1
|
Gáspár Z, Szabó BG, Ceglédi A, Lakatos B. Human herpesvirus reactivation and its potential role in the pathogenesis of post-acute sequelae of SARS-CoV-2 infection. GeroScience 2024:10.1007/s11357-024-01323-9. [PMID: 39207648 DOI: 10.1007/s11357-024-01323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
The emergence of SARS-CoV-2 has precipitated a global pandemic with substantial long-term health implications, including the condition known as post-acute sequelae of SARS-CoV-2 infection (PASC), commonly referred to as Long COVID. PASC is marked by persistent symptoms such as fatigue, neurological issues, and autonomic dysfunction that persist for months beyond the acute phase of COVID-19. This review examines the potential role of herpesvirus reactivation, specifically Epstein-Barr virus (EBV) and cytomegalovirus (CMV), in the pathogenesis of PASC. Elevated antibody titers and specific T cell responses suggest recent herpesvirus reactivation in some PASC patients, although viremia is not consistently detected. SARS-CoV-2 exhibits endothelial trophism, directly affecting the vascular endothelium and contributing to microvascular pathologies. These pathologies are significant in PASC, where microvascular dysfunction may underlie various chronic symptoms. Similarly, herpesviruses like CMV also exhibit endothelial trophism, which may exacerbate endothelial damage when reactivated. Evidence suggests that EBV and CMV reactivation could indirectly contribute to the immune dysregulation, immunosenescence, and autoimmune responses observed in PASC. Additionally, EBV may play a role in the genesis of neurological symptoms through creating mitochondrial dysfunction, though direct confirmation remains elusive. The reviewed evidence suggests that while herpesviruses may not play a direct role in the pathogenesis of PASC, their potential indirect effects, especially in the context of endothelial involvement, warrant further investigation.
Collapse
Affiliation(s)
- Zsófia Gáspár
- School of PhD Studies, Semmelweis University, Üllői Street 26, 1085, Budapest, Hungary
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Flórián Street 5-7, 1097, Budapest, Hungary
| | - Bálint Gergely Szabó
- School of PhD Studies, Semmelweis University, Üllői Street 26, 1085, Budapest, Hungary.
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Flórián Street 5-7, 1097, Budapest, Hungary.
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Haematology, Semmelweis University, Albert Flórián Street 5-7, 1097, Budapest, Hungary.
| | - Andrea Ceglédi
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Flórián Street 5-7, 1097, Budapest, Hungary
| | - Botond Lakatos
- School of PhD Studies, Semmelweis University, Üllői Street 26, 1085, Budapest, Hungary
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Flórián Street 5-7, 1097, Budapest, Hungary
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Haematology, Semmelweis University, Albert Flórián Street 5-7, 1097, Budapest, Hungary
| |
Collapse
|
2
|
Prančlová V, Hönig V, Zemanová M, Růžek D, Palus M. Robust CXCL10/IP-10 and CCL5/RANTES Production Induced by Tick-Borne Encephalitis Virus in Human Brain Pericytes Despite Weak Infection. Int J Mol Sci 2024; 25:7892. [PMID: 39063134 PMCID: PMC11276942 DOI: 10.3390/ijms25147892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Tick-borne encephalitis virus (TBEV) targets the central nervous system (CNS), leading to potentially severe neurological complications. The neurovascular unit plays a fundamental role in the CNS and in the neuroinvasion of TBEV. However, the role of human brain pericytes, a key component of the neurovascular unit, during TBEV infection has not yet been elucidated. In this study, TBEV infection of the primary human brain perivascular pericytes was investigated with highly virulent Hypr strain and mildly virulent Neudoerfl strain. We used Luminex assay to measure cytokines/chemokines and growth factors. Both viral strains showed comparable replication kinetics, peaking at 3 days post infection (dpi). Intracellular viral RNA copies peaked at 6 dpi for Hypr and 3 dpi for Neudoerfl cultures. According to immunofluorescence staining, only small proportion of pericytes were infected (3% for Hypr and 2% for Neudoerfl), and no cytopathic effect was observed in the infected cells. In cell culture supernatants, IL-6 production was detected at 3 dpi, together with slight increases in IL-15 and IL-4, but IP-10, RANTES and MCP-1 were the main chemokines released after TBEV infection. These chemokines play key roles in both immune defense and immunopathology during TBE. This study suggests that pericytes are an important source of these signaling molecules during TBEV infection in the brain.
Collapse
Affiliation(s)
- Veronika Prančlová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic (V.H.)
- Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czech Republic
| | - Václav Hönig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic (V.H.)
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, CZ-62100 Brno, Czech Republic
| | - Marta Zemanová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic (V.H.)
| | - Daniel Růžek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic (V.H.)
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, CZ-62100 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic (V.H.)
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, CZ-62100 Brno, Czech Republic
| |
Collapse
|
3
|
Umar M, Rehman Y, Ambreen S, Mumtaz SM, Shaququzzaman M, Alam MM, Ali R. Innovative approaches to Alzheimer's therapy: Harnessing the power of heterocycles, oxidative stress management, and nanomaterial drug delivery system. Ageing Res Rev 2024; 97:102298. [PMID: 38604453 DOI: 10.1016/j.arr.2024.102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/10/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Alzheimer's disease (AD) presents a complex pathology involving amyloidogenic proteolysis, neuroinflammation, mitochondrial dysfunction, and cholinergic deficits. Oxidative stress exacerbates AD progression through pathways like macromolecular peroxidation, mitochondrial dysfunction, and metal ion redox potential alteration linked to amyloid-beta (Aβ). Despite limited approved medications, heterocyclic compounds have emerged as promising candidates in AD drug discovery. This review highlights recent advancements in synthetic heterocyclic compounds targeting oxidative stress, mitochondrial dysfunction, and neuroinflammation in AD. Additionally, it explores the potential of nanomaterial-based drug delivery systems to overcome challenges in AD treatment. Nanoparticles with heterocyclic scaffolds, like polysorbate 80-coated PLGA and Resveratrol-loaded nano-selenium, show improved brain transport and efficacy. Micellar CAPE and Melatonin-loaded nano-capsules exhibit enhanced antioxidant properties, while a tetra hydroacridine derivative (CHDA) combined with nano-radiogold particles demonstrates promising acetylcholinesterase inhibition without toxicity. This comprehensive review underscores the potential of nanotechnology-driven drug delivery for optimizing the therapeutic outcomes of novel synthetic heterocyclic compounds in AD management. Furthermore, the inclusion of various promising heterocyclic compounds with detailed ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) data provides valuable insights for planning the development of novel drug delivery treatments for AD.
Collapse
Affiliation(s)
- Mohammad Umar
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Yasir Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Subiya Ambreen
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Sayed Md Mumtaz
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Mohd Shaququzzaman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Mohammad Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Ruhi Ali
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India.
| |
Collapse
|
4
|
Savitz J, Goeckner BD, Ford BN, Kent Teague T, Zheng H, Harezlak J, Mannix R, Tugan Muftuler L, Brett BL, McCrea MA, Meier TB. The effects of cytomegalovirus on brain structure following sport-related concussion. Brain 2023; 146:4262-4273. [PMID: 37070698 PMCID: PMC10545519 DOI: 10.1093/brain/awad126] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
The neurotrophic herpes virus cytomegalovirus is a known cause of neuropathology in utero and in immunocompromised populations. Cytomegalovirus is reactivated by stress and inflammation, possibly explaining the emerging evidence linking it to subtle brain changes in the context of more minor disturbances of immune function. Even mild forms of traumatic brain injury, including sport-related concussion, are major physiological stressors that produce neuroinflammation. In theory, concussion could predispose to the reactivation of cytomegalovirus and amplify the effects of physical injury on brain structure. However, to our knowledge this hypothesis remains untested. This study evaluated the effect of cytomegalovirus serostatus on white and grey matter structure in a prospective study of athletes with concussion and matched contact-sport controls. Athletes who sustained concussion (n = 88) completed MRI at 1, 8, 15 and 45 days post-injury; matched uninjured athletes (n = 73) completed similar visits. Cytomegalovirus serostatus was determined by measuring serum IgG antibodies (n = 30 concussed athletes and n = 21 controls were seropositive). Inverse probability of treatment weighting was used to adjust for confounding factors between athletes with and without cytomegalovirus. White matter microstructure was assessed using diffusion kurtosis imaging metrics in regions previously shown to be sensitive to concussion. T1-weighted images were used to quantify mean cortical thickness and total surface area. Concussion-related symptoms, psychological distress, and serum concentration of C-reactive protein at 1 day post-injury were included as exploratory outcomes. Planned contrasts compared the effects of cytomegalovirus seropositivity in athletes with concussion and controls, separately. There was a significant effect of cytomegalovirus on axial and radial kurtosis in athletes with concussion but not controls. Cytomegalovirus positive athletes with concussion showed greater axial (P = 0.007, d = 0.44) and radial (P = 0.010, d = 0.41) kurtosis than cytomegalovirus negative athletes with concussion. Similarly, there was a significant association of cytomegalovirus with cortical thickness in athletes with concussion but not controls. Cytomegalovirus positive athletes with concussion had reduced mean cortical thickness of the right hemisphere (P = 0.009, d = 0.42) compared with cytomegalovirus negative athletes with concussion and showed a similar trend for the left hemisphere (P = 0.036, d = 0.33). There was no significant effect of cytomegalovirus on kurtosis fractional anisotropy, surface area, symptoms and C-reactive protein. The results raise the possibility that cytomegalovirus infection contributes to structural brain abnormalities in the aftermath of concussion perhaps via an amplification of concussion-associated neuroinflammation. More work is needed to identify the biological pathways underlying this process and to clarify the clinical relevance of this putative viral effect.
Collapse
Affiliation(s)
- Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, USA
| | - Bryna D Goeckner
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Bart N Ford
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - T Kent Teague
- Department of Psychiatry, The University of Oklahoma School of Community Medicine, Tulsa, OK 74135, USA
- Department of Surgery, The University of Oklahoma School of Community Medicine, Tulsa, OK 74135, USA
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Tulsa, OK 74135, USA
| | - Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, IN 47405, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - L Tugan Muftuler
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
5
|
Shi X. Research advances in cochlear pericytes and hearing loss. Hear Res 2023; 438:108877. [PMID: 37651921 PMCID: PMC10538405 DOI: 10.1016/j.heares.2023.108877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Pericytes are specialized mural cells surrounding endothelial cells in microvascular beds. They play a role in vascular development, blood flow regulation, maintenance of blood-tissue barrier integrity, and control of angiogenesis, tissue fibrosis, and wound healing. In recent decades, understanding of the critical role played by pericytes in retina, brain, lung, and kidney has seen significant progress. The cochlea contains a large population of pericytes. However, the role of cochlear pericytes in auditory pathophysiology is, by contrast, largely unknown. The present review discusses recent progress in identifying cochlear pericytes, mapping their distribution, and defining their role in regulating blood flow, controlling the blood-labyrinth barrier (BLB) and angiogenesis, and involvement in different types of hearing loss.
Collapse
Affiliation(s)
- Xiaorui Shi
- Department of Otolaryngology/Head & Neck Surgery, Oregon Hearing Research Center (NRC04), Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA.
| |
Collapse
|
6
|
Peluso MJ, Deveau TM, Munter SE, Ryder D, Buck A, Beck-Engeser G, Chan F, Lu S, Goldberg SA, Hoh R, Tai V, Torres L, Iyer NS, Deswal M, Ngo LH, Buitrago M, Rodriguez A, Chen JY, Yee BC, Chenna A, Winslow JW, Petropoulos CJ, Deitchman AN, Hellmuth J, Spinelli MA, Durstenfeld MS, Hsue PY, Kelly JD, Martin JN, Deeks SG, Hunt PW, Henrich TJ. Chronic viral coinfections differentially affect the likelihood of developing long COVID. J Clin Invest 2023; 133:e163669. [PMID: 36454631 PMCID: PMC9888380 DOI: 10.1172/jci163669] [Citation(s) in RCA: 97] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUNDThe presence and reactivation of chronic viral infections, such as EBV, CMV, and HIV, have been proposed as potential contributors to long COVID (LC), but studies in well-characterized postacute cohorts of individuals with COVID-19 over a longer time course consistent with current case definitions of LC are limited.METHODSIn a cohort of 280 adults with prior SARS-CoV-2 infection, we assessed the presence and types of LC symptoms and prior medical history (including COVID-19 history and HIV status) and performed serological testing for EBV and CMV using a commercial laboratory. We used covariate-adjusted binary logistic regression models to identify independent associations between variables and LC symptoms.RESULTSWe observed that LC symptoms, such as fatigue and neurocognitive dysfunction, at a median of 4 months following initial diagnosis were independently associated with serological evidence suggesting recent EBV reactivation (early antigen-diffuse IgG positivity) or high nuclear antigen (EBNA) IgG levels but not with ongoing EBV viremia. Serological evidence suggesting recent EBV reactivation (early antigen-diffuse IgG positivity) was most strongly associated with fatigue (OR = 2.12). Underlying HIV infection was also independently associated with neurocognitive LC (OR = 2.5). Interestingly, participants who had serologic evidence of prior CMV infection were less likely to develop neurocognitive LC (OR = 0.52).CONCLUSIONOverall, these findings suggest differential effects of chronic viral coinfections on the likelihood of developing LC and association with distinct syndromic patterns. Further assessment during the acute phase of COVID-19 is warranted.TRIAL REGISTRATIONLong-term Impact of Infection with Novel Coronavirus; ClinicalTrials.gov NCT04362150.FUNDINGThis work was supported by NIH/National Institute of Allergy and Infectious Diseases grants (3R01AI141003-03S1, R01AI158013, and K24AI145806); the Zuckerberg San Francisco General Hospital Department of Medicine and Division of HIV, Infectious Diseases, and Global Medicine; and the UCSF-Bay Area Center for AIDS Research (P30-AI027763).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fay Chan
- Division of Experimental Medicine, and
| | - Scott Lu
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine
| | - Viva Tai
- Division of HIV, Infectious Diseases, and Global Medicine
| | | | | | - Monika Deswal
- Division of HIV, Infectious Diseases, and Global Medicine
| | - Lynn H. Ngo
- Division of HIV, Infectious Diseases, and Global Medicine
| | | | | | | | - Brandon C. Yee
- Monogram Biosciences Inc., South San Francisco, California, USA
| | - Ahmed Chenna
- Monogram Biosciences Inc., South San Francisco, California, USA
| | - John W. Winslow
- Monogram Biosciences Inc., South San Francisco, California, USA
| | | | | | | | | | | | | | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | | | | | | |
Collapse
|
7
|
Gil E, Wall E, Noursadeghi M, Brown JS. Streptococcus pneumoniae meningitis and the CNS barriers. Front Cell Infect Microbiol 2023; 12:1106596. [PMID: 36683708 PMCID: PMC9845635 DOI: 10.3389/fcimb.2022.1106596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Streptococcus pneumoniae (SPN) is a globally significant cause of meningitis, the pathophysiology of which involves damage to the brain by both bacterial virulence factors and the host inflammatory response. In most cases of SPN meningitis bacteria translocate from the blood into the central nervous system (CNS). The principal site of SPN translocation into the CNS is not known, with possible portals of entry proposed to be the cerebral or meningeal blood vessels or the choroid plexus. All require SPN to bind to and translocate across the vascular endothelial barrier, and subsequently the basement membrane and perivascular structures, including an additional epithelial barrier in the case of the blood-CSF barrier. The presence of SPN in the CNS is highly inflammatory resulting in marked neutrophilic infiltration. The secretion of toxic inflammatory mediators by activated neutrophils within the CNS damages pathogen and host alike, including the non-replicative neurons which drives morbidity and mortality. As with the translocation of SPN, the recruitment of neutrophils into the CNS in SPN meningitis necessitates the translocation of neutrophils from the circulation across the vascular barrier, a process that is tightly regulated under basal conditions - a feature of the 'immune specialization' of the CNS. The brain barriers are therefore central to SPN meningitis, both through a failure to exclude bacteria and maintain CNS sterility, and subsequently through the active recruitment and/or failure to exclude circulating leukocytes. The interactions of SPN with these barriers, barrier inflammatory responses, along with their therapeutic implications, are explored in this review.
Collapse
Affiliation(s)
- Eliza Gil
- Division of Infection and Immunity, University College London, London, United Kingdom,*Correspondence: Eliza Gil,
| | - Emma Wall
- Francis Crick Institute, London, United Kingdom,UCLH Biomedical Research Centre, London, United Kingdom
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jeremy S. Brown
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
8
|
Abstract
There is increasingly compelling evidence that microorganisms may play an etiological role in the emergence of mental illness in a subset of the population. Historically, most work has focused on the neurotrophic herpesviruses, herpes simplex virus type 1 (HSV-1), cytomegalovirus (CMV), and Epstein-Barr virus (EBV) as well as the protozoan, Toxoplasma gondii. In this chapter, we provide an umbrella review of this literature and additionally highlight prospective studies that allow more mechanistic conclusions to be drawn. Next, we focus on clinical trials of anti-microbial medications for the treatment of psychiatric disorders. We critically evaluate six trials that tested the impact of anti-herpes medications on inflammatory outcomes in the context of a medical disorder, nine clinical trials utilizing anti-herpetic medications for the treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) or schizophrenia, and four clinical trials utilizing anti-parasitic medications for the treatment of schizophrenia. We then turn our attention to evidence for a gut dysbiosis and altered microbiome in psychiatric disorders, and the potential therapeutic effects of probiotics, including an analysis of more than 10 randomized controlled trials of probiotics in the context of schizophrenia, bipolar disorder (BD), and major depressive disorder (MDD).
Collapse
|
9
|
Sharma K, Zhang Y, Paudel KR, Kachelmeier A, Hansbro PM, Shi X. The Emerging Role of Pericyte-Derived Extracellular Vesicles in Vascular and Neurological Health. Cells 2022; 11:cells11193108. [PMID: 36231071 PMCID: PMC9563036 DOI: 10.3390/cells11193108] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Pericytes (PCs), as a central component of the neurovascular unit, contribute to the regenerative potential of the central nervous system (CNS) and peripheral nervous system (PNS) by virtue of their role in blood flow regulation, angiogenesis, maintenance of the BBB, neurogenesis, and neuroprotection. Emerging evidence indicates that PCs also have a role in mediating cell-to-cell communication through the secretion of extracellular vesicles (EVs). Extracellular vesicles are cell-derived, micro- to nano-sized vesicles that transport cell constituents such as proteins, nucleic acids, and lipids from a parent originating cell to a recipient cell. PC-derived EVs (PC-EVs) play a crucial homeostatic role in neurovascular disease, as they promote angiogenesis, maintain the integrity of the blood-tissue barrier, and provide neuroprotection. The cargo carried by PC-EVs includes growth factors such as endothelial growth factor (VEGF), connecting tissue growth factors (CTGFs), fibroblast growth factors, angiopoietin 1, and neurotrophic growth factors such as brain-derived neurotrophic growth factor (BDNF), neuron growth factor (NGF), and glial-derived neurotrophic factor (GDNF), as well as cytokines such as interleukin (IL)-6, IL-8, IL-10, and MCP-1. The PC-EVs also carry miRNA and circular RNA linked to neurovascular health and the progression of several vascular and neuronal diseases. Therapeutic strategies employing PC-EVs have potential in the treatment of vascular and neurodegenerative diseases. This review discusses current research on the characteristic features of EVs secreted by PCs and their role in neuronal and vascular health and disease.
Collapse
Affiliation(s)
- Kushal Sharma
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yunpei Zhang
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Allan Kachelmeier
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Xiaorui Shi
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence: ; Tel.: +1-503-494-2997
| |
Collapse
|
10
|
Effect of Cytomegalovirus on the Immune System: Implications for Aging and Mental Health. Curr Top Behav Neurosci 2022; 61:181-214. [PMID: 35871707 DOI: 10.1007/7854_2022_376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Human cytomegalovirus (HCMV) is a major modulator of the immune system leading to long-term changes in T-lymphocytes, macrophages, and natural killer (NK) cells among others. Perhaps because of this immunomodulatory capacity, HCMV infection has been linked with a host of deleterious effects including accelerated immune aging (premature mortality, increased expression of immunosenescence-linked markers, telomere shortening, speeding-up of epigenetic "clocks"), decreased vaccine immunogenicity, and greater vulnerability to infectious diseases (e.g., tuberculosis) or infectious disease-associated pathology (e.g., HIV). Perhaps not surprisingly given the long co-evolution between HCMV and humans, the virus has also been associated with beneficial effects, such as increased vaccine responsiveness, heterologous protection against infections, and protection against relapse in the context of leukemia. Here, we provide an overview of this literature. Ultimately, we focus on one other deleterious effect of HCMV, namely the emerging literature suggesting that HCMV plays a pathophysiological role in psychiatric illness, particularly depression and schizophrenia. We discuss this literature through the lens of psychological stress and inflammation, two well-established risk factors for psychiatric illness that are also known to predispose to reactivation of HCMV.
Collapse
|
11
|
Lebeau G, Ah-Pine F, Daniel M, Bedoui Y, Vagner D, Frumence E, Gasque P. Perivascular Mesenchymal Stem/Stromal Cells, an Immune Privileged Niche for Viruses? Int J Mol Sci 2022; 23:ijms23148038. [PMID: 35887383 PMCID: PMC9317325 DOI: 10.3390/ijms23148038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play a critical role in response to stress such as infection. They initiate the removal of cell debris, exert major immunoregulatory activities, control pathogens, and lead to a remodeling/scarring phase. Thus, host-derived ‘danger’ factors released from damaged/infected cells (called alarmins, e.g., HMGB1, ATP, DNA) as well as pathogen-associated molecular patterns (LPS, single strand RNA) can activate MSCs located in the parenchyma and around vessels to upregulate the expression of growth factors and chemoattractant molecules that influence immune cell recruitment and stem cell mobilization. MSC, in an ultimate contribution to tissue repair, may also directly trans- or de-differentiate into specific cellular phenotypes such as osteoblasts, chondrocytes, lipofibroblasts, myofibroblasts, Schwann cells, and they may somehow recapitulate their neural crest embryonic origin. Failure to terminate such repair processes induces pathological scarring, termed fibrosis, or vascular calcification. Interestingly, many viruses and particularly those associated to chronic infection and inflammation may hijack and polarize MSC’s immune regulatory activities. Several reports argue that MSC may constitute immune privileged sanctuaries for viruses and contributing to long-lasting effects posing infectious challenges, such as viruses rebounding in immunocompromised patients or following regenerative medicine therapies using MSC. We will herein review the capacity of several viruses not only to infect but also to polarize directly or indirectly the functions of MSC (immunoregulation, differentiation potential, and tissue repair) in clinical settings.
Collapse
Affiliation(s)
- Grégorie Lebeau
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Franck Ah-Pine
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Service Anatomo-Pathologie, CHU de la Réunion, 97400 Saint-Denis, France
| | - Matthieu Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Yosra Bedoui
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Damien Vagner
- Service de Médecine Interne, CHU de la Réunion, 97400 Saint-Denis, France;
| | - Etienne Frumence
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Philippe Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
- Correspondence:
| |
Collapse
|
12
|
Zheng H, Savitz J. Effect of Cytomegalovirus Infection on the Central Nervous System: Implications for Psychiatric Disorders. Curr Top Behav Neurosci 2022; 61:215-241. [PMID: 35505056 DOI: 10.1007/7854_2022_361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytomegalovirus (CMV) is a common herpesvirus that establishes lifelong latent infections and interacts extensively with the host immune system, potentially contributing to immune activation and inflammation. Given its proclivity for infecting the brain and its reactivation by inflammatory stimuli, CMV is well known for causing central nervous system complications in the immune-naïve (e.g., in utero) and in the immunocompromised (e.g., in neonates, individuals receiving transplants or cancer chemotherapy, or people living with HIV). However, its potentially pathogenic role in diseases that are characterized by more subtle immune dysregulation and inflammation such as psychiatric disorders is still a matter of debate. In this chapter, we briefly summarize the pathogenic role of CMV in immune-naïve and immunocompromised populations and then review the evidence (i.e., epidemiological studies, serological studies, postmortem studies, and recent neuroimaging studies) for a link between CMV infection and psychiatric disorders with a focus on mood disorders and schizophrenia. Finally, we discuss the potential mechanisms through which CMV may cause CNS dysfunction in the context of mental disorders and conclude with a summary of the current state of play as well as potential future research directions in this area.
Collapse
Affiliation(s)
- Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, OK, USA.
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA.,Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
13
|
Feng L, Fu S, Yao Y, Li Y, Xu L, Zhao Y, Luo L. Roles for c-Abl in postoperative neurodegeneration. Int J Med Sci 2022; 19:1753-1761. [PMID: 36313229 PMCID: PMC9608039 DOI: 10.7150/ijms.73740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022] Open
Abstract
The nonreceptor tyrosine kinase c-Abl is inactive under normal conditions. Upon activation, c-Abl regulates signaling pathways related to cytoskeletal reorganization. It plays a vital role in modulating cell protrusion, cell migration, morphogenesis, adhesion, endocytosis and phagocytosis. A large number of studies have also found that abnormally activated c-Abl plays an important role in a variety of pathologies, including various inflammatory diseases and neurodegenerative diseases. c-Abl also plays a crucial role in neurodevelopment and neurodegenerative diseases, mainly through mechanisms such as neuroinflammation, oxidative stress (OS), and Tau protein phosphorylation. Inhibiting expression or activity of this kinase has certain neuroprotective and anti-inflammatory effects and can also improve cognition and behavior. Blockers of this kinase may have good preventive and treatment effects on neurodegenerative diseases. Cognitive dysfunction after anesthesia is also closely related to the abovementioned mechanisms. We infer that alterations in the expression and activity of c-Abl may underlie postoperative cognitive dysfunction (POCD). This article summarizes the current understanding and research progress on the mechanisms by which c-Abl may be related to postoperative neurodegeneration.
Collapse
Affiliation(s)
- Long Feng
- Department of Anesthesiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China
| | - Shihui Fu
- Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China.,Department of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yao Yao
- Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, North Carolina, USA.,Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing, China
| | - Yulong Li
- Department of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Longhe Xu
- Department of Anesthesiology, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yali Zhao
- Central Laboratory, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China
| | - Leiming Luo
- Department of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
14
|
Zheng H, Ford BN, Kuplicki R, Burrows K, Hunt PW, Bodurka J, Kent Teague T, Irwin MR, Yolken RH, Paulus MP, Savitz J. Association between cytomegalovirus infection, reduced gray matter volume, and resting-state functional hypoconnectivity in major depressive disorder: a replication and extension. Transl Psychiatry 2021; 11:464. [PMID: 34493708 PMCID: PMC8423754 DOI: 10.1038/s41398-021-01558-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a neurotropic herpes virus known to cause neuropathology in patients with impaired immunity. Previously, we reported a reduction in the gray matter volume (GMV) of several brain regions in two independent samples of participants who were seropositive for HCMV (HCMV+) compared to matched participants who were seronegative for HCMV (HCMV-). In addition to an independent replication of the GMV findings, this study aimed to examine whether HCMV+ was associated with differences in resting-state functional connectivity (rsfMRI-FC). After balancing on 11 clinical/demographic variables using inverse probability of treatment weighting (IPTW), GMV and rsfMRI-FC were obtained from 99 participants with major depressive disorder (MDD) who were classified into 42 HCMV+ and 57 HCMV- individuals. Relative to the HCMV- group, the HCMV+ group showed a significant reduction of GMV in nine cortical regions. Volume reduction in the right lateral orbitofrontal cortex (standardized beta coefficient (SBC) = -0.32, [95%CI, -0.62 to -0.02]) and the left pars orbitalis (SBC = -0.34, [95%CI, -0.63 to -0.05]) in the HCMV+ group was also observed in the previous study. Regardless of the parcellation method or analytical approach, relative to the HCMV- group, the HCMV+ group showed hypoconnectivity between the hubs of the sensorimotor network (bilateral postcentral gyrus) and the hubs of the salience network (bilateral insula) with effect sizes ranging from SBC = -0.57 to -0.99. These findings support the hypothesis that a positive HCMV serostatus is associated with altered connectivity of regions that are important for stress and affective processing and further supports a possible etiological role of HCMV in depression.
Collapse
Affiliation(s)
- Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, OK, USA.
| | - Bart N Ford
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oklahoma State Univerisity, Department of Pharmacology and Physiology, Tulsa, OK, USA
| | | | | | - Peter W Hunt
- Department of Medicine, the University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - Jerzy Bodurka
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - T Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK, USA
- Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, OK, USA
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Michael R Irwin
- Cousins Center for Psychoneuroimmunology at UCLA, Los Angeles, CA, USA
- Semel Institute for Neuroscience at UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, Los Angeles, CA, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
15
|
Speth P, Jargosch M, Seiringer P, Schwamborn K, Bauer T, Scheerer C, Protzer U, Schmidt-Weber C, Biedermann T, Eyerich S, Garzorz-Stark N. Immunocompromised Patients with Therapy-Refractory Chronic Skin Diseases Show Reactivation of Latent Epstein‒Barr Virus and Cytomegalovirus Infection. J Invest Dermatol 2021; 142:549-558.e6. [PMID: 34480891 DOI: 10.1016/j.jid.2021.07.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
Reactivation of latent Epstein‒Barr virus (EBV) and/or Cytomegalovirus (CMV) infection is a dreaded complication in immunocompromised patients receiving hematopoietic stem cell transplantation. Evidence is sparse on whether subclinical reactivation of viral infection may also be of clinical relevance in dermatological patients. We screened patients (N = 206) suffering from chronic skin diseases for subclinical reactivation of EBV and CMV infection. We found that immunocompromised patients with therapy-refractory chronic skin diseases showed higher rates of subclinical reactivation of CMV and EBV infection (6.7% vs. 0% for EBV and 16.7% vs. 5.6% for CMV) and a higher prevalence of virus-specific DNA in skin tissue (30.8% vs. 0% for EBV and 21.4% vs. 0% for CMV) than nonimmunocompromised patients with chronic skin diseases. T cells isolated from lesional skin exhibited up to 14-fold increased proliferation with production of T helper type 1 and T helper type 17 cytokines on stimulation with viral proteins, providing evidence for possible aggravation of the underlying skin diseases by viral infection. Improvement of skin lesions in patients with reactivation of CMV infection (n = 4) was observed on antiviral treatment. Our data suggest that subclinical reactivation of EBV and/or CMV infection is an under-recognized condition in the dermatological patient population with chronic skin diseases.
Collapse
Affiliation(s)
- Philipp Speth
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Manja Jargosch
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Peter Seiringer
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kristina Schwamborn
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Tanja Bauer
- Institute of Virology, Technical University/Helmholtz Center Munich, Munich, Germany
| | - Cora Scheerer
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University/Helmholtz Center Munich, Munich, Germany
| | - Carsten Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefanie Eyerich
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Natalie Garzorz-Stark
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, Munich, Germany; Division of Dermatology and Venereology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
16
|
Butsabong T, Felippe M, Campagnolo P, Maringer K. The emerging role of perivascular cells (pericytes) in viral pathogenesis. J Gen Virol 2021; 102. [PMID: 34424156 PMCID: PMC8513640 DOI: 10.1099/jgv.0.001634] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Viruses may exploit the cardiovascular system to facilitate transmission or within-host dissemination, and the symptoms of many viral diseases stem at least in part from a loss of vascular integrity. The microvascular architecture is comprised of an endothelial cell barrier ensheathed by perivascular cells (pericytes). Pericytes are antigen-presenting cells (APCs) and play crucial roles in angiogenesis and the maintenance of microvascular integrity through complex reciprocal contact-mediated and paracrine crosstalk with endothelial cells. We here review the emerging ways that viruses interact with pericytes and pay consideration to how these interactions influence microvascular function and viral pathogenesis. Major outcomes of virus-pericyte interactions include vascular leakage or haemorrhage, organ tropism facilitated by barrier disruption, including viral penetration of the blood-brain barrier and placenta, as well as inflammatory, neurological, cognitive and developmental sequelae. The underlying pathogenic mechanisms may include direct infection of pericytes, pericyte modulation by secreted viral gene products and/or the dysregulation of paracrine signalling from or to pericytes. Viruses we cover include the herpesvirus human cytomegalovirus (HCMV, Human betaherpesvirus 5), the retrovirus human immunodeficiency virus (HIV; causative agent of acquired immunodeficiency syndrome, AIDS, and HIV-associated neurocognitive disorder, HAND), the flaviviruses dengue virus (DENV), Japanese encephalitis virus (JEV) and Zika virus (ZIKV), and the coronavirus severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2; causative agent of coronavirus disease 2019, COVID-19). We touch on promising pericyte-focussed therapies for treating the diseases caused by these important human pathogens, many of which are emerging viruses or are causing new or long-standing global pandemics.
Collapse
Affiliation(s)
- Teemapron Butsabong
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Mariana Felippe
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Paola Campagnolo
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Kevin Maringer
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
| |
Collapse
|
17
|
Yamanaka G, Suzuki S, Morishita N, Takeshita M, Kanou K, Takamatsu T, Suzuki S, Morichi S, Watanabe Y, Ishida Y, Go S, Oana S, Kashiwagi Y, Kawashima H. Role of Neuroinflammation and Blood-Brain Barrier Permutability on Migraine. Int J Mol Sci 2021; 22:ijms22168929. [PMID: 34445635 PMCID: PMC8396312 DOI: 10.3390/ijms22168929] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
Currently, migraine is treated mainly by targeting calcitonin gene-related peptides, although the efficacy of this method is limited and new treatment strategies are desired. Neuroinflammation has been implicated in the pathogenesis of migraine. In patients with migraine, peripheral levels of pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-α, are known to be increased. Additionally, animal models of headache have demonstrated that immunological responses associated with cytokines are involved in the pathogenesis of migraine. Furthermore, these inflammatory mediators might alter the function of tight junctions in brain vascular endothelial cells in animal models, but not in human patients. Based on clinical findings showing elevated IL-1β, and experimental findings involving IL-1β and both the peripheral trigeminal ganglion and central trigeminal vascular pathways, regulation of the Il-1β/IL-1 receptor type 1 axis might lead to new treatments for migraine. However, the integrity of the blood-brain barrier is not expected to be affected during attacks in patients with migraine.
Collapse
|
18
|
Blockade of Autocrine CCL5 Responses Inhibits Zika Virus Persistence and Spread in Human Brain Microvascular Endothelial Cells. mBio 2021; 12:e0196221. [PMID: 34399621 PMCID: PMC8406327 DOI: 10.1128/mbio.01962-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is a neurovirulent flavivirus that uniquely causes fetal microcephaly, is sexually transmitted, and persists in patients for up to 6 months. ZIKV persistently infects human brain microvascular endothelial cells (hBMECs) that form the blood-brain barrier (BBB) and enables viral spread to neuronal compartments. We found that CCL5, a chemokine with prosurvival effects on immune cells, was highly secreted by ZIKV-infected hBMECs. Although roles for CCL5 in endothelial cell (EC) survival remain unknown, the presence of the CCL5 receptors CCR3 and CCR5 on ECs suggested that CCL5 could promote ZIKV persistence in hBMECs. We found that exogenous CCL5 induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in hBMECs and that ERK1/2 cell survival signaling was similarly activated by ZIKV infection. Neutralizing antibodies to CCL5, CCR3, or CCR5 inhibited persistent ZIKV infection of hBMECs. While knockout (KO) of CCL5 failed to prevent ZIKV infection of hBMECs, at 3 days postinfection (dpi), we observed a >90% reduction in ZIKV-infected CCL5-KO hBMECs and a multilog reduction in ZIKV titers. In contrast, the addition of CCL5 to CCL5-KO hBMECs dose-dependently rescued ZIKV persistence in hBMECs. Inhibiting CCL5 responses using CCR3 (UCB35625) and CCR5 (maraviroc) receptor antagonists reduced the number of ZIKV-infected hBMECs and ZIKV titers (50% inhibitory concentrations [IC50s] of 2.5 to 12 μM), without cytotoxicity (50% cytotoxic concentration [CC50] of >80 μM). These findings demonstrate that ZIKV-induced CCL5 directs autocrine CCR3/CCR5 activation of ERK1/2 survival responses that are required for ZIKV to persistently infect hBMECs. Our results establish roles for CCL5 in ZIKV persistence and suggest the potential for CCL5 receptor antagonists to therapeutically inhibit ZIKV spread and neurovirulence.
Collapse
|
19
|
A hidden menace? Cytomegalovirus infection is associated with reduced cortical gray matter volume in major depressive disorder. Mol Psychiatry 2021; 26:4234-4244. [PMID: 33223520 PMCID: PMC8140068 DOI: 10.1038/s41380-020-00932-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/06/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Human cytomegalovirus (HCMV) infection is associated with neuropathology in patients with impaired immunity and/or inflammatory diseases. However, the association between gray matter volume (GMV) and HCMV has never been examined in major depressive disorder (MDD) despite the presence of inflammation and impaired viral immunity in a subset of patients. We tested this relationship in two independent samples consisting of 179 individuals with MDD and 41 healthy controls (HC) (sample 1) and 124 MDD participants and 148 HCs (sample 2). HCMV positive (HCMV+) and HCMV negative (HCMV-) groups within each sample were balanced on up to 11 different clinical/demographic variables using inverse probability of treatment weighting. GMV of 87 regions was measured with FreeSurfer. There was a main effect of HCMV serostatus but not diagnosis that replicated across samples. Relative to HCMV- subjects, HCMV+ subjects in sample 1 showed a significant reduction of volume in six regions (puncorrected < 0.05). The reductions in GMV of the right supramarginal gyrus (standardized beta coefficient (SBC) = -0.26) and left fusiform gyrus (SBC = -0.25) in sample 1 were replicated in sample 2: right supramarginal gyrus (puncorrected < 0.05, SBC = -0.32), left fusiform gyrus (PFDR < 0.01, SBC = -0.51). Posthoc tests revealed that the effect of HCMV was driven by differences between the HCMV+ and HCMV- MDD subgroups. HCMV IgG level, a surrogate marker of viral activity, was correlated with GMV in the left fusiform gyrus (r = -0.19, Puncorrected = 0.049) and right supramarginal gyrus (r = -0.19, puncorrected = 0.043) in the HCMV+ group of sample 1. Conceivably, HCMV infection may be a treatable source of neuropathology in vulnerable MDD patients.
Collapse
|
20
|
Torices S, Cabrera R, Stangis M, Naranjo O, Fattakhov N, Teglas T, Adesse D, Toborek M. Expression of SARS-CoV-2-related receptors in cells of the neurovascular unit: implications for HIV-1 infection. J Neuroinflammation 2021; 18:167. [PMID: 34325716 PMCID: PMC8319595 DOI: 10.1186/s12974-021-02210-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/04/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Neurological complications are common in patients affected by COVID-19 due to the ability of SARS-CoV-2 to infect brains. While the mechanisms of this process are not fully understood, it has been proposed that SARS-CoV-2 can infect the cells of the neurovascular unit (NVU), which form the blood-brain barrier (BBB). The aim of the current study was to analyze the expression pattern of the main SARS-CoV-2 receptors in naïve and HIV-1-infected cells of the NVU in order to elucidate a possible pathway of the virus entry into the brain and a potential modulatory impact of HIV-1 in this process. METHODS The gene and protein expression profile of ACE2, TMPRSS2, ADAM17, BSG, DPP4, AGTR2, ANPEP, cathepsin B, and cathepsin L was assessed by qPCR, immunoblotting, and immunostaining, respectively. In addition, we investigated if brain endothelial cells can be affected by the exposure to the S1 subunit of the S protein, the domain responsible for the direct binding of SARS-CoV-2 to the ACE2 receptors. RESULTS The receptors involved in SARS-CoV-2 infection are co-expressed in the cells of the NVU, especially in astrocytes and microglial cells. These receptors are functionally active as exposure of endothelial cells to the SARS CoV-2 S1 protein subunit altered the expression pattern of tight junction proteins, such as claudin-5 and ZO-1. Additionally, HIV-1 infection upregulated ACE2 and TMPRSS2 expression in brain astrocytes and microglia cells. CONCLUSIONS These findings provide key insight into SARS-CoV-2 recognition by cells of the NVU and may help to develop possible treatment of CNS complications of COVID-19.
Collapse
Affiliation(s)
- Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 33136, USA.
| | - Rosalba Cabrera
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Michael Stangis
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Daniel Adesse
- Laboratory of Structural Biology, Instituto Oswaldo Cruz, Fiocruz, CEP, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 33136, USA.
| |
Collapse
|
21
|
Wang S, Zou F, Wu S, Wu Y, Yue Y, Sun Z. Neurotrophic factor levels in the serum and cerebrospinal fluid of neonates infected with human cytomegalovirus. Microbiol Immunol 2021; 65:373-382. [PMID: 34019717 DOI: 10.1111/1348-0421.12918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Human cytomegalovirus (HCMV) is most likely to damage the central nervous system (CNS) during early embryonic development; however, the early neurodevelopmental abnormalities caused by HCMV infection and the regulation of cytokines remain unclear. Therefore, we investigated neuronal factors in the serum and cerebrospinal fluid (CSF) of newborns infected with HCMV using protein microarray technology with a view to elucidating the changes in specific neuronal factors for use in the development of a reliable index for predicting CNS injury caused by HCMV infection. Serum and CSF were collected from four newborns with HCMV infection and CNS injury (HCMV-infected group) and from four newborns without CNS infection (control group). A protein microarray containing 29 kinds of CNS-related cytokines was used to identify differentially expressed neuronal factors in the serum and CSF of the HCMV-infected and control groups. The levels of the differentially expressed proteins were verified further in 30 CSF samples from an HCMV-infected group using enzyme-linkedimmunosorbent assay (ELISA). Between newborns in the HCMV-infected and control groups, the protein microarray analysis identified three differentially expressed neurotrophic factors in the CSF samples: Acrp30, MMP-3, and interleukin-1 alpha (IL-1α). No differential cytokine expression was seen in the serum. ELISA showed significantly higher expression levels of Acrp30 and MMP-3 in the CSF of the 30 newborns with HCMV infection and CNS injury than in those in the control group, whereas the expression of IL-1α was significantly lower. Our results demonstrate that changes in the expression levels of Acrp30, MMP-3, and IL-1α in the CSF of newborns infected with HCMV may be related to the pathogenesis of CNS infection.
Collapse
Affiliation(s)
- Shuang Wang
- Department of BioBank, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Fei Zou
- Department of BioBank, Sheng Jing Hospital of China Medical University, Shenyang, China.,Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Si Wu
- Department of BioBank, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Yingying Wu
- Department of BioBank, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Yuanyi Yue
- Department of BioBank, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Zhengrong Sun
- Department of BioBank, Sheng Jing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Kakarla V, Kaneko N, Nour M, Khatibi K, Elahi F, Liebeskind DS, Hinman JD. Pathophysiologic mechanisms of cerebral endotheliopathy and stroke due to Sars-CoV-2. J Cereb Blood Flow Metab 2021; 41:1179-1192. [PMID: 33530831 PMCID: PMC8142132 DOI: 10.1177/0271678x20985666] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022]
Abstract
Cerebrovascular events have emerged as a central feature of the clinical syndrome associated with Sars-CoV-2 infection. This increase in infection-related strokes is marked by atypical presentations including stroke in younger patients and a high rate of hemorrhagic transformation after ischemia. A variety of pathogenic mechanisms may underlie this connection. Efforts to identify synergism in the pathophysiology underlying stroke and Sars-CoV-2 infection can inform the understanding of both conditions in novel ways. In this review, the molecular cascades connected to Sars-CoV-2 infection are placed in the context of the cerebral vasculature and in relationship to pathways known to be associated with stroke. Cytokine-mediated promotion of systemic hypercoagulability is suggested while direct Sars-CoV-2 infection of cerebral endothelial cells may also contribute. Endotheliopathy resulting from direct Sars-CoV-2 infection of the cerebral vasculature can modulate ACE2/AT1R/MasR signaling pathways, trigger direct viral activation of the complement cascade, and activate feed-forward cytokine cascades that impact the blood-brain barrier. All of these pathways are already implicated as independent mechanisms driving stroke and cerebrovascular injury irrespective of Sars-CoV-2. Recognizing the overlap of molecular pathways triggered by Sars-CoV-2 infection with those implicated in the pathogenesis of stroke provides an opportunity to identify future therapeutics targeting both Sars-CoV-2 and stroke thereby reducing the impact of the global pandemic.
Collapse
Affiliation(s)
- Visesha Kakarla
- School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Naoki Kaneko
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - May Nour
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kasra Khatibi
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Fanny Elahi
- Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - David S Liebeskind
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
23
|
Zhu FD, Hu YJ, Yu L, Zhou XG, Wu JM, Tang Y, Qin DL, Fan QZ, Wu AG. Nanoparticles: A Hope for the Treatment of Inflammation in CNS. Front Pharmacol 2021; 12:683935. [PMID: 34122112 PMCID: PMC8187807 DOI: 10.3389/fphar.2021.683935] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, an inflammatory response within the central nervous system (CNS), is a main hallmark of common neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), among others. The over-activated microglia release pro-inflammatory cytokines, which induces neuronal death and accelerates neurodegeneration. Therefore, inhibition of microglia over-activation and microglia-mediated neuroinflammation has been a promising strategy for the treatment of neurodegenerative diseases. Many drugs have shown promising therapeutic effects on microglia and inflammation. However, the blood–brain barrier (BBB)—a natural barrier preventing brain tissue from contact with harmful plasma components—seriously hinders drug delivery to the microglial cells in CNS. As an emerging useful therapeutic tool in CNS-related diseases, nanoparticles (NPs) have been widely applied in biomedical fields for use in diagnosis, biosensing and drug delivery. Recently, many NPs have been reported to be useful vehicles for anti-inflammatory drugs across the BBB to inhibit the over-activation of microglia and neuroinflammation. Therefore, NPs with good biodegradability and biocompatibility have the potential to be developed as an effective and minimally invasive carrier to help other drugs cross the BBB or as a therapeutic agent for the treatment of neuroinflammation-mediated neurodegenerative diseases. In this review, we summarized various nanoparticles applied in CNS, and their mechanisms and effects in the modulation of inflammation responses in neurodegenerative diseases, providing insights and suggestions for the use of NPs in the treatment of neuroinflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Feng-Dan Zhu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yu-Jiao Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Anesthesia, Southwest Medical University, Luzhou, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qing-Ze Fan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
24
|
Links between Immune Cells from the Periphery and the Brain in the Pathogenesis of Epilepsy: A Narrative Review. Int J Mol Sci 2021; 22:ijms22094395. [PMID: 33922369 PMCID: PMC8122797 DOI: 10.3390/ijms22094395] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence has demonstrated that the pathogenesis of epilepsy is linked to neuroinflammation and cerebrovascular dysfunction. Peripheral immune cell invasion into the brain, along with these responses, is implicitly involved in epilepsy. This review explored the current literature on the association between the peripheral and central nervous systems in the pathogenesis of epilepsy, and highlights novel research directions for therapeutic interventions targeting these reactions. Previous experimental and human studies have demonstrated the activation of the innate and adaptive immune responses in the brain. The time required for monocytes (responsible for innate immunity) and T cells (involved in acquired immunity) to invade the central nervous system after a seizure varies. Moreover, the time between the leakage associated with blood–brain barrier (BBB) failure and the infiltration of these cells varies. This suggests that cell infiltration is not merely a secondary disruptive event associated with BBB failure, but also a non-disruptive event facilitated by various mediators produced by the neurovascular unit consisting of neurons, perivascular astrocytes, microglia, pericytes, and endothelial cells. Moreover, genetic manipulation has enabled the differentiation between peripheral monocytes and resident microglia, which was previously considered difficult. Thus, the evidence suggests that peripheral monocytes may contribute to the pathogenesis of seizures.
Collapse
|
25
|
Zheng H, Bergamino M, Ford BN, Kuplicki R, Yeh FC, Bodurka J, Burrows K, Hunt PW, Teague TK, Irwin MR, Yolken RH, Paulus MP, Savitz J. Replicable association between human cytomegalovirus infection and reduced white matter fractional anisotropy in major depressive disorder. Neuropsychopharmacology 2021; 46:928-938. [PMID: 33500556 PMCID: PMC8115597 DOI: 10.1038/s41386-021-00971-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023]
Abstract
Major depressive disorder (MDD) is associated with reductions in white matter microstructural integrity as measured by fractional anisotropy (FA), an index derived from diffusion tensor imaging (DTI). The neurotropic herpesvirus, human cytomegalovirus (HCMV), is a major cause of white matter pathology in immunosuppressed populations but its relationship with FA has never been tested in MDD despite the presence of inflammation and weakened antiviral immunity in a subset of depressed patients. We tested the relationship between FA and HCMV infection in two independent samples consisting of 176 individuals with MDD and 44 healthy controls (HC) (Discovery sample) and 88 participants with MDD and 48 HCs (Replication sample). Equal numbers of HCMV positive (HCMV+) and HCMV negative (HCMV-) groups within each sample were balanced on ten different clinical/demographic variables using propensity score matching. Anti-HCMV IgG antibodies were measured using a solid-phase ELISA. In the Discovery sample, significantly lower FA was observed in the right inferior fronto-occipital fasciculus (IFOF) in HCMV+ participants with MDD compared to HCMV- participants with MDD (cluster size 1316 mm3; pFWE < 0.05, d = -0.58). This association was confirmed in the replication sample by extracting the mean FA from this exact cluster and applying the identical statistical model (p < 0.05, d = -0.45). There was no significant effect of diagnosis or interaction between diagnosis and HCMV in either sample. The effect of chronic HCMV infection on white matter integrity may-in at-risk individuals-contribute to the psychopathology of depression. These findings may provide a novel target of intervention for a subgroup of patients with MDD.
Collapse
Affiliation(s)
- Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, OK, USA.
| | - Maurizio Bergamino
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Bart N Ford
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | | | - Fang-Cheng Yeh
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jerzy Bodurka
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | | | - Peter W Hunt
- Department of Medicine, School of Medicine, The University of California, San Francisco, San Francisco, CA, USA
| | - T Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK, USA
- Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, OK, USA
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Michael R Irwin
- Cousins Center for Psychoneuroimmunology at UCLA, Los Angeles, CA, USA
- Semel Institute for Neuroscience at UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, Los Angeles, CA, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
26
|
Su H, Cantrell AC, Zeng H, Zhu SH, Chen JX. Emerging Role of Pericytes and Their Secretome in the Heart. Cells 2021; 10:548. [PMID: 33806335 PMCID: PMC8001346 DOI: 10.3390/cells10030548] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
Pericytes, as mural cells covering microvascular capillaries, play an essential role in vascular remodeling and maintaining vascular functions and blood flow. Pericytes are crucial participants in the physiological and pathological processes of cardiovascular disease. They actively interact with endothelial cells, vascular smooth muscle cells (VSMCs), fibroblasts, and other cells via the mechanisms involved in the secretome. The secretome of pericytes, along with diverse molecules including proinflammatory cytokines, angiogenic growth factors, and the extracellular matrix (ECM), has great impacts on the formation, stabilization, and remodeling of vasculature, as well as on regenerative processes. Emerging evidence also indicates that pericytes work as mesenchymal cells or progenitor cells in cardiovascular regeneration. Their capacity for differentiation also contributes to vascular remodeling in different ways. Previous studies primarily focused on the roles of pericytes in organs such as the brain, retina, lung, and kidney; very few studies have focused on pericytes in the heart. In this review, following a brief introduction of the origin and fundamental characteristics of pericytes, we focus on pericyte functions and mechanisms with respect to heart disease, ending with the promising use of cardiac pericytes in the treatment of ischemic heart failure.
Collapse
Affiliation(s)
- Han Su
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Aubrey C Cantrell
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Shai-Hong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
27
|
Torices S, Cabrera R, Stangis M, Naranjo O, Adesse D, Toborek M. Expression of SARS-CoV-2-related Receptors in Cells of the Neurovascular Unit: Implications for HIV-1 Infection. RESEARCH SQUARE 2021:rs.3.rs-228960. [PMID: 33655239 PMCID: PMC7924273 DOI: 10.21203/rs.3.rs-228960/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background. Neurological complications are common in patients affected by COVID-19 due to the ability of SARS-CoV-2 to infect brains. While the mechanisms of this process are not fully understood, it has been proposed that SARS-CoV-2 can infect the cells of the neurovascular units (NVU), which form the blood-brain barrier (BBB). The aim of the current study was to analyze the expression pattern of the main SARS-CoV-2 receptors in naïve and HIV-1-infected cells of the NVU in order to elucidate a possible pathway of the virus entry into the brain and a potential modulatory impact of HIV-1 in this process. Methods. The gene and protein expression profile of ACE2, TMPRSS2, ADAM17, BSG, DPP4, AGTR2, ANPEP, cathepsin B and cathepsin L was assessed by qPCR and immunoblotting, respectively. In addition, we investigated if brain endothelial cells can be affected by the exposure to the S1 subunit of the S protein, the domain responsible for the direct binding of SARS-CoV-2 to the ACE2 receptors. Results. The receptors involved in SARS-CoV-2 infection are coexpressed in the cells of the NVU, especially in astrocytes and microglial cells. These receptors are functionally active as exposure of endothelial cells to the SARS CoV-2 S1 protein subunit altered the expression pattern of tight junction proteins, such as claudin-5 and ZO-1. Additionally, HIV-1 infection upregulated ACE2 and TMPRSS2 expression in brain astrocytes and microglia cells. Conclusions. These findings provide key insight into SARS-CoV-2 recognition by cells of the NVU and may help to develop possible treatment of CNS complications of COVID-19.
Collapse
Affiliation(s)
- Silvia Torices
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Rosalba Cabrera
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Michael Stangis
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Oandy Naranjo
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | | | | |
Collapse
|
28
|
Fan F, Yang C, Zhu X, Liu Z, Liu H, Li J, Jiang R, Zhang Y, Bu X, Wang Y, Wang Q, Xiang Y. Association between infectious burden and cerebral microbleeds: a pilot cross-sectional study. Ann Clin Transl Neurol 2021; 8:395-405. [PMID: 33410595 PMCID: PMC7886034 DOI: 10.1002/acn3.51285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/07/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Cerebral microbleeds (CMBs) is a subtype of cerebral small vessel disease. Their underlying pathogenesis remains unclear. The aim of this study was to investigate the association between infectious burden (IB) and CMBs. METHODS Seven hundred and seventy-three consecutive patients who were hospitalized in the Department of Neurology in General Hospital of Western Theater Command without severe neurological symptoms were recruited and selected in this pilot cross-sectional study. CMBs were assessed using the susceptibility-weighted imaging sequence of magnetic resonance imaging. Immunoglobulin G antibodies against common pathogens, including herpes simplex virus (HSV)-1, HSV-2, cytomegalovirus (CMV), Chlamydia pneumoniae (C. pneumoniae), Mycoplasma pneumoniae (M. pneumoniae), Epstein-Barr virus (EBV), Helicobacter pylori (HP), and Borrelia burgdorferi (B. burgdorferi), were measured by commercial ELISA assays. IB was defined as a composite serologic measure of exposure to these common pathogens. RESULTS Patients with and without CMBs were defined as the CMBs group (n = 76) and the non-CMBs group (n = 81), respectively. IB was significantly different between the CMBs and non-CMBs groups. After adjusted for other risk factors, the increased IB was independently associated with the presence of CMBs (P = 0.031, OR = 3.00, 95% CI [1.11-8.15]). IB was significantly positively associated with the number of CMBs (Spearman ρ = 0.653, P < 0.001). The levels of serum inflammatory markers were significantly different between the CMBs and non-CMBs groups and among the categories of IB. INTERPRETATION IB consisting of HSV-1, HSV-2, CMV, C. pneumoniae, M. pneumoniae, EBV, HP, and B. burgdorferi was associated with CMBs. All the findings suggested that pathogen infection could be involved in the pathogenesis of CMBs.
Collapse
Affiliation(s)
- Fan Fan
- Department of Neurology, Huanggang Central Hospital, Huanggang, Hubei, China.,Department of Neurology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Cui Yang
- Department of Neurology, General Hospital of Western Theater Command, Chengdu, Sichuan, China.,Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Institute of Neurology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China
| | - Xiaoyan Zhu
- Basic Medical Laboratory, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Zhilan Liu
- Department of Neurology, General Hospital of Western Theater Command, Chengdu, Sichuan, China.,Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Hui Liu
- Department of Neurology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Jianhao Li
- Department of Radiology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Rui Jiang
- Department of Radiology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yaolei Zhang
- Basic Medical Laboratory, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xianle Bu
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yanjiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Qingsong Wang
- Department of Neurology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yang Xiang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Barros I, Silva A, de Almeida LP, Miranda CO. Mesenchymal stromal cells to fight SARS-CoV-2: Taking advantage of a pleiotropic therapy. Cytokine Growth Factor Rev 2020; 58:114-133. [PMID: 33397585 PMCID: PMC7836230 DOI: 10.1016/j.cytogfr.2020.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
The devastating global impact of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has prompted scientists to develop novel strategies to fight Coronavirus Disease of 2019 (COVID-19), including the examination of pre-existing treatments for other viral infections in COVID-19 patients. This review provides a reasoned discussion of the possible use of Mesenchymal Stromal Cells (MSC) or their products as a treatment in SARS-CoV-2-infected patients. The main benefits and concerns of using this cellular therapy, guided by preclinical and clinical data obtained from similar pathologies will be reviewed. MSC represent a highly immunomodulatory cell population and their use may be safe according to clinical studies developed in other pathologies. Notably, four clinical trials and four case reports that have already been performed in COVID-19 patients obtained promising results. The clinical application of MSC in COVID-19 is very preliminary and further investigational studies are required to determine the efficacy of the MSC therapy. Nevertheless, these preliminary studies were important to understand the therapeutic potential of MSC in COVID-19. Based on these encouraging results, the United States Food and Drug Administration (FDA) authorized the compassionate use of MSC, but only in patients with Acute Respiratory Distress Syndrome (ARDS) and a poor prognosis. In fact, patients with severe SARS-CoV-2 can present infection and tissue damage in different organs, such as lung, heart, liver, kidney, gut and brain, affecting their function. MSC may have pleiotropic activities in COVID-19, with the capacity to fight inflammation and repair lesions in several organs.
Collapse
Affiliation(s)
- Inês Barros
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; III - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - António Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Viravector - Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Catarina Oliveira Miranda
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; III - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| |
Collapse
|
30
|
Serjilus A, Alcendor DJ. Unique method for human villous trophoblasts isolation from placental tissue explants. CLINICAL OBSTETRICS, GYNECOLOGY AND REPRODUCTIVE MEDICINE 2020; 6:319. [PMID: 33520289 PMCID: PMC7842261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isolation of cytotrophoblasts from primary placental tissue may be costly and time consuming with variable results. In this paper, we provide a simple, affordable, and efficient method that may performed using common laboratory supplies to achieve consistent in vitro isolation of cytotrophoblasts from villous tissue. Trophoblast populations are identified based on morphology and phenotyping, which employs the timely extraction of villous nodes from the placenta prior to cultivation and isolation of nodal outgrowth by visual guidance for selective capture of cytotrophoblast populations and subculture. This method allows for the isolation of cytotrophoblasts free of contamination with other placental cell types. Isolated cells stain positive for the specific cytotrophoblast biomarker cytokeratin 7 and Human Chorionic Gonadotropin (HCG). Subcultured cells grow to confluency to establish monolayers that may be passaged in culture and later used to develop primary syncytiotrophoblasts over time. These primary cytotrophoblast populations may be employed using in in vitro placenta-on-a chip models to better understand placental cell biology and function, as well as physiological responses after exposure to toxicants, and infectious agents. This technique may be modified for selective isolation of specific cell types within different tissues from multiple organ systems.
Collapse
Affiliation(s)
- Ashley Serjilus
- Department of Obstetrics and Gynecology, School of Medicine, Meharry Medical College, USA
| | - Donald J Alcendor
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology, and Physiology, Meharry Medical College, School of Medicine, Nashville, TN, USA,Correspondence to: Donald J Alcendor, Associate Professor of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd., Hubbard Hospital, 5th Floor, Rm. 5025, Nashville, TN 37208, USA,
| |
Collapse
|
31
|
Interactions between Amyloid-Β Proteins and Human Brain Pericytes: Implications for the Pathobiology of Alzheimer's Disease. J Clin Med 2020; 9:jcm9051490. [PMID: 32429102 PMCID: PMC7290583 DOI: 10.3390/jcm9051490] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease that is the most common cause of dementia, especially among aging populations. Despite advances in AD research, the underlying cause and the discovery of disease-modifying treatments have remained elusive. Two key features of AD pathology are the aberrant deposition of amyloid beta (amyloid-β or Aβ) proteins in the brain parenchyma and Aβ toxicity in brain pericytes of the neurovascular unit/blood–brain barrier (NVU/BBB). This toxicity induces oxidative stress in pericytes and leads to capillary constriction. The interaction between pericytes and Aβ proteins results in the release of endothelin-1 in the pericytes. Endothelin-1 interacts with ETA receptors to cause pericyte contraction. This pericyte-mediated constriction of brain capillaries can cause chronic hypoperfusion of the brain microvasculature, subsequently leading to the neurodegeneration and cognitive decline observed in AD patients. The interaction between Aβ proteins and brain pericytes is largely unknown and requires further investigation. This review provides an updated overview of the interaction between Aβ proteins with pericytes, one the most significant and often forgotten cellular components of the BBB and the inner blood–retinal barrier (IBRB). The IBRB has been shown to be a window into the central nervous system (CNS) that could allow the early diagnosis of AD pathology in the brain and the BBB using modern photonic imaging systems such as optical coherence tomography (OCT) and two-photon microscopy. In this review, I explore the regulation of Aβ proteins in the brain parenchyma, their role in AD pathobiology, and their association with pericyte function. This review discusses Aβ proteins and pericytes in the ocular compartment of AD patients as well as strategies to rescue or protect pericytes from the effects of Aβ proteins, or to replace them with healthy cells.
Collapse
|
32
|
|
33
|
Human cytomegalovirus promoting endothelial cell proliferation by targeting regulator of G-protein signaling 5 hypermethylation and downregulation. Sci Rep 2020; 10:2252. [PMID: 32041970 PMCID: PMC7010708 DOI: 10.1038/s41598-020-58680-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 01/15/2020] [Indexed: 01/21/2023] Open
Abstract
Interactions between human cytomegalovirus (HCMV) infection and environmental factors can increase susceptibility to essential hypertension (EH). Although endothelial dysfunction is the initial factor of EH, the epigenetic mechanisms through which HCMV infection induces endothelial cell dysfunction are poorly understood. Here, we evaluated whether HCMV regulated endothelial cell function and assessed the underlying mechanisms. Microarray analysis in human umbilical vein endothelial cells (HUVECs) treated with HCMV AD169 strain in the presence of hyperglycemia and hyperlipidemia revealed differential expression of genes involved in hypertension. Further analyses validated that the regulator of G-protein signaling 5 (RGS5) gene was downregulated in infected HUVECs and showed that HCMV infection promoted HUVEC proliferation, whereas hyperglycemia and hyperlipidemia inhibited HUVEC proliferation. Additionally, treatment with decitabine (DAC) and RGS5 reversed the effects of HCMV infection on HUVEC proliferation, but not triggered by hyperglycemia and hyperlipidemia. In summary, upregulation of RGS5 may be a promising treatment for preventing HCMV-induced hypertension.
Collapse
|
34
|
Cytomegalovirus is a tumor-associated virus: armed and dangerous. Curr Opin Virol 2019; 39:49-59. [PMID: 31525538 DOI: 10.1016/j.coviro.2019.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/05/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
Human cytomegalovirus (HCMV) gene products are present in multiple human malignancies, often in specific association with tumor cells and tumor vasculature. Emerging evidence from human and mouse models of CMV infection in cancer indicate that CMV can transform epithelial cells, promote epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial (MET) in tumor cells, promote tumor angiogenesis and proliferation and incapacitate the host anti-CMV immune response. This review will discuss the increasing role of HCMV in human cancer by demonstrating how HCMV is well suited for impacting major themes in oncogenesis including initiation, promotion, progression, metastasis and immune evasion. What emerges is a picture of an extremely versatile pathogen that may play a significant role in human cancer progression and death.
Collapse
|
35
|
Kiely AP, Murray CE, Foti SC, Benson BC, Courtney R, Strand C, Lashley T, Holton JL. Immunohistochemical and Molecular Investigations Show Alteration in the Inflammatory Profile of Multiple System Atrophy Brain. J Neuropathol Exp Neurol 2019; 77:598-607. [PMID: 29850876 PMCID: PMC6005028 DOI: 10.1093/jnen/nly035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multiple system atrophy (MSA) is an adult-onset neurodegenerative disease characterized by aggregation of α-synuclein in oligodendrocytes to form glial cytoplasmic inclusions. According to the distribution of neurodegeneration, MSA is subtyped as striatonigral degeneration (SND), olivopontocerebellar atrophy (OPCA), or as combination of these 2 (mixed MSA). In the current study, we aimed to investigate regional microglial populations and gene expression in the 3 different MSA subtypes. Microscopy with microglial marker Iba-1 combined with either proinflammatory marker CD68 or anti-inflammatory marker Arginase-1 was analyzed in control, SND, and OPCA cases (n = 5) using paraffin embedded sections. Western immunoblotting and cytokine array were used to determine protein expression in MSA and control brain regions. Gene expression was investigated using the NanoString nCounter Human Inflammation panel v2 mRNA Expression Assay. Analysis of neuropathological subtypes of MSA demonstrated a significant increase in microglia in the substantia nigra of OPCA cases. There was no difference in the microglial activation state in any region. Cytokine expression in MSA was comparable with controls. Decreased expression of CX3CL1 precursor protein and significantly greater CX3CR1 protein was found in MSA. NanoString analysis revealed the >2-fold greater expression of ARG1, MASP1, NOX4, PTGDR2, and C6 in MSA.
Collapse
Affiliation(s)
- Aoife P Kiely
- Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Christina E Murray
- Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Sandrine C Foti
- Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Bridget C Benson
- Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Robert Courtney
- Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Catherine Strand
- Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
36
|
Osorio C, Kanukuntla T, Diaz E, Jafri N, Cummings M, Sfera A. The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling. Front Aging Neurosci 2019; 11:143. [PMID: 31297054 PMCID: PMC6608545 DOI: 10.3389/fnagi.2019.00143] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
The amyloid hypothesis, the assumption that beta-amyloid toxicity is the primary cause of neuronal and synaptic loss, has been the mainstream research concept in Alzheimer's disease for the past two decades. Currently, this model is quietly being replaced by a more holistic, “systemic disease” paradigm which, like the aging process, affects multiple body tissues and organs, including the gut microbiota. It is well-established that inflammation is a hallmark of cellular senescence; however, the infection-senescence link has been less explored. Microbiota-induced senescence is a gradually emerging concept promoted by the discovery of pathogens and their products in Alzheimer's disease brains associated with senescent neurons, glia, and endothelial cells. Infectious agents have previously been associated with Alzheimer's disease, but the cause vs. effect issue could not be resolved. A recent study may have settled this debate as it shows that gingipain, a Porphyromonas gingivalis toxin, can be detected not only in Alzheimer's disease but also in the brains of older individuals deceased prior to developing the illness. In this review, we take the position that gut and other microbes from the body periphery reach the brain by triggering intestinal and blood-brain barrier senescence and disruption. We also surmise that novel Alzheimer's disease findings, including neuronal somatic mosaicism, iron dyshomeostasis, aggressive glial phenotypes, and loss of aerobic glycolysis, can be explained by the infection-senescence model. In addition, we discuss potential cellular senescence targets and therapeutic strategies, including iron chelators, inflammasome inhibitors, senolytic antibiotics, mitophagy inducers, and epigenetic metabolic reprograming.
Collapse
Affiliation(s)
- Carolina Osorio
- Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Tulasi Kanukuntla
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Eddie Diaz
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Nyla Jafri
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Michael Cummings
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Adonis Sfera
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| |
Collapse
|
37
|
Ambrosini YM, Borcherding D, Kanthasamy A, Kim HJ, Willette AA, Jergens A, Allenspach K, Mochel JP. The Gut-Brain Axis in Neurodegenerative Diseases and Relevance of the Canine Model: A Review. Front Aging Neurosci 2019; 11:130. [PMID: 31275138 PMCID: PMC6591269 DOI: 10.3389/fnagi.2019.00130] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022] Open
Abstract
Identifying appropriate animal models is critical in developing translatable in vitro and in vivo systems for therapeutic drug development and investigating disease pathophysiology. These animal models should have direct biological and translational relevance to the underlying disease they are supposed to mimic. Aging dogs not only naturally develop a cognitive decline in many aspects including learning and memory deficits, but they also exhibit human-like individual variability in the aging process. Neurodegenerative processes that can be observed in both human and canine brains include the progressive accumulation of β-amyloid (Aβ) found as diffuse plaques in the prefrontal cortex (PFC), including the gyrus proreus (i.e., medial orbital PFC), as well as the hippocampus and the cerebral vasculature. Tau pathology, a marker of neurodegeneration and dementia progression, was also found in canine hippocampal synapses. Various epidemiological data show that human patients with neurodegenerative diseases have concurrent intestinal lesions, and histopathological changes in the gastrointestinal (GI) tract occurs decades before neurodegenerative changes. Gut microbiome alterations have also been reported in many neurodegenerative diseases including Alzheimer's (AD) and Parkinson's diseases, as well as inflammatory central nervous system (CNS) diseases. Interestingly, the dog gut microbiome more closely resembles human gut microbiome in composition and functional overlap compared to rodent models. This article reviews the physiology of the gut-brain axis (GBA) and its involvement with neurodegenerative diseases in humans. Additionally, we outline the advantages and weaknesses of current in vitro and in vivo models and discuss future research directions investigating major human neurodegenerative diseases such as AD and Parkinson's diseases using dogs.
Collapse
Affiliation(s)
- Yoko M. Ambrosini
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Dana Borcherding
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Anumantha Kanthasamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Hyun Jung Kim
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Auriel A. Willette
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
- Department of Food Science and Human Nutrition, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, United States
| | - Albert Jergens
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States
| | - Karin Allenspach
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States
| | - Jonathan P. Mochel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
38
|
Yao YY, Bian LG, Yang P, Sui Y, Li R, Chen YL, Sun L, Ai QL, Zhong LM, Lu D. Gastrodin attenuates proliferation and inflammatory responses in activated microglia through Wnt/β-catenin signaling pathway. Brain Res 2019; 1717:190-203. [PMID: 31026457 DOI: 10.1016/j.brainres.2019.04.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 01/17/2023]
Abstract
Microglia contribute to the regulation of neuroinflammation and play an important role in the pathogenesis of brain disorders. Thus, regulation of neuroinflammation triggered by activation of microglia has become a promising therapeutic strategy. Here, we investigated the beneficial effects of Gastrodin in activated microglia and analyzed the underlying molecular mechanisms. Microglia activation was regulated by Gastrodin not only in terms of microglia population size but also production of inflammatory mediators. Gastrodin inhibited the expression of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), cyclin-D1 and Ki67 in lipopolysaccharide (LPS)-stimulated BV-2 or primary microglia. Gastrodin also suppressed the expression of iNOS and Ki67 in activated microglia in three-day-old LPS-injected postnatal rats. In addition, the present results have shown that Gastrodin inhibited LPS-induced phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser 9 and β-catenin activity. We further extended our investigation to determine whether Wnt/β-catenin signaling pathway was involved in the anti-inflammatory and anti-proliferation function of Gastrodin. β-Catenin antagonist (XAV939) was used to block LPS-mediated upregulation of iNOS, TNF-α, cyclin-D1, nitric oxide (NO) and the number of cells in the G2/M+S phase of cell cycle. Moreover, treatment with LiCl, a special Wnt/β-catenin pathway agonist significantly blocked Gastrodin-mediated down-regulation of iNOS, TNF-α, cyclin-D1, NO and the number of cells in the G2/M+S phase of cell cycle in LPS-stimulated BV-2 microglia. Taken together, the present results suggested that Gastrodin mediated anti-inflammatory and anti-proliferation effects in activated microglia by modulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yue-Yi Yao
- Technology Transfer Center, Kunming Medical University, Kunming 650500, China
| | - Li-Gong Bian
- Department of Anatomy and Histology, School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Ping Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Yue Sui
- Technology Transfer Center, Kunming Medical University, Kunming 650500, China
| | - Run Li
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, China
| | - Yuan-Li Chen
- Department of Anatomy and Histology, School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Lin Sun
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming 650032, China
| | - Qing-Long Ai
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, China
| | - Lian-Mei Zhong
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, China.
| | - Di Lu
- Technology Transfer Center, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
39
|
Alcendor DJ. Human Vascular Pericytes and Cytomegalovirus Pathobiology. Int J Mol Sci 2019; 20:E1456. [PMID: 30909422 PMCID: PMC6471229 DOI: 10.3390/ijms20061456] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/01/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022] Open
Abstract
Pericytes are multipotent cells of the vascular system with cytoplasmic extensions proximal to endothelial cells that occur along the abluminal surface of the endothelium. The interactions between endothelial cells and pericytes are essential for proper microvascular formation, development, stabilization, and maintenance. Pericytes are essential for the regulation of paracellular flow between cells, transendothelial fluid transport, angiogenesis, and vascular immunosurveillance. They also influence the chemical composition of the surrounding microenvironment to protect endothelial cells from potential harm. Dysregulation or loss of pericyte function can result in microvascular instability and pathological consequences. Human pericytes have been shown to be targets for human cytomegalovirus (HCMV) infection and lytic replication that likely contribute to vascular inflammation. This review focuses on human vascular pericytes and their permissiveness for HCMV infection. It also discusses their implication in pathogenesis in the blood⁻brain barrier (BBB), the inner blood⁻retinal barrier (IBRB), the placenta⁻blood barrier, and the renal glomerulus as well as their potential role in subclinical vascular disease.
Collapse
Affiliation(s)
- Donald J Alcendor
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd., Hubbard Hospital, 5th Floor, Rm. 5025, Nashville, TN 37208, USA.
| |
Collapse
|
40
|
Krenzlin H, Behera P, Lorenz V, Passaro C, Zdioruk M, Nowicki MO, Grauwet K, Zhang H, Skubal M, Ito H, Zane R, Gutknecht M, Griessl MB, Ricklefs F, Ding L, Peled S, Rooj A, James CD, Cobbs CS, Cook CH, Chiocca EA, Lawler SE. Cytomegalovirus promotes murine glioblastoma growth via pericyte recruitment and angiogenesis. J Clin Invest 2019; 129:1671-1683. [PMID: 30855281 DOI: 10.1172/jci123375] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/05/2019] [Indexed: 12/15/2022] Open
Abstract
Cytomegalovirus (CMV) has been implicated in glioblastoma (GBM); however, a mechanistic connection in vivo has not been established. The purpose of this study is to characterize the effects of murine CMV (MCMV) on GBM growth in murine models. Syngeneic GBM models were established in mice perinatally infected with MCMV. We found that tumor growth was markedly enhanced in MCMV+ mice, with a significant reduction in overall survival compared with that of controls (P < 0.001). We observed increased angiogenesis and tumor blood flow in MCMV+ mice. MCMV reactivation was observed in intratumoral perivascular pericytes and tumor cells in mouse and human GBM specimens, and pericyte coverage of tumor vasculature was strikingly augmented in MCMV+ mice. We identified PDGF-D as a CMV-induced factor essential for pericyte recruitment, angiogenesis, and tumor growth. The antiviral drug cidofovir improved survival in MCMV+ mice, inhibiting MCMV reactivation, PDGF-D expression, pericyte recruitment, and tumor angiogenesis. These data show that MCMV potentiates GBM growth in vivo by increased pericyte recruitment and angiogenesis due to alterations in the secretome of CMV-infected cells. Our model provides evidence for a role of CMV in GBM growth and supports the application of antiviral approaches for GBM therapy.
Collapse
Affiliation(s)
| | - Prajna Behera
- Department of Neurosurgery, Brigham and Women's Hospital
| | - Viola Lorenz
- Division of Newborn Medicine, Boston Children's Hospital, and
| | | | - Mykola Zdioruk
- Department of Neurosurgery, Brigham and Women's Hospital
| | | | | | - Hong Zhang
- Department of Neurosurgery, Brigham and Women's Hospital
| | | | - Hirotaka Ito
- Department of Neurosurgery, Brigham and Women's Hospital
| | - Rachel Zane
- Department of Neurosurgery, Brigham and Women's Hospital
| | - Michael Gutknecht
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Marion B Griessl
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Franz Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Ding
- Program for Interdisciplinary Neuroscience, NeuroTechnology Studio, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sharon Peled
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Arun Rooj
- Department of Neurosurgery, Brigham and Women's Hospital
| | - C David James
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Charles S Cobbs
- Swedish Neuroscience Institute, Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Seattle, Washington, USA
| | - Charles H Cook
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Sean E Lawler
- Department of Neurosurgery, Brigham and Women's Hospital
| |
Collapse
|
41
|
Manickam C, Shah SV, Lucar O, Ram DR, Reeves RK. Cytokine-Mediated Tissue Injury in Non-human Primate Models of Viral Infections. Front Immunol 2018; 9:2862. [PMID: 30568659 PMCID: PMC6290327 DOI: 10.3389/fimmu.2018.02862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022] Open
Abstract
Viral infections trigger robust secretion of interferons and other antiviral cytokines by infected and bystander cells, which in turn can tune the immune response and may lead to viral clearance or immune suppression. However, aberrant or unrestricted cytokine responses can damage host tissues, leading to organ dysfunction, and even death. To understand the cytokine milieu and immune responses in infected host tissues, non-human primate (NHP) models have emerged as important tools. NHP have been used for decades to study human infections and have played significant roles in the development of vaccines, drug therapies and other immune treatment modalities, aided by an ability to control disease parameters, and unrestricted tissue access. In addition to the genetic and physiological similarities with humans, NHP have conserved immunologic properties with over 90% amino acid similarity for most cytokines. For example, human-like symptomology and acute respiratory syndrome is found in cynomolgus macaques infected with highly pathogenic avian influenza virus, antibody enhanced dengue disease is common in neotropical primates, and in NHP models of viral hepatitis cytokine-induced inflammation induces severe liver damage, fibrosis, and hepatocellular carcinoma recapitulates human disease. To regulate inflammation, anti-cytokine therapy studies in NHP are underway and will provide important insights for future human interventions. This review will provide a comprehensive outline of the cytokine-mediated exacerbation of disease and tissue damage in NHP models of viral infections and therapeutic strategies that can aid in prevention/treatment of the disease syndromes.
Collapse
Affiliation(s)
- Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Spandan V. Shah
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Olivier Lucar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Daniel R. Ram
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
42
|
The Viral Tegument Protein pp65 Impairs Transcriptional Upregulation of IL-1β by Human Cytomegalovirus through Inhibition of NF-kB Activity. Viruses 2018; 10:v10100567. [PMID: 30332797 PMCID: PMC6213739 DOI: 10.3390/v10100567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/21/2022] Open
Abstract
Interleukin-1β (IL-1β) is a key effector of the inflammasome complex in response to pathogens and danger signals. Although it is well known that assembly of the inflammasome triggers proteolytic cleavage of the biologically inactive precursor pro-IL-1β into its mature secreted form, the mechanism by which human cytomegalovirus (HCMV) regulates IL-1β production via the inflammasome is still poorly understood. Here, we show that the infection of human foreskin fibroblasts (HFFs) with a mutant HCMV lacking the tegument protein pp65 (v65Stop) results in higher expression levels of mature IL-1β compared to its wild-type counterpart, suggesting that pp65 mediates HCMV immune evasion through downmodulation of IL-1β. Furthermore, we show that enhanced IL-1β production by the v65Stop mutant is due in part to induction of DNA binding and the transcriptional activity of NF-κB. Lastly, we demonstrate that HCMV infection of HFFs triggers a non-canonical IL-1β activation pathway where caspase-8 promotes IL-1β maturation independently of caspase-1. Altogether, our findings provide novel mechanistic insights into the interplay between HCMV and the inflammasome system and raise the possibility of targeting pp65 to treat HCMV infection.
Collapse
|
43
|
Chandwani MN, Creisher PS, O'Donnell LA. Understanding the Role of Antiviral Cytokines and Chemokines on Neural Stem/Progenitor Cell Activity and Survival. Viral Immunol 2018; 32:15-24. [PMID: 30307795 DOI: 10.1089/vim.2018.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Viral infections of the central nervous system are accompanied by the expression of cytokines and chemokines that can be critical for the control of viral replication in the brain. The outcomes of cytokine/chemokine signaling in neural cells vary widely, with cell-specific effects on cellular activity, proliferation, and survival. Neural stem/progenitor cells (NSPCs) are often altered during viral infections, through direct infection by the virus or by the influence of immune cell activity or cytokine/chemokine signaling. However, it has been challenging to dissect the contribution of the virus and specific inflammatory mediators during an infection. In addition to initiating an antiviral program in infected NSPCs, cytokines/chemokines can induce multiple changes in NSPC behavior that can perturb NSPC numbers, differentiation into other neural cells, and migration to sites of injury, and ultimately brain development and repair. The focus of this review was to dissect the effects of common antiviral cytokines and chemokines on NSPC activity, and to consider the subsequent pathological consequences for the host from changes in NSPC function.
Collapse
Affiliation(s)
- Manisha N Chandwani
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| | - Patrick S Creisher
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| | - Lauren A O'Donnell
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| |
Collapse
|
44
|
Duan L, Zhang XD, Miao WY, Sun YJ, Xiong G, Wu Q, Li G, Yang P, Yu H, Li H, Wang Y, Zhang M, Hu LY, Tong X, Zhou WH, Yu X. PDGFRβ Cells Rapidly Relay Inflammatory Signal from the Circulatory System to Neurons via Chemokine CCL2. Neuron 2018; 100:183-200.e8. [PMID: 30269986 DOI: 10.1016/j.neuron.2018.08.030] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/30/2018] [Accepted: 08/20/2018] [Indexed: 01/19/2023]
Abstract
Acute infection, if not kept in check, can lead to systemic inflammatory responses in the brain. Here, we show that within 2 hr of systemic inflammation, PDGFRβ mural cells of blood vessels rapidly secrete chemokine CCL2, which in turn increases total neuronal excitability by promoting excitatory synaptic transmission in glutamatergic neurons of multiple brain regions. By single-cell RNA sequencing, we identified Col1a1 and Rgs5 subgroups of PDGFRβ cells as the main source of CCL2. Lipopolysaccharide (LPS)- or Poly(I:C)-treated pericyte culture medium induced similar effects in a CCL2-dependent manner. Importantly, in Pdgfrb-Cre;Ccl2fl/fl mice, LPS-induced increase in excitatory synaptic transmission was significantly attenuated. These results demonstrate in vivo that PDGFRβ cells function as initial sensors of external insults by secreting CCL2, which relays the signal to the central nervous system. Through their gateway position in the brain, PDGFRβ cells are ideally positioned to respond rapidly to environmental changes and to coordinate responses.
Collapse
Affiliation(s)
- Lihui Duan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Di Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan-Ying Miao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun-Jun Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guoliang Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuzi Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangying Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ping Yang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Hang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Humingzhu Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yue Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Min Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li-Yuan Hu
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiaoping Tong
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Hao Zhou
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
45
|
Recent advances in the mechanisms of neuroinflammation and their roles in neurodegeneration. Neurochem Int 2018; 120:13-20. [PMID: 30016687 DOI: 10.1016/j.neuint.2018.07.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/07/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022]
Abstract
Neuroinflammation is associated with the pathogenesis of many neurological disorders including Parkinson's disease, Alzheimer's disease, Amyotrophic lateral sclerosis and Huntington disease. Current studies in this area have advanced the mechanism of neuroinflammation and its role in neurodegeneration. Studies from epidemiologic, clinical and animal models also contributed in the various new mechanisms of neuroinflammation. In this line, activation of monocytes is an important emerging mechanism that has a, profound role in neuroinflammation and neurodegeneration. Ion channels, matrix metalloproteases and microRNAs are also found to be the key players in the pathogenesis of neuroinflammation. In particular, microRNA-32 regulates microglia-mediated neuroinflammation and thus neurodegeneration. Notably, some important studies describe the role of Th17 cells in neuroinflammation, but, very little knowledge is available about their mechanism of action. Particularly, the role of autophagy gets emphasized, which plays a very critical role in protein aggregation and neurodegeneration. In this review, we highlight and discuss the mechanisms of these mediators of inflammation by which they contribute to the disease progression. In conclusion, we focus on the various newer molecular mechanisms that are associated with the basic understanding of neuroinflammation in neurodegeneration.
Collapse
|
46
|
Popik W, Correa H, Khatua A, Aronoff DM, Alcendor DJ. Mesangial cells, specialized renal pericytes and cytomegalovirus infectivity: Implications for HCMV pathology in the glomerular vascular unit and post-transplant renal disease. ACTA ACUST UNITED AC 2018; 5. [PMID: 29977613 PMCID: PMC6027753 DOI: 10.15761/jts.1000248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Human Cytomegalovirus (HCMV) infection is problematic after kidney transplantation. Human mesangial cells along with human glomerular endothelial cells and podocytes constitute the renal glomerular vascular unit (GVU). HCMV infection of the GVU is poorly understood. Methods GVU cells infectivity was analysed by microscopy and immunofluorescence. Cytokines profiles were measured by Luminex assays. Renal tissue analysis for HCMV infection was performed by immunohistochemistry. Results Mesangial cells and glomerular endothelial cells but not podocytes were permissive for both lab adapted and clinical strains of HCMV. Luminex analysis of cytokines expressed by mesangial cells exposed to the SBCMV clinical strain was examined. A Tricell infection model of the GVU maintains >90% viability with a unique cytokine profile. Finally, we show αSMA stained mesangial cells permissive for HCMV in renal tissue from a transplant patient. Conclusions HCMV infection of mesangial cells induces angiogenic and proinflammatory cytokines that could contribute to glomerular inflammation.
Collapse
Affiliation(s)
- Waldemar Popik
- Department of Internal Medicine and 4Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, School of Medicine, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, Tennessee 37208-3599 USA
| | - Hernan Correa
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Atanu Khatua
- Meharry Medical College, School of Medicine, Centre for AIDS Health Disparities Research, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, Tennessee 37208-3599, USA
| | - David M Aronoff
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA.,Division of Infectious Diseases, Department of Medicine, and Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centre, Nashville, Tennessee 37232, USA
| | - Donald J Alcendor
- Meharry Medical College, School of Medicine, Centre for AIDS Health Disparities Research, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, Tennessee 37208-3599, USA
| |
Collapse
|
47
|
The pericyte secretome: Potential impact on regeneration. Biochimie 2018; 155:16-25. [PMID: 29698670 DOI: 10.1016/j.biochi.2018.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/20/2018] [Indexed: 12/11/2022]
Abstract
Personalized and regenerative medicine is an emerging therapeutic strategy that is based on cell biology and biomedical engineering used to develop biological substitutes to maintain normal function or restore damaged tissues and organs. The secretory capacities of different cell types are now explored as such possible therapeutic regenerative agents in a variety of diseases. A secretome can comprise chemokines, cytokines, growth factors, but also extracellular matrix components, microvesicles and exosomes as well as genetic material and may differ depending on the tissue and the stimulus applied to the cell. With regard to clinical applications, the secretome of mesenchymal stem cells (MSC) is currently the most widely explored. However, other cell types such as pericytes may have similar properties as MSC and the potential therapeutic possibilities of these cells are only just beginning to emerge. In this review, we will summarize the currently available data describing the secretome of pericytes and its potential implications for tissue regeneration, whereby we especially focus on brain pericytes as potential new target cell for neuroregeneration and brain repair.
Collapse
|
48
|
Rustenhoven J, Smyth LC, Jansson D, Schweder P, Aalderink M, Scotter EL, Mee EW, Faull RLM, Park TIH, Dragunow M. Modelling physiological and pathological conditions to study pericyte biology in brain function and dysfunction. BMC Neurosci 2018; 19:6. [PMID: 29471788 PMCID: PMC5824614 DOI: 10.1186/s12868-018-0405-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Brain pericytes ensheathe the endothelium and contribute to formation and maintenance of the blood-brain-barrier. Additionally, pericytes are involved in several aspects of the CNS immune response including scarring, adhesion molecule expression, chemokine secretion, and phagocytosis. In vitro cultures are routinely used to investigate these functions of brain pericytes, however, these are highly plastic cells and can display differing phenotypes and functional responses depending on their culture conditions. Here we sought to investigate how two commonly used culture media, high serum containing DMEM/F12 and low serum containing Pericyte Medium (ScienCell), altered the phenotype of human brain pericytes and neuroinflammatory responses. METHODS Pericytes were isolated from adult human brain biopsy tissue and cultured in DMEM/F12 (D-pericytes) or Pericyte Medium (P-pericytes). Immunocytochemistry, qRT-PCR, and EdU incorporation were used to determine how this altered their basal phenotype, including the expression of pericyte markers, proliferation, and cell morphology. To determine whether culture media altered the inflammatory response in human brain pericytes, immunocytochemistry, qRT-PCR, cytometric bead arrays, and flow cytometry were used to investigate transcription factor induction, chemokine secretion, adhesion molecule expression, migration, phagocytosis, and response to inflammatory-related growth factors. RESULTS P-pericytes displayed elevated proliferation and a distinct bipolar morphology compared to D-pericytes. Additionally, P-pericytes displayed lower expression of pericyte-associated markers NG2, PDGFRβ, and fibronectin, with notably lower αSMA, CD146, P4H and desmin, and higher Col-IV expression. Nuclear NF-kB translocation in response to IL-1β stimulation was observed in both cultures, however, P-pericytes displayed elevated expression of the transcription factor C/EBPδ, and lower expression of the adhesion molecule ICAM-1. P-pericytes displayed elevated phagocytic and migratory ability. Both cultures responded similarly to stimulation by the growth factors TGFβ1 and PDGF-BB. CONCLUSIONS Despite differences in their phenotype and magnitude of response, both P-pericytes and D-pericytes responded similarly to all examined functions, indicating that the neuroinflammatory phenotype of these cells is robust to culture conditions.
Collapse
Affiliation(s)
- Justin Rustenhoven
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.,Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand
| | - Leon C Smyth
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.,Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand
| | - Deidre Jansson
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.,Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand
| | - Patrick Schweder
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.,Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.,Auckland City Hospital, Auckland, New Zealand
| | - Miranda Aalderink
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.,Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand
| | - Emma L Scotter
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.,Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand
| | - Edward W Mee
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.,Auckland City Hospital, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.,Department of Anatomy and Medical Imagining, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand
| | - Thomas I-H Park
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.,Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand
| | - Mike Dragunow
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand. .,Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand. .,Department of Pharmacology and Clinical Pharmacology, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
49
|
Ene L. Human Immunodeficiency Virus in the Brain-Culprit or Facilitator? Infect Dis (Lond) 2018; 11:1178633717752687. [PMID: 29467577 PMCID: PMC5815409 DOI: 10.1177/1178633717752687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/15/2017] [Indexed: 01/21/2023] Open
Abstract
Introduction: Human immunodeficiency virus (HIV) enters the brain early, where it can persist, evolve, and become compartmentalized. Central nervous system (CNS) disease can be attributed to HIV alone or to the complex interplay between the virus and other neurotropic pathogens. Aim: The current review aims to describe the direct impact of HIV on the brain as well as its relationship with other pathogens from a practitioner’s perspective, to provide a general clinical overview, brief workup, and, whenever possible, treatment guidance. Methods: A review of PubMed was conducted to identify studies on neuropathogenesis of HIV in relation to host responses. Furthermore, the interaction between the CNS pathogens and the host damage responses were revised in the setting of advanced and also well-controlled HIV infection. Results: Similar to other pathogens, HIV leads to CNS immune activation, inflammation, and viral persistence. Therefore, almost half of the infected individuals present with neurocognitive disorders, albeit mild. Compartmentalized HIV in the CNS can be responsible in a minority of cases for the dramatic presentation of symptomatic HIV escape. Disruption of the immune system secondary to HIV may reactivate latent infections or allow new pathogens to enter the CNS. Opportunistic infections with an inflammatory component are associated with elevated HIV loads in the cerebrospinal fluid and also with greater cognitive impairment. The inflammatory immune reconstitution syndrome associated with CNS opportunistic infections can be a life-threatening condition, which needs to be recognized and managed by efficiently controlling the pathogen burden and timely balanced combination antiretroviral therapy. Latent neurotropic pathogens can reactivate in the brain and mimic HIV-associated severe neurological diseases or contribute to neurocognitive impairment in the setting of stable HIV infection. Conclusions: As HIV can be responsible for considerable brain damage directly or by facilitating other pathogens, more effort is needed to recognize and manage HIV-associated CNS disorders and to eventually target HIV eradication from the brain.
Collapse
Affiliation(s)
- Luminita Ene
- HIV Department, "Dr. Victor Babes" Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| |
Collapse
|
50
|
Klement W, Garbelli R, Zub E, Rossini L, Tassi L, Girard B, Blaquiere M, Bertaso F, Perroy J, de Bock F, Marchi N. Seizure progression and inflammatory mediators promote pericytosis and pericyte-microglia clustering at the cerebrovasculature. Neurobiol Dis 2018; 113:70-81. [PMID: 29432809 DOI: 10.1016/j.nbd.2018.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Cerebrovascular dysfunction and inflammation occur in epilepsy. Here we asked whether pericytes, a pivotal cellular component of brain capillaries, undergo pathological modifications during experimental epileptogenesis and in human epilepsy. We evaluated whether pro-inflammatory cytokines, present in the brain during seizures, contribute to pericyte morphological modifications. METHODS In vivo, unilateral intra-hippocampal kainic acid (KA) injections were performed in NG2DsRed/C57BL6 mice to induce status epilepticus (SE), epileptogenesis, and spontaneous recurrent seizures (SRS). NG2DsRed mice were used to visualize pericytes during seizure progression. The effect triggered by recombinant IL-1β, TNFα, or IL-6 on pericytes was evaluated in NG2DsRed hippocampal slices and in human-derived cell culture. Human brain specimens obtained from temporal lobe epilepsy (TLE) with or without sclerosis (HS) and focal cortical dysplasia (FCD-IIb) were evaluated for pericyte-microglial cerebrovascular assembly. RESULTS A disarray of NG2DsRed+ pericyte soma and ramifications was found 72 h post-SE and 1 week post-SE (epileptogenesis) in the hippocampus. Pericyte modifications topographically overlapped with IBA1+ microglia clustering around the capillaries with cases of pericytes lodged within the microglial cells. Microglial clustering around the NG2DsRed pericytes lingered at SRS. Pericyte proliferation (Ki67+) occurred 72 h post-SE and during epileptogenesis and returned towards control levels at SRS. Human epileptic brain tissues showed pericyte-microglia assemblies with IBA1/HLA microglial cells outlining the capillary wall in TLE-HS and FCD-IIb specimens. Inflammatory mediators contributed to pericyte modifications, in particular IL-1β elicited pericyte morphological changes and pericyte-microglia clustering in NG2DsRed hippocampal slices. Modifications also occurred when pro-inflammatory cytokines were added to an in vitro culture of pericytes. CONCLUSIONS These results indicate the occurrence of pericytosis during seizures and introduce a pericyte-microglial mediated mechanism of blood-brain barrier dysfunction in epilepsy.
Collapse
Affiliation(s)
- Wendy Klement
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Rita Garbelli
- Clinical Epileptology and Experimental Neurophysiology Unit, Fondazione IRCCS, Istituto Neurologico C. Besta, Milano, Italy
| | - Emma Zub
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Laura Rossini
- Clinical Epileptology and Experimental Neurophysiology Unit, Fondazione IRCCS, Istituto Neurologico C. Besta, Milano, Italy
| | - Laura Tassi
- C. Munari Epilepsy Surgery Centre, Ospedale Niguarda, Milano, Italy
| | - Benoit Girard
- Laboratory of Pathophysiology of Synaptic Transmission, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Marine Blaquiere
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Federica Bertaso
- Laboratory of Pathophysiology of Synaptic Transmission, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Julie Perroy
- Laboratory of Pathophysiology of Synaptic Transmission, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Frederic de Bock
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Nicola Marchi
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France.
| |
Collapse
|