1
|
Watts EL, Moore SC, Abar L, Hong HG, Saint-Maurice PF, O’Connell C, Matthews CE, Loftfield E. Physical activity, metabolites, and breast cancer associations. J Natl Cancer Inst 2025; 117:355-365. [PMID: 39383198 PMCID: PMC11807437 DOI: 10.1093/jnci/djae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/20/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND The effects of usual physical activity on physiology and disease prevention are not fully understood. We examined the associations between physical activity, metabolites, and breast cancer risk. METHODS Physical activity levels were assessed using doubly labeled water, accelerometers, and 24-hour recalls in the Interactive Diet and Activity Tracking in AARP (IDATA) Study (N = 707 participants, ages 50-74 years, 51% women), with 1 to 6 assessments over 12 months and 2 blood sample collections. Partial Spearman correlations were used to estimate associations between physical activity and 843 serum metabolites, corrected for multiple testing. Conditional logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) of metabolites with postmenopausal breast cancer in a nested case-control study (621 cases, 621 controls); all statistical tests were 2-sided. RESULTS Physical activity was associated with 164 metabolites spanning numerous pathways, including amino acid and fatty acid metabolism. Twelve of these metabolites were also associated with breast cancer risk, 10 of which supported a protective role of physical activity. Notably, higher physical activity was associated with lower 16alpha-hydroxy dehydroepiandrosterone 3-sulfate (sulfated steroid) and adipoylcarnitine (fatty acid), both of which were associated with increased breast cancer risk (OR per 1 standard deviation [SD] = 1.34, 95% CI = 1.16 to 1.55 and 1.26, 1.11 to 1.42, respectively). Higher physical activity energy expenditure was also associated with lower sphingomyelin (d18:1/20:1, d18:2/20:0), which was associated with a reduced breast cancer risk (OR = 0.82, 95% CI = 0.73 to 0.93). CONCLUSION Physical activity is associated with a broad range of metabolites, many of which are consistent with a protective effect against breast cancer. Our findings highlight potential metabolic pathways for cancer prevention.
Collapse
Affiliation(s)
- Eleanor L Watts
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Leila Abar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Hyokyoung G Hong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Pedro F Saint-Maurice
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Breast Cancer Unit, Champalimaud Foundation, Lisbon, Portugal
| | - Caitlin O’Connell
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Charles E Matthews
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Erikka Loftfield
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
2
|
Santulli G, Hollmann MW, Pabelick CM, Van Lieshout JJ. Editorial: Insights in clinical and translational physiology: 2023. Front Physiol 2025; 16:1508102. [PMID: 39906908 PMCID: PMC11791644 DOI: 10.3389/fphys.2025.1508102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Affiliation(s)
- Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, United States
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY, United States
- Department of Advanced Biomedical Sciences and International Translational Research and Medical Education (ITME) Consortium, Academic Research Unit, “Federico II” University, Naples, Italy
| | - Markus W. Hollmann
- Department of Anesthesiology, Academic Medical Centers, Division Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine (Division of Pediatric Anesthesia), Mayo Clinic, Rochester, MN, United States
| | - Johannes J. Van Lieshout
- Department of Internal Medicine, Laboratory for Clinical Cardiovascular Physiology, Academic Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Division of Physiology, Pharmacology and Neuroscience, Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Queen’s Medical Centre, School of Life Sciences, The Medical School, University of Nottingham Medical School, Nottingham, United Kingdom
| |
Collapse
|
3
|
Jin T, Wu Y, Zhang S, Peng Y, Lin Y, Zhou S, Liu H, Yu P. The association between metabolomic profiles of lifestyle and the latent phase of incident chronic kidney disease in the UK Population. Sci Rep 2025; 15:2299. [PMID: 39824917 PMCID: PMC11742403 DOI: 10.1038/s41598-025-86030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
Chronic kidney disease (CKD) is a global health challenge associated with lifestyle factors such as diet, alcohol, BMI, smoking, sleep, and physical activity. Metabolomics, especially nuclear magnetic resonance(NMR), offers insights into metabolic profiles' role in diseases, but more research is needed on its connection to CKD and lifestyle factors. Therefore, we utilized the latest metabolomics data from the UK Biobank to explore the relationship between plasma metabolites and lifestyle factors, as well as to investigate the associations between various factors, including lifestyle-related metabolites, and the latent phase of CKD onset. The study enrolled approximately 500,000 participants from the UK Biobank (UKB) between 2006 and 2010, excluding 447,163 individuals with missing data for any metabolite in the NMR metabolomics, any biomarker in the blood chemistry (including eGFR, albumin, or cystatin C), any factor required for constructing the lifestyle score, or a baseline diagnosis of CKD. Lifestyle scores (LS) were calculated based on several factors, including diet, alcohol consumption, smoking, BMI, physical activity, and sleep. Each healthy lifestyle component contributed to the overall score, which ranged from 0 to 6. A total of 249 biological metabolites covering multiple categories were determined by the NMR Metabolomics Platform. Random forest algorithms and LASSO regression were employed to identify lifestyle-related metabolites. Subsequently, accelerated failure time models(AFT) were used to assess the relationship between multiple factors, including traditional CKD-related biomarkers (such as eGFR, cystatin C, and albumin) and lifestyle-related metabolites, with the latent phase of incident CKD. Finally, we performed Kaplan-Meier survival curve analysis on the significant variables identified in the AFT model. Over a mean follow-up period of 13.86 years, 2,279 incident chronic kidney disease (CKD) cases were diagnosed. Among the 249 metabolites analyzed, 15 were identified as lifestyle-related, primarily lipid metabolites. Notably, among these metabolites, each 1 mmol/L increase in triglycerides in large LDL particles accelerated the onset of CKD by 24%. Diabetes, hypertension, and smoking were associated with a 56.6%, 31.5% and 22.3% faster onset of CKD, respectively. Additionally, each unit increase in age, BMI, TDI, and cystatin C was linked to a 3.2%, 1.4%, 1.6% and 32.3% faster onset of CKD. In contrast, higher levels of albumin and eGFR slowed the onset of CKD, reducing the speed of progression by 3.0% and 3.9% per unit increase, respectively. Nuclear magnetic resonance metabolomics offers new insights into renal health, though further validation studies are needed in the future.
Collapse
Affiliation(s)
- Tingting Jin
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China
| | - Yunqi Wu
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China
| | - Siyi Zhang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China
| | - Ya Peng
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China
| | - Yao Lin
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China
| | - Saijun Zhou
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China
| | - Hongyan Liu
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China.
| | - Pei Yu
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China.
- Department of Nephrology & Blood Purification Center, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
4
|
Tu D, Xu Q, Sun J, Zuo X, Ma C. Joint association of anti-inflammatory diet and vigorous leisure-time physical activity on all-cause and cardiovascular disease mortality in U.S. adults: findings from NHANES, 2007-2014. Eur J Nutr 2024; 64:45. [PMID: 39666064 DOI: 10.1007/s00394-024-03558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/22/2024] [Indexed: 12/13/2024]
Abstract
PURPOSE Balanced dietary patterns, sufficient physical activity, and other healthy lifestyle behaviors are increasingly recognized as a complimentary strategy for the prevention of cardiovascular disease (CVD). We aim to explore the joint association of anti-inflammatory diet and vigorous leisure-time physical activity (LTPA) on all-cause and CVD mortality. METHODS This retrospective cohort study included 16,068 adults from the National Health and Nutrition Examination Survey (2007-2014). Participants were categorized into four lifestyle patterns based on the inflammatory properties of the diet and the degree of vigorous LTPA: pro-inflammatory diet and insufficient vigorous LTPA (pattern 1), anti-inflammatory diet and insufficient vigorous LTPA (pattern 2), pro-inflammatory diet and sufficient vigorous LTPA (pattern 3), anti-inflammatory diet and sufficient vigorous LTPA (pattern 4). Multivariable Cox proportional hazards models were used to estimate the hazards ratio (HR) and 95% confidence intervals (CI). RESULTS Compared to pattern 1, pattern 4 showed an obvious lower risk of all-cause (HR, 0.51; 95% CI 0.32-0.81) and CVD mortality (HR, 0.31; 95% CI 0.12-0.80). In addition, pattern 2 also had a significantly decreased all-cause (0.80; 0.69-0.92) and CVD mortality risk (0.71; 0.53-0.95). However, t there was no significant reduction in all-cause mortality (0.75; 0.54-1.06) and CVD mortality (0.60; 0.32-1.13) among pattern 3. Consistent results were obtained in subgroup and sensitivity analyses. CONCLUSION Adhering to the anti-inflammatory diet and sufficient vigorous LTPA was associated with lowest all-cause and CVD mortality. Anti-inflammatory diet can counteract the hazards caused by insufficient vigorous LTPA, while sufficient vigorous LTPA fails to offset the detrimental effect of pro-inflammatory diet.
Collapse
Affiliation(s)
- Dingyuan Tu
- Department of Cardiology, The 961st Hospital of PLA Joint Logistic Support Force, Qiqihar, 161000, Heilongjiang, China
| | - Qiang Xu
- Department of Cardiology, Navy 905 Hospital, Naval Medical University, Shanghai, 200052, China
| | - Jie Sun
- Hospital-Acquired Infection Control Department, Yantai Ludong Hospital, Yantai, 265500, Shandong, China
| | - Xiaoli Zuo
- Department of Cardiology, The 961st Hospital of PLA Joint Logistic Support Force, Qiqihar, 161000, Heilongjiang, China.
| | - Chaoqun Ma
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Shenyang, 110000, Liaoning, China.
| |
Collapse
|
5
|
Nakhod VI, Butkova TV, Malsagova KA, Petrovskiy DV, Izotov AA, Nikolsky KS, Kaysheva AL. Sample Preparation for Metabolomic Analysis in Exercise Physiology. Biomolecules 2024; 14:1561. [PMID: 39766268 PMCID: PMC11673972 DOI: 10.3390/biom14121561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolomics investigates final and intermediate metabolic products in cells. Assessment of the human metabolome relies principally on the analysis of blood, urine, saliva, sweat, and feces. Tissue biopsy is employed less frequently. Understanding the metabolite composition of biosamples from athletes can significantly improve our knowledge of molecular processes associated with the efficiency of training and recovery. Such knowledge may also lead to new management opportunities. Successful execution of metabolomic studies requires simultaneous qualitative and quantitative analyses of numerous small biomolecules in samples under test. Unlike genomics and proteomics, which do not allow for direct assessment of enzymatic activity, metabolomics focuses on biochemical phenotypes, providing unique information about health and physiological features. Crucial factors in ensuring the efficacy of metabolomic analysis are the meticulous selection and pre-treatment of samples.
Collapse
Affiliation(s)
| | | | - Kristina A. Malsagova
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (V.I.N.); (T.V.B.); (D.V.P.); (A.A.I.); (K.S.N.); (A.L.K.)
| | | | | | | | | |
Collapse
|
6
|
Karvinen S, Korhonen TMK, Kiviö R, Lensu S, Gajera B, Britton SL, Koch LG, Nieminen AI, Kainulainen H. Branched-chain amino acid supplementation and voluntary running have distinct effects on the serum metabolome of rats with high or low intrinsic aerobic capacity. Front Nutr 2024; 11:1450386. [PMID: 39628463 PMCID: PMC11611553 DOI: 10.3389/fnut.2024.1450386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/10/2024] [Indexed: 12/06/2024] Open
Abstract
Introduction A growing body of literature associates branched-chain amino acid (BCAA) catabolism to increased fatty acid oxidation and better metabolic health. Hence, BCAA-rich diets may improve body composition and muscle protein synthesis. However, the role of individual characteristics such as a low aerobic fitness, a well-established risk factor for cardio-metabolic diseases, has not been studied. Methods This study examined 64 female rats from the high-capacity runner (HCR) and low-capacity runner (LCR) rat model. Rats from each line (HCR or LCR) were divided into four groups; differing from diet (CTRL or BCAA) and from the opportunity to voluntarily run on a running wheel (NONRUNNER or RUNNER). Groups were matched for body mass and maximal running capacity within each line. We measured maximal running capacity and metabolism before and after the intervention of diet and voluntary running activity. After the end of the experiment, serum samples were collected for metabolome analysis. Results We are the first to show that BCAA supplementation has a more pronounced impact on LCRs compared to HCRs. Specifically, in LCR rats, BCAA supplementation led to reduced daily voluntary running distance and an enrichment of serine metabolism in the serum metabolome. While voluntary running increased food intake and energy expenditure, its effects on the serum metabolome were minimal in HCRs. Conclusion The present research highlights the benefit achieved by combining BCAA supplementation with running activity, especially in the LCR line. Importantly, our results underscore the interconnected role of BCAAs and fatty acid metabolism in promoting overall metabolic health.
Collapse
Affiliation(s)
- Sira Karvinen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Tia-Marje K. Korhonen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ronja Kiviö
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Sanna Lensu
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Bharat Gajera
- Metabolomics Unit, Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Steven L. Britton
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Anaesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Lauren G. Koch
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States
| | - Anni I. Nieminen
- Metabolomics Unit, Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Heikki Kainulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
7
|
Ylinen VP, Sjöros T, Laine S, Garthwaite T, Norha J, Vähä-Ypyä H, Löyttyniemi E, Houttu N, Laitinen K, Kalliokoski KK, Sievänen H, Vasankari T, Knuuti J, Heinonen IH. Sedentary behavior reduction and blood lipids in adults with metabolic syndrome: a 6-month randomized controlled trial. Sci Rep 2024; 14:24241. [PMID: 39414998 PMCID: PMC11484901 DOI: 10.1038/s41598-024-75579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
The aim of this study was to investigate whether a reduction in accelerometer-measured sedentary behavior (SB) improves blood lipids in inactive adults with metabolic syndrome (MetS). Sixty-four participants were randomly assigned into intervention (INT, n = 33) and control (CONT, n = 31) groups. The INT group was instructed to reduce SB by 1 h/day without increasing formal exercise, whereas the CONT group was advised to maintain usual SB habits. SB and physical activity (PA) were measured with accelerometers throughout the intervention. Plasma lipid concentrations and dietary intake by food diaries were assessed at baseline and at the end of the intervention. High-density lipoprotein percentage of total cholesterol decreased during the intervention similarly in both groups (p = 0.047). Other blood lipids did not change from baseline to six months in either group. The CONT group had a statistically significant reduction in the intake of saturated fatty acids compared to the INT group (p = 0.03). Intervention resulting in a 40-minute reduction in daily SB and 20-minute increase in habitual MVPA seems to not be effective in improving blood lipids in adults with MetS. Reducing SB together with a higher volume and/or intensity of PA and proper nutrition may be needed to reduce the risk of cardiometabolic diseases.Trial registration. This study is registered at ClinicalTrials.gov (NCT03101228, 05/04/2017). https://www.clinicaltrials.gov/ct2/show/NCT03101228?term=NCT03101228&draw=2&rank=1 .
Collapse
Affiliation(s)
- Venla P Ylinen
- Turku PET Centre, University of Turku, Turku University Hospital, c/o TYKS, P. o. Box 52, Turku, FI 20521, Finland.
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland.
| | - Tanja Sjöros
- Turku PET Centre, University of Turku, Turku University Hospital, c/o TYKS, P. o. Box 52, Turku, FI 20521, Finland
| | - Saara Laine
- Turku PET Centre, University of Turku, Turku University Hospital, c/o TYKS, P. o. Box 52, Turku, FI 20521, Finland
| | - Taru Garthwaite
- Turku PET Centre, University of Turku, Turku University Hospital, c/o TYKS, P. o. Box 52, Turku, FI 20521, Finland
| | - Jooa Norha
- Turku PET Centre, University of Turku, Turku University Hospital, c/o TYKS, P. o. Box 52, Turku, FI 20521, Finland
| | - Henri Vähä-Ypyä
- The UKK Institute for Health Promotion Research, Tampere, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, University of Turku, Turku University Hospital, Turku, Finland
| | - Noora Houttu
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kirsi Laitinen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kari K Kalliokoski
- Turku PET Centre, University of Turku, Turku University Hospital, c/o TYKS, P. o. Box 52, Turku, FI 20521, Finland
| | - Harri Sievänen
- The UKK Institute for Health Promotion Research, Tampere, Finland
| | - Tommi Vasankari
- The UKK Institute for Health Promotion Research, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, Turku University Hospital, c/o TYKS, P. o. Box 52, Turku, FI 20521, Finland
| | - Ilkka Ha Heinonen
- Turku PET Centre, University of Turku, Turku University Hospital, c/o TYKS, P. o. Box 52, Turku, FI 20521, Finland
| |
Collapse
|
8
|
Li Y, Peters BA, Yu B, Perreira KM, Daviglus M, Chan Q, Knight R, Boerwinkle E, Isasi CR, Burk R, Kaplan R, Wang T, Qi Q. Blood metabolomic shift links diet and gut microbiota to multiple health outcomes among Hispanic/Latino immigrants in the U.S. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.19.24310722. [PMID: 39072018 PMCID: PMC11275661 DOI: 10.1101/2024.07.19.24310722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Immigrants from less industrialized countries who are living in the U.S. often bear an elevated risk of multiple disease due to the adoption of a U.S. lifestyle. Blood metabolome holds valuable information on environmental exposure and the pathogenesis of chronic diseases, offering insights into the link between environmental factors and disease burden. Analyzing 634 serum metabolites from 7,114 Hispanics (1,141 U.S.-born, 5,973 foreign-born) in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), we identified profound blood metabolic shift during acculturation. Machine learning highlighted the prominent role of non-genetic factors, especially food and gut microbiota, in these changes. Immigration-related metabolites correlated with plant-based foods and beneficial gut bacteria for foreign-born Hispanics, and with meat-based or processed food and unfavorable gut bacteria for U.S.-born Hispanics. Cardiometabolic traits, liver, and kidney function exhibited a link with immigration-related metabolic changes, which were also linked to increased risk of diabetes, severe obesity, chronic kidney disease, and asthma. Graphical abstract Highlights A substantial proportion of identified blood metabolites differ between U.S.-born and foreign-born Hispanics/Latinos in the U.S.Food and gut microbiota are the major modifiable contributors to blood metabolomic difference between U.S.-born and foreign-born Hispanics/Latinos.U.S. nativity related metabolites collectively correlate with a spectrum of clinical traits and chronic diseases.
Collapse
|
9
|
Nummela AJ, Scheinin H, Perola M, Joensuu A, Laitio R, Arola O, Grönlund J, Roine RO, Bäcklund M, Vahlberg TJ, Laitio T. A metabolic profile of xenon and metabolite associations with 6-month mortality after out-of-hospital cardiac arrest: A post-hoc study of the randomised Xe-Hypotheca trial. PLoS One 2024; 19:e0304966. [PMID: 38833442 PMCID: PMC11149864 DOI: 10.1371/journal.pone.0304966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/18/2024] [Indexed: 06/06/2024] Open
Abstract
PURPOSE Out-of-hospital cardiac arrest (OHCA) carries a relatively poor prognosis and requires multimodal prognostication to guide clinical decisions. Identification of previously unrecognized metabolic routes associated with patient outcome may contribute to future biomarker discovery. In OHCA, inhaled xenon elicits neuro- and cardioprotection. However, the metabolic effects remain unknown. MATERIALS AND METHODS In this post-hoc study of the randomised, 2-group, single-blind, phase 2 Xe-Hypotheca trial, 110 OHCA survivors were randomised 1:1 to receive targeted temperature management (TTM) at 33°C with or without inhaled xenon during 24 h. Blood samples for nuclear magnetic resonance spectroscopy metabolic profiling were drawn upon admission, at 24 and 72 h. RESULTS At 24 h, increased lactate, adjusted hazard-ratio 2.25, 95% CI [1.53; 3.30], p<0.001, and decreased branched-chain amino acids (BCAA) leucine 0.64 [0.5; 0.82], p = 0.007, and valine 0.37 [0.22; 0.63], p = 0.003, associated with 6-month mortality. At 72 h, increased lactate 2.77 [1.76; 4.36], p<0.001, and alanine 2.43 [1.56; 3.78], p = 0.001, and decreased small HDL cholesterol ester content (S-HDL-CE) 0.36 [0.19; 0.68], p = 0.021, associated with mortality. No difference was observed between xenon and control groups. CONCLUSIONS In OHCA patients receiving TTM with or without xenon, high lactate and alanine and decreased BCAAs and S-HDL-CE associated with increased mortality. It remains to be established whether current observations on BCAAs, and possibly alanine and lactate, could reflect neural damage via their roles in the metabolism of the neurotransmitter glutamate. Xenon did not significantly alter the measured metabolic profile, a potentially beneficial attribute in the context of compromised ICU patients. TRIAL REGISTRATION Trial Registry number: ClinicalTrials.gov Identifier: NCT00879892.
Collapse
Affiliation(s)
- Aleksi J. Nummela
- Department of Internal Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Harry Scheinin
- Department of Perioperative Services, Intensive Care and Pain Management, Turku University Hospital, University of Turku, Turku, Finland
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Markus Perola
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Faculty of Medicine, Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Anni Joensuu
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Faculty of Medicine, Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Ruut Laitio
- Department of Perioperative Services, Intensive Care and Pain Management, Turku University Hospital, University of Turku, Turku, Finland
| | - Olli Arola
- Department of Perioperative Services, Intensive Care and Pain Management, Turku University Hospital, University of Turku, Turku, Finland
| | - Juha Grönlund
- Department of Perioperative Services, Intensive Care and Pain Management, Turku University Hospital, University of Turku, Turku, Finland
| | - Risto O. Roine
- Division of Clinical Neurosciences, University of Turku, Turku University Hospital, Turku, Finland
| | - Minna Bäcklund
- Department of Anesthesiology, Intensive Care and Pain Medicine, Division of Intensive Care Medicine, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Tero J. Vahlberg
- Department of Biostatistics, University of Turku and Turku University Hospital, Turku, Finland
| | - Timo Laitio
- Department of Perioperative Services, Intensive Care and Pain Management, Turku University Hospital, University of Turku, Turku, Finland
| | | |
Collapse
|
10
|
Wei Y, Hägg S, Mak JKL, Tuomi T, Zhan Y, Carlsson S. Metabolic profiling of smoking, associations with type 2 diabetes and interaction with genetic susceptibility. Eur J Epidemiol 2024; 39:667-678. [PMID: 38555549 PMCID: PMC11249521 DOI: 10.1007/s10654-024-01117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Smokers are at increased risk of type 2 diabetes (T2D), but the underlying mechanisms are unclear. We investigated if the smoking-T2D association is mediated by alterations in the metabolome and assessed potential interaction with genetic susceptibility to diabetes or insulin resistance. METHODS In UK Biobank (n = 93,722), cross-sectional analyses identified 208 metabolites associated with smoking, of which 131 were confirmed in Mendelian Randomization analyses, including glycoprotein acetyls, fatty acids, and lipids. Elastic net regression was applied to create a smoking-related metabolic signature. We estimated hazard ratios (HR) of incident T2D in relation to baseline smoking/metabolic signature and calculated the proportion of the smoking-T2D association mediated by the signature. Additive interaction between the signature and genetic risk scores for T2D (GRS-T2D) and insulin resistance (GRS-IR) on incidence of T2D was assessed as relative excess risk due to interaction (RERI). FINDINGS The HR of T2D was 1·73 (95% confidence interval (CI) 1·54 - 1·94) for current versus never smoking, and 38·3% of the excess risk was mediated by the metabolic signature. The metabolic signature and its mediation role were replicated in TwinGene. The metabolic signature was associated with T2D (HR: 1·61, CI 1·46 - 1·77 for values above vs. below median), with evidence of interaction with GRS-T2D (RERI: 0·81, CI: 0·23 - 1·38) and GRS-IR (RERI 0·47, CI: 0·02 - 0·92). INTERPRETATION The increased risk of T2D in smokers may be mediated through effects on the metabolome, and the influence of such metabolic alterations on diabetes risk may be amplified in individuals with genetic susceptibility to T2D or insulin resistance.
Collapse
Affiliation(s)
- Yuxia Wei
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Stockholm, 17177, Sweden.
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan K L Mak
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Tiinamaija Tuomi
- Department of Clinical Sciences in Malmö, Clinical Research Centre, Lund University, Malmö, Sweden
- Institute for Molecular Medicine Finland, Helsinki University, Helsinki, Finland
- Department of Endocrinology, Abdominal Center, Research Program for Diabetes and Obesity, Folkhälsan Research Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Yiqiang Zhan
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Stockholm, 17177, Sweden
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Sofia Carlsson
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Stockholm, 17177, Sweden
| |
Collapse
|
11
|
Huang T, Zhu Y, Shutta KH, Balasubramanian R, Zeleznik OA, Rexrode KM, Clish CB, Sun Q, Hu FB, Kubzansky LD, Hankinson SE. A Plasma Metabolite Score Related to Psychological Distress and Diabetes Risk: A Nested Case-control Study in US Women. J Clin Endocrinol Metab 2024; 109:e1434-e1441. [PMID: 38092374 PMCID: PMC11549765 DOI: 10.1210/clinem/dgad731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Indexed: 05/18/2024]
Abstract
CONTEXT Psychological distress has been linked to diabetes risk. Few population-based, epidemiologic studies have investigated the potential molecular mechanisms (eg, metabolic dysregulation) underlying this association. OBJECTIVE To evaluate the association between a metabolomic signature for psychological distress and diabetes risk. METHODS We conducted a nested case-control study of plasma metabolomics and diabetes risk in the Nurses' Health Study, including 728 women (mean age: 55.2 years) with incident diabetes and 728 matched controls. Blood samples were collected between 1989 and 1990 and incident diabetes was diagnosed between 1992 and 2008. Based on our prior work, we calculated a weighted plasma metabolite-based distress score (MDS) comprised of 19 metabolites. We used conditional logistic regression accounting for matching factors and other diabetes risk factors to estimate odds ratios (OR) and 95% confidence intervals (CI) for diabetes risk according to MDS. RESULTS After adjusting for sociodemographic factors, family history of diabetes, and health behaviors, the OR (95% CI) for diabetes risk across quintiles of the MDS was 1.00 (reference) for Q1, 1.16 (0.77, 1.73) for Q2, 1.30 (0.88, 1.91) for Q3, 1.99 (1.36, 2.92) for Q4, and 2.47 (1.66, 3.67) for Q5. Each SD increase in MDS was associated with 36% higher diabetes risk (95% CI: 1.21, 1.54; P-trend <.0001). This association was moderately attenuated after additional adjustment for body mass index (comparable OR: 1.17; 95% CI: 1.02, 1.35; P-trend = .02). The MDS explained 17.6% of the association between self-reported psychological distress (defined as presence of depression or anxiety symptoms) and diabetes risk (P = .04). CONCLUSION MDS was significantly associated with diabetes risk in women. These results suggest that differences in multiple lipid and amino acid metabolites may underlie the observed association between psychological distress and diabetes risk.
Collapse
Affiliation(s)
- Tianyi Huang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Yiwen Zhu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Katherine H Shutta
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Raji Balasubramanian
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Oana A Zeleznik
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kathryn M Rexrode
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Boston, MA 02142, USA
| | - Qi Sun
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Frank B Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Laura D Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Susan E Hankinson
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
12
|
Skytte HN, Roland MCP, Christensen JJ, Holven KB, Lekva T, Gunnes N, Michelsen TM. Maternal metabolic profiling across body mass index groups: An exploratory longitudinal study. Acta Obstet Gynecol Scand 2024; 103:540-550. [PMID: 38083835 PMCID: PMC10867396 DOI: 10.1111/aogs.14750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 02/16/2024]
Abstract
INTRODUCTION Increased BMI has been identified as a risk factor for most pregnancy complications, but the underlying metabolic factors mediating the detrimental effects of BMI are largely unknown. We aimed to compare metabolic profiles in overweight/obese women (body mass index [BMI] ≥ 25 kg/m2 ) and normal weight/underweight women (BMI < 25 kg/m2 ) across gestation. We also explored how gestational weight gain (GWG) affected maternal metabolic profiles. MATERIAL AND METHODS Exploratory nested case-control study based on a prospective longitudinal cohort of women who were healthy prior to pregnancy and gave birth at Oslo University Hospital from 2002 to 2008. The sample consisted of 48 women who were overweight/obese and 59 normal-weight/underweight women. Plasma samples from four time points in pregnancy (weeks 14-16, 22-24, 30-32 and 36-38) were analyzed by nuclear magnetic resonance spectroscopy and 91 metabolites were measured. Linear regression models were fitted for each of the metabolites at each time point. RESULTS Overweight or obese women had higher levels of lipids in very-low-density lipoprotein (VLDL), total triglycerides, triglycerides in VLDL, total fatty acids, monounsaturated fatty acids, saturated fatty acids, leucine, valine, and total branched-chain amino acids in pregnancy weeks 14-16 compared to underweight and normal-weight women. Docosahexaenoic acid and degree of unsaturation were significantly lower in overweight/obese women in pregnancy weeks 36-38. In addition, overweight or obese women had higher particle concentration of XXL-VLDL and glycoprotein acetyls (GlycA) at weeks 14-16 and 30-32. GWG did not seem to affect the metabolic profile, regardless of BMI group when BMI was treated as a dichotomous variable, ≥25 kg/m2 (yes/no). CONCLUSIONS Overweight or obese women had smaller pregnancy-related metabolic alterations than normal-weight/underweight women. There was a trend toward higher triglyceride and VLDL particle concentration in overweight/obese women. As this was a hypothesis-generating study, the similarities with late-onset pre-eclampsia warrant further investigation. The unfavorable development of fatty acid composition in overweight/obese women, with possible implication for the offspring, should also be studied further in the future.
Collapse
Affiliation(s)
- Hege Nyhus Skytte
- Norwegian Research Center for Women's HealthOslo University HospitalOsloNorway
- Faculty of MedicineUniversity of OsloOsloNorway
| | | | | | - Kirsten Bjørklund Holven
- Department of NutritionUniversity of OsloOsloNorway
- Norwegian National Advisory Unit on Familial HypercholesterolemiaOslo University HospitalOsloNorway
| | - Tove Lekva
- Research Institute of Internal MedicineOslo University HospitalOsloNorway
| | - Nina Gunnes
- Norwegian Research Center for Women's HealthOslo University HospitalOsloNorway
| | - Trond Melbye Michelsen
- Faculty of MedicineUniversity of OsloOsloNorway
- Division of Obstetrics and GynecologyOslo University HospitalOsloNorway
| |
Collapse
|
13
|
Qi S, Li X, Yu J, Yin L. Research advances in the application of metabolomics in exercise science. Front Physiol 2024; 14:1332104. [PMID: 38288351 PMCID: PMC10822880 DOI: 10.3389/fphys.2023.1332104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Exercise training can lead to changes in the metabolic composition of an athlete's blood, the magnitude of which depends largely on the intensity and duration of exercise. A variety of behavioral, biochemical, hormonal, and immunological biomarkers are commonly used to assess an athlete's physical condition during exercise training. However, traditional invasive muscle biopsy testing methods are unable to comprehensively detect physiological differences and metabolic changes in the body. Metabolomics technology is a high-throughput, highly sensitive technique that provides a comprehensive assessment of changes in small molecule metabolites (molecular weight <1,500 Da) in the body. By measuring the overall metabolic characteristics of biological samples, we can study the changes of endogenous metabolites in an organism or cell at a certain moment in time, and investigate the interconnection and dynamic patterns between metabolites and physiological changes, thus further understanding the interactions between genes and the environment, and providing possibilities for biomarker discovery, precise training and nutritional programming of athletes. This paper summaries the progress of research on the application of exercise metabolomics in sports science, and looks forward to the future development of exercise metabolomics, with a view to providing new approaches and perspectives for improving human performance, promoting exercise against chronic diseases, and advancing sports science research.
Collapse
Affiliation(s)
- Shuo Qi
- School of Sport and Health, Shandong Sport University, Jinan, China
| | - Xun Li
- School of Sport and Health, Shandong Sport University, Jinan, China
| | - Jinglun Yu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lijun Yin
- School of Sport, Shenzhen University, Shenzhen, China
| |
Collapse
|
14
|
Lund J, Lähteenmäki E, Eklund T, Bakke HG, Thoresen GH, Pirinen E, Jauhiainen M, Rustan AC, Lehti M. Human HDL subclasses modulate energy metabolism in skeletal muscle cells. J Lipid Res 2024; 65:100481. [PMID: 38008260 PMCID: PMC10770614 DOI: 10.1016/j.jlr.2023.100481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023] Open
Abstract
In addition to its antiatherogenic role, HDL reportedly modulates energy metabolism at the whole-body level. HDL functionality is associated with its structure and composition, and functional activities can differ between HDL subclasses. Therefore, we studied if HDL2 and HDL3, the two major HDL subclasses, are able to modulate energy metabolism of skeletal muscle cells. Differentiated mouse and primary human skeletal muscle myotubes were used to investigate the influences of human HDL2 and HDL3 on glucose and fatty uptake and oxidation. HDL-induced changes in lipid distribution and mRNA expression of genes related to energy substrate metabolism, mitochondrial function, and HDL receptors were studied with human myotubes. Additionally, we examined the effects of apoA-I and discoidal, reconstituted HDL particles on substrate metabolism. In mouse myotubes, HDL subclasses strongly enhanced glycolysis upon high and low glucose concentrations. HDL3 caused a minor increase in ATP-linked respiration upon glucose conditioning but HDL2 improved complex I-mediated mitochondrial respiration upon fatty acid treatment. In human myotubes, glucose metabolism was attenuated but fatty acid uptake and oxidation were markedly increased by both HDL subclasses, which also increased mRNA expression of genes related to fatty acid metabolism and HDL receptors. Finally, both HDL subclasses induced incorporation of oleic acid into different lipid classes. These results, demonstrating that HDL subclasses enhance fatty acid oxidation in human myotubes but improve anaerobic metabolism in mouse myotubes, support the role of HDL as a circulating modulator of energy metabolism. Exact mechanisms and components of HDL causing the change, require further investigation.
Collapse
Affiliation(s)
- Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Emilia Lähteenmäki
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Tiia Eklund
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Hege G Bakke
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway; Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eija Pirinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Research Unit for Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Matti Jauhiainen
- Department of Public Health and Welfare, Minerva Foundation Institute for Medical Research and Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Maarit Lehti
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
15
|
Deng K, Gupta DK, Shu XO, Lipworth L, Zheng W, Thomas VE, Cai H, Cai Q, Wang TJ, Yu D. Metabolite Signature of Life's Essential 8 and Risk of Coronary Heart Disease Among Low-Income Black and White Americans. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:e004230. [PMID: 38014580 PMCID: PMC10843634 DOI: 10.1161/circgen.123.004230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/26/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Life's essential 8 (LE8) is a comprehensive construct of cardiovascular health. Yet, little is known about the LE8 score, its metabolic correlates, and their predictive implications among Black Americans and low-income individuals. METHODS In a nested case-control study of coronary heart disease (CHD) among 299 pairs of Black and 298 pairs of White low-income Americans from the Southern Community Cohort Study, we estimated LE8 score and applied untargeted plasma metabolomics and elastic net with leave-one-out cross-validation to identify metabolite signature (MetaSig) of LE8. Associations of LE8 score and MetaSig with incident CHD were examined using conditional logistic regression. The mediation effect of MetaSig on the LE8-CHD association was also examined. The external validity of MetaSig was evaluated in another nested CHD case-control study among 299 pairs of Chinese adults. RESULTS Higher LE8 score was associated with lower CHD risk (standardized odds ratio, 0.61 [95% CI, 0.53-0.69]). The MetaSig, consisting of 133 metabolites, showed significant correlation with LE8 score (r=0.61) and inverse association with CHD (odds ratio, 0.57 [0.49-0.65]), robust to adjustment for LE8 score and across participants with different sociodemographic and health status ([odds ratios, 0.42-0.69]; all P<0.05). MetaSig mediated a large portion of the LE8-CHD association: 53% (32%-80%). Significant associations of MetaSig with LE8 score and CHD risk were found in validation cohort (r=0.49; odds ratio, 0.57 [0.46-0.69]). CONCLUSIONS Higher LE8 score and its MetaSig were associated with lower CHD risk among low-income Black and White Americans. Metabolomics may offer an objective measure of LE8 and its metabolic phenotype relevant to CHD prevention among diverse populations.
Collapse
Affiliation(s)
- Kui Deng
- Vanderbilt Epidemiology Center and Division of Epidemiology, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Deepak K. Gupta
- Vanderbilt Translational & Clinical Cardiovascular Research Center & Division of Cardiovascular Medicine, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Xiao-Ou Shu
- Vanderbilt Epidemiology Center and Division of Epidemiology, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Loren Lipworth
- Vanderbilt Epidemiology Center and Division of Epidemiology, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Wei Zheng
- Vanderbilt Epidemiology Center and Division of Epidemiology, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Victoria E. Thomas
- Vanderbilt Translational & Clinical Cardiovascular Research Center & Division of Cardiovascular Medicine, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Hui Cai
- Vanderbilt Epidemiology Center and Division of Epidemiology, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Qiuyin Cai
- Vanderbilt Epidemiology Center and Division of Epidemiology, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Thomas J. Wang
- Dept of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Danxia Yu
- Vanderbilt Epidemiology Center and Division of Epidemiology, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
16
|
Moon JY, Chai JC, Yu B, Song RJ, Chen GC, Graff M, Daviglus ML, Chan Q, Thyagarajan B, Castaneda SF, Grove ML, Cai J, Xue X, Mossavar-Rahmani Y, Vasan RS, Boerwinkle E, Kaplan R, Qi Q. Metabolomic Signatures of Sedentary Behavior and Cardiometabolic Traits in US Hispanics/Latinos: Results from HCHS/SOL. Med Sci Sports Exerc 2023; 55:1781-1791. [PMID: 37170952 PMCID: PMC10523950 DOI: 10.1249/mss.0000000000003205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
PURPOSE The aim of this study was to understand the serum metabolomic signatures of moderate-to-vigorous physical activity (MVPA) and sedentary behavior, and further associate their metabolomic signatures with incident cardiometabolic diseases. METHODS This analysis included 2711 US Hispanics/Latinos from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) aged 18-74 yr (2008-2011). An untargeted, liquid chromatography-mass spectrometry was used to profile the serum metabolome. The associations of metabolites with accelerometer-measured MVPA and sedentary time were examined using survey linear regressions adjusting for covariates. The weighted correlation network analysis identified modules of correlated metabolites in relation to sedentary time, and the modules were associated with incident diabetes, dyslipidemia, and hypertension over the 6-yr follow-up. RESULTS Of 624 metabolites, 5 and 102 were associated with MVPA and sedentary behavior at false discovery rate (FDR) <0.05, respectively, after adjusting for socioeconomic and lifestyle factors. The weighted correlation network analysis identified 8 modules from 102 metabolites associated with sedentary time. Four modules (branched-chain amino acids, erythritol, polyunsaturated fatty acid, creatine) were positively, and the other four (acyl choline, plasmalogen glycerol phosphatidyl choline, plasmalogen glycerol phosphatidyl ethanolamine, urea cycle) were negatively correlated with sedentary time. Among these modules, a higher branched-chain amino acid score and a lower plasmalogen glycerol phosphatidyl choline score were associated with increased risks of diabetes and dyslipidemia. A higher erythritol score was associated with an increased risk of diabetes, and a lower acyl choline score was linked to an increased risk of hypertension. CONCLUSIONS In this study of US Hispanics/Latinos, we identified multiple serum metabolomic signatures of sedentary behavior and their associations with risk of incident diabetes, hypertension, and dyslipidemia. These findings suggest a potential role of circulating metabolites in the links between sedentary behavior and cardiometabolic diseases.
Collapse
Affiliation(s)
- Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Jin Choul Chai
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Rebecca J. Song
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Guo-chong Chen
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, CHINA
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC
| | - Martha L. Daviglus
- Institute for Minority Health Research, University of Illinois Chicago, Chicago, IL
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, IL
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | | | - Megan L. Grove
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, CHINA
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina at Chapel Hill, NC
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Yasmin Mossavar-Rahmani
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | | | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
17
|
Rios S, García-Gavilán JF, Babio N, Paz-Graniel I, Ruiz-Canela M, Liang L, Clish CB, Toledo E, Corella D, Estruch R, Ros E, Fitó M, Arós F, Fiol M, Guasch-Ferré M, Santos-Lozano JM, Li J, Razquin C, Martínez-González MÁ, Hu FB, Salas-Salvadó J. Plasma metabolite profiles associated with the World Cancer Research Fund/American Institute for Cancer Research lifestyle score and future risk of cardiovascular disease and type 2 diabetes. Cardiovasc Diabetol 2023; 22:252. [PMID: 37716984 PMCID: PMC10505328 DOI: 10.1186/s12933-023-01912-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/01/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND A healthy lifestyle (HL) has been inversely related to type 2 diabetes (T2D) and cardiovascular disease (CVD). However, few studies have identified a metabolite profile associated with HL. The present study aims to identify a metabolite profile of a HL score and assess its association with the incidence of T2D and CVD in individuals at high cardiovascular risk. METHODS In a subset of 1833 participants (age 55-80y) of the PREDIMED study, we estimated adherence to a HL using a composite score based on the 2018 Word Cancer Research Fund/American Institute for Cancer Research recommendations. Plasma metabolites were analyzed using LC-MS/MS methods at baseline (discovery sample) and 1-year of follow-up (validation sample). Cross-sectional associations between 385 known metabolites and the HL score were assessed using elastic net regression. A 10-cross-validation procedure was used, and correlation coefficients or AUC were assessed between the identified metabolite profiles and the self-reported HL score. We estimated the associations between the identified metabolite profiles and T2D and CVD using multivariable Cox regression models. RESULTS The metabolite profiles that identified HL as a dichotomous or continuous variable included 24 and 58 metabolites, respectively. These are amino acids or derivatives, lipids, and energy intermediates or xenobiotic compounds. After adjustment for potential confounders, baseline metabolite profiles were associated with a lower risk of T2D (hazard ratio [HR] and 95% confidence interval (CI): 0.54, 0.38-0.77 for dichotomous HL, and 0.22, 0.11-0.43 for continuous HL). Similar results were observed with CVD (HR, 95% CI: 0.59, 0.42-0.83 for dichotomous HF and HR, 95%CI: 0.58, 0.31-1.07 for continuous HL). The reduction in the risk of T2D and CVD was maintained or attenuated, respectively, for the 1-year metabolomic profile. CONCLUSIONS In an elderly population at high risk of CVD, a set of metabolites was selected as potential metabolites associated with the HL pattern predicting the risk of T2D and, to a lesser extent, CVD. These results support previous findings that some of these metabolites are inversely associated with the risk of T2D and CVD. TRIAL REGISTRATION The PREDIMED trial was registered at ISRCTN ( http://www.isrctn.com/ , ISRCTN35739639).
Collapse
Affiliation(s)
- Santiago Rios
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Jesús F García-Gavilán
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
| | - Nancy Babio
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Indira Paz-Graniel
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Miguel Ruiz-Canela
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Estefania Toledo
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Ramón Estruch
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
| | - Emilio Ros
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Lipid Clinic, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
| | - Montserrat Fitó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Fernando Arós
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Hospital Universitario de Álava, Vitoria, Spain
| | - Miquel Fiol
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Hospital Son Espases, Palma de Mallorca, Spain
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Public Health and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - José M Santos-Lozano
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Research Unit, Department of Family Medicine, Distrito Sanitario Atención Primaria Sevilla, Sevilla, Spain
| | - Jun Li
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Hospital Son Espases, Palma de Mallorca, Spain
| | - Cristina Razquin
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
| | - Miguel Ángel Martínez-González
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Frank B Hu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jordi Salas-Salvadó
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
| |
Collapse
|
18
|
Ala-Korpela M, Lehtimäki T, Kähönen M, Viikari J, Perola M, Salomaa V, Kettunen J, Raitakari OT, Mäkinen VP. Cross-sectionally Calculated Metabolic Aging Does Not Relate to Longitudinal Metabolic Changes-Support for Stratified Aging Models. J Clin Endocrinol Metab 2023; 108:2099-2104. [PMID: 36658689 PMCID: PMC10348460 DOI: 10.1210/clinem/dgad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
CONTEXT Aging varies between individuals, with profound consequences for chronic diseases and longevity. One hypothesis to explain the diversity is a genetically regulated molecular clock that runs differently between individuals. Large human studies with long enough follow-up to test the hypothesis are rare due to practical challenges, but statistical models of aging are built as proxies for the molecular clock by comparing young and old individuals cross-sectionally. These models remain untested against longitudinal data. OBJECTIVE We applied novel methodology to test if cross-sectional modeling can distinguish slow vs accelerated aging in a human population. METHODS We trained a machine learning model to predict age from 153 clinical and cardiometabolic traits. The model was tested against longitudinal data from another cohort. The training data came from cross-sectional surveys of the Finnish population (n = 9708; ages 25-74 years). The validation data included 3 time points across 10 years in the Young Finns Study (YFS; n = 1009; ages 24-49 years). Predicted metabolic age in 2007 was compared against observed aging rate from the 2001 visit to the 2011 visit in the YFS dataset and correlation between predicted vs observed metabolic aging was determined. RESULTS The cross-sectional proxy failed to predict longitudinal observations (R2 = 0.018%, P = 0.67). CONCLUSION The finding is unexpected under the clock hypothesis that would produce a positive correlation between predicted and observed aging. Our results are better explained by a stratified model where aging rates per se are similar in adulthood but differences in starting points explain diverging metabolic fates.
Collapse
Affiliation(s)
- Mika Ala-Korpela
- Systems Epidemiology, Faculty of Medicine, Center for Life Course Health Research, University of Oulu, Oulu 90014, Finland
- Biocenter Oulu, University of Oulu, Oulu 90014, Finland
- Faculty of Health Sciences, NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio 90014, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Fimlab Laboratories, and Finnish Cardiovascular Research Center Tampere, Tampere University, Tampere 33100, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Faculty of Medicine and Health Technology, Tampere University Hospital, and Finnish Cardiovascular Research Center Tampere, Tampere University, Tampere 33100, Finland
| | - Jorma Viikari
- Department of Medicine, University of Turku, Turku 20520, Finland
- Division of Medicine, Turku University Hospital, Turku 20520, Finland
| | - Markus Perola
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki 00271, Finland
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki 00271, Finland
| | - Johannes Kettunen
- Systems Epidemiology, Faculty of Medicine, Center for Life Course Health Research, University of Oulu, Oulu 90014, Finland
- Biocenter Oulu, University of Oulu, Oulu 90014, Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki 00271, Finland
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20520, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20520, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku 20520, Finland
| | - Ville-Petteri Mäkinen
- Systems Epidemiology, Faculty of Medicine, Center for Life Course Health Research, University of Oulu, Oulu 90014, Finland
- Computational and Systems Biology Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
19
|
Hintikka JE, Ahtiainen JP, Permi P, Jalkanen S, Lehtonen M, Pekkala S. Aerobic exercise training and gut microbiome-associated metabolic shifts in women with overweight: a multi-omic study. Sci Rep 2023; 13:11228. [PMID: 37433843 DOI: 10.1038/s41598-023-38357-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023] Open
Abstract
Physical activity is essential in weight management, improves overall health, and mitigates obesity-related risk markers. Besides inducing changes in systemic metabolism, habitual exercise may improve gut's microbial diversity and increase the abundance of beneficial taxa in a correlated fashion. Since there is a lack of integrative omics studies on exercise and overweight populations, we studied the metabolomes and gut microbiota associated with programmed exercise in obese individuals. We measured the serum and fecal metabolites of 17 adult women with overweight during a 6-week endurance exercise program. Further, we integrated the exercise-responsive metabolites with variations in the gut microbiome and cardiorespiratory parameters. We found clear correlation with several serum and fecal metabolites, and metabolic pathways, during the exercise period in comparison to the control period, indicating increased lipid oxidation and oxidative stress. Especially, exercise caused co-occurring increase in levels of serum lyso-phosphatidylcholine moieties and fecal glycerophosphocholine. This signature was associated with several microbial metagenome pathways and the abundance of Akkermansia. The study demonstrates that, in the absence of body composition changes, aerobic exercise can induce metabolic shifts that provide substrates for beneficial gut microbiota in overweight individuals.
Collapse
Affiliation(s)
- Jukka E Hintikka
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Juha P Ahtiainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Perttu Permi
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sirpa Jalkanen
- MediCity and InFLAMES Flagship, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marko Lehtonen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
20
|
Ma Y, Chu M, Fu Z, Liu Q, Liang J, Xu J, Weng Z, Chen X, Xu C, Gu A. The Association of Metabolomic Profiles of a Healthy Lifestyle with Heart Failure Risk in a Prospective Study. Nutrients 2023; 15:2934. [PMID: 37447260 PMCID: PMC10346862 DOI: 10.3390/nu15132934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Lifestyle has been linked to the incidence of heart failure, but the underlying biological mechanisms remain unclear. Using the metabolomic, lifestyle, and heart failure data of the UK Biobank, we identified and validated healthy lifestyle-related metabolites in a matched case-control and cohort study, respectively. We then evaluated the association of healthy lifestyle-related metabolites with heart failure (HF) risk and the added predictivity of these healthy lifestyle-associated metabolites for HF. Of 161 metabolites, 8 were identified to be significantly related to healthy lifestyle. Notably, omega-3 fatty acids and docosahexaenoic acid (DHA) positively associated with a healthy lifestyle score (HLS) and exhibited a negative association with heart failure risk. Conversely, creatinine negatively associated with a HLS, but was positively correlated with the risk of HF. Adding these three metabolites to the classical risk factor prediction model, the prediction accuracy of heart failure incidence can be improved as assessed by the C-statistic (increasing from 0.806 [95% CI, 0.796-0.816] to 0.844 [95% CI, 0.834-0.854], p-value < 0.001). A healthy lifestyle is associated with significant metabolic alterations, among which metabolites related to healthy lifestyle may be critical for the relationship between healthy lifestyle and HF. Healthy lifestyle-related metabolites might enhance HF prediction, but additional validation studies are necessary.
Collapse
Affiliation(s)
- Yuanyuan Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Maomao Chu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Zuqiang Fu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- School of Public Health, Southeast University, Nanjing 211189, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Jingjia Liang
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Maternal, Child, and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiu Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
21
|
Faquih TO, Aziz NA, Gardiner SL, Li-Gao R, de Mutsert R, Milaneschi Y, Trompet S, Jukema JW, Rosendaal FR, van Hylckama Vlieg A, van Dijk KW, Mook-Kanamori DO. Normal range CAG repeat size variations in the HTT gene are associated with an adverse lipoprotein profile partially mediated by body mass index. Hum Mol Genet 2023; 32:1741-1752. [PMID: 36715614 PMCID: PMC10448954 DOI: 10.1093/hmg/ddad020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/18/2022] [Accepted: 11/26/2023] [Indexed: 01/31/2023] Open
Abstract
Tandem cytosine-adenine-guanine (CAG) repeat sizes of 36 or more in the huntingtin gene (HTT) cause Huntington's disease (HD). Apart from neuropsychiatric complications, the disease is also accompanied by metabolic dysregulation and weight loss, which contribute to a progressive functional decline. Recent studies also reported an association between repeats below the pathogenic threshold (<36) for HD and body mass index (BMI), suggesting that HTT repeat sizes in the non-pathogenic range are associated with metabolic dysregulation. In this study, we hypothesized that HTT repeat sizes < 36 are associated with metabolite levels, possibly mediated through reduced BMI. We pooled data from three European cohorts (n = 10 228) with genotyped HTT CAG repeat size and metabolomic measurements. All 145 metabolites were measured on the same targeted platform in all studies. Multilevel mixed-effects analysis using the CAG repeat size in HTT identified 67 repeat size metabolite associations. Overall, the metabolomic profile associated with larger CAG repeat sizes in HTT were unfavorable-similar to those of higher risk of coronary artery disease and type 2 diabetes-and included elevated levels of amino acids, fatty acids, low-density lipoprotein (LDL)-, very low-density lipoprotein- and intermediate density lipoprotein (IDL)-related metabolites while with decreased levels of very large high-density lipoprotein (HDL)-related metabolites. Furthermore, the associations of 50 metabolites, in particular, specific very large HDL-related metabolites, were mediated by lower BMI. However, no mediation effect was found for 17 metabolites related to LDL and IDL. In conclusion, our findings indicate that large non-pathogenic CAG repeat sizes in HTT are associated with an unfavorable metabolomic profile despite their association with a lower BMI.
Collapse
Affiliation(s)
- Tariq O Faquih
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn 53175, Germany
- Department of Neurology, Bonn University Hospital, Bonn 53175, Germany
| | - Sarah L Gardiner
- Department of Neurology, Amsterdam UMC, Amsterdam 1080 HZ, The Netherlands
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Metabolon, Inc., Morrisville, NC 27560, USA
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Public Health, Mental Health Program, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics, Amsterdam 1081 HV, The Netherlands
| | - Stella Trompet
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Astrid van Hylckama Vlieg
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| |
Collapse
|
22
|
Deng K, Gupta DK, Shu XO, Lipworth L, Zheng W, Thomas VE, Cai H, Cai Q, Wang TJ, Yu D. Metabolite Signature of Life's Essential 8 and Risk of Coronary Heart Disease among Low-Income Black and White Americans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.24.23289055. [PMID: 37163035 PMCID: PMC10168489 DOI: 10.1101/2023.04.24.23289055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background and Aims Life's Essential 8 (LE8) is a comprehensive construct of cardiovascular health. Yet, little is known about LE8 score, its metabolic correlates, and their predictive implications among Black Americans and low-income individuals. Methods In a nested case-control study of coronary heart disease (CHD) among 598 Black and 596 White low-income Americans, we estimated LE8 score, conducted untargeted plasma metabolites profiling, and used elastic net with leave-one-out cross-validation to identify metabolite signature (MetaSig) of LE8. Associations of LE8 score and MetaSig with incident CHD were examined using conditional logistic regression. Mediation effect of MetaSig on the LE8-CHD association was also examined. The external validity of MetaSig was evaluated in another nested CHD case-control study among 598 Chinese adults. Results Higher LE8 score was associated with lower CHD risk [standardized OR (95% CI)=0.61 (0.53-0.69)]. The identified MetaSig, consisting of 133 metabolites, showed strong correlation with LE8 score ( r =0.61) and inverse association with CHD risk [OR (95% CI)=0.57 (0.49-0.65)], robust to adjustment for LE8 score and across participants with different sociodemographic and health status (ORs: 0.42-0.69; all P <0.05). MetaSig mediated a large portion of the LE8-CHD association: 53% (32%-80%) ( P <0.001). Significant associations of MetaSig with LE8 score and CHD risk were found in validation cohort [ r =0.49; OR (95% CI)=0.57 (0.46-0.69)]. Conclusions Higher LE8 score and its MetaSig were associated with lower CHD risk among low-income Black and White Americans. Metabolomics may offer an objective and comprehensive measure of LE8 score and its metabolic phenotype relevant to CHD prevention among diverse populations.
Collapse
|
23
|
Alshagrawi S, Abidi ST. Efficacy of an mHealth Behavior Change Intervention for Promoting Physical Activity in the Workplace: Randomized Controlled Trial. J Med Internet Res 2023; 25:e44108. [PMID: 37103981 PMCID: PMC10176147 DOI: 10.2196/44108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Insufficient physical activity (PA) is a well-established risk factor for several noncommunicable diseases such as cardiovascular diseases, cancer, diabetes, depression, and dementia. The World Health Organization (WHO) advises that individuals engage in 150 minutes of moderate PA per week or 75 minutes of intense PA per week. According to the WHO's latest report, 23% of adults fail to meet the minimum recommended level of PA. The percentage was even higher in a recent global study that showed 27% of adults were insufficiently active and reported a 5% increase in the prevalence trend of insufficient PA between 2001 and 2016. The study also showed the rate of insufficient PA among countries varied significantly. For instance, it was estimated that 40% were insufficiently active in the United States, and the percentage was even higher in Saudi Arabia (more than 50%). Governments are actively developing policies and methods to successfully establish a PA-inducing environment that encourages a healthy lifestyle in order to address the global steady decline in PA. OBJECTIVE The purpose of this study was to determine the effectiveness of mobile health (mHealth) interventions, particularly SMS text messaging interventions, to improve PA and decrease BMI in healthy adults in the workplace. METHODS In this parallel, 2-arm randomized controlled trial, healthy adults (N=327) were randomized to receive an mHealth intervention (tailored text messages combined with self-monitoring (intervention; n=166) or no intervention (control; n=161). Adults who were fully employed in an academic institution and had limited PA during working hours were recruited for the study. Outcomes, such as PA and BMI, were assessed at baseline and 3 months later. RESULTS Results showed significant improvement in PA levels (weekly step counts) in the intervention group (β=1097, 95% CI 922-1272, P<.001). There was also a significant reduction in BMI (β=0.60, 95% CI 0.50-0.69, P<.001). CONCLUSIONS Combining tailored text messages and self-monitoring interventions to improve PA and lower BMI was significantly effective and has the potential to leverage current methods to improve wellness among the public.
Collapse
|
24
|
Rodríguez-Borjabad C, Narveud I, Christensen JJ, Ibarretxe D, Andreychuk N, Girona J, Torvik K, Folkedal G, Bogsrud MP, Retterstøl K, Plana N, Masana L, Holven KB. Association between Nordic and Mediterranean diets with lipoprotein phenotype assessed by 1HNMR in children with familial hypercholesterolemia. Atherosclerosis 2023; 373:38-45. [PMID: 37137225 DOI: 10.1016/j.atherosclerosis.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Both Nordic and Mediterranean diets are considered healthy despite notable regional differences. Although these dietary patterns may lower cardiovascular risk, it is unclear if they improve the lipoprotein phenotype in children with familial hypercholesterolemia (FH). The aim is to determine the impact of Nordic and Mediterranean diets on the advanced lipoprotein profile in children with heterozygous FH (HeFH). METHODS This was a cross-sectional study performed in children with FH recruited from the Lipid Clinics at Sant Joan University Hospital in Reus (Spain) and Oslo University Hospital (Norway). Two-hundred fifty-six children (mean age 10 y/o; 48% girls): 85 Spanish and 29 Norwegian FH children, and 142 non-FH healthy controls (119 from Spain and 23 from Norway) were included in the study. A pathogenic FH-associated genetic variant was present in 81% of Spanish children with FH and all Norwegian children with FH. An 1H NMR based advanced lipoprotein test (Nightingale®) providing information on the particle number, size and lipid composition of 14 lipoprotein subclasses was performed and correlated to the dietary components. RESULTS Levels of LDL-C, HDL-C and triglycerides were not significantly different between the Nordic and Mediterranean FH groups. Spanish children with FH had more LDL particles, mainly of the large and medium LDL subclasses, than Norwegian FH children. Spanish FH children also had more HDL particles, mainly medium and small, than Norwegian FH children. The mean LDL size of Spanish FH children was larger, while the HDL size was smaller than that of the Norwegian FH children. The HDL particle number and size were the main determinants of differences between the two groups. In Norwegian children with FH, dietary total fat and MUFAs showed a significant correlation with all apolipoprotein B-containing lipoproteins and LDL size, whereas there was no correlation to SFA. A weaker association pattern was observed in the Spanish children. CONCLUSIONS The lipoprotein profiles of Spanish and Norwegian children showed differences when studied by 1H NMR. These differences were in part associated with differences in dietary patterns.
Collapse
Affiliation(s)
- Cèlia Rodríguez-Borjabad
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain; Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ingunn Narveud
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, Rikshospitalet, P. O Box 4950, Nydalen, Norway
| | - Jacob Juel Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Daiana Ibarretxe
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Natalia Andreychuk
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Josefa Girona
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Kristin Torvik
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Guro Folkedal
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Martin P Bogsrud
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, Rikshospitalet, P. O Box 4950, Nydalen, Norway; Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, P. O Box 4956, Nydalen, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; The Lipid Clinic, Oslo University Hospital, Rikshospitalet, P. O Box 4950, Nydalen, Norway
| | - Núria Plana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Luis Masana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, Rikshospitalet, P. O Box 4950, Nydalen, Norway
| |
Collapse
|
25
|
Muli S, Brachem C, Alexy U, Schmid M, Oluwagbemigun K, Nöthlings U. Exploring the association of physical activity with the plasma and urine metabolome in adolescents and young adults. Nutr Metab (Lond) 2023; 20:23. [PMID: 37020289 PMCID: PMC10074825 DOI: 10.1186/s12986-023-00742-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Regular physical activity elicits many health benefits. However, the underlying molecular mechanisms through which physical activity influences overall health are less understood. Untargeted metabolomics enables system-wide mapping of molecular perturbations which may lend insights into physiological responses to regular physical activity. In this study, we investigated the associations of habitual physical activity with plasma and urine metabolome in adolescents and young adults. METHODS This cross-sectional study included participants from the DONALD (DOrtmund Nutritional and Anthropometric Longitudinally Designed) study with plasma samples n = 365 (median age: 18.4 (18.1, 25.0) years, 58% females) and 24 h urine samples n = 215 (median age: 18.1 (17.1, 18.2) years, 51% females). Habitual physical activity was assessed using a validated Adolescent Physical Activity Recall Questionnaire. Plasma and urine metabolite concentrations were determined using ultra-high-performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS) methods. In a sex-stratified analysis, we conducted principal component analysis (PCA) to reduce the dimensionality of metabolite data and to create metabolite patterns. Multivariable linear regression models were then applied to assess the associations between self-reported physical activity (metabolic equivalent of task (MET)-hours per week) with single metabolites and metabolite patterns, adjusted for potential confounders and controlling the false discovery rate (FDR) at 5% for each set of regressions. RESULTS Habitual physical activity was positively associated with the "lipid, amino acids and xenometabolite" pattern in the plasma samples of male participants only (β = 1.02; 95% CI: 1.01, 1.04, p = 0.001, adjusted p = 0.042). In both sexes, no association of physical activity with single metabolites in plasma and urine and metabolite patterns in urine was found (all adjusted p > 0.05). CONCLUSIONS Our explorative study suggests that habitual physical activity is associated with alterations of a group of metabolites reflected in the plasma metabolite pattern in males. These perturbations may lend insights into some of underlying mechanisms that modulate effects of physical activity.
Collapse
Affiliation(s)
- Samuel Muli
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Friedrich-Hirzebruch- Allee 7, 53115, Bonn, Germany.
| | - Christian Brachem
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Friedrich-Hirzebruch- Allee 7, 53115, Bonn, Germany
| | - Ute Alexy
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Friedrich-Hirzebruch- Allee 7, 53115, Bonn, Germany
| | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Kolade Oluwagbemigun
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Friedrich-Hirzebruch- Allee 7, 53115, Bonn, Germany
| | - Ute Nöthlings
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Friedrich-Hirzebruch- Allee 7, 53115, Bonn, Germany
| |
Collapse
|
26
|
Huida J, Ojala T, Ilvesvuo J, Surcel HM, Priest JR, Helle E. Maternal first trimester metabolic profile in pregnancies with transposition of the great arteries. Birth Defects Res 2023; 115:517-524. [PMID: 36546574 DOI: 10.1002/bdr2.2139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/12/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Higher maternal body mass index (BMI) and abnormal glucose metabolism during early pregnancy are associated with congenital heart defects in the offspring, but the exact mechanisms are unknown. METHODS We evaluated the association between maternal first trimester metabolic profile and transposition of the great arteries (TGA) in the offspring in a matched case-control study with 100 TGA mothers and 200 controls born in Finland during 2004-2014. Cases and controls were matched by birth year, child sex, and maternal age and BMI. Serum samples collected between 10- and 14-weeks of gestation were analyzed for 73 metabolic measures. Conditional logistic regression was used to assess the risk for TGA in the offspring, and a subgroup analysis among mothers with high BMI was conducted. RESULTS Higher concentrations of four subtypes of extremely large very-low-density lipoprotein (VLDL) particles and one of large VLDL particles were observed in TGA mothers. This finding did not reach statistical significance after multiple testing correction. The pooled odds ratio (OR) of the all metabolic variables was slightly higher in TGA mothers in the subgroup with maternal BMI over 25 (OR 1.25) and significantly higher in the subgroup with maternal BMI over 30 (OR 1.95) compared to the original population (OR 1.18). CONCLUSIONS Our findings indicate that an abnormal maternal early pregnancy metabolic profile might be associated with TGA in the offspring, especially in obese mothers. A trend indicating altered VLDL subtype composition in TGA pregnancies warrants further research.
Collapse
Affiliation(s)
- Johanna Huida
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tiina Ojala
- Pediatric Cardiology, Pediatric Research Center, New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Ilvesvuo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heljä-Marja Surcel
- Faculty of Medicine, University of Oulu, Oulu, Finland.,Biobank Borealis of Northern Finland, Oulu, Finland
| | - James R Priest
- Tenaya Therapeutics, South San Francisco, California, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Emmi Helle
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Paediatrics, Labatt Family Heart Centre, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Lehtovirta M, Wu F, Rovio SP, Heinonen OJ, Laitinen TT, Niinikoski H, Lagström H, Viikari JSA, Rönnemaa T, Jula A, Ala-Korpela M, Raitakari OT, Pahkala K. Association of physical activity with metabolic profile from adolescence to adulthood. Scand J Med Sci Sports 2023; 33:307-318. [PMID: 36331352 DOI: 10.1111/sms.14261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Physical activity benefits cardiometabolic health, but little is known about its detailed links with serum lipoproteins, amino acids, and glucose metabolism at young age. We therefore studied the association of physical activity with a comprehensive metabolic profile measured repeatedly in adolescence. METHODS The cohort is derived from the longitudinal Special Turku Coronary Risk Factor Intervention Project. At ages 13, 15, 17, and 19 years, data on physical activity were collected by a questionnaire, and circulating metabolic measures were quantified by nuclear magnetic resonance metabolomics from repeatedly assessed serum samples (age 13: n = 503, 15: n = 472, 17: n = 466, and 19: n = 361). RESULTS Leisure-time physical activity (LTPA;MET h/wk) was directly associated with concentrations of polyunsaturated fatty acids, and inversely with the ratio of monounsaturated fatty acids to total fatty acids (-0.006SD; [-0.008, -0.003]; p < 0.0001). LTPA was inversely associated with very-low-density lipoprotein (VLDL) particle concentration (-0.003SD; [-0.005, -0.001]; p = 0.002) and VLDL particle size (-0.005SD; [-0.007, -0.003]; p < 0.0001). LTPA showed direct association with the particle concentration and size of high-density lipoprotein (HDL), and HDL cholesterol concentration (0.004SD; [0.002, 0.006]; p < 0.0001). Inverse associations of LTPA with triglyceride and total lipid concentrations in large to small sized VLDL subclasses were found. Weaker associations were seen for other metabolic measures including inverse associations with concentrations of lactate, isoleucine, glycoprotein acetylation, and a direct association with creatinine concentration. The results remained after adjusting for body mass index and proportions of energy intakes from macronutrients. CONCLUSIONS Physical activity during adolescence is beneficially associated with the metabolic profile including novel markers. The results support recommendations on physical activity during adolescence to promote health and possibly reduce future disease risks.
Collapse
Affiliation(s)
- Miia Lehtovirta
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Feitong Wu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Suvi P Rovio
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Olli J Heinonen
- Paavo Nurmi Centre, Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Tomi T Laitinen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.,Paavo Nurmi Centre, Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Harri Niinikoski
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.,Department of Pediatrics and Adolescent Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Hanna Lagström
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.,Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland
| | - Jorma S A Viikari
- Department of Medicine, University of Turku, Turku, Finland.,Division of Medicine, Turku University Hospital, Turku, Finland
| | - Tapani Rönnemaa
- Department of Medicine, University of Turku, Turku, Finland.,Division of Medicine, Turku University Hospital, Turku, Finland
| | - Antti Jula
- Department of Chronic Disease Prevention, Institute for Health and Welfare, Turku, Finland
| | - Mika Ala-Korpela
- Computational Medicine, Center for Life Course Health Research, Faculty of Medicine, University of Oulu & Biocenter Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.,Paavo Nurmi Centre, Unit for Health and Physical Activity, University of Turku, Turku, Finland
| |
Collapse
|
28
|
Mäkinen VP, Kettunen J, Lehtimäki T, Kähönen M, Viikari J, Perola M, Salomaa V, Järvelin MR, Raitakari OT, Ala-Korpela M. Longitudinal metabolomics of increasing body-mass index and waist-hip ratio reveals two dynamic patterns of obesity pandemic. Int J Obes (Lond) 2023; 47:453-462. [PMID: 36823293 DOI: 10.1038/s41366-023-01281-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND/OBJECTIVE This observational study dissects the complex temporal associations between body-mass index (BMI), waist-hip ratio (WHR) and circulating metabolomics using a combination of longitudinal and cross-sectional population-based datasets and new systems epidemiology tools. SUBJECTS/METHODS Firstly, a data-driven subgrouping algorithm was employed to simplify high-dimensional metabolic profiling data into a single categorical variable: a self-organizing map (SOM) was created from 174 metabolic measures from cross-sectional surveys (FINRISK, n = 9708, ages 25-74) and a birth cohort (NFBC1966, n = 3117, age 31 at baseline, age 46 at follow-up) and an expert committee defined four subgroups of individuals based on visual inspection of the SOM. Secondly, the subgroups were compared regarding BMI and WHR trajectories in an independent longitudinal dataset: participants of the Young Finns Study (YFS, n = 1286, ages 24-39 at baseline, 10 years follow-up, three visits) were categorized into the four subgroups and subgroup-specific age-dependent trajectories of BMI, WHR and metabolic measures were modelled by linear regression. RESULTS The four subgroups were characterised at age 39 by high BMI, WHR and dyslipidemia (designated TG-rich); low BMI, WHR and favourable lipids (TG-poor); low lipids in general (Low lipid) and high low-density-lipoprotein cholesterol (High LDL-C). Trajectory modelling of the YFS dataset revealed a dynamic BMI divergence pattern: despite overlapping starting points at age 24, the subgroups diverged in BMI, fasting insulin (three-fold difference at age 49 between TG-rich and TG-poor) and insulin-associated measures such as triglyceride-cholesterol ratio. Trajectories also revealed a WHR progression pattern: despite different starting points at the age of 24 in WHR, LDL-C and cholesterol-associated measures, all subgroups exhibited similar rates of change in these measures, i.e. WHR progression was uniform regardless of the cross-sectional metabolic profile. CONCLUSIONS Age-associated weight variation in adults between 24 and 49 manifests as temporal divergence in BMI and uniform progression of WHR across metabolic health strata.
Collapse
Affiliation(s)
- Ville-Petteri Mäkinen
- Systems Epidemiology, Faculty of Medicine, University of Oulu, Oulu, Finland. .,Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland. .,Computational and Systems Biology Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia. .,Australian Centre for Precision Health, University of South Australia, Adelaide, SA, Australia.
| | - Johannes Kettunen
- Systems Epidemiology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, Oulu, Finland.,Department of Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jorma Viikari
- Department of Medicine, University of Turku, Turku, Finland.,Division of Medicine, Turku University Hospital, Turku, Finland
| | - Markus Perola
- Department of Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland.,Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland.,Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Veikko Salomaa
- Department of Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Marjo-Riitta Järvelin
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland.,Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland.,Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.,Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Mika Ala-Korpela
- Systems Epidemiology, Faculty of Medicine, University of Oulu, Oulu, Finland. .,Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland. .,Biocenter Oulu, Oulu, Finland. .,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
29
|
Lu Q, Chen J, Li R, Wang Y, Tu Z, Geng T, Liu L, Pan A, Liu G. Healthy lifestyle, plasma metabolites, and risk of cardiovascular disease among individuals with diabetes. Atherosclerosis 2023; 367:48-55. [PMID: 36642660 DOI: 10.1016/j.atherosclerosis.2022.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Lifestyle management is a fundamental aspect of diabetes care to prevent cardiovascular disease (CVD); however, the underlying metabolic mechanism is not well established. We aimed to identify metabolites associated with different lifestyle factors, and estimate their mediating roles between lifestyle and CVD risk among people with diabetes. METHODS Lifestyle and metabolomic data were available for 5072 participants with diabetes who were free of CVD at baseline in the UK Biobank. The healthy level of 5 lifestyle factors was defined as non-central obesity, non-current smoking, moderate alcohol intake, physically active, and healthy diet. A total of 44 biomarkers across 7 metabolic pathways including lipoprotein particles, fatty acids, amino acids, fluid balance, inflammation, ketone bodies, and glycolysis were quantified by nuclear magnetic resonance (NMR) spectroscopy. RESULTS All 44 assayed metabolites were significantly associated with at least one lifestyle factor. Approximately half of metabolites, which were mostly lipoprotein particles and fatty acids, showed a mediating effect between at least one lifestyle factor and CVD risk. NMR metabolites jointly mediated 43.4%, 30.0%, 16.8%, 43.4%, and 65.5% of the association of non-central obesity, non-current smoking, moderate alcohol intake, physically active, and healthy diet with lower CVD risk, respectively. In general, though metabolites that significantly associated with lifestyle were mostly different across the 5 lifestyle factors, the pattern of association was consistent between fatty acids and all 5 lifestyle factors. Further, fatty acids showed significant mediating effects in the association between all 5 lifestyle factors and CVD risk with mediation proportion ranging from 12.2% to 26.8%. CONCLUSIONS There were large-scale differences in circulating NMR metabolites between individuals with diabetes who adhered to a healthy lifestyle and those did not. Differences in metabolites, especial fatty acids, could partially explain the association between adherence to multiple healthy lifestyle and lower CVD risk among people with diabetes.
Collapse
Affiliation(s)
- Qi Lu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety (Huazhong University of Science and Technology), Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junxiang Chen
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety (Huazhong University of Science and Technology), Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhouzheng Tu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Geng
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety (Huazhong University of Science and Technology), Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety (Huazhong University of Science and Technology), Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
30
|
Karvinen S, Korhonen T, Sievänen T, Karppinen JE, Juppi H, Jakoaho V, Kujala UM, Laukkanen JA, Lehti M, Laakkonen EK. Extracellular vesicles and high-density lipoproteins: Exercise and oestrogen-responsive small RNA carriers. J Extracell Vesicles 2023; 12:e12308. [PMID: 36739598 PMCID: PMC9899444 DOI: 10.1002/jev2.12308] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 12/22/2022] [Accepted: 01/22/2023] [Indexed: 02/06/2023] Open
Abstract
Decreased systemic oestrogen levels (i.e., menopause) affect metabolic health. However, the detailed mechanisms underlying this process remain unclear. Both oestrogens and exercise have been shown to improve metabolic health, which may be partly mediated by circulating microRNA (c-miR) signalling. In recent years, extracellular vesicles (EV) have increased interest in the field of tissue crosstalk. However, in many studies on EV-carried miRs, the co-isolation of high-density lipoprotein (HDL) particles with EVs has not been considered, potentially affecting the results. Here, we demonstrate that EV and HDL particles have distinct small RNA (sRNA) content, including both host and nonhost sRNAs. Exercise caused an acute increase in relative miR abundancy in EVs, whereas in HDL particles, it caused an increase in transfer RNA-derived sRNA. Furthermore, we demonstrate that oestrogen-based hormonal therapy (HT) allows the acute exercise-induced miR-response to occur in both EV and HDL particles in postmenopausal women, while the response was absent in nonusers.
Collapse
Affiliation(s)
- Sira Karvinen
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Tia‐Marje Korhonen
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Tero Sievänen
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Jari E. Karppinen
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Hanna‐Kaarina Juppi
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Veera Jakoaho
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Urho M. Kujala
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Jari A. Laukkanen
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland,Institute of Clinical MedicineUniversity of Eastern FinlandKuopioFinland
| | - Maarit Lehti
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Eija K. Laakkonen
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
31
|
Mäkinen VP, Karsikas M, Kettunen J, Lehtimäki T, Kähönen M, Viikari J, Perola M, Salomaa V, Järvelin MR, Raitakari OT, Ala-Korpela M. Longitudinal profiling of metabolic ageing trends in two population cohorts of young adults. Int J Epidemiol 2022; 51:1970-1983. [PMID: 35441226 DOI: 10.1093/ije/dyac062] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 03/20/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Quantification of metabolic changes over the human life course is essential to understanding ageing processes. Yet longitudinal metabolomics data are rare and long gaps between visits can introduce biases that mask true trends. We introduce new ways to process quantitative time-series population data and elucidate metabolic ageing trends in two large cohorts. METHODS Eligible participants included 1672 individuals from the Cardiovascular Risk in Young Finns Study and 3117 from the Northern Finland Birth Cohort 1966. Up to three time points (ages 24-49 years) were analysed by nuclear magnetic resonance metabolomics and clinical biochemistry (236 measures). Temporal trends were quantified as median change per decade. Sample quality was verified by consistency of shared biomarkers between metabolomics and clinical assays. Batch effects between visits were mitigated by a new algorithm introduced in this report. The results below satisfy multiple testing threshold of P < 0.0006. RESULTS Women gained more weight than men (+6.5% vs +5.0%) but showed milder metabolic changes overall. Temporal sex differences were observed for C-reactive protein (women +5.1%, men +21.1%), glycine (women +5.2%, men +1.9%) and phenylalanine (women +0.6%, men +3.5%). In 566 individuals with ≥+3% weight gain vs 561 with weight change ≤-3%, divergent patterns were observed for insulin (+24% vs -10%), very-low-density-lipoprotein triglycerides (+32% vs -6%), high-density-lipoprotein2 cholesterol (-6.5% vs +4.7%), isoleucine (+5.7% vs -6.0%) and C-reactive protein (+25% vs -22%). CONCLUSION We report absolute and proportional trends for 236 metabolic measures as new reference material for overall age-associated and specific weight-driven changes in real-world populations.
Collapse
Affiliation(s)
- Ville-Petteri Mäkinen
- Computational and Systems Biology Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.,Australian Centre for Precision Health, University of South Australia, Adelaide, Australia.,Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Mari Karsikas
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, Oulu, Finland.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Johannes Kettunen
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, Oulu, Finland.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jorma Viikari
- Department of Medicine, University of Turku, Turku, Finland.,Division of Medicine, Turku University Hospital, Turku, Finland
| | - Markus Perola
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland.,Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland.,Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland.,Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.,Department of Life Sciences, College of Health and Life Sciences, Brunel University London, UK
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, Oulu, Finland.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
32
|
Handakas E, Chang K, Khandpur N, Vamos EP, Millett C, Sassi F, Vineis P, Robinson O. Metabolic profiles of ultra-processed food consumption and their role in obesity risk in British children. Clin Nutr 2022; 41:2537-2548. [PMID: 36223715 DOI: 10.1016/j.clnu.2022.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Higher consumption of ultra-processed foods (UPF) has been associated with childhood obesity, but underlying mechanisms remain unclear. We investigated plasma nuclear magnetic resonance metabolic profiles of higher UPF consumption and their role in obesity risk in the British ALSPAC cohort. METHODS We performed cross-sectional and prospective metabolome wide association analyses of UPF, calculated from food diaries using the NOVA classification. In cross-sectional analysis, we tested the association between UPF consumption and metabolic profile at 7 years (N = 4528), and in the prospective analysis we tested the association between UPF consumption at 13 years and metabolic profile at 17 years (N = 3086). Effects of UPF-associated metabolites at 7 years on subsequent fat mass accumulation were assessed using growth curve models. RESULTS At 7 years, UPF was associated with 115 metabolic traits including lower levels of branched-chain and aromatic amino acids and higher levels of citrate, glutamine, and monounsaturated fatty acids, which were also associated with greater fat mass accumulation. Reported intake of nutrients mediated associations with most metabolites, except for citrate. CONCLUSIONS UPF consumption among British children is associated with perturbation of multiple metabolic traits, many of which contribute to child obesity risk.
Collapse
Affiliation(s)
- Evangelos Handakas
- Μedical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, United Kingdom
| | - Kiara Chang
- Public Health Policy Evaluation Unit, Imperial College London, London W6 8RP, United Kingdom
| | - Neha Khandpur
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; Center for Epidemiological Research in Nutrition and Health, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, U. S. A
| | - Eszter P Vamos
- Public Health Policy Evaluation Unit, Imperial College London, London W6 8RP, United Kingdom
| | - Christopher Millett
- Public Health Policy Evaluation Unit, Imperial College London, London W6 8RP, United Kingdom; Comprehensive Health Research Center and Public Health Research Centre, National School of Public Health, NOVA University Lisbon, Portugal
| | - Franco Sassi
- Centre for Health Economics & Policy Innovation, Department of Economics & Public Policy, Imperial College Business School, South Kensington Campus, London, United Kingdom
| | - Paolo Vineis
- Μedical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, United Kingdom
| | - Oliver Robinson
- Μedical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, United Kingdom; Mohn Centre for Children's Health and Well-being, School of Public Health, Imperial College London, United Kingdom.
| |
Collapse
|
33
|
Casey AE, Liu W, Hein LK, Sargeant TJ, Pederson SM, Mäkinen VP. Transcriptional targets of senataxin and E2 promoter binding factors are associated with neuro-degenerative pathways during increased autophagic flux. Sci Rep 2022; 12:17665. [PMID: 36271102 PMCID: PMC9587291 DOI: 10.1038/s41598-022-21617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/29/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an intracellular recycling process that degrades harmful molecules and enables survival during starvation, with implications for diseases including dementia, cancer and atherosclerosis. Previous studies demonstrate how a limited number of transcription factors (TFs) can increase autophagy. However, this knowledge has not resulted in translation into therapy, thus, to gain understanding of more suitable targets, we utilized a systems biology approach. We induced autophagy by amino acid starvation and mTOR inhibition in HeLa, HEK 293 and SH-SY5Y cells and measured temporal gene expression using RNA-seq. We observed 456 differentially expressed genes due to starvation and 285 genes due to mTOR inhibition (PFDR < 0.05 in every cell line). Pathway analyses implicated Alzheimer's and Parkinson's diseases (PFDR ≤ 0.024 in SH-SY5Y and HeLa) and amyotrophic lateral sclerosis (ALS, PFDR < 0.05 in mTOR inhibition experiments). Differential expression of the Senataxin (SETX) target gene set was predicted to activate multiple neurodegenerative pathways (PFDR ≤ 0.04). In the SH-SY5Y cells of neuronal origin, the E2F transcription family was predicted to activate Alzheimer's disease pathway (PFDR ≤ 0.0065). These exploratory analyses suggest that SETX and E2F may mediate transcriptional regulation of autophagy and further investigations into their possible role in neuro-degeneration are warranted.
Collapse
Affiliation(s)
- Aaron E. Casey
- grid.430453.50000 0004 0565 2606Computational and Systems Biology Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000 Australia ,grid.1026.50000 0000 8994 5086Australian Centre for Precision Health, Cancer Research Institute, University of South Australia, Adelaide, Australia
| | - Wenjun Liu
- grid.1010.00000 0004 1936 7304Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Leanne K. Hein
- grid.430453.50000 0004 0565 2606Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Timothy J. Sargeant
- grid.430453.50000 0004 0565 2606Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stephen M. Pederson
- grid.1010.00000 0004 1936 7304Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Ville-Petteri Mäkinen
- grid.430453.50000 0004 0565 2606Computational and Systems Biology Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000 Australia ,grid.1026.50000 0000 8994 5086Australian Centre for Precision Health, Cancer Research Institute, University of South Australia, Adelaide, Australia ,grid.10858.340000 0001 0941 4873Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland ,grid.10858.340000 0001 0941 4873Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
34
|
Tso JV, Liu C, Turner CG, Uppal K, Prabakaran G, Ejaz K, Baggish AL, Jones DP, Quyyumi AA, Kim JH. Metabolic Alterations Differentiating Cardiovascular Maladaptation from Athletic Training in American-Style Football Athletes. Med Sci Sports Exerc 2022; 54:1617-1624. [PMID: 35617604 PMCID: PMC9481654 DOI: 10.1249/mss.0000000000002960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Metabolomics identifies molecular products produced in response to numerous stimuli, including both adaptive (includes exercise training) and disease processes. We analyzed a longitudinal cohort of American-style football (ASF) athletes, who reliably acquire maladaptive cardiovascular (CV) phenotypes during competitive training, with high-resolution metabolomics to determine whether metabolomics can discriminate exercise-induced CV adaptations from early CV pathology. METHODS Matched discovery ( n = 42) and validation ( n = 40) multicenter cohorts of collegiate freshman ASF athletes were studied with longitudinal echocardiography, applanation tonometry, and high-resolution metabolomics. Liquid chromatography-mass spectrometry identified metabolites that changed ( P < 0.05, false discovery rate <0.2) over the season. Metabolites demonstrating similar changes in both cohorts were further analyzed in linear and mixed-effects models to identify those associated with left ventricular mass, tissue-Doppler myocardial E ' velocity (diastolic function), and arterial function (pulse wave velocity). RESULTS In both cohorts, 20 common metabolites changed similarly across the season. Metabolites reflective of favorable CV health included an increase in arginine and decreases in hypoxanthine and saturated fatty acids (heptadecanoate, arachidic acid, stearate, and hydroxydecanoate). In contrast, metabolic perturbations of increased lysine and pipecolate, reflective of adverse CV health, were also observed. Adjusting for player position, race, height, and changes in systolic blood pressure, weight, and pulse wave velocity, increased lysine ( β = 0.018, P = 0.02) and pipecolate ( β = 0.018, P = 0.02) were associated with increased left ventricular mass index. In addition, increased lysine ( β = -0.049, P = 0.01) and pipecolate ( β = -0.052, P = 0.008) were also associated with lower E ' (reduced diastolic function). CONCLUSIONS ASF athletes seem to develop metabolomic changes reflective of both favorable CV health and early CV maladaptive phenotypes. Whether metabolomics can discriminate early pathologic CV transformations among athletes is a warranted future research direction.
Collapse
Affiliation(s)
- Jason V. Tso
- Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA
| | - Chang Liu
- Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA
| | - Casey G. Turner
- Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA
| | - Karan Uppal
- Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA
| | - Ganesh Prabakaran
- Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA
| | - Kiran Ejaz
- Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA
| | - Aaron L. Baggish
- Cardiovascular Performance Program, Massachusetts General Hospital, Boston MA
| | - Dean P. Jones
- Division of Pulmonology, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | - Arshed A. Quyyumi
- Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA
| | - Jonathan H. Kim
- Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
35
|
Substantial Fat Loss in Physique Competitors Is Characterized by Increased Levels of Bile Acids, Very-Long Chain Fatty Acids, and Oxylipins. Metabolites 2022; 12:metabo12100928. [PMID: 36295830 PMCID: PMC9609491 DOI: 10.3390/metabo12100928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Weight loss and increased physical activity may promote beneficial modulation of the metabolome, but limited evidence exists about how very low-level weight loss affects the metabolome in previously non-obese active individuals. Following a weight loss period (21.1 ± 3.1 weeks) leading to substantial fat mass loss of 52% (−7.9 ± 1.5 kg) and low body fat (12.7 ± 4.1%), the liquid chromatography-mass spectrometry-based metabolic signature of 24 previously young, healthy, and normal weight female physique athletes was investigated. We observed uniform increases (FDR < 0.05) in bile acids, very-long-chain free fatty acids (FFA), and oxylipins, together with reductions in unsaturated FFAs after weight loss. These widespread changes, especially in the bile acid profile, were most strongly explained (FDR < 0.05) by changes in android (visceral) fat mass. The reported changes did not persist, as all of them were reversed after the subsequent voluntary weight regain period (18.4 ± 2.9 weeks) and were unchanged in non-dieting controls (n = 16). Overall, we suggest that the reported changes in FFA, bile acid, and oxylipin profiles reflect metabolic adaptation to very low levels of fat mass after prolonged periods of intense exercise and low-energy availability. However, the effects of the aforementioned metabolome subclass alteration on metabolic homeostasis remain controversial, and more studies are warranted to unravel the complex physiology and potentially associated health implications. In the end, our study reinforced the view that transient weight loss seems to have little to no long-lasting molecular and physiological effects.
Collapse
|
36
|
Kvalheim OM, Rajalahti T, Aadland E. An approach to assess and adjust for the influence of multicollinear covariates on metabolomics association patterns-applied to a study of the associations between a comprehensive lipoprotein profile and the homeostatic model assessment of insulin resistance. Metabolomics 2022; 18:72. [PMID: 36056220 PMCID: PMC9439979 DOI: 10.1007/s11306-022-01931-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/24/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Comprehensive lipoprotein profiling using proton nuclear magnetic resonance (NMR) spectroscopy of serum represents an alternative to the homeostatic model assessment of insulin resistance (HOMA-IR). Both adiposity and physical (in)activity associate to insulin resistance, but quantification of the influence of these two lifestyle related factors on the association pattern of HOMA-IR to lipoproteins suffers from lack of appropriate methods to handle multicollinear covariates. OBJECTIVES We aimed at (i) developing an approach for assessment and adjustment of the influence of multicollinear and even linear dependent covariates on regression models, and (ii) to use this approach to examine the influence of adiposity and physical activity on the association pattern between HOMA-IR and the lipoprotein profile. METHODS For 841 children, lipoprotein profiles were obtained from serum proton NMR and physical activity (PA) intensity profiles from accelerometry. Adiposity was measured as body mass index, the ratio of waist circumference to height, and skinfold thickness. Target projections were used to assess and isolate the influence of adiposity and PA on the association pattern of HOMA-IR to the lipoproteins. RESULTS Adiposity explained just over 50% of the association pattern of HOMA-IR to the lipoproteins with strongest influence on high-density lipoprotein features. The influence of PA was mainly attributed to a strong inverse association between adiposity and moderate and high-intensity physical activity. CONCLUSION The presented covariate projection approach to obtain net association patterns, made it possible to quantify and interpret the influence of adiposity and physical (in)activity on the association pattern of HOMA-IR to the lipoprotein features.
Collapse
Affiliation(s)
- Olav M Kvalheim
- Department of Chemistry, University of Bergen, Bergen, Norway.
| | - Tarja Rajalahti
- Førde Health Trust, Førde, Norway
- Red Cross Haugland Rehabilitation Centre, Flekke, Norway
| | - Eivind Aadland
- Department of Sport, Food and Natural Sciences, Western Norway University of Applied Sciences, Sogndal, Norway
| |
Collapse
|
37
|
Accelerometer-Based Sedentary Time, Physical Activity, and Serum Metabolome in Young Men. Metabolites 2022; 12:metabo12080700. [PMID: 36005572 PMCID: PMC9414649 DOI: 10.3390/metabo12080700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
Physical activity (PA) has been shown to associate with many health benefits but studies with metabolome-wide associations with PA are still lacking. Metabolome studies may deepen the mechanistic understanding of PA on the metabolic pathways related to health outcomes. The aim of the present study was to study the association of accelerometer based sedentary time (SB) and PA with metabolome measures. SB and PA were measured by a hip-worn accelerometer in 314 young adult men (age: mean 28, standard deviation 7 years). Metabolome was analyzed from fasting serum samples consisting of 66 metabolome measures (nuclear magnetic resonance-based metabolomics). The associations were analyzed using a single and compositional approach with regression analysis. The compositional analysis revealed that 4 metabolome variables were significantly (γ: 0.32−0.44, p ≤ 0.002), and 13 variables with a trend towards significance (p < 0.05), associated with SB with varying metabolic pathways. Trends towards significant associations (p < 0.05) were observed with 5 variables with moderate-to-vigorous and 1 variable with light intensity PA with varying metabolic pathways. The present study revealed possible mechanistic pathways relevant for the interaction between especially SB but also PA of moderate-to-vigorous intensity with ketone bodies and amino acid concentration related to exercised-induced energy production and lipid metabolism.
Collapse
|
38
|
Kujala UM, Leskinen T, Rottensteiner M, Aaltonen S, Ala-Korpela M, Waller K, Kaprio J. Physical activity and health: Findings from Finnish monozygotic twin pairs discordant for physical activity. Scand J Med Sci Sports 2022; 32:1316-1323. [PMID: 35770444 PMCID: PMC9378553 DOI: 10.1111/sms.14205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/21/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
Genetic and early environmental differences including early health habits associate with future health. To provide insight on the causal nature of these associations, monozygotic (MZ) twin pairs discordant for health habits provide an interesting natural experiment. Twin pairs discordant for leisure‐time physical activity (LTPA) in early adult life is thus a powerful study design to investigate the associations between long‐term LTPA and indicators of health and wellbeing. We have identified 17 LTPA discordant twin pairs from two Finnish twin cohorts and summarize key findings of these studies in this paper. The carefully characterized rare long‐term LTPA discordant MZ twin pairs have participated in multi‐dimensional clinical examinations. Key findings highlight that compared with less active twins in such MZ twin pairs, the twins with higher long‐term LTPA have higher physical fitness, reduced body fat, reduced visceral fat, reduced liver fat, increased lumen diameters of conduit arteries to the lower limbs, increased bone mineral density in loaded bone areas, and an increased number of large high‐density lipoprotein particles. The findings increase our understanding on the possible site‐specific and system‐level effects of long‐term LTPA.
Collapse
Affiliation(s)
- Urho M Kujala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Tuija Leskinen
- Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland
| | - Mirva Rottensteiner
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Sari Aaltonen
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Mika Ala-Korpela
- Systems Epidemiology, Faculty of Medicine, University of Oulu & Biocenter Oulu, Oulu, Finland.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Katja Waller
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| |
Collapse
|
39
|
Ala-Korpela M, Zhao S, Järvelin MR, Mäkinen VP, Ohukainen P. Apt interpretation of comprehensive lipoprotein data in large-scale epidemiology: disclosure of fundamental structural and metabolic relationships. Int J Epidemiol 2022; 51:996-1011. [PMID: 34405869 PMCID: PMC9189959 DOI: 10.1093/ije/dyab156] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/09/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Quantitative lipoprotein analytics using nuclear magnetic resonance (NMR) spectroscopy is currently commonplace in large-scale studies. One methodology has become widespread and is currently being utilized also in large biobanks. It allows the comprehensive characterization of 14 lipoprotein subclasses, clinical lipids, apolipoprotein A-I and B. The details of these data are conceptualized here in relation to lipoprotein metabolism with particular attention on the fundamental characteristics of subclass particle numbers, lipid concentrations and compositional measures. METHODS AND RESULTS The NMR methodology was applied to fasting serum samples from Northern Finland Birth Cohorts 1966 and 1986 with 5651 and 5605 participants, respectively. All results were highly consistent between the cohorts. Circulating lipid concentrations in a particular lipoprotein subclass arise predominantly as the result of the circulating number of those subclass particles. The spherical lipoprotein particle shape, with a radially oriented surface monolayer, imposes size-dependent biophysical constraints for the lipid composition of individual subclass particles and inherently restricts the accommodation of metabolic changes via compositional modifications. The new finding that the relationship between lipoprotein subclass particle concentrations and the particle size is log-linear reveals that circulating lipoprotein particles are also under rather strict metabolic constraints for both their absolute and relative concentrations. CONCLUSIONS The fundamental structural and metabolic relationships between lipoprotein subclasses elucidated in this study empower detailed interpretation of lipoprotein metabolism. Understanding the intricate details of these extensive data is important for the precise interpretation of novel therapeutic opportunities and for fully utilizing the potential of forthcoming analyses of genetic and metabolic data in large biobanks.
Collapse
Affiliation(s)
- Mika Ala-Korpela
- Corresponding author. Computational Medicine, Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland. E-mail:
| | - Siyu Zhao
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, UK
| | - Ville-Petteri Mäkinen
- Australian Centre for Precision Health, University of South Australia, Adelaide, Australia
- Computational and Systems Biology Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Pauli Ohukainen
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
40
|
Hamaya R, Mora S, Lawler PR, Cook NR, Buring JE, Lee IM, Manson JE, Tobias DK. Association of Modifiable Lifestyle Factors with Plasma Branched-Chain Amino Acid Metabolites in Women. J Nutr 2022; 152:1515-1524. [PMID: 35259270 PMCID: PMC9178956 DOI: 10.1093/jn/nxac056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/04/2022] [Accepted: 03/04/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Circulating branched-chain amino acids (BCAAs-isoleucine, leucine, and valine) are strongly associated with higher risk of incident type 2 diabetes (T2D); however, determinants of elevated fasting BCAA concentrations are largely unknown. OBJECTIVES We aimed to characterize the modifiable lifestyle factors related to plasma BCAAs. METHODS We performed a cross-sectional analysis among n = 18,897 women (mean ± SD age: 54.9 ± 7.2 y) in the Women's Health Study, free of T2D and cardiovascular disease at baseline blood draw. Lifestyle factors, weight, and height were self-reported via questionnaire, including smoking status, alcohol, leisure-time physical activity (LTPA), diet quality scores [2010 Alternative Healthy Eating Index (without alcohol) (aHEI); alternate Mediterranean Diet (aMED)], and dietary sources of BCAAs. Plasma BCAAs were quantified via NMR spectroscopy. We calculated multivariable-adjusted percentage mean differences (95% CIs) and P values for linear trend of BCAAs stratified by categoric lifestyle factors. We estimated R2 from univariate cubic spline regression models to estimate the variability in BCAAs explained. RESULTS Compared with women with BMI (in kg/m2) <25.0, BCAAs were 8.6% (95% CI: 8.0%, 9.3%), 15.3% (95% CI: 14.4%, 16.3%), and 21.0% (95% CI: 18.2%, 23.9%) higher for the BMI strata 25.0-29.9, 30.0-39.9, and ≥40.0, respectively (P-trend < 0.0001). Women with higher LTPA and higher alcohol intake compared with lower had modestly (∼1%) lower plasma BCAAs (P-trend = 0.014 and 0.0003, respectively). Differences in smoking status, aHEI, and aMED score were not related to plasma BCAAs. Women with higher dietary BCAAs had dose-response higher plasma BCAA concentrations, 3.4% (95% CI: 2.5%, 4.4%) higher when comparing the highest with the lowest quintile (P-trend < 0.0001). BMI explained 11.6% of the variability of BCAAs, whereas other factors explained between 0.1% and 1%. CONCLUSIONS Our findings among a large cohort of US women indicate that BMI, but less so diet, physical activity, and other lifestyle factors, is related to plasma BCAAs.This trial was registered at clinicaltrials.gov as NCT00000479.
Collapse
Affiliation(s)
- Rikuta Hamaya
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Samia Mora
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Lipid Metabolomics and Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Patrick R Lawler
- Peter Munk Cardiac Centre, University Health Network, and Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
| | - Nancy R Cook
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Julie E Buring
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - I-Min Lee
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - JoAnn E Manson
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Mary Horrigan Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Deirdre K Tobias
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
41
|
Johnson RK, Brunetti T, Quinn K, Doenges K, Campbell M, Arehart C, Taub MA, Mathias RA, Reisdorph N, Barnes KC, Daya M. Discovering metabolite quantitative trait loci in asthma using an isolated population. J Allergy Clin Immunol 2022; 149:1807-1811.e16. [PMID: 34780848 PMCID: PMC9081120 DOI: 10.1016/j.jaci.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Integration of metabolomics with genetics may advance understanding of disease pathogenesis but has been underused in asthma genetic studies. OBJECTIVE We sought to discover new genetic effects in asthma and to characterize the molecular consequences of asthma genetic risk through integration with the metabolome in a homogeneous population. METHODS From fasting serum samples collected on 348 Tangier Island residents, we quantified 2612 compounds using untargeted metabolomics. Genotyping was performed using Illumina's MEGA array imputed to the TOPMed reference panel. To prioritize metabolites for genome-wide association analysis, we performed a metabolome-wide association study with asthma, selecting asthma-associated metabolites with heritability q value less than 0.01 for genome-wide association analysis. We also tested the association between all metabolites and 8451 candidate asthma single nucleotide polymorphisms previously associated with asthma in the UK Biobank. We followed up significant associations by characterizing shared genetic signal for metabolites and asthma using colocalization analysis. For detailed Methods, please see this article's Online Repository at www.jacionline.org. RESULTS A total of 60 metabolites were associated with asthma (P < .01), including 40 heritable metabolites tested in genome-wide association analysis. We observed a strong association peak for the endocannabinoid linoleoyl ethanolamide on chromosome 6 in VNN1 (P < 2.7 × 10-9). We found strong evidence (colocalization posterior probability >75%) for a shared causal variant between 3 metabolites and asthma, including the polyamine acisoga and variants in LPP, and derivative leukotriene B4 and intergenic variants in chr10p14. CONCLUSIONS We identified novel metabolite quantitative trait loci with asthma associations. Identification and characterization of these genetically driven metabolites may provide insight into the functional consequences of genetic risk factors for asthma.
Collapse
Affiliation(s)
- Randi K Johnson
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo.
| | - Tonya Brunetti
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Kevin Quinn
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Katrina Doenges
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Monica Campbell
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Christopher Arehart
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md
| | - Rasika A Mathias
- Division of Allergy & Clinical Immunology, Department of Medicine, Johns Hopkins University, Baltimore, Md
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Kathleen C Barnes
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Michelle Daya
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| |
Collapse
|
42
|
Branched-Chain Amino Acid Deprivation Decreases Lipid Oxidation and Lipogenesis in C2C12 Myotubes. Metabolites 2022; 12:metabo12040328. [PMID: 35448515 PMCID: PMC9031053 DOI: 10.3390/metabo12040328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Impaired lipid metabolism is a common risk factor underlying several metabolic diseases such as metabolic syndrome and type 2 diabetes. Branched-chain amino acids (BCAAs) that include valine, leucine and isoleucine have been proven to share a role in lipid metabolism and hence in maintaining metabolic health. We have previously introduced a hypothesis suggesting that BCAA degradation mechanistically connects to lipid oxidation and storage in skeletal muscle. To test our hypothesis, the present study examined the effects of BCAA deprivation and supplementation on lipid oxidation, lipogenesis and lipid droplet characteristics in murine C2C12 myotubes. In addition, the role of myotube contractions on cell metabolism was studied by utilizing in vitro skeletal-muscle-specific exercise-like electrical pulse stimulation (EPS). Our results showed that the deprivation of BCAAs decreased both lipid oxidation and lipogenesis in C2C12 myotubes. BCAA deprivation further diminished the number of lipid droplets in the EPS-treated myotubes. EPS decreased lipid oxidation especially when combined with high BCAA supplementation. Similar to BCAA deprivation, high BCAA supplementation also decreased lipid oxidation. The present results highlight the role of an adequate level of BCAAs in healthy lipid metabolism.
Collapse
|
43
|
Hall ECR, Semenova EA, Bondareva EA, Andryushchenko LB, Larin AK, Cięszczyk P, Generozov EV, Ahmetov II. Association of Genetically Predicted BCAA Levels with Muscle Fiber Size in Athletes Consuming Protein. Genes (Basel) 2022; 13:genes13030397. [PMID: 35327951 PMCID: PMC8955300 DOI: 10.3390/genes13030397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Branched-chain amino acid (BCAA) levels are associated with skeletal muscle cross-sectional area (CSA). Serum BCAA levels are enhanced by whey protein supplementation (WPS), and evidence in clinical populations suggests an association of single nucleotide polymorphisms (SNPs) with BCAA metabolite levels. It is not known whether the same SNPs are associated with the ability to catabolise BCAAs from exogenous sources, such as WPS. The present study investigated whether possessing a higher number of alleles associated with increased BCAA metabolites correlates with muscle fiber CSA of m. vastus lateralis in physically active participants, and whether any relationship is enhanced by WPS. Endurance-trained participants (n = 75) were grouped by self-reported habitual WPS consumption and genotyped for five SNPs (PPM1K rs1440580, APOA5 rs2072560, CBLN1 rs1420601, DDX19B rs12325419, and TRMT61A rs58101275). Body mass, BMI, and fat percentage were significantly lower and muscle mass higher in the WPS group compared to Non-WPS. The number of BCAA-increasing alleles was correlated with fiber CSA in the WPS group (r = 0.75, p < 0.0001) and was stronger for fast-twitch fibers (p = 0.001) than slow-twitch fibers (p = 0.048). Similar results remained when corrected for multiple covariates (age, physical activity, and meat and dairy intake). No correlation was found in the Non-WPS group. This study presents novel evidence of a positive relationship between BCAA-increasing alleles and muscle fiber CSA in athletes habitually consuming WPS. We suggest that a high number of BCAA-increasing alleles improves the efficiency of WPS by stimulation of muscle protein synthesis, and contributes to greater fiber CSA.
Collapse
Affiliation(s)
- Elliott C. R. Hall
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK;
| | - Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.A.S.); (E.A.B.); (A.K.L.); (E.V.G.)
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420010 Kazan, Russia
| | - Elvira A. Bondareva
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.A.S.); (E.A.B.); (A.K.L.); (E.V.G.)
| | - Liliya B. Andryushchenko
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia;
| | - Andrey K. Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.A.S.); (E.A.B.); (A.K.L.); (E.V.G.)
| | - Pawel Cięszczyk
- Faculty of Physical Education, Gdańsk University of Physical Education and Sport, 80-854 Gdańsk, Poland;
| | - Edward V. Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.A.S.); (E.A.B.); (A.K.L.); (E.V.G.)
| | - Ildus I. Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK;
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.A.S.); (E.A.B.); (A.K.L.); (E.V.G.)
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia;
- Laboratory of Molecular Genetics, Kazan State Medical University, 420012 Kazan, Russia
- Correspondence:
| |
Collapse
|
44
|
Jones PR, Rajalahti T, Resaland GK, Aadland E, Steene-Johannessen J, Anderssen SA, Bathen TF, Andreassen T, Kvalheim OM, Ekelund U. Associations of lipoprotein particle profile and objectively measured physical activity and sedentary time in schoolchildren: a prospective cohort study. Int J Behav Nutr Phys Act 2022; 19:5. [PMID: 35062967 PMCID: PMC8781389 DOI: 10.1186/s12966-022-01244-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Our understanding of the mechanisms through which physical activity might benefit lipoprotein metabolism is inadequate. Here we characterise the continuous associations between physical activity of different intensities, sedentary time, and a comprehensive lipoprotein particle profile.
Methods
Our cohort included 762 fifth grade (mean [SD] age = 10.0 [0.3] y) Norwegian schoolchildren (49.6% girls) measured on two separate occasions across one school year. We used targeted proton nuclear magnetic resonance (1H NMR) spectroscopy to produce 57 lipoprotein measures from fasted blood serum samples. The children wore accelerometers for seven consecutive days to record time spent in light-, moderate-, and vigorous-intensity physical activity, and sedentary time. We used separate multivariable linear regression models to analyse associations between the device-measured activity variables—modelled both prospectively (baseline value) and as change scores (follow-up minus baseline value)—and each lipoprotein measure at follow-up.
Results
Higher baseline levels of moderate-intensity and vigorous-intensity physical activity were associated with a favourable lipoprotein particle profile at follow-up. The strongest associations were with the larger subclasses of triglyceride-rich lipoproteins. Sedentary time was associated with an unfavourable lipoprotein particle profile, the pattern of associations being the inverse of those in the moderate-intensity and vigorous-intensity physical activity analyses. The associations with light-intensity physical activity were more modest; those of the change models were weak.
Conclusion
We provide evidence of a prospective association between time spent active or sedentary and lipoprotein metabolism in schoolchildren. Change in activity levels across the school year is of limited influence in our young, healthy cohort.
Trial registration
ClinicalTrials.gov, #NCT02132494. Registered 7th April 2014
Collapse
|
45
|
Atherogenic lipidomics profile in healthy individuals with low cardiorespiratory fitness: The HUNT3 fitness study. Atherosclerosis 2022; 343:51-57. [DOI: 10.1016/j.atherosclerosis.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/26/2021] [Accepted: 01/11/2022] [Indexed: 01/02/2023]
|
46
|
Haapala EA, Leppänen MH, Lehti M, Lintu N, Tompuri T, Viitasalo A, Schwab U, Lakka TA. Cross-sectional associations between cardiorespiratory fitness and NMR-derived metabolic biomarkers in children - the PANIC study. Front Endocrinol (Lausanne) 2022; 13:954418. [PMID: 36213296 PMCID: PMC9538338 DOI: 10.3389/fendo.2022.954418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Cardiorespiratory fitness has been inversely associated with cardiovascular risk across the lifespan. Some studies in adults suggest that higher cardiorespiratory fitness is associated with cardioprotective metabolite profile, but the evidence in children is lacking. Therefore, we investigated the cross-sectional association of cardiorespiratory fitness with serum nuclear magnetic resonance derived metabolic biomarkers in children. METHODS A population sample of 450 children aged 6-8 years was examined. Cardiorespiratory fitness was assessed by a maximal exercise test on a cycle ergometer and quantified as maximal power output normalised for lean body mass assessed by dual-energy X-ray absorbtiometry. Serum metabolites were assessed using a high throughput nuclear magnetic resonance platform. The data were analysed using linear regression analyses adjusted for age and sex and subsequently for body fat percentage (BF%) assessed by DXA. RESULTS Cardiorespiratory fitness was directly associated with high density lipoprotein (HDL) cholesterol (β=0.138, 95% CI=0.042 to 0.135, p=0.005), average HDL particle diameter (β=0.102, 95% CI=0.004 to 0.199, p=0.041), and the concentrations of extra-large HDL particles (β=0.103, 95% CI=0.006 to 0.201, p=0.038), large HDL particles (β=0.122, 95% CI=0.025 to 0.220, p=0.014), and medium HDL particles (β=0.143, 95% CI=0.047 to 0.239, p=0.004) after adjustment for age and sex. Higher cardiorespiratory fitness was also associated with higher concentrations of ApoA1 (β=0.145, 95% CI=0.047 to 0.242, p=0.003), glutamine (β=0.161, 95% CI=0.064 to 0.257, p=0.001), and phenylalanine (β=0.187, 95% CI=0.091 to 0.283, p<0.001). However, only the direct associations of cardiorespiratory fitness with the concentrations of HDL cholesterol (β=0.114, 95% CI=0.018 to 0.210, p=0.021), medium HDL particles (β=0.126, 95% CI=0.030 to 0.223, p=0.010), ApoA1 (β=0.126, 95% CI=0.030 to 0.223, p=0.011), glutamine (β=0.147, 95% CI=0.050 to 0.224, p=0.003), and phenylalanine (β=0.217, 95% CI=0.122 to 0.311, p<0.001) remained statistically significant after further adjustment for BF%. CONCLUSIONS Higher cardiorespiratory fitness was associated with a cardioprotective biomarker profile in children. Most associations were independent of BF% suggesting that the differences in serum metabolites between children are driven by cardiorespiratory fitness and not adiposity.
Collapse
Affiliation(s)
- Eero A. Haapala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- *Correspondence: Eero A. Haapala,
| | - Marja H. Leppänen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Maarit Lehti
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Niina Lintu
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tuomo Tompuri
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Anna Viitasalo
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Timo A. Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| |
Collapse
|
47
|
Rajalahti T, Aadland E, Resaland GK, Anderssen SA, Kvalheim OM. Influence of adiposity and physical activity on the cardiometabolic association pattern of lipoprotein subclasses to aerobic fitness in prepubertal children. PLoS One 2021; 16:e0259901. [PMID: 34793516 PMCID: PMC8601570 DOI: 10.1371/journal.pone.0259901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022] Open
Abstract
Aerobic fitness (AF) and lipoprotein subclasses associate to each other and to cardiovascular health. Adiposity and physical activity (PA) influence the association pattern of AF to lipoproteins almost inversely making it difficult to assess their independent and joint influence on the association pattern. This study, including 841 children (50% boys) 10.2 ± 0.3 years old with BMI 18.0 ± 3.0 kg/m2 from rural Western Norway, aimed at examining the association pattern of AF to the lipoprotein subclasses and to estimate the independent and joint influence of PA and adiposity on this pattern. We used multivariate analysis to determine the association pattern of a profile of 26 lipoprotein features to AF with and without adjustment for three measures of adiposity and a high-resolution PA descriptor of 23 intensity intervals derived from accelerometry. For data not adjusted for adiposity or PA, we observed a cardioprotective lipoprotein pattern associating to AF. This pattern withstood adjustment for PA, but the strength of association to AF was reduced by 58%, while adjustment for adiposity weakened the association of AF to the lipoproteins by 85% and with strongest changes in the associations to a cardioprotective high-density lipoprotein subclass pattern. When adjusted for both adiposity and PA, the cardioprotective lipoprotein pattern still associated to AF, but the strength of association was reduced by 90%. Our results imply that the (negative) influence of adiposity on the cardioprotective association pattern of lipoproteins to AF is considerably stronger than the (positive) contribution of PA to this pattern. However, our analysis shows that PA contributes also indirectly through a strong inverse association to adiposity. The trial was registered 7 May, 2014 in clinicaltrials.gov with trial reg. no.: NCT02132494 and the URL is https://clinicaltrials.gov/ct2/results?term=NCT02132494&cntry=NO.
Collapse
Affiliation(s)
- Tarja Rajalahti
- Department of Chemistry, University of Bergen, Bergen, Norway
- Førde Health Trust, Førde, Norway
- Red Cross Haugland Rehabilitation Centre, Flekke, Norway
| | - Eivind Aadland
- Department of Sport, Food and Natural Sciences, Western Norway University of Applied Sciences, Sogndal, Norway
| | - Geir Kåre Resaland
- Department of Sport, Food and Natural Sciences, Western Norway University of Applied Sciences, Sogndal, Norway
- Faculty of Education, Center for Physical Active Learning, Arts and Sports, Western Norway University of Applied Sciences, Sogndal, Norway
| | - Sigmund Alfred Anderssen
- Department of Sport, Food and Natural Sciences, Western Norway University of Applied Sciences, Sogndal, Norway
- Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| | | |
Collapse
|
48
|
Physical Activity and Stool Metabolite Relationships Among Adults at High Risk for Colorectal Cancer. J Phys Act Health 2021; 18:1404-1411. [PMID: 34662855 DOI: 10.1123/jpah.2020-0876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/13/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Adenomatous polyps are associated with an increased risk of developing colorectal cancer. Physical activity (PA) and spending less time sedentary may reduce risk of polyp recurrence and cancer incidence. This study examined associations between PA, sedentary time, and stool metabolites in adults at high risk for developing colorectal cancer. METHODS Participants were ≥18 years old with ≥1 adenomatous polyps removed in the previous 3 years. PA and sedentary time were assessed using an activPAL™ accelerometer. Stool samples were analyzed for short-chain fatty acids, and primary/secondary bile acid metabolites by mass spectrometry. Linear regression models examined associations between PA, sedentary time, and stool parameters, with dietary fiber as a covariate. RESULTS Participants (N = 21) were 59 (9) years old and had a body mass index of 28.1 (3.35 kg/m2). Light-intensity PA was associated with butyrate (β = 1.88; 95% confidence interval [CI], 0.477 to 3.291) and propionate (β = 1.79; 95% CI, 0.862 to 2.724). Moderate to vigorous PA was associated with deoxycholic acid (β = -6.13; 95% CI, -12.14 to -0.11) and ursodeoxycholic acid (β = -0.45; 95% CI, -0.80 to -0.12) abundance. CONCLUSIONS Both light and moderate to vigorous PA were associated with gut microbial metabolite production. These findings suggest the importance of examining PA intensity alongside stool metabolites for colorectal cancer prevention.
Collapse
|
49
|
Morgunova GV, Shilovsky GA, Khokhlov AN. Effect of Caloric Restriction on Aging: Fixing the Problems of Nutrient Sensing in Postmitotic Cells? BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1352-1367. [PMID: 34903158 DOI: 10.1134/s0006297921100151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The review discusses the role of metabolic disorders (in particular, insulin resistance) in the development of age-related diseases and normal aging with special emphasis on the changes in postmitotic cells of higher organisms. Caloric restriction helps to prevent such metabolic disorders, which could probably explain its ability to prolong the lifespan of laboratory animals. Maintaining metabolic homeostasis is especially important for the highly differentiated long-lived body cells, whose lifespan is comparable to the lifespan of the organism itself. Normal functioning of these cells can be ensured only upon correct functioning of the cytoplasm clean-up system and availability of all required nutrients and energy sources. One of the central problems in gerontology is the age-related disruption of glucose metabolism leading to obesity, diabetes, metabolic syndrome, and other related pathologies. Along with the adipose tissue, skeletal muscles are the main consumers of insulin; hence the physical activity of muscles, which supports their energy metabolism, delays the onset of insulin resistance. Insulin resistance disrupts the metabolism of cardiomyocytes, so that they fail to utilize the nutrients to perform their functions even being surrounded by a nutrient-rich environment, which contributes to the development of age-related cardiovascular diseases. Metabolic pathologies also alter the nutrient sensitivity of neurons, thus disrupting the action of insulin in the central nervous system. In addition, there is evidence that neurons can develop insulin resistance as well. It has been suggested that affecting nutritional sensors (e.g., AMPK) in postmitotic cells might improve the state of the entire multicellular organism, slow down its aging, and increase the lifespan.
Collapse
Affiliation(s)
- Galina V Morgunova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Gregory A Shilovsky
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | |
Collapse
|
50
|
Hoel F, Hoel A, Pettersen IK, Rekeland IG, Risa K, Alme K, Sørland K, Fosså A, Lien K, Herder I, Thürmer HL, Gotaas ME, Schäfer C, Berge RK, Sommerfelt K, Marti HP, Dahl O, Mella O, Fluge Ø, Tronstad KJ. A map of metabolic phenotypes in patients with myalgic encephalomyelitis/chronic fatigue syndrome. JCI Insight 2021; 6:e149217. [PMID: 34423789 PMCID: PMC8409979 DOI: 10.1172/jci.insight.149217] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease usually presenting after infection. Emerging evidence supports that energy metabolism is affected in ME/CFS, but a unifying metabolic phenotype has not been firmly established. We performed global metabolomics, lipidomics, and hormone measurements, and we used exploratory data analyses to compare serum from 83 patients with ME/CFS and 35 healthy controls. Some changes were common in the patient group, and these were compatible with effects of elevated energy strain and altered utilization of fatty acids and amino acids as catabolic fuels. In addition, a set of heterogeneous effects reflected specific changes in 3 subsets of patients, and 2 of these expressed characteristic contexts of deregulated energy metabolism. The biological relevance of these metabolic phenotypes (metabotypes) was supported by clinical data and independent blood analyses. In summary, we report a map of common and context-dependent metabolic changes in ME/CFS, and some of them presented possible associations with clinical patient profiles. We suggest that elevated energy strain may result from exertion-triggered tissue hypoxia and lead to systemic metabolic adaptation and compensation. Through various mechanisms, such metabolic dysfunction represents a likely mediator of key symptoms in ME/CFS and possibly a target for supportive intervention.
Collapse
Affiliation(s)
| | - August Hoel
- Department of Biomedicine and.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Ingrid G Rekeland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kristin Risa
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kine Alme
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kari Sørland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Alexander Fosså
- Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,KJ Jebsen Centre for B-cell malignancies, University of Oslo, Oslo, Norway
| | - Katarina Lien
- CFS/ME Center, Division of Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingrid Herder
- CFS/ME Center, Division of Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Merete E Gotaas
- Department of Pain and Complex Disorders, St. Olav's Hospital, Trondheim, Norway
| | - Christoph Schäfer
- Department of Rehabilitation Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kristian Sommerfelt
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics and
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Olav Dahl
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Olav Mella
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Øystein Fluge
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | | |
Collapse
|