1
|
Martínez-Noguera FJ, Cabizosu A, Alcaraz PE, Marín-Pagán C. Effects of pre-exercise glycerol supplementation on dehydration, metabolic, kinematic, and thermographic variables in international race walkers. J Int Soc Sports Nutr 2024; 21:2346563. [PMID: 38676933 PMCID: PMC11057399 DOI: 10.1080/15502783.2024.2346563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Due to the increase in global temperature, it is necessary to investigate solutions so that athletes competing in hot conditions can perform in optimal conditions avoiding loss of performance and health problems. Therefore, this study aims to evaluate the effect of pre-exercise glycerol supplementation during a rectangular test at ambient temperature mid (28.2ºC) on dehydration variables in international race walkers. METHODS Eight international male race walkers (age: 28.0 years (4.4); weight: 65.6 kg (6.6); height: 180.0 cm (5.0); fat mass: 6.72% (0.66); muscle mass: 33.3 kg (3.3); VO2MAX: 66.5 ml · kg-1·min-1 (1.9)) completed this randomized crossover design clinical trial. Subjects underwent two interventions: they consumed placebo (n = 8) and glycerol (n = 8) acutely, before a rectangular test where dehydration, RPE, metabolic, kinematic, and thermographic variables were analyzed before, during and after the test. RESULTS After the intervention, significant differences were found between groups in body mass in favor of the placebo (Placebo: -2.23 kg vs Glycerol: -2.48 kg; p = 0.033). For other variables, no significant differences were found. CONCLUSION Therefore, pre-exercise glycerol supplementation was not able to improve any dehydration, metabolic, kinematic, or thermographic variables during a rectangular test at temperature mid in international race walkers. Possibly, a higher environmental temperature could have generated a higher metabolic and thermoregulatory stress, generating differences between groups like other previous scientific evidence.
Collapse
Affiliation(s)
| | - Alessio Cabizosu
- THERMHESC Group, Chair of Ribera Hospital de Molina San Antonio Catholic University of Murcia (UCAM), Murcia, Spain
| | - Pedro E. Alcaraz
- Research Center for High Performance Sport Catholic University of Murcia, Murcia, Spain
| | - Cristian Marín-Pagán
- Research Center for High Performance Sport Catholic University of Murcia, Murcia, Spain
| |
Collapse
|
2
|
Johansen MØ, Afzal S, Vedel-Krogh S, Nielsen SF, Smith GD, Nordestgaard BG. From plasma triglycerides to triglyceride metabolism: effects on mortality in the Copenhagen General Population Study. Eur Heart J 2023; 44:4174-4182. [PMID: 37575001 DOI: 10.1093/eurheartj/ehad330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 03/06/2023] [Accepted: 05/15/2023] [Indexed: 08/15/2023] Open
Abstract
AIMS It is unclear whether higher triglyceride metabolism per se contributes to mortality separate from elevated triglyceride-rich lipoproteins and body mass index. This study tested the hypotheses that higher triglyceride metabolism, measured as higher plasma glycerol and β-hydroxybutyrate, is associated with increased all-cause, cardiovascular, cancer, and other mortality. METHODS AND RESULTS This study included 30 000 individuals nested within 109 751 individuals from the Copenhagen General Population Study. During a median follow-up of 10.7 years, 9897 individuals died (2204 from cardiovascular, 3366 from cancer, and 2745 from other causes), while none were lost to follow-up. In individuals with glycerol >80 µmol/L (highest fourth) vs. individuals with glycerol <52 µmol/L (lowest fourth), the multivariable adjusted hazard ratio for all-cause mortality was 1.31 (95% confidence interval 1.22-1.40). In individuals with β-hydroxybutyrate >154 µmol/L (highest fourth) vs. individuals with β-hydroxybutyrate <91 µmol/L (lowest fourth), the multivariable adjusted hazard ratio for all-cause mortality was 1.18 (1.11-1.26). Corresponding values for higher plasma glycerol and β-hydroxybutyrate were 1.37 (1.18-1.59) and 1.18 (1.03-1.35) for cardiovascular mortality, 1.24 (1.11-1.39) and 1.16 (1.05-1.29) for cancer mortality, and 1.45 (1.28-1.66) and 1.23 (1.09-1.39) for other mortality, respectively. Results were robust to exclusion of first years of follow-up, to stratification for covariates including plasma triglycerides and body mass index, and to further adjustments. CONCLUSION This study observed an increased risk of all-cause, cardiovascular, cancer, and other mortality with higher triglyceride metabolism. This was not explained by higher plasma triglycerides and body mass index. The hypothesis studied in the present paper should be further validated by isotope flux studies.
Collapse
Affiliation(s)
- Mia Ø Johansen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Elevator 7, 4th Floor, N5, Herlev DK-2730, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Herlev DK-2730, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N DK-2200, Denmark
| | - Shoaib Afzal
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Elevator 7, 4th Floor, N5, Herlev DK-2730, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Herlev DK-2730, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N DK-2200, Denmark
| | - Signe Vedel-Krogh
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Elevator 7, 4th Floor, N5, Herlev DK-2730, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Herlev DK-2730, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N DK-2200, Denmark
| | - Sune F Nielsen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Elevator 7, 4th Floor, N5, Herlev DK-2730, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Herlev DK-2730, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N DK-2200, Denmark
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Elevator 7, 4th Floor, N5, Herlev DK-2730, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Herlev DK-2730, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N DK-2200, Denmark
| |
Collapse
|
3
|
Spahia N, Rroji M, Barbullushi M, Spasovski G. Subclinical Hypothyroidism, Kidney, and Heart from Normal to Uremic Milieu. Metab Syndr Relat Disord 2023; 21:415-425. [PMID: 37433213 DOI: 10.1089/met.2023.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
Thyroid hormone (TH) imbalances, particularly subclinical hypothyroidism (SCHT), are associated with chronic kidney disease (CKD) and end-stage kidney disease (ESKD). SCHT is more prevalent in CKD and ESKD patients than in the general population, and this condition increases the risk of cardiovascular disease (CVD) morbidity and mortality. The risk of CVD is higher in CKD and ESKD patients compared with the general population. Traditional and nontraditional risk factors, including TH abnormalities, contribute to the high CVD burden in CKD and ESKD patients. The review discusses the link between CKD and hypothyroidism, with a focus on SCHT, and the mechanisms that lead to CVD burden.
Collapse
Affiliation(s)
- Nereida Spahia
- Department of Nephrology, University Hospital Center "Mother Teresa," Tirana, Albania
| | - Merita Rroji
- Department of Nephrology, University Hospital Center "Mother Teresa," Tirana, Albania
| | - Myftar Barbullushi
- Department of Nephrology, University Hospital Center "Mother Teresa," Tirana, Albania
| | - Goce Spasovski
- Department of Nephrology, Medical Faculty, University Sts. Cyril and Methodius, Skopje, North Macedonia
| |
Collapse
|
4
|
Paoli A, Bianco A, Moro T, Mota JF, Coelho-Ravagnani CF. The Effects of Ketogenic Diet on Insulin Sensitivity and Weight Loss, Which Came First: The Chicken or the Egg? Nutrients 2023; 15:3120. [PMID: 37513538 PMCID: PMC10385501 DOI: 10.3390/nu15143120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The ketogenic diet (KD) is, nowadays, considered an interesting nutritional approach for weight loss and improvement in insulin resistance. Nevertheless, most of the studies available in the literature do not allow a clear distinction between its effects on insulin sensitivity per se, and the effects of weight loss induced by KDs on insulin sensitivity. In this review, we discuss the scientific evidence on the direct and weight loss mediated effects of KDs on glycemic status in humans, describing the KD's biochemical background and the underlying mechanisms.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padua, 35127 Padua, Italy
- Research Center for High Performance Sport, UCAM, Catholic University of Murcia, 30107 Murcia, Spain
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, University of Palermo, 90144 Palermo, Italy
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padua, 35127 Padua, Italy
| | - Joao Felipe Mota
- School of Nutrition, Federal University of Goiás, Goiânia 74605-080, Brazil
- APC Microbiome Ireland, Department of Medicine, School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| | - Christianne F Coelho-Ravagnani
- Research in Exercise and Nutrition in Health and Sports Performance-PENSARE, Post-Graduate Program in Movement Sciences, Institute of Health (INISA), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| |
Collapse
|
5
|
Xu H, Wang Y, Kwon H, Shah A, Kalemba K, Su X, He L, Wondisford FE. Glucagon changes substrate preference in gluconeogenesis. J Biol Chem 2022; 298:102708. [PMID: 36402444 PMCID: PMC9747632 DOI: 10.1016/j.jbc.2022.102708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Fasting hyperglycemia in diabetes mellitus is caused by unregulated glucagon secretion that activates gluconeogenesis (GNG) and increases the use of pyruvate, lactate, amino acids, and glycerol. Studies of GNG in hepatocytes, however, tend to test a limited number of substrates at nonphysiologic concentrations. Therefore, we treated cultured primary hepatocytes with three identical substrate mixtures of pyruvate/lactate, glutamine, and glycerol at serum fasting concentrations, where a different U-13C- or 2-13C-labeled substrate was substituted in each mix. In the absence of glucagon stimulation, 80% of the glucose produced in primary hepatocytes incorporated either one or two 13C-labeled glycerol molecules in a 1:1 ratio, reflecting the high overall activity of this pathway. In contrast, glucose produced from 13C-labeled pyruvate/lactate or glutamine rarely incorporated two labeled molecules. While glucagon increased the glycerol and pyruvate/lactate contributions to glucose carbon by 1.6- and 1.8-fold, respectively, the glutamine contribution to glucose carbon was increased 6.4-fold in primary hepatocytes. To account for substrate 13C carbon loss during metabolism, we also performed a metabolic flux analysis, which confirmed that the majority of glucose carbon produced by primary hepatocytes was from glycerol. In vivo studies using a PKA-activation mouse model that represents elevated glucagon activity confirmed that most circulating lactate carbons originated from glycerol, but very little glycerol was derived from lactate carbons, reflecting glycerol's importance as a carbon donor to GNG. Given the diverse entry points for GNG substrates, hepatic glucagon action is unlikely to be due to a single mechanism.
Collapse
Affiliation(s)
- Huiting Xu
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Yujue Wang
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Hyokjoon Kwon
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Ankit Shah
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Katarzyna Kalemba
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Xiaoyang Su
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Ling He
- Departments of Pediatrics and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
| |
Collapse
|
6
|
Lemieux H, Blier PU. Exploring Thermal Sensitivities and Adaptations of Oxidative Phosphorylation Pathways. Metabolites 2022; 12:metabo12040360. [PMID: 35448547 PMCID: PMC9025460 DOI: 10.3390/metabo12040360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Temperature shifts are a major challenge to animals; they drive adaptations in organisms and species, and affect all physiological functions in ectothermic organisms. Understanding the origin and mechanisms of these adaptations is critical for determining whether ectothermic organisms will be able to survive when faced with global climate change. Mitochondrial oxidative phosphorylation is thought to be an important metabolic player in this regard, since the capacity of the mitochondria to produce energy greatly varies according to temperature. However, organism survival and fitness depend not only on how much energy is produced, but, more precisely, on how oxidative phosphorylation is affected and which step of the process dictates thermal sensitivity. These questions need to be addressed from a new perspective involving a complex view of mitochondrial oxidative phosphorylation and its related pathways. In this review, we examine the effect of temperature on the commonly measured pathways, but mainly focus on the potential impact of lesser-studied pathways and related steps, including the electron-transferring flavoprotein pathway, glycerophosphate dehydrogenase, dihydroorotate dehydrogenase, choline dehydrogenase, proline dehydrogenase, and sulfide:quinone oxidoreductase. Our objective is to reveal new avenues of research that can address the impact of temperature on oxidative phosphorylation in all its complexity to better portray the limitations and the potential adaptations of aerobic metabolism.
Collapse
Affiliation(s)
- Hélène Lemieux
- Faculty Saint-Jean, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6C 4G9, Canada
- Correspondence: (H.L.); (P.U.B.)
| | - Pierre U. Blier
- Department Biologie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
- Correspondence: (H.L.); (P.U.B.)
| |
Collapse
|
7
|
Localization of aquaglyceroporins in human and murine white adipose tissue. Histochem Cell Biol 2022; 157:623-639. [PMID: 35235046 DOI: 10.1007/s00418-022-02090-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 11/04/2022]
Abstract
The glycerol channel AQP7 facilitates glycerol efflux from adipose tissue (AT), and AQP7 deficiency has been suggested to promote obesity. However, the release of glycerol from AT is not fully blocked in AQP7-deficient mice, which suggests that either alternative glycerol channels are present in AT or significant simple diffusion of glycerol occurs. Previous investigations of the expression of other aquaglyceroporins (AQP3, AQP9, AQP10) than AQP7 in AT are contradictory. Therefore, we here aim at determining the cellular localization of AQP3 and AQP9 in addition to AQP7 in human and mouse AT using well-characterized antibodies for immunohistochemistry (IHC) and immunoblotting as well as available single-cell transcriptomic data from human and mouse AT. We confirm that AQP7 is expressed in endothelial cells and adipocytes in human AT and find ex vivo evidence for interaction between AQP7 and perilipin-1 in adipocytes. In addition, labeling for AQP7 in human AT also includes CD68-positive cells. No labeling for AQP3 or AQP9 was identified in endothelial cells or adipocytes in human or mouse AT using IHC. Instead, in human AT, AQP3 was predominantly found in erythrocytes, whereas AQP9 expression was observed in a small number of CD15-positive cells. The transcriptomic data revealed that AQP3 mRNA was found in a low number of cells in most of the identified cell clusters, whereas AQP9 mRNA was found in myeloid cell clusters as well as in clusters likely representing mesothelial progenitor cells. No AQP10 mRNA was identified in human AT. In conclusion, the presented results do not suggest a functional overlap between AQP3/AQP9/AQP10 and AQP7 in human or mouse white AT.
Collapse
|
8
|
Henselmans M, Bjørnsen T, Hedderman R, Vårvik FT. The Effect of Carbohydrate Intake on Strength and Resistance Training Performance: A Systematic Review. Nutrients 2022; 14:nu14040856. [PMID: 35215506 PMCID: PMC8878406 DOI: 10.3390/nu14040856] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/04/2022] Open
Abstract
High carbohydrate intakes are commonly recommended for athletes of various sports, including strength trainees, to optimize performance. However, the effect of carbohydrate intake on strength training performance has not been systematically analyzed. A systematic literature search was conducted for trials that manipulated carbohydrate intake, including supplements, and measured strength, resistance training or power either acutely or after a diet and strength training program. Studies were categorized as either (1) acute supplementation, (2) exercise-induced glycogen depletion with subsequent carbohydrate manipulation, (3) short-term (2–7 days) carbohydrate manipulation or (4) changes in performance after longer-term diet manipulation and strength training. Forty-nine studies were included: 19 acute, six glycogen depletion, seven short-term and 17 long-term studies. Participants were strength trainees or athletes (39 studies), recreationally active (six studies) or untrained (four studies). Acutely, higher carbohydrate intake did not improve performance in 13 studies and enhanced performance in six studies, primarily in those with fasted control groups and workouts with over 10 sets per muscle group. One study found that a carbohydrate meal improved performance compared to water but not in comparison to a sensory-matched placebo breakfast. There was no evidence of a dose-response effect. After glycogen depletion, carbohydrate supplementation improved performance in three studies compared to placebo, in particular during bi-daily workouts, but not in research with isocaloric controls. None of the seven short-term studies found beneficial effects of carbohydrate manipulation. Longer-term changes in performance were not influenced by carbohydrate intake in 15 studies; one study favored the higher- and one the lower-carbohydrate condition. Carbohydrate intake per se is unlikely to strength training performance in a fed state in workouts consisting of up to 10 sets per muscle group. Performance during higher volumes may benefit from carbohydrates, but more studies with isocaloric control groups, sensory-matched placebos and locally measured glycogen depletion are needed.
Collapse
Affiliation(s)
- Menno Henselmans
- The International Scientific Research Foundation for Fitness and Nutrition, David Blesstraat 28HS, 1073 LC Amsterdam, The Netherlands; (R.H.); (F.T.V.)
- Correspondence: ; Tel.: +31-61-809-5999
| | - Thomas Bjørnsen
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, 4630 Kristiansand, Norway;
| | - Richie Hedderman
- The International Scientific Research Foundation for Fitness and Nutrition, David Blesstraat 28HS, 1073 LC Amsterdam, The Netherlands; (R.H.); (F.T.V.)
| | - Fredrik Tonstad Vårvik
- The International Scientific Research Foundation for Fitness and Nutrition, David Blesstraat 28HS, 1073 LC Amsterdam, The Netherlands; (R.H.); (F.T.V.)
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, 4630 Kristiansand, Norway;
| |
Collapse
|
9
|
The gate to metabolic crossroads. Sci Bull (Beijing) 2021; 66:1488-1490. [PMID: 36654273 DOI: 10.1016/j.scib.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Johnson-Bonson DA, Narang BJ, Davies RG, Hengist A, Smith HA, Watkins JD, Taylor H, Walhin JP, Gonzalez JT, Betts JA. Interactive effects of acute exercise and carbohydrate-energy replacement on insulin sensitivity in healthy adults. Appl Physiol Nutr Metab 2021; 46:1207-1215. [PMID: 33831317 DOI: 10.1139/apnm-2020-1043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated whether carbohydrate-energy replacement immediately after prolonged endurance exercise attenuates insulin sensitivity the following morning, and whether exercise improves insulin sensitivity the following morning independent of an exercise-induced carbohydrate deficit. Oral glucose tolerance and whole-body insulin sensitivity were compared the morning after 3 evening conditions, involving (1) treadmill exercise followed by a carbohydrate replacement drink (200 or 150 g maltodextrin for males and females, respectively; CHO-replace); (2) treadmill exercise followed by a non-caloric, taste-matched placebo (CHO-deficit); or (3) seated rest with no drink provided (Rest). Treadmill exercise involved 90 minutes at ∼80% age-predicted maximum heart rate. Seven males and 2 females (aged 23 ± 1 years; body mass index 24.0 ± 2.7 kg·m-2) completed all conditions in a randomised order. Matsuda index improved by 22% (2.2 [0.3, 4.0] au, p = 0.03) and HOMA2-IR improved by 10% (-0.04 [-0.08, 0.00] au, p = 0.04) in CHO-deficit versus CHO-replace, without corresponding changes in postprandial glycaemia. Outcomes were similar between Rest and other conditions. These data suggest that improvements to insulin sensitivity in healthy populations following acute moderate/vigorous intensity endurance exercise may be dependent on the presence of a carbohydrate-energy deficit. Novelty: Restoration of carbohydrate balance following acute endurance exercise attenuated whole-body insulin sensitivity. Exercise per se failed to enhance whole-body insulin sensitivity. Maximising or prolonging the post-exercise carbohydrate deficit may enhance acute benefits to insulin sensitivity.
Collapse
Affiliation(s)
- Drusus A Johnson-Bonson
- Centre for Nutrition, Exercise & Metabolism, Department for Health, University of Bath, Bath, Somerset, United Kingdom.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | - Benjamin J Narang
- Centre for Nutrition, Exercise & Metabolism, Department for Health, University of Bath, Bath, Somerset, United Kingdom.,Department of Automation, Biocybernetics, and Robotics, Institut Jožef Stefan, Ljubljana, Slovenia.,Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Russell G Davies
- Centre for Nutrition, Exercise & Metabolism, Department for Health, University of Bath, Bath, Somerset, United Kingdom
| | - Aaron Hengist
- Centre for Nutrition, Exercise & Metabolism, Department for Health, University of Bath, Bath, Somerset, United Kingdom
| | - Harry A Smith
- Centre for Nutrition, Exercise & Metabolism, Department for Health, University of Bath, Bath, Somerset, United Kingdom
| | - Jonathan D Watkins
- Centre for Nutrition, Exercise & Metabolism, Department for Health, University of Bath, Bath, Somerset, United Kingdom
| | - Harry Taylor
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, Merseyside, United Kingdom
| | - Jean-Philippe Walhin
- Centre for Nutrition, Exercise & Metabolism, Department for Health, University of Bath, Bath, Somerset, United Kingdom
| | - Javier T Gonzalez
- Centre for Nutrition, Exercise & Metabolism, Department for Health, University of Bath, Bath, Somerset, United Kingdom
| | - James A Betts
- Centre for Nutrition, Exercise & Metabolism, Department for Health, University of Bath, Bath, Somerset, United Kingdom
| |
Collapse
|
11
|
Adaptive and maladaptive roles for ChREBP in the liver and pancreatic islets. J Biol Chem 2021; 296:100623. [PMID: 33812993 PMCID: PMC8102921 DOI: 10.1016/j.jbc.2021.100623] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Excessive sugar consumption is a contributor to the worldwide epidemic of cardiometabolic disease. Understanding mechanisms by which sugar is sensed and regulates metabolic processes may provide new opportunities to prevent and treat these epidemics. Carbohydrate Responsive-Element Binding Protein (ChREBP) is a sugar-sensing transcription factor that mediates genomic responses to changes in carbohydrate abundance in key metabolic tissues. Carbohydrate metabolites activate the canonical form of ChREBP, ChREBP-alpha, which stimulates production of a potent, constitutively active ChREBP isoform called ChREBP-beta. Carbohydrate metabolites and other metabolic signals may also regulate ChREBP activity via posttranslational modifications including phosphorylation, acetylation, and O-GlcNAcylation that can affect ChREBP’s cellular localization, stability, binding to cofactors, and transcriptional activity. In this review, we discuss mechanisms regulating ChREBP activity and highlight phenotypes and controversies in ChREBP gain- and loss-of-function genetic rodent models focused on the liver and pancreatic islets.
Collapse
|
12
|
Sotgiu FD, Porcu C, Pasciu V, Dattena M, Gallus M, Argiolas G, Berlinguer F, Molle G. Towards a Sustainable Reproduction Management of Dairy Sheep: Glycerol-Based Formulations as Alternative to eCG in Milked Ewes Mated at the End of Anoestrus Period. Animals (Basel) 2021; 11:ani11040922. [PMID: 33805051 PMCID: PMC8064100 DOI: 10.3390/ani11040922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/20/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Reproductive management of sheep for autumnal lambing often require induction and synchronization of oestrus and ovulation, either for natural mating or artificial insemination, by the use of pharmacological treatments. Such treatments are mostly based on the administration of progesterone followed by a single intramuscular dose of equine chorionic gonadotrophin (eCG) at progesterone withdrawal. However, repeated eCG treatments in consecutive mating seasons can result in the outbreak of resistance with a rise of anti-eCG antibodies. Furthermore, the future use and availability of eCG appears to be strongly challenged by the highly active animal-rights movement because the hormone is obtained from pregnant mares. The present study demonstrated that the administration of glycerol-based formulations to milked ewes is a valid alternative to eCG treatment in reproductive management protocols based on the induction of ovulation with progesterone-releasing devices at the end of anoestrus period. The glucogenic treatment administration to late lactation dairy ewes at the end of the anoestrus period improved their metabolism without harming animal production or animal welfare, thus promoting a sustainable reproductive management of dairy sheep. Abstract This study investigated whether the administration of equine chorionic gonadotrophin (eCG) in a protocol to induce and synchronize ovulations before mating could be replaced by the administration of glycerol-based formulations in milked ewes at the end of their seasonal anoestrus. Forty-eight late-lactation dairy ewes of the Sarda breed were synchronized using sponges impregnated with progestogen and then joined with fertile rams (day (D) 0, ram introduction). From D−4 to D−1, the ewes received by gavage either 100 mL of a glucogenic mixture (70% glycerol, 20% propylene glycol and 10% water; GLU group; n = 24) or 100 mL of water (GON group; n = 24) twice daily. Moreover, on the day of sponge withdrawal (D−1), GON ewes received 200 IU of eCG. There were no differences in reproductive performances between groups. GLU ewes showed higher glycemia (p < 0.001), insulinemia (p < 0.05), plasma glycerol (p < 0.001), triglycerides (p < 0.001) and lower cholesterol (p < 0.001), non-esterified fatty acids (NEFA; p < 0.05) and urea (p < 0.001). Plasma osmolality was higher in GLU but only 4 h after dosing (p < 0.001). Milk yield and milk composition were not affected by the treatments with exception of milk glycerol (p < 0.001) and milk urea (p < 0.001), which were higher and lower in GLU than GON ewes, respectively. In conclusion, the administration of the glucogenic mixture to late lactation dairy ewes at the end of anoestrus period resulted in reproductive responses as good as the ones obtained by the eCG treatment, suggesting that the objective of a sustainable reproductive management of dairy sheep can be successfully pursued.
Collapse
Affiliation(s)
- Francesca D. Sotgiu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.D.S.); (C.P.); (V.P.)
| | - Cristian Porcu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.D.S.); (C.P.); (V.P.)
| | - Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.D.S.); (C.P.); (V.P.)
| | - Maria Dattena
- AGRIS Sardegna, Loc. Bonassai, 07100 Sassari, Italy; (M.D.); (M.G.); (G.M.)
| | - Marilia Gallus
- AGRIS Sardegna, Loc. Bonassai, 07100 Sassari, Italy; (M.D.); (M.G.); (G.M.)
| | | | - Fiammetta Berlinguer
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.D.S.); (C.P.); (V.P.)
- Correspondence:
| | - Giovanni Molle
- AGRIS Sardegna, Loc. Bonassai, 07100 Sassari, Italy; (M.D.); (M.G.); (G.M.)
| |
Collapse
|
13
|
Paoli A, Cenci L, Pompei P, Sahin N, Bianco A, Neri M, Caprio M, Moro T. Effects of Two Months of Very Low Carbohydrate Ketogenic Diet on Body Composition, Muscle Strength, Muscle Area, and Blood Parameters in Competitive Natural Body Builders. Nutrients 2021; 13:nu13020374. [PMID: 33530512 PMCID: PMC7911670 DOI: 10.3390/nu13020374] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Ketogenic diet (KD) is a nutritional approach that restricts daily carbohydrates, replacing most of the reduced energy with fat, while maintaining an adequate quantity of protein. Despite the widespread use of KD in weight loss in athletes, there are still many concerns about its use in sports requiring muscle mass accrual. Thus, the present study sought to investigate the influence of a KD in competitive natural body builders. Methods: Nineteen volunteers (27.4 ± 10.5 years) were randomly assigned to ketogenic diet (KD) or to a western diet (WD). Body composition, muscle strength and basal metabolic rate were measured before and after two months of intervention. Standard blood biochemistry, testosterone, IGF-1, brain-derived neurotrophic factor (BDNF) and inflammatory cytokines (IL6, IL1β, TNFα) were also measured. Results: Body fat significantly decreased in KD (p = 0.030); whilst lean mass increased significantly only in WD (p < 0.001). Maximal strength increased similarly in both groups. KD showed a significant decrease of blood triglycerides (p < 0.001), glucose (p = 0.001), insulin (p < 0.001) and inflammatory cytokines compared to WD whilst BDNF increased in both groups with significant greater changes in KD (p < 0.001). Conclusions: KD may be used during body building preparation for health and leaning purposes but with the caution that hypertrophic muscle response could be blunted.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy;
- Research Center for High Performance Sport, UCAM, Catholic University of Murcia, 30107 Murcia, Spain
| | - Lorenzo Cenci
- Brain, Mind and Computer Science Doctoral Program, University of Padua, 35131 Padua, Italy;
| | - PierLuigi Pompei
- Unit of Pharmacology, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Nese Sahin
- Faculty of Sport Science, Ankara University, 06830 Ankara, Turkey;
| | - Antonino Bianco
- Department of Psychology, Educational Science and Human Movement, Sport and Exercise Sciences Research Unit, University of Palermo, 90128 Palermo, Italy;
| | - Marco Neri
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (M.N.); (M.C.)
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (M.N.); (M.C.)
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00163 Rome, Italy
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy;
- Correspondence: ; Tel.: +39-049-827-5306
| |
Collapse
|
14
|
The Role of Glycerol and Its Derivatives in the Biochemistry of Living Organisms, and Their Prebiotic Origin and Significance in the Evolution of Life. Catalysts 2021. [DOI: 10.3390/catal11010086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The emergence and evolution of prebiotic biomolecules on the early Earth remain a question that is considered crucial to understanding the chemistry of the origin of life. Amongst prebiotic molecules, glycerol is significant due to its ubiquity in biochemistry. In this review, we discuss the significance of glycerol and its various derivatives in biochemistry, their plausible roles in the origin and evolution of early cell membranes, and significance in the biochemistry of extremophiles, followed by their prebiotic origin on the early Earth and associated catalytic processes that led to the origin of these compounds. We also discuss various scenarios for the prebiotic syntheses of glycerol and its derivates and evaluate these to determine their relevance to early Earth biochemistry and geochemistry, and recapitulate the utilization of various minerals (including clays), condensation agents, and solvents that could have led to the successful prebiotic genesis of these biomolecules. Furthermore, important prebiotic events such as meteoritic delivery and prebiotic synthesis reactions under astrophysical conditions are also discussed. Finally, we have also highlighted some novel features of glycerol, including glycerol nucleic acid (GNA), in the origin and evolution of the life.
Collapse
|
15
|
Abduraman MA, Azizan NA, Teoh SH, Tan ML. Ketogenesis and SIRT1 as a tool in managing obesity. Obes Res Clin Pract 2020; 15:10-18. [PMID: 33371997 DOI: 10.1016/j.orcp.2020.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/21/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Obesity is a serious chronic disease and a public health concern in both developing and developed countries. Managing obesity has been a great challenge for both health care professionals and patients alike. Among the various diet programs aimed at promoting weight loss, the ketogenic diet, a diet high in fat and low in carbohydrates, has been at the forefront recently and its mechanism in weight loss is much debated. Activation of Sirtuin 1 or SIRT1 is able to circumvent various diseases, including metabolic syndrome and obesity and is thought to be a potentially reliable treatment target for both of them. Augmentation of SIRT1 may be carried out using dietary means such as nicotinamide adenine dinucleotide (NAD) supplementation and/or ketogenic diet. Although ketogenic diet may augment SIRT1 activation in people affected by obesity, recent studies have indicated that the relationship between SIRT1 and ketogenesis is unpredictable. The exact circumstances and mechanisms of SIRT1, NAD and ketogenesis in the clinical setting as an intervention tool in managing obesity remained uncertain. Although several recent literatures have documented significant weight-loss following ketogenic diet interventions, there were limitations with regards to duration of trial, choice and the number of trial subjects. Studies investigating the safety of ketogenic diet in the long term, beyond 46 weeks and related mechanism and pathways are still lacking and the sustainability of this diet remains to be determined. This review explores the recent progress on ketogenic diet and its relationships with SIRT1 as a tool in managing obesity and relevant clinical implications.
Collapse
Affiliation(s)
- Muhammad Asyraf Abduraman
- Advanced Medical & Dental Institute, SAINS@BERTAM, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Nurul Ain Azizan
- Advanced Medical & Dental Institute, SAINS@BERTAM, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia; Center for Population Health, Dept. Social and Preventive Medicine, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia
| | - Soo Huat Teoh
- Advanced Medical & Dental Institute, SAINS@BERTAM, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Mei Lan Tan
- Advanced Medical & Dental Institute, SAINS@BERTAM, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia; School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Universiti Sains Malaysia, Pulau Pinang, Malaysia.
| |
Collapse
|
16
|
Nikolaou KC, Vatandaslar H, Meyer C, Schmid MW, Tuschl T, Stoffel M. The RNA-Binding Protein A1CF Regulates Hepatic Fructose and Glycerol Metabolism via Alternative RNA Splicing. Cell Rep 2020; 29:283-300.e8. [PMID: 31597092 DOI: 10.1016/j.celrep.2019.08.100] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/09/2019] [Accepted: 08/29/2019] [Indexed: 01/11/2023] Open
Abstract
The regulation of hepatic gene expression has been extensively studied at the transcriptional level; however, the control of metabolism through posttranscriptional gene regulation by RNA-binding proteins in physiological and disease states is less understood. Here, we report a major role for the hormone-sensitive RNA-binding protein (RBP) APOBEC1 complementation factor (A1CF) in the generation of hepatocyte-specific and alternatively spliced transcripts. Among these transcripts are isoforms for the dominant and high-affinity fructose-metabolizing ketohexokinase C and glycerol kinase, two key metabolic enzymes that are linked to hepatic gluconeogenesis and found to be markedly reduced upon hepatic ablation of A1cf. Consequently, mice lacking A1CF exhibit improved glucose tolerance and are protected from fructose-induced hyperglycemia, hepatic steatosis, and development of obesity. Our results identify a previously unreported function of A1CF as a regulator of alternative splicing of a subset of genes influencing hepatic glucose production through fructose and glycerol metabolism.
Collapse
Affiliation(s)
- Kostas C Nikolaou
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Hasan Vatandaslar
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Cindy Meyer
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Marc W Schmid
- MWSchmid GmbH, Möhrlistrasse 25, 8006 Zurich, Switzerland
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland; Medical Faculty, University of Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
17
|
Becker LC, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Gill LJ, Heldreth B. Safety Assessment of Glycerin as Used in Cosmetics. Int J Toxicol 2020; 38:6S-22S. [PMID: 31840548 DOI: 10.1177/1091581819883820] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This is a safety assessment of glycerin as used in cosmetics. Glycerin functions as a denaturant, fragrance ingredient, hair conditioning agent, humectant, oral care agent, oral health-care drug, skin protectant, skin conditioning agent-humectant, and viscosity-decreasing agent. The Cosmetic Ingredient Review Expert Panel (Panel) reviewed relevant animal and human data. The Panel concluded that glycerin is safe as a cosmetic ingredient in the practices of use and concentration described in this safety assessment.
Collapse
Affiliation(s)
- Lillian C Becker
- Cosmetic Ingredient Review Former Scientific Analyst/Writer, Cosmetic Ingredient Review, Washington, DC, USA
| | - Wilma F Bergfeld
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Donald V Belsito
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Ronald A Hill
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Curtis D Klaassen
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Daniel C Liebler
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - James G Marks
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Ronald C Shank
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Thomas J Slaga
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Paul W Snyder
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Lillian J Gill
- Cosmetic Ingredient Review Former Director, Cosmetic Ingredient Review, Washington, DC, USA
| | - Bart Heldreth
- Cosmetic Ingredient Review Executive Director, Cosmetic Ingredient Review, Washington, DC, USA
| |
Collapse
|
18
|
Germ-Free Swiss Webster Mice on a High-Fat Diet Develop Obesity, Hyperglycemia, and Dyslipidemia. Microorganisms 2020; 8:microorganisms8040520. [PMID: 32260528 PMCID: PMC7232377 DOI: 10.3390/microorganisms8040520] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/23/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
A calorie-dense diet is a well-established risk factor for obesity and metabolic syndrome (MetS), whereas the role of the intestinal microbiota (IMB) in the development of diet-induced obesity (DIO) is not completely understood. To test the hypothesis that Swiss Webster (Tac:SW) mice can develop characteristics of DIO and MetS in the absence of the IMB, we fed conventional (CV) and germ-free (GF) male Tac:SW mice either a low-fat diet (LFD; 10% fat derived calories) or a high-fat diet (HFD; 60% fat derived calories) for 10 weeks. The HFD increased feed conversion and body weight in GF mice independent of the increase associated with the microbiota in CV mice. In contrast to CV mice, GF mice did not decrease feed intake on the HFD and possessed heavier fat pads. The HFD caused hyperglycemia, hyperinsulinemia, and impaired glucose absorption in GF mice independent of the increase associated with the microbiota in CV mice. A HFD also elevated plasma LDL-cholesterol and increased hepatic triacylglycerol, free fatty acids, and ceramides in all mice, whereas hypertriglyceridemia and increased hepatic medium and long-chain acylcarnitines were only observed in CV mice. Therefore, GF male Tac:SW mice developed several detrimental effects of obesity and MetS from a high-fat, calorie dense diet.
Collapse
|
19
|
Hale N. Inuit metabolism revisited: what drove the selective sweep of CPT1a L479? Mol Genet Metab 2020; 129:255-271. [PMID: 32088118 DOI: 10.1016/j.ymgme.2020.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/30/2020] [Indexed: 12/31/2022]
Abstract
This article reassesses historical studies of Inuit metabolism in light of recent developments in evolutionary genetics. It discusses the possible selective advantage of a variant of CPT1a, which encodes the rate limiting enzyme in hepatic fatty acid oxidation. The L479 variant of CPT1a underwent one of the strongest known selective sweeps in human history and is specific to Inuit and Yu'pik populations. Recent hypotheses predict that this variant may have been selected in response to possible detrimental effects of chronic ketosis in communities with very low carbohydrate consumption. Assessing these hypotheses alongside several alternative explanations of the selective sweep, this article challenges the notion that the selection of L479 is linked to predicted detrimental effects of ketosis. Bringing together for the first time data from biochemical, metabolic, and physiological studies inside and outside the Inuit sphere, it aims to provide a broader interpretative framework and a more comprehensive way to understand the selective sweep. It suggests that L479 may have provided a selective advantage in glucose conservation as part of a metabolic adaptation to very low carbohydrate and high protein consumption, but not necessarily a ketogenic state, in an extremely cold environment. A high intake of n-3 fatty acids may be linked to selection through the mitigation of a detrimental effect of the mutation that arises in the fasted state. The implications of these conclusions for our broader understanding of very low carbohydrate metabolism, and for dietary recommendations for Inuit and non-Inuit populations, are discussed.
Collapse
|
20
|
Clayton RP, Herndon DN, Abate N, Porter C. The Effect of Burn Trauma on Lipid and Glucose Metabolism: Implications for Insulin Sensitivity. J Burn Care Res 2020; 39:713-723. [PMID: 29931151 DOI: 10.1093/jbcr/irx047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Severe burns represent a unique form of trauma in terms of the magnitude and persistence of the stress response they incur. Given advances in acute burn care in the last quarter of a century and the resultant reduction in mortality rates, even for those with massive burns, greater emphasis is now placed on understanding the metabolic stress response to severe burn trauma in order to devise strategies that promote recovery and reduce morbidity. Derangements in metabolism including protein and lipid redistribution and altered glucose handling are hallmarks of the pathophysiological response to burn trauma. In this review article, we aim to distill and discuss the c urrent literature concerning the effect of burn trauma on lipid and glucose metabolism. Furthermore, we will discuss the implications of altered lipid metabolism with regards to insulin sensitivity and glucose control, while discussing the utility of agents and strategies aimed at restoring normal lipid and glucose metabolism in burned patients.
Collapse
Affiliation(s)
- Robert P Clayton
- Shriners Hospitals for Children®-Galveston.,The Institute for Translational Sciences, University of Texas Medical Branch, Galveston
| | - David N Herndon
- Shriners Hospitals for Children®-Galveston.,The Institute for Translational Sciences, University of Texas Medical Branch, Galveston.,Department of Surgery, University of Texas Medical Branch, Galveston
| | - Nicola Abate
- Shriners Hospitals for Children®-Galveston.,The Institute for Translational Sciences, University of Texas Medical Branch, Galveston.,Department of Internal Medicine, University of Texas Medical Branch, Galveston
| | - Craig Porter
- Shriners Hospitals for Children®-Galveston.,The Institute for Translational Sciences, University of Texas Medical Branch, Galveston
| |
Collapse
|
21
|
Abstract
Ketogenic diet (KD) is a nutritional regimen characterized by a high-fat and an adequate protein content and a very low carbohydrate level (less than 20 g per day or 5% of total daily energy intake). The insufficient level of carbohydrates forces the body to primarily use fat instead of sugar as a fuel source. Due to its characteristic, KD has often been used to treat metabolic disorders, obesity, cardiovascular disease, and type 2 diabetes. Skeletal muscle constitutes 40% of total body mass and is one of the major sites of glucose disposal. KD is a well-defined approach to induce weight loss, with its role in muscle adaptation and muscle hypertrophy less understood. Considering this lack of knowledge, the aim of this review was to examine the scientific evidence about the effects of KD on muscle hypertrophy. We first described the mechanisms of muscle hypertrophy per se, and secondly, we discussed the characteristics and the metabolic function of KD. Ultimately, we provided the potential mechanism that could explain the influence of KD on skeletal muscle hypertrophy.
Collapse
|
22
|
Ruberto AA, Logan SM, Storey KB. Temperature and serine phosphorylation regulate glycerol-3-phosphate dehydrogenase in skeletal muscle of hibernating Richardson's ground squirrels. Biochem Cell Biol 2018; 97:148-157. [PMID: 30253108 DOI: 10.1139/bcb-2018-0198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glycerol-3-phosphate dehydrogenase (G3PDH) bridges carbohydrate and lipid metabolism by interconverting glycerol-3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP). This reversible reaction converts G3P derived from triglyceride hydrolysis to DHAP that can then enter glycolysis or gluconeogenesis and, in the reverse reaction, makes G3P for use in triglyceride biosynthesis. Small hibernating mammals rely almost exclusively on triglyceride reserves as their fuel for energy production during torpor and the recovery of glycerol after lipolysis is an important source of carbohydrate over the nonfeeding winter months. G3PDH (∼37 kDa) was purified from skeletal muscle of euthermic and hibernating Richardson's ground squirrels (Urocitellus richardsonii) using three column chromatography steps. Analysis of enzyme kinetic properties revealed that G3PDH from hibernator muscle had higher affinities for G3P and NAD at low (5 °C) assay temperature compared with high (21 or 37 °C) and a greater stability in the presence of denaturing agents (urea, guanidine hydrochloride) or high temperature (50 °C). Immunoblotting showed that hibernator muscle G3PDH had a higher phosphoserine content than the enzyme from euthermic controls and incubation studies showed that enzyme affinity for G3P changed significantly by stimulating endogenous protein kinases or phosphatases. Overall, this study suggests that the properties of ground squirrel muscle G3PDH are modulated by temperature and post-translational phosphorylation to alter enzyme function under euthermic versus hibernating states.
Collapse
Affiliation(s)
- Anthony A Ruberto
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Samantha M Logan
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
23
|
Crisóstomo L, Alves MG, Calamita G, Sousa M, Oliveira PF. Glycerol and testicular activity: the good, the bad and the ugly. Mol Hum Reprod 2017; 23:725-737. [DOI: 10.1093/molehr/gax049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Luís Crisóstomo
- Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Centre for Reproductive Genetics Professor Alberto Barros, Porto, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari ‘Aldo Moro’, Bari, Italy
| |
Collapse
|
24
|
Glycerol is synthesized and secreted by adipocytes to dispose of excess glucose, via glycerogenesis and increased acyl-glycerol turnover. Sci Rep 2017; 7:8983. [PMID: 28827624 PMCID: PMC5567128 DOI: 10.1038/s41598-017-09450-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/26/2017] [Indexed: 01/11/2023] Open
Abstract
White adipose tissue (WAT) produces large amounts of lactate and glycerol from glucose. We used mature epididymal adipocytes to analyse the relative importance of glycolytic versus lipogenic glycerol in adipocytes devoid of external stimuli. Cells were incubated (24/48 h) with 7/14 mM glucose; half of the wells contained 14C-glucose. We analysed glucose label fate, medium metabolites, and the expression of key genes coding for proteins controlling glycerol metabolism. The effects of initial glucose levels were small, but time of incubation increased cell activity and modified its metabolic focus. The massive efflux of lactate was uniform with time and unrelated to glucose concentration; however, glycerol-3P synthesis was higher in the second day of incubation, being largely incorporated into the glycerides-glycerol fraction. Glycerophosphatase expression was not affected by incubation. The stimulation of glycerogenic enzymes’ expression was mirrored in lipases. The result was a shift from medium glycolytic to lipolytic glycerol released as a consequence of increased triacylglycerol turnover, in which most fatty acids were recycled. Production of glycerol seems to be an important primary function of adipocytes, maintained both by glycerogenesis and acyl-glycerol turnover. Production of 3C fragments may also contribute to convert excess glucose into smaller, more readily usable, 3C metabolites.
Collapse
|
25
|
Mortensen A, Aguilar F, Crebelli R, Di Domenico A, Dusemund B, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Leblanc JC, Lindtner O, Moldeus P, Mosesso P, Parent-Massin D, Oskarsson A, Stankovic I, Waalkens-Berendsen I, Woutersen RA, Wright M, Younes M, Boon P, Chrysafidis D, Gürtler R, Tobback P, Rincon AM, Tard A, Lambré C. Re-evaluation of glycerol (E 422) as a food additive. EFSA J 2017; 15:e04720. [PMID: 32625431 PMCID: PMC7009851 DOI: 10.2903/j.efsa.2017.4720] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The ANS Panel provides a scientific opinion re‐evaluating the safety of glycerol (E 422) used as a food additive. In 1981, the Scientific Committee on Food (SCF) endorsed the conclusion from the Joint FAO/WHO Expert Committee on Food Additives (JECFA) in 1976 of ‘acceptable daily intake (ADI) for man not specified’. The Panel concluded that glycerol has low acute toxicity and that local irritating effects of glycerol in the gastrointestinal tract reported in some gavage studies was likely due to hygroscopic and osmotic effects of glycerol. Glycerol did not raise concern with respect to genotoxicity and was of no concern with regard to carcinogenicity. Reproductive and prenatal developmental studies were limited to conclude on reproductive toxicity but no dose‐related adverse effects were reported. None of the animal studies available identified an adverse effect for glycerol. The Panel conservatively estimated the lowest oral dose of glycerol required for therapeutic effect to be 125 mg/kg bw per hour and noted that infants and toddlers can be exposed to that dose by drinking less than the volume of one can (330 mL) of a flavoured drink. The Panel concluded that there is no need for a numerical ADI and no safety concern regarding the use of glycerol (E 422) as a food additive at the refined exposure assessment for the reported uses. The Panel also concluded that the manufacturing process of glycerol should not allow the production of a food additive, which contains genotoxic and carcinogenic residuals at a level which would result in a margin of exposure below 10,000. The Panel recommended modification of the EU specifications for E 422. The Panel also recommended that more information on uses and use levels and analytical data should be made available to the Panel.
Collapse
|
26
|
da Costa DV, Dias J, Colen R, Rosa PV, Engrola S. Partition and metabolic fate of dietary glycerol in muscles and liver of juvenile tilapia. Arch Anim Nutr 2017; 71:165-174. [DOI: 10.1080/1745039x.2017.1281579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Diego Vicente da Costa
- ICA, Agricultural Sciences Institute, Federal University of Minas Gerais, Montes Claros, Brazil
- CCMAR, Center of Marine Sciences, Algarve University, Faro, Portugal
| | - Jorge Dias
- SPAROS Lda., Empresarial Area of Marim, Olhão, Portugal
| | - Rita Colen
- CCMAR, Center of Marine Sciences, Algarve University, Faro, Portugal
| | | | - Sofia Engrola
- CCMAR, Center of Marine Sciences, Algarve University, Faro, Portugal
| |
Collapse
|
27
|
Hall KD. A review of the carbohydrate-insulin model of obesity. Eur J Clin Nutr 2017; 71:323-326. [PMID: 28074888 DOI: 10.1038/ejcn.2016.260] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023]
Abstract
The carbohydrate-insulin model of obesity theorizes that diets high in carbohydrate are particularly fattening due to their propensity to elevate insulin secretion. Insulin directs the partitioning of energy toward storage as fat in adipose tissue and away from oxidation by metabolically active tissues and purportedly results in a perceived state of cellular internal starvation. In response, hunger and appetite increases and metabolism is suppressed, thereby promoting the positive energy balance associated with the development of obesity. Several logical consequences of this carbohydrate-insulin model of obesity were recently investigated in a pair of carefully controlled inpatient feeding studies whose results failed to support key model predictions. Therefore, important aspects of carbohydrate-insulin model have been experimentally falsified suggesting that the model is too simplistic. This review describes the current state of the carbohydrate-insulin model and the implications of its recent experimental tests.
Collapse
Affiliation(s)
- K D Hall
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| |
Collapse
|
28
|
Ruberto AA, Childers CL, Storey KB. Purification and properties of glycerol-3-phosphate dehydrogenase from the liver of the hibernating ground squirrel, Urocitellus richardsonii. Comp Biochem Physiol B Biochem Mol Biol 2016; 202:48-55. [DOI: 10.1016/j.cbpb.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
|
29
|
Lanza-Jacoby S, Rose G, Rosato E, Sedkova N, Considine R. In vitro effect of endotoxin on lipolysis and lipoprotein lipase activity in adipocytes from lean, obese and obese diabetic Zucker rats. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/096805199600200608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Endotoxemia and sepsis in non diabetic rats are associated with alterations in adipose tissue metabolism evidenced by an increase in lipolysis and decrease in lipoprotein lipase (LPL) activity. The purpose of this study was to determine the in vitro effect of endotoxin (LPS) on lipolysis and the activities of LPL in epididymal adipocytes isolated from 11-12-week-old obese diabetic, obese, and lean rats. Epinephrine-stimulated lipolysis was higher in the adipocytes from obese diabetic and obese rats than lean rats. Maximal lipolytic response for all groups occurred with 10-5 M of epinephrine. LPS increased the lipolytic rate in adipocytes from the obese and obese diabetic rats by 58% and 97%, respectively, in comparison to the lean rats. Heparin-releasable and extractable LPL activities were suppressed in LPS-treated adipocytes from lean rats; heparin-releasable, but not extractable LPL activity, was depressed in adipocytes from obese rats. The LPS-induced depression in LPL activities did not occur in adipocytes from obese diabetic rats. Since LPL is not altered, adipose tissue from the obese diabetic rats may not become depleted when challenged with endotoxin as is the case for the normal endotoxin-treated lean rat with diminished LPL activity.
Collapse
Affiliation(s)
- S. Lanza-Jacoby
- Departments of Surgery and Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| | - G.L. Rose
- Departments of Surgery and Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| | - E.F. Rosato
- Departments of Surgery and Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| | - N. Sedkova
- Departments of Surgery and Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| | - R.V. Considine
- Departments of Surgery and Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Kurko J, Tringham M, Tanner L, Näntö-Salonen K, Vähä-Mäkilä M, Nygren H, Pöhö P, Lietzen N, Mattila I, Olkku A, Hyötyläinen T, Orešič M, Simell O, Niinikoski H, Mykkänen J. Imbalance of plasma amino acids, metabolites and lipids in patients with lysinuric protein intolerance (LPI). Metabolism 2016; 65:1361-75. [PMID: 27506743 DOI: 10.1016/j.metabol.2016.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/26/2016] [Accepted: 05/20/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Lysinuric protein intolerance (LPI [MIM 222700]) is an aminoaciduria with defective transport of cationic amino acids in epithelial cells in the small intestine and proximal kidney tubules due to mutations in the SLC7A7 gene. LPI is characterized by protein malnutrition, failure to thrive and hyperammonemia. Many patients also suffer from combined hyperlipidemia and chronic kidney disease (CKD) with an unknown etiology. METHODS Here, we studied the plasma metabolomes of the Finnish LPI patients (n=26) and healthy control individuals (n=19) using a targeted platform for analysis of amino acids as well as two analytical platforms with comprehensive coverage of molecular lipids and polar metabolites. RESULTS Our results demonstrated that LPI patients have a dichotomy of amino acid profiles, with both decreased essential and increased non-essential amino acids. Altered levels of metabolites participating in pathways such as sugar, energy, amino acid and lipid metabolism were observed. Furthermore, of these metabolites, myo-inositol, threonic acid, 2,5-furandicarboxylic acid, galactaric acid, 4-hydroxyphenylacetic acid, indole-3-acetic acid and beta-aminoisobutyric acid associated significantly (P<0.001) with the CKD status. Lipid analysis showed reduced levels of phosphatidylcholines and elevated levels of triacylglycerols, of which long-chain triacylglycerols associated (P<0.01) with CKD. CONCLUSIONS This study revealed an amino acid imbalance affecting the basic cellular metabolism, disturbances in plasma lipid composition suggesting hepatic steatosis and fibrosis and novel metabolites correlating with CKD in LPI. In addition, the CKD-associated metabolite profile along with increased nitrite plasma levels suggests that LPI may be characterized by increased oxidative stress and apoptosis, altered microbial metabolism in the intestine and uremic toxicity.
Collapse
Affiliation(s)
- Johanna Kurko
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
| | - Maaria Tringham
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
| | - Laura Tanner
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; Department of Clinical Genetics, Turku University Hospital, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - Kirsti Näntö-Salonen
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - Mari Vähä-Mäkilä
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - Heli Nygren
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Boxs 1000, Espoo 02044 VTT, Finland.
| | - Päivi Pöhö
- Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, P.O. Boxs 56, Helsinki 00014, Finland.
| | - Niina Lietzen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland.
| | - Ismo Mattila
- Steno Diabetes Center A/S, Niels Steensens Vej 2, 2820 Gentofte, Denmark.
| | - Anu Olkku
- Eastern Finland Laboratory Centre, Puijonlaaksontie 2, 70210 Kuopio, Finland.
| | - Tuulia Hyötyläinen
- Steno Diabetes Center A/S, Niels Steensens Vej 2, 2820 Gentofte, Denmark.
| | - Matej Orešič
- Steno Diabetes Center A/S, Niels Steensens Vej 2, 2820 Gentofte, Denmark.
| | - Olli Simell
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - Harri Niinikoski
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - Juha Mykkänen
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
| |
Collapse
|
31
|
Laforenza U, Bottino C, Gastaldi G. Mammalian aquaglyceroporin function in metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:1-11. [PMID: 26456554 DOI: 10.1016/j.bbamem.2015.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 11/26/2022]
Abstract
Aquaglyceroporins are integral membrane proteins that are permeable to glycerol as well as water. The movement of glycerol from a tissue/organ to the plasma and vice versa requires the presence of different aquaglyceroporins that can regulate the entrance or the exit of glycerol across the plasma membrane. Actually, different aquaglyceroporins have been discovered in the adipose tissue, small intestine, liver, kidney, heart, skeletal muscle, endocrine pancreas and capillary endothelium, and their differential expression could be related to obesity and the type 2 diabetes. Here we describe the expression and function of different aquaglyceroporins in physiological condition and in obesity and type 2 diabetes, suggesting they are potential therapeutic targets for metabolic disorders.
Collapse
Affiliation(s)
| | - Cinzia Bottino
- Department of Molecular Medicine, University of Pavia, Italy
| | - Giulia Gastaldi
- Department of Molecular Medicine, University of Pavia, Italy
| |
Collapse
|
32
|
Kitchen P, Day RE, Salman MM, Conner MT, Bill RM, Conner AC. Beyond water homeostasis: Diverse functional roles of mammalian aquaporins. Biochim Biophys Acta Gen Subj 2015; 1850:2410-21. [PMID: 26365508 DOI: 10.1016/j.bbagen.2015.08.023] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/25/2015] [Accepted: 08/30/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Aquaporin (AQP) water channels are best known as passive transporters of water that are vital for water homeostasis. SCOPE OF REVIEW AQP knockout studies in whole animals and cultured cells, along with naturally occurring human mutations suggest that the transport of neutral solutes through AQPs has important physiological roles. Emerging biophysical evidence suggests that AQPs may also facilitate gas (CO2) and cation transport. AQPs may be involved in cell signalling for volume regulation and controlling the subcellular localization of other proteins by forming macromolecular complexes. This review examines the evidence for these diverse functions of AQPs as well their physiological relevance. MAJOR CONCLUSIONS As well as being crucial for water homeostasis, AQPs are involved in physiologically important transport of molecules other than water, regulation of surface expression of other membrane proteins, cell adhesion, and signalling in cell volume regulation. GENERAL SIGNIFICANCE Elucidating the full range of functional roles of AQPs beyond the passive conduction of water will improve our understanding of mammalian physiology in health and disease. The functional variety of AQPs makes them an exciting drug target and could provide routes to a range of novel therapies.
Collapse
Affiliation(s)
- Philip Kitchen
- Molecular Organisation and Assembly in Cells Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Rebecca E Day
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - Mootaz M Salman
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - Matthew T Conner
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - Roslyn M Bill
- School of Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Alex C Conner
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
33
|
Paoli A, Bosco G, Camporesi EM, Mangar D. Ketosis, ketogenic diet and food intake control: a complex relationship. Front Psychol 2015; 6:27. [PMID: 25698989 PMCID: PMC4313585 DOI: 10.3389/fpsyg.2015.00027] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 01/07/2015] [Indexed: 12/16/2022] Open
Abstract
Though the hunger-reduction phenomenon reported during ketogenic diets is well-known, the underlying molecular and cellular mechanisms remain uncertain. Ketosis has been demonstrated to exert an anorexigenic effect via cholecystokinin (CCK) release while reducing orexigenic signals e.g., via ghrelin. However, ketone bodies (KB) seem to be able to increase food intake through AMP-activated protein kinase (AMPK) phosphorylation, gamma-aminobutyric acid (GABA) and the release and production of adiponectin. The aim of this review is to provide a summary of our current knowledge of the effects of ketogenic diet (KD) on food control in an effort to unify the apparently contradictory data into a coherent picture.
Collapse
Affiliation(s)
- Antonio Paoli
- Nutrition and Exercise Physiology Laboratory, Department of Biomedical Sciences, University of Padova Padova, Italy
| | - Gerardo Bosco
- Nutrition and Exercise Physiology Laboratory, Department of Biomedical Sciences, University of Padova Padova, Italy
| | - Enrico M Camporesi
- Department of Surgery, University of South Florida Tampa, FL, USA ; TEAMHealth Tampa, FL, USA
| | - Devanand Mangar
- TEAMHealth Tampa, FL, USA ; Tampa General Hospital Tampa, FL, USA
| |
Collapse
|
34
|
Madeira A, Moura TF, Soveral G. Aquaglyceroporins: implications in adipose biology and obesity. Cell Mol Life Sci 2015; 72:759-71. [PMID: 25359234 PMCID: PMC11113391 DOI: 10.1007/s00018-014-1773-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 01/19/2023]
Abstract
Aquaporins (AQPs) are membrane water/glycerol channels that are involved in many physiological processes. Their primary function is to facilitate the bidirectional transfer of water and small solutes across biological membranes in response to osmotic gradients. Aquaglyceroporins, a subset of the AQP family, are the only mammalian proteins with the ability to permeate glycerol. For a long time, AQP7 has been the only aquaglyceroporin associated with the adipose tissue, which is the major source of circulating glycerol in response to the energy demand. AQP7 dysregulation was positively correlated with obesity onset and adipocyte glycerol permeation through AQP7 was appointed as a novel regulator of adipocyte metabolism and whole-body fat mass. Recently, AQP3, AQP9, AQP10 and AQP11 were additionally identified in human adipocytes and proposed as additional glycerol pathways in these cells. This review contextualizes the importance of aquaglyceroporins in adipose tissue biology and highlights aquaglyceroporins' unique structural features which are relevant for the design of effective therapeutic compounds. We also refer to the latest advances in the identification and characterization of novel aquaporin isoforms in adipose tissue. Finally, considerations on the actual progress of aquaporin research and its implications on obesity therapy are suggested.
Collapse
Affiliation(s)
- Ana Madeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon, 1649-003 Portugal
- Department of Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa F. Moura
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon, 1649-003 Portugal
- FCT-UNL, 2829-516 Caparica, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon, 1649-003 Portugal
- Department of Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
35
|
Abstract
OBJECTIVE Although elevated free fatty acid (FFA) levels in obesity have been considered to be of importance for insulin resistance, a recent meta-analysis suggested normal FFA levels in obese subjects. We investigated fasting circulating FFA and glycerol levels in a large cohort of non-obese and obese subjects. METHODS Subjects recruited for a study on obesity genetics were investigated in the morning after an overnight fast (n = 3,888). Serum FFA (n = 3,306), plasma glycerol (n = 3,776), and insulin sensitivity index (HOMA-IR,n = 3,469) were determined. Obesity was defined as BMI ≥ 30 kg/m 2 and insulin resistance as HOMA-IR ≥ 2.21. RESULTS In obese subjects, circulating FFA and glycerol levels were higher than in non-obese individuals (by 26% and 47%, respectively; both p < 0.0001). Similar results were obtained if only men, women or medication-free subjects were investigated. Insulin resistance and type 2 diabetes were associated with a further minor increase in FFA/glycerol among obese subjects. When comparing insulin-sensitive non-obese with insulin-sensitive or -resistant obese individuals, FFA and glycerol were 21–29% and 43–49% higher in obese individuals, respectively. CONCLUSION Circulating FFA and glycerol levels are markedly elevated in obesity but only marginally influenced by insulin resistance and type 2 diabetes. Whether these differences persist during diurnal variations in circulating FFA/glycerol, remains to be established
Collapse
Affiliation(s)
| | - Mikael Rydén
- *Prof. Dr. Dr. Mikael Rydén, C2-94, Karolinska Institutet, Department of Medicine (H7) and, Division of Endocrinology and Metabolism, Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden,
| |
Collapse
|
36
|
Abstract
Obesity and secondary development of type 2 diabetes (T2D) are major health care problems throughout the developed world. Accumulating evidence suggest that glycerol metabolism contributes to the pathophysiology of obesity and T2D. Glycerol is a small molecule that serves as an important intermediate between carbohydrate and lipid metabolism. It is stored primarily in adipose tissue as the backbone of triglyceride (TG) and during states of metabolic stress, such as fasting and diabetes, it is released for metabolism in other tissues. In the liver, glycerol serves as a gluconeogenic precursor and it is used for the esterification of free fatty acid into TGs. Aquaporin 7 (AQP7) in adipose tissue and AQP9 in the liver are transmembrane proteins that belong to the subset of AQPs called aquaglyceroporins. AQP7 facilitates the efflux of glycerol from adipose tissue and AQP7 deficiency has been linked to TG accumulation in adipose tissue and adult onset obesity. On the other hand, AQP9 expressed in liver facilitates the hepatic uptake of glycerol and thereby the availability of glycerol for de novo synthesis of glucose and TG that both are involved in the pathophysiology of diabetes. The aim of this review was to summarize the current knowledge on the role of the two glycerol channels in controlling glycerol metabolism in adipose tissue and liver.
Collapse
Affiliation(s)
- Janne Lebeck
- The Danish Diabetes Academy, Odense, Denmark Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, DK-8000 Aarhus, Denmark
| |
Collapse
|
37
|
Paoli A. Ketogenic diet for obesity: friend or foe? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:2092-107. [PMID: 24557522 PMCID: PMC3945587 DOI: 10.3390/ijerph110202092] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/29/2014] [Accepted: 02/07/2014] [Indexed: 12/11/2022]
Abstract
Obesity is reaching epidemic proportions and is a strong risk factor for a number of cardiovascular and metabolic disorders such as hypertension, type 2 diabetes, dyslipidemia, atherosclerosis, and also certain types of cancers. Despite the constant recommendations of health care organizations regarding the importance of weight control, this goal often fails. Genetic predisposition in combination with inactive lifestyles and high caloric intake leads to excessive weight gain. Even though there may be agreement about the concept that lifestyle changes affecting dietary habits and physical activity are essential to promote weight loss and weight control, the ideal amount and type of exercise and also the ideal diet are still under debate. For many years, nutritional intervention studies have been focused on reducing dietary fat with little positive results over the long-term. One of the most studied strategies in the recent years for weight loss is the ketogenic diet. Many studies have shown that this kind of nutritional approach has a solid physiological and biochemical basis and is able to induce effective weight loss along with improvement in several cardiovascular risk parameters. This review discusses the physiological basis of ketogenic diets and the rationale for their use in obesity, discussing the strengths and the weaknesses of these diets together with cautions that should be used in obese patients.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy.
| |
Collapse
|
38
|
Resistant starch and arabinoxylan augment SCFA absorption, but affect postprandial glucose and insulin responses differently. Br J Nutr 2014; 111:1564-76. [PMID: 24507768 DOI: 10.1017/s0007114513004066] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The effects of increased colonic fermentation of dietary fibres (DF) on the net portal flux (NPF) of carbohydrate-derived metabolites (glucose, SCFA and, especially, butyrate), hormones (insulin, C-peptide, glucagon-like peptide 1 and glucose-dependent insulinotropic peptide) and NEFA were studied in a healthy catheterised pig model. A total of six pigs weighing 59 (SEM 1·6) kg were fitted with catheters in the mesenteric artery and in the portal and hepatic veins, and a flow probe around the portal vein, and included in a double 3 × 3 cross-over design with three daily feedings (at 09.00, 14.00 and 19.00 hours). Fasting and 5 h postprandial blood samples were collected after 7 d adaptation to each diet. The pigs were fed a low-DF Western-style control diet (WSD) and two high-DF diets (an arabinoxylan-enriched diet (AXD) and a resistant starch-enriched diet (RSD)). The NPF of insulin was lower (P= 0·04) in AXD-fed pigs (4·6 nmol/h) than in RSD-fed pigs (10·5 nmol/h), despite the lowest NPF of glucose being observed in RSD-fed pigs (203 mmol/h, P= 0·02). The NPF of total SCFA, acetate, propionate and butyrate were high, intermediate and low (P< 0·01) in AXD-, RSD- and WSD-fed pigs, respectively, with the largest relative increase being observed for butyrate in response to arabinoxylan supplementation. In conclusion, the RSD and AXD had different effects on the NPF of insulin and glucose, suggesting different impacts of arabinoxylan and resistant starch on human health.
Collapse
|
39
|
Viscarra JA, Ortiz RM. Cellular mechanisms regulating fuel metabolism in mammals: role of adipose tissue and lipids during prolonged food deprivation. Metabolism 2013; 62:889-97. [PMID: 23357530 PMCID: PMC3640658 DOI: 10.1016/j.metabol.2012.12.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/06/2012] [Accepted: 12/25/2012] [Indexed: 01/11/2023]
Abstract
Food deprivation in mammals results in profound changes in fuel metabolism and substrate regulation. Among these changes are decreased reliance on the counter-regulatory dynamics by insulin-glucagon due to reduced glucose utilization, and increased concentrations of lipid substrates in plasma to meet the energetic demands of peripheral tissues. As the primary storage site of lipid substrates, adipose tissue must then be a primary contributor to the regulation of metabolism in food deprived states. Through its regulation of lipolysis, adipose tissue influences the availability of carbohydrate, lipid, and protein substrates. Additionally, lipid substrates can act as ligands to various nuclear receptors (retinoid x receptor (RXR), liver x receptor (LXR), and peroxisome proliferator-activated receptor (PPAR)) and exhibit prominent regulatory capabilities over the expression of genes involved in substrate metabolism within various tissues. Therefore, through its control of lipolysis, adipose tissue also indirectly regulates the utilization of metabolic substrates within peripheral tissues. In this review, these processes are described in greater detail and the extent to which adipose tissue and lipid substrates regulate metabolism in food deprived mammals is explored with comments on future directions to better assess the contribution of adipose tissue to metabolism.
Collapse
Affiliation(s)
- Jose Abraham Viscarra
- Department of Molecular and Cellular Biology, University of California, Merced, 5200 N Lake Rd., Merced, CA 95343, USA.
| | | |
Collapse
|
40
|
Van Rosendal SP, Strobel NA, Osborne MA, Fassett RG, Coombes JS. Performance benefits of rehydration with intravenous fluid and oral glycerol. Med Sci Sports Exerc 2013; 44:1780-90. [PMID: 22453248 DOI: 10.1249/mss.0b013e31825420f4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Intravenous (IV) saline has been used by athletes attempting to accelerate rehydration procedures. The diuresis from IV rehydration may be circumvented through the concomitant use of oral glycerol. We aimed to examine the effects of rehydrating with four different regimens of IV fluid and oral glycerol on subsequent 40-km cycling time trial performance. METHODS Nine endurance-trained men were dehydrated by 4% bodyweight via exercise in the heat. They then rehydrated with 150% of the fluid lost via four protocols using a randomized crossover design: 1) oral = sports drink and water; 2) oral glycerol = sports drink, water, and glycerol; 3) IV = half as normal saline, half of sports drink, and water; and 4) IV with oral glycerol = half as normal saline, half as sports drink, water, and glycerol. After this, they completed a 40-km cycling performance test in the heat. RESULTS Compared with oral rehydration, there were significant performance benefits (P < 0.05) when rehydrating with oral glycerol (improved time to complete 40 km by 3.7%), IV (3.5%), and IV with oral glycerol (4.1%). Plasma volume restoration was highest in IV with oral glycerol, then IV, then oral glycerol, then oral (P < 0.01 for all of these comparisons). There were no differences in HR, tympanic/skin temperatures, sweat rate, blood lactate concentration, thermal stress, or RPE between groups. CONCLUSIONS Combining IV fluid with oral glycerol resulted in the greatest fluid retention; however, it did not improve exercise performance compared with either modality alone.
Collapse
Affiliation(s)
- Simon P Van Rosendal
- Human Performance Laboratory, School of Human Movement Studies, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | | |
Collapse
|
41
|
Soeters MR, Soeters PB, Schooneman MG, Houten SM, Romijn JA. Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation. Am J Physiol Endocrinol Metab 2012; 303:E1397-407. [PMID: 23074240 DOI: 10.1152/ajpendo.00397.2012] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human organism has tools to cope with metabolic challenges like starvation that are crucial for survival. Lipolysis, lipid oxidation, ketone body synthesis, tailored endogenous glucose production and uptake, and decreased glucose oxidation serve to protect against excessive erosion of protein mass, which is the predominant supplier of carbon chains for synthesis of newly formed glucose. The starvation response shows that the adaptation to energy deficit is very effective and coordinated with different adaptations in different organs. From an evolutionary perspective, this lipid-induced effect on glucose oxidation and uptake is very strong and may therefore help to understand why insulin resistance in obesity and type 2 diabetes mellitus is difficult to treat. The importance of reciprocity in lipid and glucose metabolism during human starvation should be taken into account when studying lipid and glucose metabolism in general and in pathophysiological conditions in particular.
Collapse
Affiliation(s)
- Maarten R Soeters
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
42
|
Structural and functional properties of glycerol-3-phosphate dehydrogenase from a mammalian hibernator. Protein J 2012; 31:109-19. [PMID: 22180227 DOI: 10.1007/s10930-011-9376-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Glycerol-3-phosphate dehydrogenase (G3PDH; E.C.1.1.1.8) was purified from liver and skeletal muscle of black-tailed prairie dogs (Cynomys ludivicianus), a hibernating species. Native and subunit molecular masses of the dimeric enzyme were 77 and 40 kD, respectively, and both tissues contained a single isozyme with a pI of 6.4. Kinetic parameters of purified G3PDH from prairie dog liver and muscle were characterized at 22 and 5 °C and compared with rabbit muscle G3PDH. Substrate affinities for hibernator muscle G3PDH were stable (NAD) or increased significantly (K(m) G3P and DHAP decreased) at low temperature whereas K(m) NAD and DHAP of rabbit G3PDH increased. Prairie dog G3PDH showed greater conservation of K(m) G3P over a wide temperature range as well as greater thermal stability and resistance to chemical denaturation by guanidine hydrochloride than the rabbit enzyme. In addition, using the protein sequence of the hibernating thirteen-lined ground squirrel (Ictidomys tridecemlineatus) and bioinformatics tools, the deduced protein structure of G3PDH was compared between heterothermic and homeothermic mammals. Structural and functional characteristics of G3PDH from the hibernating species would support enzyme function over a wide range of core body temperatures over cycles of torpor and arousal.
Collapse
|
43
|
Koehler K, Braun H, Marees M, Geyer H, Thevis M, Mester J, Schaenzer W. Urinary excretion of exogenous glycerol administration at rest. Drug Test Anal 2011; 3:877-82. [DOI: 10.1002/dta.355] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/05/2011] [Accepted: 08/09/2011] [Indexed: 11/11/2022]
|
44
|
Smith TJ, Schwarz JM, Montain SJ, Rood J, Pikosky MA, Castaneda-Sceppa C, Glickman E, Young AJ. High protein diet maintains glucose production during exercise-induced energy deficit: a controlled trial. Nutr Metab (Lond) 2011; 8:26. [PMID: 21527019 PMCID: PMC3100238 DOI: 10.1186/1743-7075-8-26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 04/28/2011] [Indexed: 11/28/2022] Open
Abstract
Background Inadequate energy intake induces changes in endogenous glucose production (GP) to preserve muscle mass. Whether addition provision of dietary protein modulates GP response to energy deficit is unclear. The objective was to determine whether exercise-induced energy deficit effects on glucose metabolism are mitigated by increased dietary protein. Methods Nineteen men ([mean ± SD] 23 ± 2 y, VO2peak 59 ± 5 ml·kg-1·min-1) were divided into three groups, two consuming moderate (MP; 0.9 g protein kg-1 d-1), and one high (HP; 1.8 g protein kg-1 d-1) protein diets (55% energy from carbohydrate) for 11 days. Following 4 days of energy balance (D1-4), energy expenditure was increased for 7 days (D5-12) in all groups. Energy intake was unchanged in two, creating a 1000 kcal d-1 deficit (DEF-MP, DEF-HP; n = 6, both groups), whereas energy balance was maintained in the third (BAL-MP, n = 7). Biochemical markers of substrate metabolism were measured during fasting rest on D4 and D12, as were GP and contribution of gluconeogenesis to endogenous glucose production (fgng) using 4-h primed, continuous infusions of [6,6-2H2]glucose (dilution-method) and [2-13C]glycerol (MIDA technique). Glycogen breakdown (GB) was derived from GP and fgng. Results Plasma β-hydroxybutyrate levels increased, and plasma glucose and insulin declined from D4 to D12, regardless of group. DEF-MP experienced decreased plasma GP from D4 to D12 ([mean change ± SD] 0.24 ± 0.24 mg·kg-1·min-1), due to reduced GB from D4 (1.40 ± 0.28 mg·kg-1·min-1) to D12 (1.16 ± 0.17 mg·kg-1·min-1), P < 0.05. Conversely, BAL-MP and DEF-HP sustained GP from D4 to D12 ([mean change ± SD] 0.1 ± 0.5 and 0.0 ± 0.2 mg·kg-1·min-1, respectively) by maintaining GB. Conclusion Exercise-induced energy deficit decreased GP and additional dietary protein mitigated that effect.
Collapse
Affiliation(s)
- Tracey J Smith
- U,S, Army Research Institute of Environmental Medicine, Military Nutrition Division, Kansas Street, Building 42, Natick, MA 01760, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
van Rosendal SP, Osborne MA, Fassett RG, Coombes JS. Physiological and performance effects of glycerol hyperhydration and rehydration. Nutr Rev 2009; 67:690-705. [DOI: 10.1111/j.1753-4887.2009.00254.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
47
|
Zijlmans WCWR, van Kempen AAMW, Serlie MJ, Sauerwein HP. Glucose metabolism in children: influence of age, fasting, and infectious diseases. Metabolism 2009; 58:1356-65. [PMID: 19501855 DOI: 10.1016/j.metabol.2009.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Revised: 04/22/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
Abstract
This review describes the occurrence of hypoglycemia in young children as a common and serious complication that needs to be avoided because of the high risk of brain damage and mortality. Young age, fasting, and severe infectious disease are considered important risk factors. The limited data on the effect of these risk factors on glucose metabolism in children are discussed and compared with data on glucose metabolism in adults. The observations discussed may have implications for further research on glucose kinetics in young children with infectious disease.
Collapse
Affiliation(s)
- Wilco C W R Zijlmans
- Department of Pediatrics, Diakonessen Hospital, PO Box 1814, Paramaribo, Suriname (SA).
| | | | | | | |
Collapse
|
48
|
Hylander B, Rosenqvist U. Peripheral responses to thyroxine in hypothyroid subjects as a function of dose and duration of substitution. ACTA MEDICA SCANDINAVICA 2009; 214:317-23. [PMID: 6660039 DOI: 10.1111/j.0954-6820.1983.tb10640.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of this study was to explore the differences in normalization between different organ functions in hypothyroid patients during substitution. The study included 21 hypothyroid patients who were substituted with gradually increasing doses of thyroxine (T4) and studied repeatedly for up to 20 or 32 weeks. The different peripheral organ functions were compared with regard to the dose and duration of substitution necessary for a 50% therapeutic effect. The circulatory response to an orthostatic test, the decrease in low density lipoprotein cholesterol and thyroid stimulating hormone concentrations, the lipolytic effect of physical exercise and the increase in triiodothyronine concentration showed a 50% response to substitution within 3.3--4.6 weeks of therapy and at a T4 dose of 0.04--0.06 mg/day. In contrast, the 50% therapeutic effect on the lipolytic response to an intravenous l-noradrenaline infusion and the maximal working capacity on ergometer bicycle was not observed until 6.2--9.0 weeks of therapy and T4 doses of 0.08--0.11 mg/day. The differences observed in the peripheral responses might be of clinical importance when severely hypothyroid patients must be substituted rapidly.
Collapse
|
49
|
Magkos F, Mittendorfer B. Stable isotope-labeled tracers for the investigation of fatty acid and triglyceride metabolism in humans in vivo. ACTA ACUST UNITED AC 2009; 4:215-230. [PMID: 20161007 DOI: 10.2217/clp.09.9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding lipid metabolism and its regulation requires information on the rates at which lipids are produced within the body, absorbed (dietary lipids) into the body, transported within the body, and utilized by various tissues. This article focuses on the use of stable isotope-labeled tracers for the quantitative evaluation of major pathways of fatty acid and triglyceride metabolism in humans in vivo. Adipose tissue lipolysis and free fatty acid appearance in plasma, fatty acid tissue uptake and oxidation, and hepatic very low-density lipoprotein triglyceride secretion are among the metabolic pathways that can be studied by using stable isotope labeled tracers, and will be discussed in detail. The methodology has been in use for many years and is constantly being refined. A variety of tracers and analytical approaches are available and can be used; knowing the advantages, assumptions, and limitations of each is essential for the planning of studies and the interpretation of data, which can provide unique insights into human lipid metabolism.
Collapse
Affiliation(s)
- Faidon Magkos
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
50
|
Enzymes of glycerol and glyceraldehyde metabolism in mouse liver: effects of caloric restriction and age on activities. Biosci Rep 2008; 28:107-15. [PMID: 18429748 DOI: 10.1042/bsr20080015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The influence of caloric restriction on hepatic glyceraldehyde- and glycerol-metabolizing enzyme activities of young and old mice were studied. Glycerol kinase and cytoplasmic glycerol-3-phosphate dehydrogenase activities were increased in both young and old CR (calorie-restricted) mice when compared with controls, whereas triokinase increased only in old CR mice. Aldehyde dehydrogenase and aldehyde reductase activities in both young and old CR mice were unchanged by caloric restriction. Mitochondrial glycerol-3-phosphate dehydrogenase showed a trend towards an increased activity in old CR mice, whereas a trend towards a decreased activity in alcohol dehydrogenase was observed in both young and old CR mice. Serum glycerol levels decreased in young and old CR mice. Therefore increases in glycerol kinase and glycerol-3-phosphate dehydrogenase were associated with a decrease in fasting blood glycerol levels in CR animals. A prominent role for triokinase in glyceraldehyde metabolism with CR was also observed. The results indicate that long-term caloric restriction induces sustained increases in the capacity for gluconeogenesis from glycerol.
Collapse
|