1
|
Zeng XX, Wang L, Wang MY, Hu ZR, Li XK, Fei GJ, Ling L, Fan YT, Yang ZM. BuZhong YiQi Formula Alleviates Postprandial Hyperglycemia in T2DM Rats by Inhibiting α-Amylase and α-Glucosidase In Vitro and In Vivo. Pharmaceuticals (Basel) 2025; 18:201. [PMID: 40006017 PMCID: PMC11858844 DOI: 10.3390/ph18020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: BuZhong YiQi Formula (BZYQF) can alleviate type 2 diabetes mellitus (T2DM). However, its efficacy in managing postprandial hyperglycemia in T2DM needs to be further confirmed, and its underlying mechanism and pharmacodynamic material basis have not been sufficiently investigated. Methods: A T2DM rat model was induced to measure postprandial glycemic responses following glucose and starch ingestion. In vitro assays of enzymatic inhibition and the kinetic mode were performed to evaluate the inhibitory effect of BZYQF on α-amylase and α-glucosidase activities. The main constituent contents of BZYQF in a simulated digestion assay were measured to screen the active constituents in BZYQF against α-amylase and α-glucosidase activities via Pearson correlation and multiple linear regression analyses. Finally, the total flavonoids were purified from BZYQF to perform in vitro activity validation, and the flavonoid constituent activity was verified through molecular docking. Results: In vivo assays showed that BZYQF significantly reduced the blood glucose values of CON rats but not T2DM rats after glucose ingestion, while BZYQF significantly reduced the blood glucose levels by 15 min after starch ingestion in CON and T2DM rats, with more significant decreases in blood glucose levels in T2DM rats. In vitro enzymatic assays showed that BZYQF could inhibit the activities of α-amylase and α-glucosidase in competitive and non-competitive modes and in an uncompetitive mode, respectively. Furthermore, BZYQF showed a stronger inhibitory effect on α-glucosidase activity than on α-amylase activity. Simulated digestion showed that simulated gastric fluid and intestinal fluid changed the main constituent contents of BZYQF and their inhibition rates against α-amylase and α-glucosidase activities, and similar results were rarely found in simulated salivary fluid. Pearson correlation and multiple linear regression analyses revealed that the total flavonoids were the active constituents in BZYQF inhibiting α-amylase and α-glycosidase activities. This result was verified by examining the total flavonoids purified from BZYQF. A total of 1909 compounds were identified in BZYQF using UPLC-MS/MS, among which flavones were the most abundant and consisted of 467 flavonoids. Molecular docking showed that flavonoids in BZYQF were bound to the active site of α-amylase, while they were bound to the inactive site of α-glucosidase. This result supported the results of the enzyme kinetic assay. Conclusions: BZYQF significantly alleviated postprandial hyperglycemia in T2DM rats by inhibiting α-amylase and α-glycosidase activities, in which flavonoids in BZYQF were the active constituents.
Collapse
Affiliation(s)
- Xin-Xin Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; (X.-X.Z.); (L.W.); (M.-Y.W.); (Z.-R.H.); (X.-K.L.); (G.-J.F.); (L.L.); (Y.-T.F.)
| | - Liang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; (X.-X.Z.); (L.W.); (M.-Y.W.); (Z.-R.H.); (X.-K.L.); (G.-J.F.); (L.L.); (Y.-T.F.)
| | - Ming-Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; (X.-X.Z.); (L.W.); (M.-Y.W.); (Z.-R.H.); (X.-K.L.); (G.-J.F.); (L.L.); (Y.-T.F.)
| | - Zhen-Ran Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; (X.-X.Z.); (L.W.); (M.-Y.W.); (Z.-R.H.); (X.-K.L.); (G.-J.F.); (L.L.); (Y.-T.F.)
| | - Xiang-Ke Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; (X.-X.Z.); (L.W.); (M.-Y.W.); (Z.-R.H.); (X.-K.L.); (G.-J.F.); (L.L.); (Y.-T.F.)
| | - Guo-Jun Fei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; (X.-X.Z.); (L.W.); (M.-Y.W.); (Z.-R.H.); (X.-K.L.); (G.-J.F.); (L.L.); (Y.-T.F.)
| | - Ling Ling
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; (X.-X.Z.); (L.W.); (M.-Y.W.); (Z.-R.H.); (X.-K.L.); (G.-J.F.); (L.L.); (Y.-T.F.)
| | - Yu-Ting Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; (X.-X.Z.); (L.W.); (M.-Y.W.); (Z.-R.H.); (X.-K.L.); (G.-J.F.); (L.L.); (Y.-T.F.)
| | - Ze-Min Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; (X.-X.Z.); (L.W.); (M.-Y.W.); (Z.-R.H.); (X.-K.L.); (G.-J.F.); (L.L.); (Y.-T.F.)
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, 280 Waihuan Road East in Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| |
Collapse
|
2
|
Dos Santos Borges R, de Oliveira Almeida G, Alves VFC, Nienkotter TF, Bertoli ED, Simões E Silva AC. Safety and efficacy of sotagliflozin in patients with type II diabetes mellitus and chronic kidney disease: a meta-analysis of randomized controlled trials. J Nephrol 2024; 37:881-896. [PMID: 38141092 DOI: 10.1007/s40620-023-01818-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/20/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Sotagliflozin is a dual sodium-glucose co-transporter 1 and 2 inhibitor that increases glucosuria and natriuresis in patients with type 2 diabetes mellitus (T2DM). However, the safety and efficacy in patients with concomitant chronic kidney disease (CKD) remains unclear. Therefore, we aimed to conduct a meta-analysis to evaluate the current evidence in this regard. METHODS We searched PubMed, Embase, Cochrane, and Web of Science for randomized controlled clinical trials on the safety and efficacy of Sotagliflozin in patients with T2DM and CKD compared with placebo. Statistical analysis was performed using RevMan 5.4. Heterogeneity was assessed with I2 statistics. The study was recorded in PROSPERO registry (CRD42023449631). RESULTS : We included three studies totaling 11,648 patients followed for 15.7 ± 5.9 months. Reduction in HbA1C (mean difference - 0.33%; 95% CI [- 0.54, - 0.11]; p = 0.003; I2 = 100%) and weight (mean difference - 1.01 kg; 95% CI [- 1.17, - 0.86]; p < 0.00001; I2 = 96%) were significantly higher in the Sotagliflozin group compared with placebo. All-cause mortality (RR 0.98; 95% CI [0.81, 1.20]; p = 0.87; I2 = 0%) and major adverse cardiovascular events (RR 0.70; 95% CI [0.40, 1.21]; p = 0.20; I2 = 39%) were not significantly different between groups. However, estimated glomerular filtration rate reduction (mean difference - 0.95; 95% CI [- 1.32, - 0.58]; p < 0.00001; I2 = 98%), genital mycotic infections (RR 2.73; 95% CI [1.96, 3.79]; p < 0.00001; I2 = 0%), diarrhea (RR 1.42; 95% CI [1.24. 1.63]; p < 0.00001; I2 = 0%) and volume depletion (RR 1.31; 95% CI [1.11, 1.56]; p = 0.002; I2 = 0%) were more common with Sotagliflozin. CONCLUSIONS In patients with T2DM and CKD, Sotagliflozin appears to be effective for glycemic control and weight loss. Although the medication seemed safe concerning mortality and cardiovascular events, it induced estimated glomerular filtration rate reduction, and was associated with a higher risk of genital mycotic infections, diarrhea, and volume depletion.
Collapse
Affiliation(s)
| | | | | | | | | | - Ana Cristina Simões E Silva
- Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
De Vito F, Suraci E, Marasco R, Luzza F, Andreozzi F, Sesti G, Fiorentino TV. Association between higher duodenal levels of the fructose carrier glucose transporter-5 and nonalcoholic fatty liver disease and liver fibrosis. J Intern Med 2024; 295:171-180. [PMID: 37797237 DOI: 10.1111/joim.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
BACKGROUND An increased dietary fructose intake has been shown to exert several detrimental metabolic effects and contribute to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). An augmented intestinal abundance of the fructose carriers glucose transporter-5 (GLUT-5) and glucose transporter-2 (GLUT-2) has been found in subjects with obesity and type 2 diabetes. Herein, we investigated whether elevated intestinal levels of GLUT-5 and GLUT-2, resulting in a higher dietary fructose uptake, are associated with NAFLD and its severity. METHODS GLUT-5 and GLUT-2 protein levels were assessed on duodenal mucosa biopsies of 31 subjects divided into 2 groups based on ultrasound-defined NAFLD presence who underwent an upper gastrointestinal endoscopy. RESULTS Individuals with NAFLD exhibited increased duodenal GLUT-5 protein levels in comparison to those without NAFLD, independently of demographic and anthropometric confounders. Conversely, no difference in duodenal GLUT-2 abundance was observed amongst the two groups. Univariate correlation analyses showed that GLUT-5 protein levels were positively related with body mass index, waist circumference, fasting and 2 h post-load insulin concentrations, and insulin resistance (IR) degree estimated by homeostatic model assessment of IR (r = 0.44; p = 0.02) and liver IR (r = 0.46; p = 0.03) indexes. Furthermore, a positive relationship was observed between duodenal GLUT-5 abundance and serum uric acid concentrations (r = 0.40; p = 0.05), a product of fructose metabolism implicated in NAFLD progression. Importantly, duodenal levels of GLUT-5 were positively associated with liver fibrosis risk estimated by NAFLD fibrosis score. CONCLUSION Increased duodenal GLUT-5 levels are associated with NAFLD and liver fibrosis. Inhibition of intestinal GLUT-5-mediated fructose uptake may represent a strategy for prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Francesca De Vito
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Evelina Suraci
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Raffaella Marasco
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Francesco Luzza
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, Rome, Italy
| | - Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
4
|
Banerjee S, Lu S, Jain A, Wang I, Tao H, Srinivasan S, Nemeth E, He P. Targeting PKC alleviates iron overload in diabetes and hemochromatosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569107. [PMID: 38076948 PMCID: PMC10705472 DOI: 10.1101/2023.11.28.569107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Diabetes is one of the most prevalent chronic diseases worldwide. Iron overload increases the incidence of diabetes and aggravates diabetic complications that cause mortality. Reciprocally, diabetes potentially promotes body iron loading, but the mechanism remains not well understood. In this study, we demonstrated systemic iron excess and the upregulation of iron exporter ferroportin (Fpn) in the enterocytes and macrophages of multiple diabetic mouse models. Increased Fpn expression and iron efflux was also seen in the enterocytes of type 2 diabetic human patients. We further showed that protein kinase C (PKC), which is activated in hyperglycemia, was responsible for the sustained membrane expression of Fpn in physiological and in diabetic settings. For the first time, we identified that PKCs were novel binding proteins and positive regulators of Fpn. Mechanistically, hyperactive PKC promoted exocytotic membrane insertion while inhibited the endocytic trafficking of Fpn in the resting state. PKC also protected Fpn from internalization and degradation by its ligand hepcidin dependent on decreased ubiquitination and increased phosphorylation of Fpn. Importantly, the loss-of-function and pharmacological inhibition of PKC alleviated systemic iron overload in diabetes and hemochromatosis. Our study thus highlights PKC as a novel target in the control of systemic iron homeostasis.
Collapse
|
5
|
Fiorentino TV, De Vito F, Suraci E, Marasco R, Hribal ML, Luzza F, Sesti G. Obesity and overweight are linked to increased sodium-glucose cotransporter 1 and glucose transporter 5 levels in duodenum. Obesity (Silver Spring) 2023; 31:724-731. [PMID: 36746764 DOI: 10.1002/oby.23653] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/23/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Prior evidence indicates that individuals with obesity have an accelerated intestinal glucose absorption. This cross-sectional study evaluated whether those with overweight or obesity display higher duodenal protein levels of the glucose carriers sodium-glucose cotransporter 1 (SGLT-1), glucose transporter 2 (GLUT-2), and glucose transporter 5 (GLUT-5). METHODS SGLT-1, GLUT-2, and GLUT-5 protein levels were assessed on duodenal mucosa biopsies of 52 individuals without diabetes categorized on the basis of their BMI as lean, with overweight, or with obesity. RESULTS Individuals with overweight and obesity exhibited progressively increased duodenal protein levels of SGLT-1 and GLUT-5 as compared with the lean group. Conversely, no differences in duodenal GLUT-2 abundance were found among the three groups. Univariate analysis showed that SGLT-1 and GLUT-5 protein levels were positively correlated with BMI, waist circumference, 1-hour post-load glucose, fasting and post-load insulin, and insulin secretion and resistance levels. Furthermore, a positive relationship was detected between intestinal GLUT-5 levels and serum uric acid concentrations, a product of fructose metabolism known to be involved in the pathogenesis of obesity and its complications. CONCLUSIONS Individuals with overweight and obesity display enhanced duodenal SGLT-1 and GLUT-5 abundance, which correlates with increased postprandial glucose concentrations, insulin resistance, and hyperinsulinemia.
Collapse
Affiliation(s)
- Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Francesca De Vito
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Evelina Suraci
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Raffaella Marasco
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Francesco Luzza
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, Rome, Italy
| |
Collapse
|
6
|
Huang C, Shi C, Li Z, Wang W, Ming D, Gao Y, Liu H, Ma X, Wang F. Pyrroloquinoline quinone regulates glycolipid metabolism in the jejunum via inhibiting AMPK phosphorylation of weaned pigs. Food Funct 2022; 13:9610-9621. [PMID: 36004536 DOI: 10.1039/d2fo00281g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Maintenance of intestinal metabolic function is important for optimal growth performance in post-weaning pigs. This study aimed to evaluate the effect of pyrroloquinoline quinone (PQQ) on maintaining intestinal glycolipid metabolism in weaned pigs. Seventy-two Duroc × Landrace × Yorkshire crossbred pigs were divided into two groups: pigs fed a basal diet (CTRL group) and pigs fed a basal diet supplemented with 3.0 mg kg-1 PQQ (PQQ group). On d 14, serum was harvested from six pigs per group and the pigs were slaughtered to sample jejunal tissue. Compared with the CTRL group, pigs in the PQQ group had increased average daily gain (P < 0.05), decreased feed : gain (P < 0.05) and tended to have a reduced diarrhea ratio (P = 0.057). Jejunal villus height and villus height/crypt depth ratio were increased, and the crypt depth was decreased in the PQQ group (P < 0.01). The proteomics results showed that PQQ supplementation acted on three metabolic pathways, type I diabetes mellitus, the pancreatic secretion pathway and immune-related signalling. Compared with the CTRL group, PQQ supplementation increased (P < 0.05) serum insulin and jejunal mucosal pyruvate, triglyceride, total cholesterol and low-density lipoprotein cholesterol in the pigs. Jejunal mucosal lactic dehydrogenase and high-density lipoprotein cholesterol levels in the pigs were decreased by PQQ supplementation (P < 0.05). In addition, PQQ supplementation reduced glucose transporter 5 and phosphorylated-AMP-activated protein kinase expression in the jejunal mucosa of the pigs (P < 0.05). In conclusion, dietary supplementation with PQQ improved the growth performance and jejunal morphology and regulated glycolipid metabolism via inhibiting AMPK phosphorylation in weaned pigs.
Collapse
Affiliation(s)
- Caiyun Huang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| | - Chenyu Shi
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| | - Zhe Li
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| | - Wenhui Wang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| | - Dongxu Ming
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| | - Youjun Gao
- Changmao Biochemical Engineering Company, Changzhou 213000, China
| | - Hu Liu
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| | - Xi Ma
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| | - Fenglai Wang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Fiorentino TV, De Vito F, Suraci E, Marasco R, Catalano F, Andreozzi F, Hribal ML, Luzza F, Sesti G. Augmented duodenal levels of sodium/glucose co-transporter 1 are associated with higher risk of nonalcoholic fatty liver disease and noninvasive index of liver fibrosis. Diabetes Res Clin Pract 2022; 185:109789. [PMID: 35192912 DOI: 10.1016/j.diabres.2022.109789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022]
Abstract
AIMS Subjects with elevated 1 h post-load glucose concentrations (1hPG) exhibit increased risk of non-alcoholic fatty liver disease (NAFLD) and duodenal sodium/glucose co-transporter 1 (SGLT-1) levels. Herein, we evaluate whether higher SGLT-1 duodenal levels are associated with NAFLD and increased risk of advance liver fibrosis. METHODS SGLT-1 levels were assessed on duodenal mucosa in 52 individuals subdivided into two groups according to ultrasonography-defined presence of NAFLD. Intracellular triglycerides levels and activation of endoplasmic reticulum (ER) stress were evaluated in human hepatocytes exposed to high-glucose concentration (HG). RESULTS Individuals with NAFLD exhibited higher duodenal SGLT-1 abundance along with raised 1hPG, as compared to those without NAFLD. The mediation analysis showed that augmented duodenal SGLT-1 levels were a predictor of NAFLD, and the link between increased duodenal SGLT-1 content and NAFLD risk was mediated by augmented 1hPG. Amongst participants with NAFLD, those with intermediate/high probability of advance liver fibrosis, estimated by NAFLD fibrosis score, exhibited higher duodenal SGLT-1 abundance and 1hPG levels as compared to the low probability group. Hepatocytes exposed to HG showed increased triglycerides accumulation and an up-regulation of ER stress pathway. CONCLUSIONS Increased duodenal SGLT-1 abundance and the related early post-prandial hyperglycemia are associated with NAFLD and advance liver fibrosis.
Collapse
Affiliation(s)
- Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Francesca De Vito
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Evelina Suraci
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Raffaella Marasco
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Federica Catalano
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Francesco Luzza
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, Rome 00189, Italy
| |
Collapse
|
8
|
Gromova LV, Polozov AS, Savochkina EV, Alekseeva AS, Dmitrieva YV, Kornyushin OV, Gruzdkov AA. Effect of Type 2 Diabetes and Impaired Glucose Tolerance on Digestive Enzymes and Glucose Absorption in the Small Intestine of Young Rats. Nutrients 2022; 14:nu14020385. [PMID: 35057569 PMCID: PMC8779211 DOI: 10.3390/nu14020385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/10/2022] Open
Abstract
The reactions of intestinal functional parameters to type 2 diabetes at a young age remain unclear. The study aimed to assess changes in the activity of intestinal enzymes, glucose absorption, transporter content (SGLT1, GLUT2) and intestinal structure in young Wistar rats with type 2 diabetes (T2D) and impaired glucose tolerance (IGT). To induce these conditions in the T2D (n = 4) and IGT (n = 6) rats, we used a high-fat diet and a low dose of streptozotocin. Rats fed a high-fat diet (HFD) (n = 6) or a standard diet (SCD) (n = 6) were used as controls. The results showed that in T2D rats, the ability of the small intestine to absorb glucose was higher in comparison to HFD rats (p < 0.05). This was accompanied by a tendency towards an increase in the number of enterocytes on the villi of the small intestine in the absence of changes in the content of SGLT1 and GLUT2 in the brush border membrane of the enterocytes. T2D rats also showed lower maltase and alkaline phosphatase (AP) activity in the jejunal mucosa compared to the IGT rats (p < 0.05) and lower AP activity in the colon contents compared to the HFD (p < 0.05) and IGT (p < 0.05) rats. Thus, this study provides insights into the adaptation of the functional and structural parameters of the small intestine in the development of type 2 diabetes and impaired glucose tolerance in young representatives.
Collapse
Affiliation(s)
- Lyudmila V. Gromova
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Alexandr S. Polozov
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Elizaveta V. Savochkina
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Anna S. Alekseeva
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Yulia V. Dmitrieva
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Oleg V. Kornyushin
- Almazov National Medical Research Center, Ministry of Health of the Russian Federation, 2 Akkuratova Str., 197341 Saint-Petersburg, Russia;
| | - Andrey A. Gruzdkov
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
- Correspondence: ; Tel.: +7-960-276-3000
| |
Collapse
|
9
|
Fiorentino TV, Suraci E, De Vito F, Cimellaro A, Hribal ML, Sciacqua A, Andreozzi F, Luzza F, Sesti G. One-hour post-load hyperglycemia combined with HbA1c identifies individuals with augmented duodenal levels of sodium/glucose co-transporter 1. Diabetes Res Clin Pract 2021; 181:109094. [PMID: 34662689 DOI: 10.1016/j.diabres.2021.109094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
AIMS Individuals with HbA1c-defined prediabetes (HbA1c 5.7-6.4%) and 1-hour post-load plasma glucose (1hPG) ≥ 155 mg/dl have an increased risk to develop type 2 diabetes (T2DM). T2DM is associated with a higher intestinal expression of sodium/glucose co-transporter 1 (SGLT-1) and glucose transporter 2 (GLUT-2). It is currently unsettled whether HbA1c-defined dysglycemic conditions combined to 1hPG ≥ 155 mg/dl are associated with changes in SGLT-1 and GLUT-2 duodenal abundance. METHODS SGLT-1 and GLUT-2 protein levels were assessed by western blot on duodenal mucosa biopsies of 57 individuals underwent an upper gastrointestinal endoscopy. RESULTS Compared with the normal group (HbA1c < 5.7%), individuals with HbA1c-defined pre-diabetes and diabetes exhibit no significant change in duodenal SGLT-1 abundance. Conversely, duodenal GLUT-2 levels were progressively increased in subjects with prediabetes and diabetes. Stratifying participants according to HbA1c and 1hPG we found that amongst subjects with HbA1c-defined normal or prediabetes condition those having 1hPG ≥ 155 mg/dl displayed higher duodenal levels of SGLT-1 as compared to their counterparts with 1hPG < 155 mg/dl; in contrast to GLUT-2 levels, which were similar between normal and with prediabetes subjects, regardless of 1hPG value. CONCLUSION A value of 1hPG ≥ 155 mg/dl may identify a subset of individuals within HbA1c-defined glycemic categories having a higher duodenal abundance of SGLT-1.
Collapse
Affiliation(s)
- Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Evelina Suraci
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Francesca De Vito
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Antonio Cimellaro
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Francesco Luzza
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, Rome 00189, Italy.
| |
Collapse
|
10
|
Kwon IG, Kang CW, Park JP, Oh JH, Wang EK, Kim TY, Sung JS, Park N, Lee YJ, Sung HJ, Lee EJ, Hyung WJ, Shin SJ, Noh SH, Yun M, Kang WJ, Cho A, Ku CR. Serum glucose excretion after Roux-en-Y gastric bypass: a potential target for diabetes treatment. Gut 2021; 70:1847-1856. [PMID: 33208408 DOI: 10.1136/gutjnl-2020-321402] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The mechanisms underlying type 2 diabetes resolution after Roux-en-Y gastric bypass (RYGB) are unclear. We suspected that glucose excretion may occur in the small bowel based on observations in humans. The aim of this study was to evaluate the mechanisms underlying serum glucose excretion in the small intestine and its contribution to glucose homeostasis after bariatric surgery. DESIGN 2-Deoxy-2-[18F]-fluoro-D-glucose (FDG) was measured in RYGB-operated or sham-operated obese diabetic rats. Altered glucose metabolism was targeted and RNA sequencing was performed in areas of high or low FDG uptake in the ileum or common limb. Intestinal glucose metabolism and excretion were confirmed using 14C-glucose and FDG. Increased glucose metabolism was evaluated in IEC-18 cells and mouse intestinal organoids. Obese or ob/ob mice were treated with amphiregulin (AREG) to correlate intestinal glycolysis changes with changes in serum glucose homeostasis. RESULTS The AREG/EGFR/mTOR/AKT/GLUT1 signal transduction pathway was activated in areas of increased glycolysis and intestinal glucose excretion in RYGB-operated rats. Intraluminal GLUT1 inhibitor administration offset improved glucose homeostasis in RYGB-operated rats. AREG-induced signal transduction pathway was confirmed using IEC-18 cells and mouse organoids, resulting in a greater capacity for glucose uptake via GLUT1 overexpression and sequestration in apical and basolateral membranes. Systemic and local AREG administration increased GLUT1 expression and small intestinal membrane translocation and prevented hyperglycaemic exacerbation. CONCLUSION Bariatric surgery or AREG administration induces apical and basolateral membrane GLUT1 expression in the small intestinal enterocytes, resulting in increased serum glucose excretion in the gut lumen. Our findings suggest a novel, potentially targetable glucose homeostatic mechanism in the small intestine.
Collapse
Affiliation(s)
- In Gyu Kwon
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chan Woo Kang
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Jong-Pil Park
- Department of Forensic Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Hun Oh
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea.,Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Kyung Wang
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Young Kim
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sol Sung
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Namhee Park
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yang Jong Lee
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hak-Joon Sung
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Jig Lee
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woo Jin Hyung
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Hoon Noh
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Jun Kang
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Arthur Cho
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Cheol Ryong Ku
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Liu S, Ai Z, Meng Y, Chen Y, Ni D. Comparative studies on the physicochemical profile and potential hypoglycemic activity of different tea extracts: Effect on sucrase-isomaltase activity and glucose transport in Caco-2 cells. Food Res Int 2021; 148:110604. [PMID: 34507748 DOI: 10.1016/j.foodres.2021.110604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/03/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
Tea is one of the most popular beverages in the world and is believed to be beneficial for health. The main components in tea change greatly depending on different processes, and thus, the effects of different teas on human health may differ. In this study, we compared the effect of green, oolong, black, and dark tea extracts on sucrase-isomaltase (SI) activity and glucose transport, which are two intervention options for postprandial blood glucose control, using Caco-2 cells as a model. Theaflavin-rich black tea extracts showed the highest inhibition of SI activity and retardation of the hydrolysis of sucrose, maltose, and isomaltose, with IC50 values of 8.34 μg/mL, 16.10 μg/mL, and 21.63 μg/mL, respectively. All four kinds of tea extracts caused a dose-dependent inhibition of glucose transport, which were closely related to the catechin content. Green tea extracts showed the highest inhibition of glucose transport and was more effective against sodium-dependent glucose cotransporter 1 (SGLT1) than glucose transporter 2 (GLUT2) in the management of glucose transport. Black tea extracts also inhibited glucose transport despite low level of catechins. The reason could partly lie in the suppression of Na+/K+-ATPase, which reduced the energy needed for SGLT1 to actively transport glucose. Furthermore, the mRNA level of SI, SGLT1, GLUT2, and Na+/K+-ATPase in Caco-2 cells were significantly reduced after treatment with tea extracts for 2 h. These in vitro studies suggested that tea could be used as a functional food in the diet to modulate postprandial hyperglycaemia for diabetic patients.
Collapse
Affiliation(s)
- Shuyuan Liu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zeyi Ai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yang Meng
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yuqiong Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
12
|
Mechanisms of Glucose Absorption in the Small Intestine in Health and Metabolic Diseases and Their Role in Appetite Regulation. Nutrients 2021; 13:nu13072474. [PMID: 34371983 PMCID: PMC8308647 DOI: 10.3390/nu13072474] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
The worldwide prevalence of metabolic diseases such as obesity, metabolic syndrome and type 2 diabetes shows an upward trend in recent decades. A characteristic feature of these diseases is hyperglycemia which can be associated with hyperphagia. Absorption of glucose in the small intestine physiologically contributes to the regulation of blood glucose levels, and hence, appears as a putative target for treatment of hyperglycemia. In fact, recent progress in understanding the molecular and cellular mechanisms of glucose absorption in the gut and its reabsorption in the kidney helped to develop a new strategy of diabetes treatment. Changes in blood glucose levels are also involved in regulation of appetite, suggesting that glucose absorption may be relevant to hyperphagia in metabolic diseases. In this review we discuss the mechanisms of glucose absorption in the small intestine in physiological conditions and their alterations in metabolic diseases as well as their relevance to the regulation of appetite. The key role of SGLT1 transporter in intestinal glucose absorption in both physiological conditions and in diabetes was clearly established. We conclude that although inhibition of small intestinal glucose absorption represents a valuable target for the treatment of hyperglycemia, it is not always suitable for the treatment of hyperphagia. In fact, independent regulation of glucose absorption and appetite requires a more complex approach for the treatment of metabolic diseases.
Collapse
|
13
|
Alterations in Small Intestine and Liver Morphology, Immunolocalization of Leptin, Ghrelin and Nesfatin-1 as Well as Immunoexpression of Tight Junction Proteins in Intestinal Mucosa after Gastrectomy in Rat Model. J Clin Med 2021; 10:jcm10020272. [PMID: 33450994 PMCID: PMC7828391 DOI: 10.3390/jcm10020272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/01/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
The stomach is responsible for the processing of nutrients as well as for the secretion of various hormones which are involved in many activities throughout the gastrointestinal tract. Experimental adult male Wistar rats (n = 6) underwent a modified gastrectomy, while control rats (n = 6) were sham-operated. After six weeks, changes in small intestine (including histomorphometrical parameters of the enteric nervous plexuses) and liver morphology, immunolocalization of leptin, ghrelin and nesfatin-1 as well as proteins forming adherens and tight junctions (E-cadherin, zonula occludens-1, occludin, marvelD3) in intestinal mucosa were evaluated. A number of effects on small intestine morphology, enteric nervous system ganglia, hormones and proteins expression were found, showing intestinal enteroplasticity and neuroplasticity associated with changes in gastrointestinal tract condition. The functional changes in intestinal mucosa and the enteric nervous system could be responsible for the altered intestinal barrier and hormonal responses following gastrectomy. The results suggest that more complicated regulatory mechanisms than that of compensatory mucosal hypertrophy alone are involved.
Collapse
|
14
|
Hasan NM, Johnson KF, Yin J, Baetz NW, Fayad L, Sherman V, Blutt SE, Estes MK, Kumbhari V, Zachos NC, Kovbasnjuk O. Intestinal stem cell-derived enteroids from morbidly obese patients preserve obesity-related phenotypes: Elevated glucose absorption and gluconeogenesis. Mol Metab 2020; 44:101129. [PMID: 33246140 PMCID: PMC7770968 DOI: 10.1016/j.molmet.2020.101129] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Objective The mechanisms behind the efficacy of bariatric surgery (BS) for treating obesity and type 2 diabetes, particularly with respect to the influence of the small bowel, remain poorly understood. In vitro and animal models are suboptimal with respect to their ability to replicate the human intestinal epithelium under conditions induced by obesity. Human enteroids have the potential to accelerate the development of less invasive anti-obesity therapeutics if they can recapitulate the pathophysiology of obesity. Our aim was to determine whether adult stem cell-derived enteroids preserve obesity-characteristic patient-specific abnormalities in carbohydrate absorption and metabolism. Methods We established 24 enteroid lines representing 19 lean, overweight, or morbidly obese patients, including post-BS cases. Dietary glucose absorption and gluconeogenesis in enteroids were measured. The expression of carbohydrate transporters and gluconeogenic enzymes was assessed and a pharmacological approach was used to dissect the specific contribution of each transporter or enzyme to carbohydrate absorption and metabolism, respectively. Results Four phenotypes representing the relationship between patients’ BMI and intestinal dietary sugar absorption were found, suggesting that human enteroids retain obese patient phenotype heterogeneity. Intestinal glucose absorption and gluconeogenesis were significantly elevated in enteroids from a cohort of obese patients. Elevated glucose absorption was associated with increased expression of SGLT1 and GLUT2, whereas elevated gluconeogenesis was related to increased expression of GLUT5, PEPCK1, and G6Pase. Conclusions Obesity phenotypes preserved in human enteroids provide a mechanistic link to aberrant dietary carbohydrate absorption and metabolism. Enteroids can be used as a preclinical platform to understand the pathophysiology of obesity, study the heterogeneity of obesity mechanisms, and identify novel therapeutics. Human stem cell-derived enteroids preserve the heterogeneity of obesity-related phenotypes. Four phenotypes representing the relationship between patients' BMI and intestinal dietary glucose absorption were found. Glucose absorption and gluconeogenesis were elevated in enteroids from a cohort of obese patients. Elevated glucose absorption was associated with increased expression of SGLT1 and GLUT2 in enteroids. Elevated gluconeogenesis was associated with increased expression of GLUT5, PEPCK1, and G6Pase in enteroids.
Collapse
Affiliation(s)
- Nesrin M Hasan
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA; Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kelli F Johnson
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Jianyi Yin
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicholas W Baetz
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Lea Fayad
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Vadim Sherman
- Department of Surgery, Minimally Invasive Bariatric and General Division, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Vivek Kumbhari
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | - Olga Kovbasnjuk
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA; Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
15
|
Application of Differential Network Enrichment Analysis for Deciphering Metabolic Alterations. Metabolites 2020; 10:metabo10120479. [PMID: 33255384 PMCID: PMC7761243 DOI: 10.3390/metabo10120479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Modern analytical methods allow for the simultaneous detection of hundreds of metabolites, generating increasingly large and complex data sets. The analysis of metabolomics data is a multi-step process that involves data processing and normalization, followed by statistical analysis. One of the biggest challenges in metabolomics is linking alterations in metabolite levels to specific biological processes that are disrupted, contributing to the development of disease or reflecting the disease state. A common approach to accomplishing this goal involves pathway mapping and enrichment analysis, which assesses the relative importance of predefined metabolic pathways or other biological categories. However, traditional knowledge-based enrichment analysis has limitations when it comes to the analysis of metabolomics and lipidomics data. We present a Java-based, user-friendly bioinformatics tool named Filigree that provides a primarily data-driven alternative to the existing knowledge-based enrichment analysis methods. Filigree is based on our previously published differential network enrichment analysis (DNEA) methodology. To demonstrate the utility of the tool, we applied it to previously published studies analyzing the metabolome in the context of metabolic disorders (type 1 and 2 diabetes) and the maternal and infant lipidome during pregnancy.
Collapse
|
16
|
Bolla AM, Butera E, Pellegrini S, Caretto A, Bonfanti R, Zuppardo RA, Barera G, Cavestro GM, Sordi V, Bosi E. Expression of glucose transporters in duodenal mucosa of patients with type 1 diabetes. Acta Diabetol 2020; 57:1367-1373. [PMID: 32617672 DOI: 10.1007/s00592-020-01558-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 06/10/2020] [Indexed: 12/29/2022]
Abstract
AIMS A higher SGLT1 and GLUT2 gene expression was shown in the intestine of subjects with type 2 diabetes, while no data have been reported in type 1 diabetes (T1D). The purpose of our study was to evaluate the expression of glucose transporters in duodenal mucosa of subjects with T1D, compared to healthy controls (CTRL) and to patients with celiac disease (CD), as gut inflammatory disease control group. MATERIALS AND METHODS Gene expression of GLUT1, GLUT2, SGLT1 and SGLT2 was quantified on duodenal mucosa biopsies of subjects with T1D (n = 19), CD (n = 16), T1D and CD (n = 6) and CTRL (n = 12), recruited at San Raffaele Hospital (Milan, Italy), between 2009 and 2018. SGLT2 expression was further evaluated by immunohistochemical and immunofluorescence staining. RESULTS The expression of all four glucose transporters was detected in duodenal mucosa of all groups. A reduced GLUT2, SGLT1 and SGLT2 expression was observed in CD in comparison with T1D and CTRL, as expected; GLUT1 was significantly more expressed in T1D compared to CTRL. SGLT2 expression was quantified at much lower levels than other transporters, with no differences between groups. SGLT2 expression was confirmed by immunohistochemistry in a restricted number of enterocytes lining in the mucosa of intestinal villi, also shown on immunofluorescence. CONCLUSIONS Our results show that glucose transporters expression in duodenal mucosa of subjects with T1D, except an increased GLUT1, is not different from that observed in healthy controls. The expression of SGLT2 in human duodenal mucosa, although at low intensity, represents a novel finding.
Collapse
Affiliation(s)
- Andrea Mario Bolla
- Diabetes Research Institute, IRCCS San Raffaele Hospital, 20132, Milan, Italy
| | - Elena Butera
- Diabetes Research Institute, IRCCS San Raffaele Hospital, 20132, Milan, Italy
- San Raffaele Vita Salute University, Via Olgettina 60, 20132, Milan, Italy
| | - Silvia Pellegrini
- Diabetes Research Institute, IRCCS San Raffaele Hospital, 20132, Milan, Italy
| | - Amelia Caretto
- Diabetes Research Institute, IRCCS San Raffaele Hospital, 20132, Milan, Italy
| | - Riccardo Bonfanti
- Pediatrics and Neonatal Disease Unit, IRCCS San Raffaele Hospital, 20132, Milan, Italy
| | | | - Graziano Barera
- Pediatrics and Neonatal Disease Unit, IRCCS San Raffaele Hospital, 20132, Milan, Italy
| | - Giulia Martina Cavestro
- San Raffaele Vita Salute University, Via Olgettina 60, 20132, Milan, Italy
- Gastroenterology and Digestive Endoscopy Unit, IRCCS San Raffaele Hospital, 20132, Milan, Italy
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS San Raffaele Hospital, 20132, Milan, Italy
| | - Emanuele Bosi
- Diabetes Research Institute, IRCCS San Raffaele Hospital, 20132, Milan, Italy.
- San Raffaele Vita Salute University, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
17
|
Helsley RN, Moreau F, Gupta MK, Radulescu A, DeBosch B, Softic S. Tissue-Specific Fructose Metabolism in Obesity and Diabetes. Curr Diab Rep 2020; 20:64. [PMID: 33057854 DOI: 10.1007/s11892-020-01342-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW The objective of this review is to provide up-to-date and comprehensive discussion of tissue-specific fructose metabolism in the context of diabetes, dyslipidemia, and nonalcoholic fatty liver disease (NAFLD). RECENT FINDINGS Increased intake of dietary fructose is a risk factor for a myriad of metabolic complications. Tissue-specific fructose metabolism has not been well delineated in terms of its contribution to detrimental health effects associated with fructose intake. Since inhibitors targeting fructose metabolism are being developed for the management of NAFLD and diabetes, it is essential to recognize how inability of one tissue to metabolize fructose may affect metabolism in the other tissues. The primary sites of fructose metabolism are the liver, intestine, and kidney. Skeletal muscle and adipose tissue can also metabolize a large portion of fructose load, especially in the setting of ketohexokinase deficiency, the rate-limiting enzyme of fructose metabolism. Fructose can also be sensed by the pancreas and the brain, where it can influence essential functions involved in energy homeostasis. Lastly, fructose is metabolized by the testes, red blood cells, and lens of the eye where it may contribute to infertility, advanced glycation end products, and cataracts, respectively. An increase in sugar intake, particularly fructose, has been associated with the development of obesity and its complications. Inhibition of fructose utilization in tissues primary responsible for its metabolism alters consumption in other tissues, which have not been traditionally regarded as important depots of fructose metabolism.
Collapse
Affiliation(s)
- Robert N Helsley
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Francois Moreau
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Manoj K Gupta
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Aurelia Radulescu
- Department of Pediatrics, University of Kentucky College of Medicine and Kentucky Children's Hospital, Lexington, KY, 40536, USA
| | - Brian DeBosch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63131, USA
| | - Samir Softic
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 138 Leader Ave, Lexington, KY, 40506, USA.
| |
Collapse
|
18
|
Koepsell H. Glucose transporters in the small intestine in health and disease. Pflugers Arch 2020; 472:1207-1248. [PMID: 32829466 PMCID: PMC7462918 DOI: 10.1007/s00424-020-02439-5] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Absorption of monosaccharides is mainly mediated by Na+-D-glucose cotransporter SGLT1 and the facititative transporters GLUT2 and GLUT5. SGLT1 and GLUT2 are relevant for absorption of D-glucose and D-galactose while GLUT5 is relevant for D-fructose absorption. SGLT1 and GLUT5 are constantly localized in the brush border membrane (BBM) of enterocytes, whereas GLUT2 is localized in the basolateral membrane (BLM) or the BBM plus BLM at low and high luminal D-glucose concentrations, respectively. At high luminal D-glucose, the abundance SGLT1 in the BBM is increased. Hence, D-glucose absorption at low luminal glucose is mediated via SGLT1 in the BBM and GLUT2 in the BLM whereas high-capacity D-glucose absorption at high luminal glucose is mediated by SGLT1 plus GLUT2 in the BBM and GLUT2 in the BLM. The review describes functions and regulations of SGLT1, GLUT2, and GLUT5 in the small intestine including diurnal variations and carbohydrate-dependent regulations. Also, the roles of SGLT1 and GLUT2 for secretion of enterohormones are discussed. Furthermore, diseases are described that are caused by malfunctions of small intestinal monosaccharide transporters, such as glucose-galactose malabsorption, Fanconi syndrome, and fructose intolerance. Moreover, it is reported how diabetes, small intestinal inflammation, parental nutrition, bariatric surgery, and metformin treatment affect expression of monosaccharide transporters in the small intestine. Finally, food components that decrease D-glucose absorption and drugs in development that inhibit or downregulate SGLT1 in the small intestine are compiled. Models for regulations and combined functions of glucose transporters, and for interplay between D-fructose transport and metabolism, are discussed.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute for Anatomy and Cell Biology, University of Würzburg, Koellikerstr 6, 97070, Würzburg, Germany.
| |
Collapse
|
19
|
Bergman M, Abdul-Ghani M, DeFronzo RA, Manco M, Sesti G, Fiorentino TV, Ceriello A, Rhee M, Phillips LS, Chung S, Cravalho C, Jagannathan R, Monnier L, Colette C, Owens D, Bianchi C, Del Prato S, Monteiro MP, Neves JS, Medina JL, Macedo MP, Ribeiro RT, Filipe Raposo J, Dorcely B, Ibrahim N, Buysschaert M. Review of methods for detecting glycemic disorders. Diabetes Res Clin Pract 2020; 165:108233. [PMID: 32497744 PMCID: PMC7977482 DOI: 10.1016/j.diabres.2020.108233] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
Prediabetes (intermediate hyperglycemia) consists of two abnormalities, impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) detected by a standardized 75-gram oral glucose tolerance test (OGTT). Individuals with isolated IGT or combined IFG and IGT have increased risk for developing type 2 diabetes (T2D) and cardiovascular disease (CVD). Diagnosing prediabetes early and accurately is critical in order to refer high-risk individuals for intensive lifestyle modification. However, there is currently no international consensus for diagnosing prediabetes with HbA1c or glucose measurements based upon American Diabetes Association (ADA) and the World Health Organization (WHO) criteria that identify different populations at risk for progressing to diabetes. Various caveats affecting the accuracy of interpreting the HbA1c including genetics complicate this further. This review describes established methods for detecting glucose disorders based upon glucose and HbA1c parameters as well as novel approaches including the 1-hour plasma glucose (1-h PG), glucose challenge test (GCT), shape of the glucose curve, genetics, continuous glucose monitoring (CGM), measures of insulin secretion and sensitivity, metabolomics, and ancillary tools such as fructosamine, glycated albumin (GA), 1,5- anhydroglucitol (1,5-AG). Of the approaches considered, the 1-h PG has considerable potential as a biomarker for detecting glucose disorders if confirmed by additional data including health economic analysis. Whether the 1-h OGTT is superior to genetics and omics in providing greater precision for individualized treatment requires further investigation. These methods will need to demonstrate substantially superiority to simpler tools for detecting glucose disorders to justify their cost and complexity.
Collapse
Affiliation(s)
- Michael Bergman
- NYU School of Medicine, NYU Diabetes Prevention Program, Endocrinology, Diabetes, Metabolism, VA New York Harbor Healthcare System, Manhattan Campus, 423 East 23rd Street, Room 16049C, NY, NY 10010, USA.
| | - Muhammad Abdul-Ghani
- Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Ralph A DeFronzo
- Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Melania Manco
- Research Area for Multifactorial Diseases, Bambino Gesù Children Hospital, Rome, Italy.
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome Sapienza, Rome 00161, Italy
| | - Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy.
| | - Antonio Ceriello
- Department of Cardiovascular and Metabolic Diseases, Istituto Ricerca Cura Carattere Scientifico Multimedica, Sesto, San Giovanni (MI), Italy.
| | - Mary Rhee
- Emory University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta VA Health Care System, Atlanta, GA 30322, USA.
| | - Lawrence S Phillips
- Emory University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta VA Health Care System, Atlanta, GA 30322, USA.
| | - Stephanie Chung
- Diabetes Endocrinology and Obesity Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Celeste Cravalho
- Diabetes Endocrinology and Obesity Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ram Jagannathan
- Emory University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta VA Health Care System, Atlanta, GA 30322, USA.
| | - Louis Monnier
- Institute of Clinical Research, University of Montpellier, Montpellier, France.
| | - Claude Colette
- Institute of Clinical Research, University of Montpellier, Montpellier, France.
| | - David Owens
- Diabetes Research Group, Institute of Life Science, Swansea University, Wales, UK.
| | - Cristina Bianchi
- University Hospital of Pisa, Section of Metabolic Diseases and Diabetes, University Hospital, University of Pisa, Pisa, Italy.
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Mariana P Monteiro
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| | - João Sérgio Neves
- Department of Surgery and Physiology, Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal; Department of Endocrinology, Diabetes and Metabolism, São João University Hospital Center, Porto, Portugal.
| | | | - Maria Paula Macedo
- CEDOC-Centro de Estudos de Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; APDP-Diabetes Portugal, Education and Research Center (APDP-ERC), Lisboa, Portugal.
| | - Rogério Tavares Ribeiro
- Institute for Biomedicine, Department of Medical Sciences, University of Aveiro, APDP Diabetes Portugal, Education and Research Center (APDP-ERC), Aveiro, Portugal.
| | - João Filipe Raposo
- CEDOC-Centro de Estudos de Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; APDP-Diabetes Portugal, Education and Research Center (APDP-ERC), Lisboa, Portugal.
| | - Brenda Dorcely
- NYU School of Medicine, Division of Endocrinology, Diabetes, Metabolism, NY, NY 10016, USA.
| | - Nouran Ibrahim
- NYU School of Medicine, Division of Endocrinology, Diabetes, Metabolism, NY, NY 10016, USA.
| | - Martin Buysschaert
- Department of Endocrinology and Diabetology, Université Catholique de Louvain, University Clinic Saint-Luc, Brussels, Belgium.
| |
Collapse
|
20
|
Ni D, Ai Z, Munoz-Sandoval D, Suresh R, Ellis PR, Yuqiong C, Sharp PA, Butterworth PJ, Yu Z, Corpe CP. Inhibition of the facilitative sugar transporters (GLUTs) by tea extracts and catechins. FASEB J 2020; 34:9995-10010. [PMID: 32564472 DOI: 10.1096/fj.202000057rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/17/2020] [Accepted: 05/05/2020] [Indexed: 01/21/2023]
Abstract
Tea polyphenolics have been suggested to possess blood glucose lowering properties by inhibiting sugar transporters in the small intestine and improving insulin sensitivity. In this report, we studied the effects of teas and tea catechins on the small intestinal sugar transporters, SGLT1 and GLUTs (GLUT1, 2 and 5). Green tea extract (GT), oolong tea extract (OT), and black tea extract (BT) inhibited glucose uptake into the intestinal Caco-2 cells with GT being the most potent inhibitor (IC50 : 0.077 mg/mL), followed by OT (IC50 : 0.136 mg/mL) and BT (IC50 : 0.56 mg/mL). GT and OT inhibition of glucose uptake was partial non-competitive, with an inhibitor constant (Ki ) = 0.0317 and 0.0571 mg/mL, respectively, whereas BT was pure non-competitive, Ki = 0.36 mg/mL. Oocytes injected to express small intestinal GLUTs were inhibited by teas, but SGLT1 was not. Furthermore, catechins present in teas were the predominant inhibitor of glucose uptake into Caco-2 cells, and gallated catechins the most potent: CG > ECG > EGCG ≥ GCG when compared to the non-gallated catechins (C, EC, GC, and EGC). In Caco-2 cells, individual tea catechins reduced the SGLT1 gene, but not protein expression levels. In contrast, GLUT2 gene and protein expression levels were reduced after 2 hours exposure to catechins but increased after 24 hours. These in vitro studies suggest teas containing catechins may be useful dietary supplements capable of blunting postprandial glycaemia in humans, including those with or at risk to Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Dejiang Ni
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan City, China.,Faculty of Life Sciences and Medicine, Departments of Biochemistry and Nutrition, King's College London, London, UK
| | - Zeyi Ai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan City, China.,Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing City, China
| | - Diana Munoz-Sandoval
- Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, King's College London, London, UK
| | - Reshma Suresh
- Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, King's College London, London, UK
| | - Peter R Ellis
- Faculty of Life Sciences and Medicine, Departments of Biochemistry and Nutrition, King's College London, London, UK
| | - Chen Yuqiong
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan City, China
| | - Paul A Sharp
- Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, King's College London, London, UK
| | - Peter J Butterworth
- Faculty of Life Sciences and Medicine, Departments of Biochemistry and Nutrition, King's College London, London, UK
| | - Zhi Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan City, China
| | - Christopher P Corpe
- Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, King's College London, London, UK
| |
Collapse
|
21
|
Le Gall M, Thenet S, Aguanno D, Jarry AC, Genser L, Ribeiro-Parenti L, Joly F, Ledoux S, Bado A, Le Beyec J. Intestinal plasticity in response to nutrition and gastrointestinal surgery. Nutr Rev 2020; 77:129-143. [PMID: 30517714 DOI: 10.1093/nutrit/nuy064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The plasticity of a material corresponds to its capacity to change its feature under the effect of an external action. Intestinal plasticity could be defined as the ability of the intestine to modify its size or thickness and intestinal cells to modulate their absorption and secretion functions in response to external or internal cues/signals. This review will focus on intestinal adaptation mechanisms in response to diet and nutritional status. These physiological mechanisms allow a fine and rapid adaptation of the gut to promote absorption of ingested food, but they can also lead to obesity in response to overnutrition. This plasticity could thus become a therapeutic target to treat not only undernutrition but also obesity. How the intestine adapts in response to 2 types of surgical remodeling of the digestive tract-extensive bowel resection leading to intestinal failure and surgical treatment of pathological obesity (ie, bariatric surgeries)-will also be reviewed.
Collapse
Affiliation(s)
- Maude Le Gall
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Sophie Thenet
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Doriane Aguanno
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Anne-Charlotte Jarry
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Laurent Genser
- Sorbonne Université, INSERM, Nutriomics Team, Paris, France, and the Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Hepato-Biliary and Pancreatic Surgery, Liver Transplantation, Paris, France
| | - Lara Ribeiro-Parenti
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of General and Digestive Surgery, University Hospital Bichat-Claude-Bernard, Paris, France
| | - Francisca Joly
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of Gastroenterology, Inflammatory Bowel Diseases, Nutritional Support and Intestinal Transplantation, Paris, France
| | - Séverine Ledoux
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Service des Explorations Fonctionnelles, Centre de référence de prise en charge de l'obésité, GHUPNVS, Hôpital Louis Mourier, Colombes, France
| | - André Bado
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Johanne Le Beyec
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière-Charles Foix, Biochimie Endocrinienne et Oncologique, Paris, France
| |
Collapse
|
22
|
|
23
|
Wang N, Lv B, Guan L, Qiao H, Sun B, Luo X, Jia R, Chen K, Yan J. Maternal low protein exposure alters glucose tolerance and intestinal nutrient-responsive receptors and transporters expression of rat offspring. Life Sci 2019; 243:117216. [PMID: 31884096 DOI: 10.1016/j.lfs.2019.117216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022]
Abstract
AIMS Maternal protein malnutrition during perinatal period has long-term consequences on the offspring's metabolic phenotype. Here we determined the effects of maternal protein-restricted (PR) diet on offspring's metabolism in 3- and 12-week-old. MAIN METHODS Sprague-Dawley rats were fed with standard chow diet or PR diet during pregnancy and lactation. Food intake and body weight of offspring were measured weekly. The oral glucose tolerance tests were underwent, the pancreases were collected for histochemical staining, and the duodenum, jejunum and ileum were collected for gene and protein expression analysis in 3- and 12-week-old offspring. KEY FINDINGS PR offspring had significant lower body weight and persisted till 12-week-old. From 3- to 12-week-old, PR offspring presented considerably impaired glucose tolerance, while no marked change was shown in control rats. Additionally, the average islet size of PR offspring decreased significantly in 12-week-old. The mRNA and protein expression of nutrient-responsive receptors and transporters T1R3, SGLT1 and GLUT2 increased significantly in the intestine of 3-week-old PR offspring. And from 3- and 12-week-old, the increase tendency of expression subdued. SIGNIFICANCE These results suggest that maternal PR diet during critical developmental windows influences offspring metabolism, which may be subdued partially, but not be reversed completely by chow diet after weaning.
Collapse
Affiliation(s)
- Nan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Bo Lv
- School of Humanities, Xidian University, Xi'an, Shaanxi 710126, China
| | - Limin Guan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi 710000, China
| | - Hu Qiao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi 710000, China
| | - Bo Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Ru Jia
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi 710000, China
| | - Ke Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.
| | - Jianqun Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
24
|
Afshar N, Safaei S, Nickerson DP, Hunter PJ, Suresh V. Computational Modeling of Glucose Uptake in the Enterocyte. Front Physiol 2019; 10:380. [PMID: 31031632 PMCID: PMC6473069 DOI: 10.3389/fphys.2019.00380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/19/2019] [Indexed: 11/13/2022] Open
Abstract
Absorption of glucose across the epithelial cells of the small intestine is a key process in human nutrition and initiates signaling cascades that regulate metabolic homeostasis. Validated and predictive mathematical models of glucose transport in intestinal epithelial cells are essential for interpreting experimental data, generating hypotheses, and understanding the contributions of and interactions between transport pathways. Here we report on the development of such a model that, in contrast to existing models, incorporates mechanistic descriptions of all relevant transport proteins and is implemented in the CellML framework. The model is validated against experimental and simulation data from the literature. It is then used to elucidate the relative contributions of the sodium-glucose cotransporter (SGLT1) and the glucose transporter type 2 (GLUT2) proteins in published measurements of glucose absorption from human intestinal epithelial cell lines. The model predicts that the contribution of SGLT1 dominates at low extracellular glucose concentrations (<20 mM) and short exposure times (<60 s) while the GLUT2 contribution is more significant at high glucose concentrations and long durations. Implementation in CellML permitted a modular structure in which the model was composed by reusing existing models of the individual transporters. The final structure also permits transparent changes of the model components and parameter values in order to facilitate model reuse, extension, and customization (for example, to simplify, or add complexity to specific transporter/pathway models, or reuse the model as a component of a larger framework) and carry out parameter sensitivity studies.
Collapse
Affiliation(s)
- Nima Afshar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Soroush Safaei
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - David P. Nickerson
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter J. Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Vinod Suresh
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Engineering Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
25
|
Adams JD, Treiber G, Hurtado MD, Laurenti MC, Dalla Man C, Cobelli C, Rizza RA, Vella A. Increased Rates of Meal Absorption Do Not Explain Elevated 1-Hour Glucose in Subjects With Normal Glucose Tolerance. J Endocr Soc 2018; 3:135-145. [PMID: 30591957 PMCID: PMC6302905 DOI: 10.1210/js.2018-00222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/16/2018] [Indexed: 01/12/2023] Open
Abstract
Context In subjects with normal fasting glucose (NFG) and normal glucose tolerance (NGT), glucose concentrations >155 mg/dL 1 hour after 75 g of oral glucose predict increased risk of progression to diabetes. Recently, it has been suggested that the mechanism underlying this abnormality is increased gut absorption of glucose. Objective We sought to determine the rate of systemic appearance of meal-derived glucose in subjects classified by their 1-hour glucose after a 75-g oral glucose challenge. Design This was a cross-sectional study. Participating subjects underwent a 75-g oral glucose challenge and a labeled mixed meal test. Setting An inpatient clinical research unit at an academic medical center. Participants Thirty-six subjects with NFG/NGT participated in this study. Interventions Subjects underwent an oral glucose tolerance test. Subsequently, they underwent a labeled mixed meal to measure fasting and postprandial glucose metabolism. Main Outcome Measures We examined β-cell function and the rate of meal appearance (Meal Ra) in NFG/NGT subjects. Subsequently, we examined the relationship of peak postchallenge glucose with Meal Ra and indices of β-cell function. Results Peak glucose concentrations correlated inversely with β-cell function. No relationship of Meal Ra with peak postchallenge glucose concentrations was observed. Conclusion In subjects with NFG/NGT, elevated 1-hour peak postchallenge glucose concentrations reflect impaired β-cell function rather than increased systemic meal appearance.
Collapse
Affiliation(s)
- J D Adams
- Division of Endocrinology, Diabetes, and Metabolism, Mayo Clinic, Rochester, Minnesota
| | - Gerlies Treiber
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Maria Daniela Hurtado
- Division of Endocrinology, Diabetes, and Metabolism, Mayo Clinic, Rochester, Minnesota
| | - Marcello C Laurenti
- Department of Information Engineering, Università di Padova, 36131 Padova, Italy
| | - Chiara Dalla Man
- Department of Information Engineering, Università di Padova, 36131 Padova, Italy
| | - Claudio Cobelli
- Department of Information Engineering, Università di Padova, 36131 Padova, Italy
| | - Robert A Rizza
- Division of Endocrinology, Diabetes, and Metabolism, Mayo Clinic, Rochester, Minnesota
| | - Adrian Vella
- Division of Endocrinology, Diabetes, and Metabolism, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
26
|
Sims H, Smith KH, Bramlage P, Minguet J. Sotagliflozin: a dual sodium-glucose co-transporter-1 and -2 inhibitor for the management of Type 1 and Type 2 diabetes mellitus. Diabet Med 2018; 35:1037-1048. [PMID: 29637608 DOI: 10.1111/dme.13645] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 12/25/2022]
Abstract
AIMS To evaluate the evidence for the novel dual sodium-glucose co-transporter-1 (SGLT1) and -2 (SGLT2) inhibitor, sotagliflozin, which may enhance the efficacy of SGLT2 inhibitors by additionally reducing intestinal glucose absorption. METHODS The search terms 'sotagliflozin', 'LX4211', 'SGLT' and 'diabetes' were entered into PubMed. Evidence for the pharmacokinetics, pharmacodynamics, safety and efficacy of sotagliflozin in Type 1 and 2 diabetes was extracted from the retrieved literature, critically evaluated, and contextualized in relation to data on existing SGLT2 inhibitors. RESULTS There is convincing evidence from a range of phase II and III clinical trials that sotagliflozin significantly improves glycaemic control in both Type 1 and Type 2 diabetes. Additional benefits, such as smaller postprandial plasma glucose excursions, lower insulin requirements, appetite suppression and weight loss have been documented. While this is encouraging, several safety concerns remain; a dose-dependent increase in the rate of diabetic ketoacidosis, diarrhoea and genital mycotic infection is apparent, although statistical exploration of the data regarding such events is currently lacking. Speculatively, use of a 200-mg rather than a 400-mg dose may help to limit unwanted effects. CONCLUSIONS The current evidence for sotagliflozin in diabetes appears promising. Further studies sufficiently powered to assess present and emerging safety concerns, as well as to identify individuals for whom sotagliflozin may be of particular benefit/harm would now be informative for regulatory decision-making. Direct comparisons with existing SGLT2 inhibitors are also needed to determine relative safety/efficacy profiles for the different indications.
Collapse
Affiliation(s)
- H Sims
- Institute for Research and Medicine Advancement (IRMedica), Barcelona, Spain
| | - K H Smith
- Institute for Research and Medicine Advancement (IRMedica), Barcelona, Spain
| | - P Bramlage
- Institute for Pharmacology and Preventive Medicine (IPPMed), Cloppenburg, Germany
| | - J Minguet
- Institute for Research and Medicine Advancement (IRMedica), Barcelona, Spain
| |
Collapse
|
27
|
Fiorentino TV, Suraci E, Arcidiacono GP, Cimellaro A, Mignogna C, Presta I, Andreozzi F, Hribal ML, Perticone F, Donato G, Luzza F, Sesti G. Duodenal Sodium/Glucose Cotransporter 1 Expression Under Fasting Conditions Is Associated With Postload Hyperglycemia. J Clin Endocrinol Metab 2017; 102:3979-3989. [PMID: 28938485 DOI: 10.1210/jc.2017-00348] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 09/05/2017] [Indexed: 02/08/2023]
Abstract
CONTEXT Type 2 diabetes (T2DM) is associated with a higher intestinal expression of the glucose transporters sodium/glucose cotransporter 1 (SGLT-1) and glucose transporter 2 (GLUT-2). It is currently unsettled whether prediabetes conditions characterized by postprandial hyperglycemia, such as impaired glucose tolerance (IGT) and normal glucose tolerance (NGT) with 1-hour postload glucose ≥155 mg/dL (8.6 mmol/L) (NGT-1h-high) are associated with increased expression of these glucose carriers in the intestine. OBJECTIVE We evaluated whether duodenal abundance of SGLT-1 and GLUT-2 is augmented in subjects with IGT and NGT-1h-high, in comparison with subjects with NGT and 1-hour postload glucose ˂155 mg/dL (NGT-1h-low). DESIGN Cross-sectional. PATIENTS A total of 54 individuals underwent an upper gastrointestinal endoscopy. MAIN OUTCOME MEASURES Duodenal SGLT-1 and GLUT-2 protein and messenger RNA levels were assessed by Western blot and reverse transcription polymerase chain reaction, respectively. RESULTS Of the 54 subjects examined, 18 had NGT-1h-low, 12 had NGT-1h-high, 12 had IGT, and 12 had T2DM. Duodenal SGLT-1 protein and messenger RNA levels were significantly higher in individuals with NGT-1h-high, IGT, or T2DM in comparison with NGT-1h-low subjects. GLUT-2 abundance was higher in individuals with T2DM in comparison with NGT-1h-low subjects; no substantial increase in GLUT-2 expression was observed in NGT-1h-high or IGT individuals. Univariate correlations showed that duodenal SGLT-1 abundance was positively correlated with 1-hour postload plasma glucose levels (r = 0.44; P = 0.003) but not with fasting or 2-hour postload glucose levels. CONCLUSIONS Duodenal SGLT-1 expression is increased in individuals with 1-hour postload hyperglycemia or IGT, as well as in subjects with T2DM, and it positively correlates with early postload glucose excursion.
Collapse
Affiliation(s)
- Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Evelina Suraci
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Gaetano Paride Arcidiacono
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Antonio Cimellaro
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Chiara Mignogna
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Ivan Presta
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Francesco Perticone
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Giuseppe Donato
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Francesco Luzza
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| |
Collapse
|
28
|
Feng R, Qian C, Liu Q, Jin Y, Liu L, Li S, Liao Y, Zhou H, Liu W, Rayner CK, Ma J. Expression of sweet taste receptor and gut hormone secretion in modelled type 2 diabetes. Gen Comp Endocrinol 2017; 252:142-149. [PMID: 28782537 DOI: 10.1016/j.ygcen.2017.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/29/2017] [Accepted: 08/03/2017] [Indexed: 01/05/2023]
Abstract
Sweet taste receptors (STRs) are expressed in L cells which secret glucagon-like peptide-1 (GLP-1) in the gut. The STR blocker lactisole reduces GLP-1 secretion and increases blood glucose levels. Therefore, we investigated the expression of sweet taste molecules in the proximal and distal small intestine, and gut hormone secretion, in healthy control and type 2 diabetic rats. Two groups of rats (Sprague Dawley (SD), and Zucker diabetic fatty (ZDF)) were involved in the study. Each group (n=10) received an intragastric glucose infusion (50% glucose solution, 2g/kg body weight). Blood samples were taken for measurement of blood glucose, plasma insulin, and GLP-1 concentrations. One week later, we obtained small intestinal tissue and detected the expression of STRs and glucose transporters (GTs) by real time polymerase chain reaction (Real Time-PCR). Sweet taste molecules of T1R2, T1R3, α-gustducin and TRPM5 in ileum were dramatically higher than those in duodenum (P<0.01 for each). T1R3, α-gustducin and TRPM5 expression were less in the ileum of ZDF than those in SD (P<0.05 for each), while expression of glucose transporter 2 (GLUT-2) in ileum was significantly higher in ZDF rats. Plasma GLP-1 levels were higher in ZDF rats than SD rats at t=0, 15, 30, 60 and 120min (P<0.01). In conclusion, transcript levels of ileal T1R3 and GLUT-2 are disordered in ZDF rats suggesting that intestinal sweet taste receptor expression is associated with altered glucose metabolism. The mechanism needs further investigation, but might provide a potential therapy in the treatment of type 2 diabetes.
Collapse
MESH Headings
- Animals
- Blood Glucose/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/metabolism
- Disease Models, Animal
- Duodenum/metabolism
- Glucagon-Like Peptide 1/blood
- Glucagon-Like Peptide 1/metabolism
- Glucose Transporter Type 2/genetics
- Glucose Transporter Type 2/metabolism
- Ileum/metabolism
- Insulin/blood
- Intestinal Mucosa/metabolism
- Male
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Rats, Zucker
- Receptors, G-Protein-Coupled/metabolism
- Taste
- Transducin/metabolism
Collapse
Affiliation(s)
- Rilu Feng
- Division of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Cheng Qian
- Division of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qianjing Liu
- Division of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yunqiu Jin
- Division of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lianyong Liu
- Department of Endocrinology and Metabolism, Shanghai Punan Hospital, Shanghai, China
| | - Shengxian Li
- Division of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu Liao
- Division of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huan Zhou
- Division of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Liu
- Division of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chris K Rayner
- Discipline of Medicine, University of Adelaide, Adelaide 5000, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Jing Ma
- Division of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
29
|
Carey HV, Assadi-Porter FM. The Hibernator Microbiome: Host-Bacterial Interactions in an Extreme Nutritional Symbiosis. Annu Rev Nutr 2017; 37:477-500. [DOI: 10.1146/annurev-nutr-071816-064740] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hannah V. Carey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Fariba M. Assadi-Porter
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, Wisconsin 53706
| |
Collapse
|
30
|
Powell DR, Smith MG, Doree DD, Harris AL, Greer J, DaCosta CM, Thompson A, Jeter-Jones S, Xiong W, Carson KG, Goodwin NC, Harrison BA, Rawlins DB, Strobel ED, Gopinathan S, Wilson A, Mseeh F, Zambrowicz B, Ding ZM. LX2761, a Sodium/Glucose Cotransporter 1 Inhibitor Restricted to the Intestine, Improves Glycemic Control in Mice. J Pharmacol Exp Ther 2017; 362:85-97. [PMID: 28442582 DOI: 10.1124/jpet.117.240820] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022] Open
Abstract
LX2761 is a potent sodium/glucose cotransporter 1 inhibitor restricted to the intestinal lumen after oral administration. Studies presented here evaluated the effect of orally administered LX2761 on glycemic control in preclinical models. In healthy mice and rats treated with LX2761, blood glucose excursions were lower and plasma total glucagon-like peptide-1 (GLP-1) levels higher after an oral glucose challenge; these decreased glucose excursions persisted even when the glucose challenge occurred 15 hours after LX2761 dosing in ad lib-fed mice. Further, treating mice with LX2761 and the dipeptidyl-peptidase 4 inhibitor sitagliptin synergistically increased active GLP-1 levels, suggesting increased LX2761-mediated release of GLP-1 into the portal circulation. LX2761 also lowered postprandial glucose, fasting glucose, and hemoglobin A1C, and increased plasma total GLP-1, during long-term treatment of mice with either early- or late-onset streptozotocin-diabetes; in the late-onset cohort, LX2761 treatment improved survival. Mice and rats treated with LX2761 occasionally had diarrhea; this dose-dependent side effect decreased in severity and frequency over time, and LX2761 doses were identified that decreased postprandial glucose excursions without causing diarrhea. Further, the frequency of LX2761-associated diarrhea was greatly decreased in mice either by gradual dose escalation or by pretreatment with resistant starch 4, which is slowly digested to glucose in the colon, a process that primes the colon for glucose metabolism by selecting for glucose-fermenting bacterial species. These data suggest that clinical trials are warranted to determine if LX2761 doses and dosing strategies exist that provide improved glycemic control combined with adequate gastrointestinal tolerability in people living with diabetes.
Collapse
Affiliation(s)
| | | | - Deon D Doree
- Lexicon Pharmaceuticals, Inc., The Woodlands, Texas
| | | | | | | | | | | | - Wendy Xiong
- Lexicon Pharmaceuticals, Inc., The Woodlands, Texas
| | | | | | | | | | | | | | - Alan Wilson
- Lexicon Pharmaceuticals, Inc., The Woodlands, Texas
| | - Faika Mseeh
- Lexicon Pharmaceuticals, Inc., The Woodlands, Texas
| | | | | |
Collapse
|
31
|
Redan BW, Buhman KK, Novotny JA, Ferruzzi MG. Altered Transport and Metabolism of Phenolic Compounds in Obesity and Diabetes: Implications for Functional Food Development and Assessment. Adv Nutr 2016; 7:1090-1104. [PMID: 28140326 PMCID: PMC5105043 DOI: 10.3945/an.116.013029] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Interest in the application of phenolic compounds from the diet or supplements for the prevention of chronic diseases has grown substantially, but the efficacy of such approaches in humans is largely dependent on the bioavailability and metabolism of these compounds. Although food and dietary factors have been the focus of intense investigation, the impact of disease states such as obesity or diabetes on their absorption, metabolism, and eventual efficacy is important to consider. These factors must be understood in order to develop effective strategies that leverage bioactive phenolic compounds for the prevention of chronic disease. The goal of this review is to discuss the inducible metabolic systems that may be influenced by disease states and how these effects impact the bioavailability and metabolism of dietary phenolic compounds. Because current studies generally report that obesity and/or diabetes alter the absorption and excretion of these compounds, this review includes a description of the absorption, conjugation, and excretion pathways for phenolic compounds and how they are potentially altered in disease states. A possible mechanism that will be discussed related to the modulation of phenolic bioavailability and metabolism may be linked to increased inflammatory status from increased amounts of adipose tissue or elevated plasma glucose concentrations. Although more studies are needed, the translation of benefits derived from dietary phenolic compounds to individuals with obesity or diabetes may require the consideration of dosing strategies or be accompanied by adjunct therapies to improve the bioavailability of these compounds.
Collapse
Affiliation(s)
- Benjamin W Redan
- Interdepartmental Nutrition Program, Department of Nutrition Science, and
| | - Kimberly K Buhman
- Interdepartmental Nutrition Program, Department of Nutrition Science, and
| | - Janet A Novotny
- USDA–Agricultural Research Service Food Components and Health Laboratory, Beltsville, MD
| | - Mario G Ferruzzi
- Interdepartmental Nutrition Program, Department of Nutrition Science, and .,Department of Food Science, Purdue University, West Lafayette, IN; and
| |
Collapse
|
32
|
Abstract
Sodium-glucose cotransporters (SGLTs) are a family of glucose transporters located in the mucosa of the small intestine and the proximal tubule of the nephron. They are important mediators of glucose uptake across cell membranes. According to recent basic studies and clinical trials, SGLT2 controls renal glucose reabsorption and its inhibitors not only act as antihyperglycemia agents via increment of urinary glucose excretion but also decrease blood pressure to exert a cardioprotective effect. When SGLT2 is inhibited, SGLT1 compensates for the function of SGLT2 in renal glucose reabsorption, weakening the hypoglycemic action of SGLT2 inhibitors. In the small intestine, SGLT1 also mediates almost the whole sodium-dependent glucose uptake. As a result, SGLT1 inhibitors have therapeutic potential for diabetes. In addition, the expression of SGLT1 is associated with gastrointestinal hormones such as glucagon-like peptide 1 (GLP-1) and taste receptors. Therefore, it can have an impact on human feeding behaviors and appetite and be involved in the pathogenesis of obesity. This review focuses on the physiological functions of SGLT1 and SGLT2, their interaction with taste receptors and intestinal hormone, and their prospects as new therapeutic targets for diabetes management.
Collapse
|
33
|
Stringer DM, Zahradka P, Taylor CG. Glucose transporters: cellular links to hyperglycemia in insulin resistance and diabetes. Nutr Rev 2016; 73:140-54. [PMID: 26024537 DOI: 10.1093/nutrit/nuu012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Abnormal expression and/or function of mammalian hexose transporters contribute to the hallmark hyperglycemia of diabetes. Due to different roles in glucose handling, various organ systems possess specific transporters that may be affected during the diabetic state. Diabetes has been associated with higher rates of intestinal glucose transport, paralleled by increased expression of both active and facilitative transporters and a shift in the location of transporters within the enterocyte, events that occur independent of intestinal hyperplasia and hyperglycemia. Peripheral tissues also exhibit deregulated glucose transport in the diabetic state, most notably defective translocation of transporters to the plasma membrane and reduced capacity to clear glucose from the bloodstream. Expression of renal active and facilitative glucose transporters increases as a result of diabetes, leading to elevated rates of glucose reabsorption. However, this may be a natural response designed to combat elevated blood glucose concentrations and not necessarily a direct effect of insulin deficiency. Functional foods and nutraceuticals, by modulation of glucose transporter activity, represent a potential dietary tool to aid in the management of hyperglycemia and diabetes.
Collapse
Affiliation(s)
- Danielle M Stringer
- D.M. Stringer was with the Department of Human Nutritional Sciences, University of Manitoba, and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada at the time of manuscript preparation. C.G. Taylor is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada. P. Zahradka is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada.
| | - Peter Zahradka
- D.M. Stringer was with the Department of Human Nutritional Sciences, University of Manitoba, and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada at the time of manuscript preparation. C.G. Taylor is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada. P. Zahradka is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Carla G Taylor
- D.M. Stringer was with the Department of Human Nutritional Sciences, University of Manitoba, and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada at the time of manuscript preparation. C.G. Taylor is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada. P. Zahradka is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
34
|
Chan LKY, Leung PS. Multifaceted interplay among mediators and regulators of intestinal glucose absorption: potential impacts on diabetes research and treatment. Am J Physiol Endocrinol Metab 2015; 309:E887-99. [PMID: 26487007 DOI: 10.1152/ajpendo.00373.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/07/2015] [Indexed: 12/28/2022]
Abstract
Glucose is the prominent molecule that characterizes diabetes and, like the vast majority of nutrients in our diet, it is absorbed and enters the bloodstream directly through the small intestine; hence, small intestine physiology impacts blood glucose levels directly. Accordingly, intestinal regulatory modulators represent a promising avenue through which diabetic blood glucose levels might be moderated clinically. Despite the critical role of small intestine in blood glucose homeostasis, most physiological diabetes research has focused on other organs, such as the pancreas, kidney, and liver. We contend that an improved understanding of intestinal regulatory mediators may be fundamental for the development of first-line preventive and therapeutic interventions in patients with diabetes and diabetes-related diseases. This review summarizes the major important intestinal regulatory mediators, discusses how they influence intestinal glucose absorption, and suggests possible candidates for future diabetes research and the development of antidiabetic therapeutic agents.
Collapse
Affiliation(s)
- Leo Ka Yu Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Po Sing Leung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
35
|
Silva ACM, Dos Santos MP, de França SA, da Silva VC, da Silva LE, de Figueiredo US, Dall'Oglio EL, Júnior PTDS, Lopes CF, Baviera AM, Kawashita NH. Acute and subchronic antihyperglycemic activities of Bowdichia virgilioides roots in non-diabetic and diabetic rats. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2015; 4:57-63. [PMID: 26401386 PMCID: PMC4566756 DOI: 10.5455/jice.20141028022407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/28/2014] [Indexed: 11/15/2022]
Abstract
Aim: The present study was undertaken to evaluate the acute and subchronic antihyperglycemic effects of methanolic extract of Bowdichia virgilioides root bark of B. virgilioides in streptozotocin (STZ)-induced diabetic rats. Materials and Methods: The extract (100, 250 or 500 mg/kg) was orally administered to male Wistar diabetic (STZ, 42 mg/kg i.v.) and non-diabetic rats into two main protocols: (i) subchronic experiments, where animals were treated for 21 days with B. virgilioides extract and the following parameters were evaluated: Body weight, fluid and food intake (determined daily), urinary glucose and urea (every 3 days) and glycemia (every 5 days). At the end of the experimental period, skeletal muscles (extensor digitorum longus [EDL] and soleus), retroperitoneal and epididymal white adipose tissues were collected and weighed; liver samples were used for the determination of the lipid and glycogen contents; (ii) acute experiments, which evaluated the alterations on fasting and post-prandial glycemia and on glucose tolerance using the oral glucose tolerance test (OGTT). Results: In subchronic experiments, the treatment with B. virgilioides extract did not change any parameter evaluated in diabetic and non-diabetic animals. On fasting and post-prandial glycemia, the extract treatment did not promote changes in the glycemia values in diabetic or non-diabetic animals. In OGTT, the treatment with 500 mg/kg B. virgilioides extract reduced the hyperglycemia peak after a glucose overload, when compared with non-treated diabetic animals, resulting in a lower area under curve. Conclusion: The results of our work indicate that B. virgilioides root extract promotes an acute antihyperglycemic effect in STZ-diabetic rats; this effect probably occurs through an inhibition of the intestinal glucose absorption. The continuity of the research is necessary to elucidate these possibilities.
Collapse
Affiliation(s)
| | | | | | | | - Luiz Everson da Silva
- Department of Science Education, Federal University of Paraná, Coastal Sector, Matinhos, Paraná, Brazil
| | | | | | | | - Carbene França Lopes
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Amanda Martins Baviera
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Nair Honda Kawashita
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| |
Collapse
|
36
|
Yusoff NA, Ahmad M, Al-Hindi B, Widyawati T, Yam MF, Mahmud R, Razak KNA, Asmawi MZ. Aqueous Extract of Nypa fruticans Wurmb. Vinegar Alleviates Postprandial Hyperglycemia in Normoglycemic Rats. Nutrients 2015; 7:7012-26. [PMID: 26308046 PMCID: PMC4555159 DOI: 10.3390/nu7085320] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/07/2015] [Accepted: 08/13/2015] [Indexed: 01/23/2023] Open
Abstract
Nypa fruticans Wurmb. vinegar, commonly known as nipa palm vinegar (NPV) has been used as a folklore medicine among the Malay community to treat diabetes. Early work has shown that aqueous extract (AE) of NPV exerts a potent antihyperglycemic effect. Thus, this study is conducted to evaluate the effect of AE on postprandial hyperglycemia in an attempt to understand its mechanism of antidiabetic action. AE were tested via in vitro intestinal glucose absorption, in vivo carbohydrate tolerance tests and spectrophotometric enzyme inhibition assays. One mg/mL of AE showed a comparable outcome to the use of phloridzin (1 mM) in vitro as it delayed glucose absorption through isolated rat jejunum more effectively than acarbose (1 mg/mL). Further in vivo confirmatory tests showed AE (500 mg/kg) to cause a significant suppression in postprandial hyperglycemia 30 min following respective glucose (2 g/kg), sucrose (4 g/kg) and starch (3 g/kg) loadings in normal rats, compared to the control group. Conversely, in spectrophotometric enzymatic assays, AE showed rather a weak inhibitory activity against both α-glucosidase and α-amylase when compared with acarbose. The findings suggested that NPV exerts its anti-diabetic effect by delaying carbohydrate absorption from the small intestine through selective inhibition of intestinal glucose transporters, therefore suppressing postprandial hyperglycemia.
Collapse
Affiliation(s)
- Nor Adlin Yusoff
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia.
| | - Mariam Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Bassel Al-Hindi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Tri Widyawati
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Pharmacology & Therapeutic Department, Medical Faculty, University of Sumatera Utara, Medan 20155, Indonesia.
| | - Mun Fei Yam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Roziahanim Mahmud
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | | | - Mohd Zaini Asmawi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
37
|
Seeley RJ, Chambers AP, Sandoval DA. The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes. Cell Metab 2015; 21:369-78. [PMID: 25662404 PMCID: PMC4351155 DOI: 10.1016/j.cmet.2015.01.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bariatric surgical procedures such as vertical sleeve gastrectomy (VSG) and Roux-en-Y gastric bypass (RYGB) are the most potent treatments available to produce sustained reductions in body weight and improvements in glucose regulation. While traditionally these effects are attributed to mechanical aspects of these procedures, such as restriction and malabsorption, a growing body of evidence from mouse models of these procedures points to physiological changes that mediate the potent effects of these surgeries. In particular, there are similar changes in gut hormone secretion, bile acid levels, and composition after both of these procedures. Moreover, loss of function of the nuclear bile acid receptor (FXR) greatly diminishes the effects of VSG. Both VSG and RYGB are linked to profound changes in the gut microbiome that also mediate at least some of these surgical effects. We hypothesize that surgical rearrangement of the gastrointestinal tract results in enteroplasticity caused by the high rate of nutrient presentation and altered pH in the small intestine that contribute to these physiological effects. Identifying the molecular underpinnings of these procedures provides new opportunities to understand the relationship of the gastrointestinal tract to obesity and diabetes as well as new therapeutic strategies to harness the effectiveness of surgery with less-invasive approaches.
Collapse
Affiliation(s)
- Randy J Seeley
- Departments of Surgery and Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Adam P Chambers
- Department of Diabetes Pharmacology, Novo Nordisk, Copenhagen 2760 MÅLØV, Denmark
| | - Darleen A Sandoval
- Departments of Surgery and Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
38
|
Okon UA, Davies KG, Olubobokun TH. Improvement in nutrient handling in STZ induced diabetic rats treated with Ocimum gratissimum. Int J Appl Basic Med Res 2015; 5:49-53. [PMID: 25664269 PMCID: PMC4318102 DOI: 10.4103/2229-516x.149242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/08/2014] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Alteration in digestive and absorptive enzymatic activities has been reported in diabetes mellitus (DM), but not with Ocimum gratissimum (OG) treatment. This study was, therefore, designed to indirectly assess the effect of DM and treatment with OG on nutrient digestion and absorption, through estimation of their fecal excretion. MATERIALS AND METHODS Animals were randomly assigned into three groups of six per group for control, DM and diabetic mellitus treated (DMT). Diabetes was induced by single intraperitoneal injection of 65 mg/kg streptozotocin in the test groups. OG was administered to the DMT group at dose of 1500 mg/kg once daily for 28 days. Fecal glucose, protein and cholesterol were determined. RESULTS Fecal glucose was significantly (P < 0.001) lower in the DM group compared to the control and DMT groups, with the DMT groups significantly (P < 0.001) lower than the control. Fecal protein was significantly (P < 0.001) lower in the DM group than the control whereas it was significantly lower in the DMT groups than the DM. Fecal cholesterol was significantly (P < 0.001) higher in the DM than the DMT and control groups with DMT significantly (P < 0.01) higher than the control. CONCLUSION This result indicates the propensity of OG to reverse impairment of nutrient digestion and absorption in DM.
Collapse
Affiliation(s)
- Uduak Akpan Okon
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Koofreh Godwin Davies
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Titilope Helen Olubobokun
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| |
Collapse
|
39
|
Ogata H, Seino Y, Harada N, Iida A, Suzuki K, Izumoto T, Ishikawa K, Uenishi E, Ozaki N, Hayashi Y, Miki T, Inagaki N, Tsunekawa S, Hamada Y, Seino S, Oiso Y. KATP channel as well as SGLT1 participates in GIP secretion in the diabetic state. J Endocrinol 2014; 222:191-200. [PMID: 24891433 DOI: 10.1530/joe-14-0161] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP), a gut hormone secreted from intestinal K-cells, potentiates insulin secretion. Both K-cells and pancreatic β-cells are glucose-responsive and equipped with a similar glucose-sensing apparatus that includes glucokinase and an ATP-sensitive K(+) (KATP) channel comprising KIR6.2 and sulfonylurea receptor 1. In absorptive epithelial cells and enteroendocrine cells, sodium glucose co-transporter 1 (SGLT1) is also known to play an important role in glucose absorption and glucose-induced incretin secretion. However, the glucose-sensing mechanism in K-cells is not fully understood. In this study, we examined the involvement of SGLT1 (SLC5A1) and the KATP channels in glucose sensing in GIP secretion in both normal and streptozotocin-induced diabetic mice. Glimepiride, a sulfonylurea, did not induce GIP secretion and pretreatment with diazoxide, a KATP channel activator, did not affect glucose-induced GIP secretion in the normal state. In mice lacking KATP channels (Kir6.2(-/-) mice), glucose-induced GIP secretion was enhanced compared with control (Kir6.2(+) (/) (+)) mice, but was completely blocked by the SGLT1 inhibitor phlorizin. In Kir6.2(-/-) mice, intestinal glucose absorption through SGLT1 was enhanced compared with that in Kir6.2(+) (/) (+) mice. On the other hand, glucose-induced GIP secretion was enhanced in the diabetic state in Kir6.2(+) (/) (+) mice. This GIP secretion was partially blocked by phlorizin, but was completely blocked by pretreatment with diazoxide in addition to phlorizin administration. These results demonstrate that glucose-induced GIP secretion depends primarily on SGLT1 in the normal state, whereas the KATP channel as well as SGLT1 is involved in GIP secretion in the diabetic state in vivo.
Collapse
Affiliation(s)
- Hidetada Ogata
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Yusuke Seino
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, JapanDepartments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Norio Harada
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Atsushi Iida
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuyo Suzuki
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Takako Izumoto
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, JapanDepartments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Kota Ishikawa
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Eita Uenishi
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuaki Ozaki
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, JapanDepartments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshitaka Hayashi
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Miki
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuya Inagaki
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Shin Tsunekawa
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Yoji Hamada
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Susumu Seino
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Yutaka Oiso
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
40
|
Duodenal-Jejunal Bypass Improves Glycemia and Decreases SGLT1-Mediated Glucose Absorption in Rats With Streptozotocin-Induced Type 2 Diabetes. Ann Surg 2013; 258:89-97. [DOI: 10.1097/sla.0b013e3182890311] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Cai Z, Huang J, Luo H, Lei X, Yang Z, Mai Y, Liu Z. Role of glucose transporters in the intestinal absorption of gastrodin, a highly water-soluble drug with good oral bioavailability. J Drug Target 2013; 21:574-80. [DOI: 10.3109/1061186x.2013.778263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Ait-Omar A, Monteiro-Sepulveda M, Poitou C, Le Gall M, Cotillard A, Gilet J, Garbin K, Houllier A, Château D, Lacombe A, Veyrie N, Hugol D, Tordjman J, Magnan C, Serradas P, Clément K, Leturque A, Brot-Laroche E. GLUT2 accumulation in enterocyte apical and intracellular membranes: a study in morbidly obese human subjects and ob/ob and high fat-fed mice. Diabetes 2011; 60:2598-607. [PMID: 21852673 PMCID: PMC3178286 DOI: 10.2337/db10-1740] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE In healthy rodents, intestinal sugar absorption in response to sugar-rich meals and insulin is regulated by GLUT2 in enterocyte plasma membranes. Loss of insulin action maintains apical GLUT2 location. In human enterocytes, apical GLUT2 location has not been reported but may be revealed under conditions of insulin resistance. RESEARCH DESIGN AND METHODS Subcellular location of GLUT2 in jejunal enterocytes was analyzed by confocal and electron microscopy imaging and Western blot in 62 well-phenotyped morbidly obese subjects and 7 lean human subjects. GLUT2 locations were assayed in ob/ob and ob/+ mice receiving oral metformin or in high-fat low-carbohydrate diet-fed C57Bl/6 mice. Glucose absorption and secretion were respectively estimated by oral glucose tolerance test and secretion of [U-(14)C]-3-O-methyl glucose into lumen. RESULTS In human enterocytes, GLUT2 was consistently located in basolateral membranes. Apical GLUT2 location was absent in lean subjects but was observed in 76% of obese subjects and correlated with insulin resistance and glycemia. In addition, intracellular accumulation of GLUT2 with early endosome antigen 1 (EEA1) was associated with reduced MGAT4a activity (glycosylation) in 39% of obese subjects on a low-carbohydrate/high-fat diet. Mice on a low-carbohydrate/high-fat diet for 12 months also exhibited endosomal GLUT2 accumulation and reduced glucose absorption. In ob/ob mice, metformin promoted apical GLUT2 and improved glucose homeostasis. Apical GLUT2 in fasting hyperglycemic ob/ob mice tripled glucose release into intestinal lumen. CONCLUSIONS In morbidly obese insulin-resistant subjects, GLUT2 was accumulated in apical and/or endosomal membranes of enterocytes. Functionally, apical GLUT2 favored and endosomal GLUT2 reduced glucose transepithelial exchanges. Thus, altered GLUT2 locations in enterocytes are a sign of intestinal adaptations to human metabolic pathology.
Collapse
Affiliation(s)
- Amal Ait-Omar
- INSERM, U872, Team 9, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | - Milena Monteiro-Sepulveda
- INSERM, U872, Team 9, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | - Christine Poitou
- INSERM, U872, Team 7 Nutriomique, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
- Nutrition and Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France; Centre Recherche en Nutrition Humaine (CRNH) Ile de France, Paris, France
| | - Maude Le Gall
- INSERM, U872, Team 9, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | - Aurélie Cotillard
- INSERM, U872, Team 7 Nutriomique, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | - Jules Gilet
- INSERM, U872, Team 9, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | - Kevin Garbin
- INSERM, U872, Team 9, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | - Anne Houllier
- INSERM, U872, Team 9, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | - Danièle Château
- INSERM, U872, Team 9, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | - Amélie Lacombe
- Centre National de la Recherche Scientifique (EAC4413), Université Paris-Diderot, Paris, France
| | - Nicolas Veyrie
- INSERM, U872, Team 7 Nutriomique, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
- Surgery Department, Assistance Publique-Hôpitaux de Paris, Hôtel-Dieu Hospital, Paris, France
| | - Danielle Hugol
- Pathology Department, Assistance Publique-Hôpitaux de Paris, Hôtel-Dieu Hospital, Paris, France
| | - Joan Tordjman
- INSERM, U872, Team 7 Nutriomique, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | - Christophe Magnan
- Centre National de la Recherche Scientifique (EAC4413), Université Paris-Diderot, Paris, France
| | - Patricia Serradas
- INSERM, U872, Team 9, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | - Karine Clément
- INSERM, U872, Team 7 Nutriomique, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
- Nutrition and Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France; Centre Recherche en Nutrition Humaine (CRNH) Ile de France, Paris, France
| | - Armelle Leturque
- INSERM, U872, Team 9, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | - Edith Brot-Laroche
- INSERM, U872, Team 9, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
- Corresponding author: Edith Brot-Laroche,
| |
Collapse
|
43
|
Mourad FH, Saadé NE. Neural regulation of intestinal nutrient absorption. Prog Neurobiol 2011; 95:149-62. [PMID: 21854830 DOI: 10.1016/j.pneurobio.2011.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 04/28/2011] [Accepted: 07/20/2011] [Indexed: 12/17/2022]
Abstract
The nervous system and the gastrointestinal (GI) tract share several common features including reciprocal interconnections and several neurotransmitters and peptides known as gut peptides, neuropeptides or hormones. The processes of digestion, secretion of digestive enzymes and then absorption are regulated by the neuro-endocrine system. Luminal glucose enhances its own absorption through a neuronal reflex that involves capsaicin sensitive primary afferent (CSPA) fibres. Absorbed glucose stimulates insulin release that activates hepatoenteric neural pathways leading to an increase in the expression of glucose transporters. Adrenergic innervation increases glucose absorption through α1 and β receptors and decreases absorption through activation of α2 receptors. The vagus nerve plays an important role in the regulation of diurnal variation in transporter expression and in anticipation to food intake. Vagal CSPAs exert tonic inhibitory effects on amino acid absorption. It also plays an important role in the mediation of the inhibitory effect of intestinal amino acids on their own absorption at the level of proximal or distal segment. However, chronic extrinsic denervation leads to a decrease in intestinal amino acid absorption. Conversely, adrenergic agonists as well as activation of CSPA fibres enhance peptides uptake through the peptide transporter PEPT1. Finally, intestinal innervation plays a minimal role in the absorption of fat digestion products. Intestinal absorption of nutrients is a basic vital mechanism that depends essentially on the function of intestinal mucosa. However, intrinsic and extrinsic neural mechanisms that rely on several redundant loops are involved in immediate and long-term control of the outcome of intestinal function.
Collapse
Affiliation(s)
- Fadi H Mourad
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | | |
Collapse
|
44
|
Up-regulation of intestinal type 1 taste receptor 3 and sodium glucose luminal transporter-1 expression and increased sucrose intake in mice lacking gut microbiota. Br J Nutr 2011; 107:621-30. [PMID: 21781379 DOI: 10.1017/s0007114511003412] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The chemosensory components shared by both lingual and intestinal epithelium play a critical role in food consumption and the regulation of intestinal functions. In addition to nutrient signals, other luminal contents, including micro-organisms, are important in signalling across the gastrointestinal mucosa and initiating changes in digestive functions. A potential role of gut microbiota in influencing food intake, energy homeostasis and weight gain has been suggested. However, whether gut microbiota modulates the expression of nutrient-responsive receptors and transporters, leading to altered food consumption, is unknown. Thus, we examined the preference for nutritive (sucrose) and non-nutritive (saccharin) sweet solutions in germ-free (GF, C57BL/6J) mice compared with conventional (CV, C57BL/6J) control mice using a two-bottle preference test. Then, we quantified mRNA and protein expression of the sweet signalling protein type 1 taste receptor 3 (T1R3) and α-gustducin and Na glucose luminal transporter-1 (SGLT-1) of the intestinal epithelium of both CV and GF mice. Additionally, we measured gene expression of T1R2, T1R3 and α-gustducin in the lingual epithelium. We found that, while the preference for sucrose was similar between the groups, GF mice consumed more of the high concentration (8 %) of sucrose solution than CV mice. There was no difference in either the intake of or the preference for saccharin. GF mice expressed significantly more T1R3 and SGLT-1 mRNA and protein in the intestinal epithelium compared with CV mice; however, lingual taste receptor mRNA expression was similar between the groups. We conclude that the absence of intestinal microbiota alters the expression of sweet taste receptors and GLUT in the proximal small intestine, which is associated with increased consumption of nutritive sweet solutions.
Collapse
|
45
|
Polysaccharide fromGynura divaricatamodulates the activities of intestinal disaccharidases in streptozotocin-induced diabetic rats. Br J Nutr 2011; 106:1323-9. [DOI: 10.1017/s0007114511001693] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
During diabetes, structural and functional changes in the alimentary tract are known to take place resulting in an increased absorption of intestinal glucose and alterations in the activities of brush-border disaccharidases. To elucidate the effect of administrating polysaccharide fromGynura divaricata(PGD) on disaccharidase activities, the specific activities of intestinal disaccharidases, namely sucrase, maltase and lactase, were measured in streptozotocin-induced diabetic rats. Normal control and diabetic rats were treated by oral administration with PGD. Specific activities of intestinal disaccharidases were increased significantly during diabetes, and amelioration of the activities of sucrase and maltase during diabetes was clearly visible by the treatment with PGD. However, the increased activity of lactase during diabetes mellitus was remarkably alleviated by the administration of PGD only in the duodenum. Meanwhile, oral sucrose tolerance tests demonstrated that PGD alleviated the hyperglycaemia during diabetes mellitus, resulting from the amelioration in the activities of intestinal disaccharidases. The present investigation suggests that PGD exerted an anti-diabetic effect partly via inhibiting the increased intestinal disaccharidase activities of diabetic rats. This beneficial influence of administration of PGD on intestinal disaccharidases clearly indicates their helpful role in the management of diabetes.
Collapse
|
46
|
Azevedo MF, Lima CF, Fernandes-Ferreira M, Almeida MJ, Wilson JM, Pereira-Wilson C. Rosmarinic acid, major phenolic constituent of Greek sage herbal tea, modulates rat intestinal SGLT1 levels with effects on blood glucose. Mol Nutr Food Res 2011; 55 Suppl 1:S15-25. [PMID: 21433280 DOI: 10.1002/mnfr.201000472] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 12/08/2010] [Accepted: 01/24/2011] [Indexed: 11/08/2022]
Abstract
SCOPE Previous results suggested that the effects of Salvia fruticosa tea (SFT) drinking on glucose regulation might be at the intestinal level. Here we aim to characterize the effects of SFT treatment and of its main phenolic constituent--rosmarinic acid (RA)--on the levels and localization of the intestinal Na+/glucose cotransporter-1 (SGLT1), the facilitative glucose transporter 2 and glucagon-like peptide-1 (GLP-1). METHODS AND RESULTS Two models of SGLT1 induction in rats were used: through diabetes induction with streptozotocin (STZ) and through dietary carbohydrate manipulation. Drinking water was replaced with SFT or RA and blood parameters, liver glycogen and the levels of different proteins in enterocytes quantified. Two weeks of SFT treatment stabilized fasting blood glucose levels in STZ-diabetic animals. The increase in SGLT1 localized to the enterocyte brush-border membrane (BBM) induced by STZ treatment was significantly abrogated by treatment with SFT, without significant changes in total cellular transporter protein levels. No effects were observed on glucose transporter 2, Na(+) /K(+) -ATPase or glucagon-like peptide-1 levels by SFT. Additionally, SFT and RA for 4 days significantly inhibited the carbohydrate-induced adaptive increase of SGLT1 in BBM. CONCLUSION SFT and RA modulate the trafficking of SGLT1 to the BBM and may contribute to the control of plasma glucose.
Collapse
Affiliation(s)
- Marisa F Azevedo
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | | | | | | | | | | |
Collapse
|
47
|
Yang C, Albin DM, Wang Z, Stoll B, Lackeyram D, Swanson KC, Yin Y, Tappenden KA, Mine Y, Yada RY, Burrin DG, Fan MZ, Arrese M, Riquelme A. Apical Na+-D-glucose cotransporter 1 (SGLT1) activity and protein abundance are expressed along the jejunal crypt-villus axis in the neonatal pig. Am J Physiol Gastrointest Liver Physiol 2011; 300:G60-70. [PMID: 21030609 PMCID: PMC3025512 DOI: 10.1152/ajpgi.00208.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gut apical Na(+)-glucose cotransporter 1 (SGLT1) activity is high at the birth and during suckling, thus contributing substantially to neonatal glucose homeostasis. We hypothesize that neonates possess high SGLT1 maximal activity by expressing apical SGLT1 protein along the intestinal crypt-villus axis via unique control mechanisms. Kinetics of SGLT1 activity in apical membrane vesicles, prepared from epithelial cells sequentially isolated along the jejunal crypt-villus axis from neonatal piglets by the distended intestinal sac method, were measured. High levels of maximal SGLT1 uptake activity were shown to exist along the jejunal crypt-villus axis in the piglets. Real-time RT-PCR analyses showed that SGLT1 mRNA abundance was lower (P < 0.05) by 30-35% in crypt cells than in villus cells. There were no significant differences in SGLT1 protein abundances on the jejunal apical membrane among upper villus, middle villus, and crypt cells, consistent with the immunohistochemical staining pattern. Higher abundances (P < 0.05) of total eukaryotic initiation factor 4E (eIF4E) protein and eIE4E-binding protein 1 γ-isoform in contrast to a lower (P < 0.05) abundance of phosphorylated (Pi) eukaryotic elongation factor 2 (eEF2) protein and the eEF2-Pi to total eEF2 abundance ratio suggest higher global protein translational efficiency in the crypt cells than in the upper villus cells. In conclusion, neonates have high intestinal apical SGLT1 uptake activity by abundantly expressing SGLT1 protein in the epithelia and on the apical membrane along the entire crypt-villus axis in association with enhanced protein translational control mechanisms in the crypt cells.
Collapse
Affiliation(s)
- Chengbo Yang
- 1Center for Nutrition Modeling, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada;
| | - David M. Albin
- 2Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois;
| | - Zirong Wang
- 3College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China;
| | - Barbara Stoll
- 4Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas;
| | - Dale Lackeyram
- 1Center for Nutrition Modeling, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada;
| | - Kendall C. Swanson
- 1Center for Nutrition Modeling, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada;
| | - Yulong Yin
- 5Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Kelly A. Tappenden
- 2Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois;
| | - Yoshinori Mine
- 6Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Rickey Y. Yada
- 6Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Douglas G. Burrin
- 4Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas;
| | - Ming Z. Fan
- 1Center for Nutrition Modeling, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada;
| | | | | |
Collapse
|
48
|
Ma J, Chang J, Checklin HL, Young RL, Jones KL, Horowitz M, Rayner CK. Effect of the artificial sweetener, sucralose, on small intestinal glucose absorption in healthy human subjects. Br J Nutr 2010; 104:803-6. [PMID: 20420761 DOI: 10.1017/s0007114510001327] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It has been reported that the artificial sweetener, sucralose, stimulates glucose absorption in rodents by enhancing apical availability of the transporter GLUT2. We evaluated whether exposure of the proximal small intestine to sucralose affects glucose absorption and/or the glycaemic response to an intraduodenal (ID) glucose infusion in healthy human subjects. Ten healthy subjects were studied on two separate occasions in a single-blind, randomised order. Each subject received an ID infusion of sucralose (4 mM in 0.9% saline) or control (0.9% saline) at 4 ml/min for 150 min (T = - 30 to 120 min). After 30 min (T = 0), glucose (25 %) and its non-metabolised analogue, 3-O-methylglucose (3-OMG; 2.5 %), were co-infused intraduodenally (T = 0-120 min; 4.2 kJ/min (1 kcal/min)). Blood was sampled at frequent intervals. Blood glucose, plasma glucagon-like peptide-1 (GLP-1) and serum 3-OMG concentrations increased during ID glucose/3-OMG infusion (P < 0.005 for each). However, there were no differences in blood glucose, plasma GLP-1 or serum 3-OMG concentrations between sucralose and control infusions. In conclusion, sucralose does not appear to modify the rate of glucose absorption or the glycaemic or incretin response to ID glucose infusion when given acutely in healthy human subjects.
Collapse
Affiliation(s)
- Jing Ma
- Discipline of Medicine, Royal Adelaide Hospital, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Kuo P, Wishart JM, Bellon M, Smout AJ, Holloway RH, Fraser RJL, Horowitz M, Jones KL, Rayner CK. Effects of physiological hyperglycemia on duodenal motility and flow events, glucose absorption, and incretin secretion in healthy humans. J Clin Endocrinol Metab 2010; 95:3893-900. [PMID: 20501683 DOI: 10.1210/jc.2009-2514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Acute hyperglycemia slows gastric emptying, but its effects on small intestinal motor activity and glucose absorption are unknown. In type 2 diabetes, the postprandial secretion of glucose-dependent insulinotropic polypeptide (GIP) is preserved, but that of glucagon-like peptide-1 (GLP-1) is possibly reduced; whether the latter is secondary to hyperglycemia or diabetes per se is unknown. AIM The aim was to investigate the effects of acute hyperglycemia on duodenal motility and flow events, glucose absorption, and incretin hormone secretion. METHODS Nine healthy volunteers were studied on two occasions. A combined manometry/impedance catheter was positioned in the duodenum. Blood glucose was clamped at either 9 mmol/liter (hyperglycemia) or 5 mmol/liter (euglycemia) throughout the study. Manometry and impedance recordings continued between T=-10 min and T=180 min. Between T=0 and 60 min, an intraduodenal glucose infusion was given (approximately 3 kcal/min), together with 14C-labeled 3-O-methylglucose (3-OMG) to evaluate glucose absorption. RESULTS Hyperglycemia had no effect on duodenal pressure waves or flow events during the 60 min of intraduodenal glucose infusion, when compared to euglycemia. During hyperglycemia, there was an increase in plasma GIP (P<0.05) and 14C-3-OMG (P<0.05) but no effect on GLP-1 concentrations in response to the intraduodenal infusion, compared to euglycemia. CONCLUSION Acute hyperglycemia in the physiological range has no effect on duodenal pressure waves and flow events but is associated with increased GIP secretion and rate of glucose absorption in response to intraduodenal glucose.
Collapse
Affiliation(s)
- Paul Kuo
- Discipline of Medicine, University of Adelaide, Level 6, Eleanor Harrald Building, Royal Adelaide Hospital, Adelaide, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rapid upregulation of sodium-glucose transporter SGLT1 in response to intestinal sweet taste stimulation. Ann Surg 2010; 251:865-71. [PMID: 20395849 DOI: 10.1097/sla.0b013e3181d96e1f] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE We set out to examine the short-term regulation of the intestinal sodium/glucose cotransporter SGLT1 by its substrate glucose and sweet taste analogs. SUMMARY BACKGROUND DATA Intestinal SGLT1 is a putative target for antidiabetic therapy; however, its physiological regulation is incompletely understood, limiting its application as a pharmacological target. While it is clearly regulated by dietary composition over a period of days, its short-term regulation by nutrients is unknown. METHODS Sprague-Dawley rats were anesthetized, and the duodenum cannulated. D-glucose, D-fructose, saccharin, D-mannitol, and water were infused for 3 hours, before harvest of proximal jejunum for SGLT1 analysis with Western blotting and quantitative polymerase chain reaction. In further experiments, the receptor region was identified by D-glucose infusion of isolated regions. Lastly, the vagus was de-afferented with capsaicin, and 5HT3-receptor activation of vagal afferents inhibited using ondansetron, before repeating experiments using water or D-glucose infusion. RESULTS Infusion of D-glucose led to 2.9-fold up-regulation in SGLT1 compared with water or iso-osmotic D-mannitol; this effect was replicated by D-fructose or saccharin. This response was strongest following isolated infusions of duodenum and proximal jejunum, with a blunted effect distally; topography matched the expression profile of sweet taste receptor T1R2/T1R3. The reflex was abolished by capsaicin pretreatment, and blunted by ondansetron. CONCLUSIONS The agonist response implicates the luminal-based sweet-taste receptor T1R2/T1R3, with the reflex apparently involving vagal afferents. The proximal nature of the sensor coincides with the excluded biliopancreatic limb in Roux-en-Y gastric bypass, and this may provide a novel explanation for the antidiabetic effect of this procedure.
Collapse
|