1
|
Ha SE, Singh R, Jin B, Baek G, Jorgensen BG, Zogg H, Debnath S, Park HS, Cho H, Watkins CM, Cho S, Kim MS, Lee MY, Yu TY, Jeong JW, Ro S. miR-10a/b-5p-NCOR2 Regulates Insulin-Resistant Diabetes in Female Mice. Int J Mol Sci 2024; 25:10147. [PMID: 39337631 PMCID: PMC11432729 DOI: 10.3390/ijms251810147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Gender and biological sex have distinct impacts on the pathogenesis of type 2 diabetes (T2D). Estrogen deficiency is known to predispose female mice to T2D. In our previous study, we found that a high-fat, high-sucrose diet (HFHSD) induces T2D in male mice through the miR-10b-5p/KLF11/KIT pathway, but not in females, highlighting hormonal disparities in T2D susceptibility. However, the underlying molecular mechanisms of this hormonal protection in females remain elusive. To address this knowledge gap, we utilized ovariectomized, estrogen-deficient female mice, fed them a HFHSD to induce T2D, and investigated the molecular mechanisms involved in estrogen-deficient diabetic female mice, relevant cell lines, and female T2D patients. Initially, female mice fed a HFHSD exhibited a delayed onset of T2D, but ovariectomy-induced estrogen deficiency promptly precipitated T2D without delay. Intriguingly, insulin (INS) was upregulated, while insulin receptor (INSR) and protein kinase B (AKT) were downregulated in these estrogen-deficient diabetic female mice, indicating insulin-resistant T2D. These dysregulations of INS, INSR, and AKT were mediated by a miR-10a/b-5p-NCOR2 axis. Treatment with miR-10a/b-5p effectively alleviated hyperglycemia in estrogen-deficient T2D female mice, while β-estradiol temporarily reduced hyperglycemia. Consistent with the murine findings, plasma samples from female T2D patients exhibited significant reductions in miR-10a/b-5p, estrogen, and INSR, but increased insulin levels. Our findings suggest that estrogen protects against insulin-resistant T2D in females through miR-10a/b-5p/NCOR2 pathway, indicating the potential therapeutic benefits of miR-10a/b-5p restoration in female T2D management.
Collapse
Affiliation(s)
- Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.E.H.); (B.J.); (G.B.); (H.Z.); (H.S.P.); (S.C.)
| | - Rajan Singh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.E.H.); (B.J.); (G.B.); (H.Z.); (H.S.P.); (S.C.)
| | - Byungchang Jin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.E.H.); (B.J.); (G.B.); (H.Z.); (H.S.P.); (S.C.)
| | - Gain Baek
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.E.H.); (B.J.); (G.B.); (H.Z.); (H.S.P.); (S.C.)
| | - Brian G. Jorgensen
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.E.H.); (B.J.); (G.B.); (H.Z.); (H.S.P.); (S.C.)
| | - Hannah Zogg
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.E.H.); (B.J.); (G.B.); (H.Z.); (H.S.P.); (S.C.)
| | - Sushmita Debnath
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.E.H.); (B.J.); (G.B.); (H.Z.); (H.S.P.); (S.C.)
| | - Hahn Sung Park
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.E.H.); (B.J.); (G.B.); (H.Z.); (H.S.P.); (S.C.)
| | - Hayeong Cho
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.E.H.); (B.J.); (G.B.); (H.Z.); (H.S.P.); (S.C.)
| | - Claudia Marie Watkins
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.E.H.); (B.J.); (G.B.); (H.Z.); (H.S.P.); (S.C.)
| | - Sumin Cho
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.E.H.); (B.J.); (G.B.); (H.Z.); (H.S.P.); (S.C.)
| | - Min-Seob Kim
- Department of Physiology, Wonkwang Digestive Disease Research Institute & Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (M.-S.K.); (M.Y.L.)
| | - Moon Young Lee
- Department of Physiology, Wonkwang Digestive Disease Research Institute & Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (M.-S.K.); (M.Y.L.)
| | - Tae Yang Yu
- Division of Endocrinology and Metabolism, Department of Medicine, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea; (T.Y.Y.); (J.W.J.)
| | - Jin Woo Jeong
- Division of Endocrinology and Metabolism, Department of Medicine, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea; (T.Y.Y.); (J.W.J.)
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.E.H.); (B.J.); (G.B.); (H.Z.); (H.S.P.); (S.C.)
- RosVivo Therapeutics, Applied Research Facility, 1664 N. Virginia St., Reno, NV 89557, USA
| |
Collapse
|
2
|
Caturano A, Galiero R, Vetrano E, Sardu C, Rinaldi L, Russo V, Monda M, Marfella R, Sasso FC. Insulin-Heart Axis: Bridging Physiology to Insulin Resistance. Int J Mol Sci 2024; 25:8369. [PMID: 39125938 PMCID: PMC11313400 DOI: 10.3390/ijms25158369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Insulin signaling is vital for regulating cellular metabolism, growth, and survival pathways, particularly in tissues such as adipose, skeletal muscle, liver, and brain. Its role in the heart, however, is less well-explored. The heart, requiring significant ATP to fuel its contractile machinery, relies on insulin signaling to manage myocardial substrate supply and directly affect cardiac muscle metabolism. This review investigates the insulin-heart axis, focusing on insulin's multifaceted influence on cardiac function, from metabolic regulation to the development of physiological cardiac hypertrophy. A central theme of this review is the pathophysiology of insulin resistance and its profound implications for cardiac health. We discuss the intricate molecular mechanisms by which insulin signaling modulates glucose and fatty acid metabolism in cardiomyocytes, emphasizing its pivotal role in maintaining cardiac energy homeostasis. Insulin resistance disrupts these processes, leading to significant cardiac metabolic disturbances, autonomic dysfunction, subcellular signaling abnormalities, and activation of the renin-angiotensin-aldosterone system. These factors collectively contribute to the progression of diabetic cardiomyopathy and other cardiovascular diseases. Insulin resistance is linked to hypertrophy, fibrosis, diastolic dysfunction, and systolic heart failure, exacerbating the risk of coronary artery disease and heart failure. Understanding the insulin-heart axis is crucial for developing therapeutic strategies to mitigate the cardiovascular complications associated with insulin resistance and diabetes.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy;
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA;
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| |
Collapse
|
3
|
Logesh R, Hari B, Chidambaram K, Das N. Molecular effects of Vitamin-D and PUFAs metabolism in skeletal muscle combating Type-II diabetes mellitus. Gene 2024; 904:148216. [PMID: 38307219 DOI: 10.1016/j.gene.2024.148216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Multiple post-receptor intracellular alterations such as impaired glucose transfer, glucose phosphorylation, decreased glucose oxidation, and glycogen production contribute to insulin resistance (IR) in skeletal muscle, manifested by diminished insulin-stimulated glucose uptake. Type-2 diabetes mellites (T2DM) has caused by IR, which is also seen in obese patients and those with metabolic syndrome. The Vitamin-D receptor (VDR) and poly unsaturated fatty acids (PUFAs) roles in skeletal muscle growth, shapes, and function for combating type-2 diabetes have been clarified throughout this research. VDR and PUFAs appears to show a variety of effects on skeletal muscle, in addition it shows a promising role on bone and mineral homeostasis. Individuals having T2DM are reported to suffer from severe muscular weakness and alterations in shape of the muscle. Several studies have investigated the effect on VDR on muscular strength and mass, which leads to Vitamin-D deficiency (VDD) in individuals, in which most commonly seen in elderly. VDR has been shown to affect skeletal cellular proliferation, intracellular calcium handling, as well as genomic activity in a variety of different ways such as muscle metabolism, insulin sensitivity, which is the major characteristic pathogenesis for IR in combating T2DM. The identified VDR gene polymorphisms are ApaI, TaqI, FokI, and BsmI that are associated with T2DM. This review collates informations on the mechanisms by which VDR activation takes place in skeletal muscles. Despite the significant breakthroughs made in recent decades, various studies show that IR affects VDR and PUFAs metabolism in skeletal muscle. Therefore, this review collates the data to show the role of VDR and PUFAs in the skeletal muscles to combat T2DM.
Collapse
Affiliation(s)
- Rajan Logesh
- Department of Pharmacognosy, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education & Research, Karnataka, India.
| | - Balaji Hari
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS Academy of Higher Education & Research, JSS College of Pharmacy, The Nilgiris, Ooty 643001, Tamil Nadu, India
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Al-Qara, Asir Province, Saudi Arabia
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799155, Tripura, India
| |
Collapse
|
4
|
Asthana P, Wong HLX. Preventing obesity, insulin resistance and type 2 diabetes by targeting MT1-MMP. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167081. [PMID: 38367902 DOI: 10.1016/j.bbadis.2024.167081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Obesity is one of the predominant risk factors for type 2 diabetes. Despite all the modern advances in medicine, an effective drug treatment for obesity without overt side effects has not yet been found. The discovery of growth and differentiation factor 15 (GDF15), an appetite-regulating hormone, created hopes for the treatment of obesity. However, an insufficient understanding of the physiological regulation of GDF15 has been a major obstacle to mitigating GDF15-centric treatment of obesity. Our recent studies revealed how a series of proteolytic events predominantly mediated by membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP14), a key cell-surface metalloproteinase involved in extracellular remodeling, contribute to the pathogenesis of metabolic disorders, including obesity and diabetes. The MT1-MMP-mediated cleavage of the GDNF family receptor-α-like (GFRAL), a key neuronal receptor of GDF15, controls the satiety center in the hindbrain, thereby regulating non-homeostatic appetite and bodyweight changes. Furthermore, increased activation of MT1-MMP does not only lead to increased risk of obesity, but also causes age-associated insulin resistance by cleaving Insulin Receptor in major metabolic tissues. Importantly, inhibition of MT1-MMP effectively protects against obesity and diabetes, revealing the therapeutic potential of targeting MT1-MMP for the management of metabolic disorders.
Collapse
Affiliation(s)
- Pallavi Asthana
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | | |
Collapse
|
5
|
Li Y, Ji Y, Li F. A review: Mechanism and prospect of gastrodin in prevention and treatment of T2DM and COVID-19. Heliyon 2023; 9:e21218. [PMID: 37954278 PMCID: PMC10637887 DOI: 10.1016/j.heliyon.2023.e21218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/15/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Gastrodin is an extract from the dried tuber of the Chinese herb Gastrodia elata (Tian ma), with anti-inflammatory, antioxidant, and antiviral properties. Recent studies have shown that, compared to commonly used diabetes drugs, gastrodin has antidiabetic effects in multiple ways, with characteristics of low cost, high safety, less side effects, protection of β-cell function, relieving insulin resistance and alleviating multiple complications. In addition, it is confirmed that gastrodin can protect the function of lung and other organs, enhance antiviral activity via upregulating the type I interferon (IFN-I), and inhibit angiotensin II (AngII), a key factor in "cytokine storm" caused by COVID-19. Therefore, we reviewed the effect and mechanism of gastrodin on type 2 diabetes mellitus (T2DM), and speculated other potential mechanisms of gastrodin in alleviating insulin resistance from insulin signal pathway, inflammation, mitochondrial and endoplasmic reticulum and its potential in the prevention and treatment of COVID-19. We hope to provide new direction and treatment strategy for basic research and clinical work: gastrodin is considered as a drug for the prevention and treatment of diabetes and COVID-19.
Collapse
Affiliation(s)
- Yi Li
- Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Yuanyuan Ji
- Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Fenglan Li
- Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Zhang Y, Lan M, Liu C, Wang T, Liu C, Wu S, Meng Q. Islr regulates insulin sensitivity by interacting with Psma4 to control insulin receptor alpha levels in obese mice. Int J Biochem Cell Biol 2023; 159:106420. [PMID: 37116777 DOI: 10.1016/j.biocel.2023.106420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
Insulin resistance is the leading cause of type 2 diabetes (T2D), and dysfunctional insulin receptor signaling is a major manifestation of this insulin resistance. In T2D, the corresponding insulin receptor levels are aberrantly down-regulated, which is one of the major factors underlying obesity-induced insulin resistance in adipose tissue. However, the precise mechanism of insulin receptor impairment in obese individuals remains unclear. In the current study, we established that immunoglobulin superfamily containing leucine-rich repeat (Islr) is highly expressed in adipocytes of mice fed a high-fat diet. We further demonstrated that Islr mediates the ubiquitin-independent proteasomal degradation of insulin receptor alpha (Insrα) by specifically interacting with proteasome subunit alpha type 4 (Psma4). Islr knockout increased the corresponding Insrα subunit levels and enhanced insulin sensitivity in adipocytes, ultimately improving systemic metabolism. Further, siRNA-mediated down-regulation of Islr expression in the white adipose tissue of obese mice increased insulin sensitivity. Overall, Islr regulates insulin sensitivity by interacting with Psma4 to control the ubiquitin-independent proteasomal degradation of Insrα in obese mice, indicating that Islr may be a potential therapeutic target for ameliorating insulin resistance.
Collapse
Affiliation(s)
- Yuying Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China; State Key Laboratories of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China
| | - Miaomiao Lan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China; State Key Laboratories of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China
| | - Chang Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China; State Key Laboratories of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China
| | - Tongtong Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China; State Key Laboratories of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China
| | - Chuncheng Liu
- State Key Laboratories of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China; The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Sen Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China; State Key Laboratories of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China
| | - Qingyong Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China; State Key Laboratories of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China.
| |
Collapse
|
7
|
Miola A, De Filippis E, Veldic M, Ho AMC, Winham SJ, Mendoza M, Romo-Nava F, Nunez NA, Gardea Resendez M, Prieto ML, McElroy SL, Biernacka JM, Frye MA, Cuellar-Barboza AB. The genetics of bipolar disorder with obesity and type 2 diabetes. J Affect Disord 2022; 313:222-231. [PMID: 35780966 PMCID: PMC9703971 DOI: 10.1016/j.jad.2022.06.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/25/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Bipolar disorder (BD) presents with high obesity and type 2 diabetes (T2D) and pathophysiological and phenomenological abnormalities shared with cardiometabolic disorders. Genomic studies may help define if they share genetic liability. This selective review of BD with obesity and T2D will focus on genomic studies, stress their current limitations and guide future steps in developing the field. METHODS We searched electronic databases (PubMed, Scopus) until December 2021 to identify genome-wide association studies, polygenic risk score analyses, and functional genomics of BD accounting for body mass index (BMI), obesity, or T2D. RESULTS The first genome-wide association studies (GWAS) of BD accounting for obesity found a promising genome-wide association in an intronic gene variant of TCF7L2 that was further replicated. Polygenic risk scores of obesity and T2D have also been associated with BD, yet, no genetic correlations have been demonstrated. Finally, human-induced stem cell studies of the intronic variant in TCF7L2 show a potential biological impact of the products of this genetic variant in BD risk. LIMITATIONS The narrative nature of this review. CONCLUSIONS Findings from BD GWAS accounting for obesity and their functional testing, have prompted potential biological insights. Yet, BD, obesity, and T2D display high phenotypic, genetic, and population-related heterogeneity, limiting our ability to detect genetic associations. Further studies should refine cardiometabolic phenotypes, test gene-environmental interactions and add population diversity.
Collapse
Affiliation(s)
- Alessandro Miola
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | | | - Marin Veldic
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Ada Man-Choi Ho
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Stacey J Winham
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Mariana Mendoza
- Department of Psychiatry, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Francisco Romo-Nava
- Lindner Center of HOPE, Mason, OH, USA; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nicolas A Nunez
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Miguel L Prieto
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry, Facultad de Medicina, Universidad de los Andes, Santiago, Chile; Mental Health Service, Clínica Universidad de los Andes, Santiago, Chile; Center for Biomedical Research and Innovation, Universidad de los Andes, Santiago, Chile
| | - Susan L McElroy
- Lindner Center of HOPE, Mason, OH, USA; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joanna M Biernacka
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Mark A Frye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Alfredo B Cuellar-Barboza
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico.
| |
Collapse
|
8
|
Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther 2022; 7:216. [PMID: 35794109 PMCID: PMC9259665 DOI: 10.1038/s41392-022-01073-0] [Citation(s) in RCA: 262] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
The centenary of insulin discovery represents an important opportunity to transform diabetes from a fatal diagnosis into a medically manageable chronic condition. Insulin is a key peptide hormone and mediates the systemic glucose metabolism in different tissues. Insulin resistance (IR) is a disordered biological response for insulin stimulation through the disruption of different molecular pathways in target tissues. Acquired conditions and genetic factors have been implicated in IR. Recent genetic and biochemical studies suggest that the dysregulated metabolic mediators released by adipose tissue including adipokines, cytokines, chemokines, excess lipids and toxic lipid metabolites promote IR in other tissues. IR is associated with several groups of abnormal syndromes that include obesity, diabetes, metabolic dysfunction-associated fatty liver disease (MAFLD), cardiovascular disease, polycystic ovary syndrome (PCOS), and other abnormalities. Although no medication is specifically approved to treat IR, we summarized the lifestyle changes and pharmacological medications that have been used as efficient intervention to improve insulin sensitivity. Ultimately, the systematic discussion of complex mechanism will help to identify potential new targets and treat the closely associated metabolic syndrome of IR.
Collapse
Affiliation(s)
- Mengwei Li
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaowei Chi
- Development Center for Medical Science & Technology National Health Commission of the People's Republic of China, 100044, Beijing, China
| | - Ying Wang
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Wenwei Xie
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China.
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Guo X, Asthana P, Gurung S, Zhang S, Wong SKK, Fallah S, Chow CFW, Che S, Zhai L, Wang Z, Ge X, Jiang Z, Wu J, Zhang Y, Wu X, Xu K, Lin CY, Kwan HY, Lyu A, Zhou Z, Bian ZX, Wong HLX. Regulation of age-associated insulin resistance by MT1-MMP-mediated cleavage of insulin receptor. Nat Commun 2022; 13:3749. [PMID: 35768470 PMCID: PMC9242991 DOI: 10.1038/s41467-022-31563-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
Insulin sensitivity progressively declines with age. Currently, the mechanism underlying age-associated insulin resistance remains unknown. Here, we identify membrane-bound matrix metalloproteinase 14 (MT1-MMP/MMP14) as a central regulator of insulin sensitivity during ageing. Ageing promotes MMP14 activation in insulin-sensitive tissues, which cleaves Insulin Receptor to suppress insulin signaling. MT1-MMP inhibition restores Insulin Receptor expression, improving insulin sensitivity in aged mice. The cleavage of Insulin Receptor by MT1-MMP also contributes to obesity-induced insulin resistance and inhibition of MT1-MMP activities normalizes metabolic dysfunctions in diabetic mouse models. Conversely, overexpression of MT1-MMP in the liver reduces the level of Insulin Receptor, impairing hepatic insulin sensitivity in young mice. The soluble Insulin Receptor and circulating MT1-MMP are positively correlated in plasma from aged human subjects and non-human primates. Our findings provide mechanistic insights into regulation of insulin sensitivity during physiological ageing and highlight MT1-MMP as a promising target for therapeutic avenue against diabetes.
Collapse
Affiliation(s)
- Xuanming Guo
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Pallavi Asthana
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Susma Gurung
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shuo Zhang
- grid.194645.b0000000121742757School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Sheung Kin Ken Wong
- grid.194645.b0000000121742757School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Samane Fallah
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chi Fung Willis Chow
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China ,grid.419537.d0000 0001 2113 4567Centre for Systems Biology Dresden, Max Planck Institute for Molecular Cell and Biology, Dresden, Germany
| | - Sijia Che
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lixiang Zhai
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zening Wang
- grid.267308.80000 0000 9206 2401Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Xin Ge
- grid.267308.80000 0000 9206 2401Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Zhixin Jiang
- grid.194645.b0000000121742757School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jiayan Wu
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yijing Zhang
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiaoyu Wu
- grid.470187.dRespiratory Department, Jinhua Guangfu hospital, Jinhua, China
| | - Keyang Xu
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Cheng Yuan Lin
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China ,grid.221309.b0000 0004 1764 5980Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hiu Yee Kwan
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lyu
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhongjun Zhou
- grid.194645.b0000000121742757School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Zhao-Xiang Bian
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China ,grid.221309.b0000 0004 1764 5980Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hoi Leong Xavier Wong
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
10
|
Koh HCE, Cao C, Mittendorfer B. Insulin Clearance in Obesity and Type 2 Diabetes. Int J Mol Sci 2022; 23:596. [PMID: 35054781 PMCID: PMC8776220 DOI: 10.3390/ijms23020596] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
Plasma insulin clearance is an important determinant of plasma insulin concentration. In this review, we provide an overview of the factors that regulate insulin removal from plasma and discuss the interrelationships among plasma insulin clearance, excess adiposity, insulin sensitivity, and type 2 diabetes (T2D). We conclude with the perspective that the commonly observed lower insulin clearance rate in people with obesity, compared with lean people, is not a compensatory response to insulin resistance but occurs because insulin sensitivity and insulin clearance are mechanistically, directly linked. Furthermore, insulin clearance decreases postprandially because of the marked increase in insulin delivery to tissues that clear insulin. The commonly observed high postprandial insulin clearance in people with obesity and T2D likely results from the relatively low insulin secretion rate, not an impaired adaptation of tissues that clear insulin.
Collapse
Affiliation(s)
| | | | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8031-14-0002, St. Louis, MO 63110, USA; (H.-C.E.K.); (C.C.)
| |
Collapse
|
11
|
Mittendorfer B, Patterson BW, Smith GI, Yoshino M, Klein S. Beta-cell function and plasma insulin clearance in people with obesity and different glycemic status. J Clin Invest 2021; 132:154068. [PMID: 34905513 PMCID: PMC8803344 DOI: 10.1172/jci154068] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/08/2021] [Indexed: 12/02/2022] Open
Abstract
Background It is unclear how excess adiposity and insulin resistance affect β cell function, insulin secretion, and insulin clearance in people with obesity. Methods We used a hyperinsulinemic-euglycemic clamp procedure and a modified oral glucose tolerance test to evaluate the interrelationships among obesity, insulin sensitivity, insulin kinetics, and glycemic status in 5 groups of individuals: normoglycemic lean and obese individuals with (a) normal fasting glucose and normal glucose tolerance (Ob-NFG-NGT), (b) NFG and impaired glucose tolerance (Ob-NFG-IGT), (c) impaired fasting glucose and IGT (Ob-IFG-IGT), or (d) type 2 diabetes (Ob-T2D). Results Glucose-stimulated insulin secretion (GSIS), an assessment of β cell function, was greater in the Ob-NFG-NGT and Ob-NFG-IGT groups than in the lean group, even when insulin sensitivity was matched in the obese and lean groups. Insulin sensitivity, not GSIS, was decreased in the Ob-NFG-IGT group compared with the Ob-NFG-NGT group, whereas GSIS, not insulin sensitivity, was decreased in the Ob-IFG-IGT and Ob-T2D groups compared with the Ob-NFG-NGT and Ob-NFG-IGT groups. Insulin clearance was directly related to insulin sensitivity and inversely related to the postprandial increase in insulin secretion and plasma insulin concentration. Conclusion Increased adiposity per se, not insulin resistance, enhanced insulin secretion in people with obesity. The obesity-induced increase in insulin secretion, in conjunction with a decrease in insulin clearance, sufficiently raised the plasma insulin concentrations needed to maintain normoglycemia in individuals with moderate, but not severe, insulin resistance. A deterioration in β cell function, not a decrease in insulin sensitivity, was a determinant of IFG and ultimately leads to T2D. CLINICAL TRIALS REGISTRATION ClinicalTrials.gov NCT02706262, NCT04131166, and NCT01977560. FUNDING NIH (P30 DK056341, P30 DK020579, and UL1 TR000448); American Diabetes Association (1-18-ICTS-119); Longer Life Foundation; Pershing Square Foundation; and Washington University-Centene ARCH Personalized Medicine Initiative (P19-00559).
Collapse
Affiliation(s)
- Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, United States of America
| | - Bruce W Patterson
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, United States of America
| | - Gordon I Smith
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, United States of America
| | - Mihoko Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, United States of America
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, United States of America
| |
Collapse
|
12
|
The aetiology and molecular landscape of insulin resistance. Nat Rev Mol Cell Biol 2021; 22:751-771. [PMID: 34285405 DOI: 10.1038/s41580-021-00390-6] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Insulin resistance, defined as a defect in insulin-mediated control of glucose metabolism in tissues - prominently in muscle, fat and liver - is one of the earliest manifestations of a constellation of human diseases that includes type 2 diabetes and cardiovascular disease. These diseases are typically associated with intertwined metabolic abnormalities, including obesity, hyperinsulinaemia, hyperglycaemia and hyperlipidaemia. Insulin resistance is caused by a combination of genetic and environmental factors. Recent genetic and biochemical studies suggest a key role for adipose tissue in the development of insulin resistance, potentially by releasing lipids and other circulating factors that promote insulin resistance in other organs. These extracellular factors perturb the intracellular concentration of a range of intermediates, including ceramide and other lipids, leading to defects in responsiveness of cells to insulin. Such intermediates may cause insulin resistance by inhibiting one or more of the proximal components in the signalling cascade downstream of insulin (insulin receptor, insulin receptor substrate (IRS) proteins or AKT). However, there is now evidence to support the view that insulin resistance is a heterogeneous disorder that may variably arise in a range of metabolic tissues and that the mechanism for this effect likely involves a unified insulin resistance pathway that affects a distal step in the insulin action pathway that is more closely linked to the terminal biological response. Identifying these targets is of major importance, as it will reveal potential new targets for treatments of diseases associated with insulin resistance.
Collapse
|
13
|
O'Reilly CL, Uranga S, Fluckey JD. Culprits or consequences: Understanding the metabolic dysregulation of muscle in diabetes. World J Biol Chem 2021; 12:70-86. [PMID: 34630911 PMCID: PMC8473417 DOI: 10.4331/wjbc.v12.i5.70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of type 2 diabetes (T2D) continues to rise despite the amount of research dedicated to finding the culprits of this debilitating disease. Skeletal muscle is arguably the most important contributor to glucose disposal making it a clear target in insulin resistance and T2D research. Within skeletal muscle there is a clear link to metabolic dysregulation during the progression of T2D but the determination of culprits vs consequences of the disease has been elusive. Emerging evidence in skeletal muscle implicates influential cross talk between a key anabolic regulatory protein, the mammalian target of rapamycin (mTOR) and its associated complexes (mTORC1 and mTORC2), and the well-described canonical signaling for insulin-stimulated glucose uptake. This new understanding of cellular signaling crosstalk has blurred the lines of what is a culprit and what is a consequence with regard to insulin resistance. Here, we briefly review the most recent understanding of insulin signaling in skeletal muscle, and how anabolic responses favoring anabolism directly impact cellular glucose disposal. This review highlights key cross-over interactions between protein and glucose regulatory pathways and the implications this may have for the design of new therapeutic targets for the control of glucoregulatory function in skeletal muscle.
Collapse
Affiliation(s)
| | - Selina Uranga
- Health and Kinesiology, Texas A&M University, TX 77843, United States
| | - James D Fluckey
- Health and Kinesiology, Texas A&M University, TX 77843, United States
| |
Collapse
|
14
|
Love KM, Jahn LA, Hartline LM, Patrie JT, Barrett EJ, Liu Z. Insulin-mediated muscle microvascular perfusion and its phenotypic predictors in humans. Sci Rep 2021; 11:11433. [PMID: 34075130 PMCID: PMC8169863 DOI: 10.1038/s41598-021-90935-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/12/2021] [Indexed: 11/22/2022] Open
Abstract
Insulin increases muscle microvascular perfusion and enhances tissue insulin and nutrient delivery. Our aim was to determine phenotypic traits that foretell human muscle microvascular insulin responses. Hyperinsulinemic euglycemic clamps were performed in 97 adult humans who were lean and healthy, had class 1 obesity without comorbidities, or controlled type 1 diabetes without complications. Insulin-mediated whole-body glucose disposal rates (M-value) and insulin-induced changes in muscle microvascular blood volume (ΔMBV) were determined. Univariate and multivariate analyses were conducted to examine bivariate and multivariate relationships between outcomes, ΔMBV and M-value, and predictor variables, body mass index (BMI), total body weight (WT), percent body fat (BF), lean body mass, blood pressure, maximum consumption of oxygen (VO2max), plasma LDL (LDL-C) and HDL cholesterol, triglycerides (TG), and fasting insulin (INS) levels. Among all factors, only M-value (r = 0.23, p = 0.02) and VO2max (r = 0.20, p = 0.047) correlated with ΔMBV. Conversely, INS (r = - 0.48, p ≤ 0.0001), BF (r = - 0.54, p ≤ 0.001), VO2max (r = 0.5, p ≤ 0.001), BMI (r = - 0.40, p < 0.001), WT (r = - 0.33, p = 0.001), LDL-C (r = - 0.26, p = 0.009), TG (r = - 0.25, p = 0.012) correlated with M-value. While both ΔMBV (p = 0.045) and TG (p = 0.03) provided significant predictive information about M-value in the multivariate regression model, only M-value was uniquely predictive of ΔMBV (p = 0.045). Thus, both M-value and VO2max correlated with ΔMBV but only M-value provided unique predictive information about ΔMBV. This suggests that metabolic and microvascular insulin responses are important predictors of one another, but most metabolic insulin resistance predictors do not predict microvascular insulin responses.
Collapse
Affiliation(s)
- Kaitlin M Love
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Linda A Jahn
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Lee M Hartline
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - James T Patrie
- Department of Public Health Sciences, University of Virginia Health System, Charlottesville, VA, USA
| | - Eugene J Barrett
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
| |
Collapse
|
15
|
Abstract
Type-2 diabetes (T2D) is a chronic condition, generally regarded as an irreversible, that is among the top 10 causes of death globally. The hallmark of T2D is hyperglycemia, which results from disturbances in insulin sensitivity, insulin secretion, β-cell dysfunction and insulin resistance. Several clinical and lifestyle factors are involved in the progression of T2D, such as obesity and physical inactivity. A high-calorie diet is the main contributor to the development of obesity, which results in T2D, as obesity or increased intra-abdominal adipose tissue is related to insulin resistance. Technological advances have contributed to individuals having a more sedentary lifestyle, leading to obesity and T2D. T2D can be treated with lifestyle interventions, such as diet and exercise. Herein, we highlight the positive impact of a very low-calorie diet (VLCD) and lifestyle modalities in the treatment and prevention of T2D. An inclusion of VLCD 400-800 kcal/day for 8 weeks and ≥ 150 minutes exercise 5 times a week as lifestyle interventions can decrease glucose levels to normal, reduce HbA1c and improve insulin resistance and sensitivity. Therefore, a potential mechanism in maintaining glucose homeostasis and remission of T2D by VLCD and exercise reduces body weight.
Collapse
|
16
|
Abstract
The current paradigm of type 2 diabetes (T2D) is gluco-centric, being exclusively categorized by glycemic characteristics. The gluco-centric paradigm views hyperglycemia as the primary target, being driven by resistance to insulin combined with progressive beta cells failure, and considers glycemic control its ultimate treatment goal. Most importantly, the gluco-centric paradigm considers the non-glycemic diseases associated with T2D, e.g., obesity, dyslipidemia, hypertension, macrovascular disease, microvascular disease and fatty liver as 'risk factors' and/or 'outcomes' and/or 'comorbidities', rather than primary inherent disease aspects of T2D. That is in spite of their high prevalence (60-90%) and major role in profiling T2D morbidity and mortality. Moreover, the gluco-centric paradigm fails to realize that the non-glycemic diseases of T2D are driven by insulin and, except for glycemic control, response to insulin in T2D is essentially the rule rather than the exception. Failure of the gluco-centric paradigm to offer an exhaustive unifying view of the glycemic and non-glycemic diseases of T2D may have contributed to T2D being still an unmet need. An mTORC1-centric paradigm maintains that hyperactive mTORC1 drives the glycemic and non-glycemic disease aspects of T2D. Hyperactive mTORC1 is proposed to act as double-edged agent, namely, to interfere with glycemic control by disrupting the insulin receptor-Akt transduction pathway, while concomitantly driving the non-glycemic diseases of T2D. The mTORC1-centric paradigm may offer a novel perspective for T2D in terms of pathogenesis, clinical focus and treatment strategy.
Collapse
Affiliation(s)
- Jacob Bar-Tana
- Hebrew University Medical School, 91120, Jerusalem, Israel.
| |
Collapse
|
17
|
Wang G, Yu Y, Cai W, Batista TM, Suk S, Noh HL, Hirshman M, Nigro P, Li ME, Softic S, Goodyear L, Kim JK, Kahn CR. Muscle-Specific Insulin Receptor Overexpression Protects Mice From Diet-Induced Glucose Intolerance but Leads to Postreceptor Insulin Resistance. Diabetes 2020; 69:2294-2309. [PMID: 32868340 PMCID: PMC7576573 DOI: 10.2337/db20-0439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022]
Abstract
Skeletal muscle insulin resistance is a prominent early feature in the pathogenesis of type 2 diabetes. In attempt to overcome this defect, we generated mice overexpressing insulin receptors (IR) specifically in skeletal muscle (IRMOE). On normal chow, IRMOE mice have body weight similar to that of controls but an increase in lean mass and glycolytic muscle fibers and reduced fat mass. IRMOE mice also show higher basal phosphorylation of IR, IRS-1, and Akt in muscle and improved glucose tolerance compared with controls. When challenged with high-fat diet (HFD), IRMOE mice are protected from diet-induced obesity. This is associated with reduced inflammation in fat and liver, improved glucose tolerance, and improved systemic insulin sensitivity. Surprisingly, however, in both chow and HFD-fed mice, insulin-stimulated Akt phosphorylation is significantly reduced in muscle of IRMOE mice, indicating postreceptor insulin resistance. RNA sequencing reveals downregulation of several postreceptor signaling proteins that contribute to this resistance. Thus, enhancing early insulin signaling in muscle by overexpression of the IR protects mice from diet-induced obesity and its effects on glucose metabolism. However, chronic overstimulation of this pathway leads to postreceptor desensitization, indicating the critical balance between normal signaling and hyperstimulation of the insulin signaling pathway.
Collapse
Affiliation(s)
- Guoxiao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Yingying Yu
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Weikang Cai
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY
| | - Thiago M Batista
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Sujin Suk
- Program in Molecular Medicine and Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Hye Lim Noh
- Program in Molecular Medicine and Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Michael Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Pasquale Nigro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Mengyao Ella Li
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Samir Softic
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Divisions of Pediatric Gastroenterology and Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY
| | - Laurie Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Jason K Kim
- Program in Molecular Medicine and Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Wang Y, Zhou H, Palyha O, Mu J. Restoration of insulin receptor improves diabetic phenotype in T2DM mice. JCI Insight 2019; 4:124945. [PMID: 31391336 DOI: 10.1172/jci.insight.124945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/27/2019] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM), also known as adult-onset diabetes, is characterized by ineffective insulin action due to insulin resistance in key metabolic tissues. Insulin receptor (IR) plays an important role in insulin signal transduction, defect of which has been considered the fundamental cause of T2DM. IR content reduction in diabetes is one key contributor to the defective insulin signaling and diabetes progression. Rescuing IR levels by transgenic complementation has not been considered as a treatment option because it is limited by uncontrollable expression level, tissue selectivity, or developmental defects. In the current study, we demonstrated that single-dose adeno-associated virus (AAV) vector delivered expression of human IR (hIR) in the liver of inducible IR-knockout mice and significantly improved the diabetic phenotype caused by IR deletion during adulthood. Such an approach was also applied, for the first time to our knowledge, to treating ob/ob mice, a model of severe T2DM attributed to superfluous calorie intake and insulin resistance. Interestingly, similar treatment with AAV-hIR had no obvious effect in healthy animals, indicative of low hypoglycemic risk as a consequence of potential excessive insulin action. The results described here support restoration of IR expression as a safe and effective T2DM therapeutic with a long-lasting profile.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Blood Glucose/analysis
- Dependovirus/genetics
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/therapy
- Disease Models, Animal
- Genetic Therapy/adverse effects
- Genetic Therapy/methods
- Genetic Vectors/administration & dosage
- Genetic Vectors/adverse effects
- Genetic Vectors/genetics
- Humans
- Hypoglycemia/blood
- Hypoglycemia/diagnosis
- Hypoglycemia/genetics
- Insulin/metabolism
- Male
- Mice
- Mice, Knockout
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Treatment Outcome
Collapse
|
19
|
Saande CJ, Steffes MA, Webb JL, Valentine RJ, Rowling MJ, Schalinske KL. Whole Egg Consumption Impairs Insulin Sensitivity in a Rat Model of Obesity and Type 2 Diabetes. Curr Dev Nutr 2019; 3:nzz015. [PMID: 31008440 PMCID: PMC6462456 DOI: 10.1093/cdn/nzz015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/20/2019] [Accepted: 03/06/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The literature regarding the relation between egg consumption and type 2 diabetes (T2D) is inconsistent and there is limited evidence pertaining to the impact of egg consumption on measures of insulin sensitivity. OBJECTIVES The aim of this study was to investigate the effect of dietary whole egg on metabolic biomarkers of insulin resistance in T2D rats. METHODS Male Zucker diabetic fatty (ZDF) rats (n = 12; 6 wk of age) and age-matched lean controls (n = 12) were randomly assigned to be fed a casein- or whole egg-based diet. At week 5 of dietary treatment, an insulin tolerance test (ITT) was performed on all rats and blood glucose was measured by glucometer. After 7 wk of dietary treatment, rats were anesthetized and whole blood was collected via a tail vein bleed. Following sedation, the extensor digitorum longus muscle was removed before and after an intraperitoneal insulin injection, and insulin signaling in skeletal muscle was analyzed by Western blot. Serum glucose and insulin were analyzed by ELISA for calculation of the homeostatic model assessment of insulin resistance (HOMA-IR). RESULTS Mean ITT blood glucose over the course of 60 min was 32% higher in ZDF rats fed the whole egg-based diet than in ZDF rats fed the casein-based diet. Furthermore, whole egg consumption increased fasting blood glucose by 35% in ZDF rats. Insulin-stimulated phosphorylation of key proteins in the insulin signaling pathway did not differ in skeletal muscle of ZDF rats fed casein- and whole egg-based diets. In lean rats, no differences were observed in insulin tolerance, HOMA-IR and skeletal muscle insulin signaling, regardless of experimental dietary treatment. CONCLUSIONS These data suggest that whole body insulin sensitivity may be impaired by whole egg consumption in T2D rats, although no changes were observed in skeletal muscle insulin signaling that could explain this finding.
Collapse
Affiliation(s)
- Cassondra J Saande
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA 50011
| | - Megan A Steffes
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011
| | - Joseph L Webb
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA 50011
| | - Rudy J Valentine
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA 50011
- Department of Kinesiology, Iowa State University, Ames, IA, 50011
| | - Matthew J Rowling
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA 50011
| | - Kevin L Schalinske
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA 50011
| |
Collapse
|
20
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1592] [Impact Index Per Article: 227.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
21
|
Altieri B, Grant WB, Della Casa S, Orio F, Pontecorvi A, Colao A, Sarno G, Muscogiuri G. Vitamin D and pancreas: The role of sunshine vitamin in the pathogenesis of diabetes mellitus and pancreatic cancer. Crit Rev Food Sci Nutr 2018; 57:3472-3488. [PMID: 27030935 DOI: 10.1080/10408398.2015.1136922] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increasing evidence suggests that vitamin D exerts multiple effects beyond bone and calcium metabolism. Vitamin D seems to play a role in pancreatic disease, including type 1 and type 2 diabetes mellitus as well as pancreatic cancer. Vitamin D's immune-modulatory action suggests that it could help prevent type 1 diabetes. In type 2 diabetes, vitamin D may influence β-cell function, insulin sensitivity, and systematic inflammation-all characteristic pathways of that disease. Data from observational studies correlated vitamin D deficiency with risk of type 1 and type 2 diabetes. Prospective and ecological studies of pancreatic cancer incidence generally support a beneficial effect of higher 25-hydroxyvitamin D concentration as well as inverse correlations between UVB dose or exposure and incidence and/or mortality rate of pancreatic cancer. This review discusses the literature regarding vitamin D's role in risk of diabetes and pancreatic cancer. The results to date generally satisfy Hill's criteria for causality regarding vitamin D and incidence of these pancreatic diseases. However, large randomized, blinded, prospective studies are required to more fully evaluate the potential therapeutic role of vitamin D in preventing pancreatic diseases.
Collapse
Affiliation(s)
- Barbara Altieri
- a Institute of Medical Pathology, Division of Endocrinology and Metabolic Diseases, Catholic University of the Sacred Heart , Rome , Italy
| | - William B Grant
- b Sunlight , Nutrition, and Health Research Center , San Francisco , California , USA
| | - Silvia Della Casa
- a Institute of Medical Pathology, Division of Endocrinology and Metabolic Diseases, Catholic University of the Sacred Heart , Rome , Italy
| | - Francesco Orio
- c Endocrinology, Department of Sports Science and Wellness , Parthenope University , Naples , Italy.,d Fertility Techniques SSD , San Giovanni di Dio e Ruggi D'Aragona University Hospital , Salerno , Italy
| | - Alfredo Pontecorvi
- a Institute of Medical Pathology, Division of Endocrinology and Metabolic Diseases, Catholic University of the Sacred Heart , Rome , Italy
| | - Annamaria Colao
- e Department of Clinical Medicine and Surgery, Section of Endocrinology , University "Federico II," Naples , Italy
| | - Gerardo Sarno
- f Department of General Surgery and Transplantation Unit , San Giovanni di Dio e Ruggi D'Aragona University Hospital, Scuola Medica Salernitana , Salerno , Italy
| | | |
Collapse
|
22
|
Excess Body Weight, Insulin Resistance and Isolated Systolic Hypertension: Potential Pathophysiological Links. High Blood Press Cardiovasc Prev 2017; 25:17-23. [DOI: 10.1007/s40292-017-0240-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/25/2017] [Indexed: 12/24/2022] Open
|
23
|
Yang S, Zhao H, Xu K, Qian Y, Wu M, Yang T, Chen Y, Zhao X, Chen J, Wen J, Hu Z, Gu HF, Shen H, Shen C. Evaluation of common variants in MG53 and the risk of type 2 diabetes and insulin resistance in Han Chinese. SPRINGERPLUS 2017; 5:612. [PMID: 28443211 PMCID: PMC5395513 DOI: 10.1186/s40064-016-2218-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/22/2016] [Indexed: 11/10/2022]
Abstract
Abnormally increased skeletal-muscle-specific E3 ubiquitin ligase (MG53) is associated with the inhibition of insulin signalling and insulin resistance (IR) in animal models. Four community-based studies of Han Chinese populations were included in this study to test the association of variants of MG53 and type 2 diabetes (T2D). The results showed that rs7186832 and rs12929077 in MG53 were significantly associated with T2D and impaired fasting glucose (IFG) of females in the discovery-stage case-control study and cohort study respectively of rural population but not in the replication sample of urban population. In rural population, the fasting insulin (mU/L) of the subjects with AA, AG and GG genotypes in rs12929077 were 8.70 ± 8.05, 10.71 ± 11.16 and 13.41 ± 14.26, respectively, and increased linearly in T2D cases without medication treatment (P = 0.04). This variant was significantly associated with HOMA-IR (P = 0.020) and HOMA-IS (P = 0.023). In individuals with IFG, the insulin and HOMA-IR of AG carriers were significantly higher than those of AA carriers. In urban population, after glucose loading, there were significant differences in the 30-min glucose, the area under the curve (AUC) of 30-min glucose and the AUC of 120-min glucose according to the genotypes of rs7186832 and rs12929077 in males but not females. Our findings suggest that MG53 variants might confer risk susceptibility to the development of T2D of females and IR particularly in rural population.
Collapse
Affiliation(s)
- Song Yang
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, 214200 China
| | - Hailong Zhao
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166 China
| | - Kuangfeng Xu
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029 China
| | - Yun Qian
- Department of Chronic Non-communicable Disease Control, Wuxi Center for Disease Control and Prevention, Wuxi, 214023 China
| | - Ming Wu
- Institute of Chronic Disease Control, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, 210009 China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029 China
| | - Yanchun Chen
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, 214200 China
| | - Xianghai Zhao
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, 214200 China
| | - Jinfeng Chen
- Department of Clinical Epidemiology, Jiangsu Province Geriatrics Institute, Nanjing, 210024 China
| | - Jinbo Wen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166 China
| | - Zhibing Hu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166 China
| | - Harvest F Gu
- Department of Molecular Medicine and Surgery, Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska University Hospital, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Hongbing Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166 China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166 China.,Department of Clinical Epidemiology, Jiangsu Province Geriatrics Institute, Nanjing, 210024 China
| |
Collapse
|
24
|
Lee SM, Baik J, Nguyen D, Nguyen V, Liu S, Hu Z, Abbott GW. Kcne2 deletion impairs insulin secretion and causes type 2 diabetes mellitus. FASEB J 2017; 31:2674-2685. [PMID: 28280005 DOI: 10.1096/fj.201601347] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/21/2017] [Indexed: 02/05/2023]
Abstract
Type 2 diabetes mellitus (T2DM) represents a rapidly increasing threat to global public health. T2DM arises largely from obesity, poor diet, and lack of exercise, but it also involves genetic predisposition. Here we report that the KCNE2 potassium channel transmembrane regulatory subunit is expressed in human and mouse pancreatic β cells. Kcne2 deletion in mice impaired glucose tolerance as early as 5 wk of age in pups fed a Western diet, ultimately causing diabetes. In adult mice fed normal chow, skeletal muscle expression of insulin receptor β and insulin receptor substrate 1 were down-regulated 2-fold by Kcne2 deletion, characteristic of T2DM. Kcne2 deletion also caused extensive pancreatic transcriptome changes consistent with facets of T2DM, including endoplasmic reticulum stress, inflammation, and hyperproliferation. Kcne2 deletion impaired β-cell insulin secretion in vitro up to 8-fold and diminished β-cell peak outward K+ current at positive membrane potentials, but also left-shifted its voltage dependence and slowed inactivation. Interestingly, we also observed an aging-dependent reduction in β-cell outward currents in both Kcne2+/+ and Kcne2-/- mice. Our results demonstrate that KCNE2 is required for normal β-cell electrical activity and insulin secretion, and that Kcne2 deletion causes T2DM. KCNE2 may regulate multiple K+ channels in β cells, including the T2DM-linked KCNQ1 potassium channel α subunit.-Lee, S. M., Baik, J., Nguyen, D., Nguyen, V., Liu, S., Hu, Z., Abbott, G. W. Kcne2 deletion impairs insulin secretion and causes type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Soo Min Lee
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | - Jasmine Baik
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | - Dara Nguyen
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | - Victoria Nguyen
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | - Shiwei Liu
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | - Zhaoyang Hu
- Laboratory of Anesthesiology and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA;
| |
Collapse
|
25
|
Siddiqui F, Kurbasic A, Lindblad U, Nilsson PM, Bennet L. Effects of a culturally adapted lifestyle intervention on cardio-metabolic outcomes: a randomized controlled trial in Iraqi immigrants to Sweden at high risk for Type 2 diabetes. Metabolism 2017; 66:1-13. [PMID: 27923444 DOI: 10.1016/j.metabol.2016.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/16/2016] [Accepted: 10/02/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Middle-Eastern immigrants constitute a growing proportion of the Swedish population and are at high risk for Type 2 diabetes. This calls for a more proactive preventive approach for dealing with diabetes risk in this target group. The aim was to test the effect of a culturally adapted lifestyle intervention programme on changes in lifestyle habits and cardio-metabolic outcomes comparing an intervention group with a control group receiving usual care. METHODS Citizens of Malmö, Sweden born in Iraq and at high risk for Type 2 diabetes (n=636) were invited. Participation rate was 15.1%. In all, 96 participants were randomized to the intervention group (n=50) or to the control group (n=46). The intervention group was offered seven group sessions addressing healthy diet and physical activity including one cooking class. Changes in body weight, physical activity levels and cardio-metabolic outcomes were evaluated using linear mixed-effects models. RESULTS The mean follow-up time was 3.9 and 3.5months in the intervention and control groups, respectively. The drop-out rate from baseline to the last visit was 30.0% in the intervention group (n=15) and 30.4% in the control group (n=14). The mean insulin sensitivity index increased significantly at follow-up in the intervention group compared to the control group (10.9% per month, p=0.005). The intervention group also reached a significant reduction in body weight (0.4% per month, p=0.004), body mass index (0.4% per month, p=0.004) and LDL-cholesterol (2.1% per month, p=0.036) compared to the control group. In total, 14.3% in the intervention group reached the goal to lose ≥5% of body weight versus none in the control group. CONCLUSIONS This culturally adapted lifestyle intervention programme shows a beneficial effect on insulin action, body weight reduction, as well as LDL-cholesterol reduction, in Middle-Eastern immigrants. The programme adapted to resources in primary health care provides tools for improved primary prevention and reduced cardio-metabolic risk in this high-risk group for Type 2 diabetes.
Collapse
Affiliation(s)
- Faiza Siddiqui
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Azra Kurbasic
- Genetic and molecular epidemiology unit, Lund University, Malmö, Sweden
| | - Ulf Lindblad
- Department of Community Medicine/Primary Health Care, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Louise Bennet
- Department of Clinical Sciences, Lund University, Malmö, Sweden; Center for Primary Health Care Research, Region Skåne and Lund University, Malmö, Sweden.
| |
Collapse
|
26
|
Simon SF, Taylor CG. Dietary Zinc Supplementation Attenuates Hyperglycemia in db/db Mice. Exp Biol Med (Maywood) 2016; 226:43-51. [PMID: 11368237 DOI: 10.1177/153537020122600107] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Although zinc (Zn) deficiency has been associated with insulin resistance, and altered Zn metabolism (e.g., hyperzincuria, low-normal plasma Zn concentrations) may be present in diabetes, the potential effects of Zn on modulation of insulin action in Type II diabetes have not been established. The objective of this study was to compare the effects of dietary Zn deficiency and Zn supplementation on glycemic control in db/db mice. Weanling db/db mice and lean littermate controls were fed Zn-deficient (3 ppm Zn; dbZD and InZD groups), Zn-adequate control (30 ppm Zn; dbC and InC groups) or Zn-supplemented (300 ppm Zn; dbZS and InZS groups) diets for 6 weeks. Mice were assessed for Zn status, serum and urinary indices of diabetes, and gastrocnemius insulin receptor concentration and tyrosine kinase activity. Fasting serum glucose concentrations were significantly lower in the dbZS group compared with the dbZD group (19.3 ± 2.9 and 27.9 ± 4.1 mM, respectively), whereas the dbC mice had an intermediate value. There was a negative correlation between femur Zn and serum glucose concentrations (r = −0.59 for lean mice, P = 0.007). The dbZS group had higher pancreatic Zn and lower circulating insulin concentrations than dbZC mice. Insulin-stimulated tyrosine kinase activity in gastrocnemius muscle was higher in the db/db genotype, and insulin receptor concentration was not altered. In summary, dietary Zn supplementation attenuated hyperglycemia and hyperinsulinemia in db/db mice, suggesting that the roles of Zn in pancreatic function and peripheral tissue glucose uptake need to be further investigated.
Collapse
Affiliation(s)
- S F Simon
- Department of Food and Nutrition, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
27
|
Song MK, Hwang IK, Rosenthal MJ, Harris DM, Yamaguchi DT, Yip I, Go VLW. Anti-Hyperglycemic Activity of Zinc Plus Cyclo (His-Pro) in Genetically Diabetic Goto-Kakizaki and Aged Rats. Exp Biol Med (Maywood) 2016; 228:1338-45. [PMID: 14681549 DOI: 10.1177/153537020322801112] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We previously reported that treatment of streptozotocin-induced diabetic rats with zinc plus cyclo (his-pro) (CHP) decreased fed blood glucose levels and water intake. The present study was conducted to examine the dose-dependent, acute, and chronic treatment effects of CHP on oral glucose tolerance (OGT), fed blood glucose levels, water intake, and plasma insulin levels in young and aged Sprague-Dawley (S-D) rats, nondiabetic Wistar rats, and genetically diabetic Goto-Kakizaki (G-K) rats. Acute gastric gavage of 10 mg zinc plus 1.0 mg CHP/kg body weight significantly improved OGT in 4- and 13-month-old nondiabetic S-D rats and in 2-month-old diabetic G-K rats. Young S-D and G-K rats returned to pretreatment OGT values 1 week after acute gavage of zinc plus CHP (ZC), but improved OGT values persisted for at least 1 week after gavage in aged S-D rats. OGT values and fed blood glucose decreased to the greatest extent among other treatments when G-K rats were given free access to drinking water containing 1.0 to 1.5 mg CHP/L plus 10 mg zinc/L for 2 weeks. Although food and water intake showed a tendency to decrease, no statistically significant differences were observed in young G-K rats. Plasma insulin levels and blood glucose levels in both normal and diabetic G-K rats decreased with 2-week treatment with ZC. To test the direct effects of ZC on muscle tissue, we observed the effect of various doses of ZC on normal and G-K rat muscle slices. The optimal level of CHP alone for maximal muscle glucose uptake in muscle slices from normal rats was 10 microg/mL and 5.0 microg/mL in G-K rats, and ZC stimulated glucose uptake. However, no statistically significant difference was demonstrated between normal and G-K rat tissues in this study. These results indicate that oral intake of an optimal dose of ZC stimulates blood glucose metabolism, probably by stimulating muscle glucose utilization.
Collapse
Affiliation(s)
- Moon K Song
- Department of Pediatrics, VA Greater Los Angeles Healthcare System, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Donovan EL, Buckels EJ, Hancock S, Smeitink D, Oliver MH, Bloomfield FH, Jaquiery AL. Twin Conception in Sheep Leads to Impaired Insulin Sensitivity and Sexually Dimorphic Adipose Tissue and Skeletal Muscle Phenotypes in Adulthood. Reprod Sci 2016; 24:865-881. [DOI: 10.1177/1933719116670516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Elise L. Donovan
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| | - Emma J. Buckels
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Serina Hancock
- Liggins Institute, University of Auckland, Auckland, New Zealand
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | | | - Mark H. Oliver
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| | - Frank H. Bloomfield
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
- Department of Paediatrics, Child and Youth Health, University of Auckland, Auckland, New Zealand
| | - Anne L. Jaquiery
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
- Department of Paediatrics, Child and Youth Health, University of Auckland, Auckland, New Zealand
| |
Collapse
|
29
|
MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels. Nat Commun 2016; 7:12639. [PMID: 27577745 PMCID: PMC5013666 DOI: 10.1038/ncomms12639] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 07/20/2016] [Indexed: 12/16/2022] Open
Abstract
Insulin resistance is a key driver of type 2 diabetes (T2D) and is characterized by defective insulin receptor (INSR) signalling. Although surface INSR downregulation is a well-established contributor to insulin resistance, the underlying molecular mechanisms remain obscure. Here we show that the E3 ubiquitin ligase MARCH1 impairs cellular insulin action by degrading cell surface INSR. Using a large-scale RNA interference screen, we identify MARCH1 as a negative regulator of INSR signalling. March1 loss-of-function enhances, and March1 overexpression impairs, hepatic insulin sensitivity in mice. MARCH1 ubiquitinates INSR to decrease cell surface INSR levels, but unlike other INSR ubiquitin ligases, MARCH1 acts in the basal state rather than after insulin stimulation. Thus, MARCH1 may help set the basal gain of insulin signalling. MARCH1 expression is increased in white adipose tissue of obese humans, suggesting that MARCH1 contributes to the pathophysiology of T2D and could be a new therapeutic target.
Collapse
|
30
|
Ding L, Li J, Song B, Xiao X, Zhang B, Qi M, Huang W, Yang L, Wang Z. Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway. Toxicol Appl Pharmacol 2016; 304:99-109. [DOI: 10.1016/j.taap.2016.05.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 02/08/2023]
|
31
|
Petersen MC, Jurczak MJ. CrossTalk opposing view: Intramyocellular ceramide accumulation does not modulate insulin resistance. J Physiol 2016; 594:3171-4. [PMID: 26997581 DOI: 10.1113/jp271677] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/10/2016] [Indexed: 01/13/2023] Open
Affiliation(s)
- Max C Petersen
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Michael J Jurczak
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
32
|
Altieri B, Tirabassi G, Della Casa S, Ronchi CL, Balercia G, Orio F, Pontecorvi A, Colao A, Muscogiuri G. Adrenocortical tumors and insulin resistance: What is the first step? Int J Cancer 2015; 138:2785-94. [PMID: 26637955 DOI: 10.1002/ijc.29950] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/05/2015] [Accepted: 11/23/2015] [Indexed: 01/15/2023]
Abstract
The pathogenetic mechanisms underlying the onset of adrenocortical tumors (ACTs) are still largely unknown. Recently, more attention has been paid to the role of insulin and insulin-like growth factor (IGF) system on general tumor development and progression. Increased levels of insulin, IGF-1 and IGF-2 are associated with tumor cell growth and increased risk of cancer promotion and progression in patients with type 2 diabetes. Insulin resistance and compensatory hyperinsulinemia may play a role in adrenal tumor growth through the activation of insulin and IGF-1 receptors. Interestingly, apparently non-functioning ACTs are often associated with a high prevalence of insulin resistance and metabolic syndrome. However, it is unclear if ACT develops from a primary insulin resistance and compensatory hyperinsulinemia or if insulin resistance is only secondary to the slight cortisol hypersecretion by ACT. The aim of this review is to summarize the current evidence regarding the relationship between hyperinsulinemia and adrenocortical tumors.
Collapse
Affiliation(s)
- Barbara Altieri
- Institute of Medical Pathology, Division of Endocrinology and Metabolic Diseases, Catholic University, Rome, Italy
| | - Giacomo Tirabassi
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Umberto I Hospital, Polytechnic University of Marche, Ancona, Italy
| | - Silvia Della Casa
- Institute of Medical Pathology, Division of Endocrinology and Metabolic Diseases, Catholic University, Rome, Italy
| | - Cristina L Ronchi
- Endocrine and Diabetes Unit, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Umberto I Hospital, Polytechnic University of Marche, Ancona, Italy
| | - Francesco Orio
- Department of Sports Science and Wellness, Parthenope University, Naples, Italy.,Department of Endocrinology and Diabetology, Fertility Techniques Structure, University Hospital S. Giovanni Di Dio E Ruggi D'aragona, Salerno, Italy
| | - Alfredo Pontecorvi
- Institute of Medical Pathology, Division of Endocrinology and Metabolic Diseases, Catholic University, Rome, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Section of Endocrinology, Federico II University, Naples, Italy
| | - Giovanna Muscogiuri
- Department of Clinical Medicine and Surgery, Section of Endocrinology, Federico II University, Naples, Italy
| |
Collapse
|
33
|
Cook JR, Langlet F, Kido Y, Accili D. Pathogenesis of selective insulin resistance in isolated hepatocytes. J Biol Chem 2015; 290:13972-80. [PMID: 25873396 DOI: 10.1074/jbc.m115.638197] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 12/21/2022] Open
Abstract
The development of insulin resistance (IR) in the liver is a key pathophysiologic event in the development of type 2 diabetes. Although insulin loses its ability to suppress glucose production, it largely retains its capacity to drive lipogenesis. This selective IR results in the characteristic hyperglycemia and dyslipidemia of type 2 diabetes. The delineation of two branched pathways of insulin receptor (InsR) signaling to glucose versus triglyceride production, one through FoxO and the other through SREBP-1c, provides a mechanism to account for this pathophysiological abnormality. We tested the complementary hypothesis that selective IR arises due to different intrinsic sensitivities of glucose production versus de novo lipogenesis to insulin as a result of cell-autonomous down-regulation of InsR number in response to chronic hyperinsulinemia. We demonstrate in mouse primary hepatocytes that chronic hyperinsulinemia abrogates insulin's inhibition of glucose production, but not its stimulation of de novo lipogenesis. Using a competitive inhibitor of InsR, we show that there is a 4-fold difference between levels of InsR inhibition required to cause resistance of glucose production versus lipogenesis to the actions of insulin. Our data support a parsimonious model in which differential InsR activation underlies the selective IR of glucose production relative to lipogenesis, but both processes require signaling through Akt1/2.
Collapse
Affiliation(s)
- Joshua R Cook
- From the Department of Medicine, Columbia University, New York, New York 10032 and
| | - Fanny Langlet
- From the Department of Medicine, Columbia University, New York, New York 10032 and
| | - Yoshiaki Kido
- the Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Domenico Accili
- From the Department of Medicine, Columbia University, New York, New York 10032 and
| |
Collapse
|
34
|
Hussain M, Janghorbani M, Schuette S, Considine RV, Chisholm RL, Mather KJ. Failure of hyperglycemia and hyperinsulinemia to compensate for impaired metabolic response to an oral glucose load. J Diabetes Complications 2015; 29:238-44. [PMID: 25511878 PMCID: PMC4333082 DOI: 10.1016/j.jdiacomp.2014.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/05/2014] [Accepted: 11/17/2014] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To evaluate whether the augmented insulin and glucose response to a glucose challenge is sufficient to compensate for defects in glucose utilization in obesity and type 2 diabetes, using a breath test measurement of integrated glucose metabolism. METHODS Non-obese, obese normoglycemic and obese type 2 diabetic subjects were studied on 2 consecutive days. A 75g oral glucose load spiked with ¹³C-glucose was administered, measuring exhaled breath ¹³CO₂ as an integrated measure of glucose metabolism and oxidation. A hyperinsulinemic euglycemic clamp was performed, measuring whole body glucose disposal rate. Body composition was measured by DEXA. Multivariable analyses were performed to evaluate the determinants of the breath ¹³CO₂. RESULTS Breath ¹³CO₂ was reduced in obese and type 2 diabetic subjects despite hyperglycemia and hyperinsulinemia. The primary determinants of breath response were lean mass, fat mass, fasting FFA concentrations, and OGTT glucose excursion. Multiple approaches to analysis showed that hyperglycemia and hyperinsulinemia were not sufficient to compensate for the defect in glucose metabolism in obesity and diabetes. CONCLUSIONS Augmented insulin and glucose responses during an OGTT are not sufficient to overcome the underlying defects in glucose metabolism in obesity and diabetes.
Collapse
Affiliation(s)
- M Hussain
- Indiana University School of Medicine, Indianapolis, IN
| | - M Janghorbani
- BioChemAnalysis Inc., Chicago IL; Center for Stable Isotope Research Inc, Chicago IL
| | | | - R V Considine
- Indiana University School of Medicine, Indianapolis, IN
| | - R L Chisholm
- Indiana University School of Medicine, Indianapolis, IN
| | - K J Mather
- Indiana University School of Medicine, Indianapolis, IN.
| |
Collapse
|
35
|
Workeneh B, Bajaj M. The regulation of muscle protein turnover in diabetes. Int J Biochem Cell Biol 2013; 45:2239-44. [DOI: 10.1016/j.biocel.2013.06.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 06/28/2013] [Accepted: 06/29/2013] [Indexed: 12/25/2022]
|
36
|
Ramalingam L, Oh E, Thurmond DC. Novel roles for insulin receptor (IR) in adipocytes and skeletal muscle cells via new and unexpected substrates. Cell Mol Life Sci 2013; 70:2815-34. [PMID: 23052216 PMCID: PMC3556358 DOI: 10.1007/s00018-012-1176-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/21/2012] [Accepted: 09/18/2012] [Indexed: 01/30/2023]
Abstract
The insulin signaling pathway regulates whole-body glucose homeostasis by transducing extracellular signals from the insulin receptor (IR) to downstream intracellular targets, thus coordinating a multitude of biological functions. Dysregulation of IR or its signal transduction is associated with insulin resistance, which may culminate in type 2 diabetes. Following initial stimulation of IR, insulin signaling diverges into different pathways, activating multiple substrates that have roles in various metabolic and cellular processes. The integration of multiple pathways arising from IR activation continues to expand as new IR substrates are identified and characterized. Accordingly, our review will focus on roles for IR substrates as they pertain to three primary areas: metabolism/glucose uptake, mitogenesis/growth, and aging/longevity. While IR functions in a seemingly pleiotropic manner in many cell types, through these three main roles in fat and skeletal muscle cells, IR multi-tasks to regulate whole-body glucose homeostasis to impact healthspan and lifespan.
Collapse
Affiliation(s)
- Latha Ramalingam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Eunjin Oh
- Department of Pediatrics, Herman B Wells Center, Indiana University School of Medicine, Indianapolis, IN USA
| | - Debbie C. Thurmond
- Departments of Pediatrics, Biochemistry and Molecular Biology, and Cellular and Integrative Physiology, Herman B Wells Center, Indiana University School of Medicine, 635 Barnhill Drive MS 2031, Indianapolis, IN 46202 USA
| |
Collapse
|
37
|
Sriwijitkamol A, Musi N. Advances in the development of AMPK-activating compounds. Expert Opin Drug Discov 2013; 3:1167-76. [PMID: 23489075 DOI: 10.1517/17460441.3.10.1167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is an energy sensing enzyme that controls glucose and lipid metabolism. OBJECTIVE This review summarizes the present data on AMPK as a pharmacologic target for the treatment of metabolic disorders. METHODS The mechanisms governing AMPK activity and how this enzyme controls different metabolic pathways are reviewed briefly, and details about the effect that AMPK activators have on glucose metabolism are provided. CONCLUSION Evidence obtained using the AMPK-activating compound 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) suggests that AMPK promotes glucose transport into skeletal muscles and that this enzyme inhibits hepatic glucose production. AICAR also induces fatty acid oxidation in muscle and inhibits cholesterol synthesis in the liver. The metabolic effects of AICAR on glucose and lipid metabolism indicate that AMPK may be a good pharmacologic target for the treatment of type 2 diabetes and hypercholesterolemia. Novel AMPK-specific compounds are allowing researchers to examine whether this enzyme is a useful pharmacologic target for the treatment of human disease and whether chronic activation of AMPK will be safe.
Collapse
Affiliation(s)
- Apiradee Sriwijitkamol
- University of Texas Health Science Center at San Antonio, Diabetes Division, San Antonio, Texas, USA
| | | |
Collapse
|
38
|
Abstract
Severe obesity is increasing at a disproportionate rate compared with milder grade obesity. Our research group has obtained evidence indicative of an "obesity metabolic program" in skeletal muscles of severely obese individuals, which may be determined genetically or epigenetically. We believe that this represents a paradigm shift in thinking about metabolic regulation in obesity.
Collapse
|
39
|
Pi-Sunyer FX. Pathophysiology and Long-Term Management of the Metabolic Syndrome. ACTA ACUST UNITED AC 2012; 12 Suppl:174S-80S. [PMID: 15687414 DOI: 10.1038/oby.2004.285] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The metabolic syndrome has been characterized by a cluster of abnormalities that include obesity, hyperglycemia, dyslipidemia, and hypertension. Other conditions associated with this syndrome include microalbuminuria, inflammation, a prothrombotic state, and a fatty liver. Together, these abnormalities lead to an environment where the risk of developing both type 2 diabetes and atherosclerotic cardiovascular disease are greatly enhanced. Recognition of this syndrome by practitioners, early treatment, and long-term management are crucial for disease prevention. Successful treatment requires the introduction of lifestyle changes initially and pharmacotherapy subsequently if lifestyle changes are not sufficient.
Collapse
Affiliation(s)
- F Xavier Pi-Sunyer
- Department of Medicine, St. Luke's/Roosevelt Hospital Center, 1111 Amsterdam Avenue, Room 1020, New York, NY 10025, USA.
| |
Collapse
|
40
|
Abstract
For many years, the development of insulin resistance has been seen as the core defect responsible for the development of Type 2 diabetes. However, despite extensive research, the initial factors responsible for insulin resistance development have not been elucidated. If insulin resistance can be overcome by enhanced insulin secretion, then hyperglycaemia will never develop. Therefore, a β-cell defect is clearly required for the development of diabetes. There is a wealth of evidence to suggest that disorders in insulin secretion can lead to the development of decreased insulin sensitivity. In this review, we describe the potential initiating defects in Type 2 diabetes, normal pulsatile insulin secretion and the effects that disordered secretion may have on both β-cell function and hepatic insulin sensitivity. We go on to examine evidence from physiological and epidemiological studies describing β-cell dysfunction in the development of insulin resistance. Finally, we describe how disordered insulin secretion may cause intracellular insulin resistance and the implications this concept has for diabetes therapy. In summary, disordered insulin secretion may contribute to development of insulin resistance and hence represent an initiating factor in the progression to Type 2 diabetes.
Collapse
Affiliation(s)
- C J Schofield
- Diabetes Centre, Ninewells Hospital and Medical School, Dundee, UK.
| | | |
Collapse
|
41
|
Abstract
Insulin resistance is a key pathological feature of type 2 diabetes and is characterized by defects in signaling by the insulin receptor (IR) protein tyrosine kinase. The inhibition of protein tyrosine phosphatases (PTPs) that antagonize IR signaling may provide a means for enhancing the insulin response and alleviating insulin resistance. The prototypic phosphotyrosine-specific phosphatase PTP1B dephosphorylates the IR and attenuates insulin signaling in muscle and liver. Mice that are deficient for PTP1B exhibit improved glucose homeostasis in diet and genetic models of insulin resistance and type 2 diabetes. The phosphatase TCPTP shares 72% catalytic domain sequence identity with PTP1B and has also been implicated in IR regulation. Despite their high degree of similarity, PTP1B and TCPTP act together in vitro and in vivo to regulate insulin signaling and glucose homeostasis. This review highlights their capacity to act specifically and nonredundantly in cellular signaling, describes their roles in IR regulation and glucose homeostasis, and discusses their potential as drug targets for the enhancement of IR phosphorylation and insulin sensitivity in type 2 diabetes.
Collapse
Affiliation(s)
- Tony Tiganis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.
| |
Collapse
|
42
|
Effect of vitamin D3 in reducing metabolic and oxidative stress in the liver of streptozotocin-induced diabetic rats. Br J Nutr 2012; 108:1410-8. [PMID: 22221397 DOI: 10.1017/s0007114511006830] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Diabetes mellitus is a growing health problem worldwide and is associated with severe liver complications. The aim of the present study is to analyse the status of metabolic and free-radical-scavenging enzymes and second messengers in the liver of streptozotocin (STZ)-induced diabetic rats, and to determine the hepatoprotective role of vitamin D(3). All studies were performed using the liver of adult male Wistar rats. Gene expression studies were carried out using real-time PCR with specific probes. Second messenger levels were determined using (3)H-labelled Biotrak assay kits, and glucose uptake assay with D-[(14)C]glucose. The present results show that there was a decrease in hepatic glucose uptake, malate dehydrogenase activity, glycogen content, inositol triphosphate (IP(3)) and cyclic GMP levels, and superoxide dismutase, glutathione peroxidase, phospholipase C, cyclic AMP-responsive element-binding protein, vitamin D receptor (VDR) and insulin receptor (INSR) gene expression in the diabetic rats when compared with the controls (all P < 0·05), while cyclic AMP levels and GLUT2 expression were increased (P < 0·05). Treatment of the diabetic rats with vitamin D(3) and insulin reversed the altered parameters to near control values. In conclusion, the data suggest a novel role of vitamin D(3) in restoring impaired liver metabolism in STZ-induced diabetic rats by regulating glucose uptake, storage and metabolism. We demonstrated that the restoring effect of vitamin D(3) is mediated through VDR modulation, thereby improving signal transduction and controlling free radicals in the liver of diabetic rats. These data suggest a potential role for vitamin D(3) in the treatment of diabetes-associated hepatic complications.
Collapse
|
43
|
Andreozzi F, Procopio C, Greco A, Mannino GC, Miele C, Raciti GA, Iadicicco C, Beguinot F, Pontiroli AE, Hribal ML, Folli F, Sesti G. Increased levels of the Akt-specific phosphatase PH domain leucine-rich repeat protein phosphatase (PHLPP)-1 in obese participants are associated with insulin resistance. Diabetologia 2011; 54:1879-87. [PMID: 21461637 DOI: 10.1007/s00125-011-2116-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
Abstract
AIMS/HYPOTHESIS We determined the contribution to insulin resistance of the PH domain leucine-rich repeat protein phosphatase (PHLPP), which dephosphorylates Akt at Ser473, inhibiting its activity. We measured the abundance of PHLPP in fat and skeletal muscle from obese participants. To study the effect of PHLPP on insulin signalling, PHLPP (also known as PHLPP1) was overexpressed in HepG2 and L6 cells. METHODS Subcutaneous fat samples were obtained from 82 morbidly obese and ten non-obese participants. Skeletal muscle samples were obtained from 12 obese and eight non-obese participants. Quantification of PHLPP-1 in human tissues was performed by immunoblotting. The functional consequences of recombinant PHLPP1 overexpression in hepatoma HepG2 cells and L6 myoblasts were investigated. RESULTS Of the 82 obese participants, 31 had normal fasting glucose, 33 impaired fasting glucose and 18 type 2 diabetes. PHLPP-1 abundance was twofold higher in the three obese groups than in non-obese participants (p = 0.004). No differences were observed between obese participants with normal fasting glucose, impaired fasting glucose or type 2 diabetes. PHLPP-1 abundance was correlated with basal Akt Ser473 phosphorylation (r = -0.48; p = 0.001), BMI (r = 0.44; p < 0.0001), insulin (r = 0.35; p < 0.0001) and HOMA (r = 0.38; p < 0.0001). PHLPP-1 abundance was twofold higher in the skeletal muscle of 12 obese participants than in that of eight non-obese participants (p < 0.0001). Insulin treatment of HepG2 cells resulted in a dose- and time-dependent upregulation of PHLPP-1. Overexpression of PHLPP1 in HepG2 cells and L6 myoblasts resulted in impaired insulin signalling involving Akt/glycogen synthase kinase 3, glycogen synthesis and glucose transport. CONCLUSIONS/INTERPRETATION Increased abundance of PHLPP-1, production of which is regulated by insulin, may represent a new molecular defect in insulin-resistant states such as obesity.
Collapse
Affiliation(s)
- F Andreozzi
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Houmard JA, Pories WJ, Dohm GL. Is there a metabolic program in the skeletal muscle of obese individuals? J Obes 2011; 2011:250496. [PMID: 21603262 PMCID: PMC3092539 DOI: 10.1155/2011/250496] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 02/24/2011] [Indexed: 01/22/2023] Open
Abstract
Severe obesity (BMI ≥ 40 kg/m(2)) is associated with multiple defects in skeletal muscle which contribute to insulin resistance and a reduction in fatty acid oxidation (FAO) in this tissue. These metabolic derangements are retained in human skeletal muscle cells raised in culture. Together, these findings are indicative of a dysfunctional global metabolic program with severe obesity which is of an epigenetic or genetic origin. Weight loss via gastric bypass surgery can "turn off" and/or correct components of this metabolic program as insulin sensitivity is restored; however, the impairment in FAO in skeletal muscle remains evident. Physical activity can improve FAO and insulin action, indicating that this patient population is not exercise resistant and that exercise offers a pathway to circumvent the abnormal program. Findings presented in this review will hopefully increase the understanding of and aid in preventing and/or treating the severely obese condition.
Collapse
Affiliation(s)
- Joseph A. Houmard
- Department of Exercise and Sport Science, College of Health and Human Performance, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, College of Health and Human Performance, East Carolina University, Greenville, NC 27858, USA
- East Carolina Diabetes and Obesity Center, East Carolina University, Greenville, NC 27858, USA
- *Joseph A. Houmard:
| | - Walter J. Pories
- East Carolina Diabetes and Obesity Center, East Carolina University, Greenville, NC 27858, USA
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - G. Lynis Dohm
- East Carolina Diabetes and Obesity Center, East Carolina University, Greenville, NC 27858, USA
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
45
|
Amino acids influence the glucose uptake through GLUT4 in CHO-K1 cells under high glucose conditions. Mol Cell Biochem 2010; 344:43-53. [PMID: 20628794 DOI: 10.1007/s11010-010-0527-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 06/22/2010] [Indexed: 01/11/2023]
Abstract
According to studies earlier, amino acids have proven to be antidiabetic, antiglycating, and anticataractogenic. The present study was to explore whether amino acids as mixtures could enhance glucose uptake in CHO-K1 cells specifically. The cells in F-12K1 serum-free medium were exposed to normal (7 mM) and high glucose (12, 17 and 27 mM) in the presence and absence of amino acids mixture (AAM) in varying concentration (2.5, 5 and 10 mM). The mixture 5 and 10 mM AAM increased the 2-deoxyglucose (2DG) uptake at all glucose concentration significantly. There was also a significant increase in the GLUT4 (glucose transporter) translocation as revealed by flow cytometer. Addition of a mixture of amino acids was found to improve cell viability, which got altered by high glucose in the CHO-K1 cells. Amino acids as mixture had a beneficial effect in improving the net utilization of glucose as an additive effect with insulin.
Collapse
|
46
|
DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia 2010; 53:1270-87. [PMID: 20361178 PMCID: PMC2877338 DOI: 10.1007/s00125-010-1684-1] [Citation(s) in RCA: 592] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 12/22/2009] [Indexed: 12/15/2022]
Abstract
Insulin resistance is a hallmark of type 2 diabetes mellitus and is associated with a metabolic and cardiovascular cluster of disorders (dyslipidaemia, hypertension, obesity [especially visceral], glucose intolerance, endothelial dysfunction), each of which is an independent risk factor for cardiovascular disease (CVD). Multiple prospective studies have documented an association between insulin resistance and accelerated CVD in patients with type 2 diabetes, as well as in non-diabetic individuals. The molecular causes of insulin resistance, i.e. impaired insulin signalling through the phosphoinositol-3 kinase pathway with intact signalling through the mitogen-activated protein kinase pathway, are responsible for the impairment in insulin-stimulated glucose metabolism and contribute to the accelerated rate of CVD in type 2 diabetes patients. The current epidemic of diabetes is being driven by the obesity epidemic, which represents a state of tissue fat overload. Accumulation of toxic lipid metabolites (fatty acyl CoA, diacylglycerol, ceramide) in muscle, liver, adipocytes, beta cells and arterial tissues contributes to insulin resistance, beta cell dysfunction and accelerated atherosclerosis, respectively, in type 2 diabetes. Treatment with thiazolidinediones mobilises fat out of tissues, leading to enhanced insulin sensitivity, improved beta cell function and decreased atherogenesis. Insulin resistance and lipotoxicity represent the missing links (beyond the classical cardiovascular risk factors) that help explain the accelerated rate of CVD in type 2 diabetic patients.
Collapse
Affiliation(s)
- R A DeFronzo
- Diabetes Division, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive-MSC 7886, San Antonio, TX, 78229, USA.
| |
Collapse
|
47
|
Nelson RA, Bremer AA. Insulin resistance and metabolic syndrome in the pediatric population. Metab Syndr Relat Disord 2010; 8:1-14. [PMID: 19943799 DOI: 10.1089/met.2009.0068] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The metabolic syndrome is a constellation of specific anthropometric, physiological, and biochemical abnormalities predisposing affected individuals to the development of diabetes and cardiovascular disease. The syndrome is well described in the adult literature. However, its description in the pediatric literature is more limited. Due in large part to the normal physiological changes that occur in children and adolescents with respect to growth and puberty, investigators have also struggled to establish a standard definition of the syndrome in the pediatric age group, hindering coordinated research efforts. However, whatever definition of the syndrome is used, the prevalence of the metabolic syndrome in the pediatric age group has increased worldwide. Insulin resistance is the principal metabolic abnormality that is common to the development of the metabolic syndrome in both children and adults. This review summarizes current research regarding the pathophysiology of insulin resistance and how this may contribute to specific abnormalities seen in children and adolescents with the metabolic syndrome. Specifically, insulin resistance in pediatric patients is correlated with cardiovascular risk factors such as elevated blood pressure, dyslipidemia, and type 2 diabetes mellitus, all of which are significant risk factors for adult disease. In addition, current treatment and prevention strategies, including lifestyle modifications, pharmacologic agents, and certain surgical therapies, are highlighted. The need for collaborative changes at the family, school, city, state, and national levels to address the growing prevalence of the metabolic syndrome in the pediatric age group is also reviewed.
Collapse
Affiliation(s)
- Rachel A Nelson
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, California 95817-2208, USA
| | | |
Collapse
|
48
|
Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol 2010; 2010:476279. [PMID: 20445742 PMCID: PMC2860140 DOI: 10.1155/2010/476279] [Citation(s) in RCA: 378] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 01/20/2010] [Indexed: 12/16/2022] Open
Abstract
Insulin resistance in skeletal muscle is manifested by decreased insulin-stimulated glucose uptake and results from impaired insulin signaling and multiple post-receptor intracellular defects including impaired glucose transport, glucose phosphorylation, and reduced glucose oxidation and glycogen synthesis. Insulin resistance is a core defect in type 2 diabetes, it is also associated with obesity and the metabolic syndrome. Dysregulation of fatty acid metabolism plays a pivotal role in the pathogenesis of insulin resistance in skeletal muscle. Recent studies have reported a mitochondrial defect in oxidative phosphorylation in skeletal muscle in variety of insulin resistant states. In this review, we summarize the cellular and molecular defects that contribute to the development of insulin resistance in skeletal muscle.
Collapse
|
49
|
Obesity and cardiovascular disease: from pathophysiology to risk stratification. Int J Cardiol 2009; 138:3-8. [PMID: 19398137 DOI: 10.1016/j.ijcard.2009.03.135] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 03/30/2009] [Accepted: 03/31/2009] [Indexed: 11/20/2022]
Abstract
Obesity is associated with numerous co-morbidities such as cardiovascular diseases (CVD), type 2 diabetes, hypertension and others. As obesity is considered to be a major risk factor for atherosclerosis, understanding of the underlying mechanisms leading to obesity and linking obesity with atherogenesis is necessary, for the development of therapeutic strategies against atherosclerosis. The pathophysiology of CVD linked to obesity is an area of intensive research. In this review we examine the role of obesity on CVD, and we focus on specific mechanisms of major importance in atherogenesis, such as the role of adipokines, insulin resistance, endothelial function and cardiac structure with emphasis on the effects of obesity on vascular endothelium and atherosclerosis. We then proceed from the pathophysiology of obesity to clinical practice, and we discuss clinical studies linking obesity with subclinical or overt CVD. We highlight that obesity is an easily assessed cardiovascular risk factor in the clinical setting and strategies to promote optimal body weight should be encouraged.
Collapse
|
50
|
Zong H, Bastie CC, Xu J, Fassler R, Campbell KP, Kurland IJ, Pessin JE. Insulin resistance in striated muscle-specific integrin receptor beta1-deficient mice. J Biol Chem 2009; 284:4679-88. [PMID: 19064993 PMCID: PMC2640962 DOI: 10.1074/jbc.m807408200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 12/01/2008] [Indexed: 01/19/2023] Open
Abstract
Integrin receptor plays key roles in mediating both inside-out and outside-in signaling between cells and the extracellular matrix. We have observed that the tissue-specific loss of the integrin beta1 subunit in striated muscle results in a near complete loss of integrin beta1 subunit protein expression concomitant with a loss of talin and to a lesser extent, a reduction in F-actin content. Muscle-specific integrin beta1-deficient mice had no significant difference in food intake, weight gain, fasting glucose, and insulin levels with their littermate controls. However, dynamic analysis of glucose homeostasis using euglycemichyperinsulinemic clamps demonstrated a 44 and 48% reduction of insulin-stimulated glucose infusion rate and glucose clearance, respectively. The whole body insulin resistance resulted from a specific inhibition of skeletal muscle glucose uptake and glycogen synthesis without any significant effect on the insulin suppression of hepatic glucose output or insulin-stimulated glucose uptake in adipose tissue. The reduction in skeletal muscle insulin responsiveness occurred without any change in GLUT4 protein expression levels but was associated with an impairment of the insulin-stimulated protein kinase B/Akt serine 473 phosphorylation but not threonine 308. The inhibition of insulin-stimulated serine 473 phosphorylation occurred concomitantly with a decrease in integrin-linked kinase expression but with no change in the mTOR.Rictor.LST8 complex (mTORC2). These data demonstrate an in vivo crucial role of integrin beta1 signaling events in mediating cross-talk to that of insulin action.
Collapse
Affiliation(s)
- Haihong Zong
- Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|