1
|
Pedreño-López S, García E, Guerrero D, Gómez-Mora E, Molina Mateu L, Orera Pérez F, Senserrich J, Clotet B, Cabrera C. Modulation of the autophagic pathway inhibits HIV-1 infection in human lymphoid tissue cultured ex vivo. Sci Rep 2022; 12:7439. [PMID: 35523829 PMCID: PMC9076641 DOI: 10.1038/s41598-022-11181-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
Abstract
A complex link exists between HIV-1 and autophagy, and discordant results have been reported in different in vitro models regarding the way HIV and autophagy modulate each other. Despite this, there is very limited knowledge about the interplay between HIV and autophagy in vivo in lymphoid tissue, due in part by the lack of cell models that recapitulate the in vivo setting. Here, we evaluate the interrelationship between HIV and autophagy using human ex vivo lymphoid tissue cultures as an HIV infection model. Our results showed that human lymphoid aggregated cultures (HLACs) from tonsillar tissue displayed fully functional autophagic activity. In this system, HIV infection resulted in an increase in autophagy. Notably, we observed that both, autophagy-enhancing (rapamycin) or blocking drugs (3-methyladenine, chloroquine and bafilomycin), were able to decrease HIV-DNA levels and HIV replication. Therefore, efficient HIV-1 replication requires a fine-tuned level of autophagy, so modifications of this balance will have a negative impact on its replication. Therefore, targeting the autophagic pathway could be a new therapeutic approach to be explored to treat HIV-1 infection. Ex vivo cultures of human lymphoid tissue are a suitable model to obtain further insights into HIV and its intricate relationship with autophagy.
Collapse
Affiliation(s)
- Sònia Pedreño-López
- grid.7080.f0000 0001 2296 0625AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, 08916 Badalona, Barcelona Spain
| | - Elisabet García
- grid.7080.f0000 0001 2296 0625AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, 08916 Badalona, Barcelona Spain
| | - Dolores Guerrero
- grid.7080.f0000 0001 2296 0625Otorhinolaryngology Department, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Elisabet Gómez-Mora
- grid.7080.f0000 0001 2296 0625AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, 08916 Badalona, Barcelona Spain
| | - Laura Molina Mateu
- grid.7080.f0000 0001 2296 0625Otorhinolaryngology Department, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Fernando Orera Pérez
- grid.7080.f0000 0001 2296 0625Otorhinolaryngology Department, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Jordi Senserrich
- grid.7080.f0000 0001 2296 0625AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, 08916 Badalona, Barcelona Spain
| | - Bonaventura Clotet
- grid.7080.f0000 0001 2296 0625AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, 08916 Badalona, Barcelona Spain ,grid.411438.b0000 0004 1767 6330Infectious Diseases Department, Hospital Germans Trias i Pujol, Badalona, Catalonia Spain ,grid.440820.aUniversitat de Vic Central de Catalunya, Vic, Catalonia Spain
| | - Cecilia Cabrera
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, 08916, Badalona, Barcelona, Spain.
| |
Collapse
|
2
|
Corleis B, Bucsan AN, Deruaz M, Vrbanac VD, Lisanti-Park AC, Gates SJ, Linder AH, Paer JM, Olson GS, Bowman BA, Schiff AE, Medoff BD, Tager AM, Luster AD, Khader SA, Kaushal D, Kwon DS. HIV-1 and SIV Infection Are Associated with Early Loss of Lung Interstitial CD4+ T Cells and Dissemination of Pulmonary Tuberculosis. Cell Rep 2020; 26:1409-1418.e5. [PMID: 30726727 PMCID: PMC6417097 DOI: 10.1016/j.celrep.2019.01.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/25/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
Lung interstitial CD4+ T cells are critical for protection against pulmonary infections, but the fate of this population during HIV-1 infection is not well described. We studied CD4+ T cells in the setting of HIV-1 infection in human lung tissue, humanized mice, and a Mycobacterium tuberculosis (Mtb)/simian immunodeficiency virus (SIV) nonhuman primate co-infection model. Infection with a CCR5-tropic strain of HIV-1 or SIV results in severe and rapid loss of lung interstitial CD4+ T cells but not blood or lung alveolar CD4+ T cells. This is accompanied by high HIV-1 production in these cells in vitro and in vivo. Importantly, during early SIV infection, loss of lung interstitial CD4+ T cells is associated with increased dissemination of pulmonary Mtb infection. We show that lung interstitial CD4+ T cells serve as an efficient target for HIV-1 and SIV infection that leads to their early depletion and an increased risk of disseminated tuberculosis. Corleis et al. show that lung parenchymal CD4+ T cells are permissive to HIV-1-dependent cell death. CD4+ T cell loss is highly significant in the interstitium but not the alveolar space, and loss of interstitial CD4+ T cells is associated with extrapulmonary dissemination of M. tuberculosis.
Collapse
Affiliation(s)
- Björn Corleis
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Allison N Bucsan
- Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Maud Deruaz
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Vladimir D Vrbanac
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Antonella C Lisanti-Park
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Samantha J Gates
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alice H Linder
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey M Paer
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory S Olson
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brittany A Bowman
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Abigail E Schiff
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin D Medoff
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew M Tager
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, LA, USA; Southwest National Primate Research Center, San Antonio, TX, USA
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
3
|
Fitzgerald W, Gomez-Lopez N, Erez O, Romero R, Margolis L. Extracellular vesicles generated by placental tissues ex vivo: A transport system for immune mediators and growth factors. Am J Reprod Immunol 2018; 80:e12860. [PMID: 29726582 PMCID: PMC6021205 DOI: 10.1111/aji.12860] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022] Open
Abstract
PROBLEM To study the mechanisms of placenta function and the role of extracellular vesicles (EVs) in pregnancy, it is necessary to develop an ex vivo system that retains placental cytoarchitecture and the primary metabolic aspects, in particular the release of EVs and soluble factors. Here, we developed such a system and investigated the pattern of secretion of cytokines, growth factors, and extracellular vesicles by placental villous and amnion tissues ex vivo. METHODS OF STUDY Placental villous and amnion explants were cultured for 2 weeks at the air/liquid interface and their morphology and the released cytokines and EVs were analyzed. Cytokines were analyzed with multiplexed bead assays, and individual EVs were analyzed with recently developed techniques that involved EV capture with magnetic nanoparticles coupled to anti-EV antibodies and flow cytometry. RESULTS Ex vivo tissues (i) remained viable and preserved their cytoarchitecture; (ii) maintained secretion of cytokines and growth factors; (iii) released EVs of syncytiotrophoblast and amnion epithelial cell origins that contain cytokines and growth factors. CONCLUSION A system of ex vivo placental villous and amnion tissues can be used as an adequate model to study placenta metabolic activity in normal and complicated pregnancies, in particular to characterize EVs by their surface markers and by encapsulated proteins. Establishment and benchmarking the placenta ex vivo system may provide new insight in the functional status of this organ in various placental disorders, particularly regarding the release of EVs and cytokines. Such EVs may have a prognostic value for pregnancy complications.
Collapse
Affiliation(s)
- Wendy Fitzgerald
- Section of Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Leonid Margolis
- Section of Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| |
Collapse
|
4
|
Aiamkitsumrit B, Sullivan NT, Nonnemacher MR, Pirrone V, Wigdahl B. Human Immunodeficiency Virus Type 1 Cellular Entry and Exit in the T Lymphocytic and Monocytic Compartments: Mechanisms and Target Opportunities During Viral Disease. Adv Virus Res 2015; 93:257-311. [PMID: 26111588 DOI: 10.1016/bs.aivir.2015.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the course of human immunodeficiency virus type 1 infection, a number of cell types throughout the body are infected, with the majority of cells representing CD4+ T cells and cells of the monocyte-macrophage lineage. Both types of cells express, to varying levels, the primary receptor molecule, CD4, as well as one or both of the coreceptors, CXCR4 and CCR5. Viral tropism is determined by both the coreceptor utilized for entry and the cell type infected. Although a single virus may have the capacity to infect both a CD4+ T cell and a cell of the monocyte-macrophage lineage, the mechanisms involved in both the entry of the virus into the cell and the viral egress from the cell during budding and viral release differ depending on the cell type. These host-virus interactions and processes can result in the differential targeting of different cell types by selected viral quasispecies and the overall amount of infectious virus released into the extracellular environment or by direct cell-to-cell spread of viral infectivity. This review covers the major steps of virus entry and egress with emphasis on the parts of the replication process that lead to differences in how the virus enters, replicates, and buds from different cellular compartments, such as CD4+ T cells and cells of the monocyte-macrophage lineage.
Collapse
Affiliation(s)
- Benjamas Aiamkitsumrit
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Neil T Sullivan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
5
|
de Brito LCN, Teles FR, Teles RP, Nogueira PM, Vieira LQ, Ribeiro Sobrinho AP. Immunological profile of periapical endodontic infections from HIV- and HIV+ patients. Int Endod J 2014; 48:533-41. [PMID: 25069888 DOI: 10.1111/iej.12345] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/25/2014] [Indexed: 11/30/2022]
Abstract
AIM To evaluate CD4(+) CD28(+) and CD8(+) T-cell genes and the gene expression of IFN-γ, TNF-α, IL-1-β, IL-17A, IL-10, CCL-2/MCP-1, CCL-4, CCL-5 (RANTES), CXCR4, CCR5 and RANKL from cells in the periapical interstitial fluid from root canal infections in healthy patients (HIV-) and HIV-positive individuals (HIV+). METHODOLOGY Subjects included 20 HIV- and 23 HIV+ patients referred to the School of Dentistry at the Universidade Federal de Minas Gerais (Belo Horizonte, MG, Brazil). Almost all HIV+ patients were undergoing highly active antiretroviral therapy (HAART). Clinical samples were taken from teeth with pulp necrosis, and no patients had acute periapical symptoms at the time of the appointments. After cleaning and drying, 3 paper points were introduced into the root canal, passing passively through the root apex (2 mm) into the periapical tissues for 1 min. The samples were collected immediately after root canal cleaning and 7 days later (restrained root canal bacterial load) to characterize those gene expressions using real-time PCR. RESULTS Significantly higher levels of CD4(+) CD28(+) and CD8(+) T cells in teeth with restrained bacterial loads (second collection) compared with the first collection were observed in both HIV- and HIV+ samples. In HIV- patients, an increase in IL-10 and CXCR4 expression was demonstrated as well as a decrease in pro-inflammatory cytokines such as RANKL, IFN-γ, IL1-β and CCL5. However, in HIV+ patients an increase in cytokines IFN-γ, IL-1-β, TNF-α and IL-17A, and chemokines CCL-2, CXCR4 and CCR5 were observed. The chemokine CCL-5 was not detected in HIV+ individuals. CONCLUSIONS These findings suggest that after reducing the root canal bacterial load in HIV- individuals an anti-inflammatory response is generated whilst in HIV+ patients a pro-inflammatory response is sustained in the periapical area.
Collapse
Affiliation(s)
- L C N de Brito
- Faculdade de Odontologia, Universidade de Itaúna, Itaúna, Brazil
| | - F R Teles
- Departament of Applied Oral Sciences, The Forsyth Institute, Boston, MA, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - R P Teles
- Departament of Applied Oral Sciences, The Forsyth Institute, Boston, MA, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - P M Nogueira
- Departamento de Odontologia Restauradora, Faculdade de Odontologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - L Q Vieira
- Departamento de Bioquímica e Imunologia Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Nucleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - A P Ribeiro Sobrinho
- Departamento de Odontologia Restauradora, Faculdade de Odontologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Arakelyan A, Fitzgerald W, Grivel JC, Vanpouille C, Margolis L. Histocultures (tissue explants) in human retrovirology. Methods Mol Biol 2014; 1087:233-48. [PMID: 24158827 DOI: 10.1007/978-1-62703-670-2_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Viral pathogenesis is studied predominantly in cultures of primary isolated cells or cell lines. Many retroviruses efficiently replicate only in activated cells. Therefore, in order to become efficient viral producers cells should be artificially activated, a procedure which significantly changes cell physiology. However, for many viral diseases, like HIV-1 and other retroviruses' diseases, critical pathogenic events occur in tissues. Therefore, cell isolation from their native microenvironment prevents single-cell cultures from faithfully reflecting important aspects of cell-cell and cell-pathogen interactions that occur in the context of complex tissue cytoarchitecture. Tissue explants (histocultures) that retain tissue cytoarchitecture and many aspects of cell-cell interactions more faithfully represent in vivo tissue features. Human histocultures constitute an adequate model for studying viral pathogenesis under controlled laboratory conditions. Protocols for various human histocultures as applied to study retroviral pathogenesis, in particular of HIV-1, have been refined by our laboratory and are described in the present publication. Histocultures of human tonsils and lymph nodes, as well as of recto-sigmoid and cervicovaginal tissues can be used to study viral transmission, pathogenesis and as a preclinical platform for antivirals evaluation.
Collapse
Affiliation(s)
- Anush Arakelyan
- Section of Intercellular Interactions, Program on Physical Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
7
|
Soto-Rivera J, Patterson BK, Chen Y, Shen C, Ratner D, Ding M, Tumne A, Gupta P. Study of HIV-1 transmission across cervical mucosa to tonsil tissue cells using an organ culture. Am J Reprod Immunol 2012; 69:52-63. [PMID: 23078199 DOI: 10.1111/aji.12018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/03/2012] [Indexed: 11/30/2022] Open
Abstract
PROBLEM SIV model indicates that upon traversing the cervicovaginal mucosa, SIV/SIV-infected cells migrate to regional lymph nodes where active replication occurs prior to systemic virus dissemination. The purpose of the study is to develop a model to study early HIV-1 transmission events that occur after crossing the cervical mucosa into regional lymph nodes. METHODS OF STUDY We developed an organ culture model combining intact cervical tissue explants and tonsil tissue cells as the surrogate draining lymphoid tissue. Viral replication was measured by HIV-1 p24 production, quantification of viral DNA and viral RNA expression in tonsil cells. RESULTS In this combined organ culture model, transmission of cell-free and cell-associated R5- and X4-tropic HIV-1 through the cervical mucosa to tonsilar cells was observed as determined by HIV-1 p24 in culture supernatant, and the presence of HIV-1 proviral DNA, HIV-1 p24 gag protein in CD4(+) , CD11c(+) , CD68(+) cells, and expression of HIV-1 mRNA expressing CD45RO(+) CD4 T cells in tonsil cells. Furthermore, co-receptor usage of HIV-1 in tonsil cells correlated with inoculating virus tropism. CONCLUSIONS Our combined cervix-tonsil organ culture could serve as an experimental model to study the earliest stages of HIV-1 transmission through cervicovaginal mucosa to its proximal lymph nodes.
Collapse
Affiliation(s)
- Jackeline Soto-Rivera
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Gharu L, Ringe R, Bhattacharya J. HIV-1 clade C envelopes obtained from late stage symptomatic Indian patients varied in their ability towards relative CD4 usages and sensitivity to CCR5 antagonist TAK-779. Virus Res 2011; 158:216-24. [PMID: 21524671 DOI: 10.1016/j.virusres.2011.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/05/2011] [Accepted: 04/08/2011] [Indexed: 11/30/2022]
Abstract
The mechanism by which strictly CCR5 using HIV-1 clade C variants exacerbate disease progression in absence of coreceptor switch is not clearly known. We previously reported HIV-1 clade C envelopes (Env) obtained from late stage Indian patients with expanded coreceptor tropism. Here we compared such Envs (having expanded coreceptor tropism) with strictly CCR5 using Envs also obtained from late stage in their capacity to utilize CD4 and CCR5 for productive entry. We found that while envelopes with low CD4 dependence tend to infect primary CD4(+) T cells better than those required optimum CD4 for entry, no significant association was found between low CD4 usage and infectivity of primary CD4(+) T cells by Env-pseudotyped viruses and their sensitivity to CCR5 antagonist TAK-779. Interestingly, Envs that readily infected HeLa cells expressing low CD4 showed relative resistance to T20 indicating that conformational intermediates of these envelopes remained for a shorter period of time than is required for efficient inhibition by T20.
Collapse
Affiliation(s)
- Lavina Gharu
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune 411026, India
| | | | | |
Collapse
|
9
|
Gouwy M, Struyf S, Berghmans N, Vanormelingen C, Schols D, Van Damme J. CXCR4 and CCR5 ligands cooperate in monocyte and lymphocyte migration and in inhibition of dual-tropic (R5/X4) HIV-1 infection. Eur J Immunol 2011; 41:963-73. [PMID: 21381021 DOI: 10.1002/eji.201041178] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/22/2010] [Accepted: 01/19/2011] [Indexed: 11/06/2022]
Abstract
One of the most important functions of chemokines and their receptors is the regulation of directional migration of leukocytes within tissues. In specific tissue compartments, cells are exposed to multiple chemokines presented in complex dimensional and temporal patterns. Therefore, a leukocyte requires the mechanisms to integrate the various directional signals it receives from different chemoattractants. In this study, we report that CCL3, CCL5, and CCL8, three potent mononuclear cell chemoattractants, are able to synergize with the homeostatic chemokine CXCL12 in the migration of CD14(+) monocytes, CD3(+) T-lymphocytes, or PHA-activated lymphoblasts. In addition, CCL5 augmented the CXCR4 ligand-driven ERK phosphorylation in mononuclear cells. Furthermore, the synergistic effect between CCL5 and CXCL12 in monocyte chemotaxis is inhibited in the presence of specific CCR1 antibody and AMD3100, but not by maraviroc. In HIV-1 infection assays, a combination of CXCL12 and CCL5 cooperated to inhibit the replication of the dual-tropic (R5/X4) HIV-1 HE strain. Finally, although the dual-tropic HIV-1 strain was barely suppressed by AMD3100 or maraviroc alone, HIV-1 infection was completely blocked by the combination of these two receptor antagonists. Our data demonstrate the cooperation between CCL5 and CXCL12, which has implications in migration of monocytes/lymphocytes during inflammation and in HIV-1 infection.
Collapse
Affiliation(s)
- Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
10
|
Gharu L, Ringe R, Satyakumar A, Patil A, Bhattacharya J. Short communication: evidence of HIV type 1 clade C env clones containing low V3 loop charge obtained from an AIDS patient in India that uses CXCR6 and CCR8 for entry in addition to CCR5. AIDS Res Hum Retroviruses 2011; 27:211-9. [PMID: 20854195 DOI: 10.1089/aid.2009.0180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract HIV-1 clade C is the major subtype circulating in India and preferentially uses CCR5 during the entire disease course. We have recently shown that env clones from an Indian patient; NARI-VB105 uses multiple coreceptors for entry and was presented with an unusual V3 loop sequence giving rise to high net V3 loop positive charges. Here we show that env clones belonging to subtype C obtained from an AIDS patient, NARI-VB52, use CXCR6 and CCR8 in addition to CCR5 for entry. However, unlike the NARI-105 patient, the env clones contained a low V3 loop net charge of +3 with a conserved GPGQ motif typical of CCR5 using subtype C strains, indicating that residues outside the V3 loop contributed to extended coreceptor use in this particular patient.
Collapse
Affiliation(s)
- Lavina Gharu
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune, India
| | - Rajesh Ringe
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune, India
| | - Anupindi Satyakumar
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune, India
| | - Ajit Patil
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune, India
| | - Jayanta Bhattacharya
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune, India
| |
Collapse
|
11
|
Grivel JC, Shattock RJ, Margolis LB. Selective transmission of R5 HIV-1 variants: where is the gatekeeper? J Transl Med 2011; 9 Suppl 1:S6. [PMID: 21284905 PMCID: PMC3105506 DOI: 10.1186/1479-5876-9-s1-s6] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To enter target cells HIV-1 uses CD4 and a coreceptor. In vivo the coreceptor function is provided either by CCR5 (for R5) or CXCR4 (for X4 HIV-1). Although both R5 and X4 HIV-1 variants are present in body fluids (semen, blood, cervicovaginal and rectal secretions), R5 HIV-1 appears to transmit infection and dominates early stages of HIV disease. Moreover, recent sequence analysis of virus in acute infection shows that, in the majority of cases of transmission, infection is initiated by a single virus. Therefore, the existence of a "gatekeeper" that selects R5 over X4 HIV-1 and that operates among R5 HIV-1 variants has been suggested. In the present review we consider various routes of HIV-transmission and discuss potential gatekeeping mechanisms associated with each of these routes. Although many mechanisms have been identified none of them explains the almost perfect selection of R5 over X4 in HIV-1 transmission. We suggest that instead of one strong gatekeeper there are multiple functional gatekeepers and that their superimposition is sufficient to protect against X4 HIV-1 infection and potentially select among R5 HIV-1 variants. In conclusion, we propose that the principle of multiple barriers is more general and not restricted to protection against X4 HIV-1 but rather can be applied to other phenomena when one factor has a selective advantage over the other(s). In the case of gatekeepers for HIV-1 transmission, the task is to identify them and to decipher their molecular mechanisms. Knowledge of the gatekeepers' localization and function may enable us to enhance existing barriers against R5 transmission and to erect the new ones against all HIV-1 variants.
Collapse
Affiliation(s)
- Jean-Charles Grivel
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | | | | |
Collapse
|
12
|
Minang JT, Trivett MT, Barsov EV, Del Prete GQ, Trubey CM, Thomas JA, Gorelick RJ, Piatak M, Ott DE, Ohlen C. TCR triggering transcriptionally downregulates CCR5 expression on rhesus macaque CD4(+) T-cells with no measurable effect on susceptibility to SIV infection. Virology 2011; 409:132-40. [PMID: 21035160 PMCID: PMC3001627 DOI: 10.1016/j.virol.2010.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 09/28/2010] [Accepted: 10/03/2010] [Indexed: 12/24/2022]
Abstract
Studies using transformed human cell lines suggest that most SIV strains use CCR5 as co-receptor. Our analysis of primary rhesus macaque CD4(+) T-cell clones revealed marked differences in susceptibility to SIV(mac)239 infection. We investigated whether different levels of CCR5 expression account for clonal differences in SIV(mac)239 susceptibility. Macaque CD4(+) T-cells showed significant CCR5 downregulation 1-2days following CD3 mAb stimulation, which gradually recovered at resting state, 7-10days after activation. Exposure of clones to SIV(mac)239 during their CCR5(low) or CCR5(high) expression states revealed differences in SIV susceptibility independent of surface CCR5 levels. Furthermore, a CCR5 antagonist similarly reduced SIV(mac)239 infection of clones during their CCR5(low) or CCR5(high) expression states. Our data suggest a model where i) very low levels of CCR5 are sufficient for efficient SIV infection, ii) CCR5 levels above this threshold do not enhance infection, and iii) low level infection can occur in the absence of CCR5.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- CCR5 Receptor Antagonists
- CD3 Complex/immunology
- CD3 Complex/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/virology
- Cell Line
- DNA, Viral/analysis
- Down-Regulation
- Female
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, gag/metabolism
- Humans
- Macaca mulatta
- Male
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, CCR5/genetics
- Receptors, CCR5/metabolism
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Acquired Immunodeficiency Syndrome/virology
- Simian Immunodeficiency Virus/pathogenicity
Collapse
Affiliation(s)
- Jacob T. Minang
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Matthew T. Trivett
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Eugene V Barsov
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Charles M. Trubey
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - James A. Thomas
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - David E. Ott
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Claes Ohlen
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| |
Collapse
|
13
|
Fitness disadvantage of transitional intermediates contributes to dynamic change in the infecting-virus population during coreceptor switch in R5 simian/human immunodeficiency virus-infected macaques. J Virol 2010; 84:12862-71. [PMID: 20943985 DOI: 10.1128/jvi.01478-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fitness disadvantage of the transitional intermediates compared to the initial R5 viruses has been suggested to constitute one of the blockades to coreceptor switching, explaining the late appearance of X4 viruses. Using a simian model for human immunodeficiency virus type 1 (HIV-1) coreceptor switching, we demonstrate in this study that similar molecular evolutionary pathways to coreceptor switch occur in more than one R5 simian/human immunodeficiency virus (SHIV)(SF162P3N)-infected macaque. In infected animals where multiple pathways for expansion or switch to CXCR4 coexist, fitness of the transitional intermediates in coreceptor usage efficiency influences their outgrowth and representation in the infecting virus population. Dualtropic and X4 viruses appear at different disease stages, but they have lower entry efficiency than the coexisting R5 strains, which may explain why they do not outcompete the R5 viruses. Similar observations were made in two infected macaques with coreceptor switch, providing in vivo evidence that fitness disadvantage is an obstacle to X4 emergence and expansion.
Collapse
|
14
|
Loftin LM, Kienzle MF, Yi Y, Lee B, Lee FH, Gray L, Gorry PR, Collman RG. Constrained use of CCR5 on CD4+ lymphocytes by R5X4 HIV-1: efficiency of Env-CCR5 interactions and low CCR5 expression determine a range of restricted CCR5-mediated entry. Virology 2010; 402:135-48. [PMID: 20381825 PMCID: PMC2872044 DOI: 10.1016/j.virol.2010.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 01/29/2010] [Accepted: 03/02/2010] [Indexed: 11/30/2022]
Abstract
R5X4 HIV-1 has impaired utilization of CCR5 on primary CD4+ lymphocytes but the mechanisms responsible are not well defined. Using a panel of diverse R5X4 Envs we identified a spectrum of CCR5 use on CD4+ lymphocytes. Greater lymphocyte CCR5 use correlated with relative resistance to CCR5 mAbs and small molecule antagonists. Increasing CCR5 expression on lymphocytes increased the proportion of entry mediated by CCR5 for all R5X4 isolates except 89.6. In cell lines with regulated CCR5 expression, strains with greater lymphocyte CCR5 use better exploited limiting levels of CCR5. Introduction of an R306S mutation in the 89.6 V3 domain enhanced its utilization of CCR5 at low levels and switched its preference to CCR5 for lymphocyte entry. Thus, the degree to which R5X4 HIV-1 use primary lymphocyte CCR5 is determined by low CCR5 expression coupled with variations in the efficiency of Env-CCR5 interactions, which is in part governed by V3 sequences.
Collapse
Affiliation(s)
- Lamorris M. Loftin
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Martha F. Kienzle
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Yanjie Yi
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Benhur Lee
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095
| | - Fang-Hua Lee
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Lachlan Gray
- Center for Virology, Burnet Institute, Melbourne, Victoria, Australia
| | - Paul R. Gorry
- Center for Virology, Burnet Institute, Melbourne, Victoria, Australia
| | - Ronald G. Collman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
15
|
Different tempo and anatomic location of dual-tropic and X4 virus emergence in a model of R5 simian-human immunodeficiency virus infection. J Virol 2010; 84:340-51. [PMID: 19846515 DOI: 10.1128/jvi.01865-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported coreceptor switch in rhesus macaques inoculated intravenously with R5 simian-human immunodeficiency virus SF162P3N (SHIV(SF162P3N)). Whether R5-to-X4 virus evolution occurs in mucosally infected animals and in which anatomic site the switch occurs, however, were not addressed. We herein report a change in coreceptor preference in macaques infected intrarectally with SHIV(SF162P3N). The switch occurred in infected animals with high levels of virus replication and undetectable antiviral antibody response and required sequence changes in the V3 loop of the gp120 envelope protein. X4 virus emergence was associated with an accelerated drop in peripheral CD4(+) T-cell count but followed rather than preceded the onset of CD4(+) T-cell loss. The conditions, genotypic requirements, and patterns of coreceptor switch in intrarectally infected animals were thus remarkably consistent with those found in macaques infected intravenously. They also overlapped with those reported for humans, suggestive of a common mechanism for coreceptor switch in the two hosts. Furthermore, two independent R5-to-X4 evolutionary pathways were identified in one infected animal, giving rise to dual-tropic and X4 viruses which differed in switch kinetics and tissue localization. The dual-tropic switch event predominated early, and the virus established infection in multiple tissues sites. In contrast, the switch to X4 virus occurred later, initiating and expanding mainly in peripheral lymph nodes. These findings help define R5 SHIV(SF162P3N) infection of rhesus macaques as a model to study the mechanistic basis, dynamics, and sites of HIV-1 coreceptor switch.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Increases in HIV resistance towards approved antiviral drugs have made it necessary to develop new and potent antiviral drugs with preferably a novel mode of action. RECENT FINDINGS Entry inhibitors constitute a new class of drugs to treat infection by HIV-1. The first member of this class, enfuvirtide, previously known as T-20 and targeting gp41, has now been licensed for therapeutic use. Several other classes of entry inhibitors are in various stages of preclinical or clinical development. SUMMARY In this review we focus on the chemokine receptor inhibitors targeting CXCR4, which is one of the main HIV coreceptors, besides CCR5, for viral entry.
Collapse
|
17
|
Geuenich S, Kaderali L, Allespach I, Sertel S, Keppler OT. Biological signature characteristics of primary isolates from human immunodeficiency virus type 1 group O in ex vivo human tonsil histocultures. J Virol 2009; 83:10494-503. [PMID: 19706709 PMCID: PMC2753123 DOI: 10.1128/jvi.00928-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 07/30/2009] [Indexed: 01/09/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) group M viruses have achieved a global distribution, while HIV-1 group O viruses are endemic only in particular regions of Africa. Here, we evaluated biological characteristics of group O and group M viruses in ex vivo models of HIV-1 infection. The replicative capacity and ability to induce CD4 T-cell depletion of eight group O and seven group M primary isolates were monitored in cultures of human peripheral blood mononuclear cells and tonsil explants. Comparative and longitudinal infection studies revealed HIV-1 group-specific activity patterns: CCR5-using (R5) viruses from group M varied considerably in their replicative capacity but showed similar levels of cytopathicity. In contrast, R5 isolates from group O were relatively uniform in their replicative fitness but displayed a high and unprecedented variability in their potential to deplete CD4 T cells. Two R5 group O isolates were identified that cause massive depletion of CD4 T cells, to an extent comparable to CXCR4-using viruses and not documented for any R5 isolate from group M. Intergroup comparisons found a five- to eightfold lower replicative fitness of isolates from group O than for isolates from group M yet a similar overall intrinsic pathogenicity in tonsil cultures. This study establishes biological ex vivo characteristics of HIV-1 group O primary isolates. The current findings challenge the belief that a grossly reduced replicative fitness or inherently impaired cytopathicity of viruses from this group underlies their low global prevalence.
Collapse
Affiliation(s)
- Silvia Geuenich
- Department of Virology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
18
|
Stapleton JT, Balfour HH. Coinfection alters the playing field: herpesviruses induce acyclovir to inhibit HIV. Cell Host Microbe 2008; 4:194-5. [PMID: 18779044 DOI: 10.1016/j.chom.2008.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The antiherpes drug acyclovir was found to inhibit HIV following its phosphorylation by human herpesviruses, providing a hypothesis to explain the observed beneficial effects of acyclovir therapy on HIV viral load and HIV disease progression. This report underscores the importance of studying HIV in the context of microbial copathogens.
Collapse
Affiliation(s)
- Jack T Stapleton
- Department of Internal Medicine, The University of Iowa and Iowa City VA Medical Center, SW54, GH, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | | |
Collapse
|
19
|
Baseline resistance of primary human immunodeficiency virus type 1 strains to the CXCR4 inhibitor AMD3100. J Virol 2008; 82:11695-704. [PMID: 18799588 DOI: 10.1128/jvi.01303-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We screened a panel of R5X4 and X4 human immunodeficiency virus type 1 (HIV-1) strains for their sensitivities to AMD3100, a small-molecule CXCR4 antagonist that blocks HIV-1 infection via this coreceptor. While no longer under clinical development, AMD3100 is a useful tool with which to probe interactions between the viral envelope (Env) protein and CXCR4 and to identify pathways by which HIV-1 may become resistant to this class of antiviral agents. While infection by most virus strains was completely blocked by AMD3100, we identified several R5X4 and X4 isolates that exhibited plateau effects: as the AMD3100 concentration was increased, virus infection and membrane fusion diminished to variable degrees. Once saturating concentrations of AMD3100 were achieved, further inhibition was not observed, indicating a noncompetitive mode of viral resistance to the drug. The magnitude of the plateau varied depending on the virus isolate, as well as the cell type used, with considerable variation observed when primary human T cells from different human donors were used. Structure-function studies indicated that the V1/V2 region of the R5X4 HIV-1 isolate DH12 was necessary for AMD3100 resistance and could confer this property on two heterologous Env proteins. We conclude that some R5X4 and X4 HIV-1 isolates can utilize the AMD3100-bound conformation of CXCR4, with the efficiency being influenced by both viral and host factors. Baseline resistance to this CXCR4 antagonist could influence the clinical use of such compounds.
Collapse
|
20
|
Yi Y, Loftin L, Wang L, Ratcliffe SJ, Isaacman-Beck J, Collman RG. Entry coreceptor use and fusion inhibitor T20 sensitivity of dual-tropic R5X4 HIV-1 in primary macrophage infection. J Acquir Immune Defic Syndr 2008; 47:285-92. [PMID: 18197116 PMCID: PMC2769518 DOI: 10.1097/qai.0b013e31816520f6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Macrophages are important targets for HIV-1, and R5X4 strains play a central role in pathogenesis, especially in late-stage patients who may receive the fusion inhibitor T20 (enfuvirtide). Sensitivity to T20 varies markedly among HIV-1 strains and is influenced by viral and cellular factors that affect Env/CD4/coreceptor interactions. We addressed the relation between T20 inhibition and the pathway by which R5X4 HIV-1 infects primary macrophages, which express both coreceptors. In U87/CD4/coreceptor cells, T20 sensitivity for entry through CCR5 and CXCR4 was correlated. In macrophages, the proportion of total entry mediated by each coreceptor differed among isolates. Neither pathway was uniformly more or less sensitive to T20, however, nor did the proportion of entry mediated by each coreceptor predict T20 sensitivity. T20 sensitivity for macrophage infection overall correlated modestly with that for entry through CCR5 but not through CXCR4; however, unlike U87 cells, sensitivity of entry through CCR5 and CXCR4 was not correlated. These results suggest that strain-specific factors influence R5X4 T20 sensitivity regardless of the coreceptor used, an absence of systematic differences in efficiency by which R5X4 strains use the 2 coreceptors, and that efficiency and kinetics of interactions with CCR5 are central determinants of macrophage entry even when both pathways are utilized.
Collapse
Affiliation(s)
- Yanjie Yi
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
21
|
Low AJ, Marchant D, Brumme CJ, Brumme ZL, Dong W, Sing T, Hogg RS, Montaner JS, Gill V, Cheung PK, Harrigan PR. CD4-dependent characteristics of coreceptor use and HIV type 1 V3 sequence in a large population of therapy-naive individuals. AIDS Res Hum Retroviruses 2008; 24:219-28. [PMID: 18240966 DOI: 10.1089/aid.2007.0140] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated the associations between coreceptor use, V3 loop sequence, and CD4 count in a cross-sectional analysis of a large cohort of chronically HIV-infected, treatment-naive patients. HIV coreceptor usage was determined in the last pretherapy plasma sample for 977 individuals initiating HAART in British Columbia, Canada using the Monogram Trofile Tropism assay. Relative light unit (RLU) readouts from the Trofile assay, as well as HIV V3 loop sequence data, were examined as a function of baseline CD4 cell count for 953 (97%) samples with both phenotype and genotype data available. Median CCR5 RLUs were high for both R5 and X4-capable samples, while CXCR4 RLUs were orders of magnitude lower for X4 samples (p < 0.001). CCR5 RLUs in R5 samples (N = 799) increased with decreasing CD4 count (p < 0.001), but did not vary with plasma viral load (pVL) (p = 0.74). In X4 samples (N = 178), CCR5 RLUs decreased with decreasing CD4 count (p = 0.046) and decreasing pVL (p = 0.097), while CXCR4 RLUs increased with decreasing pVL (p = 0.0008) but did not vary with CD4 (p = 0.96). RLUs varied with the presence of substitutions at V3 loop positions 11, 25, and 6-8. The prevalence and impact of substitutions at codons 25 and 6-8 were CD4 dependent as was the presence of amino acid mixtures in the V3; substitutions at position 11 were CD4 independent. Assay RLU measures predictably vary with both immunological and virological parameters. The ability to predict X4 virus using genotypic determinants at positions 25 and 6-8 of the V3 loop is CD4 dependent, while position 11 appears to be CD4 independent.
Collapse
Affiliation(s)
- Andrew J. Low
- B.C. Centre for Excellence in HIV/AIDS, St. Paul's Hospital, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - David Marchant
- The iCAPTURE Centre, Department of Pathology and Laboratory Medicine, Vancouver, British Columbia, Canada
| | - Chanson J. Brumme
- B.C. Centre for Excellence in HIV/AIDS, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Zabrina L. Brumme
- B.C. Centre for Excellence in HIV/AIDS, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Winnie Dong
- B.C. Centre for Excellence in HIV/AIDS, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Tobias Sing
- Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Robert S. Hogg
- B.C. Centre for Excellence in HIV/AIDS, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Julio S.G. Montaner
- B.C. Centre for Excellence in HIV/AIDS, St. Paul's Hospital, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Vikram Gill
- B.C. Centre for Excellence in HIV/AIDS, St. Paul's Hospital, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Peter K. Cheung
- B.C. Centre for Excellence in HIV/AIDS, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - P. Richard Harrigan
- B.C. Centre for Excellence in HIV/AIDS, St. Paul's Hospital, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, British Columbia, Canada
| |
Collapse
|
22
|
Saracino A, Monno L, Punzi G, Cibelli DC, Tartaglia A, Scudeller L, Brindicci G, Lagioia A, Scotto G, Angarano G. HIV-1 biological phenotype and predicted coreceptor usage based on V3 loop sequence in paired PBMC and plasma samples. Virus Res 2007; 130:34-42. [PMID: 17582634 DOI: 10.1016/j.virusres.2007.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 03/26/2007] [Accepted: 05/09/2007] [Indexed: 10/23/2022]
Abstract
Paired PBMCs and plasma samples from 34 HIV-infected patients were studied to verify the relationship between coreceptor use based on genotyping of V3 region of HIV-1 envelope gp120 and biological phenotype with virus isolation and subsequent correlation to clinical characteristics. The "11/25" rule, geno2pheno and PSSM were compared. All SI patients were HIV-1 subtype B (p=0.04) and had a lower CD4 count than NSI patients (p=0.01), while no differences were observed in mean HIV-RNA (log) (p=0.6). SI phenotype was not associated with AIDS-defining events (p=0.1) or with concurrent antiretroviral therapy (p=0.4). With geno2pheno, which shows the highest sensibility (83%), an X4 or X4/R5 genotype in PBMC DNA was also associated to B-subtype and lower CD4 count (p=0.01) compared to R5 isolates. Based on plasma RNA sequences, the predicted coreceptor usage agreed with PBMC DNA in 79% of cases with the "11/25" rule, 82% with geno2pheno, and 82% with PSSM. A X4 virus in plasma (but not in PBMCs) was significantly associated with HAART in all three methods (p=0.01 for "11/25" rule, p=0.01 for geno2pheno and p=0.03 for PSSM). Due to viral mixtures and/or difficulties in genotype interpretation, current V3 sequence-based methods cannot accurately predict HIV-1 coreceptor use.
Collapse
Affiliation(s)
- A Saracino
- Clinic of Infectious Diseases, University of Foggia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Altered sensitivity of an R5X4 HIV-1 strain 89.6 to coreceptor inhibitors by a single amino acid substitution in the V3 region of gp120. Antiviral Res 2007; 77:128-35. [PMID: 18160142 DOI: 10.1016/j.antiviral.2007.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 05/17/2007] [Accepted: 11/05/2007] [Indexed: 11/22/2022]
Abstract
The replication of several R5X4 strains is blocked by single CXCR4 inhibitors such as AMD3100 or T140 although the target cells express both CXCR4 and CCR5 in vitro. To identify which region(s) of the Env are involved in the increased sensitivity to CXCR4 inhibitors, we isolated a T140-escape mutant using R5X4 HIV-1 strain 89.6. An isolated mutant harbored a single amino acid substitution in the V3 region of the Env (arginine 308 to serine R308S). Luciferase-reporter HIV-1 pseudotyped with the mutant Env showed that the substitution conferred total resistance to CXCR4 antagonists but increased sensitivity to a CCR5 antagonist TAK-779 in the infection of the cells expressing both CCR5 and CXCR4. Analyses using the cells expressing a single coreceptor showed that the mutant Env predominantly and efficiently utilized CCR5 rather than CXCR4 while retaining R5X4 phenotype. These results indicated that the sensitivities of the R5X4 strain to coreceptor inhibitors were altered by a single amino acid substitution in the V3 region of gp120.
Collapse
|
24
|
Gray L, Fiscus S, Shugars D. HIV-1 variants from a perinatal transmission pair demonstrate similar genetic and replicative properties in tonsillar tissues and peripheral blood mononuclear cells. AIDS Res Hum Retroviruses 2007; 23:1095-104. [PMID: 17919104 DOI: 10.1089/aid.2006.0247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) can be acquired through oropharyngeal tissues in breastfeeding infants. Efforts to better understand the determinants of breast milk transmission are hampered by the lack of a relevant oral human mucosa model and well-defined breast milk-derived viruses. This study used human ex vivo palatine tonsil tissues and peripheral blood mononuclear cells (PBMCs) to characterize the genetic, biological, and replicative properties of HIV-1 variants obtained from a perinatal transmission pair. Unique viral populations from maternal breast milk and infant blood were identified by gp120 V1-V2- and V3-specific heteroduplex tracking assays (HTAs). Full-length infectious recombinant viruses, containing a common HIV-1 NL4-3 genetic background, were generated with V1-V3 gp120 fragments from maternal and infant isolates representing the major viral populations identified in the HTAs. The resulting recombinant viruses used the CCR5 coreceptor, were nonsyncytium forming, and demonstrated replication properties similar to those of parental and control viruses in PBMCs and tonsillar explants. These findings indicate that viruses from breast milk cells and infant blood can infect PBMCs and tonsil tissues. The maternal and infant HIV-1 viruses detailed here will provide useful tools for defining the viral and host factors that contribute to HIV breastfeeding transmission.
Collapse
Affiliation(s)
- Laurie Gray
- Dental Research Center, University of North Carolina School of Dentistry, Chapel Hill, North Carolina
| | - Susan Fiscus
- UNC Retrovirology Laboratory, Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Diane Shugars
- Dental Ecology, University of North Carolina School of Dentistry, Chapel Hill, North Carolina
| |
Collapse
|
25
|
Chandler B, Detsika M, Khoo SH, Williams J, Back DJ, Owen A. Factors impacting the expression of membrane-bound proteins in lymphocytes from HIV-positive subjects. J Antimicrob Chemother 2007; 60:685-9. [PMID: 17606483 DOI: 10.1093/jac/dkm230] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The cellular transport proteins ABCB1, ABCC1 and ABCG2 have been implicated in the efflux of some antiretroviral drugs, thus decreasing their intracellular concentrations. Decreased drug accumulation in lymphocytes may allow viral replication and the subsequent emergence of viral resistance leading to treatment failure. Expression of HIV co-receptors on the surface of lymphocytes may influence viral tropism and therefore viral pathogenicity and disease progression. Here, we describe the relationship between expression of transport proteins and chemokine receptors in lymphocytes isolated from HIV-infected individuals and also investigate their relationship with demographic, therapeutic and virological factors. METHODS Peripheral blood mononuclear cells (PBMC) isolated from HIV-positive individuals were co-stained for expression of CD4 and ABCB1, ABCC1, ABCG2, CXCR4 and CCR5. The influence of gender, ethnicity, treatment status, viral load and CD4 count was assessed on expression of each protein as well as correlations between expression of the proteins by univariate and multivariate analyses. RESULTS Expression of ABCB1 was independently associated with gender (n = 98) and expression of ABCG2 and CXCR4. Gender also correlated with expression of ABCC1 and CXCR4 in univariate analysis with lower expression being detected in females compared with males. CONCLUSIONS Here we confirm that the previously reported correlation between ABCB1 and CXCR4 observed in PBMC isolated from healthy volunteers is also found in HIV-positive individuals. The influence of gender on the expression of drug efflux proteins could be a determinant of intracellular drug concentrations in vivo.
Collapse
Affiliation(s)
- Becky Chandler
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GF, UK.
| | | | | | | | | | | |
Collapse
|
26
|
Votteler J, Studtrucker N, Sörgel S, Münch J, Rücker E, Kirchhoff F, Schick B, Henklein P, Fossen T, Bruns K, Sharma A, Wray V, Schubert U. Proline 35 of human immunodeficiency virus type 1 (HIV-1) Vpr regulates the integrity of the N-terminal helix and the incorporation of Vpr into virus particles and supports the replication of R5-tropic HIV-1 in human lymphoid tissue ex vivo. J Virol 2007; 81:9572-6. [PMID: 17553868 PMCID: PMC1951402 DOI: 10.1128/jvi.02803-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutational analysis of the four conserved proline residues in human immunodeficiency virus type 1 (HIV-1) Vpr reveals that only Pro-35 is required for efficient replication of R5-tropic, but not of X4-tropic, viruses in human lymphoid tissue (HLT) cultivated ex vivo. While Vpr-mediated apoptosis and G(2) cell cycle arrest, as well as the expression and subcellular localization of Vpr, were independent, the capacity for encapsidation of Vpr into budding virions was dependent on Pro-35. (1)H nuclear magnetic resonance data suggest that mutation of Pro-35 causes a conformational change in the hydrophobic core of the molecule, whose integrity is required for the encapsidation of Vpr, and thus, Pro-35 supports the replication of R5-tropic HIV-1 in HLT.
Collapse
Affiliation(s)
- Jörg Votteler
- Institute of Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Roulet V, Satie AP, Ruffault A, Le Tortorec A, Denis H, Guist'hau O, Patard JJ, Rioux-Leclerq N, Gicquel J, Jégou B, Dejucq-Rainsford N. Susceptibility of human testis to human immunodeficiency virus-1 infection in situ and in vitro. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 169:2094-103. [PMID: 17148672 PMCID: PMC1762481 DOI: 10.2353/ajpath.2006.060191] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Semen represents the main vector for human immunodeficiency virus (HIV) dissemination worldwide and has been shown to harbor replication-competent virus despite otherwise effective highly active anti-retroviral therapy, which achieves undetectable viral load in plasma. Despite this, the origin of seminal HIV particles remains unclear, as does the question of whether the male genital tract organs contribute virus to semen. Here we investigated the presence of HIV receptors within the human testis using immunohistochemistry and quantitative real-time polymerase chain reaction. We also analyzed the infectivity of a dual tropic HIV-1 strain in an organotypic culture, as well as the impact of viral exposure on testosterone production. Our study establishes that CXCR4+, CCR5+, CD4+, and DC-SIGN+ cells are present within the interstitial tissue of human testis and that these molecules persist throughout our organotypic culture. Our data also reveal that the human testis is permissive to HIV-1 and supports productive infection, leaving testosterone production apparently unaffected. Infected cells appeared to be testicular macrophages located within the interstitial tissue. That the testis itself represents a potential source of virus in semen could play a role in preventing viral eradication from semen because this organ constitutes a pharmacological sanctuary for many current antiretrovirals.
Collapse
Affiliation(s)
- Vanessa Roulet
- INSERM U625-GERHM, Campus Scientifique de Beaulieu, Avenue du Général Leclerc, 35 042 Rennes Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Schols D. HIV co-receptor inhibitors as novel class of anti-HIV drugs. Antiviral Res 2006; 71:216-26. [PMID: 16753228 DOI: 10.1016/j.antiviral.2006.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 04/07/2006] [Accepted: 04/11/2006] [Indexed: 10/24/2022]
Abstract
Entry inhibitors constitute a new class of drugs to treat infection by human immunodeficiency virus type 1 (HIV-1). The first member of this class, enfuvirtide, previously known as T-20 and targeting gp41, has now been licensed for therapeutic use. Several other entry inhibitors are in various stages of pre-clinical or clinical development. In this review we focus on the chemokine receptor inhibitors targeting CCR5 and CXCR4 that are the main HIV co-receptors for viral entry.
Collapse
Affiliation(s)
- Dominique Schols
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
29
|
Moutsopoulos NM, Vázquez N, Greenwell-Wild T, Ecevit I, Horn J, Orenstein J, Wahl SM. Regulation of the tonsil cytokine milieu favors HIV susceptibility. J Leukoc Biol 2006; 80:1145-55. [PMID: 16943383 DOI: 10.1189/jlb.0306142] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mucosal associated lymphoid tissues are major targets of HIV during early infection and disease progression but can also provide a viral safe haven during highly active antiretroviral therapy. Among these tissues, the tonsils remain enigmatic regarding their status as primary and/or secondary sites of retroviral infection. To dissect the mechanisms underlying susceptibility to HIV in this compartment, isolated tonsil cells were studied for phenotypic and functional characteristics, which may account for their permissiveness to infection. For this, tonsil cells and PBMC were infected in parallel with HIV, and viral replication was monitored by p24 ELISA. Our results demonstrate that unstimulated tonsil cells were more readily infected than PBMC with HIV. Phenotypic characterization of the tonsil cells revealed heterogeneous lymphoid populations but with increased expression of early activation markers and the viral co-receptor CXCR4, relative to PBMC, all of which may contribute to viral susceptibility. Furthermore, the cytokine microenvironment appeared to be key in facilitating HIV infection and tonsil-secreted products enhanced HIV infection in PBMC. Of the cytokines detected in the tonsil supernatants, TH2 cytokines, particularly IL-4, promoted HIV infection and replication. Interestingly, this TH2 profile appeared to dominate, even in the presence of the TH1 cytokine IFNgamma and the anti-viral factor IFNalpha, likely due to the enhanced expression of suppressor of cytokine signaling (SOCS) proteins, which may disengage IFN signaling. These and other local environmental factors may render tonsil cells increasingly susceptible to HIV infection.
Collapse
Affiliation(s)
- Niki M Moutsopoulos
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, NIH, 30 Convent Dr., MSC 4352, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Goodenow MM, Collman RG. HIV-1 coreceptor preference is distinct from target cell tropism: a dual-parameter nomenclature to define viral phenotypes. J Leukoc Biol 2006; 80:965-72. [PMID: 16923919 DOI: 10.1189/jlb.0306148] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
HIV-1 infection of cells is mediated by engagement between viral envelope glycoproteins (Env) and a receptor complex comprising CD4 and one of two chemokine receptors, CCR5 and CXCR4, expressed on the surface of target cells. Most CD4+-transformed T cell lines express only CXCR4, but primary lymphocytes and macrophages, the main cellular targets for infection in vivo, express both coreceptors. Cell- and viral strain-specific utilization of these coreceptor pathways, rather than coreceptor expression per se, regulates lymphocyte and macrophage entry and tropism. Virus use of coreceptor[s] (R5, X4, or R5 and X4) and its target cell tropism (lymphocytes, macrophages, and/or transformed T cell lines) are related but distinct characteristics of Envs. A comprehensive classification schema of HIV-1 Env phenotypes that addresses both tropism and coreceptor use is proposed. Defining Env phenotype based on both parameters is important in the development of entry inhibitors and vaccines, for understanding changes in Env that evolve over time in vivo, and for discerning differences among viral species that underlie aspects of pathogenesis and transmission. Recognizing how tropism is related to, yet differs from, coreceptor selectivity is critical for understanding the mechanisms by which these viral characteristics impact pathogenesis.
Collapse
Affiliation(s)
- Maureen M Goodenow
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd., Gainesville, FL 32610-0275, USA.
| | | |
Collapse
|
31
|
Basmaciogullari S, Pacheco B, Bour S, Sodroski J. Specific interaction of CXCR4 with CD4 and CD8alpha: functional analysis of the CD4/CXCR4 interaction in the context of HIV-1 envelope glycoprotein-mediated membrane fusion. Virology 2006; 353:52-67. [PMID: 16808956 DOI: 10.1016/j.virol.2006.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 03/23/2006] [Accepted: 05/24/2006] [Indexed: 11/18/2022]
Abstract
We investigated possible interactions between HIV-1 receptor (CD4) and the main coreceptors CXCR4 and CCR5. We found that CD4 and CXCR4 coexpressed in 293T cells form a complex that can be immunoprecipitated with antibodies directed against the extracellular domain of either protein. Mutagenesis revealed that the CD4/CXCR4 interaction maps to two previously uncharacterized basic motifs in the cytoplasmic domain of CD4. HIV-1 envelope glycoprotein-mediated membrane fusion was found to be independent of the ability of CD4 and CXCR4 to interact, whether fusion was studied in a virus-cell or a cell-cell model. However, this interaction might explain the adaptation of HIV-1 to CXCR4 as an alternative to CCR5. We found that CXCR4 also interacts with the cytoplasmic domain of CD8alpha in a way that is similar to the CD4/CXCR4 interaction. The CD4/CXCR4 and CD8alpha/CXCR4 interactions may thus be involved in cellular signaling pathways shared by the CD4 and CD8alpha molecules.
Collapse
|
32
|
Margolis L, Shattock R. Selective transmission of CCR5-utilizing HIV-1: the 'gatekeeper' problem resolved? Nat Rev Microbiol 2006; 4:312-7. [PMID: 16541138 DOI: 10.1038/nrmicro1387] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Understanding the mechanisms of HIV-1 transmission is crucial for the development of effective preventive microbicides and vaccine strategies, and remains one of the main goals of HIV research. Over the past decade, many studies have focused on trying to identify the 'gatekeeping' mechanism that restricts the transmission of CXCR4-utilizing HIV-1 more efficiently than CCR5-utilizing HIV-1. However, to date, no study has explained the almost perfect negative selection of the former in vivo. Here, we propose that there is no single gatekeeper and that, instead, the selective transmission of R5 HIV-1 depends on the superimposition of multiple imperfect gatekeepers.
Collapse
Affiliation(s)
- Leonid Margolis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20895, USA.
| | | |
Collapse
|
33
|
Kumar RB, Maher DM, Herzberg MC, Southern PJ. Expression of HIV receptors, alternate receptors and co-receptors on tonsillar epithelium: implications for HIV binding and primary oral infection. Virol J 2006; 3:25. [PMID: 16600047 PMCID: PMC1459853 DOI: 10.1186/1743-422x-3-25] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 04/06/2006] [Indexed: 02/02/2023] Open
Abstract
Background Primary HIV infection can develop from exposure to HIV in the oral cavity. In previous studies, we have documented rapid and extensive binding of HIV virions in seminal plasma to intact mucosal surfaces of the palatine tonsil and also found that virions readily penetrated beneath the tissue surfaces. As one approach to understand the molecular interactions that support HIV virion binding to human mucosal surfaces, we have examined the distribution of the primary HIV receptor CD4, the alternate HIV receptors heparan sulfate proteoglycan (HS) and galactosyl ceramide (GalCer) and the co-receptors CXCR4 and CCR5 in palatine tonsil. Results Only HS was widely expressed on the surface of stratified squamous epithelium. In contrast, HS, GalCer, CXCR4 and CCR5 were all expressed on the reticulated epithelium lining the tonsillar crypts. We have observed extensive variability, both across tissue sections from any tonsil and between tonsils, in the distribution of epithelial cells expressing either CXCR4 or CCR5 in the basal and suprabasal layers of stratified epithelium. The general expression patterns of CXCR4, CCR5 and HS were similar in palatine tonsil from children and adults (age range 3–20). We have also noted the presence of small clusters of lymphocytes, including CD4+ T cells within stratified epithelium and located precisely at the mucosal surfaces. CD4+ T cells in these locations would be immediately accessible to HIV virions. Conclusion In total, the likelihood of oral HIV transmission will be determined by macro and micro tissue architecture, cell surface expression patterns of key molecules that may bind HIV and the specific properties of the infectious inoculum.
Collapse
Affiliation(s)
- Renu B Kumar
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Diagnostic and Biological Sciences and the Mucosal and Vaccine Research Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Diane M Maher
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark C Herzberg
- Department of Diagnostic and Biological Sciences and the Mucosal and Vaccine Research Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter J Southern
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
34
|
Rajan D, Wildum S, Rücker E, Schindler M, Kirchhoff F. Effect of R77Q, R77A and R80A changes in Vpr on HIV-1 replication and CD4 T cell depletion in human lymphoid tissue ex vivo. AIDS 2006; 20:831-6. [PMID: 16549966 DOI: 10.1097/01.aids.0000218546.31716.7f] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND It has been suggested that mutations of R77A and R80A in the HIV-1 viral protein R (Vpr) impair its proapoptotic activity and that a naturally occurring R77Q variation is associated with non-progressive HIV-1 infection. RATIONALE To assess the effect of Vpr R77Q, R77A and R80A mutations on the efficiency of CCR5(R5)- and CXCR4(X4)-tropic HIV-1 replication and cytopathicity in human lymphoid tissue (HLT). METHODS Vpr mutants of the X4-tropic HIV-1 NL4-3 clone and an R5-tropic derivative were generated by PCR mutagenesis. Virus stocks established by transfection of 293T cells were used to infect macrophages and ex vivo HLT. HIV-1 replication was assessed by measuring p24 core antigen in the culture supernatants and CD4 T-cell depletion and apoptosis were measured by flow cytometric analysis. RESULTS The R5-tropic HIV-1 Vpr mutants replicated with slightly (R77A, R77Q) to moderately (R80A) reduced efficiency in ex vivo-infected HLT and macrophages. In comparison, the changes in Vpr had negligible effects on replication of the X4-tropic forms in lymphatic tissues. Mutation of R77Q and R80A reduced apoptosis of HIV-1-infected cells in ex vivo-infected HLT independently of the viral coreceptor tropism. However, only the R5-tropic HIV-1 Vpr mutants caused markedly less CD4 T-cell depletion than wild-type HIV-1 at the end of ex vivo HLT culture. CONCLUSIONS The observation that Vpr R77Q reduces the cytopathicity of R5-tropic HIV-1 in lymphoid tissues supports a role in non-progressive HIV-1 infection but the attenuating effects might be dependent on the viral subtype and coreceptor tropism.
Collapse
Affiliation(s)
- Devi Rajan
- Department of Virology, University of Ulm, Germany
| | | | | | | | | |
Collapse
|
35
|
Karlsson I, Grivel JC, Chen SS, Karlsson A, Albert J, Fenyö EM, Margolis LB. Differential pathogenesis of primary CCR5-using human immunodeficiency virus type 1 isolates in ex vivo human lymphoid tissue. J Virol 2005; 79:11151-60. [PMID: 16103166 PMCID: PMC1193585 DOI: 10.1128/jvi.79.17.11151-11160.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the course of human immunodeficiency virus (HIV) disease, CCR5-utilizing HIV type 1 (HIV-1) variants (R5), which typically transmit infection and dominate its early stages, persist in approximately half of the infected individuals (nonswitch virus patients), while in the other half (switch virus patients), viruses using CXCR4 (X4 or R5X4) emerge, leading to rapid disease progression. Here, we used a system of ex vivo tonsillar tissue to compare the pathogeneses of sequential primary R5 HIV-1 isolates from patients in these two categories. The absolute replicative capacities of HIV-1 isolates seemed to be controlled by tissue factors. In contrast, the replication level hierarchy among sequential isolates and the levels of CCR5(+) CD4(+) T-cell depletion caused by the R5 isolates seemed to be controlled by viral factors. R5 viruses isolated from nonswitch virus patients depleted more target cells than R5 viruses isolated from switch virus patients. The high depletion of CCR5(+) cells by HIV-1 isolates from nonswitch virus patients may explain the steady decline of CD4(+) T cells in patients with continuous dominance of R5 HIV-1. The level of R5 pathogenicity, as measured in ex vivo lymphoid tissue, may have a predictive value reflecting whether, in an infected individual, X4 HIV-1 will eventually dominate.
Collapse
Affiliation(s)
- Ingrid Karlsson
- Unit of Virology, Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, Sweden.
| | | | | | | | | | | | | |
Collapse
|
36
|
Princen K, Schols D. HIV chemokine receptor inhibitors as novel anti-HIV drugs. Cytokine Growth Factor Rev 2005; 16:659-77. [PMID: 16005254 DOI: 10.1016/j.cytogfr.2005.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 05/12/2005] [Indexed: 11/19/2022]
Abstract
The chemokine receptors CXCR4 and CCR5 are the main coreceptors used by the T-cell-tropic (CXCR4-using, X4) and macrophage-tropic (CCR5-using, R5) HIV-1 strains, respectively, for entering their CD4+ target cells. In this review, we focus on the function of these chemokine receptors in HIV infection and their role as novel targets for viral inhibition. Besides some modified chemokines with antiviral activity, several low-molecular weight CCR5 and CXCR4 antagonistic compounds have been described with potent antiviral activity. The best CXCR4 antagonists described are the bicyclam derivatives, which consistently block X4 but also R5/X4 viral replication in PBMCs. We believe that chemokine receptor antagonists will become important new antiviral drugs to combat AIDS. Both CXCR4 and CCR5 chemokine receptor inhibitors will be needed in combination and even in combinations of antiviral drugs that also target other aspects of the HIV replication cycle to obtain optimum antiviral therapeutic effects.
Collapse
Affiliation(s)
- Katrien Princen
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | |
Collapse
|
37
|
Holm GH, Gabuzda D. Distinct mechanisms of CD4+ and CD8+ T-cell activation and bystander apoptosis induced by human immunodeficiency virus type 1 virions. J Virol 2005; 79:6299-311. [PMID: 15858014 PMCID: PMC1091688 DOI: 10.1128/jvi.79.10.6299-6311.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Apoptosis of uninfected bystander T cells contributes to T-cell depletion during human immunodeficiency virus type 1 (HIV-1) infection. HIV-1 envelope/receptor interactions and immune activation have been implicated as contributors to bystander apoptosis. To better understand the relationship between T-cell activation and bystander apoptosis during HIV-1 pathogenesis, we investigated the effects of the highly cytopathic CXCR4-tropic HIV-1 variant ELI6 on primary CD4(+) and CD8(+) T cells. Infection of primary T-cell cultures with ELI6 induced CD4(+) T-cell depletion by direct cell lysis and bystander apoptosis. Exposure of primary CD4(+) and CD8(+) T cells to nonreplicating ELI6 virions induced bystander apoptosis through a Fas-independent mechanism. Bystander apoptosis of CD4(+) T cells required direct contact with virions and Env/CXCR4 binding. In contrast, the apoptosis of CD8(+) T cells was triggered by a soluble factor(s) secreted by CD4(+) T cells. HIV-1 virions activated CD4(+) and CD8(+) T cells to express CD25 and HLA-DR and preferentially induced apoptosis in CD25(+)HLA-DR(+) T cells in a CXCR4-dependent manner. Maximal levels of binding, activation, and apoptosis were induced by virions that incorporated MHC class II and B7-2 into the viral membrane. These results suggest that nonreplicating HIV-1 virions contribute to chronic immune activation and T-cell depletion during HIV-1 pathogenesis by activating CD4(+) and CD8(+) T cells, which then proceed to die via apoptosis. This mechanism may represent a viral immune evasion strategy to increase viral replication by activating target cells while killing immune effector cells that are not productively infected.
Collapse
Affiliation(s)
- Geoffrey H Holm
- Dana-Farber Cancer Institute, JFB 816, 44 Binney St., Boston, MA 02115, USA
| | | |
Collapse
|
38
|
Maher DM, Zhang ZQ, Schacker TW, Southern PJ. Ex vivo modeling of oral HIV transmission in human palatine tonsil. J Histochem Cytochem 2005; 53:631-42. [PMID: 15872056 DOI: 10.1369/jhc.4a6534.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The majority of newly acquired HIV infections are believed to occur following transmission of virus infectivity across mucosal surfaces, although many mechanistic details still remain unresolved. We have used human ex vivo organ cultures and primary cell populations to analyze the cellular and molecular basis for mucosal HIV transmission. By using human palatine tonsil from routine tonsillectomies and semen from HIV-positive donors, we have created an experimental equivalent to oral HIV transmission. HIV infection was readily transferred into tonsillar lymphocytes, but this transmission into lymphocytes was dramatically reduced when the exposed lymphocyte populations were protected by intact mucosal surfaces. In this study, we consider the impact that leukocyte activation and morphological aberrations in surface structure may have on susceptibility to primary HIV infection and introduce novel time-lapse confocal microscopy procedures that begin to reveal the dynamic complexity associated with cell-mediated HIV transmission.
Collapse
Affiliation(s)
- Diane M Maher
- Department of Microbiology, MMC 196, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
39
|
Yi Y, Shaheen F, Collman RG. Preferential use of CXCR4 by R5X4 human immunodeficiency virus type 1 isolates for infection of primary lymphocytes. J Virol 2005; 79:1480-6. [PMID: 15650174 PMCID: PMC544090 DOI: 10.1128/jvi.79.3.1480-1486.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coreceptor specificity of human immunodeficiency virus type 1 (HIV-1) strains is generally defined in vitro in cell lines expressing CCR5 or CXCR4, but lymphocytes and macrophages are the principal targets in vivo. CCR5-using (R5) variants dominate early in infection, but strains that use CXCR4 emerge later in a substantial minority of subjects. Many or most CXCR4-using variants can use both CXCR4 and CCR5 (R5X4), but the pathways that are actually used to cause infection in primary cells and in vivo are unknown. We examined several R5X4 prototype and primary isolates and found that they all were largely or completely restricted to CXCR4-mediated entry in primary lymphocytes, even though lymphocytes are permissive for CCR5-mediated entry by R5 strains. In contrast, in primary macrophages R5X4 isolates used both CCR5 and CXCR4. The R5X4 strains were also more sensitive than R5 strains to CCR5 blocking, suggesting that interactions between the R5X4 strains and CCR5 are less efficient. These results indicate that coreceptor phenotyping in transformed cells does not necessarily predict utilization in primary cells, that variability exists among HIV-1 isolates in the ability to use CCR5 expressed on lymphocytes, and that many or most strains characterized as R5X4 are functionally X4 in primary lymphocytes. Less efficient interactions between R5X4 strains and CCR5 may be responsible for the inability to use CCR5 on lymphocytes, which express relatively low CCR5 levels. Since isolates that acquire CXCR4 utilization retain the capacity to use CCR5 on macrophages despite their inability to use it on lymphocytes, these results also raise the possibility that a CCR5-mediated macrophage reservoir is required for sustained infection in vivo.
Collapse
Affiliation(s)
- Yanjie Yi
- Department of Medicine, University of Pennsylvania School of Medicine, 36th & Hamilton Walk, 522 Johnson Pavilion, Philadelphia, PA 19104-6060, USA
| | | | | |
Collapse
|
40
|
Alfano M, Poli G. Role of cytokines and chemokines in the regulation of innate immunity and HIV infection. Mol Immunol 2005; 42:161-82. [PMID: 15488606 DOI: 10.1016/j.molimm.2004.06.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The earliest defense against microbial infection is represented by the responses of the innate (or natural) immune system, that also profoundly regulates the adaptive (or acquired) T- and B-cell immune responses. Activation of the innate immune system is primed by microbial invasion in response to conserved structures present in large groups of microorganisms (LPS, peptidoglycan, double-stranded RNA), and is finely tuned by different cell types (including dendritic cells, macrophages, natural killer cells, natural killer T cells, and gammadelta T cells). In addition, several soluble factors (complement components, defensins, mannose-binding lectins, interferons, cytokines and chemokines) can play a major role in the regulation of both the innate and adaptive immunity. In this review, we will briefly overview the regulation of some cellular subsets of the innate immune system particularly involved in human immunodeficiency virus (HIV) infection and then focus our attention on those cytokines and chemokines whose levels of expression are more profoundly affected by HIV infection and that, conversely, can modulate virus infection and replication.
Collapse
Affiliation(s)
- Massimo Alfano
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, P2-P3 Laboratories, DIBIT, Via Olgettina no. 58, 20132 Milano, Italy
| | | |
Collapse
|
41
|
Chenine AL, Ferrantelli F, Hofmann-Lehmann R, Vangel MG, McClure HM, Ruprecht RM. Older rhesus macaque infants are more susceptible to oral infection with simian-human immunodeficiency virus 89.6P than neonates. J Virol 2005; 79:1333-6. [PMID: 15613361 PMCID: PMC538536 DOI: 10.1128/jvi.79.2.1333-1336.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Earlier primate studies revealed that oral transmission of immunodeficiency viruses can occur at all ages [R. M. Ruprecht et al., J. Infect. Dis. 179(Suppl. 3):S408-S412, 1999]. Using a stock of pathogenic simian-human immunodeficiency virus, SHIV89.6P, we compared the 50% animal infectious dose needed to achieve systemic infection after oral challenge in newborn and older infant or juvenile rhesus macaques. Unexpectedly, the older monkeys required a 150-fold-lower virus challenge dose than the neonates (P=3.3 x 10(-5)). In addition, at least 60,000 times more virus was needed to achieve systemic infection in neonates by the oral route than by the intravenous route (P <1 x 10(-5)). Thus, route of inoculation and age are important determinants of SHIV89.6P infectivity in rhesus macaques.
Collapse
Affiliation(s)
- Agnès-Laurence Chenine
- Department of Cancer Immunology, Dana-Farber Cancer Institute, 44 Binney Street, JFB809, Boston, MA 02115-6084, USA
| | | | | | | | | | | |
Collapse
|
42
|
Johnson PR, Schnepp BC, Connell MJ, Rohne D, Robinson S, Krivulka GR, Lord CI, Zinn R, Montefiori DC, Letvin NL, Clark KR. Novel adeno-associated virus vector vaccine restricts replication of simian immunodeficiency virus in macaques. J Virol 2005; 79:955-65. [PMID: 15613324 PMCID: PMC538580 DOI: 10.1128/jvi.79.2.955-965.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gene transfer vectors based on recombinant adeno-associated virus (rAAV) are simple, versatile, and safe. While the conventional applications for rAAV vectors have focused on delivery of therapeutic genes, we have developed the system for delivery of vaccine antigens. In particular, we are interested in generating rAAV vectors for use as a prophylactic human immunodeficiency virus type 1 (HIV-1) vaccine. To that end, we constructed vaccine vectors that expressed genes from the simian immunodeficiency virus (SIV) for evaluation in the monkey SIV model. After a single intramuscular dose, rAAV/SIV vaccines elicited SIV-specific T cells and antibodies in macaques. Furthermore, immunized animals were able to significantly restrict replication of a live, virulent SIV challenge. These data suggest that rAAV vaccine vectors induced biologically relevant immune responses, and thus, warrant continued development as a viable HIV-1 vaccine candidate.
Collapse
Affiliation(s)
- Philip R Johnson
- Columbus Children's Hospital, Room WA3011, 700 Children's Dr., Columbus, OH 43205, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Princen K, Hatse S, Vermeire K, Aquaro S, De Clercq E, Gerlach LO, Rosenkilde M, Schwartz TW, Skerlj R, Bridger G, Schols D. Inhibition of human immunodeficiency virus replication by a dual CCR5/CXCR4 antagonist. J Virol 2004; 78:12996-3006. [PMID: 15542651 PMCID: PMC524989 DOI: 10.1128/jvi.78.23.12996-13006.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we report that the N-pyridinylmethyl cyclam analog AMD3451 has antiviral activity against a wide variety of R5, R5/X4, and X4 strains of human immunodeficiency virus type 1 (HIV-1) and HIV-2 (50% inhibitory concentration [IC(50)] ranging from 1.2 to 26.5 microM) in various T-cell lines, CCR5- or CXCR4-transfected cells, peripheral blood mononuclear cells (PBMCs), and monocytes/macrophages. AMD3451 also inhibited R5, R5/X4, and X4 HIV-1 primary clinical isolates in PBMCs (IC(50), 1.8 to 7.3 microM). A PCR-based viral entry assay revealed that AMD3451 blocks R5 and X4 HIV-1 infection at the virus entry stage. AMD3451 dose-dependently inhibited the intracellular Ca(2+) signaling induced by the CXCR4 ligand CXCL12 in T-lymphocytic cells and in CXCR4-transfected cells, as well as the Ca(2+) flux induced by the CCR5 ligands CCL5, CCL3, and CCL4 in CCR5-transfected cells. The compound did not interfere with chemokine-induced Ca(2+) signaling through CCR1, CCR2, CCR3, CCR4, CCR6, CCR9, or CXCR3 and did not induce intracellular Ca(2+) signaling by itself at concentrations up to 400 microM. In freshly isolated monocytes, AMD3451 inhibited the Ca(2+) flux induced by CXCL12 and CCL4 but not that induced by CCL2, CCL3, CCL5, and CCL7. The CXCL12- and CCL3-induced chemotaxis was also dose-dependently inhibited by AMD3451. Furthermore, AMD3451 inhibited CXCL12- and CCL3L1-induced endocytosis in CXCR4- and CCR5-transfected cells. AMD3451, in contrast to the specific CXCR4 antagonist AMD3100, did not inhibit but enhanced the binding of several anti-CXCR4 monoclonal antibodies (such as clone 12G5) at the cell surface, pointing to a different interaction with CXCR4. AMD3451 is the first low-molecular-weight anti-HIV agent with selective HIV coreceptor, CCR5 and CXCR4, interaction.
Collapse
Affiliation(s)
- Katrien Princen
- Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zerhouni B, Nelson JAE, Saha K. CXCR4-dependent infection of CD8+, but not CD4+, lymphocytes by a primary human immunodeficiency virus type 1 isolate. J Virol 2004; 78:12288-96. [PMID: 15507616 PMCID: PMC525083 DOI: 10.1128/jvi.78.22.12288-12296.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We recently isolated from an infant an X4-syncytium-inducing (SI) human immunodeficiency virus type 1 (HIV-1) variant (92US143-T8) that was able to infect CD8+ lymphocytes independently of CD4. Although it was CD4 independent, the 92US143-T8 isolate also maintained the ability to infect CD4+ cells. In the present study, we investigated the role of CXCR4 in the infection of CD4+ and CD8+ cells by this primary isolate. The expression of CXCR4 was down modulated in CD8+ lymphocytes after infection with the 93US143-T8 isolate. Infection of CD8+ lymphocytes by the 93US143-T8 isolate was prevented by treatment with AMD3100, a specific antagonist for CXCR4, indicating CXCR4-dependent infection. Interestingly, AMD3100 treatment had no inhibitory role in the infection of purified CD4+ lymphocytes by the same isolate. Furthermore, AMD3100 treatment failed to prevent infection of known CD4+ CXCR4+ T-cell lines (MT-2 and CEM) by the 93US143-T8 isolate. In fact, virus replication in the CD4+ cells was often enhanced in the presence of AMD3100. Viruses produced from the infected CD4+ cells in the presence of AMD3100 maintained an unchanged envelope genotype and an SI phenotype. For the first time, these results provide evidence of CXCR4-dependent infection of CD8+ lymphocytes by a primary HIV-1 isolate. This study also shows a different mode of infection for the CD4+ and CD8+ lymphocytes by the same HIV-1 variant. Finally, our findings suggest that a more careful evaluation is necessary before the random use of AMD3100 as a new entry inhibitor in patients harboring SI HIV-1 strains.
Collapse
Affiliation(s)
- Bouchra Zerhouni
- Department of Pediatrics, Children's Research Institute, Ohio State University Medical Center, 700 Children's Drive, Room W532, Columbus, OH 43205, USA
| | | | | |
Collapse
|
45
|
Audigé A, Schlaepfer E, Bonanomi A, Joller H, Knuchel MC, Weber M, Nadal D, Speck RF. HIV-1 does not provoke alteration of cytokine gene expression in lymphoid tissue after acute infection ex vivo. THE JOURNAL OF IMMUNOLOGY 2004; 172:2687-96. [PMID: 14764744 DOI: 10.4049/jimmunol.172.4.2687] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cytokine response to invading microorganisms is critical for priming the adaptive immune response. During acute HIV infection, the response is disrupted, but the mechanism is poorly understood. We examined the cytokine response in human lymphoid tissue, acutely infected ex vivo with HIV. Lymphoid tissue was cultured either as blocks or as human lymphocyte aggregate cultures (HLAC) of tonsils and lymph nodes. This approach allowed us to examine the effects of HIV on cytokines using distinct culture techniques. In contrast to HLAC, mock-infected tissue blocks displayed a 50- to 100-fold up-regulation of mRNAs for IL-1beta, -6, and -8 in the first 6 days of culture. Parallel increases were also noted at the protein level in the supernatants. Although IL-1beta, -6, and -8 are known to synergistically enhance HIV replication, peak HIV replication (measured as p24 Ag) was similar in tissue blocks and HLAC. Surprisingly, vigorous HIV replication of CXCR4- and CCR5-tropic HIV strains did not result in characteristic mRNA profiles for IL-1beta, -2, -4, -6, -8, -10, -12, -15, IFN-gamma, TNF-alpha, TGF-beta, and beta-chemokines in tissue blocks or HLAC. The increased expression of IL-1beta, -6, and -8 in tissue blocks may approximate clinical situations with heightened immune activation; neutralization of these cytokines resulted in inhibition of HIV replication, suggesting that these cytokines may contribute to HIV replication in certain clinical settings. These results also indicate that different molecular mechanisms govern HIV replication in tissue blocks and HLAC. Prevention of effective cytokine responses may be an important mechanism that HIV uses during acute infection.
Collapse
Affiliation(s)
- Annette Audigé
- Division of Infectious Diseases and Hospital Epidemiology, Institute of Clinical Immunology, and Clinic of Visceral and Transplantation Surgery, University Hospital of Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Holm GH, Zhang C, Gorry PR, Peden K, Schols D, De Clercq E, Gabuzda D. Apoptosis of bystander T cells induced by human immunodeficiency virus type 1 with increased envelope/receptor affinity and coreceptor binding site exposure. J Virol 2004; 78:4541-51. [PMID: 15078935 PMCID: PMC387714 DOI: 10.1128/jvi.78.9.4541-4551.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apoptosis of uninfected bystander CD4(+) T cells contributes to T-cell depletion during human immunodeficiency virus type 1 (HIV-1) pathogenesis. The viral and host mechanisms that lead to bystander apoptosis are not well understood. To investigate properties of the viral envelope glycoproteins (Env proteins) that influence the ability of HIV-1 to induce bystander apoptosis, we used molecularly cloned viruses that differ only in specific amino acids in Env. The ability of these strains to induce bystander apoptosis was tested in herpesvirus saimiri-immortalized primary CD4(+) T cells (CD4/HVS), which resemble activated primary T cells. Changes in Env that increase affinity for CD4 or CCR5 or increase coreceptor binding site exposure enhanced the capacity of HIV-1 to induce bystander apoptosis following viral infection or exposure to nonreplicating virions. Apoptosis induced by HIV-1 virions was inhibited by CD4, CXCR4, and CCR5 antibodies or by the CXCR4 inhibitor AMD3100, but not the fusion inhibitor T20. HIV-1 virions with mutant Envs that bind CXCR4 but are defective for CD4 binding or membrane fusion induced apoptosis, whereas CXCR4 binding-defective mutants did not. These results demonstrate that HIV-1 virions induce apoptosis through a CXCR4- or CCR5-dependent pathway that does not require Env/CD4 signaling or membrane fusion and suggest that HIV-1 variants with increased envelope/receptor affinity or coreceptor binding site exposure may promote T-cell depletion in vivo by accelerating bystander cell death.
Collapse
Affiliation(s)
- Geoffrey H Holm
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Stalmeijer EHB, Van Rij RP, Boeser-Nunnink B, Visser JA, Naarding MA, Schols D, Schuitemaker H. In vivo evolution of X4 human immunodeficiency virus type 1 variants in the natural course of infection coincides with decreasing sensitivity to CXCR4 antagonists. J Virol 2004; 78:2722-8. [PMID: 14990692 PMCID: PMC353738 DOI: 10.1128/jvi.78.6.2722-2728.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CXCR4-using (X4) human immunodeficiency virus type 1 (HIV-1) variants evolve from CCR5-restricted (R5) HIV-1 variants. Early after their first appearance in vivo, X4 HIV-1 variants additionally use CCR5. The ability to use CCR5 in addition to CXCR4 is generally lost late in infection. Here we studied whether this evolution of the coreceptor repertoire is also reflected in a changing sensitivity of X4 variants to CXCR4 antagonists such as peptide T22 and the synthetic compound AMD3100. We observed differences in the concentrations of CXCR4 antagonists needed to suppress replication of X4 HIV variants from different patients. In general, late X4 HIV variants were less sensitive to AMD3100 than were early R5X4 HIV variants. The differences between early R5X4 HIV variants and late X4 variants were less pronounced for T22-mediated inhibition. These results suggest an ongoing evolution of X4 virus variants toward more efficient usage of the cellular entry complex.
Collapse
Affiliation(s)
- Evelien H B Stalmeijer
- Sanquin Research at CLB and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
48
|
Princen K, Hatse S, Vermeire K, De Clercq E, Schols D. Establishment of a novel CCR5 and CXCR4 expressing CD4+ cell line which is highly sensitive to HIV and suitable for high-throughput evaluation of CCR5 and CXCR4 antagonists. Retrovirology 2004; 1:2. [PMID: 15169555 PMCID: PMC416571 DOI: 10.1186/1742-4690-1-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 03/08/2004] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND CCR5 and CXCR4 are the two main coreceptors essential for HIV entry. Therefore, these chemokine receptors have become important targets in the search for anti-HIV agents. Here, we describe the establishment of a novel CD4+ cell line, U87.CD4.CCR5.CXCR4, stably expressing both CCR5 and CXCR4 at the cell surface. RESULTS In these cells, intracellular calcium signalling through both receptors can be measured in a single experiment upon the sequential addition of CXCR4- and CCR5-directed chemokines. The U87.CD4.CCR5.CXCR4 cell line reliably supported HIV-1 infection of diverse laboratory-adapted strains and primary isolates with varying coreceptor usage (R5, X4 and R5/X4) and allows to investigate the antiviral efficacy of combined CCR5 and CXCR4 blockade. The antiviral effects recorded in these cells with the CCR5 antagonist SCH-C and the CXCR4 antagonist AMD3100 were similar to those noted in the single CCR5- or CXCR4-transfected U87.CD4 cells. Furthermore, the combination of both inhibitors blocked the infection of all evaluated HIV-1 strains and isolates. CONCLUSIONS Thus, the U87.CD4.CCR5.CXCR4 cell line should be useful in the evaluation of CCR5 and CXCR4 antagonists with therapeutic potential and combinations thereof.
Collapse
Affiliation(s)
- Katrien Princen
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Sigrid Hatse
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Kurt Vermeire
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Dominique Schols
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
49
|
Jensen MA, Li FS, van 't Wout AB, Nickle DC, Shriner D, He HX, McLaughlin S, Shankarappa R, Margolick JB, Mullins JI. Improved coreceptor usage prediction and genotypic monitoring of R5-to-X4 transition by motif analysis of human immunodeficiency virus type 1 env V3 loop sequences. J Virol 2004; 77:13376-88. [PMID: 14645592 PMCID: PMC296044 DOI: 10.1128/jvi.77.24.13376-13388.2003] [Citation(s) in RCA: 354] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early in infection, human immunodeficiency virus type 1 (HIV-1) generally uses the CCR5 chemokine receptor (along with CD4) for cellular entry. In many HIV-1-infected individuals, viral genotypic changes arise that allow the virus to use CXCR4 (either in addition to CCR5 or alone) as an entry coreceptor. This switch has been associated with an acceleration of both CD3(+) T-cell decline and progression to AIDS. While it is well known that the V3 loop of gp120 largely determines coreceptor usage and that positively charged residues in V3 play an important role, the process of genetic change in V3 leading to altered coreceptor usage is not well understood. Further, the methods for biological phenotyping of virus for research or clinical purposes are laborious, depend on sample availability, and present biosafety concerns, so reliable methods for sequence-based "virtual phenotyping" are desirable. We introduce a simple bioinformatic method of scoring V3 amino acid sequences that reliably predicts CXCR4 usage (sensitivity, 84%; specificity, 96%). This score (as determined on the basis of position-specific scoring matrices [PSSM]) can be interpreted as revealing a propensity to use CXCR4 as follows: known R5 viruses had low scores, R5X4 viruses had intermediate scores, and X4 viruses had high scores. Application of the PSSM scoring method to reconstructed virus phylogenies of 11 longitudinally sampled individuals revealed that the development of X4 viruses was generally gradual and involved the accumulation of multiple amino acid changes in V3. We found that X4 viruses were lost in two ways: by the dying off of an established X4 lineage or by mutation back to low-scoring V3 loops.
Collapse
Affiliation(s)
- Mark A Jensen
- Department of Microbiology, University of Washington, Seattle, Washington 98195-8070, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bogers WMJM, Bergmeier LA, Ma J, Oostermeijer H, Wang Y, Kelly CG, Ten Haaft P, Singh M, Heeney JL, Lehner T. A novel HIV-CCR5 receptor vaccine strategy in the control of mucosal SIV/HIV infection. AIDS 2004; 18:25-36. [PMID: 15090826 DOI: 10.1097/00002030-200401020-00003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To develop a novel SIV-CCR5 receptor vaccine strategy that will protect macaques from SHIV infection by the vaginal mucosal route. DESIGN The rationale for this strategy is that humans who express the homozygous delta32 CCR5 mutation and the associated upregulation of CC chemokines, the down-modulation of cell-surface expression of CCR5 and antibodies to CCR5 are protected against HIV infection. METHODS A vaccine was prepared consisting of three extracellular peptides of CCR5, an N-terminal HIV gp120 fragment generated in transgenic plants and recombinant SIV p27. These were linked to the 70 000 Mr microbial heat shock protein (HSP70) carrier. The vaccine was administered (x3) either by the vaginal mucosal route or by targeting the proximity of the draining iliac lymph nodes. RESULTS Serum and vaginal fluid IgG and IgA antibodies, IL-2 and IFN-gamma-producing cells, and macrophage-inflammatory protein (MIP) 1beta and MIP-1alpha (CCL4 and CCL3) were significantly raised in immunized macaques (P = 0.01-0.05). Vaginal challenge with SHIV(89.6P) infected all macaques, but sequential analysis over 24 weeks showed a significant variation in viral loads between the animals (P = 0.05). Whereas SHIV(89.6P) persisted in the four unimmunized macaques, in five of the eight immunized macaques the virus was cleared or became undetectable by reverse transcriptase-polymerase chain reaction. The CD4 cell counts in the immunized macaques were significantly higher than those in unimmunized animals (P < 0.05). CONCLUSION An immunization strategy that targets both the virus and its CCR5 receptor has significantly inhibited SHIV(89.6P) infection and may serve as a novel strategy in the prevention of HIV transmission.
Collapse
Affiliation(s)
- Willy M J M Bogers
- Department of Virology, Biomedical Research Primate Centre, Rijswijk, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|