1
|
Sundararaman B, Sylvester MD, Kozyreva VK, Berrada ZL, Corbett-Detig RB, Green RE. A hybridization target enrichment approach for pathogen genomics. mBio 2023; 14:e0188923. [PMID: 37830873 PMCID: PMC10653935 DOI: 10.1128/mbio.01889-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Emerging infectious diseases require continuous pathogen monitoring. Rapid clinical diagnosis by nucleic acid amplification is limited to a small number of targets and may miss target detection due to new mutations in clinical isolates. Whole-genome sequencing (WGS) identifies genome-wide variations that may be used to determine a pathogen's drug resistance patterns and phylogenetically characterize isolates to track disease origin and transmission. WGS is typically performed using DNA isolated from cultured clinical isolates. Culturing clinical specimens increases turn-around time and may not be possible for fastidious bacteria. To overcome some of these limitations, direct sequencing of clinical specimens has been attempted using expensive capture probes to enrich the entire genomes of target pathogens. We present a method to produce a cost-effective, time-efficient, and large-scale synthesis of probes for whole-genome enrichment. We envision that our method can be used for direct clinical sequencing of a wide range of microbial pathogens for genomic epidemiology.
Collapse
Affiliation(s)
- Balaji Sundararaman
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Matthew D. Sylvester
- Center for Laboratory Sciences, California Department of Public Health, Microbial Diseases Laboratory Branch, Richmond, California, USA
| | - Varvara K. Kozyreva
- Center for Laboratory Sciences, California Department of Public Health, Microbial Diseases Laboratory Branch, Richmond, California, USA
| | - Zenda L. Berrada
- Center for Laboratory Sciences, California Department of Public Health, Microbial Diseases Laboratory Branch, Richmond, California, USA
| | - Russell B. Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, California, USA
| | - Richard E. Green
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
2
|
Abstract
Rustrela virus (RusV; species Rubivirus strelense) is a recently discovered relative of rubella virus (RuV) that has been detected in cases of encephalitis in diverse mammals. Here, we diagnosed two additional cases of fatal RusV-associated meningoencephalitis in a South American coati (Nasua nasua) and a Eurasian or European otter (Lutra lutra) that were detected in a zoological garden with history of prior RusV infections. Both animals showed abnormal movement or unusual behavior and their brains tested positive for RusV using specific reverse transcription quantitative PCR (RT-qPCR) and RNA in situ hybridization. As previous sequencing of the RusV genome proved to be very challenging, we employed a sophisticated target-specific capture enrichment with specifically designed RNA baits to generate complete RusV genome sequences from both detected encephalitic animals and apparently healthy wild yellow-necked field mice (Apodemus flavicollis). Furthermore, the technique was used to revise three previously published RusV genomes from two encephalitic animals and a wild yellow-necked field mouse. When comparing the newly generated RusV sequences to the previously published RusV genomes, we identified a previously undetected stretch of 309 nucleotides predicted to represent the intergenic region and the sequence encoding the N terminus of the capsid protein. This indicated that the original RusV sequence was likely incomplete due to misassembly of the genome at a region with an exceptionally high G+C content of >80 mol%. The new sequence data indicate that RusV has an overall genome length of 9,631 nucleotides with the longest intergenic region (290 nucleotides) and capsid protein-encoding sequence (331 codons) within the genus Rubivirus. IMPORTANCE The detection of rustrela virus (RusV)-associated encephalitis in two carnivoran mammal species further extends the knowledge on susceptible species. Furthermore, we provide clinical and pathological data for the two new RusV cases, which were until now limited to the initial description of this fatal encephalitis. Using a sophisticated enrichment method prior to sequencing of the viral genome, we markedly improved the virus-to-background sequence ratio compared to that of standard procedures. Consequently, we were able to resolve and update the intergenic region and the coding region for the N terminus of the capsid protein of the initial RusV genome sequence. The updated putative capsid protein now resembles those of rubella and ruhugu virus in size and harbors a predicted RNA-binding domain that had not been identified in the initial RusV genome version. The newly determined complete RusV genomes strongly improve our knowledge of the genome structure of this novel rubivirus.
Collapse
|
3
|
Duttke SH, Beyhan S, Singh R, Neal S, Viriyakosol S, Fierer J, Kirkland TN, Stajich JE, Benner C, Carlin AF. Decoding Transcription Regulatory Mechanisms Associated with Coccidioides immitis Phase Transition Using Total RNA. mSystems 2022; 7:e0140421. [PMID: 35076277 PMCID: PMC8788335 DOI: 10.1128/msystems.01404-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/04/2022] [Indexed: 01/07/2023] Open
Abstract
New or emerging infectious diseases are commonly caused by pathogens that cannot be readily manipulated or studied under common laboratory conditions. These limitations hinder standard experimental approaches and our abilities to define the fundamental molecular mechanisms underlying pathogenesis. The advance of capped small RNA sequencing (csRNA-seq) now enables genome-wide mapping of actively initiated transcripts from genes and other regulatory transcribed start regions (TSRs) such as enhancers at a precise moment from total RNA. As RNA is nonpathogenic and can be readily isolated from inactivated infectious samples, csRNA-seq can detect acute changes in gene regulation within or in response to a pathogen with remarkable sensitivity under common laboratory conditions. Studying valley fever (coccidioidomycosis), an emerging endemic fungal infection that increasingly impacts livestock, pet, and human health, we show how csRNA-seq can unravel transcriptional programs driving pathogenesis. Performing csRNA-seq on RNA isolated from different stages of the valley fever pathogen Coccidioides immitis revealed alternative promoter usage, connected cis-regulatory domains, and a WOPR family transcription factor, which are known regulators of virulence in other fungi, as being critical for pathogenic growth. We further demonstrate that a C. immitis WOPR homologue, CIMG_02671, activates transcription in a WOPR motif-dependent manner. Collectively, these findings provide novel insights into valley fever pathogenesis and provide a proof of principle for csRNA-seq as a powerful means to determine the genes, regulatory mechanisms, and transcription factors that control the pathogenesis of highly infectious agents. IMPORTANCE Infectious pathogens like airborne viruses or fungal spores are difficult to study; they require high-containment facilities, special equipment, and expertise. As such, establishing approaches such as genome editing or other means to identify the factors and mechanisms underlying caused diseases, and, thus, promising drug targets, is costly and time-intensive. These obstacles particularly hinder the analysis of new, emerging, or rare infectious diseases. We recently developed a method termed capped small RNA sequencing (csRNA-seq) that enables capturing acute changes in active gene expression from total RNA. Prior to csRNA-seq, such an analysis was possible only by using living cells or nuclei, in which pathogens are highly infectious. The process of RNA purification, however, inactivates pathogens and thus enables the analysis of gene expression during disease progression under standard laboratory conditions. As a proof of principle, here, we use csRNA-seq to unravel the gene regulatory programs and factors likely critical for the pathogenesis of valley fever, an emerging endemic fungal infection that increasingly impacts livestock, pet, and human health.
Collapse
Affiliation(s)
- Sascha H. Duttke
- Department of Medicine, Division of Endocrinology, UC San Diego School of Medicine, La Jolla, California, USA
| | - Sinem Beyhan
- Department of Medicine, Division of Infectious Disease, UC San Diego School of Medicine, La Jolla, California, USA
- J. Craig Venter Institute, Department of Infectious Diseases, La Jolla, California, USA
| | - Rajendra Singh
- Department of Medicine, Division of Infectious Disease, UC San Diego School of Medicine, La Jolla, California, USA
| | - Sonya Neal
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Suganya Viriyakosol
- Department of Medicine, Division of Infectious Disease, UC San Diego School of Medicine, La Jolla, California, USA
| | - Joshua Fierer
- Department of Medicine, Division of Infectious Disease, UC San Diego School of Medicine, La Jolla, California, USA
- Infectious Diseases Section, VA Healthcare San Diego, San Diego, California, USA
- Department of Pathology, UC San Diego School of Medicine, La Jolla, California, USA
| | - Theo N. Kirkland
- Department of Medicine, Division of Infectious Disease, UC San Diego School of Medicine, La Jolla, California, USA
- Department of Pathology, UC San Diego School of Medicine, La Jolla, California, USA
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California—Riverside, Riverside, California, USA
| | - Christopher Benner
- Department of Medicine, Division of Endocrinology, UC San Diego School of Medicine, La Jolla, California, USA
| | - Aaron F. Carlin
- Department of Medicine, Division of Infectious Disease, UC San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
4
|
A novel SARS-CoV-2 related coronavirus in bats from Cambodia. Nat Commun 2021; 12:6563. [PMID: 34753934 PMCID: PMC8578604 DOI: 10.1038/s41467-021-26809-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 10/14/2021] [Indexed: 01/31/2023] Open
Abstract
Knowledge of the origin and reservoir of the coronavirus responsible for the ongoing COVID-19 pandemic is still fragmentary. To date, the closest relatives to SARS-CoV-2 have been detected in Rhinolophus bats sampled in the Yunnan province, China. Here we describe the identification of SARS-CoV-2 related coronaviruses in two Rhinolophus shameli bats sampled in Cambodia in 2010. Metagenomic sequencing identifies nearly identical viruses sharing 92.6% nucleotide identity with SARS-CoV-2. Most genomic regions are closely related to SARS-CoV-2, with the exception of a region of the spike, which is not compatible with human ACE2-mediated entry. The discovery of these viruses in a bat species not found in China indicates that SARS-CoV-2 related viruses have a much wider geographic distribution than previously reported, and suggests that Southeast Asia represents a key area to consider for future surveillance for coronaviruses. In this study, Delaune et al., isolate and characterise a SARS-CoV-2-related coronavirus from two bats sampled in Cambodia. Their findings suggest that the geographic distribution of SARS-CoV-2-related viruses is wider than previously reported.
Collapse
|
5
|
Genomic surveillance of enterovirus associated with aseptic meningitis cases in southern Spain, 2015-2018. Sci Rep 2021; 11:21523. [PMID: 34728763 PMCID: PMC8564535 DOI: 10.1038/s41598-021-01053-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
New circulating Enterovirus (EV) strains often emerge through recombination. Upsurges of recombinant non-polio enteroviruses (NPEVs) associated with neurologic manifestations such as EVA71 or Echovirus 30 (E30) are a growing public health concern in Europe. Only a few complete genomes of EVs circulating in Spain are available in public databases, making it difficult to address the emergence of recombinant EVs, understand their evolutionary relatedness and the possible implication in human disease. We have used metagenomic (untargeted) NGS to generate full-length EV genomes from CSF samples of EV-positive aseptic meningitis cases in Southern Spain between 2015 and 2018. Our analyses reveal the co-circulation of multiple Enterovirus B (EV-B) types (E6, E11, E13 and E30), including a novel E13 recombinant form. We observed a genetic turnover where emergent lineages (C1 for E6 and I [tentatively proposed in this study] for E30) replaced previous lineages circulating in Spain, some concomitant with outbreaks in other parts of Europe. Metagenomic sequencing provides an effective approach for the analysis of EV genomes directly from PCR-positive CSF samples. The detection of a novel, disease-associated, recombinant form emphasizes the importance of genomic surveillance to monitor spread and evolution of EVs.
Collapse
|
6
|
Utilizing the VirIdAl Pipeline to Search for Viruses in the Metagenomic Data of Bat Samples. Viruses 2021; 13:v13102006. [PMID: 34696436 PMCID: PMC8541124 DOI: 10.3390/v13102006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/27/2022] Open
Abstract
According to various estimates, only a small percentage of existing viruses have been discovered, naturally much less being represented in the genomic databases. High-throughput sequencing technologies develop rapidly, empowering large-scale screening of various biological samples for the presence of pathogen-associated nucleotide sequences, but many organisms are yet to be attributed specific loci for identification. This problem particularly impedes viral screening, due to vast heterogeneity in viral genomes. In this paper, we present a new bioinformatic pipeline, VirIdAl, for detecting and identifying viral pathogens in sequencing data. We also demonstrate the utility of the new software by applying it to viral screening of the feces of bats collected in the Moscow region, which revealed a significant variety of viruses associated with bats, insects, plants, and protozoa. The presence of alpha and beta coronavirus reads, including the MERS-like bat virus, deserves a special mention, as it once again indicates that bats are indeed reservoirs for many viral pathogens. In addition, it was shown that alignment-based methods were unable to identify the taxon for a large proportion of reads, and we additionally applied other approaches, showing that they can further reveal the presence of viral agents in sequencing data. However, the incompleteness of viral databases remains a significant problem in the studies of viral diversity, and therefore necessitates the use of combined approaches, including those based on machine learning methods.
Collapse
|
7
|
Piantadosi A, Mukerji SS, Ye S, Leone MJ, Freimark LM, Park D, Adams G, Lemieux J, Kanjilal S, Solomon IH, Ahmed AA, Goldstein R, Ganesh V, Ostrem B, Cummins KC, Thon JM, Kinsella CM, Rosenberg E, Frosch MP, Goldberg MB, Cho TA, Sabeti P. Enhanced Virus Detection and Metagenomic Sequencing in Patients with Meningitis and Encephalitis. mBio 2021; 12:e0114321. [PMID: 34465023 PMCID: PMC8406231 DOI: 10.1128/mbio.01143-21] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/02/2021] [Indexed: 01/21/2023] Open
Abstract
Meningitis and encephalitis are leading causes of central nervous system (CNS) disease and often result in severe neurological compromise or death. Traditional diagnostic workflows largely rely on pathogen-specific tests, sometimes over days to weeks, whereas metagenomic next-generation sequencing (mNGS) profiles all nucleic acid in a sample. In this single-center, prospective study, 68 hospitalized patients with known (n = 44) or suspected (n = 24) CNS infections underwent mNGS from RNA and DNA to identify potential pathogens and also targeted sequencing of viruses using hybrid capture. Using a computational metagenomic classification pipeline based on KrakenUniq and BLAST, we detected pathogen nucleic acid in cerebrospinal fluid (CSF) from 22 subjects, 3 of whom had no clinical diagnosis by routine workup. Among subjects diagnosed with infection by serology and/or peripheral samples, we demonstrated the utility of mNGS to detect pathogen nucleic acid in CSF, importantly for the Ixodes scapularis tick-borne pathogens Powassan virus, Borrelia burgdorferi, and Anaplasma phagocytophilum. We also evaluated two methods to enhance the detection of viral nucleic acid, hybrid capture and methylated DNA depletion. Hybrid capture nearly universally increased viral read recovery. Although results for methylated DNA depletion were mixed, it allowed the detection of varicella-zoster virus DNA in two samples that were negative by standard mNGS. Overall, mNGS is a promising approach that can test for multiple pathogens simultaneously, with efficacy similar to that of pathogen-specific tests, and can uncover geographically relevant infectious CNS disease, such as tick-borne infections in New England. With further laboratory and computational enhancements, mNGS may become a mainstay of workup for encephalitis and meningitis. IMPORTANCE Meningitis and encephalitis are leading global causes of central nervous system (CNS) disability and mortality. Current diagnostic workflows remain inefficient, requiring costly pathogen-specific assays and sometimes invasive surgical procedures. Despite intensive diagnostic efforts, 40 to 60% of people with meningitis or encephalitis have no clear cause of CNS disease identified. As diagnostic uncertainty often leads to costly inappropriate therapies, the need for novel pathogen detection methods is paramount. Metagenomic next-generation sequencing (mNGS) offers the unique opportunity to circumvent these challenges using unbiased laboratory and computational methods. Here, we performed comprehensive mNGS from 68 prospectively enrolled patients with known (n = 44) or suspected (n = 24) CNS viral infection from a single center in New England and evaluated enhanced methods to improve the detection of CNS pathogens, including those not traditionally identified in the CNS by nucleic acid detection. Overall, our work helps elucidate how mNGS can become integrated into the diagnostic toolkit for CNS infections.
Collapse
Affiliation(s)
- Anne Piantadosi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shibani S. Mukerji
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Simon Ye
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard-MIT Program of Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - Michael J. Leone
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lisa M. Freimark
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Daniel Park
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Gordon Adams
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jacob Lemieux
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Sanjat Kanjilal
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Isaac H. Solomon
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Asim A. Ahmed
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Children’s Hospital, Boston, Massachusetts, USA
| | - Robert Goldstein
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Vijay Ganesh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Bridget Ostrem
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Kaelyn C. Cummins
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jesse M. Thon
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Cormac M. Kinsella
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Eric Rosenberg
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Matthew P. Frosch
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marcia B. Goldberg
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Tracey A. Cho
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- University of Iowa, Department of Neurology, Iowa City, Iowa, USA
| | - Pardis Sabeti
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
8
|
Delorey TM, Ziegler CGK, Heimberg G, Normand R, Yang Y, Segerstolpe A, Abbondanza D, Fleming SJ, Subramanian A, Montoro DT, Jagadeesh KA, Dey KK, Sen P, Slyper M, Pita-Juárez YH, Phillips D, Bloom-Ackerman Z, Barkas N, Ganna A, Gomez J, Normandin E, Naderi P, Popov YV, Raju SS, Niezen S, Tsai LTY, Siddle KJ, Sud M, Tran VM, Vellarikkal SK, Amir-Zilberstein L, Atri DS, Beechem J, Brook OR, Chen J, Divakar P, Dorceus P, Engreitz JM, Essene A, Fitzgerald DM, Fropf R, Gazal S, Gould J, Grzyb J, Harvey T, Hecht J, Hether T, Jane-Valbuena J, Leney-Greene M, Ma H, McCabe C, McLoughlin DE, Miller EM, Muus C, Niemi M, Padera R, Pan L, Pant D, Pe’er C, Pfiffner-Borges J, Pinto CJ, Plaisted J, Reeves J, Ross M, Rudy M, Rueckert EH, Siciliano M, Sturm A, Todres E, Waghray A, Warren S, Zhang S, Zollinger DR, Cosimi L, Gupta RM, Hacohen N, Hide W, Price AL, Rajagopal J, Tata PR, Riedel S, Szabo G, Tickle TL, Hung D, Sabeti PC, Novak R, Rogers R, Ingber DE, Jiang ZG, Juric D, Babadi M, Farhi SL, Stone JR, Vlachos IS, Solomon IH, Ashenberg O, Porter CB, Li B, Shalek AK, Villani AC, Rozenblatt-Rosen O, Regev A. A single-cell and spatial atlas of autopsy tissues reveals pathology and cellular targets of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.25.430130. [PMID: 33655247 PMCID: PMC7924267 DOI: 10.1101/2021.02.25.430130] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The SARS-CoV-2 pandemic has caused over 1 million deaths globally, mostly due to acute lung injury and acute respiratory distress syndrome, or direct complications resulting in multiple-organ failures. Little is known about the host tissue immune and cellular responses associated with COVID-19 infection, symptoms, and lethality. To address this, we collected tissues from 11 organs during the clinical autopsy of 17 individuals who succumbed to COVID-19, resulting in a tissue bank of approximately 420 specimens. We generated comprehensive cellular maps capturing COVID-19 biology related to patients' demise through single-cell and single-nucleus RNA-Seq of lung, kidney, liver and heart tissues, and further contextualized our findings through spatial RNA profiling of distinct lung regions. We developed a computational framework that incorporates removal of ambient RNA and automated cell type annotation to facilitate comparison with other healthy and diseased tissue atlases. In the lung, we uncovered significantly altered transcriptional programs within the epithelial, immune, and stromal compartments and cell intrinsic changes in multiple cell types relative to lung tissue from healthy controls. We observed evidence of: alveolar type 2 (AT2) differentiation replacing depleted alveolar type 1 (AT1) lung epithelial cells, as previously seen in fibrosis; a concomitant increase in myofibroblasts reflective of defective tissue repair; and, putative TP63+ intrapulmonary basal-like progenitor (IPBLP) cells, similar to cells identified in H1N1 influenza, that may serve as an emergency cellular reserve for severely damaged alveoli. Together, these findings suggest the activation and failure of multiple avenues for regeneration of the epithelium in these terminal lungs. SARS-CoV-2 RNA reads were enriched in lung mononuclear phagocytic cells and endothelial cells, and these cells expressed distinct host response transcriptional programs. We corroborated the compositional and transcriptional changes in lung tissue through spatial analysis of RNA profiles in situ and distinguished unique tissue host responses between regions with and without viral RNA, and in COVID-19 donor tissues relative to healthy lung. Finally, we analyzed genetic regions implicated in COVID-19 GWAS with transcriptomic data to implicate specific cell types and genes associated with disease severity. Overall, our COVID-19 cell atlas is a foundational dataset to better understand the biological impact of SARS-CoV-2 infection across the human body and empowers the identification of new therapeutic interventions and prevention strategies.
Collapse
Affiliation(s)
- Toni M. Delorey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Carly G. K. Ziegler
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA 02115, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Graham Heimberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Rachelly Normand
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yiming Yang
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Asa Segerstolpe
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Domenic Abbondanza
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Stephen J. Fleming
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ayshwarya Subramanian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | | | - Karthik A. Jagadeesh
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Kushal K. Dey
- Department of Epidemiology, Harvard School of Public Health
| | - Pritha Sen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Michal Slyper
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Yered H. Pita-Juárez
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Devan Phillips
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Zohar Bloom-Ackerman
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nick Barkas
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Andrea Ganna
- Institute for Molecular Medicine Finland, Helsinki, Finland
- Analytical & Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James Gomez
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Erica Normandin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Pourya Naderi
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Yury V. Popov
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Siddharth S. Raju
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sebastian Niezen
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Linus T.-Y. Tsai
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02115
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core Boston, MA 02115, USA
| | - Katherine J. Siddle
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Malika Sud
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Victoria M. Tran
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shamsudheen K. Vellarikkal
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Divisions of Cardiovascular Medicine and Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Liat Amir-Zilberstein
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Deepak S. Atri
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Divisions of Cardiovascular Medicine and Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Olga R. Brook
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jonathan Chen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Phylicia Dorceus
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Jesse M. Engreitz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics and BASE Initiative, Stanford University School of Medicine
| | - Adam Essene
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02115
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core Boston, MA 02115, USA
| | - Donna M. Fitzgerald
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Robin Fropf
- NanoString Technologies Inc., Seattle, WA 98109, USA
| | - Steven Gazal
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joshua Gould
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - John Grzyb
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Tyler Harvey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Jonathan Hecht
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Tyler Hether
- NanoString Technologies Inc., Seattle, WA 98109, USA
| | - Judit Jane-Valbuena
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | | | - Hui Ma
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cristin McCabe
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Daniel E. McLoughlin
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Christoph Muus
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Mari Niemi
- Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Robert Padera
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard-MIT Division of Health Sciences and Technology, Cambridge MA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Liuliu Pan
- NanoString Technologies Inc., Seattle, WA 98109, USA
| | - Deepti Pant
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02115
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core Boston, MA 02115, USA
| | - Carmel Pe’er
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | | | - Christopher J. Pinto
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jacob Plaisted
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Jason Reeves
- NanoString Technologies Inc., Seattle, WA 98109, USA
| | - Marty Ross
- NanoString Technologies Inc., Seattle, WA 98109, USA
| | - Melissa Rudy
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Alexander Sturm
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ellen Todres
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Avinash Waghray
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sarah Warren
- NanoString Technologies Inc., Seattle, WA 98109, USA
| | - Shuting Zhang
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Lisa Cosimi
- Infectious Diseases Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Rajat M. Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Divisions of Cardiovascular Medicine and Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Winston Hide
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Alkes L. Price
- Department of Epidemiology, Harvard School of Public Health
| | - Jayaraj Rajagopal
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Stefan Riedel
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Gyongyi Szabo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
| | - Timothy L. Tickle
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Deborah Hung
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pardis C. Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
| | - Richard Novak
- Wyss Institute for Biologically Inspired Engineering, Harvard University
| | - Robert Rogers
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
- Massachusetts General Hospital, MA 02114, USA
| | - Donald E. Ingber
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Wyss Institute for Biologically Inspired Engineering, Harvard University
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Z. Gordon Jiang
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Dejan Juric
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mehrtash Babadi
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Samouil L. Farhi
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - James R. Stone
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ioannis S. Vlachos
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Isaac H. Solomon
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Caroline B.M. Porter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Bo Li
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Alex K. Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA 02115, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
- Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Program in Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexandra-Chloé Villani
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| |
Collapse
|
9
|
A streamlined clinical metagenomic sequencing protocol for rapid pathogen identification. Sci Rep 2021; 11:4405. [PMID: 33623127 PMCID: PMC7902651 DOI: 10.1038/s41598-021-83812-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Metagenomic next-generation sequencing (mNGS) holds promise as a diagnostic tool for unbiased pathogen identification and precision medicine. However, its medical utility depends largely on assay simplicity and reproducibility. In the current study, we aimed to develop a streamlined Illumina and Oxford Nanopore-based DNA/RNA library preparation protocol and rapid data analysis pipeline. The Illumina sequencing-based mNGS method was first developed and evaluated using a set of samples with known aetiology. Its sensitivity for RNA viruses (influenza A, H1N1) was < 6.4 × 102 EID50/mL, and a good correlation between viral loads and mapped reads was observed. Then, the rapid turnaround time of Nanopore sequencing was tested by sequencing influenza A virus and adenoviruses. Furthermore, 11 respiratory swabs or sputum samples pre-tested for a panel of pathogens were analysed, and the pathogens identified by Illumina sequencing showed 81.8% concordance with qPCR results. Additional sequencing of cerebrospinal fluid (CSF) samples from HIV-1-positive patients with meningitis/encephalitis detected HIV-1 RNA and Toxoplasma gondii sequences. In conclusion, we have developed a simplified protocol that realizes efficient metagenomic sequencing of a variety of clinical samples and pathogen identification in a clinically meaningful time frame.
Collapse
|
10
|
Fitzpatrick AH, Rupnik A, O'Shea H, Crispie F, Keaveney S, Cotter P. High Throughput Sequencing for the Detection and Characterization of RNA Viruses. Front Microbiol 2021; 12:621719. [PMID: 33692767 PMCID: PMC7938315 DOI: 10.3389/fmicb.2021.621719] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
This review aims to assess and recommend approaches for targeted and agnostic High Throughput Sequencing of RNA viruses in a variety of sample matrices. HTS also referred to as deep sequencing, next generation sequencing and third generation sequencing; has much to offer to the field of environmental virology as its increased sequencing depth circumvents issues with cloning environmental isolates for Sanger sequencing. That said however, it is important to consider the challenges and biases that method choice can impart to sequencing results. Here, methodology choices from RNA extraction, reverse transcription to library preparation are compared based on their impact on the detection or characterization of RNA viruses.
Collapse
Affiliation(s)
- Amy H. Fitzpatrick
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
- Shellfish Microbiology, Marine Institute, Oranmore, Ireland
- Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Helen O'Shea
- Biological Sciences, Munster Technological University, Cork, Ireland
| | - Fiona Crispie
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | | | - Paul Cotter
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| |
Collapse
|
11
|
Sy M, Badiane AS, Deme AB, Gaye A, Ndiaye T, Fall FB, Siddle KJ, Dieye B, Ndiaye YD, Diallo MA, Diongue K, Seck MC, Ndiaye IM, Cissé M, Gueye AB, Sène D, Dieye Y, Souané T, MacInnis B, Volkman SK, Wirth DF, Ndiaye D. Genomic investigation of atypical malaria cases in Kanel, northern Senegal. Malar J 2021; 20:103. [PMID: 33608006 PMCID: PMC7893743 DOI: 10.1186/s12936-021-03637-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The diagnosis of malaria cases in regions where the malaria burden has decreased significantly and prevalence is very low is more challenging, in part because of reduced clinical presumption of malaria. The appearance of a cluster of malaria cases with atypical symptoms in Mbounguiel, a village in northern Senegal where malaria transmission is low, in September 2018 exemplifies this scenario. The collaboration between the National Malaria Control Programme (NMCP) at the Senegal Ministry of Health and the Laboratory of Parasitology and Mycology at Cheikh Anta Diop University worked together to evaluate this cluster of malaria cases using molecular and serological tools. METHODS Malaria cases were diagnosed primarily by rapid diagnostic test (RDT), and confirmed by photo-induced electron transfer-polymerase chain reaction (PET-PCR). 24 single nucleotide polymorphisms (SNPs) barcoding was used for Plasmodium falciparum genotyping. Unbiased metagenomic sequencing and Luminex-based multi-pathogen antibody and antigen profiling were used to assess exposure to other pathogens. RESULTS Nine patients, of 15 suspected cases, were evaluated, and all nine samples were found to be positive for P. falciparum only. The 24 SNPs molecular barcode showed the predominance of polygenomic infections, with identifiable strains being different from one another. All patients tested positive for the P. falciparum antigens. No other pathogenic infection was detected by either the serological panel or metagenomic sequencing. CONCLUSIONS This work, undertaken locally within Senegal as a collaboration between the NMCP and a research laboratory at University of Cheikh Anta Diop (UCAD) revealed that a cluster of malaria cases were caused by different strains of P. falciparum. The public health response in real time demonstrates the value of local molecular and genomics capacity in affected countries for disease control and elimination.
Collapse
Affiliation(s)
- Mouhamad Sy
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal.
| | - Aida Sadikh Badiane
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Awa Bineta Deme
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Amy Gaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Tolla Ndiaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Fatou Ba Fall
- Senegal National Malaria Control Programme, Dakar, Senegal
| | | | - Baba Dieye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Yaye Die Ndiaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Mamadou Alpha Diallo
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Khadim Diongue
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Mame Cheikh Seck
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Ibrahima Mbaye Ndiaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | | | | | - Doudou Sène
- Senegal National Malaria Control Programme, Dakar, Senegal
| | - Yakou Dieye
- Malaria Control and Evaluation Partnership in Africa PATH-MACEPA, Dakar, Senegal
| | - Tamba Souané
- Malaria Control and Evaluation Partnership in Africa PATH-MACEPA, Dakar, Senegal
| | - Bronwyn MacInnis
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Sarah K Volkman
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- College of Natural, Behavioral, and Health Sciences, Simmons University, Boston, MA, USA
| | - Dyann F Wirth
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Daouda Ndiaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| |
Collapse
|
12
|
Lemieux JE, Siddle KJ, Shaw BM, Loreth C, Schaffner SF, Gladden-Young A, Adams G, Fink T, Tomkins-Tinch CH, Krasilnikova LA, DeRuff KC, Rudy M, Bauer MR, Lagerborg KA, Normandin E, Chapman SB, Reilly SK, Anahtar MN, Lin AE, Carter A, Myhrvold C, Kemball ME, Chaluvadi S, Cusick C, Flowers K, Neumann A, Cerrato F, Farhat M, Slater D, Harris JB, Branda JA, Hooper D, Gaeta JM, Baggett TP, O'Connell J, Gnirke A, Lieberman TD, Philippakis A, Burns M, Brown CM, Luban J, Ryan ET, Turbett SE, LaRocque RC, Hanage WP, Gallagher GR, Madoff LC, Smole S, Pierce VM, Rosenberg E, Sabeti PC, Park DJ, MacInnis BL. Phylogenetic analysis of SARS-CoV-2 in Boston highlights the impact of superspreading events. Science 2021; 371:eabe3261. [PMID: 33303686 PMCID: PMC7857412 DOI: 10.1126/science.abe3261] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
Analysis of 772 complete severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from early in the Boston-area epidemic revealed numerous introductions of the virus, a small number of which led to most cases. The data revealed two superspreading events. One, in a skilled nursing facility, led to rapid transmission and significant mortality in this vulnerable population but little broader spread, whereas other introductions into the facility had little effect. The second, at an international business conference, produced sustained community transmission and was exported, resulting in extensive regional, national, and international spread. The two events also differed substantially in the genetic variation they generated, suggesting varying transmission dynamics in superspreading events. Our results show how genomic epidemiology can help to understand the link between individual clusters and wider community spread.
Collapse
Affiliation(s)
- Jacob E Lemieux
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA.
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Katherine J Siddle
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bennett M Shaw
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Christine Loreth
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Stephen F Schaffner
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | | | - Gordon Adams
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Timelia Fink
- Massachusetts Department of Public Health, Boston, MA, USA
| | - Christopher H Tomkins-Tinch
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lydia A Krasilnikova
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Katherine C DeRuff
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Melissa Rudy
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Matthew R Bauer
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
- Harvard Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Kim A Lagerborg
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
- Harvard Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Erica Normandin
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Sinéad B Chapman
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Steven K Reilly
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Melis N Anahtar
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Aaron E Lin
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Amber Carter
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Cameron Myhrvold
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Molly E Kemball
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Sushma Chaluvadi
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Caroline Cusick
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Katelyn Flowers
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Anna Neumann
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Felecia Cerrato
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Maha Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Damien Slater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - John A Branda
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - David Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Jessie M Gaeta
- Institute for Research, Quality, and Policy in Homeless Health Care, Boston Health Care for the Homeless Program, Boston, MA, USA
- Section of General Internal Medicine, Boston University Medical Center, Boston, MA, USA
| | - Travis P Baggett
- Institute for Research, Quality, and Policy in Homeless Health Care, Boston Health Care for the Homeless Program, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - James O'Connell
- Institute for Research, Quality, and Policy in Homeless Health Care, Boston Health Care for the Homeless Program, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Andreas Gnirke
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Tami D Lieberman
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anthony Philippakis
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Meagan Burns
- Massachusetts Department of Public Health, Boston, MA, USA
| | | | - Jeremy Luban
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Sarah E Turbett
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Lawrence C Madoff
- Massachusetts Department of Public Health, Boston, MA, USA
- University of Massachusetts Medical School, Infectious Diseases and Immunology, Worcester, MA 01655, USA
| | - Sandra Smole
- Massachusetts Department of Public Health, Boston, MA, USA
| | - Virginia M Pierce
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Pediatric Infectious Disease Unit, Massachusetts General Hospital for Children, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Eric Rosenberg
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Pardis C Sabeti
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA
| | - Daniel J Park
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Bronwyn L MacInnis
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA.
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| |
Collapse
|
13
|
Hartley PD, Tillett RL, AuCoin DP, Sevinsky JR, Xu Y, Gorzalski A, Pandori M, Buttery E, Hansen H, Picker MA, Rossetto CC, Verma SC. Genomic surveillance of Nevada patients revealed prevalence of unique SARS-CoV-2 variants bearing mutations in the RdRp gene. J Genet Genomics 2021; 48:40-51. [PMID: 33820739 PMCID: PMC7891100 DOI: 10.1016/j.jgg.2021.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/28/2022]
Abstract
Patients with signs of COVID-19 were tested through diagnostic RT-PCR for SARS-CoV-2 using RNA extracted from the nasopharyngeal/nasal swabs. To determine the variants of SARS-CoV-2 circulating in the state of Nevada, specimens from 200 COVID-19 patients were sequenced through our robust sequencing platform, which enabled sequencing of SARS-CoV-2 from specimens with even very low viral loads, without the need of culture-based amplification. High genome coverage allowed the identification of single and multi-nucleotide variants in SARS-CoV-2 in the community and their phylogenetic relationships with other variants present during the same period of the outbreak. We report the occurrence of a novel mutation at 323aa (314aa of orf1b) of nsp12 (RNA-dependent RNA polymerase) changed to phenylalanine (F) from proline (P), in the first reported isolate of SARS-CoV-2, Wuhan-Hu-1. This 323F variant was present at a very high frequency in Northern Nevada. Structural modeling determined this mutation in the interface domain, which is important for the association of accessory proteins required for the polymerase. In conclusion, we report the introduction of specific SARS-CoV-2 variants at very high frequency in distinct geographic locations, which is important for understanding the evolution and circulation of SARS-CoV-2 variants of public health importance, while it circulates in humans.
Collapse
Affiliation(s)
- Paul D Hartley
- Nevada Genomics Center, Reno, NV 89557, USA; University of Nevada, Reno, Reno, NV 89557, USA
| | - Richard L Tillett
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV 89154, USA
| | - David P AuCoin
- University of Nevada, Reno, Reno, NV 89557, USA; Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | | | - Yanji Xu
- University of Nevada, Reno, Reno, NV 89557, USA; Nevada Center for Bioinformatics, Reno, NV 89557, USA
| | - Andrew Gorzalski
- University of Nevada, Reno, Reno, NV 89557, USA; Nevada State Public Health Laboratory, Reno, NV 89503, USA
| | - Mark Pandori
- University of Nevada, Reno, Reno, NV 89557, USA; Nevada State Public Health Laboratory, Reno, NV 89503, USA
| | - Erin Buttery
- Southern Nevada Public Health Laboratory of the Southern Nevada Health District, Las Vegas, NV 89107, USA
| | - Holly Hansen
- Southern Nevada Public Health Laboratory of the Southern Nevada Health District, Las Vegas, NV 89107, USA
| | - Michael A Picker
- Southern Nevada Public Health Laboratory of the Southern Nevada Health District, Las Vegas, NV 89107, USA
| | - Cyprian C Rossetto
- University of Nevada, Reno, Reno, NV 89557, USA; Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA.
| | - Subhash C Verma
- University of Nevada, Reno, Reno, NV 89557, USA; Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
14
|
Ndiaye T, Sy M, Gaye A, Siddle KJ, Park DJ, Bei AK, Deme AB, Mbaye A, Dieye B, Ndiaye YD, Ndiaye IM, Diallo MA, Diongue K, Volkman SK, Badiane AS, Ndiaye D. Molecular epidemiology of Plasmodium falciparum by multiplexed amplicon deep sequencing in Senegal. Malar J 2020; 19:403. [PMID: 33172455 PMCID: PMC7654156 DOI: 10.1186/s12936-020-03471-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular epidemiology can provide important information regarding the genetic diversity and transmission of Plasmodium falciparum, which can assist in designing and monitoring elimination efforts. However, malaria molecular epidemiology including understanding the genetic diversity of the parasite and performing molecular surveillance of transmission has been poorly documented in Senegal. Next Generation Sequencing (NGS) offers a practical, fast and high-throughput approach to understand malaria population genetics. This study aims to unravel the population structure of P. falciparum and to estimate the allelic diversity, multiplicity of infection (MOI), and evolutionary patterns of the malaria parasite using the NGS platform. METHODS Multiplex amplicon deep sequencing of merozoite surface protein 1 (PfMSP1) and merozoite surface protein 2 (PfMSP2) in fifty-three P. falciparum isolates from two epidemiologically different areas in the South and North of Senegal, was carried out. RESULTS A total of 76 Pfmsp1 and 116 Pfmsp2 clones were identified and 135 different alleles were found, 56 and 79 belonged to the pfmsp1 and pfmsp2 genes, respectively. K1 and IC3D7 allelic families were most predominant in both sites. The local haplotype diversity (Hd) and nucleotide diversity (π) were higher in the South than in the North for both genes. For pfmsp1, a high positive Tajima's D (TD) value was observed in the South (D = 2.0453) while negative TD value was recorded in the North (D = - 1.46045) and F-Statistic (Fst) was 0.19505. For pfmsp2, non-directional selection was found with a highly positive TD test in both areas and Fst was 0.02111. The mean MOI for both genes was 3.07 and 1.76 for the South and the North, respectively, with a statistically significant difference between areas (p = 0.001). CONCLUSION This study revealed a high genetic diversity of pfmsp1 and pfmsp2 genes and low genetic differentiation in P. falciparum population in Senegal. The MOI means were significantly different between the Southern and Northern areas. Findings also showed that multiplexed amplicon deep sequencing is a useful technique to investigate genetic diversity and molecular epidemiology of P. falciparum infections.
Collapse
Affiliation(s)
- Tolla Ndiaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal.
| | - Mouhamad Sy
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Amy Gaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | | | - Daniel J Park
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy K Bei
- Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Awa B Deme
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Aminata Mbaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Baba Dieye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Yaye Die Ndiaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Ibrahima Mbaye Ndiaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Mamadou Alpha Diallo
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Khadim Diongue
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Sarah K Volkman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard University, Cambridge, MA, USA
| | - Aida Sadikh Badiane
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Daouda Ndiaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
- Department of Immunology and Infectious Diseases, Harvard University, Cambridge, MA, USA
| |
Collapse
|
15
|
Normandin E, Solomon IH, Zamirpour S, Lemieux J, Freije CA, Mukerji SS, Tomkins-Tinch C, Park D, Sabeti PC, Piantadosi A. Powassan Virus Neuropathology and Genomic Diversity in Patients With Fatal Encephalitis. Open Forum Infect Dis 2020; 7:ofaa392. [PMID: 33094116 PMCID: PMC7566439 DOI: 10.1093/ofid/ofaa392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
Background Powassan virus (POWV) is an emerging cause of severe encephalitis; very little is known about human pathogenicity due to challenges in diagnosis and viral RNA recovery. We present 3 patients with fatal encephalitis due to POWV lineage II (deer tick virus). Methods We obtained 27 unique samples, including from brain biopsy and autopsy, and used metagenomic sequencing, quantitative reverse transcriptase polymerase chain reaction, and a newly developed CRISPR-based diagnostic assay to perform the first detailed characterization of POWV compartmentalization and genomics between and within human subjects. Results In all 3 patients, imaging and histopathology findings were notable for profound cerebellar involvement. All patients were initially diagnosed with POWV by metagenomic sequencing, and 2 of the 3 had negative clinical testing by serology. We detected POWV RNA in 13 clinical samples; levels were highest in the cerebellum, and there was very little involvement of peripheral tissue. We assembled complete POWV genomes from 8 samples, providing unique information about the strains of POWV lineage II (deer tick virus) that infect humans. Conclusions We demonstrate the utility of molecular assays for detecting POWV infection, including in seronegative patients, and nominate viral genomic features that may relate to human infection and neuropathogenicity. The cerebellum was identified as a key target POWV in fatal infection, by radiological and histopathological findings as well as molecular testing.
Collapse
Affiliation(s)
- Erica Normandin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Isaac H Solomon
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Siavash Zamirpour
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Harvard College, Cambridge, Massachusetts, USA
| | - Jacob Lemieux
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Catherine A Freije
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, Massachusetts, USA
| | - Shibani S Mukerji
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Christopher Tomkins-Tinch
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Daniel Park
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Pardis C Sabeti
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Anne Piantadosi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA.,Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Lemieux JE, Siddle KJ, Shaw BM, Loreth C, Schaffner SF, Gladden-Young A, Adams G, Fink T, Tomkins-Tinch CH, Krasilnikova LA, DeRuff KC, Rudy M, Bauer MR, Lagerborg KA, Normandin E, Chapman SB, Reilly SK, Anahtar MN, Lin AE, Carter A, Myhrvold C, Kemball ME, Chaluvadi S, Cusick C, Flowers K, Neumann A, Cerrato F, Farhat M, Slater D, Harris JB, Branda J, Hooper D, Gaeta JM, Baggett TP, O'Connell J, Gnirke A, Lieberman TD, Philippakis A, Burns M, Brown CM, Luban J, Ryan ET, Turbett SE, LaRocque RC, Hanage WP, Gallagher GR, Madoff LC, Smole S, Pierce VM, Rosenberg E, Sabeti PC, Park DJ, Maclnnis BL. Phylogenetic analysis of SARS-CoV-2 in the Boston area highlights the role of recurrent importation and superspreading events. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.08.23.20178236. [PMID: 32869040 PMCID: PMC7457619 DOI: 10.1101/2020.08.23.20178236] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
SARS-CoV-2 has caused a severe, ongoing outbreak of COVID-19 in Massachusetts with 111,070 confirmed cases and 8,433 deaths as of August 1, 2020. To investigate the introduction, spread, and epidemiology of COVID-19 in the Boston area, we sequenced and analyzed 772 complete SARS-CoV-2 genomes from the region, including nearly all confirmed cases within the first week of the epidemic and hundreds of cases from major outbreaks at a conference, a nursing facility, and among homeless shelter guests and staff. The data reveal over 80 introductions into the Boston area, predominantly from elsewhere in the United States and Europe. We studied two superspreading events covered by the data, events that led to very different outcomes because of the timing and populations involved. One produced rapid spread in a vulnerable population but little onward transmission, while the other was a major contributor to sustained community transmission, including outbreaks in homeless populations, and was exported to several other domestic and international sites. The same two events differed significantly in the number of new mutations seen, raising the possibility that SARS-CoV-2 superspreading might encompass disparate transmission dynamics. Our results highlight the failure of measures to prevent importation into MA early in the outbreak, underscore the role of superspreading in amplifying an outbreak in a major urban area, and lay a foundation for contact tracing informed by genetic data.
Collapse
Affiliation(s)
- Jacob E Lemieux
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Katherine J Siddle
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bennett M Shaw
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Christine Loreth
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Stephen F Schaffner
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | | | - Gordon Adams
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Timelia Fink
- Massachusetts Department of Public Health, Boston, MA, USA
| | - Christopher H Tomkins-Tinch
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lydia A Krasilnikova
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Katherine C DeRuff
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Melissa Rudy
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Matthew R Bauer
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
- Harvard Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Kim A Lagerborg
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
- Harvard Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Erica Normandin
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Sinead B Chapman
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Steven K Reilly
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Melis N Anahtar
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Aaron E Lin
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Amber Carter
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Cameron Myhrvold
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Molly E Kemball
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Sushma Chaluvadi
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Caroline Cusick
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Katelyn Flowers
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Anna Neumann
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Felecia Cerrato
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Maha Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Damien Slater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - John Branda
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - David Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Jessie M Gaeta
- lnstitute for Research, Quality, and Policy in Homeless Health Care, Boston Health Care for the Homeless Program, Boston, MA, USA
- Section of General Internal Medicine, Boston University Medical Center, Boston
| | - Travis P Baggett
- lnstitute for Research, Quality, and Policy in Homeless Health Care, Boston Health Care for the Homeless Program, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - James O'Connell
- lnstitute for Research, Quality, and Policy in Homeless Health Care, Boston Health Care for the Homeless Program, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Andreas Gnirke
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Tami D Lieberman
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
- lnstitute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anthony Philippakis
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Meagan Burns
- Massachusetts Department of Public Health, Boston, MA, USA
| | | | - Jeremy Luban
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Sarah E Turbett
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Lawrence C Madoff
- Massachusetts Department of Public Health, Boston, MA, USA
- University of Massachusetts Medical School, Infectious Diseases and Immunology, Worcester, MA 01655
| | - Sandra Smole
- Massachusetts Department of Public Health, Boston, MA, USA
| | - Virginia M Pierce
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Pediatric Infectious Disease Unit, MassGeneral Hospital for Children, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Eric Rosenberg
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Pardis C Sabeti
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815
| | - Daniel J Park
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Bronwyn L Maclnnis
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115, USA
| |
Collapse
|
17
|
RNAseq Analysis of Rhizomania-Infected Sugar Beet Provides the First Genome Sequence of Beet Necrotic Yellow Vein Virus from the USA and Identifies a Novel Alphanecrovirus and Putative Satellite Viruses. Viruses 2020; 12:v12060626. [PMID: 32531939 PMCID: PMC7354460 DOI: 10.3390/v12060626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
“Rhizomania” of sugar beet is a soilborne disease complex comprised of beet necrotic yellow vein virus (BNYVV) and its plasmodiophorid vector, Polymyxa betae. Although BNYVV is considered the causal agent of rhizomania, additional viruses frequently accompany BNYVV in diseased roots. In an effort to better understand the virus cohort present in sugar beet roots exhibiting rhizomania disease symptoms, five independent RNA samples prepared from diseased beet seedlings reared in a greenhouse or from field-grown adult sugar beet plants and enriched for virus particles were subjected to RNAseq. In all but a healthy control sample, the technique was successful at identifying BNYVV and provided sequence reads of sufficient quantity and overlap to assemble > 98% of the published genome of the virus. Utilizing the derived consensus sequence of BNYVV, infectious RNA was produced from cDNA clones of RNAs 1 and 2. The approach also enabled the detection of beet soilborne mosaic virus (BSBMV), beet soilborne virus (BSBV), beet black scorch virus (BBSV), and beet virus Q (BVQ), with near-complete genome assembly afforded to BSBMV and BBSV. In one field sample, a novel virus sequence of 3682 nt was assembled with significant sequence similarity and open reading frame (ORF) organization to members within the subgenus Alphanecrovirus (genus Necrovirus; family Tombusviridae). Construction of a DNA clone based on this sequence led to the production of the novel RNA genome in vitro that was capable of inducing local lesion formation on leaves of Chenopodium quinoa. Additionally, two previously unreported satellite viruses were revealed in the study; one possessing weak similarity to satellite maize white line mosaic virus and a second possessing moderate similarity to satellite tobacco necrosis virus C. Taken together, the approach provides an efficient pipeline to characterize variation in the BNYVV genome and to document the presence of other viruses potentially associated with disease severity or the ability to overcome resistance genes used for sugar beet rhizomania disease management.
Collapse
|
18
|
Ackerman CM, Myhrvold C, Thakku SG, Freije CA, Metsky HC, Yang DK, Ye SH, Boehm CK, Kosoko-Thoroddsen TSF, Kehe J, Nguyen TG, Carter A, Kulesa A, Barnes JR, Dugan VG, Hung DT, Blainey PC, Sabeti PC. Massively multiplexed nucleic acid detection with Cas13. Nature 2020; 582:277-282. [PMID: 32349121 PMCID: PMC7332423 DOI: 10.1038/s41586-020-2279-8] [Citation(s) in RCA: 409] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/20/2020] [Indexed: 12/26/2022]
Abstract
The great majority of globally circulating pathogens go undetected, undermining patient care and hindering outbreak preparedness and response. To enable routine surveillance and comprehensive diagnostic applications, there is a need for detection technologies that can scale to test many samples1-3 while simultaneously testing for many pathogens4-6. Here, we develop Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (CARMEN), a platform for scalable, multiplexed pathogen detection. In the CARMEN platform, nanolitre droplets containing CRISPR-based nucleic acid detection reagents7 self-organize in a microwell array8 to pair with droplets of amplified samples, testing each sample against each CRISPR RNA (crRNA) in replicate. The combination of CARMEN and Cas13 detection (CARMEN-Cas13) enables robust testing of more than 4,500 crRNA-target pairs on a single array. Using CARMEN-Cas13, we developed a multiplexed assay that simultaneously differentiates all 169 human-associated viruses with at least 10 published genome sequences and rapidly incorporated an additional crRNA to detect the causative agent of the 2020 COVID-19 pandemic. CARMEN-Cas13 further enables comprehensive subtyping of influenza A strains and multiplexed identification of dozens of HIV drug-resistance mutations. The intrinsic multiplexing and throughput capabilities of CARMEN make it practical to scale, as miniaturization decreases reagent cost per test by more than 300-fold. Scalable, highly multiplexed CRISPR-based nucleic acid detection shifts diagnostic and surveillance efforts from targeted testing of high-priority samples to comprehensive testing of large sample sets, greatly benefiting patients and public health9-11.
Collapse
Affiliation(s)
- Cheri M Ackerman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Cameron Myhrvold
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Sri Gowtham Thakku
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Division of Health Sciences and Technology, Harvard Medical School and MIT, Cambridge, MA, USA
| | - Catherine A Freije
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Ph.D. Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Hayden C Metsky
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - David K Yang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Simon H Ye
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Division of Health Sciences and Technology, Harvard Medical School and MIT, Cambridge, MA, USA
| | - Chloe K Boehm
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Jared Kehe
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Tien G Nguyen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Amber Carter
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Anthony Kulesa
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - John R Barnes
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Vivien G Dugan
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Deborah T Hung
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Molecular Biology Department and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Paul C Blainey
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Department of Biological Engineering, MIT, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA.
| | - Pardis C Sabeti
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
19
|
Abstract
Lassa fever was first described as a clinical entity fifty years ago. The causative agent Lassa virus was isolated from these first known cases. This chapter reviews the key publications on Lassa fever research that appeared in the scientific literature at that time and over the ensuing decades.
Collapse
Affiliation(s)
- Robert F Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70118, USA. .,Zalgen Labs, LLC, 20271 Goldenrod Lane, Suite 2083, Germantown, MD, 20876, USA.
| |
Collapse
|
20
|
Baidaliuk A, Lequime S, Moltini-Conclois I, Dabo S, Dickson LB, Prot M, Duong V, Dussart P, Boyer S, Shi C, Matthijnssens J, Guglielmini J, Gloria-Soria A, Simon-Lorière E, Lambrechts L. Novel genome sequences of cell-fusing agent virus allow comparison of virus phylogeny with the genetic structure of Aedes aegypti populations. Virus Evol 2020; 6:veaa018. [PMID: 32368352 PMCID: PMC7189118 DOI: 10.1093/ve/veaa018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Flaviviruses encompass not only medically relevant arthropod-borne viruses (arboviruses) but also insect-specific flaviviruses (ISFs) that are presumably maintained primarily through vertical transmission in the insect host. Interestingly, ISFs are commonly found infecting important arbovirus vectors such as the mosquito Aedes aegypti. Cell-fusing agent virus (CFAV) was the first described ISF of mosquitoes more than four decades ago. Despite evidence for widespread CFAV infections in A.aegypti populations and for CFAV potential to interfere with arbovirus transmission, little is known about CFAV evolutionary history. Here, we generated six novel CFAV genome sequences by sequencing three new virus isolates and subjecting three mosquito samples to untargeted viral metagenomics. We used these new genome sequences together with published ones to perform a global phylogenetic analysis of CFAV genetic diversity. Although there was some degree of geographical clustering among CFAV sequences, there were also notable discrepancies between geography and phylogeny. In particular, CFAV sequences from Cambodia and Thailand diverged significantly, despite confirmation that A.aegypti populations from both locations are genetically close. The apparent phylogenetic discrepancy between CFAV and its A.aegypti host in Southeast Asia indicates that other factors than host population structure shape CFAV genetic diversity.
Collapse
Affiliation(s)
- Artem Baidaliuk
- Insect-Virus Interactions Unit, Department of Virology, Institut Pasteur, UMR2000, CNRS, 28 rue du Docteur Roux, 75015 Paris, France.,Sorbonne Université, Collège Doctoral, Paris F-75005, France
| | - Sébastian Lequime
- Insect-Virus Interactions Unit, Department of Virology, Institut Pasteur, UMR2000, CNRS, 28 rue du Docteur Roux, 75015 Paris, France.,KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Isabelle Moltini-Conclois
- Insect-Virus Interactions Unit, Department of Virology, Institut Pasteur, UMR2000, CNRS, 28 rue du Docteur Roux, 75015 Paris, France
| | - Stéphanie Dabo
- Insect-Virus Interactions Unit, Department of Virology, Institut Pasteur, UMR2000, CNRS, 28 rue du Docteur Roux, 75015 Paris, France
| | - Laura B Dickson
- Insect-Virus Interactions Unit, Department of Virology, Institut Pasteur, UMR2000, CNRS, 28 rue du Docteur Roux, 75015 Paris, France
| | - Matthieu Prot
- Evolutionary Genomics of RNA Viruses, Department of Virology, Institut Pasteur, 28 rue du Docteur Roux, 75015 Paris, France
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Boulevard, 12201, Phnom Penh, Cambodia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Boulevard, 12201, Phnom Penh, Cambodia
| | - Sébastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Boulevard, 12201, Phnom Penh, Cambodia
| | - Chenyan Shi
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Herestraat 49, 3000 Leuven, Belgium
| | - Jelle Matthijnssens
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Herestraat 49, 3000 Leuven, Belgium
| | - Julien Guglielmini
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, USR 3756 CNRS, 28 rue du Docteur Roux, 75015 Paris, France
| | - Andrea Gloria-Soria
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington Street, 06511 New Haven, CT, USA.,Ecology and Evolutionary Biology Department, Yale University, 165 Prospect Street, 06520-8106 New Haven, CT, USA
| | - Etienne Simon-Lorière
- Evolutionary Genomics of RNA Viruses, Department of Virology, Institut Pasteur, 28 rue du Docteur Roux, 75015 Paris, France
| | - Louis Lambrechts
- Insect-Virus Interactions Unit, Department of Virology, Institut Pasteur, UMR2000, CNRS, 28 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
21
|
Gaye A, Sy M, Ndiaye T, Siddle KJ, Park DJ, Deme AB, Mbaye A, Dieye B, Ndiaye YD, Neafsey DE, Early A, Farrell T, Yade MS, Diallo MA, Diongue K, Bei A, Ndiaye IM, Volkman SK, Badiane AS, Ndiaye D. Amplicon deep sequencing of kelch13 in Plasmodium falciparum isolates from Senegal. Malar J 2020; 19:134. [PMID: 32228566 PMCID: PMC7106636 DOI: 10.1186/s12936-020-03193-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In 2006, the Senegalese National Malaria Control Programme recommended artemisinin-based combination therapy (ACT) with artemether-lumefantrine as the first-line treatment for uncomplicated Plasmodium falciparum malaria. To date, multiple mutations associated with artemisinin delayed parasite clearance have been described in Southeast Asia in the Pfk13 gene, such as Y493H, R539T, I543T and C580Y. Even though ACT remains clinically and parasitologically efficacious in Senegal, the spread of resistance is possible as shown by the earlier emergence of resistance to chloroquine in Southeast Asia that subsequently spread to Africa. Therefore, surveillance of artemisinin resistance in malaria endemic regions is crucial and requires the implementation of sensitive tools, such as next-generation sequencing (NGS) which can detect novel mutations at low frequency. METHODS Here, an amplicon sequencing approach was used to identify mutations in the Pfk13 gene in eighty-one P. falciparum isolates collected from three different regions of Senegal. RESULTS In total, 10 SNPs around the propeller domain were identified; one synonymous SNP and nine non-synonymous SNPs, and two insertions. Three of these SNPs (T478T, A578S and V637I) were located in the propeller domain. A578S, is the most frequent mutation observed in Africa, but has not previously been reported in Senegal. A previous study has suggested that A578S could disrupt the function of the Pfk13 propeller region. CONCLUSION As the genetic basis of possible artemisinin resistance may be distinct in Africa and Southeast Asia, further studies are necessary to assess the new SNPs reported in this study.
Collapse
Affiliation(s)
- Amy Gaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal.
| | - Mouhamad Sy
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Tolla Ndiaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | | | - Daniel J Park
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Awa B Deme
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Aminata Mbaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Baba Dieye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Yaye Die Ndiaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Daniel E Neafsey
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Angela Early
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Mamadou Samb Yade
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Mamadou Alpha Diallo
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Khadim Diongue
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Amy Bei
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal.,Yale School of Public Health, Laboratory of Epidemiology and Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Ibrahima Mbaye Ndiaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Sarah K Volkman
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Aida Sadikh Badiane
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Daouda Ndiaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| |
Collapse
|
22
|
Spatially distinct physiology of Bacteroides fragilis within the proximal colon of gnotobiotic mice. Nat Microbiol 2020; 5:746-756. [PMID: 32152589 PMCID: PMC7426998 DOI: 10.1038/s41564-020-0683-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
A complex microbiota inhabits various microenvironments of the gut, with some symbiotic bacteria having evolved traits to invade the epithelial mucus layer and reside deep within intestinal tissue of animals. Whether these distinct bacterial communities across gut biogeographies exhibit divergent behaviors remains largely unknown. Global transcriptomic analysis to investigate microbial physiology in specific mucosal niches has been hampered technically by overabundance of host RNA. Herein, we employed hybrid selection RNA sequencing (hsRNA-Seq) to enable detailed spatial transcriptomic profiling of a prominent human commensal as it colonizes the colonic lumen, mucus or epithelial tissue of mice. Compared to conventional RNA-Seq, hsRNA-Seq increased reads mapping to the Bacteroides fragilis genome by 48- and 154-fold in mucus and tissue, respectively, allowing for high fidelity comparisons across biogeographic sites. Near the epithelium, B. fragilis up-regulated numerous genes involved in protein synthesis, indicating that bacteria inhabiting the mucosal niche are metabolically active. Further, a specific sulfatase (BF3086) and glycosyl hydrolase (BF3134) were highly induced in mucus and tissue compared to bacteria in the lumen. In-frame deletion of these genes impaired in vitro growth on mucus as a carbon source, as well as mucosal colonization of mice. Mutants in either B. fragilis gene displayed a fitness defect in competing for colonization against bacterial challenge, revealing the importance of site-specific gene expression for robust host-microbial symbiosis. As a versatile tool, hsRNA-Seq can be deployed to explore the in vivo spatial physiology of numerous bacterial pathogens or commensals.
Collapse
|
23
|
Poore GD, Kopylova E, Zhu Q, Carpenter C, Fraraccio S, Wandro S, Kosciolek T, Janssen S, Metcalf J, Song SJ, Kanbar J, Miller-Montgomery S, Heaton R, Mckay R, Patel SP, Swafford AD, Knight R. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 2020; 579:567-574. [PMID: 32214244 PMCID: PMC7500457 DOI: 10.1038/s41586-020-2095-1] [Citation(s) in RCA: 650] [Impact Index Per Article: 162.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/06/2020] [Indexed: 01/05/2023]
Abstract
Systematic characterization of the cancer microbiome provides the opportunity to develop techniques that exploit non-human, microorganism-derived molecules in the diagnosis of a major human disease. Following recent demonstrations that some types of cancer show substantial microbial contributions1-10, we re-examined whole-genome and whole-transcriptome sequencing studies in The Cancer Genome Atlas11 (TCGA) of 33 types of cancer from treatment-naive patients (a total of 18,116 samples) for microbial reads, and found unique microbial signatures in tissue and blood within and between most major types of cancer. These TCGA blood signatures remained predictive when applied to patients with stage Ia-IIc cancer and cancers lacking any genomic alterations currently measured on two commercial-grade cell-free tumour DNA platforms, despite the use of very stringent decontamination analyses that discarded up to 92.3% of total sequence data. In addition, we could discriminate among samples from healthy, cancer-free individuals (n = 69) and those from patients with multiple types of cancer (prostate, lung, and melanoma; 100 samples in total) solely using plasma-derived, cell-free microbial nucleic acids. This potential microbiome-based oncology diagnostic tool warrants further exploration.
Collapse
Affiliation(s)
- Gregory D Poore
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Evguenia Kopylova
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Clarity Genomics, Beerse, Belgium
| | - Qiyun Zhu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Carolina Carpenter
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Serena Fraraccio
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Stephen Wandro
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Tomasz Kosciolek
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Malopolska Centre of Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Stefan Janssen
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Algorithmic Bioinformatics, Department of Biology and Chemistry, Justus Liebig University Gießen, Gießen, Germany
| | - Jessica Metcalf
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Se Jin Song
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Jad Kanbar
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sandrine Miller-Montgomery
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Robert Heaton
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Rana Mckay
- Moores Cancer Center, University of California San Diego Health, La Jolla, CA, USA
| | - Sandip Pravin Patel
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego Health, La Jolla, CA, USA
| | - Austin D Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
24
|
Kiselev D, Matsvay A, Abramov I, Dedkov V, Shipulin G, Khafizov K. Current Trends in Diagnostics of Viral Infections of Unknown Etiology. Viruses 2020; 12:E211. [PMID: 32074965 PMCID: PMC7077230 DOI: 10.3390/v12020211] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022] Open
Abstract
Viruses are evolving at an alarming rate, spreading and inconspicuously adapting to cutting-edge therapies. Therefore, the search for rapid, informative and reliable diagnostic methods is becoming urgent as ever. Conventional clinical tests (PCR, serology, etc.) are being continually optimized, yet provide very limited data. Could high throughput sequencing (HTS) become the future gold standard in molecular diagnostics of viral infections? Compared to conventional clinical tests, HTS is universal and more precise at profiling pathogens. Nevertheless, it has not yet been widely accepted as a diagnostic tool, owing primarily to its high cost and the complexity of sample preparation and data analysis. Those obstacles must be tackled to integrate HTS into daily clinical practice. For this, three objectives are to be achieved: (1) designing and assessing universal protocols for library preparation, (2) assembling purpose-specific pipelines, and (3) building computational infrastructure to suit the needs and financial abilities of modern healthcare centers. Data harvested with HTS could not only augment diagnostics and help to choose the correct therapy, but also facilitate research in epidemiology, genetics and virology. This information, in turn, could significantly aid clinicians in battling viral infections.
Collapse
Affiliation(s)
- Daniel Kiselev
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
- I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Alina Matsvay
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
- Moscow Institute of Physics and Technology, National Research University, 117303 Moscow, Russia
| | - Ivan Abramov
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
| | - Vladimir Dedkov
- Pasteur Institute, Federal Service on Consumers’ Rights Protection and Human Well-Being Surveillance, 197101 Saint-Petersburg, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - German Shipulin
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
| | - Kamil Khafizov
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
- Moscow Institute of Physics and Technology, National Research University, 117303 Moscow, Russia
| |
Collapse
|
25
|
Wohl S, Metsky HC, Schaffner SF, Piantadosi A, Burns M, Lewnard JA, Chak B, Krasilnikova LA, Siddle KJ, Matranga CB, Bankamp B, Hennigan S, Sabina B, Byrne EH, McNall RJ, Shah RR, Qu J, Park DJ, Gharib S, Fitzgerald S, Barreira P, Fleming S, Lett S, Rota PA, Madoff LC, Yozwiak NL, MacInnis BL, Smole S, Grad YH, Sabeti PC. Combining genomics and epidemiology to track mumps virus transmission in the United States. PLoS Biol 2020; 18:e3000611. [PMID: 32045407 PMCID: PMC7012397 DOI: 10.1371/journal.pbio.3000611] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/03/2020] [Indexed: 01/24/2023] Open
Abstract
Unusually large outbreaks of mumps across the United States in 2016 and 2017 raised questions about the extent of mumps circulation and the relationship between these and prior outbreaks. We paired epidemiological data from public health investigations with analysis of mumps virus whole genome sequences from 201 infected individuals, focusing on Massachusetts university communities. Our analysis suggests continuous, undetected circulation of mumps locally and nationally, including multiple independent introductions into Massachusetts and into individual communities. Despite the presence of these multiple mumps virus lineages, the genomic data show that one lineage has dominated in the US since at least 2006. Widespread transmission was surprising given high vaccination rates, but we found no genetic evidence that variants arising during this outbreak contributed to vaccine escape. Viral genomic data allowed us to reconstruct mumps transmission links not evident from epidemiological data or standard single-gene surveillance efforts and also revealed connections between apparently unrelated mumps outbreaks.
Collapse
Affiliation(s)
- Shirlee Wohl
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Hayden C. Metsky
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Stephen F. Schaffner
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Anne Piantadosi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Meagan Burns
- Massachusetts Department of Public Health, Jamaica Plain, Massachusetts, United States of America
| | - Joseph A. Lewnard
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Bridget Chak
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Lydia A. Krasilnikova
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Katherine J. Siddle
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Christian B. Matranga
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Bettina Bankamp
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Scott Hennigan
- Massachusetts Department of Public Health, Jamaica Plain, Massachusetts, United States of America
| | - Brandon Sabina
- Massachusetts Department of Public Health, Jamaica Plain, Massachusetts, United States of America
| | - Elizabeth H. Byrne
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Rebecca J. McNall
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Rickey R. Shah
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - James Qu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Daniel J. Park
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Soheyla Gharib
- Harvard University Health Services, Harvard University, Cambridge, Massachusetts, United States of America
| | - Susan Fitzgerald
- Harvard University Health Services, Harvard University, Cambridge, Massachusetts, United States of America
| | - Paul Barreira
- Harvard University Health Services, Harvard University, Cambridge, Massachusetts, United States of America
| | - Stephen Fleming
- Massachusetts Department of Public Health, Jamaica Plain, Massachusetts, United States of America
| | - Susan Lett
- Massachusetts Department of Public Health, Jamaica Plain, Massachusetts, United States of America
| | - Paul A. Rota
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Lawrence C. Madoff
- Massachusetts Department of Public Health, Jamaica Plain, Massachusetts, United States of America
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Nathan L. Yozwiak
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Bronwyn L. MacInnis
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sandra Smole
- Massachusetts Department of Public Health, Jamaica Plain, Massachusetts, United States of America
| | - Yonatan H. Grad
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
- Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pardis C. Sabeti
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
26
|
Freije CA, Myhrvold C, Boehm CK, Lin AE, Welch NL, Carter A, Metsky HC, Luo CY, Abudayyeh OO, Gootenberg JS, Yozwiak NL, Zhang F, Sabeti PC. Programmable Inhibition and Detection of RNA Viruses Using Cas13. Mol Cell 2019; 76:826-837.e11. [PMID: 31607545 PMCID: PMC7422627 DOI: 10.1016/j.molcel.2019.09.013] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/18/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022]
Abstract
The CRISPR effector Cas13 could be an effective antiviral for single-stranded RNA (ssRNA) viruses because it programmably cleaves RNAs complementary to its CRISPR RNA (crRNA). Here, we computationally identify thousands of potential Cas13 crRNA target sites in hundreds of ssRNA viral species that can potentially infect humans. We experimentally demonstrate Cas13's potent activity against three distinct ssRNA viruses: lymphocytic choriomeningitis virus (LCMV); influenza A virus (IAV); and vesicular stomatitis virus (VSV). Combining this antiviral activity with Cas13-based diagnostics, we develop Cas13-assisted restriction of viral expression and readout (CARVER), an end-to-end platform that uses Cas13 to detect and destroy viral RNA. We further screen hundreds of crRNAs along the LCMV genome to evaluate how conservation and target RNA nucleotide content influence Cas13's antiviral activity. Our results demonstrate that Cas13 can be harnessed to target a wide range of ssRNA viruses and CARVER's potential broad utility for rapid diagnostic and antiviral drug development.
Collapse
Affiliation(s)
- Catherine A Freije
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; PhD Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA.
| | - Cameron Myhrvold
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Chloe K Boehm
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
| | - Aaron E Lin
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; PhD Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole L Welch
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; PhD Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Amber Carter
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
| | - Hayden C Metsky
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02142, USA
| | - Cynthia Y Luo
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Omar O Abudayyeh
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Health Sciences and Technology, MIT, Cambridge, MA 02139, USA
| | - Jonathan S Gootenberg
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nathan L Yozwiak
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Feng Zhang
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute (HHMI), Chevy Chase, MD 20815, USA
| | - Pardis C Sabeti
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; PhD Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute (HHMI), Chevy Chase, MD 20815, USA; Department of Immunology and Infectious Disease, T.H. Chan Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
27
|
dsRNA-Seq: Identification of Viral Infection by Purifying and Sequencing dsRNA. Viruses 2019; 11:v11100943. [PMID: 31615058 PMCID: PMC6832592 DOI: 10.3390/v11100943] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022] Open
Abstract
RNA viruses are a major source of emerging and re-emerging infectious diseases around the world. We developed a method to identify RNA viruses that is based on the fact that RNA viruses produce double-stranded RNA (dsRNA) while replicating. Purifying and sequencing dsRNA from the total RNA isolated from infected tissue allowed us to recover dsRNA virus sequences and replicated sequences from single-stranded RNA (ssRNA) viruses. We refer to this approach as dsRNA-Seq. By assembling dsRNA sequences into contigs we identified full length or partial RNA viral genomes of varying genome types infecting mammalian culture samples, identified a known viral disease agent in laboratory infected mice, and successfully detected naturally occurring RNA viral infections in reptiles. Here, we show that dsRNA-Seq is a preferable method for identifying viruses in organisms that don’t have sequenced genomes and/or commercially available rRNA depletion reagents. In addition, a significant advantage of this method is the ability to identify replicated viral sequences of ssRNA viruses, which is useful for distinguishing infectious viral agents from potential noninfectious viral particles or contaminants.
Collapse
|
28
|
Wolkowicz T. The utility and perspectives of NGS-based methods in BSL-3 and BSL-4 laboratory - sequencing and analysis strategies. Brief Funct Genomics 2019; 17:471-476. [PMID: 29136087 PMCID: PMC7109780 DOI: 10.1093/bfgp/elx033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Modern diagnostics is in general based on molecular biology methods. Nowadays sequencing-based methods, especially whole genome sequencing, are becoming increasingly important. Implementation of such methods into routine diagnostic of highly dangerous pathogens, like Bacillus anthracis, Francisella tularensis, Yersinia pestis, Ebola virus, MERS, Lassa virus etc. would be very helpful. The best diagnostic strategy would be the metagenomic sequencing directly from the clinical sample. Implementation of majority of currently available WGS platforms inside the BSL-3 or 4 laboratory is impractical because of the size of the equipment and time consuming wet lab part (e.g. library preparation). Nowadays there is a possibility to implement pocket size MinION - real time whole genome sequencer into BSL-3 and 4 laboratory for rapid and precise diagnostic purposes.
Collapse
|
29
|
Abstract
Clinical metagenomic next-generation sequencing (mNGS), the comprehensive analysis of microbial and host genetic material (DNA and RNA) in samples from patients, is rapidly moving from research to clinical laboratories. This emerging approach is changing how physicians diagnose and treat infectious disease, with applications spanning a wide range of areas, including antimicrobial resistance, the microbiome, human host gene expression (transcriptomics) and oncology. Here, we focus on the challenges of implementing mNGS in the clinical laboratory and address potential solutions for maximizing its impact on patient care and public health.
Collapse
Affiliation(s)
- Charles Y Chiu
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA.
- Department of Medicine, Division of Infectious Diseases, University of California, San Francisco, CA, USA.
| | - Steven A Miller
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
30
|
Introduction of Ebola virus into a remote border district of Sierra Leone, 2014: use of field epidemiology and RNA sequencing to describe chains of transmission. Epidemiol Infect 2019; 147:e88. [PMID: 30869021 PMCID: PMC6518841 DOI: 10.1017/s0950268819000104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In early October 2014, 7 months after the 2014-2015 Ebola epidemic in West Africa began, a cluster of reported deaths in Koinadugu, a remote district of Sierra Leone, was the first evidence of Ebola virus disease (Ebola) in the district. Prior to this event, geographic isolation was thought to have prevented the introduction of Ebola to this area. We describe our initial investigation of this cluster of deaths and subsequent public health actions after Ebola was confirmed, and present challenges to our investigation and methods of overcoming them. We present a transmission tree and results of whole genome sequencing of selected isolates to identify the source of infection in Koinadugu and demonstrate transmission between its villages. Koinadugu's experience highlights the danger of assuming that remote location and geographic isolation can prevent the spread of Ebola, but also demonstrates how deployment of rapid field response teams can help limit spread once Ebola is detected.
Collapse
|
31
|
Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats ( Eonycteris spelaea). Viruses 2019; 11:v11030250. [PMID: 30871070 PMCID: PMC6466414 DOI: 10.3390/v11030250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission. Here we investigate the diversity and abundance of viral communities from a colony of Eonycteris spelaea residing in Singapore. Our results detected 47 and 22 different virus families from bat fecal and urine samples, respectively. Among these, we identify a large number of virus families including Adenoviridae, Flaviviridae, Reoviridae, Papillomaviridae, Paramyxoviridae, Parvoviridae, Picornaviridae, and Polyomaviridae. In most cases, viral sequences from Eonycteris spelaea are genetically related to a group of bat viruses from other bat genera (e.g., Eidolon, Miniopterus, Rhinolophus and Rousettus). The results of this study improve our knowledge of the host range, spread and evolution of several important viral pathogens. More significantly, our findings provide a baseline to study the temporal patterns of virus shedding and how they correlate with bat phenological trends.
Collapse
|
32
|
Identification and genetic characterization of a novel Orthobunyavirus species by a straightforward high-throughput sequencing-based approach. Sci Rep 2019; 9:3398. [PMID: 30833612 PMCID: PMC6399452 DOI: 10.1038/s41598-019-40036-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/07/2019] [Indexed: 12/04/2022] Open
Abstract
Identification and characterization of novel unknown viruses is of great importance. The introduction of high-throughput sequencing (HTS)-based methods has paved the way for genomics-based detection of pathogens without any prior assumptions about the characteristics of the organisms. However, the use of HTS for the characterization of viral pathogens from clinical samples remains limited. Here, we report the identification of a novel Orthobunyavirus species isolated from horse plasma. The identification was based on a straightforward HTS approach. Following enrichment in cell culture, RNA was extracted from the growth medium and rapid library preparation, HTS and primary bioinformatic analyses were performed in less than 12 hours. Taxonomical profiling of the sequencing reads did not reveal sequence similarities to any known virus. Subsequent application of de novo assembly tools to the sequencing reads produced contigs, of which three showed some similarity to the L, M, and S segments of viruses belonging to the Orthobunyavirus genus. Further refinement of these contigs resulted in high-quality, full-length genomic sequences of the three genomic segments (L, M and S) of a novel Orthobunyavirus. Characterization of the genomic sequence, including the prediction of open reading frames and the inspection of consensus genomic termini and phylogenetic analysis, further confirmed that the novel virus is indeed a new species, which we named Ness Ziona virus.
Collapse
|
33
|
Nyakarahuka L, Shoemaker TR, Balinandi S, Chemos G, Kwesiga B, Mulei S, Kyondo J, Tumusiime A, Kofman A, Masiira B, Whitmer S, Brown S, Cannon D, Chiang CF, Graziano J, Morales-Betoulle M, Patel K, Zufan S, Komakech I, Natseri N, Chepkwurui PM, Lubwama B, Okiria J, Kayiwa J, Nkonwa IH, Eyu P, Nakiire L, Okarikod EC, Cheptoyek L, Wangila BE, Wanje M, Tusiime P, Bulage L, Mwebesa HG, Ario AR, Makumbi I, Nakinsige A, Muruta A, Nanyunja M, Homsy J, Zhu BP, Nelson L, Kaleebu P, Rollin PE, Nichol ST, Klena JD, Lutwama JJ. Marburg virus disease outbreak in Kween District Uganda, 2017: Epidemiological and laboratory findings. PLoS Negl Trop Dis 2019; 13:e0007257. [PMID: 30883555 PMCID: PMC6438581 DOI: 10.1371/journal.pntd.0007257] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/28/2019] [Accepted: 02/22/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION In October 2017, a blood sample from a resident of Kween District, Eastern Uganda, tested positive for Marburg virus. Within 24 hour of confirmation, a rapid outbreak response was initiated. Here, we present results of epidemiological and laboratory investigations. METHODS A district task force was activated consisting of specialised teams to conduct case finding, case management and isolation, contact listing and follow up, sample collection and testing, and community engagement. An ecological investigation was also carried out to identify the potential source of infection. Virus isolation and Next Generation sequencing were performed to identify the strain of Marburg virus. RESULTS Seventy individuals (34 MVD suspected cases and 36 close contacts of confirmed cases) were epidemiologically investigated, with blood samples tested for MVD. Only four cases met the MVD case definition; one was categorized as a probable case while the other three were confirmed cases. A total of 299 contacts were identified; during follow- up, two were confirmed as MVD. Of the four confirmed and probable MVD cases, three died, yielding a case fatality rate of 75%. All four cases belonged to a single family and 50% (2/4) of the MVD cases were female. All confirmed cases had clinical symptoms of fever, vomiting, abdominal pain and bleeding from body orifices. Viral sequences indicated that the Marburg virus strain responsible for this outbreak was closely related to virus strains previously shown to be circulating in Uganda. CONCLUSION This outbreak of MVD occurred as a family cluster with no additional transmission outside of the four related cases. Rapid case detection, prompt laboratory testing at the Uganda National VHF Reference Laboratory and presence of pre-trained, well-prepared national and district rapid response teams facilitated the containment and control of this outbreak within one month, preventing nationwide and global transmission of the disease.
Collapse
Affiliation(s)
- Luke Nyakarahuka
- Department of Arbovirology, Emerging and Re-emerging Infections, Uganda Virus Research Institute (UVRI), Entebbe Uganda
- Department of Biosecurity, Ecosystems, and Veterinary Public Health, Collage of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala Uganda
| | - Trevor R. Shoemaker
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention (CDC), Atlanta, GA United States of America
| | - Stephen Balinandi
- Department of Arbovirology, Emerging and Re-emerging Infections, Uganda Virus Research Institute (UVRI), Entebbe Uganda
| | - Godfrey Chemos
- Kween District Health Team, Kween District Local Government, Kween, Uganda
| | - Benon Kwesiga
- Uganda Public Health Fellowship Program, Ministry of Health, Kampala, Uganda
| | - Sophia Mulei
- Department of Arbovirology, Emerging and Re-emerging Infections, Uganda Virus Research Institute (UVRI), Entebbe Uganda
| | - Jackson Kyondo
- Department of Arbovirology, Emerging and Re-emerging Infections, Uganda Virus Research Institute (UVRI), Entebbe Uganda
| | - Alex Tumusiime
- Department of Arbovirology, Emerging and Re-emerging Infections, Uganda Virus Research Institute (UVRI), Entebbe Uganda
| | - Aaron Kofman
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention (CDC), Atlanta, GA United States of America
| | - Ben Masiira
- African Field Epidemiology Network, Kampala, Uganda
| | - Shannon Whitmer
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention (CDC), Atlanta, GA United States of America
| | - Shelley Brown
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention (CDC), Atlanta, GA United States of America
| | - Debi Cannon
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention (CDC), Atlanta, GA United States of America
| | - Cheng-Feng Chiang
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention (CDC), Atlanta, GA United States of America
| | - James Graziano
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention (CDC), Atlanta, GA United States of America
| | - Maria Morales-Betoulle
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention (CDC), Atlanta, GA United States of America
| | - Ketan Patel
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention (CDC), Atlanta, GA United States of America
| | - Sara Zufan
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention (CDC), Atlanta, GA United States of America
| | | | - Nasan Natseri
- World Health Organization – Country Office, Kampala, Uganda
| | | | | | | | - Joshua Kayiwa
- Public Health Emergency Operations Center, Ministry of Health, Kampala, Uganda
| | - Innocent H. Nkonwa
- Uganda Public Health Fellowship Program, Ministry of Health, Kampala, Uganda
| | - Patricia Eyu
- Uganda Public Health Fellowship Program, Ministry of Health, Kampala, Uganda
| | - Lydia Nakiire
- Uganda Public Health Fellowship Program, Ministry of Health, Kampala, Uganda
| | | | - Leonard Cheptoyek
- Kween District Health Team, Kween District Local Government, Kween, Uganda
| | | | - Michael Wanje
- Kween District Health Team, Kween District Local Government, Kween, Uganda
| | | | - Lilian Bulage
- Uganda Public Health Fellowship Program, Ministry of Health, Kampala, Uganda
| | | | - Alex R. Ario
- Uganda Public Health Fellowship Program, Ministry of Health, Kampala, Uganda
| | - Issa Makumbi
- Public Health Emergency Operations Center, Ministry of Health, Kampala, Uganda
| | | | | | | | - Jaco Homsy
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention (CDC), Atlanta, GA United States of America
| | - Bao-Ping Zhu
- Uganda Public Health Fellowship Program, Ministry of Health, Kampala, Uganda
| | - Lisa Nelson
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention (CDC), Atlanta, GA United States of America
| | - Pontiano Kaleebu
- Department of Arbovirology, Emerging and Re-emerging Infections, Uganda Virus Research Institute (UVRI), Entebbe Uganda
| | - Pierre E. Rollin
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention (CDC), Atlanta, GA United States of America
| | - Stuart T. Nichol
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention (CDC), Atlanta, GA United States of America
| | - John D. Klena
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention (CDC), Atlanta, GA United States of America
| | - Julius J. Lutwama
- Department of Arbovirology, Emerging and Re-emerging Infections, Uganda Virus Research Institute (UVRI), Entebbe Uganda
| |
Collapse
|
34
|
Duggal NK, McDonald EM, Weger-Lucarelli J, Hawks SA, Ritter JM, Romo H, Ebel GD, Brault AC. Mutations present in a low-passage Zika virus isolate result in attenuated pathogenesis in mice. Virology 2019; 530:19-26. [PMID: 30763872 DOI: 10.1016/j.virol.2019.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
Zika virus (ZIKV) infection can result in neurological disorders including Congenital Zika Syndrome in infants exposed to the virus in utero. Pregnant women can be infected by mosquito bite as well as by sexual transmission from infected men. Herein, the variants of ZIKV within the male reproductive tract and ejaculates were assessed in inoculated mice. We identified two non-synonymous variants at positions E-V330L and NS1-W98G. These variants were also present in the passage three PRVABC59 isolate and infectious clone relative to the patient serum PRVABC59 sequence. In subsequent studies, ZIKV E-330L was less pathogenic in mice than ZIKV E-330V as evident by increased average survival times. In Vero cells, ZIKV E-330L/NS1-98G outcompeted ZIKV E-330V/NS1-98W within 3 passages. These results suggest that the E-330L/NS1-98G variants are attenuating in mice and were enriched during cell culture passaging. Cell culture propagation of ZIKV could significantly affect animal model development and vaccine efficacy studies.
Collapse
Affiliation(s)
- Nisha K Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States.
| | - Erin M McDonald
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Seth A Hawks
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jana M Ritter
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Hannah Romo
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Aaron C Brault
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States.
| |
Collapse
|
35
|
Ladner JT, Grubaugh ND, Pybus OG, Andersen KG. Precision epidemiology for infectious disease control. Nat Med 2019; 25:206-211. [PMID: 30728537 PMCID: PMC7095960 DOI: 10.1038/s41591-019-0345-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022]
Abstract
Advances in genomics and computing are transforming the capacity for the characterization of biological systems, and researchers are now poised for a precision-focused transformation in the way they prepare for, and respond to, infectious diseases. This includes the use of genome-based approaches to inform molecular diagnosis and individual-level treatment regimens. In addition, advances in the speed and granularity of pathogen genome generation have improved the capability to track and understand pathogen transmission, leading to potential improvements in the design and implementation of population-level public health interventions. In this Perspective, we outline several trends that are driving the development of precision epidemiology of infectious disease and their implications for scientists' ability to respond to outbreaks.
Collapse
Affiliation(s)
- Jason T Ladner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | | | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
- Scripps Research Translational Institute, La Jolla, CA, USA.
| |
Collapse
|
36
|
Mazzola LT, Kelly-Cirino C. Diagnostics for Nipah virus: a zoonotic pathogen endemic to Southeast Asia. BMJ Glob Health 2019; 4:e001118. [PMID: 30815286 PMCID: PMC6361328 DOI: 10.1136/bmjgh-2018-001118] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 11/29/2022] Open
Abstract
Nipah virus (NiV) is an emerging pathogen that, unlike other priority pathogens identified by WHO, is endemic to Southeast Asia. It is most commonly transmitted through exposure to saliva or excrement from the Pteropus fruit bat, or direct contact with intermediate animal hosts, such as pigs. NiV infection causes severe febrile encephalitic disease and/or respiratory disease; treatment options are limited to supportive care. A number of in-house diagnostic assays for NiV using serological and nucleic acid amplification techniques have been developed for NiV and are used in laboratory settings, including some early multiplex panels for differentiation of NiV infection from other febrile diseases. However, given the often rural and remote nature of NiV outbreak settings, there remains a need for rapid diagnostic tests that can be implemented at the point of care. Additionally, more reliable assays for surveillance of communities and livestock will be vital to achieving a better understanding of the ecology of the fruit bat host and transmission risk to other intermediate hosts, enabling implementation of a ‘One Health’ approach to outbreak prevention and the management of this zoonotic disease. An improved understanding of NiV viral diversity and infection kinetics or dynamics will be central to the development of new diagnostics, and access to clinical specimens must be improved to enable effective validation and external quality assessments. Target product profiles for NiV diagnostics should be refined to take into account these outstanding needs.
Collapse
Affiliation(s)
- Laura T Mazzola
- Foundation for Innovative New Diagnostics (FIND), Emerging Threats Programme, Geneva, Switzerland
| | - Cassandra Kelly-Cirino
- Foundation for Innovative New Diagnostics (FIND), Emerging Threats Programme, Geneva, Switzerland
| |
Collapse
|
37
|
Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, De Jesus JG, Main BJ, Tan AL, Paul LM, Brackney DE, Grewal S, Gurfield N, Van Rompay KKA, Isern S, Michael SF, Coffey LL, Loman NJ, Andersen KG. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol 2019; 20:8. [PMID: 30621750 PMCID: PMC6325816 DOI: 10.1186/s13059-018-1618-7] [Citation(s) in RCA: 590] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 12/26/2018] [Indexed: 01/17/2023] Open
Abstract
How viruses evolve within hosts can dictate infection outcomes; however, reconstructing this process is challenging. We evaluate our multiplexed amplicon approach, PrimalSeq, to demonstrate how virus concentration, sequencing coverage, primer mismatches, and replicates influence the accuracy of measuring intrahost virus diversity. We develop an experimental protocol and computational tool, iVar, for using PrimalSeq to measure virus diversity using Illumina and compare the results to Oxford Nanopore sequencing. We demonstrate the utility of PrimalSeq by measuring Zika and West Nile virus diversity from varied sample types and show that the accumulation of genetic diversity is influenced by experimental and biological systems.
Collapse
Affiliation(s)
- Nathan D Grubaugh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA.
| | - Karthik Gangavarapu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Joshua Quick
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nathaniel L Matteson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jaqueline Goes De Jesus
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Bradley J Main
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, 95616, USA
| | - Amanda L Tan
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, FL, 33965, USA
| | - Lauren M Paul
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, FL, 33965, USA
| | - Doug E Brackney
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Saran Grewal
- Department of Environmental Health, San Diego County Vector Control Program, San Diego, CA, 92123, USA
| | - Nikos Gurfield
- Department of Environmental Health, San Diego County Vector Control Program, San Diego, CA, 92123, USA
| | - Koen K A Van Rompay
- California National Primate Research Center and Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, 95616, USA
| | - Sharon Isern
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, FL, 33965, USA
| | - Scott F Michael
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, FL, 33965, USA
| | - Lark L Coffey
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, 95616, USA
| | - Nicholas J Loman
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Scripps Research Translational Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
38
|
Metagenomic Sequencing of HIV-1 in the Blood and Female Genital Tract Reveals Little Quasispecies Diversity during Acute Infection. J Virol 2019; 93:JVI.00804-18. [PMID: 30381486 PMCID: PMC6321908 DOI: 10.1128/jvi.00804-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/17/2018] [Indexed: 01/16/2023] Open
Abstract
Due to error-prone replication, HIV-1 generates a diverse population of viruses within a chronically infected individual. When HIV-1 is transmitted to a new individual, one or a few viruses establish the new infection, leading to a genetic bottleneck in the virus population. Understanding the timing and nature of this bottleneck may provide insight into HIV-1 vaccine design and other preventative strategies. We examined the HIV-1 population in three women enrolled in a unique prospective cohort in South Africa who were followed closely during the earliest stages of HIV-1 infection. We found very little HIV-1 diversity in the blood and female genital tract during the first 2 weeks after virus was detected in the bloodstream. These results are compatible with a very early HIV-1 population bottleneck, suggesting the need to study the HIV-1 population in the female genital tract before virus is detectable in the bloodstream. Heterosexual transmission of human immunodeficiency virus type 1 (HIV-1) is associated with a significant bottleneck in the viral quasispecies population, yet the timing of that bottleneck is poorly understood. We characterized HIV-1 diversity in the blood and female genital tract (FGT) within 2 weeks after detection of infection in three women enrolled in a unique prospective cohort in South Africa. We assembled full-length HIV-1 genomes from matched cervicovaginal lavage (CVL) samples and plasma. Deep sequencing allowed us to identify intrahost single-nucleotide variants (iSNVs) and to characterize within-sample HIV-1 diversity. Our results demonstrated very little HIV-1 diversity in the FGT and plasma by the time viremia was detectable. Within each subject, the consensus HIV-1 sequences were identical in plasma and CVL fluid. No iSNV was present at >6% frequency. One subject had 77 low-frequency iSNVs across both CVL fluid and plasma, another subject had 14 iSNVs in only CVL fluid from the earliest time point, and the third subject had no iSNVs in CVL fluid or plasma. Overall, the small amount of diversity that we detected was greater in the FGT than in plasma and declined over the first 2 weeks after viremia was detectable, compatible with a very early HIV-1 transmission bottleneck. To our knowledge, our study represents the earliest genomic analysis of HIV-1 in the FGT after transmission. Further, the use of metagenomic sequencing allowed us to characterize other organisms in the FGT, including commensal bacteria and sexually transmitted infections, highlighting the utility of the method to sequence both HIV-1 and its metagenomic environment. IMPORTANCE Due to error-prone replication, HIV-1 generates a diverse population of viruses within a chronically infected individual. When HIV-1 is transmitted to a new individual, one or a few viruses establish the new infection, leading to a genetic bottleneck in the virus population. Understanding the timing and nature of this bottleneck may provide insight into HIV-1 vaccine design and other preventative strategies. We examined the HIV-1 population in three women enrolled in a unique prospective cohort in South Africa who were followed closely during the earliest stages of HIV-1 infection. We found very little HIV-1 diversity in the blood and female genital tract during the first 2 weeks after virus was detected in the bloodstream. These results are compatible with a very early HIV-1 population bottleneck, suggesting the need to study the HIV-1 population in the female genital tract before virus is detectable in the bloodstream.
Collapse
|
39
|
Metsky HC, Siddle KJ, Gladden-Young A, Qu J, Yang DK, Brehio P, Goldfarb A, Piantadosi A, Wohl S, Carter A, Lin AE, Barnes KG, Tully DC, Corleis B, Hennigan S, Barbosa-Lima G, Vieira YR, Paul LM, Tan AL, Garcia KF, Parham LA, Odia I, Eromon P, Folarin OA, Goba A, Simon-Lorière E, Hensley L, Balmaseda A, Harris E, Kwon DS, Allen TM, Runstadler JA, Smole S, Bozza FA, Souza TML, Isern S, Michael SF, Lorenzana I, Gehrke L, Bosch I, Ebel G, Grant DS, Happi CT, Park DJ, Gnirke A, Sabeti PC, Matranga CB. Capturing sequence diversity in metagenomes with comprehensive and scalable probe design. Nat Biotechnol 2019; 37:160-168. [PMID: 30718881 PMCID: PMC6587591 DOI: 10.1038/s41587-018-0006-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 12/18/2018] [Indexed: 01/24/2023]
Abstract
Metagenomic sequencing has the potential to transform microbial detection and characterization, but new tools are needed to improve its sensitivity. Here we present CATCH, a computational method to enhance nucleic acid capture for enrichment of diverse microbial taxa. CATCH designs optimal probe sets, with a specified number of oligonucleotides, that achieve full coverage of, and scale well with, known sequence diversity. We focus on applying CATCH to capture viral genomes in complex metagenomic samples. We design, synthesize, and validate multiple probe sets, including one that targets the whole genomes of the 356 viral species known to infect humans. Capture with these probe sets enriches unique viral content on average 18-fold, allowing us to assemble genomes that could not be recovered without enrichment, and accurately preserves within-sample diversity. We also use these probe sets to recover genomes from the 2018 Lassa fever outbreak in Nigeria and to improve detection of uncharacterized viral infections in human and mosquito samples. The results demonstrate that CATCH enables more sensitive and cost-effective metagenomic sequencing.
Collapse
Affiliation(s)
- Hayden C. Metsky
- grid.66859.34Broad Institute of MIT and Harvard, Cambridge, MA USA ,0000 0001 2341 2786grid.116068.8Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Katherine J. Siddle
- grid.66859.34Broad Institute of MIT and Harvard, Cambridge, MA USA ,000000041936754Xgrid.38142.3cDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA USA
| | | | - James Qu
- grid.66859.34Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - David K. Yang
- grid.66859.34Broad Institute of MIT and Harvard, Cambridge, MA USA ,000000041936754Xgrid.38142.3cDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA USA
| | - Patrick Brehio
- grid.66859.34Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Andrew Goldfarb
- 000000041936754Xgrid.38142.3cFaculty of Arts and Sciences, Harvard University, Cambridge, MA USA
| | - Anne Piantadosi
- grid.66859.34Broad Institute of MIT and Harvard, Cambridge, MA USA ,0000 0004 0386 9924grid.32224.35Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA USA
| | - Shirlee Wohl
- grid.66859.34Broad Institute of MIT and Harvard, Cambridge, MA USA ,000000041936754Xgrid.38142.3cDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA USA
| | - Amber Carter
- grid.66859.34Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Aaron E. Lin
- grid.66859.34Broad Institute of MIT and Harvard, Cambridge, MA USA ,000000041936754Xgrid.38142.3cDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA USA
| | - Kayla G. Barnes
- grid.66859.34Broad Institute of MIT and Harvard, Cambridge, MA USA ,000000041936754Xgrid.38142.3cDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA USA ,000000041936754Xgrid.38142.3cDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA USA
| | - Damien C. Tully
- 0000 0004 0489 3491grid.461656.6The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA USA
| | - Bjӧrn Corleis
- 0000 0004 0489 3491grid.461656.6The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA USA
| | - Scott Hennigan
- 0000 0004 0378 6934grid.416511.6Massachusetts Department of Public Health, Boston, MA USA
| | - Giselle Barbosa-Lima
- 0000 0001 0723 0931grid.418068.3Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yasmine R. Vieira
- 0000 0001 0723 0931grid.418068.3Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lauren M. Paul
- 0000 0001 0647 2963grid.255962.fDepartment of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, FL USA
| | - Amanda L. Tan
- 0000 0001 0647 2963grid.255962.fDepartment of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, FL USA
| | - Kimberly F. Garcia
- 0000 0001 2297 2829grid.10601.36Instituto de Investigacion en Microbiologia, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Leda A. Parham
- 0000 0001 2297 2829grid.10601.36Instituto de Investigacion en Microbiologia, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Ikponmwosa Odia
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Philomena Eromon
- grid.442553.1African Center of Excellence for Genomics of Infectious Disease (ACEGID), Redeemer’s University, Ede, Nigeria
| | - Onikepe A. Folarin
- grid.442553.1African Center of Excellence for Genomics of Infectious Disease (ACEGID), Redeemer’s University, Ede, Nigeria ,grid.442553.1Department of Biological Sciences, College of Natural Sciences, Redeemer’s University, Ede, Nigeria
| | - Augustine Goba
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Sierra Leone
| | | | - Etienne Simon-Lorière
- 0000 0001 2353 6535grid.428999.7Evolutionary Genomics of RNA Viruses, Virology Department, Institut Pasteur, Paris, France
| | - Lisa Hensley
- 0000 0001 2164 9667grid.419681.3Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Frederick, MD USA
| | - Angel Balmaseda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Eva Harris
- 0000 0001 2181 7878grid.47840.3fDivision of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA USA
| | - Douglas S. Kwon
- 0000 0004 0386 9924grid.32224.35Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA USA ,0000 0004 0489 3491grid.461656.6The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA USA
| | - Todd M. Allen
- 0000 0004 0489 3491grid.461656.6The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA USA
| | - Jonathan A. Runstadler
- 0000 0004 1936 7531grid.429997.8Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA USA
| | - Sandra Smole
- 0000 0004 0378 6934grid.416511.6Massachusetts Department of Public Health, Boston, MA USA
| | - Fernando A. Bozza
- 0000 0001 0723 0931grid.418068.3Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago M. L. Souza
- 0000 0001 0723 0931grid.418068.3Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sharon Isern
- 0000 0001 0647 2963grid.255962.fDepartment of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, FL USA
| | - Scott F. Michael
- 0000 0001 0647 2963grid.255962.fDepartment of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, FL USA
| | - Ivette Lorenzana
- 0000 0001 2297 2829grid.10601.36Instituto de Investigacion en Microbiologia, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Lee Gehrke
- 0000 0001 2341 2786grid.116068.8Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA USA ,000000041936754Xgrid.38142.3cDepartment of Microbiology and Immunobiology, Harvard Medical School, Boston, MA USA
| | - Irene Bosch
- 0000 0001 2341 2786grid.116068.8Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Gregory Ebel
- 0000 0004 1936 8083grid.47894.36Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO USA
| | - Donald S. Grant
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Sierra Leone ,0000 0001 2290 9707grid.442296.fCollege of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Christian T. Happi
- 000000041936754Xgrid.38142.3cDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA USA ,Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria ,grid.442553.1African Center of Excellence for Genomics of Infectious Disease (ACEGID), Redeemer’s University, Ede, Nigeria ,grid.442553.1Department of Biological Sciences, College of Natural Sciences, Redeemer’s University, Ede, Nigeria
| | - Daniel J. Park
- grid.66859.34Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Andreas Gnirke
- grid.66859.34Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Pardis C. Sabeti
- grid.66859.34Broad Institute of MIT and Harvard, Cambridge, MA USA ,000000041936754Xgrid.38142.3cDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA USA ,000000041936754Xgrid.38142.3cDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA USA ,0000 0001 2167 1581grid.413575.1Howard Hughes Medical Institute, Chevy Chase, MD USA
| | | |
Collapse
|
40
|
Tracking virus outbreaks in the twenty-first century. Nat Microbiol 2018; 4:10-19. [PMID: 30546099 PMCID: PMC6345516 DOI: 10.1038/s41564-018-0296-2] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 10/19/2018] [Indexed: 02/08/2023]
Abstract
Emerging viruses have the potential to impose substantial mortality, morbidity and economic burdens on human populations. Tracking the spread of infectious diseases to assist in their control has traditionally relied on the analysis of case data gathered as the outbreak proceeds. Here, we describe how many of the key questions in infectious disease epidemiology, from the initial detection and characterization of outbreak viruses, to transmission chain tracking and outbreak mapping, can now be much more accurately addressed using recent advances in virus sequencing and phylogenetics. We highlight the utility of this approach with the hypothetical outbreak of an unknown pathogen, ‘Disease X’, suggested by the World Health Organization to be a potential cause of a future major epidemic. We also outline the requirements and challenges, including the need for flexible platforms that generate sequence data in real-time, and for these data to be shared as widely and openly as possible. This Review Article describes how recent advances in viral genome sequencing and phylogenetics have enabled key issues associated with outbreak epidemiology to be more accurately addressed, and highlights the requirements and challenges for generating, sharing and using such data when tackling a viral outbreak.
Collapse
|
41
|
Kang W, Eldfjell Y, Fromm B, Estivill X, Biryukova I, Friedländer MR. miRTrace reveals the organismal origins of microRNA sequencing data. Genome Biol 2018; 19:213. [PMID: 30514392 PMCID: PMC6280396 DOI: 10.1186/s13059-018-1588-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/15/2018] [Indexed: 12/27/2022] Open
Abstract
We present here miRTrace, the first algorithm to trace microRNA sequencing data back to their taxonomic origins. This is a challenge with profound implications for forensics, parasitology, food control, and research settings where cross-contamination can compromise results. miRTrace accurately (> 99%) assigns real and simulated data to 14 important animal and plant groups, sensitively detects parasitic infection in mammals, and discovers the primate origin of single cells. Applying our algorithm to over 700 public datasets, we find evidence that over 7% are cross-contaminated and present a novel solution to clean these computationally, even after sequencing has occurred. miRTrace is freely available at https://github.com/friedlanderlab/mirtrace .
Collapse
Affiliation(s)
- Wenjing Kang
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Yrin Eldfjell
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Bastian Fromm
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Xavier Estivill
- Genetics and Genomics Department, Sidra Medicine, Doha, Qatar
| | - Inna Biryukova
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
42
|
Gaudin M, Desnues C. Hybrid Capture-Based Next Generation Sequencing and Its Application to Human Infectious Diseases. Front Microbiol 2018; 9:2924. [PMID: 30542340 PMCID: PMC6277869 DOI: 10.3389/fmicb.2018.02924] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/14/2018] [Indexed: 01/12/2023] Open
Abstract
This review describes target-enrichment approaches followed by next generation sequencing and their recent application to the research and diagnostic field of modern and past infectious human diseases caused by viruses, bacteria, parasites and fungi.
Collapse
Affiliation(s)
- Maxime Gaudin
- IRD 198, CNRS FRE2013, Assistance-Publique des Hôpitaux de Marseille, UMR Microbes, Evolution, Phylogeny and Infections (MEPHI), IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | - Christelle Desnues
- IRD 198, CNRS FRE2013, Assistance-Publique des Hôpitaux de Marseille, UMR Microbes, Evolution, Phylogeny and Infections (MEPHI), IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France
| |
Collapse
|
43
|
Ni M, Chen C, Liu D. An Assessment of Amplicon-Sequencing Based Method for Viral Intrahost Analysis. Virol Sin 2018; 33:557-560. [PMID: 30397896 DOI: 10.1007/s12250-018-0052-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/13/2018] [Indexed: 10/27/2022] Open
Affiliation(s)
- Ming Ni
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chen Chen
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Di Liu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
44
|
Bergner LM, Orton RJ, da Silva Filipe A, Shaw AE, Becker DJ, Tello C, Biek R, Streicker DG. Using noninvasive metagenomics to characterize viral communities from wildlife. Mol Ecol Resour 2018; 19:128-143. [PMID: 30240114 PMCID: PMC6378809 DOI: 10.1111/1755-0998.12946] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/22/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022]
Abstract
Microbial communities play an important role in organismal and ecosystem health. While high-throughput metabarcoding has revolutionized the study of bacterial communities, generating comparable viral communities has proven elusive, particularly in wildlife samples where the diversity of viruses and limited quantities of viral nucleic acid present distinctive challenges. Metagenomic sequencing is a promising solution for studying viral communities, but the lack of standardized methods currently precludes comparisons across host taxa or localities. Here, we developed an untargeted shotgun metagenomic sequencing protocol to generate comparable viral communities from noninvasively collected faecal and oropharyngeal swabs. Using samples from common vampire bats (Desmodus rotundus), a key species for virus transmission to humans and domestic animals, we tested how different storage media, nucleic acid extraction procedures and enrichment steps affect viral community detection. Based on finding viral contamination in foetal bovine serum, we recommend storing swabs in RNAlater or another nonbiological medium. We recommend extracting nucleic acid directly from swabs rather than from supernatant or pelleted material, which had undetectable levels of viral RNA. Results from a low-input RNA library preparation protocol suggest that ribosomal RNA depletion and light DNase treatment reduce host and bacterial nucleic acid, and improve virus detection. Finally, applying our approach to twelve pooled samples from seven localities in Peru, we showed that detected viral communities saturated at the attained sequencing depth, allowing unbiased comparisons of viral community composition. Future studies using the methods outlined here will elucidate the determinants of viral communities across host species, environments and time.
Collapse
Affiliation(s)
- Laura M Bergner
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Richard J Orton
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Andrew E Shaw
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Daniel J Becker
- Odum School of Ecology, University of Georgia, Athens, Georgia.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia.,Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Carlos Tello
- Association for the Conservation, Development of Natural Resources, Lima, Peru.,Yunkawasi, Lima, Peru
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
45
|
Whitmer SLM, Yadav PD, Sarkale P, Chaubal GY, Francis A, Klena J, Nichol ST, Ströher U, Mourya DT. Characterization of Unknown Orthobunya-Like Viruses from India. Viruses 2018; 10:v10090451. [PMID: 30149496 PMCID: PMC6165560 DOI: 10.3390/v10090451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/31/2022] Open
Abstract
Next-generation sequencing (NGS) of agents causing idiopathic human diseases has been crucial in the identification of novel viruses. This study describes the isolation and characterization of two novel orthobunyaviruses obtained from a jungle myna and a paddy bird from Karnataka State, India. Using an NGS approach, these isolates were classified as Cat Que and Balagodu viruses belonging to the Manzanilla clade of the Simbu serogroup. Closely related viruses in the Manzanilla clade have been isolated from mosquitos, humans, birds, and pigs across a wide geographic region. Since Orthobunyaviruses exhibit high reassortment frequency and can cause acute, self-limiting febrile illness, these data suggest that human and livestock infections of the Oya/Cat Que/Manzanilla virus may be more widespread and/or under-reported than anticipated. It therefore becomes imperative to identify novel and unknown viruses in order to understand their role in human and animal pathogenesis. The current study is a step forward in this regard and would act as a prototype method for isolation, identification and detection of several other emerging viruses.
Collapse
Affiliation(s)
- Shannon L M Whitmer
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | - Alicia Francis
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30322, USA.
| | - John Klena
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Ute Ströher
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | |
Collapse
|
46
|
Hughes HR, Kayiwa J, Mossel EC, Lutwama J, Staples JE, Lambert AJ. Phylogeny of Yellow Fever Virus, Uganda, 2016. Emerg Infect Dis 2018; 24. [PMID: 29798746 PMCID: PMC6056105 DOI: 10.3201/eid2408.180588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In April 2016, a yellow fever outbreak was detected in Uganda. Removal of contaminating ribosomal RNA in a clinical sample improved the sensitivity of next-generation sequencing. Molecular analyses determined the Uganda yellow fever outbreak was distinct from the concurrent yellow fever outbreak in Angola, improving our understanding of yellow fever epidemiology.
Collapse
|
47
|
Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, Kellner MJ, Tan AL, Paul LM, Parham LA, Garcia KF, Barnes KG, Chak B, Mondini A, Nogueira ML, Isern S, Michael SF, Lorenzana I, Yozwiak NL, MacInnis BL, Bosch I, Gehrke L, Zhang F, Sabeti PC. Field-deployable viral diagnostics using CRISPR-Cas13. Science 2018; 360:444-448. [PMID: 29700266 PMCID: PMC6197056 DOI: 10.1126/science.aas8836] [Citation(s) in RCA: 808] [Impact Index Per Article: 134.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/20/2018] [Accepted: 03/08/2018] [Indexed: 12/22/2022]
Abstract
Mitigating global infectious disease requires diagnostic tools that are sensitive, specific, and rapidly field deployable. In this study, we demonstrate that the Cas13-based SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) platform can detect Zika virus (ZIKV) and dengue virus (DENV) in patient samples at concentrations as low as 1 copy per microliter. We developed HUDSON (heating unextracted diagnostic samples to obliterate nucleases), a protocol that pairs with SHERLOCK for viral detection directly from bodily fluids, enabling instrument-free DENV detection directly from patient samples in <2 hours. We further demonstrate that SHERLOCK can distinguish the four DENV serotypes, as well as region-specific strains of ZIKV from the 2015-2016 pandemic. Finally, we report the rapid (<1 week) design and testing of instrument-free assays to detect clinically relevant viral single-nucleotide polymorphisms.
Collapse
Affiliation(s)
- Cameron Myhrvold
- Broad Institute of the Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA.
- Center for Systems Biology, Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Catherine A Freije
- Broad Institute of the Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA.
- Center for Systems Biology, Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Ph.D. Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan S Gootenberg
- Broad Institute of the Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Omar O Abudayyeh
- Broad Institute of the Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
- Department of Health Sciences and Technology, MIT, Cambridge, MA 02139, USA
| | - Hayden C Metsky
- Broad Institute of the Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
| | - Ann F Durbin
- Ph.D. Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA
| | - Max J Kellner
- Broad Institute of the Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
| | - Amanda L Tan
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| | - Lauren M Paul
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| | - Leda A Parham
- Centro de Investigaciones Genética, Instituto de Investigacion en Microbiologia, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Kimberly F Garcia
- Centro de Investigaciones Genética, Instituto de Investigacion en Microbiologia, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Kayla G Barnes
- Broad Institute of the Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
- Center for Systems Biology, Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, MA 02115, USA
| | - Bridget Chak
- Broad Institute of the Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
- Center for Systems Biology, Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Adriano Mondini
- Araraquara Laboratory of Public Health, School of Pharmaceutical Sciences, São Paulo State University, São Paulo, Brazil
| | - Mauricio L Nogueira
- Laboratorio de Pesquisas em Virologia, Faculdade de Medicina de Sao Jose do Rio Preto, São Paulo, Brazil
| | - Sharon Isern
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| | - Scott F Michael
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| | - Ivette Lorenzana
- Centro de Investigaciones Genética, Instituto de Investigacion en Microbiologia, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Nathan L Yozwiak
- Broad Institute of the Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
- Center for Systems Biology, Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bronwyn L MacInnis
- Broad Institute of the Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, MA 02115, USA
| | - Irene Bosch
- Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Lee Gehrke
- Ph.D. Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Feng Zhang
- Broad Institute of the Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Pardis C Sabeti
- Broad Institute of the Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA.
- Center for Systems Biology, Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Ph.D. Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, MA 02115, USA
- Howard Hughes Medical Institute (HHMI), Chevy Chase, MD 20815, USA
| |
Collapse
|
48
|
Choi K, Ryu H, Siddle KJ, Piantadosi A, Freimark L, Park DJ, Sabeti P, Han J. Negative Selection by Spiral Inertial Microfluidics Improves Viral Recovery and Sequencing from Blood. Anal Chem 2018; 90:4657-4662. [PMID: 29536737 PMCID: PMC6195311 DOI: 10.1021/acs.analchem.7b05200] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In blood samples from patients with viral infection, it is often important to separate viral particles from human cells, for example, to minimize background in performing viral whole genome sequencing. Here, we present a microfluidic device that uses spiral inertial microfluidics with continuous circulation to separate host cells from viral particles and free nucleic acid. We demonstrate that this device effectively reduces white blood cells, red blood cells, and platelets from both whole blood and plasma samples with excellent recovery of viral nucleic acid. Furthermore, microfluidic separation leads to greater viral genome coverage and depth, highlighting an important application of this device in processing clinical samples for viral genome sequencing.
Collapse
Affiliation(s)
- Kyungyong Choi
- Research Laboratory of Electronics,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | - Katherine J Siddle
- Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA,Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Anne Piantadosi
- Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA,Division of Infectious Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114
| | - Lisa Freimark
- Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA
| | - Daniel J Park
- Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA
| | - Pardis Sabeti
- Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA,Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA,Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Jongyoon Han
- Research Laboratory of Electronics,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA,Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
49
|
Piantadosi A, Kanjilal S, Ganesh V, Khanna A, Hyle EP, Rosand J, Bold T, Metsky HC, Lemieux J, Leone MJ, Freimark L, Matranga CB, Adams G, McGrath G, Zamirpour S, Telford S, Rosenberg E, Cho T, Frosch MP, Goldberg MB, Mukerji SS, Sabeti PC. Rapid Detection of Powassan Virus in a Patient With Encephalitis by Metagenomic Sequencing. Clin Infect Dis 2018; 66:789-792. [PMID: 29020227 PMCID: PMC5850433 DOI: 10.1093/cid/cix792] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/06/2017] [Indexed: 11/13/2022] Open
Abstract
We describe a patient with severe and progressive encephalitis of unknown etiology. We performed rapid metagenomic sequencing from cerebrospinal fluid and identified Powassan virus, an emerging tick-borne flavivirus that has been increasingly detected in the United States.
Collapse
Affiliation(s)
- Anne Piantadosi
- Division of Infectious Diseases, Massachusetts General Hospital
- Harvard Medical School, Boston
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge
| | - Sanjat Kanjilal
- Division of Infectious Diseases, Massachusetts General Hospital
- Harvard Medical School, Boston
| | - Vijay Ganesh
- Department of Neurology, Massachusetts General Hospital, Boston
| | - Arjun Khanna
- Department of Neurology, Massachusetts General Hospital, Boston
| | - Emily P Hyle
- Division of Infectious Diseases, Massachusetts General Hospital
- Harvard Medical School, Boston
| | - Jonathan Rosand
- Department of Neurology, Massachusetts General Hospital, Boston
| | - Tyler Bold
- Division of Infectious Diseases, Massachusetts General Hospital
| | - Hayden C Metsky
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge
- Department of Electrical Engineering and Computer Science, MIT, Cambridge
| | - Jacob Lemieux
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge
- Department of Medicine, Massachusetts General Hospital, Boston
| | - Michael J Leone
- Department of Neurology, Massachusetts General Hospital, Boston
| | - Lisa Freimark
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge
| | - Christian B Matranga
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge
| | - Gordon Adams
- Division of Infectious Diseases, Massachusetts General Hospital
| | - Graham McGrath
- Division of Infectious Diseases, Massachusetts General Hospital
| | | | - Sam Telford
- Tufts School of Veterinary Medicine, North Grafton
| | - Eric Rosenberg
- Division of Infectious Diseases, Massachusetts General Hospital
- Harvard Medical School, Boston
| | - Tracey Cho
- Harvard Medical School, Boston
- Department of Neurology, Massachusetts General Hospital, Boston
| | - Matthew P Frosch
- Harvard Medical School, Boston
- Division of Neuropathology, Massachusetts General Hospital
| | - Marcia B Goldberg
- Division of Infectious Diseases, Massachusetts General Hospital
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge
- Department of Microbiology and Immunobiology, Harvard Medical School
| | - Shibani S Mukerji
- Harvard Medical School, Boston
- Department of Neurology, Massachusetts General Hospital, Boston
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston
| | - Pardis C Sabeti
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
50
|
Li J, Fu C, Speed TP, Wang W, Symmans WF. Accurate RNA Sequencing From Formalin-Fixed Cancer Tissue To Represent High-Quality Transcriptome From Frozen Tissue. JCO Precis Oncol 2018; 2018:PO.17.00091. [PMID: 29862382 PMCID: PMC5976456 DOI: 10.1200/po.17.00091] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Accurate transcriptional sequencing (RNA-seq) from formalin-fixation and paraffin-embedding (FFPE) tumor samples presents an important challenge for translational research and diagnostic development. In addition, there are now several different protocols to prepare a sequencing library from total RNA. We evaluated the accuracy of RNA-seq data generated from FFPE samples in terms of expression profiling. METHODS We designed a biospecimen study to directly compare gene expression results from different protocols to prepare libraries for RNA-seq from human breast cancer tissues, with randomization to fresh-frozen (FF) or FFPE conditions. The protocols were compared using multiple computational methods to assess alignment of reads to reference genome, and the uniformity and continuity of coverage; as well as the variance and correlation, of overall gene expression and patterns of measuring coding sequence, phenotypic patterns of gene expression, and measurements from representative multigene signatures. RESULTS The principal determinant of variance in gene expression was use of exon capture probes, followed by the conditions of preservation (FF versus FFPE), and phenotypic differences between breast cancers. One protocol, with RNase H-based rRNA depletion, exhibited least variability of gene expression measurements, strongest correlation between FF and FFPE samples, and was generally representative of the transcriptome from standard FF RNA-seq protocols. CONCLUSION Method of RNA-seq library preparation from FFPE samples had marked effect on the accuracy of gene expression measurement compared to matched FF samples. Nevertheless, some protocols produced highly concordant expression data from FFPE RNA-seq data, compared to RNA-seq results from matched frozen samples.
Collapse
Affiliation(s)
- Jialu Li
- Jialu Li, Chunxiao Fu, Wenyi Wang, and W. Fraser Symmans, The University of Texas MD Anderson Cancer Center, Houston, TX; and Terence P. Speed, University of California, Berkeley, Berkeley, CA; and Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Chunxiao Fu
- Jialu Li, Chunxiao Fu, Wenyi Wang, and W. Fraser Symmans, The University of Texas MD Anderson Cancer Center, Houston, TX; and Terence P. Speed, University of California, Berkeley, Berkeley, CA; and Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Terence P. Speed
- Jialu Li, Chunxiao Fu, Wenyi Wang, and W. Fraser Symmans, The University of Texas MD Anderson Cancer Center, Houston, TX; and Terence P. Speed, University of California, Berkeley, Berkeley, CA; and Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Wenyi Wang
- Jialu Li, Chunxiao Fu, Wenyi Wang, and W. Fraser Symmans, The University of Texas MD Anderson Cancer Center, Houston, TX; and Terence P. Speed, University of California, Berkeley, Berkeley, CA; and Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - W. Fraser Symmans
- Jialu Li, Chunxiao Fu, Wenyi Wang, and W. Fraser Symmans, The University of Texas MD Anderson Cancer Center, Houston, TX; and Terence P. Speed, University of California, Berkeley, Berkeley, CA; and Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| |
Collapse
|