1
|
Obraitis D, Li D. Blood virome research in myalgic encephalomyelitis/chronic fatigue syndrome: challenges and opportunities. Curr Opin Virol 2024:101437. [PMID: 39537445 DOI: 10.1016/j.coviro.2024.101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 08/22/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with a complex clinical presentation and an unknown etiology. Various viral infections have been proposed as potential triggers of ME/CFS onset, but no specific pathogen has been identified in all cases of postinfectious ME/CFS. The symptomatology of the postacute sequelae of SARS-CoV-2, or long COVID, mirrors that of ME/CFS, with nearly half of long COVID patients meeting ME/CFS diagnostic criteria. The influx of newly diagnosed patients has reinvigorated interest in ME/CFS pathogenesis research, with an emphasis on viral triggers. This review summarizes the current understanding of ME/CFS research on viral triggers, including blood virome screening studies. To further elucidate the molecular basis of ME/CFS, there is a need to develop innovative bioinformatics tools capable of analyzing complex virome data and integrating multiomics information.
Collapse
Affiliation(s)
- Dominic Obraitis
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Neuroscience and Behavior Program, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Dawei Li
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Adhikari A, Maddumage J, Eriksson EM, Annesley SJ, Lawson VA, Bryant VL, Gras S. Beyond acute infection: mechanisms underlying post-acute sequelae of COVID-19 (PASC). Med J Aust 2024; 221 Suppl 9:S40-S48. [PMID: 39489518 DOI: 10.5694/mja2.52456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/10/2024] [Indexed: 11/05/2024]
Abstract
Immune dysregulation is a key aspect of post-acute sequelae of coronavirus disease 2019 (PASC), also known as long COVID, with sustained activation of immune cells, T cell exhaustion, skewed B cell profiles, and disrupted immune communication thereby resulting in autoimmune-related complications. The gut is emerging as a critical link between microbiota, metabolism and overall dysfunction, potentially sharing similarities with other chronic fatigue conditions and PASC. Immunothrombosis and neurological signalling dysfunction emphasise the complex interplay between the immune system, blood clotting, and the central nervous system in the context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Clear research gaps in the design of PASC studies, especially in the context of longitudinal research, stand out as significant areas of concern.
Collapse
Affiliation(s)
- Anurag Adhikari
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC
- Kathmandu Research Institute for Biological Sciences, Lalitpur, Nepal
| | - Janesha Maddumage
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC
| | - Emily M Eriksson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC
| | | | - Victoria A Lawson
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC
| | - Vanessa L Bryant
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC
- Royal Melbourne Hospital, Melbourne, VIC
- University of Melbourne, Melbourne, VIC
| | - Stephanie Gras
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC
- Monash University, Melbourne, VIC
| |
Collapse
|
3
|
Elliott MR, O'Connor AE, Marshall GD. Inflammatory pathways in patients with post-acute sequelae of COVID-19: The role of the clinical immunologist. Ann Allergy Asthma Immunol 2024; 133:507-515. [PMID: 39179099 DOI: 10.1016/j.anai.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
As the SARS-CoV-2 pandemic progressed, some survivors noted prolonged symptoms after acute infection, termed post-acute sequelae of COVID-19 (PASC) or "long COVID." PASC is a significant clinical and public health concern that adversely affects patients' quality of life, income, and health care expenses. Moreover, PASC symptoms are highly heterogeneous, the most common being fatigue and cognitive impairment, and they likely reflect a spectrum of clinical phenotypes. The proposed role of persistent inflammation is one of leading pathophysiological theories. This review article addresses these proposed mechanisms of persistent and aberrant inflammation, their clinical evaluation, and theoretical approaches to management. A review of public databases was used to collect literature for the review. The literature supports a prominent role of persistent and aberrant inflammation as a major contributor to the symptoms of PASC. Proposed mechanisms for persistent inflammation include reactivation of latent viruses, viral persistence, loss of immunoregulatory pathways, autoimmune mechanisms, and/or mast cell dysregulation. Persistent inflammation may result in constitutional symptoms such as fatigue, brain fog, body aches, and/or organ-specific dysfunction, such as gastrointestinal dysregulation and myocardial inflammation. There are no approved or even proven therapies for PASC at this time, but some studies have identified therapeutic options that may either reduce the risk for progression to PASC or decrease symptom burden. Laboratory evaluation and therapeutic options are limited and require further investigation to establish their clinical value. A more refined definition of PASC is needed to address the wide variety of clinical presentations, pathophysiology, and therapeutic options.
Collapse
Affiliation(s)
- Matthew R Elliott
- The University of Mississippi Medical Center, Department of Internal Medicine, Division of Clinical Immunology, Jackson, Mississippi.
| | - Anna E O'Connor
- The University of Mississippi Medical Center, Department of Internal Medicine, Division of Clinical Immunology, Jackson, Mississippi
| | - Gailen D Marshall
- The University of Mississippi Medical Center, Department of Internal Medicine, Division of Clinical Immunology, Jackson, Mississippi
| |
Collapse
|
4
|
Liu C, Guo J, Fan S, Guo W, Qi H, Baker S, Du P, Cao B. An increased prevalence of carbapenem-resistant hypervirulent Klebsiella pneumoniae associated with the COVID-19 pandemic. Drug Resist Updat 2024; 77:101124. [PMID: 39128195 DOI: 10.1016/j.drup.2024.101124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Klebsiella pneumoniae (Kp) is a common community-acquired and nosocomial pathogen. Carbapenem-resistant and hypervirulent (CR-hvKp) variants can emerge rapidly within healthcare facilities and impacted by other infectious agents such as COVID-19 virus. METHODS To understand the impact of COVID-19 virus on the prevalence of CR-hvKp, we accessed Kp genomes with corresponding metadata from GenBank. Sequence types (STs), antimicrobial resistance genes, and virulence genes, and those scores and CR-hvKp were identified. We analyzed population diversity and phylogenetic characteristics of five most common STs, measured the prevalence of CR-hvKp, identified CR-hvKp subtypes, and determined associations between carbapenem resistance gene subtypes with STs and plasmid types. These variables were compared pre- and during the COVID-19 pandemic. FINDINGS The proportion of CR-hvKp isolates increased within multiple STs in different continents during the COVID-19 pandemic and persistent CR-hvKp subtypes were found in common STs. blaKPC was dominant in CG258, blaKPC-2 was detected in 97 % of the ST11 CR-hvKp, blaNDM subtypes were prominent in ST147 (87.4 %) and ST307 (70.8 %); blaOXA-48 and its subtypes were prevalent in ST15 (80.5 %). The possession of carbapenemase genes was different among subclades from different origins in different periods of time within each ST. IncFIB/IncHI1B hybrid plasmids contained virulence genes and carbapenemase genes and were predominant in ST147 (67.37 %) and ST307 (56.25 %). INTERPRETATION The prevalence of CR-hvKp increased during the COVID-19 pandemic, which was evident by an increase in local endemic clones. This process was facilitated by the convergence of plasmids containing carbapenemase genes and virulence genes. These findings have implications for the appropriate use of antimicrobials and infection prevention and control during outbreaks of respiratory viruses and pandemic management.
Collapse
Affiliation(s)
- Chao Liu
- Department of Infectious Disease, Peking University Third Hospital, Beijing, China
| | - Jun Guo
- Department of Pulmonary and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Shuaihua Fan
- Department of Pulmonary and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Wei Guo
- Department of Pulmonary and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Huaiqing Qi
- Department of Pulmonary and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Stephen Baker
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Department of Respiratory Medicine, Capital Medical University, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijiing, China.
| |
Collapse
|
5
|
Aquino A, Zaikova E, Kalinina O, Karonova TL, Rubinstein A, Mikhaylova AA, Kudryavtsev I, Golovkin AS. T Regulatory Cell Subsets Do Not Restore for One Year After Acute COVID-19. Int J Mol Sci 2024; 25:11759. [PMID: 39519310 PMCID: PMC11545974 DOI: 10.3390/ijms252111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
COVID-19, caused by SARS-CoV-2, triggers a complex immune response, with T regulatory cells (Tregs) playing a crucial role in maintaining immune homeostasis and preventing excessive inflammation. The current study investigates the function of T regulatory cells during COVID-19 infection and the subsequent recovery period, emphasizing their impact on immune regulation and inflammation control. We conducted a comprehensive analysis of Treg subpopulations in peripheral blood samples from COVID-19 patients at different stages: acute infection, early convalescence, and long-term recovery. Flow cytometry was employed to quantify Tregs including "naïve", central memory (CM), effector memory (EM), and terminally differentiated CD45RA+ effector cells (TEMRA). Additionally, the functional state of the Tregs was assessed by the expression of purinergic signaling molecules (CD39, CD73). Cytokine profiles were assessed through multiplex analysis. Our findings indicate a significant decrease in the number of Tregs during the acute phase of COVID-19, which correlates with heightened inflammatory markers and increased disease severity. Specifically, we found a decrease in the relative numbers of "naïve" and an increase in EM Tregs, as well as a decrease in the absolute numbers of "naïve" and CM Tregs. During the early convalescent period, the absolute counts of all Treg populations tended to increase, accompanied by a reduction in pro-inflammatory cytokines. Despite this, one year after recovery, the decreased subpopulations of regulatory T cells had not yet reached the levels observed in healthy donors. Finally, we observed the re-establishment of CD39 expression in all Treg subsets; however, there was no change in CD73 expression among Tregs. Understanding these immunological changes across different T regulatory subsets and adenosine signaling pathways offers important insights into the disease's pathogenesis and provides a broader view of immune system dynamics during recovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alexey S. Golovkin
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (A.A.); (A.R.); (I.K.)
| |
Collapse
|
6
|
Sinclair JE, Vedelago C, Ryan FJ, Carney M, Redd MA, Lynn MA, Grubor-Bauk B, Cao Y, Henders AK, Chew KY, Gilroy D, Greaves K, Labzin L, Ziser L, Ronacher K, Wallace LM, Zhang Y, Macauslane K, Ellis DJ, Rao S, Burr L, Bain A, Karawita A, Schulz BL, Li J, Lynn DJ, Palpant N, Wuethrich A, Trau M, Short KR. Post-acute sequelae of SARS-CoV-2 cardiovascular symptoms are associated with trace-level cytokines that affect cardiomyocyte function. Nat Microbiol 2024:10.1038/s41564-024-01838-z. [PMID: 39478108 DOI: 10.1038/s41564-024-01838-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/25/2024] [Indexed: 11/06/2024]
Abstract
An estimated 65 million people globally suffer from post-acute sequelae of COVID-19 (PASC), with many experiencing cardiovascular symptoms (PASC-CVS) like chest pain and heart palpitations. This study examines the role of chronic inflammation in PASC-CVS, particularly in individuals with symptoms persisting over a year after infection. Blood samples from three groups-recovered individuals, those with prolonged PASC-CVS and SARS-CoV-2-negative individuals-revealed that those with PASC-CVS had a blood signature linked to inflammation. Trace-level pro-inflammatory cytokines were detected in the plasma from donors with PASC-CVS 18 months post infection using nanotechnology. Importantly, these trace-level cytokines affected the function of primary human cardiomyocytes. Plasma proteomics also demonstrated higher levels of complement and coagulation proteins in the plasma from patients with PASC-CVS. This study highlights chronic inflammation's role in the symptoms of PASC-CVS.
Collapse
Affiliation(s)
- Jane E Sinclair
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Courtney Vedelago
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Feargal J Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Meagan Carney
- School of Mathematics and Physics, University of Queensland, Brisbane, Queensland, Australia
| | - Meredith A Redd
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Miriam A Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Yuanzhao Cao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Anjali K Henders
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Deborah Gilroy
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kim Greaves
- Sunshine Coast University Hospital, Queensland Health, Birtinya, Queensland, Australia
- National Centre for Epidemiology and Population Health, ANU College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Larisa Labzin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Laura Ziser
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Katharina Ronacher
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Leanne M Wallace
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Yiwen Zhang
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Kyle Macauslane
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Daniel J Ellis
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Sudha Rao
- Gene Regulation and Translational Medicine Laboratory, Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lucy Burr
- Mater Research Institute, The University of Queensland, South Brisbane, Queensland, Australia
- Department of Respiratory Medicine, Mater Adult Hospital, South Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Amanda Bain
- Gene Regulation and Translational Medicine Laboratory, Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Anjana Karawita
- Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Junrong Li
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Nathan Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Matt Trau
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia.
- Queensland Immunology Research Centre, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
7
|
Medina MA, Fuentes-Villalobos F, Quevedo C, Aguilera F, Riquelme R, Rioseco ML, Barria S, Pinos Y, Calvo M, Burbulis I, Kossack C, Alvarez RA, Garrido JL, Barria MI. Longitudinal transcriptional changes reveal genes from the natural killer cell-mediated cytotoxicity pathway as critical players underlying COVID-19 progression. eLife 2024; 13:RP94242. [PMID: 39470726 PMCID: PMC11521369 DOI: 10.7554/elife.94242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Patients present a wide range of clinical severities in response severe acute respiratory syndrome coronavirus 2 infection, but the underlying molecular and cellular reasons why clinical outcomes vary so greatly within the population remains unknown. Here, we report that negative clinical outcomes in severely ill patients were associated with divergent RNA transcriptome profiles in peripheral immune cells compared with mild cases during the first weeks after disease onset. Protein-protein interaction analysis indicated that early-responding cytotoxic natural killer cells were associated with an effective clearance of the virus and a less severe outcome. This innate immune response was associated with the activation of select cytokine-cytokine receptor pathways and robust Th1/Th2 cell differentiation profiles. In contrast, severely ill patients exhibited a dysregulation between innate and adaptive responses affiliated with divergent Th1/Th2 profiles and negative outcomes. This knowledge forms the basis of clinical triage that may be used to preemptively detect high-risk patients before life-threatening outcomes ensue.
Collapse
Affiliation(s)
- Matias A Medina
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | | | - Claudio Quevedo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepciónChile
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepciónChile
| | - Raul Riquelme
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
- Hospital Dr. Eduardo Schütz SchroederPuerto MonttChile
| | - Maria Luisa Rioseco
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
- Hospital Dr. Eduardo Schütz SchroederPuerto MonttChile
| | - Sebastian Barria
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
- Hospital Dr. Eduardo Schütz SchroederPuerto MonttChile
| | | | - Mario Calvo
- Instituto de Medicina, Facultad de Medicina, Universidad AustralValdiviaChile
| | - Ian Burbulis
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | - Camila Kossack
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | - Raymond A Alvarez
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Jose Luis Garrido
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | - Maria Ines Barria
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| |
Collapse
|
8
|
Weir K, Vega N, Busa VF, Sajdak B, Kallestad L, Merriman D, Palczewski K, Carroll J, Blackshaw S. Identification of shared gene expression programs activated in multiple modes of torpor across vertebrate clades. Sci Rep 2024; 14:24360. [PMID: 39420030 PMCID: PMC11487170 DOI: 10.1038/s41598-024-74324-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Torpor encompasses diverse adaptations to extreme environmental stressors such as hibernation, aestivation, brumation, and daily torpor. Here we introduce StrokeofGenus, an analytic pipeline that identifies distinct transcriptomic states and shared gene expression patterns across studies, tissues, and species. We use StrokeofGenus to study multiple and diverse forms of torpor from publicly-available RNA-seq datasets that span eight species and two classes. We identify three transcriptionally distinct states during the cycle of heterothermia: euthermia, torpor, and interbout arousal. We also identify torpor-specific gene expression patterns that are shared both across tissues and between species with over three hundred million years of evolutionary divergence. We further demonstrate the general sharing of gene expression patterns in multiple forms of torpor, implying a common evolutionary origin for this process. Although here we apply StrokeofGenus to analysis of torpor, it can be used to interrogate any other complex physiological processes defined by transient transcriptomic states.
Collapse
Affiliation(s)
- Kurt Weir
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Genome Biology Unit, European Molecular Biology Laboratories, Heidelberg, Germany
| | - Natasha Vega
- Department of Biology, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, USA
| | | | - Ben Sajdak
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
- Fauna Bio, Emeryville, CA, USA
- Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - Les Kallestad
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, 92697, USA
| | - Dana Merriman
- Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA, 92697, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Joseph Carroll
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Seth Blackshaw
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Sigawi T, Israeli A, Ilan Y. Harnessing Variability Signatures and Biological Noise May Enhance Immunotherapies' Efficacy and Act as Novel Biomarkers for Diagnosing and Monitoring Immune-Associated Disorders. Immunotargets Ther 2024; 13:525-539. [PMID: 39431244 PMCID: PMC11488351 DOI: 10.2147/itt.s477841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
Lack of response to immunotherapies poses a significant challenge in treating immune-mediated disorders and cancers. While the mechanisms associated with poor responsiveness are not well defined and change between and among subjects, the current methods for overcoming the loss of response are insufficient. The Constrained Disorder Principle (CDP) explains biological systems based on their inherent variability, bounded by dynamic boundaries that change in response to internal and external perturbations. Inter and intra-subject variability characterize the immune system, making it difficult to provide a single therapeutic regimen to all patients and even the same patients over time. The dynamicity of the immune variability is also a significant challenge for personalizing immunotherapies. The CDP-based second-generation artificial intelligence system is an outcome-based dynamic platform that incorporates personalized variability signatures into the therapeutic regimen and may provide methods for improving the response and overcoming the loss of response to treatments. The signatures of immune variability may also offer a method for identifying new biomarkers for early diagnosis, monitoring immune-related disorders, and evaluating the response to treatments.
Collapse
Affiliation(s)
- Tal Sigawi
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Adir Israeli
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
10
|
Wu Q, Pan X, Han D, Ma Z, Zhang H. New Insights into the Epidemiological Characteristics of Mycoplasma pneumoniae Infection before and after the COVID-19 Pandemic. Microorganisms 2024; 12:2019. [PMID: 39458327 PMCID: PMC11509874 DOI: 10.3390/microorganisms12102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Mycoplasma pneumoniae (M. pneumoniae), a prevalent respiratory pathogen affecting children and adolescents, is known to trigger periodic global epidemics. The most recent significant outbreak commenced in the first half of 2023 and reached its peak globally during the autumn and winter months. Considering the worldwide repercussions of the COVID-19 pandemic, it has become increasingly essential to delve into the epidemiological characteristics of M. pneumoniae both before and after the pandemic. This review aims to provide a comprehensive analysis of the key features of M. pneumoniae epidemics in the pre-and post-COVID-19 contexts, including but not limited to shifts in the susceptible population, the molecular genotypes of the pathogen, the clinical manifestations, and potential new trends in drug resistance. Additionally, we will introduce the latest advancements in the diagnosis of M. pneumoniae.
Collapse
Affiliation(s)
- Qianyue Wu
- Clinical Lab in Children’s Hospital of Shanghai, Children’s Hospital of Shanghai Jiao Tong University, Shanghai 200040, China; (Q.W.); (X.P.); (D.H.); (Z.M.)
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Xiaozhou Pan
- Clinical Lab in Children’s Hospital of Shanghai, Children’s Hospital of Shanghai Jiao Tong University, Shanghai 200040, China; (Q.W.); (X.P.); (D.H.); (Z.M.)
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Dingding Han
- Clinical Lab in Children’s Hospital of Shanghai, Children’s Hospital of Shanghai Jiao Tong University, Shanghai 200040, China; (Q.W.); (X.P.); (D.H.); (Z.M.)
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Zhan Ma
- Clinical Lab in Children’s Hospital of Shanghai, Children’s Hospital of Shanghai Jiao Tong University, Shanghai 200040, China; (Q.W.); (X.P.); (D.H.); (Z.M.)
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Hong Zhang
- Clinical Lab in Children’s Hospital of Shanghai, Children’s Hospital of Shanghai Jiao Tong University, Shanghai 200040, China; (Q.W.); (X.P.); (D.H.); (Z.M.)
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| |
Collapse
|
11
|
Zhang L. Exploring pathogen population density as a metric for understanding post-COVID infectious disease surges. Front Immunol 2024; 15:1459628. [PMID: 39421748 PMCID: PMC11484442 DOI: 10.3389/fimmu.2024.1459628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
After the easing of COVID-19 restrictions, peaks of common infectious diseases surpassed pre-pandemic levels, raising questions about causes and ways to monitor these changes. A proposed measure, the Pathogen Population Density (PPD) score, could help track these shifts. PPD refers to the concentration of infectious agents within a population at a given time and location, serving as a potential indicator of infection levels in susceptible individuals at the population level. It is likely that PPD remains relatively stable within a specific community, as an equilibrium forms between infections and susceptibility. During the pandemic, nonpharmaceutical interventions (NPIs) led to a reduction in infectious diseases, possibly lowering population immunity and decreasing the PPD score. Once NPIs were lifted, the PPD score likely increased sharply due to a larger pool of susceptible individuals, causing more primary infections and stronger recurrent infections, faster transmission, and more severe pathogenic outcomes at the individual level. Monitoring the PPD score over time could help predict when infection peaks will occur. PPD is influenced by factors such as public health strategies, vaccination programs, and the behavior of high-risk individuals. As a quantitative measure, PPD has the potential to serve as a valuable predictive and monitoring tool, helping public health officials anticipate and track changes in infectious disease dynamics. It could be an effective tool for managing future outbreaks or pandemics and serve as a communication tool between scientists and the public to understand the emergence of new disease peaks.
Collapse
Affiliation(s)
- Luwen Zhang
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
12
|
Loeb K, Lemaille C, Frederick C, Wallace HL, Kindrachuk J. Harnessing high-throughput OMICS in emerging zoonotic virus preparedness and response activities. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167337. [PMID: 38986821 DOI: 10.1016/j.bbadis.2024.167337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Emerging and re-emerging viruses pose unpredictable and significant challenges to global health. Emerging zoonotic infectious diseases, which are transmitted between humans and non-human animals, have been estimated to be responsible for nearly two-thirds of emerging infectious disease events and emergence events attributed to these pathogens have been increasing in frequency with the potential for high global health and economic burdens. In this review we will focus on the application of highthroughput OMICS approaches to emerging zoonotic virus investigtations. We highlight the key contributions of transcriptome and proteome investigations to emerging zoonotic virus preparedness and response activities with a focus on SARS-CoV-2, avian influenza virus subtype H5N1, and Orthoebolavirus investigations.
Collapse
Affiliation(s)
- Kristi Loeb
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Candice Lemaille
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Christina Frederick
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Hannah L Wallace
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Jason Kindrachuk
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Manitoba Centre for Proteomics and Systems Biology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
13
|
Erlandson KM, Geng LN, Selvaggi CA, Thaweethai T, Chen P, Erdmann NB, Goldman JD, Henrich TJ, Hornig M, Karlson EW, Katz SD, Kim C, Cribbs SK, Laiyemo AO, Letts R, Lin JY, Marathe J, Parthasarathy S, Patterson TF, Taylor BD, Duffy ER, Haack M, Julg B, Maranga G, Hernandez C, Singer N, Han J, Pemu P, Brim H, Ashktorab H, Charney AW, Wisnivesky J, Lin J, Chu HY, Go M, Singh U, Levitan EB, Goepfert PA, Nikolich JŽ, Hsu H, Peluso MJ, Kelly JD, Okumura M, Flaherman VJ, Quigley JG, Krishnan JA, Scholand MB, Hess R, Metz TD, Costantine MM, Rouse DJ, Taylor BS, Goldberg MP, Marshall GD, Wood J, Warren D, Horwitz L, Foulkes AS, McComsey GA. Differentiation of Prior SARS-CoV-2 Infection and Postacute Sequelae by Standard Clinical Laboratory Measurements in the RECOVER Cohort. Ann Intern Med 2024; 177:1209-1221. [PMID: 39133923 PMCID: PMC11408082 DOI: 10.7326/m24-0737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND There are currently no validated clinical biomarkers of postacute sequelae of SARS-CoV-2 infection (PASC). OBJECTIVE To investigate clinical laboratory markers of SARS-CoV-2 and PASC. DESIGN Propensity score-weighted linear regression models were fitted to evaluate differences in mean laboratory measures by prior infection and PASC index (≥12 vs. 0). (ClinicalTrials.gov: NCT05172024). SETTING 83 enrolling sites. PARTICIPANTS RECOVER-Adult cohort participants with or without SARS-CoV-2 infection with a study visit and laboratory measures 6 months after the index date (or at enrollment if >6 months after the index date). Participants were excluded if the 6-month visit occurred within 30 days of reinfection. MEASUREMENTS Participants completed questionnaires and standard clinical laboratory tests. RESULTS Among 10 094 participants, 8746 had prior SARS-CoV-2 infection, 1348 were uninfected, 1880 had a PASC index of 12 or higher, and 3351 had a PASC index of zero. After propensity score adjustment, participants with prior infection had a lower mean platelet count (265.9 × 109 cells/L [95% CI, 264.5 to 267.4 × 109 cells/L]) than participants without known prior infection (275.2 × 109 cells/L [CI, 268.5 to 282.0 × 109 cells/L]), as well as higher mean hemoglobin A1c (HbA1c) level (5.58% [CI, 5.56% to 5.60%] vs. 5.46% [CI, 5.40% to 5.51%]) and urinary albumin-creatinine ratio (81.9 mg/g [CI, 67.5 to 96.2 mg/g] vs. 43.0 mg/g [CI, 25.4 to 60.6 mg/g]), although differences were of modest clinical significance. The difference in HbA1c levels was attenuated after participants with preexisting diabetes were excluded. Among participants with prior infection, no meaningful differences in mean laboratory values were found between those with a PASC index of 12 or higher and those with a PASC index of zero. LIMITATION Whether differences in laboratory markers represent consequences of or risk factors for SARS-CoV-2 infection could not be determined. CONCLUSION Overall, no evidence was found that any of the 25 routine clinical laboratory values assessed in this study could serve as a clinically useful biomarker of PASC. PRIMARY FUNDING SOURCE National Institutes of Health.
Collapse
Affiliation(s)
- Kristine M. Erlandson
- University of Colorado, Anschutz Medical Campus; Department of Medicine, Division of Infectious Diseases; Aurora, CO
| | - Linda N. Geng
- Stanford University; Department of Medicine; Stanford, CA
| | | | | | - Peter Chen
- Cedars-Sinai Medical Center; Department of Medicine. Division of Pulmonary and Critical Care Medicine; New York, NY
- Women’s Guild Lung Institute at Cedars-Sinai Medical Center; New York, NY
| | - Nathan B. Erdmann
- University of Alabama at Birmingham, Department of Medicine, Division of Infectious Diseases, Birmingham, AL
| | - Jason D. Goldman
- Swedish Center for Research and Innovation, Providence Swedish Medical Center; Seattle, WA
- University of Washington, Division of Allergy and Infectious Diseases; Seattle, WA
| | - Timothy J. Henrich
- University of California San Francisco, Division of Experimental Medicine, San Francisco, CA
| | - Mady Hornig
- CORe Community Inc., New York, NY
- Columbia University Mailman School of Public Health, Department of Epidemiology, New York, NY
| | | | - Stuart D. Katz
- NYU Grossman School of Medicine, Department of Medicine, New York, NY
| | - C. Kim
- RECOVER Initiative, New York, NY
| | - Sushma K. Cribbs
- Emory University, School of Medicine, Department of Medicine, Atlanta, GA
- Atlanta Veterans Affairs Medical Center; Atlanta, Georgia
| | - Adeyinka O. Laiyemo
- Howard University College of Medicine, Department of Medicine, Division of Gastroenterology, Washington DC
| | | | - Janet Y. Lin
- University of Illinois Chicago, Department of Emergency Medicine, Chicago, IL
| | - Jai Marathe
- Boston University Medical Campus, Department of Medicine, Division of Infectious Diseases, Boston, MA
| | | | - Thomas F. Patterson
- University of Texas Health San Antonio, Department of Medicine, San Antonio, Texas
| | - Brittany D. Taylor
- RECOVER Initiative, New York, NY
- American Heart Association, Health Strategies, Atlanta, GA
| | | | - Monika Haack
- Beth Israel Deaconess Medical Center, Department of Neurology; Boston, MA
| | - Boris Julg
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard; Boston, MA
| | - Gabrielle Maranga
- NYU Grossman School of Medicine, Department of Population Health, New York, NY
| | - Carla Hernandez
- Case Western Reserve University, Departments of Pediatrics and Medicine, Cleveland, OH
| | - Nora Singer
- Case Western Reserve University, Departments of Pediatrics and Medicine, Cleveland, OH
- Case Western Reserve University, Division of Rheumatology, Cleveland, OH
| | - Jenny Han
- Emory University, School of Medicine, Department of Medicine, Atlanta, GA
- Grady Hospital, Atlanta, GA
| | - Priscilla Pemu
- Morehouse School of Medicine, Department of Medicine, Atlanta, GA
| | - Hassan Brim
- Howard University, Department of Pathology, Washington, DC
| | | | | | - Juan Wisnivesky
- Icahn School of Medicine at Mount Sinai Hospital, New York, NY
| | - Jenny Lin
- Icahn School of Medicine at Mount Sinai Hospital, New York, NY
| | - Helen Y. Chu
- University of Washington, Division of Global Health, Seattle, WA
| | - Minjoung Go
- Stanford University; Department of Medicine; Stanford, CA
| | - Upinder Singh
- Stanford University; Department of Medicine; Stanford, CA
| | - Emily B. Levitan
- University of Alabama at Birmingham, Department of Epidemiology, Birmingham, AL
| | - Paul A. Goepfert
- University of Alabama at Birmingham, Department of Medicine, Division of Infectious Diseases, Birmingham, AL
| | - Janko Ž. Nikolich
- University of Arizona College of Medicine-Tucson, Department of Immunobiology, Tucson, AZ
- Arizona Center on Aging, Tucson, AZ
| | - Harvey Hsu
- Banner University Medical Center, Tucson, AZ
| | - Michael J. Peluso
- University of California San Francisco, Department of Medicine, Division of Infectious Diseases, San Francisco, CA
| | - J. Daniel Kelly
- University of California San Francisco, Department of Medicine, Division of Infectious Diseases, San Francisco, CA
| | - Megumi Okumura
- University of California San Francisco, Departments of Medicine and Pediatrics, San Francisco, CA
| | - Valerie J Flaherman
- University of California San Francisco, Department of Pediatrics, San Francisco, CA
| | - John G. Quigley
- University of Illinois Chicago, Department of Medicine, Division of Hematology/Oncology, Chicago, IL
| | | | - Mary Beth Scholand
- Spencer Fox Eccles School of Medicine at the University of Utah, Department of Medicine, Salt Lake City, UT
| | - Rachel Hess
- Spencer Fox Eccles School of Medicine at the University of Utah, Department of Medicine, Salt Lake City, UT
| | - Torri D. Metz
- University of Utah, Department of Obstetrics and Gynecology, Salt Lake City, UT
| | - Maged M. Costantine
- The Ohio State University, Division of Maternal Fetal Medicine, Columbus, OH
| | - Dwight J Rouse
- Brown University, Department of Obstetrics and Gynecology, Providence, RI
| | - Barbara S. Taylor
- University of Texas Health San Antonio, Department of Medicine, San Antonio, Texas
| | - Mark P. Goldberg
- University of Texas Health San Antonio, Department of Neurology, San Antonio, Texas
| | - Gailen D. Marshall
- University of Mississippi Medical Center, Department of Medicine, Jackson, MS
| | - Jeremy Wood
- The Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - David Warren
- University of Nebraska Medical Center, Department of Neurological Sciences, Omaha, NE
| | - Leora Horwitz
- NYU Grossman School of Medicine, Department of Population Health, New York, NY
- Center for Healthcare Innovation and Delivery Science, NYU Langone Health, New York, NY
| | | | - Grace A McComsey
- Case Western Reserve University, Departments of Pediatrics and Medicine, Cleveland, OH
| |
Collapse
|
14
|
Blankestijn JM, Baalbaki N, Bazdar S, Beekers I, Beijers RJHCG, van den Bergh JP, Bloemsma LD, Cornelissen MEB, Dekker T, Duitman JW, Houweling L, Jacobs JJL, van der Lee I, Linders PMA, Noij LCE, Nossent EJ, van de Pol MA, Sondermeijer BM, Geelhoed JJM, Weersink EJM, Golebski K, Abdel-Aziz MI, Maitland-van der Zee AH. Whole blood transcriptome in long-COVID patients reveals association with lung function and immune response. J Allergy Clin Immunol 2024; 154:807-818. [PMID: 38830512 DOI: 10.1016/j.jaci.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Months after infection with severe acute respiratory syndrome coronavirus 2, at least 10% of patients still experience complaints. Long-COVID (coronavirus disease 2019) is a heterogeneous disease, and clustering efforts revealed multiple phenotypes on a clinical level. However, the molecular pathways underlying long-COVID phenotypes are still poorly understood. OBJECTIVES We sought to cluster patients according to their blood transcriptomes and uncover the pathways underlying their disease. METHODS Blood was collected from 77 patients with long-COVID from the Precision Medicine for more Oxygen (P4O2) COVID-19 study. Unsupervised hierarchical clustering was performed on the whole blood transcriptome. These clusters were analyzed for differences in clinical features, pulmonary function tests, and gene ontology term enrichment. RESULTS Clustering revealed 2 distinct clusters on a transcriptome level. Compared with cluster 2 (n = 65), patients in cluster 1 (n = 12) showed a higher rate of preexisting cardiovascular disease (58% vs 22%), higher prevalence of gastrointestinal symptoms (58% vs 29%), shorter hospital duration during severe acute respiratory syndrome coronavirus 2 infection (median, 3 vs 8 days), lower FEV1/forced vital capacity (72% vs 81%), and lower diffusion capacity of the lung for carbon monoxide (68% vs 85% predicted). Gene ontology term enrichment analysis revealed upregulation of genes involved in the antiviral innate immune response in cluster 1, whereas genes involved with the adaptive immune response were upregulated in cluster 2. CONCLUSIONS This study provides a start in uncovering the pathophysiological mechanisms underlying long-COVID. Further research is required to unravel why the immune response is different in these clusters, and to identify potential therapeutic targets to create an optimized treatment or monitoring strategy for the individual long-COVID patient.
Collapse
Affiliation(s)
- Jelle M Blankestijn
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Amsterdam Public Health, Amsterdam, The Netherlands.
| | - Nadia Baalbaki
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Amsterdam Public Health, Amsterdam, The Netherlands
| | - Somayeh Bazdar
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Amsterdam Public Health, Amsterdam, The Netherlands
| | - Inés Beekers
- Department of Health, Ortec B.V., Zoetermeer, The Netherlands
| | - Rosanne J H C G Beijers
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joop P van den Bergh
- School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
| | - Lizan D Bloemsma
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Amsterdam Public Health, Amsterdam, The Netherlands
| | - Merel E B Cornelissen
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Amsterdam Public Health, Amsterdam, The Netherlands
| | - Tamara Dekker
- Experimental Immunology (EXIM), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Willem Duitman
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Experimental Immunology (EXIM), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura Houweling
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - John J L Jacobs
- Department of Health, Ortec B.V., Zoetermeer, The Netherlands
| | - Ivo van der Lee
- Department of Pulmonology, Spaarne Hospital, Hoofddorp, The Netherlands
| | - Paulien M A Linders
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lieke C E Noij
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Amsterdam Public Health, Amsterdam, The Netherlands
| | - Esther J Nossent
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marianne A van de Pol
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - J J Miranda Geelhoed
- Department of Respiratory Medicine, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Els J M Weersink
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Korneliusz Golebski
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Mahmoud I Abdel-Aziz
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Amsterdam Public Health, Amsterdam, The Netherlands; Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Anke H Maitland-van der Zee
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Amsterdam Public Health, Amsterdam, The Netherlands; Department of Pediatric Respiratory Medicine, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Saxena A, Mautner J. A Disease Hidden in Plain Sight: Pathways and Mechanisms of Neurological Complications of Post-acute Sequelae of COVID-19 (NC-PASC). Mol Neurobiol 2024:10.1007/s12035-024-04421-z. [PMID: 39133434 DOI: 10.1007/s12035-024-04421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
The global impact of coronavirus disease 2019 (COVID-19) marked by numerous pandemic peaks is attributed to its high variability and infectious nature, transforming it into a persistent global public health concern. With hundreds of millions of cases reported globally, the illness is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite its initial classification as an acute respiratory illness, recent evidence indicates that lingering effects on various bodily systems, such as cardiovascular, pulmonary, nervous, gastrointestinal (GI), and musculoskeletal, may endure well beyond the acute phase. These persistent manifestations following COVID-19, commonly known as long COVID, have the potential to affect individuals across the entire range of illness severity, with a tendency to be more prevalent in mild to moderate cases. At present, there are no established criteria for diagnosing long COVID. Nonetheless, it is conceptualized as a multi-organ disorder encompassing a diverse array of clinical manifestations. The most common, persistent, and debilitating symptoms of long COVID may be neurological, known as neurological complications of post-acute sequelae of COVID-19 (NC-PASC). More than one-third of individuals with a prior SARS-CoV-2 infection show involvement of both the central nervous system (CNS) and peripheral nervous system (PNS), as evidenced by an approximately threefold higher incidence of neurological symptoms in observational studies. The persistent neurological symptoms of long COVID encompass fatigue, headache, cognitive decline, "brain fog", dysautonomia, neuropsychiatric issues, loss of smell (anosmia), loss of taste (ageusia), and peripheral nerve problems (peripheral neuropathy). Reported pathogenic mechanisms encompass viral persistence and neuro-invasion by SARS-CoV-2, neuroinflammation, autoimmunity, coagulopathy, and endotheliopathy. Raising awareness of potential complications is crucial for preventing and alleviating the long-term effects of long COVID and enhancing the prognosis for affected patients. This review explores the hypothetical pathophysiological mechanisms and pathways of NC-PASC with a sole aim to increase awareness about this crippling disease.
Collapse
Affiliation(s)
- Apoorva Saxena
- Department of Biology, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Josef Mautner
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
16
|
Gregory TA, Knight SR, Aaroe AE, Highsmith KN, Janatpour ZC, O’Brien BJ, Majd NK, Loghin ME, Patel CB, Weathers SP, Puduvalli VK, Kamiya-Matsuoka C. Accelerated tumor progression after COVID-19 infection in patients with glioblastoma: A retrospective case-control study. Neurooncol Pract 2024; 11:475-483. [PMID: 39006516 PMCID: PMC11241387 DOI: 10.1093/nop/npae029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Background We observed rapid tumor progression following COVID-19 infection among patients with glioblastoma and sought to systematically characterize their disease course in a retrospective case-control study. Methods Using an institutional database, we retrospectively identified a series of COVID-19-positive glioblastoma cases and matched them by age and sex 1:2 to glioblastoma controls who had a negative COVID-19 test during their disease course. Demographic and clinical data were analyzed. Hyperprogression was defined using modified response evaluation criteria in solid tumors criteria. Time to progression and overall survival were estimated using the Kaplan-Meier method. Results Thirty-two glioblastoma cases with positive COVID-19 testing were matched to 64 glioblastoma controls with negative testing; age, sex, and molecular profiles did not differ between groups. Progression events occurred in 27 cases (84%) and 46 controls (72%). Of these, 14 cases (52%) presented with multifocal disease or leptomeningeal disease at progression compared with 10 controls (22%; P = .0082). Hyperprogression was identified in 13 cases (48%) but only 4 controls (9%; P = .0001). Cases had disease progression at a median of 35 days following COVID-19 testing, compared with 164 days for controls (P = .0001). Median survival from COVID-19 testing until death was 8.3 months for cases but 17 months for controls (P = .0016). Median overall survival from glioblastoma diagnosis was 20.7 months for cases and 24.6 months for controls (P = .672). Conclusions Patients with glioblastoma may have accelerated disease progression in the first 2 months after COVID-19 infection. Infected patients should be monitored vigilantly. Future investigations should explore tumor-immune microenvironment changes linking tumor progression and COVID-19.
Collapse
Affiliation(s)
- Timothy A Gregory
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Neurology, Madigan Army Medical Center, Tacoma, Washington, USA
| | - Stephanie R Knight
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ashley E Aaroe
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kaitlin N Highsmith
- Department of Neuro-Oncology, Pharmacy Clinical Programs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zachary C Janatpour
- Department of Neurology, Madigan Army Medical Center, Tacoma, Washington, USA
| | - Barbara J O’Brien
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nazanin K Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Monica E Loghin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chirag B Patel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shiao-Pei Weathers
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carlos Kamiya-Matsuoka
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
17
|
Zheng HY, Song TZ, Zheng YT. Immunobiology of COVID-19: Mechanistic and therapeutic insights from animal models. Zool Res 2024; 45:747-766. [PMID: 38894519 PMCID: PMC11298684 DOI: 10.24272/j.issn.2095-8137.2024.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019 (COVID-19) immunobiology, often resulting in a lack of reproducibility when extrapolated to the whole organism. Consequently, developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This review summarizes current progress related to COVID-19 animal models, including non-human primates (NHPs), mice, and hamsters, with a focus on their roles in exploring the mechanisms of immunopathology, immune protection, and long-term effects of SARS-CoV-2 infection, as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection. Differences among these animal models and their specific applications are also highlighted, as no single model can fully encapsulate all aspects of COVID-19. To effectively address the challenges posed by COVID-19, it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities. Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic, serving as a robust resource for future emerging infectious diseases.
Collapse
Affiliation(s)
- Hong-Yi Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tian-Zhang Song
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China. E-mail:
| |
Collapse
|
18
|
Ostapchuk YO, Lushova AV, Kan SA, Abdolla N, Kali A, Tleulieva R, Perfilyeva AV, Perfilyeva YV. Long-term changes in the phenotype and cytokine production of monocytes in COVID-19 recovered and vaccinated individuals. Infect Immun 2024; 92:e0021624. [PMID: 38874358 PMCID: PMC11238551 DOI: 10.1128/iai.00216-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Monocytes play a crucial role in the immune response against pathogens. Here, we sought to determine COVID-19 and the vaccine Gam-COVID-Vac induce long-term changes in the phenotype and cytokine production of circulating monocytes. Monocytes were purified from peripheral blood mononuclear cells of healthy donors who had not had COVID-19 or vaccination, who had received two doses of Gam-COVID-Vac, and who had mild/moderate COVID-19 in the last 6 months and evaluated by flow cytometry. To investigate the effect of SARS-CoV-2 proteins, monocytes were cultured for 2 days with or without stimulation with recombinant SARS-CoV-2 S1 and N peptides. Monocytes obtained from vaccinated and recovered individuals showed increased basal expression of HLA-DR, CD63, CXCR2, and TLR7. We also observed an increased frequency of CD63+ classical monocytes in both groups, as well as an increased frequency of HLA-DR+ non-classical monocytes in the COVID-19-recovered group compared to the control group. Monocytes from vaccinated and recovered donors produced higher basal levels of IL-6, IL-1β, and TNF-α cytokines. Ex vivo stimulation with SARS-CoV-2 antigens induced increased expression of HLA-DR and TLR7 on monocytes obtained from the control group. The challenge with SARS-CoV-2 antigens had no effect on the production of IL-6, IL-1β, and TNF-α cytokines by monocytes. The acquired data offer compelling evidence of enduring alterations in both the phenotype and functional status of circulating monocytes subsequent to vaccination with Gam-COVID-Vac and mild/moderate COVID-19 infection. At least some of these changes appear to be a consequence of exposure to SARS-CoV-2 S1 and N antigens.
Collapse
Affiliation(s)
- Yekaterina O Ostapchuk
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Almaty Branch of the National Center for Biotechnology, Almaty, Kazakhstan
- ECO-Consulting LLC, Almaty, Kazakhstan
| | - Anzhelika V Lushova
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Almaty Branch of the National Center for Biotechnology, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Sofia A Kan
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Almaty Branch of the National Center for Biotechnology, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Nurshat Abdolla
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Almaty Branch of the National Center for Biotechnology, Almaty, Kazakhstan
| | - Aikyn Kali
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Raikhan Tleulieva
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | | - Yuliya V Perfilyeva
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Almaty Branch of the National Center for Biotechnology, Almaty, Kazakhstan
| |
Collapse
|
19
|
Peluso MJ, Ryder D, Flavell R, Wang Y, Levi J, LaFranchi BH, Deveau TM, Buck AM, Munter SE, Asare KA, Aslam M, Koch W, Szabo G, Hoh R, Deswal M, Rodriguez A, Buitrago M, Tai V, Shrestha U, Lu S, Goldberg SA, Dalhuisen T, Vasquez JJ, Durstenfeld MS, Hsue PY, Kelly JD, Kumar N, Martin JN, Gambhir A, Somsouk M, Seo Y, Deeks SG, Laszik ZG, VanBrocklin HF, Henrich TJ. Tissue-based T cell activation and viral RNA persist for up to 2 years after SARS-CoV-2 infection. Sci Transl Med 2024; 16:eadk3295. [PMID: 38959327 PMCID: PMC11337933 DOI: 10.1126/scitranslmed.adk3295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/15/2024] [Indexed: 07/05/2024]
Abstract
The mechanisms of postacute medical conditions and unexplained symptoms after SARS-CoV-2 infection [Long Covid (LC)] are incompletely understood. There is growing evidence that viral persistence, immune dysregulation, and T cell dysfunction may play major roles. We performed whole-body positron emission tomography imaging in a well-characterized cohort of 24 participants at time points ranging from 27 to 910 days after acute SARS-CoV-2 infection using the radiopharmaceutical agent [18F]F-AraG, a selective tracer that allows for anatomical quantitation of activated T lymphocytes. Tracer uptake in the postacute COVID-19 group, which included those with and without continuing symptoms, was higher compared with prepandemic controls in many regions, including the brain stem, spinal cord, bone marrow, nasopharyngeal and hilar lymphoid tissue, cardiopulmonary tissues, and gut wall. T cell activation in the spinal cord and gut wall was associated with the presence of LC symptoms. In addition, tracer uptake in lung tissue was higher in those with persistent pulmonary symptoms specifically. Increased T cell activation in these tissues was also observed in many individuals without LC. Given the high [18F]F-AraG uptake detected in the gut, we obtained colorectal tissue for in situ hybridization of SARS-CoV-2 RNA and immunohistochemical studies in a subset of five participants with LC symptoms. We identified intracellular SARS-CoV-2 single-stranded spike protein-encoding RNA in rectosigmoid lamina propria tissue in all five participants and double-stranded spike protein-encoding RNA in three participants up to 676 days after initial COVID-19, suggesting that tissue viral persistence could be associated with long-term immunologic perturbations.
Collapse
Affiliation(s)
- Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Dylan Ryder
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Robert Flavell
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Yingbing Wang
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Jelena Levi
- CellSight Technologies, San Francisco, CA, USA, 94107
| | - Brian H. LaFranchi
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Amanda M. Buck
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Sadie E. Munter
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Kofi A. Asare
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Maya Aslam
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Walter Koch
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Gyula Szabo
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA, 94143
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Monika Deswal
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Antonio Rodriguez
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Melissa Buitrago
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Viva Tai
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Uttam Shrestha
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Thomas Dalhuisen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Joshua J. Vasquez
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Matthew S. Durstenfeld
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Priscilla Y. Hsue
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Nitasha Kumar
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Aruna Gambhir
- CellSight Technologies, San Francisco, CA, USA, 94107
| | - Ma Somsouk
- Division of Gastroenterology, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Youngho Seo
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Zoltan G. Laszik
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA, 94143
| | - Henry F. VanBrocklin
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| |
Collapse
|
20
|
Berger L, Wolf J, Kalbitz S, Kellner N, Lübbert C, Borte S. Comparative Analysis of Lymphocyte Populations in Post-COVID-19 Condition and COVID-19 Convalescent Individuals. Diagnostics (Basel) 2024; 14:1286. [PMID: 38928701 PMCID: PMC11202600 DOI: 10.3390/diagnostics14121286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Reduced lymphocyte counts in peripheral blood are one of the most common observations in acute phases of viral infections. Although many studies have already examined the impact of immune (dys)regulation during SARS-CoV-2 infection, there are still uncertainties about the long-term consequences for lymphocyte homeostasis. Furthermore, as persistent cellular aberrations have been described following other viral infections, patients with "Post-COVID-19 Condition" (PCC) may present similarly. In order to investigate cellular changes in the adaptive immune system, we performed a retrospective analysis of flow cytometric data from lymphocyte subpopulations in 106 patients with confirmed SARS-CoV-2 infection who received medical care at our institution. The patients were divided into three groups according to the follow-up date; laboratory analyses of COVID-19 patients were compared with 28 unexposed healthy controls. Regarding B lymphocyte subsets, levels of IgA + CD27+, IgG + CD27+, IgM + CD27- and switched B cells were significantly reduced at the last follow-up compared to unexposed healthy controls (UHC). Of the 106 COVID-19 patients, 56 were clinically classified as featuring PCC. Significant differences between PCC and COVID-19 convalescents compared to UHC were observed in T helper cells and class-switched B cells. However, we did not detect specific or long-lasting immune cellular changes in PCC compared to the non-post-COVID-19 condition.
Collapse
Affiliation(s)
- Luisa Berger
- Department of Infectious Diseases and Tropical Medicine, Hospital St. Georg, 04129 Leipzig, Germany
| | - Johannes Wolf
- Department of Laboratory Medicine, Hospital St. Georg, 04129 Leipzig, Germany
- ImmunoDeficiencyCenter Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg, 04139 Leipzig, Germany
| | - Sven Kalbitz
- Department of Infectious Diseases and Tropical Medicine, Hospital St. Georg, 04129 Leipzig, Germany
| | - Nils Kellner
- Department of Infectious Diseases and Tropical Medicine, Hospital St. Georg, 04129 Leipzig, Germany
- ImmunoDeficiencyCenter Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg, 04139 Leipzig, Germany
| | - Christoph Lübbert
- Department of Infectious Diseases and Tropical Medicine, Hospital St. Georg, 04129 Leipzig, Germany
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Stephan Borte
- Department of Laboratory Medicine, Hospital St. Georg, 04129 Leipzig, Germany
- ImmunoDeficiencyCenter Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg, 04139 Leipzig, Germany
| |
Collapse
|
21
|
Ranjbar M, Cusack RP, Whetstone CE, Brister DL, Wattie J, Wiltshire L, Alsaji N, Le Roux J, Cheng E, Srinathan T, Ho T, Sehmi R, O’Byrne PM, Snow-Smith M, Makiya M, Klion AD, Duong M, Gauvreau GM. Immune Response Dynamics and Biomarkers in COVID-19 Patients. Int J Mol Sci 2024; 25:6427. [PMID: 38928133 PMCID: PMC11204302 DOI: 10.3390/ijms25126427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The immune response dynamics in COVID-19 patients remain a subject of intense investigation due to their implications for disease severity and treatment outcomes. We examined changes in leukocyte levels, eosinophil activity, and cytokine profiles in patients hospitalized with COVID-19. METHODS Serum samples were collected within the first 10 days of hospitalization/confirmed infection and analyzed for eosinophil granule proteins (EGP) and cytokines. Information from medical records including comorbidities, clinical symptoms, medications, and complete blood counts were collected at the time of admission, during hospitalization and at follow up approximately 3 months later. RESULTS Serum levels of eotaxin, type 1 and type 2 cytokines, and alarmin cytokines were elevated in COVID-19 patients, highlighting the heightened immune response (p < 0.05). However, COVID-19 patients exhibited lower levels of eosinophils and eosinophil degranulation products compared to hospitalized controls (p < 0.05). Leukocyte counts increased consistently from admission to follow-up, indicative of recovery. CONCLUSION Attenuated eosinophil activity alongside elevated chemokine and cytokine levels during active infection, highlights the complex interplay of immune mediators in the pathogenesis COVID-19 and underscores the need for further investigation into immune biomarkers and treatment strategies.
Collapse
Affiliation(s)
- Maral Ranjbar
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
| | - Ruth P. Cusack
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
| | - Christiane E. Whetstone
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
| | - Danica L. Brister
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
| | - Jennifer Wattie
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
| | - Lesley Wiltshire
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
| | - Nadia Alsaji
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
| | | | - Eric Cheng
- St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada; (E.C.); (T.S.)
| | - Thivya Srinathan
- St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada; (E.C.); (T.S.)
| | - Terence Ho
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
- The Research Institute of St. Joe’s Hamilton, Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Roma Sehmi
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
- The Research Institute of St. Joe’s Hamilton, Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Paul M. O’Byrne
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
- Hamilton Health Sciences, Hamilton, ON L8N 3Z5, Canada;
- St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada; (E.C.); (T.S.)
| | - Maryonne Snow-Smith
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (M.S.-S.); (M.M.); (A.D.K.)
| | - Michelle Makiya
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (M.S.-S.); (M.M.); (A.D.K.)
| | - Amy D. Klion
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (M.S.-S.); (M.M.); (A.D.K.)
| | - MyLinh Duong
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
- The Research Institute of St. Joe’s Hamilton, Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
- Population Health Research Institute, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Gail M. Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
| |
Collapse
|
22
|
Gusev E, Sarapultsev A. Exploring the Pathophysiology of Long COVID: The Central Role of Low-Grade Inflammation and Multisystem Involvement. Int J Mol Sci 2024; 25:6389. [PMID: 38928096 PMCID: PMC11204317 DOI: 10.3390/ijms25126389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Long COVID (LC), also referred to as Post COVID-19 Condition, Post-Acute Sequelae of SARS-CoV-2 Infection (PASC), and other terms, represents a complex multisystem disease persisting after the acute phase of COVID-19. Characterized by a myriad of symptoms across different organ systems, LC presents significant diagnostic and management challenges. Central to the disorder is the role of low-grade inflammation, a non-classical inflammatory response that contributes to the chronicity and diversity of symptoms observed. This review explores the pathophysiological underpinnings of LC, emphasizing the importance of low-grade inflammation as a core component. By delineating the pathogenetic relationships and clinical manifestations of LC, this article highlights the necessity for an integrated approach that employs both personalized medicine and standardized protocols aimed at mitigating long-term consequences. The insights gained not only enhance our understanding of LC but also inform the development of therapeutic strategies that could be applicable to other chronic conditions with similar pathophysiological features.
Collapse
Affiliation(s)
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia;
| |
Collapse
|
23
|
Rusu EC, Monfort-Lanzas P, Bertran L, Barrientos-Riosalido A, Solé E, Mahmoudian R, Aguilar C, Briansó S, Mohamed F, Garcia S, Camaron J, Auguet T. Towards understanding post-COVID-19 condition: A systematic meta-analysis of transcriptomic alterations with sex-specific insights. Comput Biol Med 2024; 175:108507. [PMID: 38657468 DOI: 10.1016/j.compbiomed.2024.108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/26/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Post COVID-19 Condition (PCC), characterized by lingering symptoms post-acute COVID-19, poses clinical challenges, highlighting the need to understand its underlying molecular mechanisms. This meta-analysis aims to shed light on the transcriptomic landscapes and sex-specific molecular dynamics intrinsic to PCC. METHODS A systematic review identified three studies suitable for comprehensive meta-analysis, encompassing 135 samples (57 PCC subjects and 78 recovered subjects). We performed meta-analysis on differential gene expression, a gene set enrichment analysis of Reactome pathways, and weighted gene co-expression network analysis (WGCNA). We performed a drug and disease enrichment analysis and also assessed sex-specific differences in expression patterns. KEY FINDINGS A clear difference was observed in the transcriptomic profiles of PCC subjects, with 530 differentially expressed genes (DEGs) identified. Enrichment analysis revealed that the altered pathways were predominantly implicated in cell cycle processes, immune dysregulation and histone modifications. Antioxidant compounds such as hesperitin were predominantly linked to the hub genes of the DEGs. Sex-specific analyses highlighted disparities in DEGs and altered pathways in male and female PCC patients, revealing a difference in the expression of ribosomal proteins. PCC in men was mostly linked to neuro-cardiovascular disorders, while women exhibited more diverse disorders, with a high index of respiratory conditions. CONCLUSION Our study reveals the intricate molecular processes underlying PCC, highlighting that the differences in molecular dynamics between males and females could be key to understanding and effectively managing the varied symptomatology of this condition.
Collapse
Affiliation(s)
- Elena Cristina Rusu
- GEMMAIR Research Unit (AGAUR) - Applied Medicine (URV), Department of Medicine and Surgery. University Rovira i Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia and the Spanish National Research Council (CSIC), 46980, Valencia, Spain.
| | - Pablo Monfort-Lanzas
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria; Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| | - Laia Bertran
- GEMMAIR Research Unit (AGAUR) - Applied Medicine (URV), Department of Medicine and Surgery. University Rovira i Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain.
| | - Andrea Barrientos-Riosalido
- GEMMAIR Research Unit (AGAUR) - Applied Medicine (URV), Department of Medicine and Surgery. University Rovira i Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain.
| | - Emilia Solé
- Internal Medicine Unit, Joan XXIII University Hospital of Tarragona, 43007, Tarragona, Spain.
| | - Razieh Mahmoudian
- GEMMAIR Research Unit (AGAUR) - Applied Medicine (URV), Department of Medicine and Surgery. University Rovira i Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain.
| | - Carmen Aguilar
- GEMMAIR Research Unit (AGAUR) - Applied Medicine (URV), Department of Medicine and Surgery. University Rovira i Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain.
| | - Silvia Briansó
- Internal Medicine Unit, Joan XXIII University Hospital of Tarragona, 43007, Tarragona, Spain.
| | - Fadel Mohamed
- Internal Medicine Unit, Joan XXIII University Hospital of Tarragona, 43007, Tarragona, Spain.
| | - Susana Garcia
- Internal Medicine Unit, Joan XXIII University Hospital of Tarragona, 43007, Tarragona, Spain.
| | - Javier Camaron
- Internal Medicine Unit, Joan XXIII University Hospital of Tarragona, 43007, Tarragona, Spain.
| | - Teresa Auguet
- GEMMAIR Research Unit (AGAUR) - Applied Medicine (URV), Department of Medicine and Surgery. University Rovira i Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain; Internal Medicine Unit, Joan XXIII University Hospital of Tarragona, 43007, Tarragona, Spain.
| |
Collapse
|
24
|
Landolina N, Ricci B, Veneziani I, Alicata C, Mariotti FR, Pelosi A, Quatrini L, Mortari EP, Carsetti R, Vacca P, Tumino N, Azzarone B, Moretta L, Maggi E. TLR2/4 are novel activating receptors for SARS-CoV-2 spike protein on NK cells. Front Immunol 2024; 15:1368946. [PMID: 38881905 PMCID: PMC11176535 DOI: 10.3389/fimmu.2024.1368946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/03/2024] [Indexed: 06/18/2024] Open
Abstract
Background In early infected or severe coronavirus disease 2019 (COVID-19) patients, circulating NK cells are consistently reduced, despite being highly activated or exhausted. The aim of this paper was to establish whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (SP) may directly trigger NK cells and through which receptor(s). Methods SP-stimulated human NK cells have been evaluated for the expression of activation markers, cytokine release, and cytotoxic activity, as well as for gene expression profiles and NF-kB phosphorylation, and they have been silenced with specific small interfering RNAs. Results SPs from the Wuhan strain and other variants of concern (VOCs) directly bind and stimulate purified NK cells by increasing activation marker expression, cytokine release, and cytolytic activity, prevalently in the CD56brightNK cell subset. VOC-SPs differ in their ability to activate NK cells, G614, and Delta-Plus strains providing the strongest activity in the majority of donors. While VOC-SPs do not trigger ACE2, which is not expressed on NK cells, or other activating receptors, they directly and variably bind to both Toll-like receptor 2 (TLR2) and TLR4. Moreover, SP-driven NK cell functions are inhibited upon masking such receptors or silencing the relative genes. Lastly, VOC-SPs upregulate CD56dimNK cell functions in COVID-19 recovered, but not in non-infected, individuals. Conclusions TLR2 and TLR4 are novel activating receptors for SP in NK cells, suggesting a new role of these cells in orchestrating the pathophysiology of SARS-CoV-2 infection. The pathogenic relevance of this finding is highlighted by the fact that free SP providing NK cell activation is frequently detected in a SARS-CoV-2 inflamed environment and in plasma of infected and long-COVID-19 subjects.
Collapse
Affiliation(s)
- Nadine Landolina
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Biancamaria Ricci
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Irene Veneziani
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Alicata
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Andrea Pelosi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Linda Quatrini
- Innate Lymphoid Cells Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- B cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Rita Carsetti
- B cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paola Vacca
- Innate Lymphoid Cells Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Nicola Tumino
- Innate Lymphoid Cells Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Bruno Azzarone
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Enrico Maggi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
25
|
Annesley SJ, Missailidis D, Heng B, Josev EK, Armstrong CW. Unravelling shared mechanisms: insights from recent ME/CFS research to illuminate long COVID pathologies. Trends Mol Med 2024; 30:443-458. [PMID: 38443223 DOI: 10.1016/j.molmed.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic illness often triggered by an initiating acute event, mainly viral infections. The transition from acute to chronic disease remains unknown, but interest in this phenomenon has escalated since the COVID-19 pandemic and the post-COVID-19 illness, termed 'long COVID' (LC). Both ME/CFS and LC share many clinical similarities. Here, we present recent findings in ME/CFS research focussing on proposed disease pathologies shared with LC. Understanding these disease pathologies and how they influence each other is key to developing effective therapeutics and diagnostic tests. Given that ME/CFS typically has a longer disease duration compared with LC, with symptoms and pathologies evolving over time, ME/CFS may provide insights into the future progression of LC.
Collapse
Affiliation(s)
- Sarah J Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, VIC, Australia.
| | - Daniel Missailidis
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, VIC, Australia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Elisha K Josev
- Neurodisability & Rehabilitation, Clinical Sciences, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC, Australia; Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Christopher W Armstrong
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
26
|
Brisca G, Strati MF, Buratti S, Mariani M, Ferretti M, Pirlo D, Meleca V, Piccotti E, Castagnola E, Moscatelli A. The increase of bronchiolitis severity in the 2022-2023 season in an Italian tertiary children's hospital: An isolated phenomenon or a warning sign? Pediatr Pulmonol 2024; 59:1236-1245. [PMID: 38289096 DOI: 10.1002/ppul.26891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 04/30/2024]
Abstract
AIM Recent literature has shown epidemiological changes in bronchiolitis with an increased incidence in the post-SARS-CoV-2 pandemic period but reports regarding disease severity are conflicting. We aimed to describe the epidemiology, disease severity, and microbiology of bronchiolitis during the 2022-2023 cold season compared to the previous 5 years. METHODS This single-center retrospective observational study at IRCCS Gaslini, Italy, included all children aged 0-2 years hospitalized for bronchiolitis from 1 September 2017 to 31 August 2023. Findings from the 2022-2023 season were compared to the previous 5 years. RESULTS We observed a statistically significant increase in the 2022-2023 season in the absolute number of bronchiolitis admissions. Children who required mechanical ventilation (MV) dramatically increased from a total of seven patients in the previous five seasons to 17 in the 2022-2023 season alone (p = .001). All other severity parameters significantly increased: the need for respiratory support (p = .002), the median length of stay (5 days vs. 4 days, p = .001), and the median duration of respiratory support (4 days vs. 3 days, p = .016). CONCLUSIONS We report a substantial increase in the severity of bronchiolitis in the season 2022-2023 with a remarkable number of previously healthy infants requiring MV. Further studies are needed to confirm whether our findings are an isolated phenomenon or part of a true global trend. Health systems need to be prepared and protective preventive measures should be implemented for all newborns.
Collapse
Affiliation(s)
- Giacomo Brisca
- Pediatric and Neonatal Intensive Care Unit, Intermediate Care Unit Emergency Department, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marina Francesca Strati
- Department of Neuroscience-Rehabilitation-Ophthalmology-Genetics-Maternal and Child Health, DINOGMI, Università degli Studi di Genova, Genoa, Italy
| | - Silvia Buratti
- Pediatric and Neonatal Intensive Care Unit, Intermediate Care Unit Emergency Department, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcello Mariani
- Infectious Disease Unit, Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marta Ferretti
- Paediatric Emergency Room and Emergency Medicine, Emergency Department, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Daniela Pirlo
- Pediatric and Neonatal Intensive Care Unit, Intermediate Care Unit Emergency Department, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Vincenzo Meleca
- Department of Neuroscience-Rehabilitation-Ophthalmology-Genetics-Maternal and Child Health, DINOGMI, Università degli Studi di Genova, Genoa, Italy
| | - Emanuela Piccotti
- Paediatric Emergency Room and Emergency Medicine, Emergency Department, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elio Castagnola
- Infectious Disease Unit, Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Moscatelli
- Pediatric and Neonatal Intensive Care Unit, Intermediate Care Unit Emergency Department, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
27
|
Dulfer EA, Joosten LAB, Netea MG. Enduring echoes: Post-infectious long-term changes in innate immunity. Eur J Intern Med 2024; 123:15-22. [PMID: 38135583 DOI: 10.1016/j.ejim.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Upon encountering pathogens, the immune system typically responds by initiating an acute and self-limiting reaction, with symptoms subsiding after the pathogen has been cleared. However, long-term post-infectious clinical symptoms can manifest months or even years after the initial infection. 'Trained immunity', the functional reprogramming of innate immune cells through epigenetic and metabolic rewiring, has been proposed as a key concept for understanding these long-term effects. Although trained immunity can result in enhanced protection against reinfection with heterologous pathogens, it can also contribute to detrimental outcomes. Persisting and excessive inflammation can cause tissue damage and aggravate immune-mediated conditions and cardiovascular complications. On the other hand, suppression of immune cell effector functions by long-lasting epigenetic changes can result in post-infectious immune paralysis. Distinct stimuli can evoke different trained immunity programs, potentially resulting in different consequences for the host. In this review, we provide an overview of both the adaptive and maladaptive consequences of infectious diseases. We discuss how long-term immune dysregulation in patients can be addressed by tailoring host-directed interventions and identify areas of scientific and therapeutic potential to advance further.
Collapse
Affiliation(s)
- Elisabeth A Dulfer
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands.
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands; Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany
| |
Collapse
|
28
|
Fracella M, Mancino E, Nenna R, Virgillito C, Frasca F, D'Auria A, Sorrentino L, Petrarca L, La Regina D, Matera L, Di Mattia G, Caputo B, Antonelli G, Pierangeli A, Viscidi RP, Midulla F, Scagnolari C. Age-related transcript changes in type I interferon signaling in children and adolescents with long COVID. Eur J Immunol 2024; 54:e2350682. [PMID: 38522030 DOI: 10.1002/eji.202350682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
SARS-CoV-2 typically causes mild symptoms in children, but evidence suggests that persistent immunopathological changes may lead to long COVID (LC). To explore the interplay between LC and innate immunity, we assessed the type I interferon (IFN-I) response in children and adolescents with LC symptoms (LC; n = 28). This was compared with age-matched SARS-CoV-2 recovered participants without LC symptoms (MC; n = 28) and healthy controls (HC; n = 18). We measured the mRNA expression of IFN-I (IFN-α/β/ε/ω), IFN-I receptor (IFNAR1/2), and ISGs (ISG15, ISG56, MxA, IFI27, BST2, LY6E, OAS1, OAS2, OAS3, and MDA5) in PBMCs collected 3-6 months after COVID-19. LC adolescents (12-17 years) had higher transcript levels of IFN-β, IFN-ε, and IFN-ω than HC, whereas LC children (6-11 years) had lower levels than HC. In adolescents, increased levels of IFN-α, IFN-β, and IFN-ω mRNAs were found in the LC group compared with MC, while lower levels were observed in LC children than MC. Adolescents with neurological symptoms had higher IFN-α/β mRNA levels than MC. LC and MC participants showed decreased expression of ISGs and IFNAR1, but increased expression of IFNAR2, than HC. Our results show age-related changes in the expression of transcripts involved in the IFN-I signaling pathway in children and adolescents with LC.
Collapse
Affiliation(s)
- Matteo Fracella
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Enrica Mancino
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Raffaella Nenna
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Chiara Virgillito
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Federica Frasca
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Alessandra D'Auria
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Leonardo Sorrentino
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Laura Petrarca
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Domenico La Regina
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Luigi Matera
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Greta Di Mattia
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Beniamino Caputo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Alessandra Pierangeli
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Raphael P Viscidi
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fabio Midulla
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
29
|
Messina NL, Germano S, McElroy R, Bonnici R, Grubor-Bauk B, Lynn DJ, McDonald E, Nicholson S, Perrett KP, Pittet LF, Rudraraju R, Stevens NE, Subbarao K, Curtis N. Specific and off-target immune responses following COVID-19 vaccination with ChAdOx1-S and BNT162b2 vaccines-an exploratory sub-study of the BRACE trial. EBioMedicine 2024; 103:105100. [PMID: 38663355 PMCID: PMC11058726 DOI: 10.1016/j.ebiom.2024.105100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic led to the rapid development and deployment of several highly effective vaccines against SARS-CoV-2. Recent studies suggest that these vaccines may also have off-target effects on the immune system. We sought to determine and compare the off-target effects of the adenovirus vector ChAdOx1-S (Oxford-AstraZeneca) and modified mRNA BNT162b2 (Pfizer-BioNTech) vaccines on immune responses to unrelated pathogens. METHODS Prospective sub-study within the BRACE trial. Blood samples were collected from 284 healthcare workers before and 28 days after ChAdOx1-S or BNT162b2 vaccination. SARS-CoV-2-specific antibodies were measured using ELISA, and whole blood cytokine responses to specific (SARS-CoV-2) and unrelated pathogen stimulation were measured by multiplex bead array. FINDINGS Both vaccines induced robust SARS-CoV-2 specific antibody and cytokine responses. ChAdOx1-S vaccination increased cytokine responses to heat-killed (HK) Candida albicans and HK Staphylococcus aureus and decreased cytokine responses to HK Escherichia coli and BCG. BNT162b2 vaccination decreased cytokine response to HK E. coli and had variable effects on cytokine responses to BCG and resiquimod (R848). After the second vaccine dose, BNT162b2 recipients had greater specific and off-target cytokine responses than ChAdOx1-S recipients. INTERPRETATION ChAdOx1-S and BNT162b2 vaccines alter cytokine responses to unrelated pathogens, indicative of potential off-target effects. The specific and off-target effects of these vaccines differ in their magnitude and breadth. The clinical relevance of these findings is uncertain and needs further study. FUNDING Bill & Melinda Gates Foundation, National Health and Medical Research Council, Swiss National Science Foundation and the Melbourne Children's. BRACE trial funding is detailed in acknowledgements.
Collapse
Affiliation(s)
- Nicole L Messina
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.
| | - Susie Germano
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Rebecca McElroy
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Rhian Bonnici
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Ellie McDonald
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kirsten P Perrett
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Population Allergy Group, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Allergy and Immunology, The Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| | - Laure F Pittet
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Paediatric Infectious Diseases Unit, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Rajeev Rudraraju
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Natalie E Stevens
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Elizabeth Street, Melbourne, VIC, Australia
| | - Nigel Curtis
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Infectious Diseases, The Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| |
Collapse
|
30
|
Noce A, Marrone G, Di Lauro M, Vita C, Montalto G, Giorgino G, Chiaramonte C, D’Agostini C, Bernardini S, Pieri M. Potential Anti-Inflammatory and Anti-Fatigue Effects of an Oral Food Supplement in Long COVID Patients. Pharmaceuticals (Basel) 2024; 17:463. [PMID: 38675423 PMCID: PMC11053797 DOI: 10.3390/ph17040463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Long coronavirus disease (COVID) syndrome leads to chronic inflammatory state onset that can have a multisystem impact and compromise organ function. Moreover, long COVID syndrome is often characterized by the presence of chronic fatigue, which affects subjects' daily activities and worsens their quality of life. The aim of our double-blind, placebo-controlled randomized trial (protocol code RS 150.21, approved on 4 November 2021) was to evaluate the beneficial effects of the consumption of 2 cps/day, for two months, of an oral food supplement (OFS), based on Echinacea angustifolia, rosehip, propolis, royal jelly and zinc, in long COVID patients, compared to a two-month placebo period. The OFS's vitamin C content was equal to 22.17 mg/g (8.87 mg/capsule). The OFS's total polyphenol content was 43.98 mg/g gallic acid equivalents. At the end of the in vivo study, we highlighted a significant decrease in the inflammatory parameters in the OFS period, compared to the placebo period (neutrophil-to-lymphocyte ratio, p = 0.0455; monocyte to-lymphocyte ratio, p = 0.0005; C-reactive protein, p = 0.0145). Our study also highlighted a significant increase in vitamin D serum values (p = 0.0005) and, at the same time, an improvement in patients' life quality and a reduction in fatigue, monitored by the fatigue severity scale. This study showed the OFS's beneficial effects on the inflammatory state, fatigue and quality of life in long COVID patients.
Collapse
Affiliation(s)
- Annalisa Noce
- UOSD Nephrology and Dialysis, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Giulia Marrone
- UOSD Nephrology and Dialysis, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Manuela Di Lauro
- UOSD Nephrology and Dialysis, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Chiara Vita
- QuMAP-PIN, University Center “Città di Prato” Educational and Scientific Services for the University of Florence, 59100 Prato, Italy
| | - Giulia Montalto
- School of Specialization in Nephrology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gloria Giorgino
- School of Specialization in Nephrology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Carlo Chiaramonte
- Department of Statistics, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Cartesio D’Agostini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Laboratory of Clinical Microbiology, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Laboratory Medicine, Tor Vergata University Hospital, 00133 Rome, Italy
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Laboratory Medicine, Tor Vergata University Hospital, 00133 Rome, Italy
| |
Collapse
|
31
|
Pink I, Hennigs JK, Ruhl L, Sauer A, Boblitz L, Huwe M, Fuge J, Falk CS, Pietschmann T, de Zwaan M, Prasse A, Kluge S, Klose H, Hoeper MM, Welte T. Blood T cell phenotypes correlate with fatigue severity in post-acute sequelae of COVID-19. Infection 2024; 52:513-524. [PMID: 37924472 PMCID: PMC10954951 DOI: 10.1007/s15010-023-02114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 11/06/2023]
Abstract
PURPOSE Post-acute sequelae of COVID-19 (PASC) affect approximately 10% of convalescent patients. The spectrum of symptoms is broad and heterogeneous with fatigue being the most often reported sequela. Easily accessible blood biomarkers to determine PASC severity are lacking. Thus, our study aimed to correlate immune phenotypes with PASC across the severity spectrum of COVID-19. METHODS A total of 176 originally immunonaïve, convalescent COVID-19 patients from a prospective cohort during the first pandemic phase were stratified by initial disease severity and underwent clinical, psychosocial, and immune phenotyping around 10 weeks after first COVID-19 symptoms. COVID-19-associated fatigue dynamics were assessed and related to clinical and immune phenotypes. RESULTS Fatigue and severe fatigue were commonly reported irrespective of initial COVID-19 severity or organ-specific PASC. A clinically relevant increase in fatigue severity after COVID-19 was detected in all groups. Neutralizing antibody titers were higher in patients with severe acute disease, but no association was found between antibody titers and PASC. While absolute peripheral blood immune cell counts in originally immunonaïve PASC patients did not differ from unexposed controls, peripheral CD3+CD4+ T cell counts were independently correlated with fatigue severity across all strata in multivariable analysis. CONCLUSIONS Patients were at similar risk of self-reported PASC irrespective of initial disease severity. The independent correlation between fatigue severity and blood T cell phenotypes indicates a possible role of CD4+ T cells in the pathogenesis of post-COVID-19 fatigue, which might serve as a blood biomarker.
Collapse
Affiliation(s)
- Isabell Pink
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.
| | - Jan K Hennigs
- Division of Respiratory Medicine, II. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Louisa Ruhl
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), TTU-IICH, Hannover, Germany
| | - Andrea Sauer
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Lennart Boblitz
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Marie Huwe
- Division of Respiratory Medicine, II. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Jan Fuge
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Thomas Pietschmann
- Institute of Experimental Virology, Hannover Medical School, TWINCORE Research Center, Hannover, Germany
| | - Martina de Zwaan
- Department of Psychosomatic Medicine and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Antje Prasse
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Hans Klose
- Division of Respiratory Medicine, II. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Marius M Hoeper
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
32
|
Cao JB, Zhu ST, Huang XS, Wang XY, Wu ML, Li X, Liu FL, Chen L, Zheng YT, Wang JH. Mast cell degranulation-triggered by SARS-CoV-2 induces tracheal-bronchial epithelial inflammation and injury. Virol Sin 2024; 39:309-318. [PMID: 38458399 DOI: 10.1016/j.virs.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
SARS-CoV-2 infection-induced hyper-inflammation is a key pathogenic factor of COVID-19. Our research, along with others', has demonstrated that mast cells (MCs) play a vital role in the initiation of hyper-inflammation caused by SARS-CoV-2. In previous study, we observed that SARS-CoV-2 infection induced the accumulation of MCs in the peri-bronchus and bronchioalveolar-duct junction in humanized mice. Additionally, we found that MC degranulation triggered by the spike protein resulted in inflammation in alveolar epithelial cells and capillary endothelial cells, leading to subsequent lung injury. The trachea and bronchus are the routes for SARS-CoV-2 transmission after virus inhalation, and inflammation in these regions could promote viral spread. MCs are widely distributed throughout the respiratory tract. Thus, in this study, we investigated the role of MCs and their degranulation in the development of inflammation in tracheal-bronchial epithelium. Histological analyses showed the accumulation and degranulation of MCs in the peri-trachea of humanized mice infected with SARS-CoV-2. MC degranulation caused lesions in trachea, and the formation of papillary hyperplasia was observed. Through transcriptome analysis in bronchial epithelial cells, we found that MC degranulation significantly altered multiple cellular signaling, particularly, leading to upregulated immune responses and inflammation. The administration of ebastine or loratadine effectively suppressed the induction of inflammatory factors in bronchial epithelial cells and alleviated tracheal injury in mice. Taken together, our findings confirm the essential role of MC degranulation in SARS-CoV-2-induced hyper-inflammation and the subsequent tissue lesions. Furthermore, our results support the use of ebastine or loratadine to inhibit SARS-CoV-2-triggered degranulation, thereby preventing tissue damage caused by hyper-inflammation.
Collapse
Affiliation(s)
- Jian-Bo Cao
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; School of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Tong Zhu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiao-Shan Huang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xing-Yuan Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Meng-Li Wu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xin Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Feng-Liang Liu
- Key Laboratory of Bioactive Peptides of Yunnan Province, Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ling Chen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province, Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Jian-Hua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
33
|
Sommen SL, Zhao Z, Segtnan S, Stiansen-Sonerud T, Selvakumar J, Beier Havdal L, Gjerstad J, Wyller VBB, Lund Berven L. Bulk RNA sequencing for analysis of post COVID-19 condition in adolescents and young adults. J Transl Med 2024; 22:312. [PMID: 38532465 PMCID: PMC10964710 DOI: 10.1186/s12967-024-05117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Post COVID-19 condition (PCC) is a complication of SARS-COV-2 infection and can lead to long-term disability. METHODS The present study was designed to analyse the gene expression patterns of PCC through bulk RNA sequencing of whole blood and to explore the potential molecular mechanisms of PCC. Whole blood was collected from 80 participants enrolled in a prospective cohort study following SARS-CoV-2 infected and non-infected individuals for 6 months after recruitment and was used for bulk RNA sequencing. Identification of differentially expressed genes (DEG), pathway enrichment and immune cell deconvolution was performed to explore potential biological pathways involved in PCC. RESULTS We have found 13 differentially expressed genes associated with PCC. Enriched pathways were related to interferon-signalling and anti-viral immune processes. CONCLUSION The PCC transcriptome is characterized by a modest overexpression of interferon-stimulated genes, pointing to a subtle ongoing inflammatory response.
Collapse
Affiliation(s)
- Silke Lauren Sommen
- Department of Pediatrics, Akershus University Hospital, Lørenskog, Norway
- University of Oslo, Oslo, Norway
| | - Zhi Zhao
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Tonje Stiansen-Sonerud
- Department of Pediatrics, Akershus University Hospital, Lørenskog, Norway
- Department of Clinical Molecular Biology (EpiGen), University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Joel Selvakumar
- Department of Pediatrics, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lise Beier Havdal
- Department of Pediatrics, Akershus University Hospital, Lørenskog, Norway
| | - Johannes Gjerstad
- Department of Behavioural Sciences, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Vegard Bruun Bratholm Wyller
- Department of Pediatrics, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lise Lund Berven
- Department of Pediatrics, Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
34
|
Andersson NW, Thiesson EM, Lassaunière R, Hansen JV, Hviid A. SARS-CoV-2 Infection and Postacute Risk of Non-Coronavirus Disease 2019 Infectious Disease Hospitalizations: A Nationwide Cohort Study of Danish Adults Aged ≥50 Years. Clin Infect Dis 2024; 78:603-612. [PMID: 37740392 DOI: 10.1093/cid/ciad531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Reports suggest that the potential long-lasting health consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may involve persistent dysregulation of some immune populations, but the potential clinical implications are unknown. We investigated the associated risk of hospitalization due to non-coronavirus disease 2019 (COVID-19) infectious diseases following the postacute phase of SARS-CoV-2 infection. METHODS By cross-linking data from the comprehensive Danish test and surveillance system for COVID-19 together with nationwide healthcare and demographic registers, we established a study cohort of 2 430 694 individuals aged ≥50 years, from 1 January 2021 to 10 December 2022, with no evidence of SARS-CoV-2 infection prior to study entry. Using Poisson regression, we compared the outcome rates of non-COVID-19 infectious disease hospitalizations following the acute phase of (a first) SARS-CoV-2 infection (defined as ≥29 days since the day of infection) in recovered individuals with rates among SARS-CoV-2-uninfected individuals. RESULTS Among 2 430 694 included individuals (mean age, 66.8 [standard deviation, 11.3] years), 930 071 acquired SARS-CoV-2 infection during follow-up totaling 4 519 913 person-years. The postacute phase of SARS-CoV-2 infection was associated with an incidence rate ratio (IRR) of 0.90 (95% confidence interval [CI]: .88-.92) for any infectious disease hospitalization. Findings (IRR [95% CI]) were similar for upper respiratory tract (1.08 [.97-1.20]), lower respiratory tract (0.90 [.87-.93]), influenza (1.04 [.94-1.15]), gastrointestinal (1.28 [.78-2.09]), skin (0.98 [.93-1.03]), urinary tract (1.01 [.96-1.08]), certain invasive bacterial (0.96 [.91-1.01]), and other (0.96 [.92-1.00]) infectious disease hospitalizations and in subgroups. CONCLUSIONS Our study does not support an increased susceptibility to non-COVID-19 infectious disease hospitalization following SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | - Ria Lassaunière
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Denmark
| | | | - Anders Hviid
- Department of Epidemiology Research, Statens Serum Institut, Denmark
- Pharmacovigilance Research Center, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
35
|
Singh MS, Pyati A, Rubi RD, Subramanian R, Muley VY, Ansari MA, Yellaboina S. Systems-wide view of host-pathogen interactions across COVID-19 severities using integrated omics analysis. iScience 2024; 27:109087. [PMID: 38384846 PMCID: PMC10879696 DOI: 10.1016/j.isci.2024.109087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
The mechanisms explaining the variability in COVID-19 clinical manifestations (mild, moderate, and severe) are not fully understood. To identify key gene expression markers linked to disease severity, we employed an integrated approach, combining host-pathogen protein-protein interaction data and viral-induced host gene expression data. We analyzed an RNA-seq dataset from peripheral blood mononuclear cells across 12 projects representing the spectrum of disease severity. We identified genes showing differential expression across mild, moderate, and severe conditions. Enrichment analysis of the pathways in host proteins targeted by each of the SARS-CoV-2 proteins revealed a strong association with processes related to ribosomal biogenesis, translation, and translocation. Interestingly, most of these pathways and associated cellular machinery, including ribosomal biogenesis, ribosomal proteins, and translation, were upregulated in mild conditions but downregulated in severe cases. This suggests that COVID-19 exhibits a paradoxical host response, boosting host/viral translation in mild cases but slowing it in severe cases.
Collapse
Affiliation(s)
- Mairembam Stelin Singh
- Department of Biochemistry, SCLS, Jamia Hamdard, New Delhi, India
- Department of Zoology, Rajiv Gandhi University, Itanagar, Arunachal Pradesh, India
| | - Anand Pyati
- All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana 508126, India
| | - R. Devika Rubi
- Department of Computer Science and Engineering, Keshav Memorial Institute of Technology, Hyderabad, Telangana State, India
| | - Rajasekaran Subramanian
- Department of Computer Science and Engineering, Keshav Memorial Institute of Technology, Hyderabad, Telangana State, India
| | | | - Mairaj Ahmed Ansari
- Department of Biotechnology, SCLS, Jamia Hamdard, New Delhi, India
- Centre for Virology, SIST, Jamia Hamdard, New Delhi, India
| | - Sailu Yellaboina
- All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana 508126, India
| |
Collapse
|
36
|
Montini F, Nozzolillo A, Tedone N, Mistri D, Rancoita PM, Zanetta C, Mandelli A, Furlan R, Moiola L, Martinelli V, Rocca MA, Filippi M. COVID-19 has no impact on disease activity, progression and cognitive performance in people with multiple sclerosis: a 2-year study. J Neurol Neurosurg Psychiatry 2024; 95:342-347. [PMID: 37857497 DOI: 10.1136/jnnp-2023-332073] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Sequelae of COVID-19 in people with multiple sclerosis (PwMS) have not been characterised. We explored whether COVID-19 is associated with an increased risk of disease activity, disability worsening, neuropsychological distress and cognitive dysfunction during the 18-24 months following SARS-COV-2 infection. METHODS We enrolled 174 PwMS with history of COVID-19 (MS-COVID) between March 2020 and March 2021 and compared them to an age, sex, disease duration, Expanded Disability Status Scale (EDSS), and a line of treatment-matched group of 348 PwMS with no history of COVID-19 in the same period (MS-NCOVID). We collected clinical, MRI data and SARS-CoV2 immune response in the 18-24 months following COVID-19 or baseline evaluation. At follow-up, PwMS also underwent a complete neuropsychological assessment with brief repeatable battery of neuropsychological tests and optimised scales for fatigue, anxiety, depression and post-traumatic stress symptoms. RESULTS 136 MS-COVID and 186 MS-NCOVID accepted the complete longitudinal evaluation. The two groups had similar rate of EDSS worsening (15% vs 11%, p=1.00), number of relapses (6% vs 5%, p=1.00), disease-modifying therapy change (7% vs 4%, p=0.81), patients with new T2-lesions (9% vs 11%, p=1.00) and gadolinium-enhancing lesions (7% vs 4%, p=1.00) on brain MRI. 22% of MS-COVID and 23% MS-NCOVID were cognitively impaired at 18-24 months evaluation, with similar prevalence of cognitive impairment (p=1.00). The z-scores of global and domain-specific cognitive functions and the prevalence of neuropsychiatric manifestations were also similar. No difference was detected in terms of SARS-CoV2 cellular immune response. CONCLUSIONS In PwMS, COVID-19 has no impact on disease activity, course and cognitive performance 18-24 months after infection.
Collapse
Affiliation(s)
| | | | - Nicolò Tedone
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Damiano Mistri
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Paola Mv Rancoita
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milano, Italy
| | - Chiara Zanetta
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Alessandra Mandelli
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Lucia Moiola
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
| | | | - Maria A Rocca
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
- Neurorehabilitation Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Neurophysiology Service, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
37
|
Luo H, Yan J, Gong R, Zhang D, Zhou X, Wang X. Identification of biomarkers and pathways for the SARS-CoV-2 infections in obstructive sleep apnea patients based on machine learning and proteomic analysis. BMC Pulm Med 2024; 24:112. [PMID: 38443855 PMCID: PMC10913609 DOI: 10.1186/s12890-024-02921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The prevalence of obstructive sleep apnea (OSA) was found to be higher in individuals following COVID-19 infection. However, the intricate mechanisms that underscore this concomitance remain partially elucidated. The aim of this study was to delve deeper into the molecular mechanisms that underpin this comorbidity. METHODS We acquired gene expression profiles for COVID-19 (GSE157103) and OSA (GSE75097) from the Gene Expression Omnibus (GEO) database. Upon identifying shared feature genes between OSA and COVID-19 utilizing LASSO, Random forest and Support vector machines algorithms, we advanced to functional annotation, analysis of protein-protein interaction networks, module construction, and identification of pivotal genes. Furthermore, we established regulatory networks encompassing transcription factor (TF)-gene and TF-miRNA interactions, and searched for promising drug targets. Subsequently, the expression levels of pivotal genes were validated through proteomics data from COVID-19 cases. RESULTS Fourteen feature genes shared between OSA and COVID-19 were selected for further investigation. Through functional annotation, it was indicated that metabolic pathways play a role in the pathogenesis of both disorders. Subsequently, employing the cytoHubba plugin, ten hub genes were recognized, namely TP53, CCND1, MDM2, RB1, HIF1A, EP300, STAT3, CDK2, HSP90AA1, and PPARG. The finding of proteomics unveiled a substantial augmentation in the expression level of HSP90AA1 in COVID-19 patient samples, especially in severe conditions. CONCLUSIONS Our investigation illuminate a mutual pathogenic mechanism that underlies both OSA and COVID-19, which may provide novel perspectives for future investigations into the underlying mechanisms.
Collapse
Affiliation(s)
- Hong Luo
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jisong Yan
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Gong
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Dingyu Zhang
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), Hefei, Anhui, China
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Xia Zhou
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, China.
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, China.
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China.
| | - Xianguang Wang
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, China.
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, China.
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
38
|
Gheorghita R, Soldanescu I, Lobiuc A, Caliman Sturdza OA, Filip R, Constantinescu – Bercu A, Dimian M, Mangul S, Covasa M. The knowns and unknowns of long COVID-19: from mechanisms to therapeutical approaches. Front Immunol 2024; 15:1344086. [PMID: 38500880 PMCID: PMC10944866 DOI: 10.3389/fimmu.2024.1344086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has been defined as the greatest global health and socioeconomic crisis of modern times. While most people recover after being infected with the virus, a significant proportion of them continue to experience health issues weeks, months and even years after acute infection with SARS-CoV-2. This persistence of clinical symptoms in infected individuals for at least three months after the onset of the disease or the emergence of new symptoms lasting more than two months, without any other explanation and alternative diagnosis have been named long COVID, long-haul COVID, post-COVID-19 conditions, chronic COVID, or post-acute sequelae of SARS-CoV-2 (PASC). Long COVID has been characterized as a constellation of symptoms and disorders that vary widely in their manifestations. Further, the mechanisms underlying long COVID are not fully understood, which hamper efficient treatment options. This review describes predictors and the most common symptoms related to long COVID's effects on the central and peripheral nervous system and other organs and tissues. Furthermore, the transcriptional markers, molecular signaling pathways and risk factors for long COVID, such as sex, age, pre-existing condition, hospitalization during acute phase of COVID-19, vaccination, and lifestyle are presented. Finally, recommendations for patient rehabilitation and disease management, as well as alternative therapeutical approaches to long COVID sequelae are discussed. Understanding the complexity of this disease, its symptoms across multiple organ systems and overlapping pathologies and its possible mechanisms are paramount in developing diagnostic tools and treatments.
Collapse
Affiliation(s)
- Roxana Gheorghita
- Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
| | - Iuliana Soldanescu
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), University of Suceava, Suceava, Romania
| | - Andrei Lobiuc
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
| | - Olga Adriana Caliman Sturdza
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
- Suceava Emergency Clinical County Hospital, Suceava, Romania
| | - Roxana Filip
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
- Suceava Emergency Clinical County Hospital, Suceava, Romania
| | - Adela Constantinescu – Bercu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
- Institute of Cardiovascular Science, Hemostasis Research Unit, University College London (UCL), London, United Kingdom
| | - Mihai Dimian
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), University of Suceava, Suceava, Romania
- Department of Computer, Electronics and Automation, University of Suceava, Suceava, Romania
| | - Serghei Mangul
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Quantitative and Computational Biology, USC Dornsife College of Letters, Arts and Sciences, University of Southern California (USC), Los Angeles, CA, United States
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA, United States
| |
Collapse
|
39
|
Sołkiewicz K, Kokot I, Dymicka-Piekarska V, Dorf J, Kratz EM. Are Changes in Serum IgG Glycosylation Related to the Severe Course of SARS-CoV-2 Infection and Recovery Process? In Search of New Diagnostic and Prognostic Biomarkers. J Inflamm Res 2024; 17:1413-1427. [PMID: 38450051 PMCID: PMC10916521 DOI: 10.2147/jir.s439005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Immunoglobulin G (IgG) glycosylation affects its effector functions and is essential in many steps of the inflammatory cascade. Therefore, it may be an important parameter for assessing the body's immune response during the course of COVID-19 (Coronavirus disease 2019). Methods The N- and O-glycosylation of serum IgG in severe COVID-19 patients (n=87), convalescents (n=50), and healthy subjects (n=65) were examined using a modified lectin-ELISA method with specific biotinylated lectins. The obtained data were analyzed using STATISTICA 13.3PL software. Results We showed significantly higher expression of Lewisx oligosaccharide structures in severe COVID-19 patients than in the other two groups. Moreover, significantly lower expression of Lewisy sugar structures in IgG glycans was observed in the convalescents when compared with COVID-19 patients and healthy subjects. The lowest expression of highly branched N-glycans in cases of severe COVID-19 indicates that the development of the disease is associated with the presence of typical IgG biantennary N-glycans. The lack of significant differences in the expression of Tn antigen in IgG between studied groups and the significantly lower expression of T antigen in convalescents compared to the patients with severe COVID-19 and healthy subjects indicates a decrease in the content of the T antigen in IgG O-glycans in subjects recovered from COVID-19. Substantially higher reactivities of IgG O-glycans with Jacalin observed in COVID-19 patients and convalescents in comparison to the control group were most probably caused by increased expression of core 3 O-glycans in IgG. Conclusion Severe COVID-19 is accompanied by the expression in serum IgG of sialylated biantennary and highly branched N-glycans, decorated by fucose of Lewisx and Lewisy structures. The higher reactivity of IgG O-glycans with Jacalin in severe COVID-19 patients and convalescents indicates that the disease development and the recovery process are most probably accompanied by increased expression of the core 3 O-glycans.
Collapse
Affiliation(s)
- Katarzyna Sołkiewicz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Izabela Kokot
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | | | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
40
|
Greene C, Connolly R, Brennan D, Laffan A, O'Keeffe E, Zaporojan L, O'Callaghan J, Thomson B, Connolly E, Argue R, Meaney JFM, Martin-Loeches I, Long A, Cheallaigh CN, Conlon N, Doherty CP, Campbell M. Blood-brain barrier disruption and sustained systemic inflammation in individuals with long COVID-associated cognitive impairment. Nat Neurosci 2024; 27:421-432. [PMID: 38388736 PMCID: PMC10917679 DOI: 10.1038/s41593-024-01576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
Vascular disruption has been implicated in coronavirus disease 2019 (COVID-19) pathogenesis and may predispose to the neurological sequelae associated with long COVID, yet it is unclear how blood-brain barrier (BBB) function is affected in these conditions. Here we show that BBB disruption is evident during acute infection and in patients with long COVID with cognitive impairment, commonly referred to as brain fog. Using dynamic contrast-enhanced magnetic resonance imaging, we show BBB disruption in patients with long COVID-associated brain fog. Transcriptomic analysis of peripheral blood mononuclear cells revealed dysregulation of the coagulation system and a dampened adaptive immune response in individuals with brain fog. Accordingly, peripheral blood mononuclear cells showed increased adhesion to human brain endothelial cells in vitro, while exposure of brain endothelial cells to serum from patients with long COVID induced expression of inflammatory markers. Together, our data suggest that sustained systemic inflammation and persistent localized BBB dysfunction is a key feature of long COVID-associated brain fog.
Collapse
Affiliation(s)
- Chris Greene
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Ruairi Connolly
- Department of Neurology, Health Care Centre, St James's Hospital, Dublin, Ireland
| | - Declan Brennan
- Department of Neurology, Health Care Centre, St James's Hospital, Dublin, Ireland
| | - Aoife Laffan
- Department of Neurology, Health Care Centre, St James's Hospital, Dublin, Ireland
| | - Eoin O'Keeffe
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Lilia Zaporojan
- Department of Neurology, Health Care Centre, St James's Hospital, Dublin, Ireland
| | | | - Bennett Thomson
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Emma Connolly
- The Irish Longitudinal Study on Ageing, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ruth Argue
- Clinical Research Facility, St James's Hospital, Dublin, Ireland
| | - James F M Meaney
- Thomas Mitchell Centre for Advanced Medical Imaging (CAMI), St. James's Hospital & Trinity College Dublin, Dublin, Ireland
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization, Trinity Centre for Health Sciences, St James's University Hospital, Dublin, Ireland
| | - Aideen Long
- Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Cliona Ni Cheallaigh
- Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin, Ireland
- Department of Immunology, St James's Hospital, Dublin, Ireland
| | - Niall Conlon
- Department of Immunology, St James's Hospital, Dublin, Ireland
- St James's Hospital, Tallaght University Hospital, Trinity College Dublin Allied Researchers (STTAR) Bioresource, Trinity College Dublin, Dublin, Ireland
| | - Colin P Doherty
- Department of Neurology, Health Care Centre, St James's Hospital, Dublin, Ireland.
- Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
41
|
Hanson AL, Mulè MP, Ruffieux H, Mescia F, Bergamaschi L, Pelly VS, Turner L, Kotagiri P, Göttgens B, Hess C, Gleadall N, Bradley JR, Nathan JA, Lyons PA, Drakesmith H, Smith KGC. Iron dysregulation and inflammatory stress erythropoiesis associates with long-term outcome of COVID-19. Nat Immunol 2024; 25:471-482. [PMID: 38429458 PMCID: PMC10907301 DOI: 10.1038/s41590-024-01754-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/12/2024] [Indexed: 03/03/2024]
Abstract
Persistent symptoms following SARS-CoV-2 infection are increasingly reported, although the drivers of post-acute sequelae (PASC) of COVID-19 are unclear. Here we assessed 214 individuals infected with SARS-CoV-2, with varying disease severity, for one year from COVID-19 symptom onset to determine the early correlates of PASC. A multivariate signature detected beyond two weeks of disease, encompassing unresolving inflammation, anemia, low serum iron, altered iron-homeostasis gene expression and emerging stress erythropoiesis; differentiated those who reported PASC months later, irrespective of COVID-19 severity. A whole-blood heme-metabolism signature, enriched in hospitalized patients at month 1-3 post onset, coincided with pronounced iron-deficient reticulocytosis. Lymphopenia and low numbers of dendritic cells persisted in those with PASC, and single-cell analysis reported iron maldistribution, suggesting monocyte iron loading and increased iron demand in proliferating lymphocytes. Thus, defects in iron homeostasis, dysregulated erythropoiesis and immune dysfunction due to COVID-19 possibly contribute to inefficient oxygen transport, inflammatory disequilibrium and persisting symptomatology, and may be therapeutically tractable.
Collapse
Affiliation(s)
- Aimee L Hanson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Matthew P Mulè
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- NIH-Oxford-Cambridge Scholars Program, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Hélène Ruffieux
- MRC Biostatistics Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Federica Mescia
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Laura Bergamaschi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Victoria S Pelly
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Lorinda Turner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Prasanti Kotagiri
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Berthold Göttgens
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Christoph Hess
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Nicholas Gleadall
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
- Botnar Research Centre for Child Health (BRCCH), University of Basel and ETH Zurich, Basel, Switzerland
| | - John R Bradley
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Paul A Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Hal Drakesmith
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
42
|
Cevirgel A, Vos M, Holtrop AF, Beckers L, Reukers DFM, Meijer A, Rots N, van Beek J, van Baarle D, de Wit J. Delineating immune variation between adult and children COVID-19 cases and associations with disease severity. Sci Rep 2024; 14:5090. [PMID: 38429462 PMCID: PMC10907598 DOI: 10.1038/s41598-024-55148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
The SARS-CoV-2 pandemic has emphasized the need to explore how variations in the immune system relate to the severity of the disease. This study aimed to explore inter-individual variation in response to SARS-CoV-2 infection by comparing T cell, B cell, and innate cell immune subsets among primary infected children and adults (i.e., those who had never experienced SARS-CoV-2 infection nor received vaccination previously), with varying disease severity after infection. We also examined immune subset kinetics in convalescent individuals compared to those with persistent infection to identify possible markers of immune dysfunction. Distinct immune subset differences were observed between infected adults and children, as well as among adult cases with mild, moderate, and severe disease. IgM memory B cells were absent in moderate and severe cases whereas frequencies of B cells with a lack of surface immunoglobulin expression were significantly higher in severe cases. Interestingly, these immune subsets remained stable during recovery implying that these subsets could be associated with underlying baseline immune variation. Our results offer insights into the potential immune markers associated with severe COVID-19 and provide a foundation for future research in this area.
Collapse
Affiliation(s)
- Alper Cevirgel
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Martijn Vos
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Anne Floor Holtrop
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Lisa Beckers
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Daphne F M Reukers
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Adam Meijer
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Nynke Rots
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Josine van Beek
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Debbie van Baarle
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Department of Medical Microbiology and Infection Prevention, Virology and Immunology Research Group, University Medical Center Groningen, Groningen, The Netherlands
| | - Jelle de Wit
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| |
Collapse
|
43
|
Bohmwald K, Diethelm-Varela B, Rodríguez-Guilarte L, Rivera T, Riedel CA, González PA, Kalergis AM. Pathophysiological, immunological, and inflammatory features of long COVID. Front Immunol 2024; 15:1341600. [PMID: 38482000 PMCID: PMC10932978 DOI: 10.3389/fimmu.2024.1341600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/09/2024] [Indexed: 04/12/2024] Open
Abstract
The COVID-19 pandemic continues to cause severe global disruption, resulting in significant excess mortality, overwhelming healthcare systems, and imposing substantial social and economic burdens on nations. While most of the attention and therapeutic efforts have concentrated on the acute phase of the disease, a notable proportion of survivors experience persistent symptoms post-infection clearance. This diverse set of symptoms, loosely categorized as long COVID, presents a potential additional public health crisis. It is estimated that 1 in 5 COVID-19 survivors exhibit clinical manifestations consistent with long COVID. Despite this prevalence, the mechanisms and pathophysiology of long COVID remain poorly understood. Alarmingly, evidence suggests that a significant proportion of cases within this clinical condition develop debilitating or disabling symptoms. Hence, urgent priority should be given to further studies on this condition to equip global public health systems for its management. This review provides an overview of available information on this emerging clinical condition, focusing on the affected individuals' epidemiology, pathophysiological mechanisms, and immunological and inflammatory profiles.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Benjamín Diethelm-Varela
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodríguez-Guilarte
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Thomas Rivera
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
44
|
LaVergne SM, Dutt TS, McFann K, Baxter BA, Webb TL, Berry K, Tipton M, Stromberg S, Sullivan BM, Dunn J, Henao-Tamayo M, Ryan EP. Persistent CD8 + T cell proliferation and activation in COVID-19 adult survivors with post-acute sequelae: a longitudinal, observational cohort study of persistent symptoms and T cell markers. Front Immunol 2024; 14:1303971. [PMID: 38327763 PMCID: PMC10848319 DOI: 10.3389/fimmu.2023.1303971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/12/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Post-acute sequelae of COVID-19 affects the quality of life of many COVID-19 survivors, yet the etiology of post-acute sequelae of COVID-19 remains unknown. We aimed to determine if persistent inflammation and ongoing T-cell activation during convalescence were a contributing factor to the pathogenesis of post-acute sequelae of COVID-19. Methods We evaluated 67 individuals diagnosed with COVID-19 by nasopharyngeal polymerase chain reaction for persistent symptoms during convalescence at separate time points occurring up to 180 days post-diagnosis. Fifty-two of these individuals were evaluated longitudinally. We obtained whole blood samples at each study visit, isolated peripheral blood mononuclear cells, and stained for multiple T cell activation markers for flow cytometry analysis. The activation states of participants' CD4+ and CD8+ T-cells were next analyzed for each of the persistent symptoms. Results Overall, we found that participants with persistent symptoms had significantly higher levels of inflammation at multiple time points during convalescence when compared to those who fully recovered from COVID-19. Participants with persistent dyspnea, forgetfulness, confusion, and chest pain had significantly higher levels of proliferating effector T-cells (CD8+Ki67+), and those with chest pain, joint pain, difficulty concentrating, and forgetfulness had higher levels of regulatory T-cells (CD4+CD25+). Additionally, those with dyspnea had significantly higher levels of CD8+CD38+, CD8+ Granzyme B+, and CD8+IL10+ cells. A retrospective comparison of acute phase inflammatory markers in adults with and without post-acute sequelae of COVID-19 showed that CD8+Ki67+ cells were significantly higher at the time of acute illness (up to 14 days post-diagnosis) in those who developed persistent dyspnea. Discussion These findings suggest continued CD8+ T-cell activation following SARS-CoV-2 infection in adults experiencing post-acute sequelae of COVID-19 and that the increase in T regulatory cells for a subset of these patients represents the ongoing attempt by the host to reduce inflammation.
Collapse
Affiliation(s)
- Stephanie M. LaVergne
- Department of Environmental Radiological and Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Taru S. Dutt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Kim McFann
- University of Colorado Health, Medical Center of the Rockies, Loveland, CO, United States
| | - Bridget A. Baxter
- Department of Environmental Radiological and Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Tracy L. Webb
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Kailey Berry
- Department of Molecular, Cellular, and Integrative Neurosciences, Colorado State University, Fort Collins, CO, United States
| | - Maddy Tipton
- Department of Environmental Radiological and Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Sophia Stromberg
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, United States
| | - Brian M. Sullivan
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, United States
| | - Julie Dunn
- University of Colorado Health, Medical Center of the Rockies, Loveland, CO, United States
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Elizabeth P. Ryan
- Department of Environmental Radiological and Health Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
45
|
Yoon H, Dean LS, Jiyarom B, Khadka VS, Deng Y, Nerurkar VR, Chow DC, Shikuma CM, Devendra G, Koh Y, Park J. Single-cell RNA sequencing reveals characteristics of myeloid cells in post-acute sequelae of SARS-CoV-2 patients with persistent respiratory symptoms. Front Immunol 2024; 14:1268510. [PMID: 38259488 PMCID: PMC10800799 DOI: 10.3389/fimmu.2023.1268510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Background Although our understanding of the immunopathology and subsequent risk and severity of COVID-19 disease is evolving, a detailed account of immune responses that contribute to the long-term consequences of pulmonary complications in COVID-19 infection remains unclear. Few studies have detailed the immune and cytokine profiles associated with post-acute sequelae of SARS-CoV-2 infection (PASC) with persistent pulmonary symptoms. The dysregulation of the immune system that drives pulmonary sequelae in COVID-19 survivors and PASC sufferers remains largely unknown. Results To characterize the immunological features of pulmonary PASC (PPASC), we performed droplet-based single-cell RNA sequencing (scRNA-seq) to study the transcriptomic profiles of peripheral blood mononuclear cells (PBMCs) from a participant naïve to SARS-CoV-2 (Control) (n=1) and infected with SARS-CoV-2 with chronic pulmonary symptoms (PPASC) (n=2). After integrating scRNA-seq data with a naïve participant from a published dataset, 11 distinct cell populations were identified based on the expression of canonical markers. The proportion of myeloid-lineage cells ([MLCs]; CD14+/CD16+monocytes, and dendritic cells) was increased in PPASC (n=2) compared to controls (n=2). MLCs from PPASC displayed up-regulation of genes associated with pulmonary symptoms/fibrosis, while glycolysis metabolism-related genes were downregulated. Similarly, pathway analysis showed that fibrosis-related (VEGF, WNT, and SMAD) and cell death pathways were up-regulated, but immune pathways were down-regulated in PPASC. Further comparison of PPASC with scRNA-seq data with Severe COVID-19 (n=4) data demonstrated enrichment of fibrotic transcriptional signatures. In PPASC, we observed interactive VEGF ligand-receptor pairs among MLCs, and network modules in CD14+ (cluster 4) and CD16+ (Cluster 5) monocytes displayed a significant enrichment for biological pathways linked to adverse COVID-19 outcomes, fibrosis, and angiogenesis. Further analysis revealed a distinct metabolic alteration in MLCs with a down-regulation of glycolysis/gluconeogenesis in PPASC compared to SARS-CoV-2 naïve samples. Conclusion Analysis of a small scRNA-seq dataset demonstrated alterations in the immune response and cellular landscape in PPASC. The presence of elevated MLC levels and their corresponding gene signatures associated with fibrosis, immune response suppression, and altered metabolic states suggests a potential role in PPASC development.
Collapse
Affiliation(s)
- Hyundong Yoon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Logan S. Dean
- Hawaii Center for AIDS, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Boonyanudh Jiyarom
- Hawaii Center for AIDS, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Vedbar S. Khadka
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Mānoa, Honolulu, HI, United States
| | - Youping Deng
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Mānoa, Honolulu, HI, United States
| | - Vivek R. Nerurkar
- Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Dominic C. Chow
- Hawaii Center for AIDS, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Cecilia M. Shikuma
- Hawaii Center for AIDS, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Gehan Devendra
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Department of Pulmonary and Critical Care, Queen’s Medical Center, Honolulu, HI, United States
| | - Youngil Koh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Juwon Park
- Hawaii Center for AIDS, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| |
Collapse
|
46
|
Müller L, Di Benedetto S. Immunosenescence and Cytomegalovirus: Exploring Their Connection in the Context of Aging, Health, and Disease. Int J Mol Sci 2024; 25:753. [PMID: 38255826 PMCID: PMC10815036 DOI: 10.3390/ijms25020753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Aging induces numerous physiological alterations, with immunosenescence emerging as a pivotal factor. This phenomenon has attracted both researchers and clinicians, prompting profound questions about its implications for health and disease. Among the contributing factors, one intriguing actor in this complex interplay is human cytomegalovirus (CMV), a member of the herpesvirus family. Latent CMV infection exerts a profound influence on the aging immune system, potentially contributing to age-related diseases. This review delves into the intricate relationship between immunosenescence and CMV, revealing how chronic viral infection impacts the aging immune landscape. We explore the mechanisms through which CMV can impact both the composition and functionality of immune cell populations and induce shifts in inflammatory profiles with aging. Moreover, we examine the potential role of CMV in pathologies such as cardiovascular diseases, cancer, neurodegenerative disorders, COVID-19, and Long COVID. This review underlines the importance of understanding the complex interplay between immunosenescence and CMV. It offers insights into the pathophysiology of aging and age-associated diseases, as well as COVID-19 outcomes among the elderly. By unraveling the connections between immunosenescence and CMV, we gain a deeper understanding of aging's remarkable journey and the profound role that viral infections play in transforming the human immune system.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | | |
Collapse
|
47
|
El-Baky NA, Amara AA, Uversky VN, Redwan EM. Intrinsic factors behind long COVID: III. Persistence of SARS-CoV-2 and its components. J Cell Biochem 2024; 125:22-44. [PMID: 38098317 DOI: 10.1002/jcb.30514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
Considerable research has been done in investigating SARS-CoV-2 infection, its characteristics, and host immune response. However, debate is still ongoing over the emergence of post-acute sequelae of SARS-CoV-2 infection (PASC). A multitude of long-lasting symptoms have been reported several weeks after the primary acute SARS-CoV-2 infection that resemble several other viral infections. Thousands of research articles have described various post-COVID-19 conditions. Yet, the evidence around these ongoing health problems, the reasons behind them, and their molecular underpinnings are scarce. These persistent symptoms are also known as long COVID-19. The persistence of SARS-CoV-2 and/or its components in host tissues can lead to long COVID. For example, the presence of viral nucleocapsid protein and RNA was detected in the skin, appendix, and breast tissues of some long COVID patients. The persistence of viral RNA was reported in multiple anatomic sites, including non-respiratory tissues such as the adrenal gland, ocular tissue, small intestine, lymph nodes, myocardium, and sciatic nerve. Distinctive viral spike sequence variants were also found in non-respiratory tissues. Interestingly, prolonged detection of viral subgenomic RNA was observed across all tissues, sometimes in multiple tissues of the same patient, which likely reflects recent but defective viral replication. Moreover, the persistence of SARS-CoV-2 RNA was noticed throughout the brain at autopsy, as late as 230 days following symptom onset among unvaccinated patients who died of severe infection. Here, we review the persistence of SARS-CoV-2 and its components as an intrinsic factor behind long COVID. We also highlight the immunological consequences of this viral persistence.
Collapse
Affiliation(s)
- Nawal Abd El-Baky
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| | - Amro A Amara
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
48
|
Klair N, Ireland M, Schleiss MR. A Rapidly Expanding Chest Wall Mass in an Adolescent With COVID-19. Clin Pediatr (Phila) 2024; 63:108-113. [PMID: 37326038 PMCID: PMC10290933 DOI: 10.1177/00099228231177792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Nate Klair
- Department of Pediatrics, Residency Training Program, University of Minnesota, Minneapolis, MN, USA
| | - Malia Ireland
- Zoonotic Diseases Unit, Minnesota Department of Health, St. Paul, MN, USA
| | - Mark R. Schleiss
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
49
|
Wang P, Zhang S, Qi C, Wang C, Zhu Z, Shi L, Cheng L, Zhang X. Blood microbial analyses reveal long-term effects of SARS-CoV-2 infection on patients who recovered from COVID-19. Comput Biol Med 2024; 168:107721. [PMID: 38016374 DOI: 10.1016/j.compbiomed.2023.107721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
OBJECTIVE Few symptoms persist for a long time after patients recover from COVID-19, called "long COVID". We explored the potential microbial risk factors for COVID-19 for a deeper understanding and assistance in the follow-up treatment of these sequelae. METHODS Microbiome re-annotation was performed using whole blood RNA-Seq data collected from recovered COVID-19 patients and healthy controls at multiple time points. Subsequently, a series of downstream analyses were conducted to reveal the microbial characteristics of patients who recovered from SARS-CoV-2 infection. RESULTS The blood microbiome at 12 weeks post-infection was most evidently disturbed, including an increasing ratio of Bacillota/Bacteroidota and a higher microbial alpha diversity. In addition, a group of pathogenic microbes at 12 weeks post-infection were identified, including Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, which were positively associated with host genes involved in immune regulatory and olfactory transduction pathways. Several microbes, such as Streptococcus pneumoniae were associated with infiltrating immune cells, such as M2 macrophages. CONCLUSION This study provides insights into the relationship between the blood microbiome and COVID-19 sequelae. Several pathogenic microbes were enriched in recovered COVID-19 patients and thus affected host genes participating in the immune and olfactory transduction pathways, which play critical roles in COVID-19 sequelae.
Collapse
Affiliation(s)
- Ping Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Sainan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Changlu Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Chao Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Zijun Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Lei Shi
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150028, Heilongjiang, China.
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150028, Heilongjiang, China.
| | - Xue Zhang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150028, Heilongjiang, China; McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
50
|
Dhaliwal M, Muthu V, Sharma A, Raj K, Rudramurthy SM, Agarwal R, Kaur H, Rawat A, Singh S, Chakrabarti A. Immune and metabolic perturbations in COVID-19-associated pulmonary mucormycosis: A transcriptome analysis of innate immune cells. Mycoses 2024; 67:e13679. [PMID: 38214399 DOI: 10.1111/myc.13679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/23/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND AND OBJECTIVES The mechanisms underlying COVID-19-associated pulmonary mucormycosis (CAPM) remain unclear. We use a transcriptomic analysis of the innate immune cells to investigate the host immune and metabolic response pathways in patients with CAPM. PATIENTS AND METHODS We enrolled subjects with CAPM (n = 5), pulmonary mucormycosis (PM) without COVID-19 (n = 5), COVID-19 (without mucormycosis, n = 5), healthy controls (n = 5) without comorbid illness and negative for SARS-CoV-2. Peripheral blood samples from cases were collected before initiating antifungal therapy, and neutrophils and monocytes were isolated. RNA sequencing was performed using Illumina HiSeqX from monocytes and neutrophils. Raw reads were aligned with HISAT-2 pipeline and DESeq2 was used for differential gene expression. Gene ontology (GO) and metabolic pathway analysis were performed using Shiny GO application and R packages (ggplot2, Pathview). RESULTS The derangement of core immune and metabolic responses in CAPM patients was noted. Pattern recognition receptors, dectin-2, MCL, FcRγ receptors and CLEC-2, were upregulated, but signalling pathways such as JAK-STAT, IL-17 and CARD-9 were downregulated; mTOR and MAP-kinase signalling were elevated in monocytes from CAPM patients. The complement receptors, NETosis, and pro-inflammatory responses, such as S100A8/A9, lipocalin and MMP9, were elevated. The major metabolic pathways of glucose metabolism-glycolysis/gluconeogenesis, pentose phosphate pathway, HIF signalling and iron metabolism-ferroptosis were also upregulated in CAPM. CONCLUSIONS We identified significant alterations in the metabolic pathways possibly leading to cellular iron overload and a hyperglycaemic state. Immune responses revealed altered recognition, signalling, effector functions and a pro-inflammatory state in monocytes and neutrophils from CAPM patients.
Collapse
Affiliation(s)
- Manpreet Dhaliwal
- Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arunima Sharma
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Khem Raj
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harsimran Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|