 12/23/2022]
Abstract
Because metabolites are hypothesized to play key roles as markers and effectors of cardiometabolic diseases, recent studies have sought to annotate the genetic determinants of circulating metabolite levels. We report a genome-wide association study (GWAS) of 217 plasma metabolites, including >100 not measured in prior GWAS, in 2076 participants of the Framingham Heart Study (FHS). For the majority of analytes, we find that estimated heritability explains >20% of interindividual variation, and that variation attributable to heritable factors is greater than that attributable to clinical factors. Further, we identify 31 genetic loci associated with plasma metabolites, including 23 that have not previously been reported. Importantly, we include GWAS results for all surveyed metabolites and demonstrate how this information highlights a role for AGXT2 in cholesterol ester and triacylglycerol metabolism. Thus, our study outlines the relative contributions of inherited and clinical factors on the plasma metabolome and provides a resource for metabolism research.
Collapse
Affiliation(s)
- Eugene P Rhee
- Nephrology Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ferreira RC, Freitag DF, Cutler AJ, Howson JMM, Rainbow DB, Smyth DJ, Kaptoge S, Clarke P, Boreham C, Coulson RM, Pekalski ML, Chen WM, Onengut-Gumuscu S, Rich SS, Butterworth AS, Malarstig A, Danesh J, Todd JA. Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and influences risk of diverse inflammatory diseases. PLoS Genet 2013; 9:e1003444. [PMID: 23593036 PMCID: PMC3617094 DOI: 10.1371/journal.pgen.1003444] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 02/26/2013] [Indexed: 12/21/2022] Open
Abstract
Inflammation, which is directly regulated by interleukin-6 (IL-6) signaling, is implicated in the etiology of several chronic diseases. Although a common, non-synonymous variant in the IL-6 receptor gene (IL6R Asp358Ala; rs2228145 A>C) is associated with the risk of several common diseases, with the 358Ala allele conferring protection from coronary heart disease (CHD), rheumatoid arthritis (RA), atrial fibrillation (AF), abdominal aortic aneurysm (AAA), and increased susceptibility to asthma, the variant's effect on IL-6 signaling is not known. Here we provide evidence for the association of this non-synonymous variant with the risk of type 1 diabetes (T1D) in two independent populations and confirm that rs2228145 is the major determinant of the concentration of circulating soluble IL-6R (sIL-6R) levels (34.6% increase in sIL-6R per copy of the minor allele 358Ala; rs2228145 [C]). To further investigate the molecular mechanism of this variant, we analyzed expression of IL-6R in peripheral blood mononuclear cells (PBMCs) in 128 volunteers from the Cambridge BioResource. We demonstrate that, although 358Ala increases transcription of the soluble IL6R isoform (P = 8.3×10−22) and not the membrane-bound isoform, 358Ala reduces surface expression of IL-6R on CD4+ T cells and monocytes (up to 28% reduction per allele; P≤5.6×10−22). Importantly, reduced expression of membrane-bound IL-6R resulted in impaired IL-6 responsiveness, as measured by decreased phosphorylation of the transcription factors STAT3 and STAT1 following stimulation with IL-6 (P≤5.2×10−7). Our findings elucidate the regulation of IL-6 signaling by IL-6R, which is causally relevant to several complex diseases, identify mechanisms for new approaches to target the IL-6/IL-6R axis, and anticipate differences in treatment response to IL-6 therapies based on this common IL6R variant. Interleukin-6 (IL-6) is a complex cytokine, which plays a critical role in the regulation of inflammatory responses. Genetic variation in the IL-6 receptor gene is associated with the risk of several human diseases with an inflammatory component, including coronary heart disease, rheumatoid arthritis, and asthma. A common non-synonymous single nucleotide polymorphism in this gene (Asp358Ala) has been suggested to be the causal variant in this region by affecting the circulatory concentrations of soluble IL-6R (sIL-6R). In this study we extend the genetic association of this variant to type 1 diabetes and provide evidence that this variant exerts its functional mechanism by regulating the balance between sIL-6R (generated through cleavage of the surface receptor and by alternative splicing of a soluble IL6R isoform) and membrane-bound IL-6R. These data show for the first time that the minor allele of this non-synonymous variant (Ala358) directly controls the surface levels of IL-6R on individual immune cells and that these differences in protein levels translate into a functional impairment in IL-6R signaling. These findings may have implications for clinical trials targeting inflammatory mechanisms involving IL-6R signaling and may provide tools for identifying patients with specific benefit from therapeutic intervention in the IL-6R signaling pathway.
Collapse
Affiliation(s)
- Ricardo C. Ferreira
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Daniel F. Freitag
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Antony J. Cutler
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Joanna M. M. Howson
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Daniel B. Rainbow
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Deborah J. Smyth
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Kaptoge
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Pamela Clarke
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Charlotte Boreham
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Richard M. Coulson
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Marcin L. Pekalski
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Wei-Min Chen
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Adam S. Butterworth
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Anders Malarstig
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, United Kingdom
- Precision Medicine, Pfizer Global Research and Development, Cambridge, United Kingdom
| | - John Danesh
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - John A. Todd
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
49
|
Shah T, Zabaneh D, Gaunt T, Swerdlow DI, Shah S, Talmud PJ, Day IN, Whittaker J, Holmes MV, Sofat R, Humphries SE, Kivimaki M, Kumari M, Hingorani AD, Casas JP. Gene-centric analysis identifies variants associated with interleukin-6 levels and shared pathways with other inflammation markers. ACTA ACUST UNITED AC 2013; 6:163-70. [PMID: 23505291 DOI: 10.1161/circgenetics.112.964254] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND- Inflammatory cytokine interleukin-6 (IL-6), a possible risk factor for coronary heart disease, has an estimated heritability of >60%, but to date few genetic variants influencing IL-6 levels are known. METHODS AND RESULTS- We used the ITMAT-Broad-Care (IBC) HumanCVD disease BeadChip in the Whitehall II study (N=4911) and British Women's Heart and Health Study (N=3445) to identify single-nucleotide polymorphisms associated with circulating IL-6 levels. Twenty-two single-nucleotide polymorphisms from 7 loci (IL6R/TDRD10, HLA-DRB1, BUD13, SEZ6L, IL1RN, TRIB3, and ABO) were associated with IL-6 (P<10(-5)), although none were associated with the IL6 gene itself. With the exception of TRIB3, all loci have been previously reported in genome-wide association studies for autoimmune and cardiovascular diseases. Fourteen single-nucleotide polymorphisms in the IL6R region in high-linkage disequilibrium (r(2)>0.9) with a nonsynonymous variant, rs2228145, were also associated with IL-6 and C-reactive protein concentration (P<10(-5)). An IL-6-specific weighted allele score explained 2% of the variance of log IL-6 levels (P=2.4410(-22)) in Whitehall II and 1% (P=1.910(-8)) in British Women's Heart and Health Studies. CONCLUSIONS- Multiple common genetic variants of modest effect influence IL-6 concentration. Several loci contain single-nucleotide polymorphisms, exhibiting overlapping associations with autoimmune and cardiovascular disorders and other circulating biomarkers. Genetic variants associated with IL-6 provide important tools for probing the causal relevance of IL-6 signaling in a range of cardiometabolic diseases.
Collapse
Affiliation(s)
- Tina Shah
- Genetic Epidemiology Group, Research Department of Epidemiology and Public Health, UCL Institute of Epidemiology & Health Care, London WC1E 6BT, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lourdusamy A, Newhouse S, Lunnon K, Proitsi P, Powell J, Hodges A, Nelson SK, Stewart A, Williams S, Kloszewska I, Mecocci P, Soininen H, Tsolaki M, Vellas B, Lovestone S, Dobson R. Identification of cis-regulatory variation influencing protein abundance levels in human plasma. Hum Mol Genet 2012; 21:3719-26. [PMID: 22595970 PMCID: PMC6446535 DOI: 10.1093/hmg/dds186] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/01/2012] [Accepted: 05/11/2012] [Indexed: 12/30/2022] Open
Abstract
Proteins are central to almost all cellular processes, and dysregulation of expression and function is associated with a range of disorders. A number of studies in human have recently shown that genetic factors significantly contribute gene expression variation. In contrast, very little is known about the genetic basis of variation in protein abundance in man. Here, we assayed the abundance levels of proteins in plasma from 96 elderly Europeans using a new aptamer-based proteomic technology and performed genome-wide local (cis-) regulatory association analysis to identify protein quantitative trait loci (pQTL). We detected robust cis-associations for 60 proteins at a false discovery rate of 5%. The most highly significant single nucleotide polymorphism detected was rs7021589 (false discovery rate, 2.5 × 10(-12)), mapped within the gene coding sequence of Tenascin C (TNC). Importantly, we identified evidence of cis-regulatory variation for 20 previously disease-associated genes encoding protein, including variants with strong evidence of disease association show significant association with protein abundance levels. These results demonstrate that common genetic variants contribute to the differences in protein abundance levels in human plasma. Identification of pQTLs will significantly enhance our ability to discover and comprehend the biological and functional consequences of loci identified from genome-wide association study of complex traits. This is the first large-scale genetic association study of proteins in plasma measured using a novel, highly multiplexed slow off-rate modified aptamer (SOMAmer) proteomic platform.
Collapse
|