1
|
Heath SP, Hermanns VC, Coucha M, Abdelsaid M. SARS-CoV-2 Spike Protein Exacerbates Thromboembolic Cerebrovascular Complications in Humanized ACE2 Mouse Model. Transl Stroke Res 2024:10.1007/s12975-024-01301-5. [PMID: 39354270 DOI: 10.1007/s12975-024-01301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 09/26/2024] [Indexed: 10/03/2024]
Abstract
COVID-19 increases the risk for acute ischemic stroke, yet the molecular mechanisms are unclear and remain unresolved medical challenges. We hypothesize that the SARS-CoV-2 spike protein exacerbates stroke and cerebrovascular complications by increasing coagulation and decreasing fibrinolysis by disrupting the renin-angiotensin-aldosterone system (RAAS). A thromboembolic model was induced in humanized ACE2 knock-in mice after one week of SARS-CoV-2 spike protein injection. hACE2 mice were treated with Losartan, an angiotensin receptor (AT1R) blocker, immediately after spike protein injection. Cerebral blood flow and infarct size were compared between groups. Vascular-contributes to cognitive impairments and dementia was assessed using a Novel object recognition test. Tissue factor-III and plasminogen activator inhibitor-1 were measured using immunoblotting to assess coagulation and fibrinolysis. Human brain microvascular endothelial cells (HBMEC) were exposed to hypoxia with/without SARS-CoV-2 spike protein to mimic ischemic conditions and assessed for inflammation, RAAS balance, coagulation, and fibrinolysis. Our results showed that the SARS-CoV-2 spike protein caused an imbalance in the RAAS that increased the inflammatory signal and decreased the RAAS protective arm. SARS-CoV-2 spike protein increased coagulation and decreased fibrinolysis when coincident with ischemic insult, which was accompanied by a decrease in cerebral blood flow, an increase in neuronal death, and a decline in cognitive function. Losartan treatment restored RAAS balance and reduced spike protein-induced effects. SARS-CoV-2 spike protein exacerbates inflammation and hypercoagulation, leading to increased neurovascular damage and cognitive dysfunction. However, the AT1R blocker, Losartan, restored the RAAS balance and reduced COVID-19-induced thromboembolic cerebrovascular complications.
Collapse
Affiliation(s)
- Stan P Heath
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Veronica C Hermanns
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Maha Coucha
- Department of Pharmaceutical Sciences, School of Pharmacy, South University, Savannah, GA, USA
| | - Mohammed Abdelsaid
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA.
- Biomedical Sciences Department, Mercer University School of Medicine, 1250 E 66th Street | Savannah, 31404, Macon, GA, United States.
| |
Collapse
|
2
|
Guo M, Shang S, Li M, Cai G, Li P, Chen X, Li Q. Understanding autoimmune response after SARS-CoV-2 infection and the pathogenesis/mechanisms of long COVID. MEDICAL REVIEW (2021) 2024; 4:367-383. [PMID: 39444797 PMCID: PMC11495526 DOI: 10.1515/mr-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/04/2024] [Indexed: 10/25/2024]
Abstract
COVID-19 posed a major challenge to the healthcare system and resources worldwide. The popularization of vaccines and the adoption of numerous prevention and control measures enabled the gradual end of the COVID-19 pandemic. However, successive occurrence of autoimmune diseases in patients with COVID-19 cannot be overlooked. Long COVID has been the major focus of research due to the long duration of different symptoms and the variety of systems involved. Autoimmunity may play a crucial role in the pathogenesis of long COVID. Here, we reviewed several autoimmune disorders occurring after COVID-19 infection and the pathogenesis of long COVID.
Collapse
Affiliation(s)
- Ming Guo
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Shunlai Shang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Mengfei Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
- Haihe Laboratory of CellEcosystem, China
| | - Qinggang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| |
Collapse
|
3
|
Carvalho SA, Pinto H, Carreiras D, Palmeira L, Pereira M, Trindade IA. One-year predictors of PTSD symptoms, anxiety, and depression in SARS-CoV-2 survivors: psychological flexibility and major life events as main predictive factors. Front Psychol 2024; 15:1378213. [PMID: 39257405 PMCID: PMC11385856 DOI: 10.3389/fpsyg.2024.1378213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/07/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction The COVID-19 pandemic held considerable health-related outcomes worldwide, including mental health challenges, with elevated risk of psychiatric sequelae. Methods This study aimed to test the longitudinal (1 year) predictive role of psychosocial factors on post-traumatic stress disorder (PTSD), anxiety, and depressive symptoms in SARS-CoV-2 survivors (N = 209 at T1; N = 61; attrition rate 70.83%), through Pearson's correlation analyses and longitudinal multiple regression analyses. Participants (age M = 35.4, SD = 10.1) completed online self-report questionnaires of psychosocial variables, PTSD, anxiety, and depression. Results Depression and anxiety symptoms were increased, and 42% of survivors presented clinically meaningful PTSD symptoms. PTSD symptoms were longitudinally predicted by having children (β = 0.32, p < 0.01), number of recent major life events (β = 0.34, p < 0.01), and psychological flexibility (β = -0.36, p < 0.01). Number of major life events (β = 0.29, p < 0.05) and psychological flexibility (β = -0.29, p < 0.05) predicted anxiety. Number of recent major life events (β = 0.32, p < 0.01) was the sole predictor of depressive symptoms. Discussion Psychosocial variables contribute to the long-term harmful effects of the COVID-19 pandemic on psychopathological symptoms. These results suggest that, during the pandemic, mental health was impacted by both socio-contextual factors and individual self-regulatory skills, namely the ability to respond flexibily to contextual cues and guide behavior according to the direct experience. Specifically, results point out the importance of societal incentives to reduce parental burden and socioeconomic losses, as well as to promote adaptive psychological skills such as psychological flexibility.
Collapse
Affiliation(s)
- Sérgio A Carvalho
- University of Coimbra, Center for Research in Neuropsychology and Cognitive Behavioral Intervention (CINEICC), Coimbra, Portugal
- HEI-Lab: Digital Human-Environment Interaction Lab, School of Psychology and Life Sciences (EPCV), Lusófona University, Lisbon, Portugal
| | - Helena Pinto
- University of Coimbra, Center for Research in Neuropsychology and Cognitive Behavioral Intervention (CINEICC), Coimbra, Portugal
| | - Diogo Carreiras
- University of Coimbra, Center for Research in Neuropsychology and Cognitive Behavioral Intervention (CINEICC), Coimbra, Portugal
- Instituto Superior Miguel Torga, Coimbra, Portugal
| | - Lara Palmeira
- University of Coimbra, Center for Research in Neuropsychology and Cognitive Behavioral Intervention (CINEICC), Coimbra, Portugal
- CINTESIS@RISE, CINTESIS.UPT, Portucalense University, Porto, Portugal
| | - Marco Pereira
- University of Coimbra, Center for Research in Neuropsychology and Cognitive Behavioral Intervention (CINEICC), Coimbra, Portugal
| | - Inês A Trindade
- University of Coimbra, Center for Research in Neuropsychology and Cognitive Behavioral Intervention (CINEICC), Coimbra, Portugal
- Center for Health and Medical Psychology (CHAMP), School of Behavioural, Social and Legal Sciences, University of Örebro, Örebro, Sweden
| |
Collapse
|
4
|
Kempuraj D, Aenlle KK, Cohen J, Mathew A, Isler D, Pangeni RP, Nathanson L, Theoharides TC, Klimas NG. COVID-19 and Long COVID: Disruption of the Neurovascular Unit, Blood-Brain Barrier, and Tight Junctions. Neuroscientist 2024; 30:421-439. [PMID: 37694571 DOI: 10.1177/10738584231194927] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), could affect brain structure and function. SARS-CoV-2 can enter the brain through different routes, including the olfactory, trigeminal, and vagus nerves, and through blood and immunocytes. SARS-CoV-2 may also enter the brain from the peripheral blood through a disrupted blood-brain barrier (BBB). The neurovascular unit in the brain, composed of neurons, astrocytes, endothelial cells, and pericytes, protects brain parenchyma by regulating the entry of substances from the blood. The endothelial cells, pericytes, and astrocytes highly express angiotensin converting enzyme 2 (ACE2), indicating that the BBB can be disturbed by SARS-CoV-2 and lead to derangements of tight junction and adherens junction proteins. This leads to increased BBB permeability, leakage of blood components, and movement of immune cells into the brain parenchyma. SARS-CoV-2 may also cross microvascular endothelial cells through an ACE2 receptor-associated pathway. The exact mechanism of BBB dysregulation in COVID-19/neuro-COVID is not clearly known, nor is the development of long COVID. Various blood biomarkers could indicate disease severity and neurologic complications in COVID-19 and help objectively diagnose those developing long COVID. This review highlights the importance of neurovascular and BBB disruption, as well as some potentially useful biomarkers in COVID-19, and long COVID/neuro-COVID.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Kristina K Aenlle
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
- Miami Veterans Affairs Healthcare System, Miami, FL, USA
| | - Jessica Cohen
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Annette Mathew
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Dylan Isler
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Rajendra P Pangeni
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Lubov Nathanson
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, School of Medicine, Tufts University, Boston, MA, USA
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
- Miami Veterans Affairs Healthcare System, Miami, FL, USA
| |
Collapse
|
5
|
Sadowski J, Klaudel T, Rombel-Bryzek A, Bułdak RJ. Cognitive dysfunctions in the course of SARS‑CoV‑2 virus infection, including NeuroCOVID, frontal syndrome and cytokine storm (Review). Biomed Rep 2024; 21:103. [PMID: 38800038 PMCID: PMC11117100 DOI: 10.3892/br.2024.1791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/05/2024] [Indexed: 05/29/2024] Open
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, cognitive impairment of varying degrees of severity began to be observed in a significant percentage of patients. The present study discussed the impact of immunological processes on structural and functional changes in the central nervous system and the related cognitive disorders. The purpose of the present review was to analyse and discuss available information from the scientific literature considering the possible relationship between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection and cognitive impairment, including NeuroCOVID, frontal syndrome and cytokine storm. A systematic literature review was conducted using: Google Scholar, Elsevier and the PubMed database. When searching for materials, the following keywords were used: 'cognitive dysfunctions', 'SARS-CoV-2', 'COVID-19', 'Neuro-SARS2', 'NeuroCOVID', 'frontal syndrome', 'cytokine storm', 'Long COVID-19'. A total of 96 articles were included in the study. The analysis focused on the characteristics of each study's materials, methods, results and conclusions. SARS-CoV-2 infection may induce or influence existing cognitive disorders of various nature and severity. The influence of immunological factors related to the response against SARS-CoV-2 on the disturbance of cerebral perfusion, the functioning of nerve cells and the neuroprotective effect has been demonstrated. Particular importance is attached to the cytokine storm and the related difference between pro- and anti-inflammatory effects, oxidative stress, disturbances in the regulation of the hypothalamic-pituitary-adrenal axis and the stress response of the body.
Collapse
Affiliation(s)
- Jakub Sadowski
- Student Scientific Society of Clinical Biochemistry and Regenerative Medicine, Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, 45-050 Opole, Poland
| | - Tomasz Klaudel
- Student Scientific Society of Clinical Biochemistry and Regenerative Medicine, Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, 45-050 Opole, Poland
| | - Agnieszka Rombel-Bryzek
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, 45-050 Opole, Poland
| | - Rafał Jakub Bułdak
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, 45-050 Opole, Poland
| |
Collapse
|
6
|
Praetzel R, Kepley C. Human Lung Mast Cells as a Possible Reservoir for Coronavirus: A Novel Unrecognized Mechanism for SARS-CoV-2 Immune-Mediated Pathology. Int J Mol Sci 2024; 25:6511. [PMID: 38928216 PMCID: PMC11204339 DOI: 10.3390/ijms25126511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global health concern. Cell entry of SARS-CoV-2 depends on viral spike (S) proteins binding to cellular receptors (ACE2) and their subsequent priming by host cell proteases (TMPRSS2). Assessing effects of viral-induced host response factors and determining which cells are used by SARS-CoV-2 for entry might provide insights into viral transmission, add clarity to the virus' pathogenesis, and possibly reveal therapeutic targets. Mast cells (MCs) are ubiquitously expressed tissue cells that act as immune sentinels given their ability to react specifically to pathogens at environmental interfaces, such as in the lung. Several lines of evidence suggest a critical role for MCs in SARS-CoV-2 infections based on patients' mediator profiles, especially the "cytokine storm" responsible for most morbidity and mortality. In this pilot study, we demonstrated that human lung MCs (n = 3 donors) are a source of renin and that they upregulate the membrane receptor for SARS-CoV-2 (ACE2) as well as the protease required for cellular entry (TMPRSS2) under certain conditions. We hypothesized that infection of human MCs with SARS-CoV-2 may be a heretofore-unrecognized mechanism of viral pathogenesis, and further studies are required to assess this question.
Collapse
Affiliation(s)
| | - Chris Kepley
- Molecular and Cellular Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, VA 24502, USA
| |
Collapse
|
7
|
Traina G. Mast Cells in Human Health and Diseases 2.0. Int J Mol Sci 2024; 25:6443. [PMID: 38928149 PMCID: PMC11203736 DOI: 10.3390/ijms25126443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
This Special Issue collects some scientific pieces of the multifaceted research on the mast cell (MC), and it intends to highlight the broad spectrum of activity that MCs have, both in physiological conditions and in pathological states, focusing attention on some of them [...].
Collapse
Affiliation(s)
- Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, Via Romana, 06126 Perugia, Italy
| |
Collapse
|
8
|
Singh A, Chimata AV, Deshpande P, Bajpai S, Sangeeth A, Rajput M, Singh A. SARS-CoV2 Nsp3 protein triggers cell death and exacerbates amyloid β42-mediated neurodegeneration. Neural Regen Res 2024; 19:1385-1392. [PMID: 37905889 PMCID: PMC11467943 DOI: 10.4103/1673-5374.382989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/25/2023] [Accepted: 07/25/2023] [Indexed: 11/02/2023] Open
Abstract
Infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) virus, responsible for the coronavirus disease 2019 (COVID-19) pandemic, induces symptoms including increased inflammatory response, severe acute respiratory syndrome (SARS), cognitive dysfunction like brain fog, and cardiovascular defects. Long-term effects of SARS-CoV2 COVID-19 syndrome referred to as post-COVID-19 syndrome on age-related progressive neurodegenerative disorders such as Alzheimer’s disease remain understudied. Using the targeted misexpression of individual SARS-CoV2 proteins in the retinal neurons of the Drosophila melanogaster eye, we found that misexpression of nonstructural protein 3 (Nsp3), a papain-like protease, ablates the eye and generates dark necrotic spots. Targeted misexpression of Nsp3 in the eye triggers reactive oxygen species production and leads to apoptosis as shown by cell death reporters, terminal deoxynucleotidyl transferase (TdT) dUTP Nick-end labeling (TUNEL) assay, and dihydroethidium staining. Furthermore, Nsp3 misexpression activates both apoptosis and autophagy mechanism(s) to regulate tissue homeostasis. Transient expression of SARS-CoV2 Nsp3 in murine neuroblastoma, Neuro-2a cells, significantly reduced the metabolic activity of these cells and triggers cell death. Misexpression of SARS-CoV2 Nsp3 in an Alzheimer’s disease transgenic fly eye model (glass multiple repeats [GMR]>amyloid β42) further enhances the neurodegenerative rough eye phenotype due to increased cell death. These findings suggest that SARS-CoV2 utilizes Nsp3 protein to potentiate cell death response in a neurodegenerative disease background that has high pre-existing levels of neuroinflammation and cell death.
Collapse
Affiliation(s)
- Aditi Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
| | | | | | - Soumya Bajpai
- Department of Biology, University of Dayton, Dayton, OH, USA
| | - Anjali Sangeeth
- Department of Biology, University of Dayton, Dayton, OH, USA
| | | | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
- Premedical Program, University of Dayton, Dayton, OH, USA
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, USA
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
9
|
Friedman A, Kwatra SG, Yosipovitch G. A Practical Approach to Diagnosing and Managing Chronic Spontaneous Urticaria. Dermatol Ther (Heidelb) 2024; 14:1371-1387. [PMID: 38758422 PMCID: PMC11169305 DOI: 10.1007/s13555-024-01173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Chronic spontaneous urticaria (CSU) is an unpredictable inflammatory skin condition characterized by the spontaneous onset of itchy wheals, angioedema, or both, which occurs for longer than 6 weeks overall. Despite the relatively straightforward diagnostic algorithm for CSU, relying primarily on a detailed medical history and only limited laboratory tests, patients often wait years to be diagnosed, with many cycling through different healthcare practitioners before a diagnosis is made. Even then, current treatment options for CSU are limited, with approximately half of patients resistant to standard-of-care second-generation antihistamines at standard or higher doses. As such, there is an unmet need for improved, streamlined management for patients with CSU. Here, we review the evidence-based diagnostic algorithm for CSU, consider the required steps of the diagnostic workup, and provide practical, real-world advice on the management of CSU to improve the timely diagnosis and care of patients with this debilitating disease.
Collapse
Affiliation(s)
- Adam Friedman
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| | - Shawn G Kwatra
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, USA
- Maryland Itch Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gil Yosipovitch
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Coral Gables, FL, USA
| |
Collapse
|
10
|
Li H, Qian J, Wang Y, Wang J, Mi X, Qu L, Song N, Xie J. Potential convergence of olfactory dysfunction in Parkinson's disease and COVID-19: The role of neuroinflammation. Ageing Res Rev 2024; 97:102288. [PMID: 38580172 DOI: 10.1016/j.arr.2024.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that affects 7-10 million individuals worldwide. A common early symptom of PD is olfactory dysfunction (OD), and more than 90% of PD patients suffer from OD. Recent studies have highlighted a high incidence of OD in patients with SARS-CoV-2 infection. This review investigates the potential convergence of OD in PD and COVID-19, particularly focusing on the mechanisms by which neuroinflammation contributes to OD and neurological events. Starting from our fundamental understanding of the olfactory bulb, we summarize the clinical features of OD and pathological features of the olfactory bulb from clinical cases and autopsy reports in PD patients. We then examine SARS-CoV-2-induced olfactory bulb neuropathology and OD and emphasize the SARS-CoV-2-induced neuroinflammatory cascades potentially leading to PD manifestations. By activating microglia and astrocytes, as well as facilitating the aggregation of α-synuclein, SARS-CoV-2 could contribute to the onset or exacerbation of PD. We also discuss the possible contributions of NF-κB, the NLRP3 inflammasome, and the JAK/STAT, p38 MAPK, TLR4, IL-6/JAK2/STAT3 and cGAS-STING signaling pathways. Although olfactory dysfunction in patients with COVID-19 may be reversible, it is challenging to restore OD in patients with PD. With the emergence of new SARS-CoV-2 variants and the recurrence of infections, we call for continued attention to the intersection between PD and SARS-CoV-2 infection, especially from the perspective of OD.
Collapse
Affiliation(s)
- Hui Li
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Junliang Qian
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Youcui Wang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Juan Wang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Xiaoqing Mi
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Le Qu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Ning Song
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
Wolszczak-Biedrzycka B, Dorf J, Matowicka-Karna J, Wojewódzka-Żeleźniakowicz M, Żukowski P, Zalewska A, Maciejczyk M. Significance of nitrosative stress and glycoxidation products in the diagnosis of COVID-19. Sci Rep 2024; 14:9198. [PMID: 38649417 PMCID: PMC11035544 DOI: 10.1038/s41598-024-59876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Nitrosative stress promotes protein glycoxidation, and both processes can occur during an infection with the SARS-CoV-2 virus. Therefore, the aim of this study was to assess selected nitrosative stress parameters and protein glycoxidation products in COVID-19 patients and convalescents relative to healthy subjects, including in reference to the severity of COVID-19 symptoms. The diagnostic utility of nitrosative stress and protein glycoxidation biomarkers was also evaluated in COVID-19 patients. The study involved 218 patients with COVID-19, 69 convalescents, and 48 healthy subjects. Nitrosative stress parameters (NO, S-nitrosothiols, nitrotyrosine) and protein glycoxidation products (tryptophan, kynurenine, N-formylkynurenine, dityrosine, AGEs) were measured in the blood plasma or serum with the use of colorimetric/fluorometric methods. The levels of NO (p = 0.0480), S-nitrosothiols (p = 0.0004), nitrotyrosine (p = 0.0175), kynurenine (p < 0.0001), N-formylkynurenine (p < 0.0001), dityrosine (p < 0.0001), and AGEs (p < 0.0001) were significantly higher, whereas tryptophan fluorescence was significantly (p < 0.0001) lower in COVID-19 patients than in the control group. Significant differences in the analyzed parameters were observed in different stages of COVID-19. In turn, the concentrations of kynurenine (p < 0.0001), N-formylkynurenine (p < 0.0001), dityrosine (p < 0.0001), and AGEs (p < 0.0001) were significantly higher, whereas tryptophan levels were significantly (p < 0.0001) lower in convalescents than in healthy controls. The ROC analysis revealed that protein glycoxidation products can be useful for diagnosing infections with the SARS-CoV-2 virus because they differentiate COVID-19 patients (KN: sensitivity-91.20%, specificity-92.00%; NFK: sensitivity-92.37%, specificity-92.00%; AGEs: sensitivity-99,02%, specificity-100%) and convalescents (KN: sensitivity-82.22%, specificity-84.00%; NFK: sensitivity-82,86%, specificity-86,00%; DT: sensitivity-100%, specificity-100%; AGE: sensitivity-100%, specificity-100%) from healthy subjects with high sensitivity and specificity. Nitrosative stress and protein glycoxidation are intensified both during and after an infection with the SARS-CoV-2 virus. The levels of redox biomarkers fluctuate in different stages of the disease. Circulating biomarkers of nitrosative stress/protein glycoxidation have potential diagnostic utility in both COVID-19 patients and convalescents.
Collapse
Affiliation(s)
- Blanka Wolszczak-Biedrzycka
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury in Olsztyn, 10-900, Olsztyn, Poland.
| | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-089, Białystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-089, Białystok, Poland
| | | | - Piotr Żukowski
- Department of Restorative Dentistry, Croydon University Hospital, 530 London Road, Croydon, Surrey, CR7 7YE, UK
| | - Anna Zalewska
- Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, 15-089, Białystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 15-089, Białystok, Poland
| |
Collapse
|
12
|
Yehia A, Abulseoud OA. Melatonin: a ferroptosis inhibitor with potential therapeutic efficacy for the post-COVID-19 trajectory of accelerated brain aging and neurodegeneration. Mol Neurodegener 2024; 19:36. [PMID: 38641847 PMCID: PMC11031980 DOI: 10.1186/s13024-024-00728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024] Open
Abstract
The unprecedented pandemic of COVID-19 swept millions of lives in a short period, yet its menace continues among its survivors in the form of post-COVID syndrome. An exponentially growing number of COVID-19 survivors suffer from cognitive impairment, with compelling evidence of a trajectory of accelerated aging and neurodegeneration. The novel and enigmatic nature of this yet-to-unfold pathology demands extensive research seeking answers for both the molecular underpinnings and potential therapeutic targets. Ferroptosis, an iron-dependent cell death, is a strongly proposed underlying mechanism in post-COVID-19 aging and neurodegeneration discourse. COVID-19 incites neuroinflammation, iron dysregulation, reactive oxygen species (ROS) accumulation, antioxidant system repression, renin-angiotensin system (RAS) disruption, and clock gene alteration. These events pave the way for ferroptosis, which shows its signature in COVID-19, premature aging, and neurodegenerative disorders. In the search for a treatment, melatonin shines as a promising ferroptosis inhibitor with its repeatedly reported safety and tolerability. According to various studies, melatonin has proven efficacy in attenuating the severity of certain COVID-19 manifestations, validating its reputation as an anti-viral compound. Melatonin has well-documented anti-aging properties and combating neurodegenerative-related pathologies. Melatonin can block the leading events of ferroptosis since it is an efficient anti-inflammatory, iron chelator, antioxidant, angiotensin II antagonist, and clock gene regulator. Therefore, we propose ferroptosis as the culprit behind the post-COVID-19 trajectory of aging and neurodegeneration and melatonin, a well-fitting ferroptosis inhibitor, as a potential treatment.
Collapse
Affiliation(s)
- Asmaa Yehia
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama A Abulseoud
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA.
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| |
Collapse
|
13
|
Xu Z, Wang H, Jiang S, Teng J, Zhou D, Chen Z, Wen C, Xu Z. Brain Pathology in COVID-19: Clinical Manifestations and Potential Mechanisms. Neurosci Bull 2024; 40:383-400. [PMID: 37715924 PMCID: PMC10912108 DOI: 10.1007/s12264-023-01110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/25/2023] [Indexed: 09/18/2023] Open
Abstract
Neurological manifestations of coronavirus disease 2019 (COVID-19) are less noticeable than the respiratory symptoms, but they may be associated with disability and mortality in COVID-19. Even though Omicron caused less severe disease than Delta, the incidence of neurological manifestations is similar. More than 30% of patients experienced "brain fog", delirium, stroke, and cognitive impairment, and over half of these patients presented abnormal neuroimaging outcomes. In this review, we summarize current advances in the clinical findings of neurological manifestations in COVID-19 patients and compare them with those in patients with influenza infection. We also illustrate the structure and cellular invasion mechanisms of SARS-CoV-2 and describe the pathway for central SARS-CoV-2 invasion. In addition, we discuss direct damage and other pathological conditions caused by SARS-CoV-2, such as an aberrant interferon response, cytokine storm, lymphopenia, and hypercoagulation, to provide treatment ideas. This review may offer new insights into preventing or treating brain damage in COVID-19.
Collapse
Affiliation(s)
- Zhixing Xu
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hui Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siya Jiang
- Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiao Teng
- Affiliated Lin'an People's Hospital of Hangzhou Medical College, First People's Hospital of Hangzhou Lin'an District, Lin'an, Hangzhou, 311300, China
| | - Dongxu Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhong Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chengping Wen
- Laboratory of Rheumatology and Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhenghao Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Laboratory of Rheumatology and Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
14
|
Rittmannsberger H, Barth M, Lamprecht B, Malik P, Yazdi-Zorn K. [Interaction of somatic findings and psychiatric symptoms in COVID-19. A scoping review]. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT OSTERREICHISCHER NERVENARZTE UND PSYCHIATER 2024; 38:1-23. [PMID: 38055146 DOI: 10.1007/s40211-023-00487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
An infection with SARS-CoV‑2 can affect the central nervous system, leading to neurological as well as psychiatric symptoms. In this respect, mechanisms of inflammation seem to be of much greater importance than the virus itself. This paper deals with the possible contributions of organic changes to psychiatric symptomatology and deals especially with delirium, cognitive symptoms, depression, anxiety, posttraumatic stress disorder and psychosis. Processes of neuroinflammation with infection of capillary endothelial cells and activation of microglia and astrocytes releasing high amounts of cytokines seem to be of key importance in all kinds of disturbances. They can lead to damage in grey and white matter, impairment of cerebral metabolism and loss of connectivity. Such neuroimmunological processes have been described as a organic basis for many psychiatric disorders, as affective disorders, psychoses and dementia. As the activation of the glia cells can persist for a long time after the offending agent has been cleared, this can contribute to long term sequalae of the infection.
Collapse
Affiliation(s)
- Hans Rittmannsberger
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich.
| | - Martin Barth
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich
| | - Bernd Lamprecht
- Med Campus III, Universitätsklinik für Innere Medizin mit Schwerpunkt Pneumologie, Kepler Universitätsklinikum GmbH, Linz, Österreich
- Medizinische Fakultät, Johannes Kepler Universität Linz, Linz, Österreich
| | - Peter Malik
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich
| | - Kurosch Yazdi-Zorn
- Neuromed Campus, Klinik für Psychiatrie mit Schwerpunkt Suchtmedizin, Kepler Universitätsklinikum GmbH, Linz, Österreich
- Medizinische Fakultät, Johannes Kepler Universität Linz, Linz, Österreich
| |
Collapse
|
15
|
Sun Z, Zhang L, Wang R, Wang Z, Liang X, Gao J. Identification of shared pathogenetic mechanisms between COVID-19 and IC through bioinformatics and system biology. Sci Rep 2024; 14:2114. [PMID: 38267482 PMCID: PMC10808107 DOI: 10.1038/s41598-024-52625-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/22/2024] [Indexed: 01/26/2024] Open
Abstract
COVID-19 increased global mortality in 2019. Cystitis became a contributing factor in SARS-CoV-2 and COVID-19 complications. The complex molecular links between cystitis and COVID-19 are unclear. This study investigates COVID-19-associated cystitis (CAC) molecular mechanisms and drug candidates using bioinformatics and systems biology. Obtain the gene expression profiles of IC (GSE11783) and COVID-19 (GSE147507) from the Gene Expression Omnibus (GEO) database. Identified the common differentially expressed genes (DEGs) in both IC and COVID-19, and extracted a number of key genes from this group. Subsequently, conduct Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis on the DEGs. Additionally, design a protein-protein interaction (PPI) network, a transcription factor gene regulatory network, a TF miRNA regulatory network, and a gene disease association network using the DEGs. Identify and extract hub genes from the PPI network. Then construct Nomogram diagnostic prediction models based on the hub genes. The DSigDB database was used to forecast many potential molecular medicines that are associated with common DEGs. Assess the precision of hub genes and Nomogram models in diagnosing IC and COVID-19 by employing Receiver Operating Characteristic (ROC) curves. The IC dataset (GSE57560) and the COVID-19 dataset (GSE171110) were selected to validate the models' diagnostic accuracy. A grand total of 198 DEGs that overlapped were found and chosen for further research. FCER1G, ITGAM, LCP2, LILRB2, MNDA, SPI1, and TYROBP were screened as the hub genes. The Nomogram model, built using the seven hub genes, demonstrates significant utility as a diagnostic prediction model for both IC and COVID-19. Multiple potential molecular medicines associated with common DEGs have been discovered. These pathways, hub genes, and models may provide new perspectives for future research into mechanisms and guide personalised and effective therapeutics for IC patients infected with COVID-19.
Collapse
Affiliation(s)
- Zhenpeng Sun
- Department of Urology, Qingdao Municipal Hospital, No.5, Donghai Middle Road, Shinan District, Qingdao, 266001, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Li Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Ruihong Wang
- Department of Outpatient, Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Zheng Wang
- Zhucheng People's Hospital, Zhucheng, China
| | - Xin Liang
- Department of Urology, Qingdao Municipal Hospital, No.5, Donghai Middle Road, Shinan District, Qingdao, 266001, Shandong, China
| | - Jiangang Gao
- Department of Urology, Qingdao Municipal Hospital, No.5, Donghai Middle Road, Shinan District, Qingdao, 266001, Shandong, China.
| |
Collapse
|
16
|
Wolszczak-Biedrzycka B, Dorf J, Wojewódzka-Żelezniakowicz M, Żendzian-Piotrowska M, Dymicka-Piekarska V, Matowicka-Karna J, Maciejczyk M. Changes in chemokine and growth factor levels may be useful biomarkers for monitoring disease severity in COVID-19 patients; a pilot study. Front Immunol 2024; 14:1320362. [PMID: 38239363 PMCID: PMC10794366 DOI: 10.3389/fimmu.2023.1320362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Aim The aim of the present study was to assess differences in the serum levels of chemokines and growth factors (GFs) between COVID-19 patients and healthy controls. The diagnostic utility of the analyzed proteins for monitoring the severity of the SARS-CoV- 2 infection based on the patients' MEWS scores was also assessed. Materials and methods The serum levels of chemokines and growth factors were analyzed in hospitalized COVID-19 patients (50 women, 50 men) with the use of the Bio-Plex Pro™ Human Cytokine Screening Panel (Biorad) and the Bio-Plex Multiplex system. Results The study demonstrated that serum levels of MIP-1α, RANTES, Eotaxin, CTACK, GRO-α, IP-10, MIG, basic-FGF, HGF, SCGF-β, G-CSF, M-CSF, SCF, MIF, LIF, and TRAIL were significant higher in COVID-19 patients than in the control group. The concentrations of CTACK, GRO-α, IP-10, MIG, basic-FGF, HGF, PDGF- BB, GM-CSF, SCF, LIF, and TRAIL were higher in asymptomatic/mildly symptomatic COVID-19 patients (stage 1) and COVID-19 patients with pneumonia without respiratory failure (stage 2). The receiver operating characteristic (ROC) analysis revealed that IP-10, MIF, MIG, and basic-FGF differentiated patients with COVID-19 from healthy controls with the highest sensitivity and specificity, whereas GM-CSF, basic-FGF, and MIG differentiated asymptomatic/mildly symptomatic COVID-19 patients (stage 1) from COVID-19 patients with pneumonia without respiratory failure (stage 2) with the highest sensitivity and specificity. Conclusions MIG, basic-FGF, and GM-CSF can be useful biomarkers for monitoring disease severity in patients with COVID-19.
Collapse
Affiliation(s)
- Blanka Wolszczak-Biedrzycka
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | | | | | | | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
17
|
Bertollo AG, Leite Galvan AC, Dama Mingoti ME, Dallagnol C, Ignácio ZM. Impact of COVID-19 on Anxiety and Depression - Biopsychosocial Factors. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:122-133. [PMID: 36809942 DOI: 10.2174/1871527322666230210100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 02/17/2023]
Abstract
Anxiety and depression are prevalent mental disorders around the world. The etiology of both diseases is multifactorial, involving biological and psychological issues. The COVID-19 pandemic settled in 2020 and culminated in several changes in the routine of individuals around the world, affecting mental health. People infected with COVID-19 are at greater risk of developing anxiety and depression, and individuals previously affected by these disorders have worsened the condition. In addition, individuals diagnosed with anxiety or depression before being affected by COVID-19 developed the severe illness at higher rates than individuals without mental disorders. This harmful cycle involves several mechanisms, including systemic hyper-inflammation and neuroinflammation. Furthermore, the context of the pandemic and some previous psychosocial factors can aggravate or trigger anxiety and depression. Disorders are also risks for a more severe picture of COVID-19. This review discusses research on a scientific basis, which brings evidence on biopsychosocial factors from COVID-19 and the context of the pandemic involved in anxiety and depression disorders.
Collapse
Affiliation(s)
- Amanda Gollo Bertollo
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Chapecó, SC, Brazil
| | - Agatha Carina Leite Galvan
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Chapecó, SC, Brazil
| | - Maiqueli Eduarda Dama Mingoti
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Chapecó, SC, Brazil
| | - Claudia Dallagnol
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Chapecó, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Chapecó, SC, Brazil
| |
Collapse
|
18
|
Wei ZYD, Liang K, Shetty AK. Role of Microglia, Decreased Neurogenesis and Oligodendrocyte Depletion in Long COVID-Mediated Brain Impairments. Aging Dis 2023; 14:1958-1966. [PMID: 37815903 PMCID: PMC10676788 DOI: 10.14336/ad.2023.10918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a recent worldwide coronavirus disease-2019 (COVID-19) pandemic. SARS-CoV-2 primarily causes an acute respiratory infection but can progress into significant neurological complications in some. Moreover, patients with severe acute COVID-19 could develop debilitating long-term sequela. Long-COVID is characterized by chronic symptoms that persist months after the initial infection. Common complaints are fatigue, myalgias, depression, anxiety, and "brain fog," or cognitive and memory impairments. A recent study demonstrated that a mild COVID-19 respiratory infection could generate elevated proinflammatory cytokines and chemokines in the cerebral spinal fluid. This commentary discusses findings from this study, demonstrating that even a mild respiratory SARS-CoV-2 infection can cause considerable neuroinflammation with microglial and macrophage reactivity. Such changes could also be gleaned by measuring chemokines and cytokines in the circulating blood. Moreover, neuroinflammation caused by mild SARS-CoV-2 infection can also impair hippocampal neurogenesis, deplete oligodendrocytes, and decrease myelinated axons. All these changes likely contribute to cognitive deficits in long-COVID syndrome. Therefore, strategies capable of restraining neuroinflammation, maintaining better hippocampal neurogenesis, and preserving oligodendrocyte lineage differentiation and maturation may prevent or reduce the incidence of long-COVID after SARS-CoV-2 respiratory infection.
Collapse
Affiliation(s)
- Zhuang-Yao D. Wei
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, USA.
| | - Ketty Liang
- Sam Houston State University College of Osteopathic Medicine, Conroe, TX, USA.
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, USA.
| |
Collapse
|
19
|
Li T, Wang D, Wei H, Xu X. Cytokine storm and translating IL-6 biology into effective treatments for COVID-19. Front Med 2023; 17:1080-1095. [PMID: 38157195 DOI: 10.1007/s11684-023-1044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024]
Abstract
As of May 3, 2023, the Coronavirus disease 2019 (COVID-19) pandemic has resulted in more than 760 million confirmed cases and over 6.9 million deaths. Several patients have developed pneumonia, which can deteriorate into acute respiratory distress syndrome. The primary etiology may be attributed to cytokine storm, which is triggered by the excessive release of proinflammatory cytokines and subsequently leads to immune dysregulation. Considering that high levels of interleukin-6 (IL-6) have been detected in several highly pathogenic coronavirus-infected diseases, such as severe acute respiratory syndrome in 2002, the Middle East respiratory syndrome in 2012, and COVID-19, the IL-6 pathway has emerged as a key in the pathogenesis of this hyperinflammatory state. Thus, we review the history of cytokine storm and the process of targeting IL-6 signaling to elucidate the pivotal role played by tocilizumab in combating COVID-19.
Collapse
Affiliation(s)
- Tiantian Li
- Department of Geriatric Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Dongsheng Wang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Haiming Wei
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei, 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230001, China
| | - Xiaoling Xu
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
20
|
Hernandez CA, Eugenin EA. The role of Pannexin-1 channels, ATP, and purinergic receptors in the pathogenesis of HIV and SARS-CoV-2. Curr Opin Pharmacol 2023; 73:102404. [PMID: 37734241 PMCID: PMC10838406 DOI: 10.1016/j.coph.2023.102404] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023]
Abstract
Infectious agents such as human immune deficiency virus-1 (HIV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) use host proteins to infect, replicate, and induce inflammation within the host. A critical component of these diseases is the axis between pannexin-1 channels, extracellular ATP, and purinergic receptors. Here, we describe the potential therapeutic role of Pannexin-1/purinergic approaches to prevent or reduce the devastating consequences of these pathogens.
Collapse
Affiliation(s)
- Cristian A Hernandez
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Eliseo A Eugenin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA.
| |
Collapse
|
21
|
Tsilioni I, Theoharides TC. Recombinant SARS-CoV-2 Spike Protein and Its Receptor Binding Domain Stimulate Release of Different Pro-Inflammatory Mediators via Activation of Distinct Receptors on Human Microglia Cells. Mol Neurobiol 2023; 60:6704-6714. [PMID: 37477768 DOI: 10.1007/s12035-023-03493-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
SARS-CoV-2 infects cells via its spike (S) protein binding to its surface receptor angiotensin converting enzyme 2 (ACE2) on target cells and results in acute symptoms involving especially the lungs known as COVID-19. However, increasing evidence indicates that SARS-CoV-2 infection produces neuroinflammation associated with neurological, neuropsychiatric, and cognitive symptoms persists well past the resolution of the infection, known as post-COVID-19 sequalae or long-COVID. The neuroimmune mechanism(s) involved in long-COVID have not been adequately characterized. In this study, we show that recombinant SARS-CoV-2 full-length S protein stimulates release of pro-inflammatory IL-1b, CXCL8, IL-6, and MMP-9 from cultured human microglia via TLR4 receptor activation. Instead, recombinant receptor-binding domain (RBD) stimulates release of TNF-α, IL-18, and S100B via ACE2 signaling. These results provide evidence that SARS-CoV-2 spike protein contributes to neuroinflammation through different mechanisms that may be involved in CNS pathologies associated with long-COVID.
Collapse
Affiliation(s)
- Irene Tsilioni
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite 304, Boston, MA, 02111, USA.
| | - Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite 304, Boston, MA, 02111, USA
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL, 33759, USA
| |
Collapse
|
22
|
Liu KQ, Dallas J, Wenger TA, Ristianto Z, Ding L, Chow F, Zada G, Mack WJ, Attenello FJ. Increased time to surgery and worse perioperative outcome in benign brain tumor patients with COVID-19. J Clin Neurosci 2023; 117:20-26. [PMID: 37740998 PMCID: PMC10686786 DOI: 10.1016/j.jocn.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/23/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND The COVID-19 pandemic caused significant disruptions to healthcare systems around the world, due to both high resource utilization and concern for disease spread. Delays in non-emergent surgeries have also affected chronic disease management, including that of benign brain tumors such as meningiomas and pituitary adenomas. To evaluate the effect of COVID-19 infection on benign brain tumor resection rates and subsequent perioperative and inpatient outcomes, this study utilized the 2020 National Inpatient Sample (NIS) to investigate rates of surgical resection, time to surgery, and mortality among benign brain tumor patients with and without COVID-19. METHODS Patient data from April 2020 to December 2020 was extracted from the NIS. Confirmed COVID-19 diagnosis was identified using the ICD-10 diagnosis code U07.1. Patients with benign neoplasms of the cerebral meninges, cranial nerves, pituitary gland, craniopharyngeal duct, and brain were included in the study. Patient socio-demographics, hospital characteristics, and clinical comorbidities were obtained. Outcome variables included rates of surgical resection, time to surgery, in-hospital mortality, length of stay, and discharge disposition. RESULTS The study analysis consisted of 13,053 patients with benign intracranial neoplasms who met inclusion criteria; 597 (4.6%) patients were COVID-19 positive. Patients with COVID-19 were more likely to be older and male than COVID-19 negative patients. Patients with COVID-19 had increased overall likelihood of mortality (OR 2.36, 95% CI 1.72-3.25, p < 0.0001). Even when controlling for sociodemographic/hospital factors and comorbidities, COVID-19 positive patients had a significantly longer time to surgery (8.7 days vs. 0.9 days, p < 0.0001) than COVID negative patients, and were associated with a decreased likelihood of undergoing surgery on index admission overall (OR 0.17, 95% CI 0.10-0.29, p < 0.0001). CONCLUSIONS As expected, COVID-19 infection was associated with worse inpatient outcomes in effectively all measured categories, including longer time to surgery, decreased likelihood of receiving surgery on index admission, and increased likelihood of in-hospital mortality. These findings emphasize the effect that COVID-19 has on other aspects of patient care and highlight the importance of appropriate avenues of care for patients who are COVID-19 positive. Although the COVID-19 pandemic is no longer a public health emergency, understanding the pandemic's impact on outcome for these patients is essential in efficient triage and optimizing treatment for these patients in the future. Further study is needed to elucidate causal relationships on the outcomes of benign brain tumor patients.
Collapse
Affiliation(s)
- Kristie Q Liu
- Keck School of Medicine, University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA.
| | - Jonathan Dallas
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, 1200 North State Street Suite 3300, Los Angeles, CA 90033, USA
| | - Talia A Wenger
- Keck School of Medicine, University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA
| | - Zasca Ristianto
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, 1200 North State Street Suite 3300, Los Angeles, CA 90033, USA
| | - Li Ding
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 North Soto Street, Los Angeles, CA 90032, USA
| | - Frances Chow
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, 1200 North State Street Suite 3300, Los Angeles, CA 90033, USA
| | - Gabriel Zada
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, 1200 North State Street Suite 3300, Los Angeles, CA 90033, USA
| | - William J Mack
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, 1200 North State Street Suite 3300, Los Angeles, CA 90033, USA
| | - Frank J Attenello
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, 1200 North State Street Suite 3300, Los Angeles, CA 90033, USA
| |
Collapse
|
23
|
Ahmed W, Feng J, Zhang Y, Chen L. SARS-CoV-2 and Brain Health: New Challenges in the Era of the Pandemic. Microorganisms 2023; 11:2511. [PMID: 37894169 PMCID: PMC10609574 DOI: 10.3390/microorganisms11102511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Respiratory viral infections have been found to have a negative impact on neurological functions, potentially leading to significant neurological impairment. The SARS-CoV-2 virus has precipitated a worldwide pandemic, posing a substantial threat to human lives. Growing evidence suggests that SARS-CoV-2 may severely affect the CNS and respiratory system. The current prevalence of clinical neurological issues associated with SARS-CoV-2 has raised significant concerns. However, there needs to be a more comprehensive understanding of the specific pathways by which SARS-CoV-2 enters the nervous system. Based on the available evidence, this review focuses on the clinical neurological manifestations of SARS-CoV-2 and the possible mechanisms by which SARS-CoV-2 invades the brain.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Jia Feng
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Yifan Zhang
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
| |
Collapse
|
24
|
Karkala A, Tzinas A, Kotoulas S, Zacharias A, Sourla E, Pataka A. Neuropsychiatric Outcomes and Sleep Dysfunction in COVID-19 Patients: Risk Factors and Mechanisms. Neuroimmunomodulation 2023; 30:237-249. [PMID: 37757765 DOI: 10.1159/000533722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
The ongoing global health crisis due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has significantly impacted all aspects of life. While the majority of early research following the coronavirus disease caused by SARS-CoV-2 (COVID-19) has focused on the physiological effects of the virus, a substantial body of subsequent studies has shown that the psychological burden of the infection is also considerable. Patients, even without mental illness history, were at increased susceptibility to developing mental health and sleep disturbances during or after the COVID-19 infection. Viral neurotropism and inflammatory storm damaging the blood-brain barrier have been proposed as possible mechanisms for mental health manifestations, along with stressful psychological factors and indirect consequences such as thrombosis and hypoxia. The virus has been found to infect peripheral olfactory neurons and exploit axonal migration pathways, exhibiting metabolic changes in astrocytes that are detrimental to fueling neurons and building neurotransmitters. Patients with COVID-19 present dysregulated and overactive immune responses, resulting in impaired neuronal function and viability, adversely affecting sleep and emotion regulation. Additionally, several risk factors have been associated with the neuropsychiatric sequelae of the infection, such as female sex, age, preexisting neuropathologies, severity of initial disease and sociological status. This review aimed to provide an overview of mental health symptoms and sleep disturbances developed during COVID-19 and to analyze the underlying mechanisms and risk factors of psychological distress and sleep dysfunction.
Collapse
Affiliation(s)
- Aliki Karkala
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Asterios Tzinas
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Athanasios Zacharias
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evdokia Sourla
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasia Pataka
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
25
|
Balsak S, Atasoy B, Donmez Z, Yabul FC, Daşkaya H, Akkoyunlu Y, Yurtsever İ, Sarı L, Sijahovic S, Akcay A, Toluk O, Alkan A. Microstructural alterations in hypoxia-related BRAIN centers after COVID-19 by using DTI: A preliminary study. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:1276-1283. [PMID: 37293861 DOI: 10.1002/jcu.23503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE To investigate whether the diffusion tensor imaging (DTI) parameters alterations in the in hypoxia-related neuroanatomical localizations in patients after COVID-19. Additionally, the relationship between DTI findings and the clinical severity of the disease is evaluated. METHODS The patients with COVID-19 were classified into group 1 (total patients, n = 74), group 2 (outpatient, n = 46), and group 3 (inpatient, n = 28) and control (n = 52). Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were calculated from the bulbus, pons, thalamus, caudate nucleus, globus pallidum, putamen, and hippocampus. DTI parameters were compared between groups. Oxygen saturation, D dimer and lactate dehydrogenase (LDH) values associated with hypoxia were analyzed in inpatient group. Laboratory findings were correlated with ADC and FA values. RESULTS Increased ADC values in the thalamus, bulbus and pons were found in group 1 compared to control. Increased FA values in the thalamus, bulbus, globus pallidum and putamen were detected in group 1 compared to control. The FA and ADC values obtained from putamen were higher in group 3 compared to group 2. There was a negative correlation between basal ganglia and hippocampus FA values and plasma LDH values. The ADC values obtained from caudate nucleus were positively correlated with plasma D Dimer values. CONCLUSION ADC and FA changes may reveal hypoxia-related microstructural damage after COVID-19 infection. We speculated that the brainstem and basal ganglia can affected during the subacute period.
Collapse
Affiliation(s)
- Serdar Balsak
- Department of Radiology, Bezmialem Vakıf University, Istanbul, Turkey
| | - Bahar Atasoy
- Department of Radiology, Bezmialem Vakıf University, Istanbul, Turkey
| | - Zeynep Donmez
- Department of Radiology, Bezmialem Vakıf University, Istanbul, Turkey
| | - Fatma Celik Yabul
- Department of Radiology, Bezmialem Vakıf University, Istanbul, Turkey
| | - Hayrettin Daşkaya
- Department of Anesthesiology and Reanimation, Bezmialem Vakıf University, Istanbul, Turkey
| | - Yasemin Akkoyunlu
- Department of Infectious Disease, Bezmialem Vakıf University, Istanbul, Turkey
| | - İsmail Yurtsever
- Department of Radiology, Bezmialem Vakıf University, Istanbul, Turkey
| | - Lütfullah Sarı
- Department of Radiology, Bezmialem Vakıf University, Istanbul, Turkey
| | - Samira Sijahovic
- Department of Radiology, Bezmialem Vakıf University, Istanbul, Turkey
| | - Ahmet Akcay
- Department of Radiology, Bezmialem Vakıf University, Istanbul, Turkey
| | - Ozlem Toluk
- Department of Biostatistics, Bezmialem Vakıf University, Istanbul, Turkey
| | - Alpay Alkan
- Department of Radiology, Bezmialem Vakıf University, Istanbul, Turkey
| |
Collapse
|
26
|
Kow CS, Ramachandram DS, Hasan SS. Famotidine: A potential mitigator of mast cell activation in post-COVID-19 cognitive impairment. J Psychosom Res 2023; 172:111425. [PMID: 37399740 PMCID: PMC10292911 DOI: 10.1016/j.jpsychores.2023.111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023]
Affiliation(s)
- Chia Siang Kow
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.
| | | | - Syed Shahzad Hasan
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom; School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
| |
Collapse
|
27
|
Liu KQT, Dallas J, Wenger TA, Richards H, Ding L, Chow FE, Zada G, Mack WJ, Attenello FJ. Coronavirus disease-19 is associated with decreased treatment access and worsened outcomes in malignant brain tumor patients. Surg Neurol Int 2023; 14:292. [PMID: 37680935 PMCID: PMC10481862 DOI: 10.25259/sni_440_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/23/2023] [Indexed: 09/09/2023] Open
Abstract
Background The global coronavirus disease-19 (COVID-19) pandemic has resulted in procedural delays around the world; however, timely and aggressive surgical resection for malignant brain tumor patients is essential for outcome optimization. To investigate the association between COVID-19 and outcomes of these patients, we queried the 2020 National Inpatient Sample (NIS) for differences in rates of surgical resection, time to surgery, mortality, and discharge disposition between patients with and without confirmed COVID-19 infection. Methods Patient data were taken from the NIS from April 2020 to December 2020. COVID-19 diagnosis was determined with the International Classification of Diseases, Tenth Revision, Clinical Modification code U07.1. Results A total of 30,671 malignant brain tumor patients met inclusion criteria and 738 (2.4%) patients had a confirmed COVID-19 diagnosis. COVID-19-positive patients had lower likelihood of receiving surgery (Odds ratio [OR] 0.43, 95% confidence interval [CI] 0.29-0.63, P < 0.0001), increased likelihood of mortality (OR 2.18, 95% CI 1.78-2.66, P < 0.0001), and increased likelihood of non-routine discharge (OR 1.25, 95% CI 1.13-1.39, P < 0.0001). Notably, COVID patients receiving surgery were not associated with surgical delay (P = 0.17). Conclusion COVID-19 infection was associated with worse patient outcome in malignant brain tumor patients, including decreased likelihood of receiving surgery, increased likelihood of mortality, and increased likelihood of non-routine discharge. Our study highlights the need to balance the risks and benefits of delaying surgery for malignant brain tumor patients with COVID-19. Although the COVID-19 pandemic is no longer a public health emergency, understanding the pandemic's impact on outcome provides important insight in effective triage for these patients in the situations where resources are limited.
Collapse
Affiliation(s)
- Kristie Qwan-Ting Liu
- Department of Neurological Surgery, Keck School of Medicine of University of Southern California, Los Angeles, California, United States
| | - Jonathan Dallas
- Department of Neurological Surgery, Keck School of Medicine of University of Southern California, Los Angeles, California, United States
| | - Talia A. Wenger
- Department of Neurological Surgery, Keck School of Medicine of University of Southern California, Los Angeles, California, United States
| | - Hunter Richards
- Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California, United States
| | - Li Ding
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California, United States
| | - Frances Elaine Chow
- Department of Neurological Surgery, Keck School of Medicine of University of Southern California, Los Angeles, California, United States
| | - Gabriel Zada
- Department of Neurological Surgery, Keck School of Medicine of University of Southern California, Los Angeles, California, United States
| | - William J. Mack
- Department of Neurological Surgery, Keck School of Medicine of University of Southern California, Los Angeles, California, United States
| | - Frank J. Attenello
- Department of Neurological Surgery, Keck School of Medicine of University of Southern California, Los Angeles, California, United States
| |
Collapse
|
28
|
Tsitsipanis C, Miliaraki M, Paflioti E, Lazarioti S, Moustakis N, Ntotsikas K, Theofanopoulos A, Ilia S, Vakis A, Simos P, Venihaki M. Inflammation biomarkers IL‑6 and IL‑10 may improve the diagnostic and prognostic accuracy of currently authorized traumatic brain injury tools. Exp Ther Med 2023; 26:364. [PMID: 37408863 PMCID: PMC10318605 DOI: 10.3892/etm.2023.12063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 07/07/2023] Open
Abstract
Traumatic brain injury (TBI) is currently one of the leading causes of mortality and disability worldwide. At present, no reliable inflammatory or specific molecular neurobiomarker exists in any of the standard models proposed for TBI classification or prognostication. Therefore, the present study was designed to assess the value of a group of inflammatory mediators for evaluating acute TBI, in combination with clinical, laboratory and radiological indices and prognostic clinical scales. In the present single-centre, prospective observational study, 109 adult patients with TBI, 20 adult healthy controls and a pilot group of 17 paediatric patients with TBI from a Neurosurgical Department and two intensive care units of University General Hospital of Heraklion, Greece were recruited. Blood measurements using the ELISA method, of cytokines IL-6, IL-8 and IL-10, ubiquitin C-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein, were performed. Compared with those in healthy control individuals, elevated IL-6 and IL-10 but reduced levels of IL-8 were found on day 1 in adult patients with TBI. In terms of TBI severity classifications, higher levels of IL-6 (P=0.001) and IL-10 (P=0.009) on day 1 in the adult group were found to be associated with more severe TBI according to widely used clinical and functional scales. Moreover, elevated IL-6 and IL-10 in adults were found to be associated with more serious brain imaging findings (rs<0.442; P<0.007). Subsequent multivariate logistic regression analysis in adults revealed that early-measured (day 1) IL-6 [odds ratio (OR)=0.987; P=0.025] and UCH-L1 (OR=0.993; P=0.032) are significant independent predictors of an unfavourable outcome. In conclusion, results from the present study suggest that inflammatory molecular biomarkers may prove to be valuable diagnostic and prognostic tools for TBI.
Collapse
Affiliation(s)
- Christos Tsitsipanis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Marianna Miliaraki
- Pediatric Intensive Care Unit, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Elina Paflioti
- Department of Clinical Chemistry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Sofia Lazarioti
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Nikolaos Moustakis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Konstantinos Ntotsikas
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | | | - Stavroula Ilia
- Pediatric Intensive Care Unit, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Antonis Vakis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Panagiotis Simos
- Department of Psychiatry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Maria Venihaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| |
Collapse
|
29
|
Theoharides TC, Kempuraj D. Potential Role of Moesin in Regulating Mast Cell Secretion. Int J Mol Sci 2023; 24:12081. [PMID: 37569454 PMCID: PMC10418457 DOI: 10.3390/ijms241512081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Mast cells have existed for millions of years in species that never suffer from allergic reactions. Hence, in addition to allergies, mast cells can play a critical role in homeostasis and inflammation via secretion of numerous vasoactive, pro-inflammatory and neuro-sensitizing mediators. Secretion may utilize different modes that involve the cytoskeleton, but our understanding of the molecular mechanisms regulating secretion is still not well understood. The Ezrin/Radixin/Moesin (ERM) family of proteins is involved in linking cell surface-initiated signaling to the actin cytoskeleton. However, how ERMs may regulate secretion from mast cells is still poorly understood. ERMs contain two functional domains connected through a long α-helix region, the N-terminal FERM (band 4.1 protein-ERM) domain and the C-terminal ERM association domain (C-ERMAD). The FERM domain and the C-ERMAD can bind to each other in a head-to-tail manner, leading to a closed/inactive conformation. Typically, phosphorylation on the C-terminus Thr has been associated with the activation of ERMs, including secretion from macrophages and platelets. It has previously been shown that the ability of the so-called mast cell "stabilizer" disodium cromoglycate (cromolyn) to inhibit secretion from rat mast cells closely paralleled the phosphorylation of a 78 kDa protein, which was subsequently shown to be moesin, a member of ERMs. Interestingly, the phosphorylation of moesin during the inhibition of mast cell secretion was on the N-terminal Ser56/74 and Thr66 residues. This phosphorylation pattern could lock moesin in its inactive state and render it inaccessible to binding to the Soluble NSF attachment protein receptors (SNAREs) and synaptosomal-associated proteins (SNAPs) critical for exocytosis. Using confocal microscopic imaging, we showed moesin was found to colocalize with actin and cluster around secretory granules during inhibition of secretion. In conclusion, the phosphorylation pattern and localization of moesin may be important in the regulation of mast cell secretion and could be targeted for the development of effective inhibitors of secretion of allergic and inflammatory mediators from mast cells.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| |
Collapse
|
30
|
Sousa RAL, Yehia A, Abulseoud OA. Attenuation of ferroptosis as a potential therapeutic target for neuropsychiatric manifestations of post-COVID syndrome. Front Neurosci 2023; 17:1237153. [PMID: 37554293 PMCID: PMC10405289 DOI: 10.3389/fnins.2023.1237153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
Coronavirus disease-19 (COVID-19), caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), is associated with the persistence of pre-existing or the emergence of new neurological and psychiatric manifestations as a part of a multi-system affection known collectively as "post-COVID syndrome." Cognitive decline is the most prominent feature among these manifestations. The underlying neurobiological mechanisms remain under intense investigation. Ferroptosis is a form of cell death that results from the excessive accumulation of intracellular reactive iron, which mediates lipid peroxidation. The accumulation of lipid-based reactive oxygen species (ROS) and the impairment of glutathione peroxidase 4 (GPX4) activity trigger ferroptosis. The COVID-19-associated cytokine storm enhances the levels of circulating pro-inflammatory cytokines and causes immune-cell hyper-activation that is tightly linked to iron dysregulation. Severe COVID-19 presents with iron overload as one of the main features of its pathogenesis. Iron overload promotes a state of inflammation and immune dysfunction. This is well demonstrated by the strong association between COVID-19 severity and high levels of ferritin, which is a well-known inflammatory and iron overload biomarker. The dysregulation of iron, the high levels of lipid peroxidation biomarkers, and the inactivation of GPX4 in COVID-19 patients make a strong case for ferroptosis as a potential mechanism behind post-COVID neuropsychiatric deficits. Therefore, here we review the characteristics of iron and the attenuation of ferroptosis as a potential therapeutic target for neuropsychiatric post-COVID syndrome.
Collapse
Affiliation(s)
- Ricardo A. L. Sousa
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Asmaa Yehia
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama A. Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, United States
| |
Collapse
|
31
|
Kocatürk E, Muñoz M, Elieh-Ali-Komi D, Criado PR, Peter J, Kolkhir P, Can P, Wedi B, Rudenko M, Gotua M, Ensina LF, Grattan C, Maurer M. How Infection and Vaccination Are Linked to Acute and Chronic Urticaria: A Special Focus on COVID-19. Viruses 2023; 15:1585. [PMID: 37515272 PMCID: PMC10386070 DOI: 10.3390/v15071585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Since more than a century ago, there has been awareness of the connection between viral infections and the onset and exacerbation of urticaria. Our knowledge about the role of viral infection and vaccination in acute and chronic urticaria improved as a result of the COVID-19 pandemic but it has also highlighted knowledge gaps. Viral infections, especially respiratory tract infections like COVID-19, can trigger the onset of acute urticaria (AU) and the exacerbation of chronic urticaria (CU). Less frequently, vaccination against viruses including SARS-CoV-2 can also lead to new onset urticaria as well as worsening of CU in minority. Here, with a particular focus on COVID-19, we review what is known about the role of viral infections and vaccinations as triggers and causes of acute and chronic urticaria. We also discuss possible mechanistic pathways and outline the unmet needs in our knowledge. Although the underlying mechanisms are not clearly understood, it is believed that viral signals, medications, and stress can activate skin mast cells (MCs). Further studies are needed to fully understand the relevance of viral infections and vaccinations in acute and chronic urticaria and to better clarify causal pathways.
Collapse
Affiliation(s)
- Emek Kocatürk
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 12203 Berlin, Germany (D.E.-A.-K.)
- Department of Dermatology, Koç University School of Medicine, Istanbul 34010, Turkey
| | - Melba Muñoz
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 12203 Berlin, Germany (D.E.-A.-K.)
- Department of Dermatology, Koç University School of Medicine, Istanbul 34010, Turkey
| | - Daniel Elieh-Ali-Komi
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 12203 Berlin, Germany (D.E.-A.-K.)
- Department of Dermatology, Koç University School of Medicine, Istanbul 34010, Turkey
| | - Paulo Ricardo Criado
- Department of Dermatology, School of Medicine, Centro Universitário Faculdade de Medicina do ABC (CUFMABC), Santo André 09060-870, Brazil
| | - Jonny Peter
- Lung Institute, Division of Allergy and Clinical Immunology, Groote Schuur Hospital, University of Cape Town, Cape Town 7925, South Africa
| | - Pavel Kolkhir
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 12203 Berlin, Germany (D.E.-A.-K.)
| | - Pelin Can
- Department of Dermatology, Bahçeşehir University, Istanbul 34070, Turkey;
| | - Bettina Wedi
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Hannover Medical School, 30625 Hannover, Germany
| | | | - Maia Gotua
- Center of Allergy and Immunology, David Tvildiani Medical University, Tbilisi 0159, Georgia
| | - Luis Felipe Ensina
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Pediatrics, Federal University of São Paulo, São Paulo 01308-000, Brazil
| | - Clive Grattan
- Guy’s Hospital, St John’s Institute of Dermatology, London SE1 7EP, UK
| | - Marcus Maurer
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 12203 Berlin, Germany (D.E.-A.-K.)
| |
Collapse
|
32
|
Cipriani MC, Pais C, Savoia V, Falsiroli C, Bellieni A, Cingolani A, Fantoni M, Chieffo DPR, Sani G, Landi F, Landi G, Liperoti R. Association between Older Age and Psychiatric Symptoms in a Population of Hospitalized Patients with COVID-19. J Pers Med 2023; 13:973. [PMID: 37373962 DOI: 10.3390/jpm13060973] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Increased rates of anxiety and depression have been reported for older adults during the COVID-19 pandemic. However, little is known regarding the onset of mental health morbidity during the acute phase of the disease and the role of age as potential independent risk factor for psychiatric symptoms. The cross-sectional association between older age and psychiatric symptoms has been estimated in a sample of 130 patients hospitalized for COVID-19 during the first and second wave of the pandemic. Compared to younger patients, those who were 70 years of age or older resulted at a higher risk of psychiatric symptoms measured on the Brief Psychiatric Symptoms Rating Scale (BPRS) (adjusted (adj.) odds ratio (OR) 2.36, 95% confidence interval (CI) 1.05-5.30) and delirium (adj. OR 5.24, 95% CI 1.63-16.8)). No association was found between older age and depressive symptoms or anxiety. Age was associated with psychiatric symptoms independently of gender, marital status, history of psychiatric illness, severity of disease and cardiovascular morbidity. Older adults appear at high risk of developing psychiatric symptoms related to COVID-19 disease during hospital stay. Multidisciplinary preventive and therapeutic interventions should be implemented to reduce the risk of psychiatric morbidity and related adverse health care outcomes among older hospital inpatients with COVID-19.
Collapse
Affiliation(s)
- Maria Camilla Cipriani
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy
- School of Medicine, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Cristina Pais
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy
| | - Vezio Savoia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy
| | - Cinzia Falsiroli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy
| | - Andrea Bellieni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy
| | - Antonella Cingolani
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy
- School of Medicine, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Massimo Fantoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy
- School of Medicine, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Daniela Pia Rosaria Chieffo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy
- School of Medicine, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Gabriele Sani
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy
- School of Medicine, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy
- School of Medicine, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Giovanni Landi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy
| | - Rosa Liperoti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy
- School of Medicine, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
33
|
MacCann R, Leon AAG, Gonzalez G, Carr MJ, Feeney ER, Yousif O, Cotter AG, de Barra E, Sadlier C, Doran P, Mallon PW. Dysregulated early transcriptional signatures linked to mast cell and interferon responses are implicated in COVID-19 severity. Front Immunol 2023; 14:1166574. [PMID: 37261339 PMCID: PMC10229044 DOI: 10.3389/fimmu.2023.1166574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
Background Dysregulated immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are thought to underlie the progression of coronavirus disease 2019 (COVID-19) to severe disease. We sought to determine whether early host immune-related gene expression could predict clinical progression to severe disease. Methods We analysed the expression of 579 immunological genes in peripheral blood mononuclear cells taken early after symptom onset using the NanoString nCounter and compared SARS-CoV-2 negative controls with SARS-CoV-2 positive subjects with mild (SARS+ Mild) and Moderate/Severe disease to evaluate disease outcomes. Biobanked plasma samples were also assessed for type I (IFN-α2a and IFN-β), type II (IFN-γ) and type III (IFN-λ1) interferons (IFNs) as well as 10 additional cytokines using multiplex immunoassays. Results We identified 19 significantly deregulated genes in 62 SARS-CoV-2 positive subject samples within 5 days of symptom onset and 58 SARS-CoV-2 negative controls and found that type I interferon (IFN) signalling (MX1, IRF7, IFITM1, IFI35, STAT2, IRF4, PML, BST2, STAT1) and genes encoding proinflammatory cytokines (TNF, TNFSF4, PTGS2 and IL1B) were upregulated in both SARS+ groups. Moreover, we found that FCER1, involved in mast cell activation, was upregulated in the SARS+ Mild group but significantly downregulated in the SARS+ Moderate/Severe group. In both SARS+ groups we discovered elevated interferon type I IFN-α2a, type II IFN and type III IFN λ1 plasma levels together with higher IL-10 and IL-6. These results indicate that those with moderate or severe disease are characterised by deficiencies in a mast cell response together with IFN hyper-responsiveness, suggesting that early host antiviral immune responses could be a cause and not a consequence of severe COVID-19. Conclusions This study suggests that early host immune responses linking defects in mast cell activation with host interferon responses correlates with more severe outcomes in COVID-19. Further characterisation of this pathway could help inform better treatment for vulnerable individuals.
Collapse
Affiliation(s)
- Rachel MacCann
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St. Vincent’s University Hospital, Dublin, Ireland
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | | | - Gabriel Gonzalez
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- National Virus Reference Laboratory, University College Dublin, Dublin, Ireland
- Japan Initiative for World-leading Vaccine Research and Development Centers, Hokkaido University, Institute for Vaccine Research and Development, Hokkaido, Japan
| | - Michael J. Carr
- School of Medicine, University College Dublin, Dublin, Ireland
- National Virus Reference Laboratory, University College Dublin, Dublin, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Eoin R. Feeney
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Obada Yousif
- Endocrinology Department, Wexford General Hospital, Wexford, Ireland
| | - Aoife G. Cotter
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Eoghan de Barra
- Department of Infectious Diseases, Beaumont Hospital, Beaumont, Dublin, Ireland
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Corinna Sadlier
- Department of Infectious Diseases, Cork University Hospital, Cork, Ireland
| | - Peter Doran
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick W. Mallon
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St. Vincent’s University Hospital, Dublin, Ireland
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| |
Collapse
|
34
|
Shen J, Fan J, Zhao Y, Jiang D, Niu Z, Zhang Z, Cao G. Innate and adaptive immunity to SARS-CoV-2 and predisposing factors. Front Immunol 2023; 14:1159326. [PMID: 37228604 PMCID: PMC10203583 DOI: 10.3389/fimmu.2023.1159326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2), has affected all countries worldwide. Although some symptoms are relatively mild, others are still associated with severe and even fatal clinical outcomes. Innate and adaptive immunity are important for the control of SARS-CoV-2 infections, whereas a comprehensive characterization of the innate and adaptive immune response to COVID-19 is still lacking and the mechanisms underlying immune pathogenesis and host predisposing factors are still a matter of scientific debate. Here, the specific functions and kinetics of innate and adaptive immunity involved in SARS-CoV-2 recognition and resultant pathogenesis are discussed, as well as their immune memory for vaccinations, viral-mediated immune evasion, and the current and future immunotherapeutic agents. We also highlight host factors that contribute to infection, which may deepen the understanding of viral pathogenesis and help identify targeted therapies that attenuate severe disease and infection.
Collapse
Affiliation(s)
- Jiaying Shen
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Junyan Fan
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| | - Yue Zhao
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| | - Doming Jiang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zheyun Niu
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zihan Zhang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Guangwen Cao
- Tongji University School of Medicine, Tongji University, Shanghai, China
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| |
Collapse
|
35
|
Qudus MS, Tian M, Sirajuddin S, Liu S, Afaq U, Wali M, Liu J, Pan P, Luo Z, Zhang Q, Yang G, Wan P, Li Y, Wu J. The roles of critical pro-inflammatory cytokines in the drive of cytokine storm during SARS-CoV-2 infection. J Med Virol 2023; 95:e28751. [PMID: 37185833 DOI: 10.1002/jmv.28751] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
In patients with severe COVID-19, acute respiratory distress syndrome (ARDS), multiple organ dysfunction syndrome (MODS), and even mortality can result from cytokine storm, which is a hyperinflammatory medical condition caused by the excessive and uncontrolled release of pro-inflammatory cytokines. High levels of numerous crucial pro-inflammatory cytokines, such as interleukin-1 (IL-1), IL-2, IL-6, tumor necrosis factor-α, interferon (IFN)-γ, IFN-induced protein 10 kDa, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1, and IL-10 and so on, have been found in severe COVID-19. They participate in cascade amplification pathways of pro-inflammatory responses through complex inflammatory networks. Here, we review the involvements of these critical inflammatory cytokines in SARS-CoV-2 infection and discuss their potential roles in triggering or regulating cytokine storm, which can help to understand the pathogenesis of severe COVID-19. So far, there is rarely effective therapeutic strategy for patients with cytokine storm besides using glucocorticoids, which is proved to result in fatal side effects. Clarifying the roles of key involved cytokines in the complex inflammatory network of cytokine storm will help to develop an ideal therapeutic intervention, such as neutralizing antibody of certain cytokine or inhibitor of some inflammatory signal pathways.
Collapse
Affiliation(s)
- Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mingfu Tian
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Summan Sirajuddin
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muneeba Wali
- Department of Allied Health Sciences, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Jinbiao Liu
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pan Pan
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Zhen Luo
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Qiwei Zhang
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Ge Yang
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Yongkui Li
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| |
Collapse
|
36
|
Askari H, Rabiei F, Lohrasbi F, Ghadir S, Ghasemi-Kasman M. The Latest Cellular and Molecular Mechanisms of COVID-19 on Non-Lung Organs. Brain Sci 2023; 13:brainsci13030415. [PMID: 36979225 PMCID: PMC10046222 DOI: 10.3390/brainsci13030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Understanding the transmission pathways of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will aid in developing effective therapies directed at the virus’s life cycle or its side effects. While severe respiratory distress is the most common symptom of a coronavirus 2019 (COVID-19) infection, the virus is also known to cause damage to almost every major organ and system in the body. However, it is not obvious whether pathological changes in extra-respiratory organs are caused by direct infection, indirect, or combination of these effects. In this narrative review, we first elaborate on the characteristics of SARS-CoV-2, followed by the mechanisms of this virus on various organs such as brain, eye, and olfactory nerve and different systems such as the endocrine and gastrointestinal systems.
Collapse
Affiliation(s)
- Hamid Askari
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Fatemeh Rabiei
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Fatemeh Lohrasbi
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Sara Ghadir
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Correspondence: ; Tel./Fax: +98-11-32190557
| |
Collapse
|
37
|
Theoharides TC, Kempuraj D. Role of SARS-CoV-2 Spike-Protein-Induced Activation of Microglia and Mast Cells in the Pathogenesis of Neuro-COVID. Cells 2023; 12:688. [PMID: 36899824 PMCID: PMC10001285 DOI: 10.3390/cells12050688] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). About 45% of COVID-19 patients experience several symptoms a few months after the initial infection and develop post-acute sequelae of SARS-CoV-2 (PASC), referred to as "Long-COVID," characterized by persistent physical and mental fatigue. However, the exact pathogenetic mechanisms affecting the brain are still not well-understood. There is increasing evidence of neurovascular inflammation in the brain. However, the precise role of the neuroinflammatory response that contributes to the disease severity of COVID-19 and long COVID pathogenesis is not clearly understood. Here, we review the reports that the SARS-CoV-2 spike protein can cause blood-brain barrier (BBB) dysfunction and damage neurons either directly, or via activation of brain mast cells and microglia and the release of various neuroinflammatory molecules. Moreover, we provide recent evidence that the novel flavanol eriodictyol is particularly suited for development as an effective treatment alone or together with oleuropein and sulforaphane (ViralProtek®), all of which have potent anti-viral and anti-inflammatory actions.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
38
|
Barnett KC, Xie Y, Asakura T, Song D, Liang K, Taft-Benz SA, Guo H, Yang S, Okuda K, Gilmore RC, Loome JF, Oguin Iii TH, Sempowski GD, Randell SH, Heise MT, Lei YL, Boucher RC, Ting JPY. An epithelial-immune circuit amplifies inflammasome and IL-6 responses to SARS-CoV-2. Cell Host Microbe 2023; 31:243-259.e6. [PMID: 36563691 PMCID: PMC9731922 DOI: 10.1016/j.chom.2022.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/12/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Elevated levels of cytokines IL-1β and IL-6 are associated with severe COVID-19. Investigating the underlying mechanisms, we find that while primary human airway epithelia (HAE) have functional inflammasomes and support SARS-CoV-2 replication, they are not the source of IL-1β released upon infection. In leukocytes, the SARS-CoV-2 E protein upregulates inflammasome gene transcription via TLR2 to prime, but not activate, inflammasomes. SARS-CoV-2-infected HAE supply a second signal, which includes genomic and mitochondrial DNA, to stimulate leukocyte IL-1β release. Nuclease treatment, STING, and caspase-1 inhibition but not NLRP3 inhibition blocked leukocyte IL-1β release. After release, IL-1β stimulates IL-6 secretion from HAE. Therefore, infection alone does not increase IL-1β secretion by either cell type. Rather, bi-directional interactions between the SARS-CoV-2-infected epithelium and immune bystanders stimulates both IL-1β and IL-6, creating a pro-inflammatory cytokine circuit. Consistent with these observations, patient autopsy lungs show elevated myeloid inflammasome gene signatures in severe COVID-19.
Collapse
Affiliation(s)
- Katherine C Barnett
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuying Xie
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Takanori Asakura
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dingka Song
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kaixin Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sharon A Taft-Benz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haitao Guo
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuangshuang Yang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rodney C Gilmore
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer F Loome
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | - Scott H Randell
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Mark T Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yu Leo Lei
- Department of Periodontics and Oral Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48104, USA; Department of Otolaryngology-Head and Neck Surgery, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
39
|
Batiha GES, Al-kuraishy HM, Al-Gareeb AI, Alruwaili M, AlRuwaili R, Albogami SM, Alorabi M, Saad HM, Simal-Gandara J. Targeting of neuroinflammation by glibenclamide in Covid-19: old weapon from arsenal. Inflammopharmacology 2023; 31:1-7. [PMID: 36418600 PMCID: PMC9685016 DOI: 10.1007/s10787-022-01087-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022]
Abstract
In coronavirus disease 2019 (Covid-19) era, neuroinflammation may develop due to neuronal tropism of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and/or associated immune activation, cytokine storm, and psychological stress. SARS-CoV-2 infection and linked cytokine storm may cause blood-brain barrier (BBB) injury through which activated immune cells and SARS-CoV-2 can pass into the brain causing activation of glial cells with subsequent neuroinflammation. Different therapeutic regimens were suggested to alleviate Covid-19-induced neuroinflammation. Since glibenclamide has anti-inflammatory and neuroprotective effects, it could be effective in mitigation of SARS-CoV-2 infection-induced neuroinflammation. Glibenclamide is a second-generation drug from the sulfonylurea family, which acts by inhibiting the adenosine triphosphate (ATP)-sensitive K channel in the regulatory subunit of type 1 sulfonylurea receptor (SUR-1) in pancreatic β cells. Glibenclamide reduces neuroinflammation and associated BBB injury by inhibiting the nod-like receptor pyrin 3 (NLRP3) inflammasome, oxidative stress, and microglial activation. Therefore, glibenclamide through inhibition of NLRP3 inflammasome, microglial activation, and oxidative stress may attenuate SARS-CoV-2-mediated neuroinflammation.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| | - Hayder M. Al-kuraishy
- Professor in department of clinical pharmacology and medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Professor in department of clinical pharmacology and medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Raed AlRuwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Sarah M. Albogami
- Department of Biotechnology, College of Science, Taif University, P.O.Box 11099, Taif, 21944 Saudi Arabia
| | - Mohammed Alorabi
- Department of Biotechnology, College of Science, Taif University, P.O.Box 11099, Taif, 21944 Saudi Arabia
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744 Egypt
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| |
Collapse
|
40
|
Bell T, Crowe M, Novack T, Davis RD, Stavrinos D. Severity and correlates of brain fog in people with traumatic brain injury. Res Nurs Health 2023; 46:136-147. [PMID: 36504287 PMCID: PMC10851910 DOI: 10.1002/nur.22280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/03/2022] [Accepted: 11/19/2022] [Indexed: 12/14/2022]
Abstract
Brain fog is one symptom that has been underexplored in traumatic brain injury (TBI). We explored the cognitive and affective correlates of brain fog in people with symptomatic mild TBI (n = 15), moderate-to-severe TBI (n = 15), and a healthy control group (n = 16). Measures across the studies assessed "brain fog" (Mental Clutter Scale), objective cognition (Useful Field of View® and Cogstate Brief Battery®), post-concussive symptoms (Post-Concussion Symptom Scale), and depressive symptoms (Profile of Moods Scale). Brain fog was higher in symptomatic mild TBI and moderate-to-severe TBI compared with healthy controls. Greater brain fog corresponded to greater depressive symptoms in symptomatic mild TBI. Greater brain fog corresponded to poorer episodic memory and working memory in moderate-to-severe TBI. Brain fog appears to reflect challenges in recovery, including depressive symptoms and worse cognitive function. Screening for brain fog might be worthwhile in people with brain injuries.
Collapse
Affiliation(s)
- Tyler Bell
- Department of Psychiatry, University of California, San Diego
| | - Michael Crowe
- Department of Psychology, University of Alabama at Birmingham
| | - Thomas Novack
- Department of Physical Medicine & Rehabilitation, University of Alabama at Birmingham
| | | | | |
Collapse
|
41
|
Wismans LV, Lopuhaä B, de Koning W, Moeniralam H, van Oosterhout M, Ambarus C, Hofman FN, Kuiken T, Endeman H, Mustafa DAM, von der Thüsen JH. Increase of mast cells in COVID-19 pneumonia may contribute to pulmonary fibrosis and thrombosis. Histopathology 2023; 82:407-419. [PMID: 36366933 PMCID: PMC9877713 DOI: 10.1111/his.14838] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/10/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
AIMS Lung tissue from COVID-19 patients shares similar histomorphological features with chronic lung allograft disease, also suggesting activation of autoimmune-related pathways in COVID-19. To more clearly understand the underlying spectrum of pathophysiology in COVID-19 pneumonia, we analysed mRNA expression of autoimmune-related genes in post-mortem lung tissue from COVID-19 patients. METHODS AND RESULTS Formalin-fixed, paraffin-embedded lung tissue samples of 18 COVID-19 patients and eight influenza patients were used for targeted gene expression profiling using NanoString technology. Multiplex immunofluorescence for tryptase and chymase was applied for validation. Genes related to mast cells were significantly increased in COVID-19. This finding was strengthened by multiplex immunofluorescence also showing a significant increase of tryptase- and chymase-positive cells in COVID-19. Furthermore, receptors for advanced glycation end-products (RAGE) and pro-platelet basic protein (PPBP) were up-regulated in COVID-19 compared to influenza. Genes associated with Type I interferon signalling showed a significant correlation to detected SARS-CoV2 pathway-related genes. The comparison of lung tissue samples from both groups based on the presence of histomorphological features indicative of acute respiratory distress syndrome did not result in finding any specific gene or pathways. CONCLUSION Two separate means of measuring show a significant increase of mast cells in SARS-CoV-2-infected lung tissue compared to influenza. Additionally, several genes involved in fibrosis and thrombosis, among which are RAGE and PPBP, are up-regulated in COVID-19. As mast cells are able to induce thrombosis and fibrosis, they may play an important role in the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Leonoor V Wismans
- Present address:
Department of SurgeryErasmus Medical CenterRotterdamthe Netherlands,The Tumor Immuno‐Pathology Laboratory, Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands
| | - Boaz Lopuhaä
- Present address:
Department of SurgeryErasmus Medical CenterRotterdamthe Netherlands,Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands
| | - Willem de Koning
- The Tumor Immuno‐Pathology Laboratory, Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands,Clinical Bioinformatics Unit, Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| | - Hazra Moeniralam
- Department of Internal Medicine and Intensive CareSt. Antonius HospitalNieuwegeinthe Netherlands
| | | | - Carmen Ambarus
- Department of Pathology DNASt. Antonius HospitalNieuwegeinthe Netherlands
| | - Frederik N Hofman
- Department of Cardiothoracic SurgerySt. Antonius HospitalNieuwegeinthe Netherlands
| | - Thijs Kuiken
- Department of ViroscienceErasmus Medical CenterRotterdamthe Netherlands
| | - Henrik Endeman
- Department of Adult Intensive CareErasmus Medical CenterRotterdamthe Netherlands
| | - Dana A M Mustafa
- The Tumor Immuno‐Pathology Laboratory, Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands,Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands
| | - Jan H von der Thüsen
- Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands
| |
Collapse
|
42
|
Li XY, Liu M, Fu YJ, Jiang YJ, Zhang ZN. Alterations in levels of cytokine following treatment to predict outcome of sepsis: A meta-analysis. Cytokine 2023; 161:156056. [PMID: 36240721 DOI: 10.1016/j.cyto.2022.156056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The mortality rate of patients with sepsis has been increasing in recent years. Alterations of biomarkers levels during treatment are important in evaluating treatment efficacy and predicting outcomes in sepsis. This meta-analysis investigated the relationship between changes in cytokine levels after treatment compared with those on hospital admission, and their relationship with the prognosis of patients with sepsis. METHODS From conception until August 4, 2021, a complete literature search of the PubMed, Web of Science, and Cochrane Library electronic databases was done. Observational studies where the outcomes of sepsis patients were divided into non-survivors and survivors and which reported cytokine levels at least before treatment in ICU were included in the current study. Standardized mean difference (SMD) with 95% confidence intervals (CI) values from individual studies were pooled using a random-effects model. Quality assessment, subgroup analysis, publication bias, and sensitivity analyses were all carried out. RESULTS A total of 2570 patients with sepsis from 25 eligible studies were included, and 14 of them measured the cytokine levels before and after treatment in ICU. Among IL-6, TNF-α, IL-1β and IL-10 levels, those of IL-6 were significantly lower after treatment in ICU than at baseline in patients with sepsis in the survival group (SMD = -0.69, P < 0.0001), but were comparable in the non-survival group (SMD = -0.99, P = 0.0575). Similarly, post-treatment TNF-α levels were significantly lower than those at baseline only in patients with sepsis in the survival group (SMD = -0.44, P < 0.0001), but not in the non-survival group (SMD =-0.17, P = 0.0842). CONCLUSION This meta-analysis shows that reduced IL-6 and TNF-α levels after sepsis treatment in ICU may be indicators of better prognosis and survival of patients with sepsis.
Collapse
Affiliation(s)
- Xin-Yao Li
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China
| | - Mei Liu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China
| | - Ya-Jing Fu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China
| | - Yong-Jun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China
| | - Zi-Ning Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China.
| |
Collapse
|
43
|
Khanahmadi M, Khayatan D, Guest PC, Hashemian S, Abdolghaffari AH, Sahebkar A. The Relationship Between Psoriasis, COVID-19 Infection and Vaccination During Treatment of Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:339-355. [PMID: 37378776 DOI: 10.1007/978-3-031-28012-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Since the outbreak of the COVID-19 pandemic in December 2019, scientists worldwide have been looking for a way to control this global threat. One of the most successful and practical solutions has been the development and worldwide distribution of the COVID-19 vaccines. However, in a small percentage of cases, vaccination can lead to de novo development or exacerbation of immune or inflammatory conditions such as psoriasis. Due to the immunomodulatory nature of this disease, people affected by psoriasis and other related skin conditions have been encouraged to receive COVID-19 vaccines, which are immunomodulatory by nature. As such, dermatological reactions are possible in these patients, and cases of onset, exacerbation or change in the type of psoriasis have been observed in patients administered with COVID-19 vaccines. Considering the rarity and minor nature of some of these cutaneous reactions to COVID-19 vaccination, there is a general consensus that the benefits of vaccination outweigh the potential risks of experiencing such side effects. Nevertheless, healthcare workers who administer vaccines should be made aware of the potential risks and advise recipients accordingly. Furthermore, we suggest careful monitoring for potentially deleterious autoimmune and hyperinflammatory responses using point-of-care biomarker monitoring.
Collapse
Affiliation(s)
- Maryam Khanahmadi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Paul C Guest
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Somayyeh Hashemian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, Karaj, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Shin SW, Cho IH. Panax ginseng as a potential therapeutic for neurological disorders associated with COVID-19; Toward targeting inflammasome. J Ginseng Res 2023; 47:23-32. [PMID: 36213093 PMCID: PMC9529349 DOI: 10.1016/j.jgr.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/15/2022] [Accepted: 09/27/2022] [Indexed: 01/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious respiratory disease caused by a severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). SARS-CoV-2 infection may cause clinical manifestations of multiple organ damage, including various neurological syndromes. There are currently two oral antiviral drugs-Paxlovid and molnupiravir-that are recognized to treat COVID-19, but there are still no drugs that can specifically fight the challenges of SARS-CoV-2 variants. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome is a multimolecular complex that can sense heterogeneous pathogen-associated molecular patterns associated with neurological disorders. The NLRP3 activation stimulates the production of caspase-1-mediated interleukin (IL)-1β, IL-18, and other cytokines in immune cells. Panax (P.) ginseng is a medicinal plant that has traditionally been widely used to boost immunity and treat various pathological conditions in the nervous system due to its safety and anti-inflammatory/oxidant/viral activities. Several recent reports have indicated that P. ginseng and its active ingredients may regulate NLRP3 inflammasome activation in the nervous system. Therefore, this review article discusses the current knowledge regarding the pathogenesis of neurological disorders related to COVID-19 and NLRP3 inflammasome activation and the possibility of using P. ginseng in a strategy targeting this pathway to treat neurological disorders.
Collapse
Affiliation(s)
- Seo Won Shin
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ik Hyun Cho
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea,Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea,Corresponding author. D.V.M. & Ph.D. Department of Convergence Medical Science and Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
45
|
Wan KS, Sundram ER, Abdul Haddi AA, Dashuki AR, Ahad A, John R, Abdul Wahid MR, Ungku Halmie UIF, Ibrahim FE, Abdul Rahim NB. Long COVID active case detection initiative among COVID-19 patients in Port Dickson, Malaysia: a retrospective study on the positive outcomes, the proportion of patients with long COVID and its associated factors. PeerJ 2023; 11:e14742. [PMID: 36915663 PMCID: PMC10007971 DOI: 10.7717/peerj.14742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/23/2022] [Indexed: 03/16/2023] Open
Abstract
Background Long COVID is new or ongoing symptoms at four weeks or more after the start of acute COVID-19. However, the prevalence and factors associated with long COVID are largely unknown in Malaysia. We aim to determine the proportion and factors associated with long COVID among COVID-19 patients in Port Dickson, Malaysia. The positive outcomes of our long COVID active detection initiative were also described. Methods This was a retrospective analysis of long COVID data collected by the Port Dickson District Health Office between 1 September 2021 to 31 October 2021. Monitoring long COVID symptoms was our quality improvement initiative to safeguard residents' health in the district. The study population was patients previously diagnosed with COVID-19 who resided in Port Dickson. The inclusion criteria were adults aged 18 years and above and were in the fifth week (day 29 to 35) post-COVID-19 diagnosis during the data collection period. We called all consecutive eligible patients to inquire regarding long COVID symptoms. Long COVID was defined as new or ongoing symptoms lasting more than 28 days from the date of positive SARS-CoV-2 by polymerase chain reaction test. Binary multivariate logistic regression was conducted to determine factors associated with long COVID. Results Among 452 patients, they were predominantly male (54.2%), Malays (68.8%) and aged 18-29 years (58.6%). A total of 27.4% (95% CI [23.4-31.8]) of patients experienced long COVID symptoms and were referred to government clinics. The most frequent long COVID symptoms experienced were fatigue (54.0%), cough (20.2%), muscle pain (18.5%), headache (17.7%) and sleep disturbance (16.1%). Females, patients with underlying cardiovascular disease, asthma and chronic obstructive airway disease, those who received symptomatic care, and patients with myalgia and headaches at COVID-19 diagnosis were more likely to have long COVID. Three patients with suspected severe mental health problems were referred to the district psychologist, and ten patients with no/incomplete vaccination were referred for vaccination. Conclusion Long COVID is highly prevalent among COVID-19 patients in Port Dickson, Malaysia. Long-term surveillance and management of long COVID, especially among the high-risk groups, are needed as we transition to living with COVID-19.
Collapse
Affiliation(s)
- Kim Sui Wan
- Institute for Public Health, National Institutes of Health, Shah Alam, Selangor, Malaysia.,Port Dickson District Health Office, Ministry of Health Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - Esther Rishma Sundram
- Port Dickson District Health Office, Ministry of Health Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - Ammar Amsyar Abdul Haddi
- Port Dickson District Health Office, Ministry of Health Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - Abdul Rahman Dashuki
- Port Dickson District Health Office, Ministry of Health Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - Azainorsuzila Ahad
- Port Dickson District Health Office, Ministry of Health Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - Rowena John
- Port Dickson District Health Office, Ministry of Health Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | | | | | - Farah Edura Ibrahim
- Port Dickson District Health Office, Ministry of Health Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - Nachia Banu Abdul Rahim
- Port Dickson District Health Office, Ministry of Health Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| |
Collapse
|
46
|
Lei S, Chen X, Wu J, Duan X, Men K. Small molecules in the treatment of COVID-19. Signal Transduct Target Ther 2022; 7:387. [PMID: 36464706 PMCID: PMC9719906 DOI: 10.1038/s41392-022-01249-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and Mpro, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed.
Collapse
Affiliation(s)
- Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohua Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
47
|
First-episode psychotic disorders in the wake of the COVID-19 pandemic: a descriptive review of casereports. Acta Neuropsychiatr 2022; 34:289-310. [PMID: 35357298 DOI: 10.1017/neu.2022.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Since the onset of COVID-19 pandemic, many case reports and case series dealt with new-onset psychotic disorders in patients either infected with SARS-CoV-2 or thematically linked to the pandemic, but without an infection. Our aim was to provide a comprehensive collection of these reports to illustrate the nature of these psychoses. METHODS We conducted a literature search in MEDLINE, Embase, PsycINFO, using search terms regarding first-episode psychotic disorders in the context of corona. RESULTS 96 case reports or case series covering 146 patients (62 without and 84 with SARS-CoV-2 infection) were found. Compared to patients without infection, patients with infection showed significantly more often visual hallucinations (28.6% vs 8.1%), confusion (36.9% vs 11.3%), an acute onset of illness (88.5% vs 59.6%) and less often depression (13.1% vs 35.5%) and a delusional content related to the pandemic (29.5% vs 78.3%). Both groups had an equally favourable outcome with a duration of psychosis ≤2 weeks in half and full remission in two-thirds of patients. In patients with infection, signs of inflammation were reported in 78.3% and increased CRP in 58.6%. While reports on patients with infection are continuously published, no report about patients without infection was found after July 2020. CONCLUSION Cases without infection were considered reactive and originated all from the first wave of the corona pandemic. In cases with infection, inflammation was considered as the main pathogenetic factor but was not found in all patients. Diagnosis was impeded by the overlap of psychosis with delirium.
Collapse
|
48
|
Bogachev VY, Boldin BV, Turkin PY, Dzhenina OV. COVID-19-associated phlebopathy as a current problem of modern phlebology. AMBULATORNAYA KHIRURGIYA = AMBULATORY SURGERY (RUSSIA) 2022. [DOI: 10.21518/1995-1477-2022-19-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Введение. SARS-CoV-2 сопровождается развитием дисфункции венозного эндотелия, которая может привести к развитию персистирующей флебопатии нижних конечностей, снижаю щей качество жизни пациентов.Цель. Оценить эффективность фармакологической терапии пациентов с постковидной флебопатией.Introduction. SARS-CoV-2 is accompanied by the development of venous endothelial dysfunction, which can lead to the development of persistent phlebopathy of the lower limbs, reducing the quality of life of patients.Objective. To evaluate the efficacy of pharmacological therapy in patients with postcocclusive phlebopathy.Materials and methods. 178 patients (125 women), mean age 34.8 ± 3.2 years, who underwent SARS-CoV-2, for their first veno-specific complaints received micronized purified flavonoid fraction (MPFF) 1,000 mg per day for 90 days. Complaints were monitored using a 10-cm visual analog scale and the CIVIQ-20 questionnaire. All patients underwent ultrasound examination of the venous system of both lower extremities and photoplethysmography. Laboratory biochemical examination with determination of endothelial dysfunction marker levels was performed in 30 patients before and after treatment.Results. After 90 days of phlebotropic therapy, there was a significant reduction in the severity of all venous-specific complaints, except for intradermal vein dilation. The global quality of life index increased from 64.4 ± 11.2 to 86.6 ± 9.1% (p < 0.001). There was an improvement in photoplethysmography (PPG) scores. Return blood-flow time and tibial venous muscle pump strength increased significantly (p < 0.05) by 4.3 s and 3.5%, respectively. The 30 patients who underwent biochemical examination in the first blood samples obtained from the great saphenous vein showed a significant increase in IL-1 concentration (7.8 ± 0, 7 pg/ml), IL-6 (18.7 ± 1.8 pg/ml), VEGF (187.8 ± 11.6 pg/ml), TNF (7.8 ± 0.9 pg/ml), histamine (22.4 ± 11.4 nmol/L) and hsCRB (5.4 ± 0.3 mg/L), indicating that a proinflammatory phenotype of venous endothelium was formed. After 90 days of MOFF administration, these indices significantly decreased. The levels of IL-1 and IL-6 decreased by 3.2 and 10.4 pg/ml, respectively, the values of VEGF and TNF decreased by 114.6 pg/ml and 2.9 pg/ml. There was a gradual normalization of histamine and hsCRB to 6.1 ± 4.1 nmol/L and 1.1 ± 0.9 mg/L.Conclusions. The data obtained indicate that the appearance of veno-specific symptoms and syndromes in patients who have undergone SARS-CoV-2 may be due to the development of phlebopathy, the correction of which requires the use of pharmacological drugs with relevant mechanisms of action.
Collapse
Affiliation(s)
- V. Yu. Bogachev
- Pirogov Russian National Research Medical University; First Phlebological Center
| | - B. V. Boldin
- Pirogov Russian National Research Medical University
| | - P. Yu. Turkin
- Pirogov Russian National Research Medical University; First Phlebological Center
| | | |
Collapse
|
49
|
Lee KY. Common immunopathogenesis of central nervous system diseases: the protein-homeostasis-system hypothesis. Cell Biosci 2022; 12:184. [PMCID: PMC9668226 DOI: 10.1186/s13578-022-00920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/30/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractThere are hundreds of central nervous system (CNS) diseases, but there are few diseases for which the etiology or pathogenesis is understood as well as those of other organ-specific diseases. Cells in the CNS are selectively protected from external and internal insults by the blood–brain barrier. Thus, the neuroimmune system, including microglia and immune proteins, might control external or internal insults that the adaptive immune system cannot control or mitigate. The pathologic findings differ by disease and show a state of inflammation that reflects the relationship between etiological or inflammation-inducing substances and corresponding immune reactions. Current immunological concepts about infectious diseases and infection-associated immune-mediated diseases, including those in the CNS, can only partly explain the pathophysiology of disease because they are based on the idea that host cell injury is caused by pathogens. Because every disease involves etiological or triggering substances for disease-onset, the protein-homeostasis-system (PHS) hypothesis proposes that the immune systems in the host control those substances according to the size and biochemical properties of the substances. In this article, I propose a common immunopathogenesis of CNS diseases, including prion diseases, Alzheimer’s disease, and genetic diseases, through the PHS hypothesis.
Collapse
|
50
|
Saikarthik J, Saraswathi I, Alarifi A, Al-Atram AA, Mickeymaray S, Paramasivam A, Shaikh S, Jeraud M, Alothaim AS. Role of neuroinflammation mediated potential alterations in adult neurogenesis as a factor for neuropsychiatric symptoms in Post-Acute COVID-19 syndrome-A narrative review. PeerJ 2022; 10:e14227. [PMID: 36353605 PMCID: PMC9639419 DOI: 10.7717/peerj.14227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
Persistence of symptoms beyond the initial 3 to 4 weeks after infection is defined as post-acute COVID-19 syndrome (PACS). A wide range of neuropsychiatric symptoms like anxiety, depression, post-traumatic stress disorder, sleep disorders and cognitive disturbances have been observed in PACS. The review was conducted based on PRISMA-S guidelines for literature search strategy for systematic reviews. A cytokine storm in COVID-19 may cause a breach in the blood brain barrier leading to cytokine and SARS-CoV-2 entry into the brain. This triggers an immune response in the brain by activating microglia, astrocytes, and other immune cells leading to neuroinflammation. Various inflammatory biomarkers like inflammatory cytokines, chemokines, acute phase proteins and adhesion molecules have been implicated in psychiatric disorders and play a major role in the precipitation of neuropsychiatric symptoms. Impaired adult neurogenesis has been linked with a variety of disorders like depression, anxiety, cognitive decline, and dementia. Persistence of neuroinflammation was observed in COVID-19 survivors 3 months after recovery. Chronic neuroinflammation alters adult neurogenesis with pro-inflammatory cytokines supressing anti-inflammatory cytokines and chemokines favouring adult neurogenesis. Based on the prevalence of neuropsychiatric symptoms/disorders in PACS, there is more possibility for a potential impairment in adult neurogenesis in COVID-19 survivors. This narrative review aims to discuss the various neuroinflammatory processes during PACS and its effect on adult neurogenesis.
Collapse
Affiliation(s)
- Jayakumar Saikarthik
- Department of Basic Medical Sciences, College of Dentistry, Al Zulfi, Majmaah University, Al-Majmaah, Riyadh, Kingdom of Saudi Arabia,Department of Medical Education, College of Dentistry, Al Zulfi, Majmaah University, Al Majmaah, Riyadh, Kingdom of Saudi Arabia
| | - Ilango Saraswathi
- Department of Physiology, Madha Medical College and Research Institute, Chennai, Tamil Nadu, India
| | - Abdulaziz Alarifi
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,King Abdullah International Medical Research Centre, Riyadh, Saudi Arabia
| | - Abdulrahman A. Al-Atram
- Department of Psychiatry, College of Medicine, Majmaah University, Al Majmaah, Riyadh, Kingdom of Saudi Arabia
| | - Suresh Mickeymaray
- Department of Biology, College of Science, Al Zulfi, Majmaah University, Al Majmaah, Riyadh, Kingdom of Saudi Arabia
| | - Anand Paramasivam
- Department of Physiology, RVS Dental College and Hospital, Kumaran Kottam Campus, Kannampalayan, Coimbatore, Tamilnadu, India
| | - Saleem Shaikh
- Department of Medical Education, College of Dentistry, Al Zulfi, Majmaah University, Al Majmaah, Riyadh, Kingdom of Saudi Arabia,Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Al Zulfi, Majmaah University, Al Majmaah, Riyadh, Kingdom of Saudi Arabia
| | - Mathew Jeraud
- Department of Physiology, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Abdulaziz S. Alothaim
- Department of Biology, College of Science, Al Zulfi, Majmaah University, Al Majmaah, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|