1
|
Bernhardt SM, House CD. Bisphenol A and DDT disrupt adipocyte function in the mammary gland: implications for breast cancer risk and progression. Front Oncol 2025; 15:1490898. [PMID: 40034592 PMCID: PMC11873108 DOI: 10.3389/fonc.2025.1490898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
As breast cancer incidence continues to rise worldwide, there is a pressing need to understand the environmental factors that contribute to its development. Obesogens, including Bisphenol A (BPA) and Dichlorodiphenyltrichloroethane (DDT), are highly prevalent in the environment, and have been associated with obesity and metabolic dysregulation. BPA and DDT, known to disrupt hormone signaling in breast epithelial cells, also promote adipogenesis, lipogenesis, and adipokine secretion in adipose tissue, directly contributing to the pathogenesis of obesity. While the adipose-rich mammary gland may be particularly vulnerable to environmental obesogens, there is a scarcity of research investigating obesogen-mediated changes in adipocytes that drive oncogenic transformation of breast epithelial cells. Here, we review the preclinical and clinical evidence linking BPA and DDT to impaired mammary gland development and breast cancer risk. We discuss how the obesogen-driven mechanisms that contribute to obesity, including changes in adipogenesis, lipogenesis, and adipokine secretion, could provide a pro-inflammatory, nutrient-rich environment that promotes activation of oncogenic pathways in breast epithelial cells. Understanding the role of obesogens in breast cancer risk and progression is essential for informing public health guidelines aimed at minimizing obesogen exposure, to ultimately reduce breast cancer incidence and improve outcomes for women.
Collapse
Affiliation(s)
- Sarah M. Bernhardt
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Carrie D. House
- Department of Biology, San Diego State University, San Diego, CA, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
2
|
Ji X, Li J, Wang W, Li P, Wu H, Shen L, Su L, Jiang P, Li Y, Wu X, Tian Y, Liu Y, Yue H. Altered mammary gland development and pro-tumorigenic changes in young female mice following prenatal BPAF exposure. ENVIRONMENTAL RESEARCH 2025; 264:120371. [PMID: 39549911 DOI: 10.1016/j.envres.2024.120371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Bisphenol A (BPA) is being phased out owing to its endocrine-disrupting effects and is increasingly being replaced by its substitute compounds such as bisphenol AF (BPAF). This study aims to explore the potential adverse outcomes of prenatal BPAF exposure combined with postnatal cross-fostering on the development and long-term health effects of the mammary gland in offspring. The results suggested that prenatal BPAF exposure accelerates the puberty, and induces duct dilatations, angiogenesis, lobular hyperplasia, and enhanced inflammatory cell infiltration in the mammary gland of female offspring. Differentially expressed genes exhibiting time series patterns induced by BPAF exposure were enriched in biological processes related to mammary gland development, epithelial cell proliferation and so on. Notably, 13 breast cancer-related biomarkers including Pgr, Gata3, Egfr and Areg were screened, showing a time-dependent increase in expression. After human homologous gene transformation, TCGA analysis suggested that the human homologues of genes differentially expressed in BPAF-treated mice were associated with increased tumor stages in female patients with breast cancer. Furthermore, postnatal cross-fostering did not completely restore the adverse effects of prenatal BPAF exposure and even showed a reverse tendency. These results imply that prenatal BPAF exposure in utero and postnatally nursing by BPAF exposed dams, have long-term effects on the mammary glands health of female offspring.
Collapse
Affiliation(s)
- Xiaotong Ji
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China.
| | - Jiande Li
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Weiwei Wang
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Peilin Li
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Haoyang Wu
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Linzhuo Shen
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Lihong Su
- Department of Pathology, Shanxi Provincial People's Hospital, PR China
| | - Peiyun Jiang
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Yating Li
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yuchai Tian
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yu Liu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| |
Collapse
|
3
|
Waleed S, Haroon M, Ullah N, Tuzen M, Rind IK, Sarı A. A comprehensive review on advanced trends in treatment technologies for removal of Bisphenol A from aquatic media. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:83. [PMID: 39707071 DOI: 10.1007/s10661-024-13460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Toxic environmental pollutants are considered to be posed a major threat to human and aquatic systems. The fast advancement of the petrochemical and chemical industries has woken up rising worries concerning the pollution of water by contaminants including phenolic Bisphenol A (BPA), an endocrine-disrupting chemical (EDC). The intermediate BPA used in synthesis of certain plastics, polycarbonate polymers, polysulfone, and epoxy resins of various polyesters. Due to potential health risks, severe toxicity, and widespread distribution, there is an urgent need to develop efficient techniques for the removal of BPA. Therefore, advance management for the active elimination of BPA prior to its release into the water sources is of serious concern. Degradation, membrane separation, adsorption, and biological treatments have been extensively examined as they are easy to operate and cost-effective for effective BPA removal. In this review, we summarized the mechanism and performance for removal of BPA by several sorbents, including natural polymers, natural inorganic minerals, porous and carbon-based materials. Comparative results revealed that composite materials and modified adsorbents have good performances for removal of BPA. Furthermore, kinetic study investigating adsorption mechanisms was also discussed. Hazardous quantities of such types of chemicals in various samples have thus been the subject of increasing concern of investigation. This review clarified the extensive literature regarding the major health effects of BPA and its advanced treatment technologies including biological treatment by natural and synthetic materials have been discussed briefly. It delivers regulation for future development and research from the aspects of materials functionalization, development of methods, and mechanism investigation that directing to stimulate developments for removal of emerging contaminants.
Collapse
Affiliation(s)
- Sangeen Waleed
- Department of Chemistry, University of Gwadar, Balochistan, 92600, Pakistan
| | - Muhammad Haroon
- Department of Chemistry, University of Gwadar, Balochistan, 92600, Pakistan
| | - Naeem Ullah
- Department of Chemistry, University of Gwadar, Balochistan, 92600, Pakistan
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpaşa University, 60250, Tokat, Turkey
| | - Mustafa Tuzen
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpaşa University, 60250, Tokat, Turkey
| | - Imran Khan Rind
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan.
- Department of Metallurgical and Material Engineering, Karadeniz Technical University, 61080, Trabzon, Turkey.
| | - Ahmet Sarı
- Department of Metallurgical and Material Engineering, Karadeniz Technical University, 61080, Trabzon, Turkey
- Interdisciplinary Research Center of Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
4
|
Gachowska M, Dąbrowska A, Wilczyński B, Kuźnicki J, Sauer N, Szlasa W, Kobierzycki C, Łapińska Z, Kulbacka J. The Influence of Environmental Exposure to Xenoestrogens on the Risk of Cancer Development. Int J Mol Sci 2024; 25:12363. [PMID: 39596429 PMCID: PMC11594813 DOI: 10.3390/ijms252212363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Xenoestrogens (XEs) are a group of exogenous substances that may interfere with the functioning of the endocrine system. They may mimic the function of estrogens, and their sources are plants, water or dust, plastic, chemical agents, and some drugs. Thus, people are highly exposed to their actions. Together with the development of industry, the number of XEs in our environment increases. They interact directly with estrogen receptors, disrupting the transmission of cellular signals. It is proven that XEs exhibit clinical application in e.g., menopause hormone therapy, but some studies observed that intense exposure to XEs leads to the progression of various cancers. Moreover, these substances exhibit the ability to cross the placental barrier, therefore, prenatal exposure may disturb fetus development. Due to the wide range of effects resulting from the biological activity of these substances, there is a need for this knowledge to be systematized. This review aims to comprehensively assess the environmental sources of XEs and their role in increasing cancer risk, focusing on current evidence of their biological and pathological impacts.
Collapse
Affiliation(s)
- Martyna Gachowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (M.G.); (A.D.); (B.W.); (J.K.)
| | - Alicja Dąbrowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (M.G.); (A.D.); (B.W.); (J.K.)
| | - Bartosz Wilczyński
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (M.G.); (A.D.); (B.W.); (J.K.)
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (M.G.); (A.D.); (B.W.); (J.K.)
| | - Natalia Sauer
- Department of Clinical Pharmacology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Wojciech Szlasa
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Christopher Kobierzycki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Zofia Łapińska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| |
Collapse
|
5
|
Hafeez S, Ishaq A, Intisar A, Mahmood T, Din MI, Ahmed E, Tariq MR, Abid MA. Predictive modeling for the adsorptive and photocatalytic removal of phenolic contaminants from water using artificial neural networks. Heliyon 2024; 10:e37951. [PMID: 39386831 PMCID: PMC11462199 DOI: 10.1016/j.heliyon.2024.e37951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Numerous harmful phenolic contaminants are discharged into water that pose a serious threat to environment where two of the most important purification methodologies for the mitigation of phenolic contaminants are adsorption and photocatalysis. Besides cost, each process has drawbacks in terms of productivity, environmental impact, sludge creation, and the development of harmful by-products. To overcome these limitations, the modeling and optimization of water treatment methods is required. Artificial Intelligence (AI) is employed for the interpretation of treatment-based processes due to powerful learning, simplicity, high estimation accuracy, effectiveness, and improvement of process efficiency where artificial neural networks (ANNs) are most frequently employed for predicting and analyzing the efficiency of processes applied for the mitigation of these phenolic contaminants from water. ANNs are superior to conventional linear regression models because the latter are incapable of dealing with non-linear systems. ANNs can also reduce the operational cost of treating phenol-contaminated water. A correlation coefficient of >0.99 can be achieved using ANN with enhanced phenol mitigation percentage accuracy generally ranging from 80 % to 99.99 %. Using ANN optimization, the maximum phenol mitigation efficiencies achieved were 99.99 % for phenol, 99.93 % for bisphenol A, 99.6 % for nonylphenol, 97.1 % for 2-nitrophenol, 96.6 % for 4-chlorophenol and 90 % for 2,6-dichlorophenol. In numerous ANN models, Levenberg-Marquardt backpropagation algorithm for training was employed using MATLAB software. This study overviews their employment and application for optimization and modeling of removal processes and explicitly discusses the important input and output parameters necessary for better performance of the system. The comparison of ANNs with other AI techniques revealed that ANNs have better predictability for mitigation of most of the phenolic contaminants. Furthermore, several challenges and future prospects have also been discussed.
Collapse
Affiliation(s)
- Shahzar Hafeez
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Ayesha Ishaq
- Centre for Physical Chemistry, School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Azeem Intisar
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Tariq Mahmood
- Centre for High Energy Physics, University of the Punjab, 54590, Pakistan
| | - Muhammad Imran Din
- Centre for Physical Chemistry, School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Ejaz Ahmed
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab, 54590, Pakistan
| | | | | |
Collapse
|
6
|
Stocker L, Zervou SK, Papageorgiou SN, Karakousoglou S, Triantis T, Hiskia A, Eliades G, Eliades T. Salivary levels of eluents during Invisalign™ treatment with attachments: an in vivo investigation. Prog Orthod 2024; 25:22. [PMID: 38825612 PMCID: PMC11144685 DOI: 10.1186/s40510-024-00522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND The aim of the present study was to investigate qualitatively and quantitatively the elution of substances from polyester-urethane (Invisalign™) aligners and resin composite attachments (Tetric EvoFlow) in vivo. METHODS Patients (n = 11) treated with the aligners and attachments (16 per patient, without other composite restorations) for an average of 20 months, who were planned for attachment removed were enrolled in the study. Patients were instructed to rinse with 50 mL of distilled water upon entry and the rinsing solution was collected (before removal). Then, the attachments were removed with low-speed tungsten carbide burs for adhesive residue removal, a thorough water rinsing was performed immediately after the grinding process to discard grinding particle residues, and subsequently, after a second water-rinsing the solution was collected for analysis (after removal). The rinsing solutions were analyzed for targeted (LC-MS/MS: Bis-GMA, DCDMA, UDMA, BPA) and untargeted (LC-HRMS: screening of leached species and their degradation products) compounds. RESULTS Targeted analysis revealed a significant reduction in BPA after attachment removal (4 times lower). Bis-GMA, DCDMA, UDMA were below the detection limit before removal but were all detectable after removal with Bis-GMA and UDMA at quantifiable levels. Untargeted analysis reviled the presence of mono-methacrylate transformation products of Bis-GMA (Bis-GMA-M1) and UDMA (UDMA-M1), UDMA without methacrylate moieties (UDMA-M2), and 4-(dimethylamino) benzoic acid (DMAB), the degradation product of the photo-initiator ethyl-4-(dimethylamino) benzoate (EDMAB), all after attachment removal. Several amino acids and endogenous metabolites were also found both before and after removal. CONCLUSIONS Elevated levels of BPA were traced instantaneously in patients treated with Invisalign™ and flowable resin composite attachments for the testing period. BPA was reduced after attachment removal, but residual monomers and resin degradation products were found after removal. Alternative resin formulations and attachment materials may be utilized to reduce eluents.
Collapse
Affiliation(s)
- Larissa Stocker
- Clinic of Orthodontics and Pediatric Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich, 8032, Switzerland
| | - Sevasti-Kiriaki Zervou
- Laboratory for Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechology, National Center for Scientific Research "Demokritos", Agia Paraskevi, Greece
| | - Spyridon N Papageorgiou
- Clinic of Orthodontics and Pediatric Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich, 8032, Switzerland
| | | | - Theodoros Triantis
- Laboratory for Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechology, National Center for Scientific Research "Demokritos", Agia Paraskevi, Greece
| | - Anastasia Hiskia
- Laboratory for Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechology, National Center for Scientific Research "Demokritos", Agia Paraskevi, Greece
| | - George Eliades
- Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodore Eliades
- Clinic of Orthodontics and Pediatric Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich, 8032, Switzerland.
| |
Collapse
|
7
|
Schierano-Marotti G, Altamirano GA, Oddi S, Gomez AL, Meyer N, Muñoz-de-Toro M, Zenclussen AC, Rodríguez HA, Kass L. Branching morphogenesis of the mouse mammary gland after exposure to benzophenone-3. Toxicol Appl Pharmacol 2024; 484:116868. [PMID: 38382712 DOI: 10.1016/j.taap.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Pubertal mammary branching morphogenesis is a hormone-regulated process susceptible to exposure to chemicals with endocrine disruptive capacity, such as the UV-filter benzophenone-3 (BP3). Our aim was to assess whether intrauterine or in vitro exposure to BP3 modified the branching morphogenesis of the female mouse mammary gland. For this, pregnant mice were dermally exposed to BP3 (0.15 or 50 mg/kg/day) from gestation day (GD) 8.5 to GD18.5. Sesame oil treatment served as control. Changes of the mammary glands of the offspring were studied on postnatal day 45. Further, mammary organoids from untreated mice were cultured under branching induction conditions and exposed for 9 days to BP3 (1 × 10-6 M, 1 × 10-9 M, or 1 × 10-12 M with 0.01% ethanol as control) to evaluate the branching progression. Mice that were exposed to BP3 in utero showed decreased mRNA levels of progesterone receptor (PR) and WNT4. However, estradiol and progesterone serum levels, mammary histomorphology, proliferation, and protein expression of estrogen receptor alpha (ESR1) and PR were not significantly altered. Interestingly, direct exposure to BP3 in vitro also decreased the mRNA levels of PR, RANKL, and amphiregulin without affecting the branching progression. Most effects were found after exposure to 50 mg/kg/day or 1 × 10-6 M of BP3, both related to sunscreen application in humans. In conclusion, exposure to BP3 does not impair mammary branching morphogenesis in our models. However, BP3 affects PR transcriptional expression and its downstream mediators, suggesting that exposure to BP3 might affect other developmental stages of the mammary gland.
Collapse
Affiliation(s)
- Gonzalo Schierano-Marotti
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sofia Oddi
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Nicole Meyer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research and Perinatal Immunology, Saxonian Incubator for Clinical Translation, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research and Perinatal Immunology, Saxonian Incubator for Clinical Translation, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Horacio A Rodríguez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
8
|
Peng JY, Lee YK, Pham RQ, Shen XH, Chen IH, Chen YC, Fan HS. Trends and Age-Period-Cohort Effect on Incidence of Male Breast Cancer from 1980 to 2019 in Taiwan and the USA. Cancers (Basel) 2024; 16:444. [PMID: 38275884 PMCID: PMC10814864 DOI: 10.3390/cancers16020444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Although male breast cancer (MBC) is globally rare, its incidence significantly increased from 1990 to 2017. The aim of this study was to examine variations in the trends of MBC incidence between populations in Taiwan and the USA from 1980 to 2019. The Taiwan Cancer Registry database and the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute of the USA were used. The age-standardized incidence rate was calculated using the world standard population in 2000. The long-term trends of the age, time period, and birth cohort effect on MBC incidence rates were estimated using the SEER Age-Period-Cohort Web Tool. The results revealed that the incidence of MBC in both countries increased from 2010 to 2019 (Taiwan: average annual percentage change (AAPC) = 2.59%; USA: AAPC = 0.64%). The age and period effects on the incidence rates in both countries strengthened, but the cohort effect was only identified in Taiwan (Rate ratio: 4.03). The identified cohort effect in this study bears resemblance to that noted in a previous investigation on female breast cancer in Taiwan. This suggests the possible presence of common environmental factors influencing breast cancer incidence in both genders, such as a high fat diet and xenoestrogen.
Collapse
Affiliation(s)
- Jhao-Yang Peng
- Graduate Institute of Business Administration, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City 242062, Taiwan;
- Roche Diagnostics Ltd., Taipei City 10491, Taiwan
| | - Yu-Kwang Lee
- Division of General Surgery, Department of Surgery, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan;
| | - Rong-Qi Pham
- Institute of Public Health, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei City 112304, Taiwan;
| | - Xiao-Han Shen
- Master Program of Big Data in Biomedicine, College of Medicine, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City 242062, Taiwan;
| | - I-Hui Chen
- MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Zhongshan Dist., Taipei City 104217, Taiwan;
| | - Yong-Chen Chen
- School of Medicine, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City 242062, Taiwan
- Data Science Center, College of Medicine, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City 242062, Taiwan
| | - Hung-Shu Fan
- Graduate Institute of Business Administration, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City 242062, Taiwan;
| |
Collapse
|
9
|
Kay JE, Brody JG, Schwarzman M, Rudel RA. Application of the Key Characteristics Framework to Identify Potential Breast Carcinogens Using Publicly Available in Vivo, in Vitro, and in Silico Data. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:17002. [PMID: 38197648 PMCID: PMC10777819 DOI: 10.1289/ehp13233] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Chemicals that induce mammary tumors in rodents or activate estrogen or progesterone signaling are likely to increase breast cancer (BC) risk. Identifying chemicals with these activities can prompt steps to protect human health. OBJECTIVES We compiled data on rodent tumors, endocrine activity, and genotoxicity to assess the key characteristics (KCs) of rodent mammary carcinogens (MCs), and to identify other chemicals that exhibit these effects and may therefore increase BC risk. METHODS Using authoritative databases, including International Agency for Research on Cancer (IARC) Monographs and the US Environmental Protection's (EPA) ToxCast, we selected chemicals that induce mammary tumors in rodents, stimulate estradiol or progesterone synthesis, or activate the estrogen receptor (ER) in vitro. We classified these chemicals by their genotoxicity and strength of endocrine activity and calculated the overrepresentation (enrichment) of these KCs among MCs. Finally, we evaluated whether these KCs predict whether a chemical is likely to induce mammary tumors. RESULTS We identified 279 MCs and an additional 642 chemicals that stimulate estrogen or progesterone signaling. MCs were significantly enriched for steroidogenicity, ER agonism, and genotoxicity, supporting the use of these KCs to predict whether a chemical is likely to induce rodent mammary tumors and, by inference, increase BC risk. More MCs were steroidogens than ER agonists, and many increased both estradiol and progesterone. Enrichment among MCs was greater for strong endocrine activity vs. weak or inactive, with a significant trend. DISCUSSION We identified hundreds of compounds that have biological activities that could increase BC risk and demonstrated that these activities are enriched among MCs. We argue that many of these should not be considered low hazard without investigating their ability to affect the breast, and chemicals with the strongest evidence can be targeted for exposure reduction. We describe ways to strengthen hazard identification, including improved assessments for mammary effects, developing assays for more KCs, and more comprehensive chemical testing. https://doi.org/10.1289/EHP13233.
Collapse
Affiliation(s)
| | | | - Megan Schwarzman
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Family and Community Medicine, University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
10
|
Howdeshell KL, Beverly BEJ, Blain RB, Goldstone AE, Hartman PA, Lemeris CR, Newbold RR, Rooney AA, Bucher JR. Evaluating endocrine disrupting chemicals: A perspective on the novel assessments in CLARITY-BPA. Birth Defects Res 2023; 115:1345-1397. [PMID: 37646438 DOI: 10.1002/bdr2.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND The Consortium Linking Academic and Regulatory Insights on Bisphenol A Toxicity (CLARITY-BPA) was a collaborative research effort to better link academic research with governmental guideline studies. This review explores the secondary goal of CLARITY-BPA: to identify endpoints or technologies from CLARITY-BPA and prior/concurrent literature from these laboratories that may enhance the capacity of rodent toxicity studies to detect endocrine disrupting chemicals (EDCs). METHODS A systematic literature search was conducted with search terms for BPA and the CLARITY-BPA participants. Relevant studies employed a laboratory rodent model and reported results on 1 of the 10 organs/organ systems evaluated in CLARITY-BPA (brain and behavior, cardiac, immune, mammary gland, ovary, penile function, prostate gland and urethra, testis and epididymis, thyroid hormone and metabolism, and uterus). Study design and findings were summarized, and a risk-of-bias assessment was conducted. RESULTS Several endpoints and methods were identified as potentially helpful to detect effects of EDCs. For example, molecular and quantitative morphological approaches were sensitive in detecting alterations in early postnatal development of the brain, ovary, and mammary glands. Hormone challenge studies mimicking human aging reported increased susceptibility of the prostate to disease following developmental BPA exposure. Statistical analyses for nonmonotonic dose responses, and computational approaches assessing multiple treatment-related outcomes concurrently in linked hormone-sensitive organ systems, reported effects at low BPA doses. CONCLUSIONS This review provided an opportunity to evaluate the unique insights provided by nontraditional assessments in CLARITY-BPA to identify technologies and endpoints to enhance detection of EDCs in future studies.
Collapse
Affiliation(s)
- Kembra L Howdeshell
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - Brandiese E J Beverly
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | - Retha R Newbold
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| | - Andrew A Rooney
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - John R Bucher
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| |
Collapse
|
11
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
12
|
Kay JE, Cardona B, Rudel RA, Vandenberg LN, Soto AM, Christiansen S, Birnbaum LS, Fenton SE. Chemical Effects on Breast Development, Function, and Cancer Risk: Existing Knowledge and New Opportunities. Curr Environ Health Rep 2022; 9:535-562. [PMID: 35984634 PMCID: PMC9729163 DOI: 10.1007/s40572-022-00376-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Population studies show worrisome trends towards earlier breast development, difficulty in breastfeeding, and increasing rates of breast cancer in young women. Multiple epidemiological studies have linked these outcomes with chemical exposures, and experimental studies have shown that many of these chemicals generate similar effects in rodents, often by disrupting hormonal regulation. These endocrine-disrupting chemicals (EDCs) can alter the progression of mammary gland (MG) development, impair the ability to nourish offspring via lactation, increase mammary tissue density, and increase the propensity to develop cancer. However, current toxicological approaches to measuring the effects of chemical exposures on the MG are often inadequate to detect these effects, impairing our ability to identify exposures harmful to the breast and limiting opportunities for prevention. This paper describes key adverse outcomes for the MG, including impaired lactation, altered pubertal development, altered morphology (such as increased mammographic density), and cancer. It also summarizes evidence from humans and rodent models for exposures associated with these effects. We also review current toxicological practices for evaluating MG effects, highlight limitations of current methods, summarize debates related to how effects are interpreted in risk assessment, and make recommendations to strengthen assessment approaches. Increasing the rigor of MG assessment would improve our ability to identify chemicals of concern, regulate those chemicals based on their effects, and prevent exposures and associated adverse health effects.
Collapse
Affiliation(s)
| | | | | | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ana M Soto
- Tufts University School of Medicine, Boston, MA, USA
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Linda S Birnbaum
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Suzanne E Fenton
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| |
Collapse
|
13
|
Cerkvenik-Flajs V, Škibin A, Švara T, Gombač M, Pogačnik M, Šturm S. Bisphenol A in edible tissues of rams exposed to repeated low-level dietary dose by high-performance liquid chromatography with fluorescence detection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76078-76090. [PMID: 35665893 PMCID: PMC9553849 DOI: 10.1007/s11356-022-21154-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/24/2022] [Indexed: 06/02/2023]
Abstract
The presented work deals with levels and distribution of bisphenol A (BPA) in the edible tissues of a large food-producing animal species. An experimental animal study included 14 young Istrian pramenka rams (Ovis aries), of which seven were exposed for 64 days to a low dietary dose of BPA at 25 µg/kg b.w./day, and seven served as a control group. Residue analysis of both aglycone and total BPA was performed in the muscle tissue, liver, kidney and fat tissue of the individual animals by means of enzymatic deconjugation (for total BPA), organic solvent extraction, molecularly imprinted polymer solid-phase extraction (MISPE) clean-up and high-performance liquid chromatography with fluorescence detection (HPLC-FLU). The analysis was optimized and validated for aglycone BPA in the fat tissue and for the total BPA in all tissues investigated. Edible tissues of the control group of rams generally remained BPA-free, while there were concentration differences between the control and treated groups for liver and kidney post last administration. The human health risk resulting from this study was assessed by the estimated dietary exposure in adults, which was < 0.1% related to the valid European Union Tolerable Daily Intake (TDI) value of 4 µg/kg b.w./day. However, it would be 58-fold higher than the newly proposed TDI value of 0.04 ng/kg b.w./day.
Collapse
Affiliation(s)
- Vesna Cerkvenik-Flajs
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia.
| | - Andrej Škibin
- Veterinary Faculty, Clinic of Reproduction and Farm Animals, Infrastructure Centre for Sustainable Recultivation Vremščica, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Tanja Švara
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Mitja Gombač
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Milan Pogačnik
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Sabina Šturm
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| |
Collapse
|
14
|
Goyal K, Goel H, Baranwal P, Dixit A, Khan F, Jha NK, Kesari KK, Pandey P, Pandey A, Benjamin M, Maurya A, Yadav V, Sinh RS, Tanwar P, Upadhyay TK, Mittan S. Unravelling the molecular mechanism of mutagenic factors impacting human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61993-62013. [PMID: 34410595 DOI: 10.1007/s11356-021-15442-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Environmental mutagens are chemical and physical substances in the environment that has a potential to induce a wide range of mutations and generate multiple physiological, biochemical, and genetic modifications in humans. Most mutagens are having genotoxic effects on the following generation through germ cells. The influence of germinal mutations on health will be determined by their frequency, nature, and the mechanisms that keep a specific mutation in the population. Early prenatal lethal mutations have less public health consequences than genetic illnesses linked with long-term medical and social difficulties. Physical and chemical mutagens are common mutagens found in the environment. These two environmental mutagens have been associated with multiple neurological disorders and carcinogenesis in humans. Thus in this study, we aim to unravel the molecular mechanism of physical mutagens (UV rays, X-rays, gamma rays), chemical mutagens (dimethyl sulfate (DMS), bisphenol A (BPA), polycyclic aromatic hydrocarbons (PAHs), 5-chlorocytosine (5ClC)), and several heavy metals (Ar, Pb, Al, Hg, Cd, Cr) implicated in DNA damage, carcinogenesis, chromosomal abnormalities, and oxidative stress which leads to multiple disorders and impacting human health. Biological tests for mutagen detection are crucial; therefore, we also discuss several approaches (Ames test and Mutatox test) to estimate mutagenic factors in the environment. The potential risks of environmental mutagens impacting humans require a deeper basic knowledge of human genetics as well as ongoing research on humans, animals, and their tissues and fluids.
Collapse
Affiliation(s)
- Keshav Goyal
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Harsh Goel
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Pritika Baranwal
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Aman Dixit
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, India
| | | | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306, India
| | - Avanish Pandey
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Mercilena Benjamin
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Ankit Maurya
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Vandana Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rana Suryauday Sinh
- Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University, Baroda, India
| | - Pranay Tanwar
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences & Centre of Research for Development, Parul University, Vadodara, Gujarat, India.
| | - Sandeep Mittan
- Department of Cardiology, Ichan School of Medicine, Mount Sinai Hospital, 1 Gustave L. Levy Place, New York, NY, USA
| |
Collapse
|
15
|
Plante I, Winn LM, Vaillancourt C, Grigorova P, Parent L. Killing two birds with one stone: Pregnancy is a sensitive window for endocrine effects on both the mother and the fetus. ENVIRONMENTAL RESEARCH 2022; 205:112435. [PMID: 34843719 DOI: 10.1016/j.envres.2021.112435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Pregnancy is a complex process requiring tremendous physiological changes in the mother in order to fulfill the needs of the growing fetus, and to give birth, expel the placenta and nurse the newborn. These physiological modifications are accompanied with psychological changes, as well as with variations in habits and behaviors. As a result, this period of life is considered as a sensitive window as impaired functional and physiological changes in the mother can have short- and long-term impacts on her health. In addition, dysregulation of the placenta and of mechanisms governing placentation have been linked to chronic diseases later-on in life for the fetus, in a concept known as the Developmental Origin of Health and Diseases (DOHaD). This concept stipulates that any change in the environment during the pre-conception and perinatal (in utero life and neonatal) period to puberty, can be "imprinted" in the organism, thereby impacting the health and risk of chronic diseases later in life. Pregnancy is a succession of events that is regulated, in large part, by hormones and growth factors. Therefore, small changes in hormonal balance can have important effects on both the mother and the developing fetus. An increasing number of studies demonstrate that exposure to endocrine disrupting compounds (EDCs) affect both the mother and the fetus giving rise to growing concerns surrounding these exposures. This review will give an overview of changes that happen during pregnancy with respect to the mother, the placenta, and the fetus, and of the current literature regarding the effects of EDCs during this specific sensitive window of exposure.
Collapse
Affiliation(s)
- Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.
| | - Louise M Winn
- Queen's University, School of Environmental Studies, Department of Biomedical and Molecular Sciences, Kingston, ON, Canada
| | | | - Petya Grigorova
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| | - Lise Parent
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| |
Collapse
|
16
|
Zhang X, Guo N, Jin H, Liu R, Zhang Z, Cheng C, Fan Z, Zhang G, Xiao M, Wu S, Zhao Y, Lu X. Bisphenol A drives di(2-ethylhexyl) phthalate promoting thyroid tumorigenesis via regulating HDAC6/PTEN and c-MYC signaling. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127911. [PMID: 34910997 DOI: 10.1016/j.jhazmat.2021.127911] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) and di-(2-ethylhcxyl) phthalate (DEHP) are exist widespread in the environment and produce adverse effect to human as environmental disruptors (EDCs). Epidemiological studies have found that the exposure of DEHP and BPA could increase the susceptibility to thyroid diseases including thyroid cancer and benign thyroid nodules. Due to the existence of multiple pollutants in our daily life, the mixed toxic effects of exposure and their interrelationships may distinguish from the exposure to a single chemical, so it is of great significance to explore the mixed toxic effect of DEHP and BPA co-exposure. Thyroid, as one of the target organs of EDCs, is prone to tumor occurrence, however, whether the mixture of BPA and DEHP will affect the occurrence of thyroid cancer is still obscure. We aim to investigate the effect of single or combined exposure to BPA and DEHP on the occurrence of thyroid cancer. An animal model of exposure to BPA and DEHP was firstly established to evaluate their effect on DMD-induced thyroid cancer. Additionally, human thyroid cancer cells BCPAP and thyroid cells Nthy-ori3-1 were used to further clarify some possible mechanisms of BPA and MEHP, the main metabolite of DEHP. Consequently, we found that BPA alone could increase the incidence of thyroid tumors in female rats compared with DEHP, and DEHP enhanced the effect of BPA on cancer promotion. BPA alone and in combination with DEHP mainly induced the expression of HDAC6, inhibited tumor suppressor gene PTEN upregulated the expression of oncogene c-MYC, and eventually elevate the susceptibility to thyroid tumors. Mechanistically, BPA alone and in combination with MEHP could significantly induce the proliferation of BCPAP cells depending on HDAC6, which could modulate H3K9ac to inhibit PTEN, activate AKT signaling pathway, and simultaneously upregulate the expression of c-MYC. Interestingly, we found that BPA alone and in combination with MEHP could significantly induce the proliferation of Nthy-ori3-1 cells independent on HDAC6 via activating ERK signaling pathway. Taken together, these findings not only provide new evidence of the promoting effect of BPA and DEHP on thyroid cancer but also discusses some possible mechanisms underlying these effects.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Nan Guo
- Department of head and Neck Surgery, Cancer hospital of China Medical University/Liaoning Cancer hospital & Institute, Shenyang, PR China
| | - Hao Jin
- Jin Zhou Center for Disease Control and Prevention, Jinzhou, PR China
| | - Renqi Liu
- Jin Zhou Center for Disease Control and Prevention, Jinzhou, PR China
| | - Zhen Zhang
- Jin Zhou Center for Disease Control and Prevention, Jinzhou, PR China
| | - Cheng Cheng
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Zhijun Fan
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Guopei Zhang
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Mingyang Xiao
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Shengwen Wu
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Yuejiao Zhao
- Department of head and Neck Surgery, Cancer hospital of China Medical University/Liaoning Cancer hospital & Institute, Shenyang, PR China.
| | - Xiaobo Lu
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China.
| |
Collapse
|
17
|
Fenclová T, Řimnáčová H, Chemek M, Havránková J, Klein P, Králíčková M, Nevoral J. Nursing Exposure to Bisphenols as a Cause of Male Idiopathic Infertility. Front Physiol 2022; 13:725442. [PMID: 35283775 PMCID: PMC8908107 DOI: 10.3389/fphys.2022.725442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Idiopathic infertility is a serious problem, which can be caused and explained by exposure to endocrine disruptors, such as bisphenols. In our study, we studied transactional exposure to bisphenol and its effects on newborn male mice throughout their reproductive life. Newborn male mice were exposed to bisphenol S and bisphenol F through maternal milk from post-natal day 0 to post-natal day 15 at concentrations of 0.1 ng.g/bw/day and 10 ng.g/bw/day, respectively. Although there were minimal differences between the control and experimental groups in testicular tissue quality and spermatozoa quality, we discovered an interesting influence on early embryonic development. Moderate doses of bisphenol negatively affected cleavage of the early embryo and subsequently, the blastocyst rate, as well as the number of blastomeres per blastocyst. In our study, we focused on correlations between particular stages from spermatogenesis to blastocyst development. We followed epigenetic changes such as dimethylation of histone H3 and phosphorylation of histone H2 from germ cells to blastocysts; we discovered the transfer of DNA double-strand breaks through the paternal pronucleus from spermatozoa to blastomeres in the blastocyst. We elucidated the impact of sperm DNA damage on early embryonic development, and our results indicate that idiopathic infertility in adulthood may have causes related to the perinatal period.
Collapse
Affiliation(s)
- Tereza Fenclová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- *Correspondence: Tereza Fenclová,
| | - Hedvika Řimnáčová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Marouane Chemek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jiřina Havránková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Pavel Klein
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Milena Králíčková
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Jan Nevoral
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| |
Collapse
|
18
|
Evaluation of the Toxicity of Bisphenol A in Reproduction and Its Effect on Fertility and Embryonic Development in the Zebrafish ( Danio rerio). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020962. [PMID: 35055782 PMCID: PMC8775542 DOI: 10.3390/ijerph19020962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/24/2021] [Accepted: 01/11/2022] [Indexed: 02/05/2023]
Abstract
Bisphenol A (BPA) is a chemical substance commonly used in the manufacture of plastic products. Its inhalation or ingestion from particles in suspension, water, and/or polluted foods can trigger toxic effects related to endocrine disruption, resulting in hormonal, reproduction, and immunological alterations in humans and animals. The zebrafish (Danio rerio) is an ideal experimental model frequently used in toxicity studies. In order to assess the toxic effects of BPA on reproduction and embryonic development in one generation after parental exposure to it, a total of 80 zebrafish, males and females, divided into four groups in duplicate (n = 20) were exposed to BPA concentrations of 500, 50, and 5 µg L-1, along with a control group. The fish were kept in reproduction aquariums for 21 days. The embryos obtained in the crosses were incubated in a BPA-free medium and observed for signs of embryotoxicity. A histopathological study (under optical and electron microscopes) was performed of adult fish gonads. The embryos of reproducers exposed to BPA were those most frequently presenting signs of embryotoxicity, such as mortality and cardiac and musculoskeletal malformations. In the histopathological studies of adult individuals, alterations were found in ovocyte maturation and in spermatazoid formation in the groups exposed to the chemical. Those alterations were directly related to BPA action, affecting fertility in both sexes, as well as the viability of their offspring, proportionally to the BPA levels to which they were exposed, so that our results provide more information by associating toxic effects on the offspring and on the next generation.
Collapse
|
19
|
Radziff SBM, Ahmad SA, Shaharuddin NA, Merican F, Kok YY, Zulkharnain A, Gomez-Fuentes C, Wong CY. Potential Application of Algae in Biodegradation of Phenol: A Review and Bibliometric Study. PLANTS (BASEL, SWITZERLAND) 2021; 10:2677. [PMID: 34961148 PMCID: PMC8709323 DOI: 10.3390/plants10122677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
One of the most severe environmental issues affecting the sustainable growth of human society is water pollution. Phenolic compounds are toxic, hazardous and carcinogenic to humans and animals even at low concentrations. Thus, it is compulsory to remove the compounds from polluted wastewater before being discharged into the ecosystem. Biotechnology has been coping with environmental problems using a broad spectrum of microorganisms and biocatalysts to establish innovative techniques for biodegradation. Biological treatment is preferable as it is cost-effective in removing organic pollutants, including phenol. The advantages and the enzymes involved in the metabolic degradation of phenol render the efficiency of microalgae in the degradation process. The focus of this review is to explore the trends in publication (within the year of 2000-2020) through bibliometric analysis and the mechanisms involved in algae phenol degradation. Current studies and publications on the use of algae in bioremediation have been observed to expand due to environmental problems and the versatility of microalgae. VOSviewer and SciMAT software were used in this review to further analyse the links and interaction of the selected keywords. It was noted that publication is advancing, with China, Spain and the United States dominating the studies with total publications of 36, 28 and 22, respectively. Hence, this review will provide an insight into the trends and potential use of algae in degradation.
Collapse
Affiliation(s)
- Syahirah Batrisyia Mohamed Radziff
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.B.M.R.); (S.A.A.); (N.A.S.)
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.B.M.R.); (S.A.A.); (N.A.S.)
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Chile;
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.B.M.R.); (S.A.A.); (N.A.S.)
| | - Faradina Merican
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Gelugor 11800, Penang, Malaysia;
| | - Yih-Yih Kok
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia;
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama-shi 337-8570, Saitama, Japan;
| | - Claudio Gomez-Fuentes
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Chile;
- Department of Chemical Engineering, Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Chile
| | - Chiew-Yen Wong
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia;
| |
Collapse
|
20
|
Ho SM, Rao R, Ouyang B, Tam NNC, Schoch E, Song D, Ying J, Leung YK, Govindarajah V, Tarapore P. Three-Generation Study of Male Rats Gestationally Exposed to High Butterfat and Bisphenol A: Impaired Spermatogenesis, Penetrance with Reduced Severity. Nutrients 2021; 13:nu13103636. [PMID: 34684636 PMCID: PMC8541510 DOI: 10.3390/nu13103636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Gestational high butterfat (HFB) and/or endocrine disruptor exposure was previously found to disrupt spermatogenesis in adulthood. This study addresses the data gap in our knowledge regarding transgenerational transmission of the disruptive interaction between a high-fat diet and endocrine disruptor bisphenol A (BPA). F0 generation Sprague-Dawley rats were fed diets containing butterfat (10 kcal%) and high in butterfat (39 kcal%, HFB) with or without BPA (25 µg/kg body weight/day) during mating and pregnancy. Gestationally exposed F1-generation offspring from different litters were mated to produce F2 offspring, and similarly, F2-generation animals produced F3-generation offspring. One group of F3 male offspring was administered either testosterone plus estradiol-17β (T + E2) or sham via capsule implants from postnatal days 70 to 210. Another group was naturally aged to 18 months. Combination diets of HFB + BPA in F0 dams, but not single exposure to either, disrupted spermatogenesis in F3-generation adult males in both the T + E2-implanted group and the naturally aged group. CYP19A1 localization to the acrosome and estrogen receptor beta (ERbeta) localization to the nucleus were associated with impaired spermatogenesis. Finally, expression of methyl-CpG-binding domain-3 (MBD3) was consistently decreased in the HFB and HFB + BPA exposed F1 and F3 testes, suggesting an epigenetic component to this inheritance. However, the severe atrophy within testes present in F1 males was absent in F3 males. In conclusion, the HFB + BPA group demonstrated transgenerational inheritance of the impaired spermatogenesis phenotype, but severity was reduced in the F3 generation.
Collapse
Affiliation(s)
- Shuk-Mei Ho
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.N.C.T.); (Y.-K.L.)
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
- Correspondence: (S.-M.H.); (P.T.); Tel.: +501-686-5347 (S.-M.H.); +513-558-5148 (P.T.)
| | - Rahul Rao
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
| | - Bin Ouyang
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Neville N. C. Tam
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.N.C.T.); (Y.-K.L.)
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Emma Schoch
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
| | - Dan Song
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
| | - Jun Ying
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yuet-Kin Leung
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.N.C.T.); (Y.-K.L.)
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Vinothini Govindarajah
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Pheruza Tarapore
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Cincinnati Cancer Center, Cincinnati, OH 45267, USA
- Correspondence: (S.-M.H.); (P.T.); Tel.: +501-686-5347 (S.-M.H.); +513-558-5148 (P.T.)
| |
Collapse
|
21
|
Kim H, Moon WK. Histological Findings of Mammary Gland Development and Risk of Breast Cancer in BRCA1 Mutant Mouse Models. J Breast Cancer 2021; 24:455-462. [PMID: 34652081 PMCID: PMC8561134 DOI: 10.4048/jbc.2021.24.e44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/30/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose The breast cancer susceptibility gene, BRCA1, is involved in normal development and carcinogenesis of mammary glands. Here, we aimed to evaluate the relationship between histological findings of mammary gland development and breast cancer risk in BRCA1 mutant mice. Methods Five BRCA1 mutant mice and five non-mutant FVB/NJ mice were used for each group of 1-month-old (pubertal), 3-month-old (fertile), and 8-month-old (menopausal) mice. In another experiment, 15 BRCA1 mutant mice were followed up to 8 months after birth and classified into tumor-bearing (11 mice) and tumor-free (4 mice) groups. Excised mammary gland tissues were stained with Carmine Alum, and the number of terminal end buds (or alveolar buds), branching density, and duct elongation were measured using image analysis programs. Differences between the two groups were assessed using paired t-test. Results One-month-old BRCA1 mutant mice showed a higher number of terminal end buds (23.8 ± 1.0 vs. 15.6 ± 0.8, p = 0.0002), branching density (11.7 ± 0.4 vs. 9.6 ± 0.5%, p = 0.0082), and duct elongation (9.7 ± 0.7 vs. 7.3 ± 0.4 mm, p = 0.0186) than controls. However, there was no difference between the 3- and 8-month-old groups. In BRCA1 mutant mice, the tumor-bearing group showed a significantly higher number of alveolar buds (142.7 ± 5.5 vs. 105.5 ± 5.4, p = 0.0008) and branching density (30.0 ± 1.0 vs. 24.1 ± 1.1%, p = 0.008) than the tumor-free group; however, duct elongation was not different (23.9 ± 0.6 vs. 23.6 ± 0.6 mm, p = 0.8099) between the groups. Conclusion BRCA1 mutant mice exhibited early pubertal mammary gland development and delayed age-related mammary gland involution was associated with breast cancer. Our results may have clinical implications for predicting breast cancer risk and developing prevention strategies for BRCA1 mutation carriers.
Collapse
Affiliation(s)
- Hyelim Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Woo Kyung Moon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
22
|
Salamanca-Fernández E, Rodríguez-Barranco M, Amiano P, Delfrade J, Chirlaque MD, Colorado S, Guevara M, Jimenez A, Arrebola JP, Vela F, Olea N, Agudo A, Sánchez MJ. Bisphenol-A exposure and risk of breast and prostate cancer in the Spanish European Prospective Investigation into Cancer and Nutrition study. Environ Health 2021; 20:88. [PMID: 34399780 PMCID: PMC8369702 DOI: 10.1186/s12940-021-00779-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/29/2021] [Indexed: 06/03/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is an endocrine disruptor that it is present in numerous products of daily use. The aim of this study was to assess the potential association of serum BPA concentrations and the risk of incident breast and prostate cancer in a sub-cohort of the Spanish European Prospective Investigation into Cancer and Nutrition (EPIC). METHODS We designed a case-cohort study within the EPIC-Spain cohort. Study population consisted on 4812 participants from 4 EPIC-Spain centers (547 breast cancer cases, 575 prostate cancer cases and 3690 sub-cohort participants). BPA exposure was assessed by means of chemical analyses of serum samples collected at recruitment. Borgan II weighted Cox regression was used to estimate hazard ratios. RESULTS Median follow-up time in our study was 16.9 years. BPA geometric mean serum values of cases and sub-cohort were 1.12 ng/ml vs 1.10 ng/ml respectively for breast cancer and 1.33 ng/ml vs 1.29 ng/ml respectively for prostate cancer. When categorizing BPA into tertiles, a 40% increase in risk of prostate cancer for tertile 1 (p = 0.022), 37% increase for tertile 2 (p = 0.034) and 31% increase for tertile 3 (p = 0.072) was observed with respect to values bellow the limit of detection. No significant association was observed between BPA levels and breast cancer risk. CONCLUSIONS We found a similar percentage of detection of BPA among cases and sub-cohort from our population, and no association with breast cancer risk was observed. However, we found a higher risk of prostate cancer for the increase in serum BPA levels. Further investigation is needed to understand the influence of BPA in prostate cancer risk.
Collapse
Affiliation(s)
- Elena Salamanca-Fernández
- Andalusian School of Public Health (EASP), Campus Universitario de Cartuja, C/Cuesta del Observatorio 4, 18080, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Miguel Rodríguez-Barranco
- Andalusian School of Public Health (EASP), Campus Universitario de Cartuja, C/Cuesta del Observatorio 4, 18080, Granada, Spain.
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain.
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Pilar Amiano
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, Donostia-San Sebastian, Spain
| | - Josu Delfrade
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Maria Dolores Chirlaque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Department of Health and Sciences, University of Murcia, Murcia, Spain
| | - Sandra Colorado
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Marcela Guevara
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ana Jimenez
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, Donostia-San Sebastian, Spain
| | - Juan Pedro Arrebola
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Fernando Vela
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Radiology, University of Granada, Granada, Spain
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, Nutrition and Cancer Group, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Maria-José Sánchez
- Andalusian School of Public Health (EASP), Campus Universitario de Cartuja, C/Cuesta del Observatorio 4, 18080, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| |
Collapse
|
23
|
Mulligan S, Ojeda JJ, Kakonyi G, Thornton SF, Moharamzadeh K, Martin N. Characterisation of Microparticle Waste from Dental Resin-Based Composites. MATERIALS 2021; 14:ma14164440. [PMID: 34442963 PMCID: PMC8402022 DOI: 10.3390/ma14164440] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 01/05/2023]
Abstract
Clinical applications of resin-based composite (RBC) generate environmental pollution in the form of microparticulate waste. Methods: SEM, particle size and specific surface area analysis, FT-IR and potentiometric titrations were used to characterise microparticles arising from grinding commercial and control RBCs as a function of time, at time of generation and after 12 months ageing in water. The RBCs were tested in two states: (i) direct-placement materials polymerised to simulate routine clinical use and (ii) pre-polymerised CAD/CAM ingots milled using CAD/CAM technology. Results: The maximum specific surface area of the direct-placement commercial RBC was seen after 360 s of agitation and was 1290 m2/kg compared with 1017 m2/kg for the control material. The median diameter of the direct-placement commercial RBC was 6.39 μm at 360 s agitation and 9.55 μm for the control material. FTIR analysis confirmed that microparticles were sufficiently unique to be identified after 12 months ageing and consistent alteration of the outermost surfaces of particles was observed. Protonation-deprotonation behaviour and the pH of zero proton charge (pHzpc) ≈ 5–6 indicated that the particles are negatively charged at neutral pH7. Conclusion: The large surface area of RBC microparticles allows elution of constituent monomers with potential environmental impacts. Characterisation of this waste is key to understanding potential mitigation strategies.
Collapse
Affiliation(s)
- Steven Mulligan
- Academic Unit of Restorative Dentistry, School of Clinical Dentistry, Claremont Crescent, The University of Sheffield, Sheffield S10 2TA, UK;
- Correspondence:
| | - Jesús J. Ojeda
- Systems and Process Engineering Centre, College of Engineering, Swansea University, Swansea SA1 8EN, UK;
| | - Gabriella Kakonyi
- Groundwater Protection and Restoration Group, Department of Civil and Structural Engineering, Sir Frederick Mappin Building, Mappin Street, The University of Sheffield, Sheffield S1 3JD, UK; (G.K.); (S.F.T.)
| | - Steven F. Thornton
- Groundwater Protection and Restoration Group, Department of Civil and Structural Engineering, Sir Frederick Mappin Building, Mappin Street, The University of Sheffield, Sheffield S1 3JD, UK; (G.K.); (S.F.T.)
| | - Keyvan Moharamzadeh
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai P.O. Box 505055, United Arab Emirates;
| | - Nicolas Martin
- Academic Unit of Restorative Dentistry, School of Clinical Dentistry, Claremont Crescent, The University of Sheffield, Sheffield S10 2TA, UK;
| |
Collapse
|
24
|
Early Postnatal Genistein Administration Affects Mice Metabolism and Reproduction in a Sexually Dimorphic Way. Metabolites 2021; 11:metabo11070449. [PMID: 34357343 PMCID: PMC8303179 DOI: 10.3390/metabo11070449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022] Open
Abstract
The phytoestrogen genistein (GEN) may interfere with permanent morphological changes in the brain circuits sensitive to estrogen. Due to the frequent use of soy milk in the neonatal diet, we aimed to study the effects of early GEN exposure on some physiological and reproductive parameters. Mice of both sexes from PND1 to PND8 were treated with GEN (50 mg/kg body weight, comparable to the exposure level in babies fed with soy-based formulas). When adult, we observed, in GEN-treated females, an advanced pubertal onset and an altered estrous cycle, and, in males, a decrease of testicle weight and fecal testosterone concentration. Furthermore, we observed an increase in body weight and altered plasma concentrations of metabolic hormones (leptin, ghrelin, triiodothyronine) limited to adult females. Exposure to GEN significantly altered kisspeptin and POMC immunoreactivity only in females and orexin immunoreactivity in both sexes. In conclusion, early postnatal exposure of mice to GEN determines long-term sex-specific organizational effects. It impairs the reproductive system and has an obesogenic effect only in females, which is probably due to the alterations of neuroendocrine circuits controlling metabolism; thus GEN, should be classified as a metabolism disrupting chemical.
Collapse
|
25
|
Vandenberg LN. Endocrine disrupting chemicals and the mammary gland. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:237-277. [PMID: 34452688 DOI: 10.1016/bs.apha.2021.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Development of the mammary gland requires coordination of hormone signaling pathways including those mediated by estrogen, progesterone, androgen and prolactin receptors. These hormones play important roles at several distinct stages of life including embryonic/fetal development, puberty, pregnancy, lactation, and old age. This also makes the gland sensitive to perturbations from environmental agents including endocrine disrupting chemicals (EDCs). Although there is evidence from human populations of associations between EDCs and disruptions to breast development and lactation, these studies are often complicated by the timing of exposure assessments and the latency to develop breast diseases (e.g., years to decades). Rodents have been instrumental in providing insights-not only to the basic biology and endocrinology of the mammary gland, but to the effects of EDCs on this tissue at different stages of development. Studies, mostly but not exclusively, of estrogenic EDCs have shown that the mammary gland is a sensitive tissue, that exposures during perinatal development can produce abnormal mammary structures (e.g., alveolar buds, typically seen in pregnant females) in adulthood; that exposures during pregnancy can alter milk production; and that EDC exposures can enhance the response of the mammary tissue to hormones and chemical carcinogens. Other studies of persistent organic pollutants have shown that EDC exposures during critical windows of development can delay development of the gland, with lifelong consequences for the individual. Collectively, this work continues to support the conclusion that EDCs can harm the mammary gland, with effects that depend on the period of exposure and the period of evaluation.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
26
|
Rogers LD. What Does CLARITY-BPA Mean for Canadians? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137001. [PMID: 34208913 PMCID: PMC8297219 DOI: 10.3390/ijerph18137001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
Bisphenol A is an extremely high-volume chemical widely used in polycarbonate plastics, the linings of food and beverage tins, and shopping receipts. Canadians are ubiquitously exposed to bisphenol A and research shows that exposure at environmentally relevant doses causes endocrine disruption. Recent risk assessments and exposure estimates by the European Food Safety Authority have guided increased restrictions around the use of bisphenol A and established a lower tolerable daily intake, while the CLARITY-BPA program in the United States identified several adverse effects below this exposure level. Within the context of bisphenol toxicity and international regulation, this paper describes the need for revised bisphenol A risk assessments in Canada. Completed in 2008, the most recent bisphenol A risk assessment conducted by Health Canada does not include risks from alternative bisphenols or non-dietary exposure. It also does not account for the additive effects caused by simultaneous exposure to multiple endocrine-disrupting chemicals.
Collapse
Affiliation(s)
- Lindsay D Rogers
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
27
|
Kam RL, Bernhardt SM, Ingman WV, Amir LH. Modern, exogenous exposures associated with altered mammary gland development: A systematic review. Early Hum Dev 2021; 156:105342. [PMID: 33711581 DOI: 10.1016/j.earlhumdev.2021.105342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Many women report low milk supply as the reason for premature breastfeeding cessation. Altered mammary gland development may impact a woman's lactation ability. OBJECTIVE This review identifies modern exogenous exposures which alter mammary gland development during embryonic life, puberty and pregnancy. METHODS A systematic review was undertaken whereby Medline, CINAHL and Embase articles published from January 1, 2005 to November 20, 2020 were searched using the keywords puberty or embry* or fetal or foetal or foetus or fetus or pregnan* or gestation* AND "mammary gland development" or "breast development" or "mammary development" or "mammary gland function" or "mammary function" or "insufficient glandular tissue" or "mammary hypoplasia" or "breast hypoplasia" or "mammary gland hypoplasia" or "tubular breast*" or "tuberous breast*" or "glandular tissue" or "breast composition" or "mammary composition" or "mammary gland composition". After initial screening of 1207 records, 60 full texts were assessed for eligibility; 6 were excluded due to lack of information about exposure or outcome, leaving 54 studies. RESULTS The review included results from 52 animal (rats and mice, monkeys, rabbits, sheep, goats pigs and cows) and 2 human studies. Various endocrine disrupting chemicals and an obesogenic diet were found to be associated with altered mammary gland morphology during key development stages. CONCLUSIONS To improve lactation outcomes, future studies need to focus on lactation as the endpoint and be conducted in a standardised manner to allow for a more significant contribution to the literature that allows for better comparison across studies.
Collapse
Affiliation(s)
- Renee L Kam
- Judith Lumley Centre, School of Nursing and Midwifery, La Trobe University, Bundoora, Victoria, Australia.
| | - Sarah M Bernhardt
- Discipline of Surgery, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Adelaide, Australia; Robinson Research Institute, Adelaide Medical School, University of Adelaide, Australia
| | - Wendy V Ingman
- Discipline of Surgery, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Adelaide, Australia; Robinson Research Institute, Adelaide Medical School, University of Adelaide, Australia
| | - Lisa H Amir
- Judith Lumley Centre, School of Nursing and Midwifery, La Trobe University, Bundoora, Victoria, Australia; Breastfeeding Service, Royal Women's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
28
|
Bleak TC, Calaf GM. Breast and prostate glands affected by environmental substances (Review). Oncol Rep 2021; 45:20. [PMID: 33649835 PMCID: PMC7879422 DOI: 10.3892/or.2021.7971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/08/2021] [Indexed: 12/17/2022] Open
Abstract
Environmental endocrine disruptor chemicals are substances that can alter the homeostasis of the endocrine system in living organisms. They can be released from several products used in daily activities. Once in the organism, they can disrupt the endocrine function by mimicking or blocking naturally occurring hormones due to their similar chemical structure. This endocrine disruption is the most important cause of the well‑known hormone‑associate types of cancer. Additionally, it is decisive to determine the susceptibility of each organ to these compounds. Therefore, the present review aimed to summarize the effect of different environmental substances such as bisphenol A, dichlorodiphenyltrichloroethane and polychlorinated biphenyls in both the mammary and the prostate tissues. These organs were chosen due to their association with the hormonal system and their common features in carcinogenic mechanisms. Outcomes derived from the present review may provide evidence that should be considered in future debates regarding the effects of endocrine disruptors on carcinogenesis.
Collapse
Affiliation(s)
- Tammy C. Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Arica 1000000, Chile
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Arica 1000000, Chile
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
29
|
Soto AM, Schaeberle CM, Sonnenschein C. From Wingspread to CLARITY: a personal trajectory. Nat Rev Endocrinol 2021; 17:247-256. [PMID: 33514909 PMCID: PMC9662687 DOI: 10.1038/s41574-020-00460-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/30/2023]
Abstract
In the three decades since endocrine disruption was conceptualized at the Wingspread Conference, we have witnessed the growth of this multidisciplinary field and the accumulation of evidence showing the deleterious health effects of endocrine-disrupting chemicals. It is only within the past decade that, albeit slowly, some changes regarding regulatory measures have taken place. In this Perspective, we address some historical points regarding the advent of the endocrine disruption field and the conceptual changes that endocrine disruption brought about. We also provide our personal recollection of the events triggered by our serendipitous discovery of oestrogenic activity in plastic, a founder event in the field of endocrine disruption. This recollection ends with the CLARITY study as an example of a discordance between 'science for its own sake' and 'regulatory science' and leads us to offer a perspective that could be summarized by the motto attributed to Ludwig Boltzmann: "Nothing is more practical than a good theory".
Collapse
Affiliation(s)
- Ana M Soto
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA.
| | - Cheryl M Schaeberle
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA
| | - Carlos Sonnenschein
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA
| |
Collapse
|
30
|
Gouesse RJ, Dianati E, McDermott A, Wade MG, Hales B, Robaire B, Plante I. In Utero and Lactational Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants Induces a Premature Development of the Mammary Glands. Toxicol Sci 2021; 179:206-219. [PMID: 33252648 DOI: 10.1093/toxsci/kfaa176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In utero and prepubertal development of the mammary glands occurs minimally in a hormone independent manner until puberty where maturation of the hypothalamic-pituitary-gonadal axis drives an extensive remodeling. Nevertheless, because the immature glands contain functional hormone receptors, they are especially vulnerable to the effects of endocrine disruptors, such as brominated flame retardants (BFRs). BFRs are widespread chemicals added to household objects to reduce their flammability, and to which humans are ubiquitously exposed. We previously reported that in utero and lactational exposure to BFRs resulted in an impaired mammary gland development in peripubertal animals. Here, we assessed whether BFR-induced disruption of mammary gland development could manifest earlier in life. Dams were exposed prior to mating until pups' weaning to a BFR mixture (0, 0.06, 20, or 60 mg/kg/day) formulated according to levels found in house dust. The mammary glands of female offspring were collected at weaning. Histo-morphological analyses showed that exposure to 0.06 mg/kg/day accelerates global epithelial development as demonstrated by a significant increase in total epithelial surface area, associated with a tendency to increase of the ductal area and thickness, and of lumen area. Significant increases of the Ki67 cell proliferation index and of the early apoptotic marker cleaved caspase-9 were also observed, as well as an upward trend in the number of thyroid hormone receptor α1 positive cells. These molecular, histologic, and morphometric changes are suggestive of accelerated pubertal development. Thus, our results suggest that exposure to an environmentally relevant mixture of BFRs induces precocious development of the mammary gland.
Collapse
Affiliation(s)
| | - Elham Dianati
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec H7V 1B7, Canada
| | - Alec McDermott
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec H7V 1B7, Canada
| | - Michael G Wade
- Health Canada, Environmental Health Science and Research Bureau, Ottawa, Ontario K1A 0K9, Canada
| | - Barbara Hales
- Faculty of Medicine, Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Bernard Robaire
- Faculty of Medicine, Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Faculty of Medicine, Department of Obstetrics & Gynecology, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec H7V 1B7, Canada
| |
Collapse
|
31
|
Wang Z, Alderman MH, Asgari C, Taylor HS. Fetal Bisphenol-A Induced Changes in Murine Behavior and Brain Gene Expression Persisted in Adult-aged Offspring. Endocrinology 2020; 161:5905560. [PMID: 32926169 PMCID: PMC7609133 DOI: 10.1210/endocr/bqaa164] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022]
Abstract
In utero Bisphenol A (BPA) exposure has been linked to many deficits during brain development, including sexual differentiation, behavior, and motor coordination. Yet, how BPA induces these disorders and whether its effects are long lasting are largely unknown. In this study, using a mouse model, we demonstrated that in utero exposure to an environmentally relevant dose of BPA induced locomotor deficits, anxiety-like behavior, and declarative memory impairments that persisted into old age (18 months). Compared to the control animals, the BPA-exposed mice had a significant decrease in locomotor activity, exploratory tendencies, and long-term memory, and an increase in anxiety. The global brain gene expression profile was altered permanently by BPA treatment and showed regional and sexual differences. The BPA-treated male mice had more changes in the hippocampus, while female mice experienced more changes in the cortex. Overall, we demonstrate that in utero exposure to BPA induces permanent changes in brain gene expression in a region-specific and sex-specific manner, including a significant decrease in locomotor activity, learning ability, long-term memory, and an increase in anxiety. Fetal/early life exposures permanently affect neurobehavioral functions that deteriorate with age; BPA exposure may compound the effects of aging.
Collapse
Affiliation(s)
- Zhihao Wang
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Myles H Alderman
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Cyrus Asgari
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- Correspondence: Hugh S. Taylor, MD, Yale University School of Medicine, Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, P.O. Box 208063, New Haven, CT 06520-8063, USA. E-mail:
| |
Collapse
|
32
|
Heindel JJ, Belcher S, Flaws JA, Prins GS, Ho SM, Mao J, Patisaul HB, Ricke W, Rosenfeld CS, Soto AM, Vom Saal FS, Zoeller RT. Data integration, analysis, and interpretation of eight academic CLARITY-BPA studies. Reprod Toxicol 2020; 98:29-60. [PMID: 32682780 PMCID: PMC7365109 DOI: 10.1016/j.reprotox.2020.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
"Consortium Linking Academic and Regulatory Insights on BPA Toxicity" (CLARITY-BPA) was a comprehensive "industry-standard" Good Laboratory Practice (GLP)-compliant 2-year chronic exposure study of bisphenol A (BPA) toxicity that was supplemented by hypothesis-driven independent investigator-initiated studies. The investigator-initiated studies were focused on integrating disease-associated, molecular, and physiological endpoints previously found by academic scientists into an industry standard guideline-compliant toxicity study. Thus, the goal of this collaboration was to provide a more comprehensive dataset upon which to base safety standards and to determine whether industry-standard tests are as sensitive and predictive as molecular and disease-associated endpoints. The goal of this report is to integrate the findings from the investigator-initiated studies into a comprehensive overview of the observed impacts of BPA across the multiple organs and systems analyzed. For each organ system, we provide the rationale for the study, an overview of methodology, and summarize major findings. We then compare the results of the CLARITY-BPA studies across organ systems with the results of previous peer-reviewed studies from independent labs. Finally, we discuss potential influences that contributed to differences between studies. Developmental exposure to BPA can lead to adverse effects in multiple organs systems, including the brain, prostate gland, urinary tract, ovary, mammary gland, and heart. As published previously, many effects were at the lowest dose tested, 2.5μg/kg /day, and many of the responses were non-monotonic. Because the low dose of BPA affected endpoints in the same animals across organs evaluated in different labs, we conclude that these are biologically - and toxicologically - relevant.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies Commonweal, Bolinas, CA 94924, United States.
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Gail S Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago IL 60612, United States
| | - Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati, Cincinnati OH 45267, United States; Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Jiude Mao
- Biomedical Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - William Ricke
- Department of Urology, University of Wisconsin, Madison WI 53705, United States
| | - Cheryl S Rosenfeld
- Biomedical Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Ana M Soto
- Tufts University, Boston, MA 02111, United States
| | - Frederick S Vom Saal
- Department of Biology, University of Missouri, Columbia, MO 65211, United States
| | - R Thomas Zoeller
- Department of Biology, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
33
|
Altamirano GA, Gomez AL, Schierano-Marotti G, Muñoz-de-Toro M, Rodriguez HA, Kass L. Bisphenol A and benzophenone-3 exposure alters milk protein expression and its transcriptional regulation during functional differentiation of the mammary gland in vitro. ENVIRONMENTAL RESEARCH 2020; 191:110185. [PMID: 32946892 DOI: 10.1016/j.envres.2020.110185] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/03/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
The plastic monomer and plasticizer bisphenol A (BPA), and the UV-filter benzophenone-3 (BP3) have been shown to have estrogenic activities that could alter mammary gland development. Our aim was to analyze whether BPA or BP3 direct exposure affects the functional differentiation of the mammary gland using an in vitro model. Mammary organoids were obtained and isolated from 8 week-old virgin female C57BL/6 mice and were differentiated on Matrigel with medium containing lactogenic hormones and exposed to: a) vehicle (0.01% ethanol); b) 1 × 10-9 M or 1 × 10-6 M BPA; or c) 1 × 10-12 M, 1 × 10-9 M or 1 × 10-6 M BP3 for 72 h. The mRNA and protein expression of estrogen receptor alpha (ESR1) and progesterone receptor (PR) were assessed. In addition, mRNA levels of PR-B isoform, glucocorticoid receptor (GR), prolactin receptor (PRLR) and Stat5a, and protein expression of pStat5a/b were evaluated at 72 h. The mRNA and protein expression of milk proteins and their DNA methylation status were also analyzed. Although mRNA level of PRLR and GR was similar between treatments, mRNA expression of ESR1, total PR, PR-B and Stat5a was increased in organoids exposed to 1 × 10-9 M BPA and 1 × 10-12 M BP3. Total PR expression was also increased with 1 × 10-6 M BPA. Nuclear ESR1 and PR expression was observed in all treated organoids; whereas nuclear pStat5a/b alveolar cells was observed only in organoids exposed to 1 × 10-9 M BPA and 1 × 10-12 M BP3. The beta-casein mRNA level was increased in both BPA concentrations and 1 × 10-12 M BP3, which was associated with hypomethylation of its promoter. The beta-casein protein expression was only increased with 1 × 10-9 M BPA or 1 × 10-12 M BP3. In contrast, BPA exposure decreased alpha-lactalbumin mRNA expression and increased DNA methylation level in different methylation-sensitive sites of the gene. Also, 1 × 10-9 M BPA decreased alpha-lactalbumin protein expression. Our results demonstrate that BPA or BP3 exposure alters milk protein synthesis and its transcriptional regulation during mammary gland differentiation in vitro.
Collapse
Affiliation(s)
- Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gonzalo Schierano-Marotti
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Horacio A Rodriguez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
34
|
Eve L, Fervers B, Le Romancer M, Etienne-Selloum N. Exposure to Endocrine Disrupting Chemicals and Risk of Breast Cancer. Int J Mol Sci 2020; 21:E9139. [PMID: 33266302 PMCID: PMC7731339 DOI: 10.3390/ijms21239139] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is the second most common cancer and the fifth deadliest in the world. Exposure to endocrine disrupting pollutants has been suggested to contribute to the increase in disease incidence. Indeed, a growing number of researchershave investigated the effects of widely used environmental chemicals with endocrine disrupting properties on BC development in experimental (in vitro and animal models) and epidemiological studies. The complex effects of endocrine disrupting chemicals (EDCs) on hormonal pathways, involving carcinogenic effects and an increase in mammary gland susceptibility to carcinogenesis-together with the specific characteristics of the mammary gland evolving over the course of life and the multifactorial etiology of BC-make the evaluation of these compounds a complex issue. Among the many EDCs suspected of increasing the risk of BC, strong evidence has only been provided for few EDCs including diethylstilbestrol, dichlorodiphenyltrichloroethane, dioxins and bisphenol A. However, given the ubiquitous nature and massive use of EDCs, it is essential to continue to assess their long-term health effects, particularly on carcinogenesis, to eradicate the worst of them and to sensitize the population to minimize their use.
Collapse
Affiliation(s)
- Louisane Eve
- Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France;
- Université Claude Bernard Lyon 1, F-69000 Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Béatrice Fervers
- Centre de Lutte Contre le Cancer Léon-Bérard, F-69000 Lyon, France;
- Inserm UA08, Radiations, Défense, Santé, Environnement, Center Léon Bérard, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université Claude Bernard Lyon 1, F-69000 Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Nelly Etienne-Selloum
- Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France;
- Service de Pharmacie, Institut de Cancérologie Strasbourg Europe, F-67000 Strasbourg, France
- CNRS UMR7021/Unistra, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
35
|
The use of attachments in aligner treatment: Analyzing the “innovation” of expanding the use of acid etching–mediated bonding of composites to enamel and its consequences. Am J Orthod Dentofacial Orthop 2020; 158:166-174. [DOI: 10.1016/j.ajodo.2020.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/22/2020] [Indexed: 11/23/2022]
|
36
|
Darbre PD. Chemical components of plastics as endocrine disruptors: Overview and commentary. Birth Defects Res 2020; 112:1300-1307. [PMID: 32720473 DOI: 10.1002/bdr2.1778] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 01/11/2023]
Abstract
Bisphenol A and phthalate esters are used as additives in the manufacture of plastic materials, but their ability to leach out with age and heat has resulted in their becoming ubiquitous contaminants of the ecosystem including within human body tissues. Over recent years, these compounds have been shown to possess endocrine disrupting properties with an ability to interfere in the actions of many hormones and to contribute to human health problems. Much of the reported disruptive activity has been in relation to the action of estrogens, androgens, and thyroid hormones, and concerns have been raised for adverse consequences on female and male reproductive health, thyroid function, metabolic alterations, brain development/function, immune responses, and development of cancers in hormone-sensitive tissues. A recurring theme throughout seems to be that there are windows of susceptibility to exposure in utero and in early postnatal life, which may then result in disease in later life without any need for further exposure. This commentary highlights key issues in a historical context and raises questions regarding the many data gaps.
Collapse
Affiliation(s)
- Philippa D Darbre
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
37
|
Calaf GM, Ponce-Cusi R, Aguayo F, Muñoz JP, Bleak TC. Endocrine disruptors from the environment affecting breast cancer. Oncol Lett 2020; 20:19-32. [PMID: 32565930 PMCID: PMC7286136 DOI: 10.3892/ol.2020.11566] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Evaluation of carcinogenic substances from the environment is a challenge for scientists. Recently, a novel approach based on 10 key characteristics of human carcinogens classified by the International Agency for Research on Cancer (IARC) has emerged. Carcinogenesis depends on different mechanisms and factors, including genetic, infectious (bacteria, viruses) and environmental (chemicals) factors. Endocrine disruptors are exogenous chemicals that can interfere and impair the function of the endocrine system due to their interaction with estrogen receptors or their estrogen signaling pathways inducing adverse effects in the normal mammary development, originating cancer. They are heterogeneous chemicals and include numerous synthetic substances used worldwide in agriculture, industry and consumer products. The most common are plasticizers, such as bisphenol A (BPA), pesticides, such as dichlorodiphenyltrichloroethane, and polychlorinated biphenyls (PCBs). Xenoestrogens appear to serve an important role in the increased incidence of breast cancer in the United States and numerous other countries. Several studies have demonstrated the role of organochlorine xenoestrogens in breast cancer. Therefore, the overall cumulative exposure of women to estrogens results in an increased risk for this type of cancer. Factors like lifestyle and diet also serve a role in the increased incidence of this disease. The aim of the present study was to analyze these chemical compounds based on the key characteristics given by the IARC, with a special focus on breast cancer, to establish whether these compounds are carcinogens, and to create a model for future analysis of other endocrine disruptors.
Collapse
Affiliation(s)
- Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Richard Ponce-Cusi
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Francisco Aguayo
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380000, Chile
| | - Juan P Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Tammy C Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
38
|
Gomez AL, Altamirano GA, Tschopp MV, Bosquiazzo VL, Muñoz-de-Toro M, Kass L. Exposure to a Glyphosate-based Herbicide Alters the Expression of Key Regulators of Mammary Gland Development on Pre-pubertal Male Rats. Toxicology 2020; 439:152477. [PMID: 32360609 DOI: 10.1016/j.tox.2020.152477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/03/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
Abstract
We previously reported that exposure during gestation and lactation to a low dose of glyphosate-based herbicide (GBH) reduced the area and perimeter of male offspring mammary gland at postnatal day 60 (PND60), whereas a higher dose increased the longitudinal growth of the gland. Here, our aim was to assess whether perinatal exposure to GBH exhibits endocrine disruptive action in male mammary gland at an early time point (pre-puberty), which could be related to the changes observed after puberty. We also wanted to explore whether an early evaluation of the male rat mammary gland is appropriate to assess exposure to potential endocrine disrupting chemicals (EDCs). Pregnant rats were orally exposed, through the diet, to vehicle (saline solution), 3.5 or 350 mg/kg/day of GBH from gestational day 9 until weaning. At PND21, the male offspring were euthanized, and mammary gland samples were collected. The histology and proliferation index of the mammary glands were evaluated, and the mRNA expression of estrogen (ESR1) and androgen (AR) receptors, cyclin D1 (Ccnd1), amphiregulin (Areg), insulin-like growth factor 1 (IGF1), epidermal growth factor receptor (EGFR) and IGF1 receptor (IGF1R) were assessed. Moreover, the phosphorylated-Erk1/2 (p-ERK1/2) protein expression was determined. No differences were observed in mammary epithelial structures and AR expression between experimental groups; however, the proliferation index was reduced in GBH3.5-exposed males. This result was associated with decreased ESR1, Ccnd1, Areg, IGF1, EGFR and IGF1R mRNA expressions, as well as reduced p-Erk1/2 protein expression in these animals. ESR1, Ccnd1, IGF1R and EGFR expressions were also reduced in GBH350-exposed males. In conclusion, the mammary gland development of pre-pubertal male rats is affected by perinatal exposure to GBH. Although further studies are still needed to understand the molecular mechanisms involved in GBH350 exposure, the present results may explain the alterations observed in mammary gland growth of post-pubertal males exposed to low doses of GBH. Our results also suggest that early evaluation of the male rat mammary gland is useful in assessing exposure to potential EDCs. However, analysis of EDCs effects at later time points should not be excluded.
Collapse
Affiliation(s)
- Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María V Tschopp
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Verónica L Bosquiazzo
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
39
|
Epigenetics in Inflammatory Breast Cancer: Biological Features and Therapeutic Perspectives. Cells 2020; 9:cells9051164. [PMID: 32397183 PMCID: PMC7291154 DOI: 10.3390/cells9051164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
Evidence has emerged implicating epigenetic alterations in inflammatory breast cancer (IBC) origin and progression. IBC is a rare and rapidly progressing disease, considered the most aggressive type of breast cancer (BC). At clinical presentation, IBC is characterized by diffuse erythema, skin ridging, dermal lymphatic invasion, and peau d'orange aspect. The widespread distribution of the tumor as emboli throughout the breast and intra- and intertumor heterogeneity is associated with its poor prognosis. In this review, we highlighted studies documenting the essential roles of epigenetic mechanisms in remodeling chromatin and modulating gene expression during mammary gland differentiation and the development of IBC. Compiling evidence has emerged implicating epigenetic changes as a common denominator linking the main risk factors (socioeconomic status, environmental exposure to endocrine disruptors, racial disparities, and obesity) with IBC development. DNA methylation changes and their impact on the diagnosis, prognosis, and treatment of IBC are also described. Recent studies are focusing on the use of histone deacetylase inhibitors as promising epigenetic drugs for treating IBC. All efforts must be undertaken to unravel the epigenetic marks that drive this disease and how this knowledge could impact strategies to reduce the risk of IBC development and progression.
Collapse
|
40
|
Montévil M, Acevedo N, Schaeberle CM, Bharadwaj M, Fenton SE, Soto AM. A Combined Morphometric and Statistical Approach to Assess Nonmonotonicity in the Developing Mammary Gland of Rats in the CLARITY-BPA Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:57001. [PMID: 32438830 PMCID: PMC7263454 DOI: 10.1289/ehp6301] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND The Consortium Linking Academic and Regulatory Insights on Bisphenol-A (CLARITY-BPA) is a rare collaboration of guideline-compliant (core) studies and academic hypothesis-based studies to assess the effects of bisphenol A (BPA). OBJECTIVES We aimed to a) determine whether BPA showed effects on the developing rat mammary gland using new quantitative and established semiquantitative methods in two laboratories, b) develop a software tool for automatic evaluation of quantifiable aspects of the mammary ductal tree, and c) compare those methods. METHODS Sprague-Dawley rats were exposed to BPA, vehicle, or positive control [ethinyl estradiol (EE2)] by oral gavage beginning on gestational day (GD)6 and continuing with direct dosing of the pups after birth. There were two studies: subchronic and chronic. The latter used two exposure regimes, one stopping at postnatal day (PND)21 (stop-dose) the other continuing until tissue harvest (continuous). Glands were harvested at multiple time points; whole mounts and histological specimens were analyzed blinded to treatment. RESULTS The subchronic study's semiquantitative analysis revealed no significant differences between control and BPA dose groups at PND21, whereas at PND90 there were significant differences between control and the lowest BPA dose and between control and the lowest EE2 dose in animals in estrus. Quantitative, automatized analysis of the chronic PND21 specimens displayed nonmonotonic BPA effects, with a breaking point between the 25 and 250μg/kg body weight (BW) per day doses. This breaking point was confirmed by a global statistical analysis of chronic study animals at PND90 and 6 months analyzed by the quantitative method. The BPA response was different from the EE2 effect for many features. CONCLUSIONS Both the semiquantitative and the quantitative methods revealed nonmonotonic effects of BPA. The quantitative unsupervised analysis used 91 measurements and produced the most striking nonmonotonic dose-response curves. At all time points, lower doses resulted in larger effects, consistent with the core study, which revealed a significant increase of mammary adenocarcinoma incidence in the stop-dose animals at the lowest BPA dose tested. https://doi.org/10.1289/EHP6301.
Collapse
Affiliation(s)
- Maël Montévil
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston Massachusetts, USA
| | - Nicole Acevedo
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston Massachusetts, USA
| | - Cheryl M. Schaeberle
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston Massachusetts, USA
| | - Manushree Bharadwaj
- National Toxicology Program (NTP) Laboratory, Division of the NTP, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Suzanne E. Fenton
- National Toxicology Program (NTP) Laboratory, Division of the NTP, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Ana M. Soto
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston Massachusetts, USA
| |
Collapse
|
41
|
Ma Z, Parris AB, Howard EW, Davis M, Cao X, Woods C, Yang X. In Utero Exposure to Bisphenol a Promotes Mammary Tumor Risk in MMTV-Erbb2 Transgenic Mice Through the Induction of ER-erbB2 Crosstalk. Int J Mol Sci 2020; 21:ijms21093095. [PMID: 32353937 PMCID: PMC7247154 DOI: 10.3390/ijms21093095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 12/16/2022] Open
Abstract
Bisphenol A (BPA) is the most common environmental endocrine disrupting chemical. Studies suggest a link between perinatal BPA exposure and increased breast cancer risk, but the underlying mechanisms remain unclear. This study aims to investigate the effects of in utero BPA exposure on mammary tumorigenesis in MMTV-erbB2 transgenic mice. Pregnant mice were subcutaneously injected with BPA (0, 50, 500 ng/kg and 250 µg/kg BW) daily between gestational days 11–19. Female offspring were examined for mammary tumorigenesis, puberty onset, mammary morphogenesis, and signaling in ER and erbB2 pathways. In utero exposure to low dose BPA (500 ng/kg) induced mammary tumorigenesis, earlier puberty onset, increased terminal end buds, and prolonged estrus phase, which was accompanied by proliferative mammary morphogenesis. CD24/49f-based FACS analysis showed that in utero exposure to 500 ng/kg BPA induced expansion of luminal and basal/myoepithelial cell subpopulations at PND 35. Molecular analysis of mammary tissues at PND 70 showed that in utero exposure to low doses of BPA induced upregulation of ERα, p-ERα, cyclin D1, and c-myc, concurrent activation of erbB2, EGFR, erbB-3, Erk1/2, and Akt, and upregulation of growth factors/ligands. Our results demonstrate that in utero exposure to low dose BPA promotes mammary tumorigenesis in MMTV-erbB2 mice through induction of ER-erbB2 crosstalk and mammary epithelial reprogramming, which advance our understanding of the mechanism associated with in utero exposure to BPA-induced breast cancer risk. The studies also support using MMTV-erbB2 mouse model for relevant studies.
Collapse
Affiliation(s)
- Zhikun Ma
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC 28081, USA; (Z.M.); (A.B.P.); (E.W.H.); (X.C.); (C.W.)
| | - Amanda B. Parris
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC 28081, USA; (Z.M.); (A.B.P.); (E.W.H.); (X.C.); (C.W.)
| | - Erin W. Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC 28081, USA; (Z.M.); (A.B.P.); (E.W.H.); (X.C.); (C.W.)
| | - Meghan Davis
- Biotechnology, Rowan-Cabarrus Community College, Kannapolis, NC 28081, USA;
| | - Xia Cao
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC 28081, USA; (Z.M.); (A.B.P.); (E.W.H.); (X.C.); (C.W.)
| | - Courtney Woods
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC 28081, USA; (Z.M.); (A.B.P.); (E.W.H.); (X.C.); (C.W.)
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC 28081, USA; (Z.M.); (A.B.P.); (E.W.H.); (X.C.); (C.W.)
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: ; Tel.: +1-704-250-5726
| |
Collapse
|
42
|
Iliadi A, Koletsi D, Papageorgiou SN, Eliades T. Safety Considerations for Thermoplastic-Type Appliances Used as Orthodontic Aligners or Retainers. A Systematic Review and Meta-Analysis of Clinical and In-Vitro Research. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1843. [PMID: 32295303 PMCID: PMC7215465 DOI: 10.3390/ma13081843] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/19/2022]
Abstract
Use of thermoplastic material in orthodontics, either as aligner or as retainer appliances, is common practice and is likely to increase in the years to come. However, no systematic assessment on safety considerations of these adjuncts has been implemented up to date. The aim of this systematic review was to collectively appraise the existing evidence from both clinical and laboratory studies, on whether these appliances are associated with any estrogenic/cytotoxic effects or bisphenol-A (BPA) and monomer leaching. Eight electronic databases were searched with no limits in December 22, 2019, for published and unpublished research. Eligibility criteria comprised of studies of any design, describing use of any type of thermoplastic aligner. Study selection, data extraction and risk of bias (RoB) assessment was done independently, either in duplicate or confirmed by a second reviewer. Random effects meta-analyses of weighted mean differences (WMD) with associated 95% Confidence Intervals (CIs) were planned. Quality of the evidence was evaluated with Grading of Recommendations Assessment, Development and Evaluation (GRADE). A total of 58 articles were initially identified, while 5 were included in qualitative synthesis and 2 of those contributed to the quantitative syntheses. Four studies were in-vitro, while one was a randomized controlled trial; all assessed some type of orthodontic aligner or retainer, either as-received or retrieved. Risk of bias recordings ranged between unclear and high for all studies. Proliferation induction capacity of thermoplastic appliances' eluents on MCF-7 cells failed to be confirmed compared to beta-estradiol (2 studies: 5% v/v, WMD: -182.08; 95% CI: -198.83, -165.33; p-value < 0.001; and 20% v/v, WMD: -184.53; 95% CI: -206.17, -162.88; p-value < 0.001). No cytotoxic activity was detected as well. In addition, although evidence from in-vitro studies was indicative of no traceable detection of BPA or other monomers, the findings from a single clinical trial were allied to increased levels of BPA in whole stimulated saliva, after up to 30 days of thermoplastic retainer usage, compared to standard Hawley retainer. The quality of the evidence overall was low to medium. Current data from in-vitro research are indicative of an absence of an estrogenic or cytotoxic effect of thermoplastic aligners or retainers. Regarding BPA or monomer release, evidence from clinical and laboratory studies appear inconsistent.
Collapse
Affiliation(s)
- Anna Iliadi
- Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Despina Koletsi
- Clinic of Orthodontics and Pediatric Dentistry, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (D.K.); (S.N.P.)
| | - Spyridon N. Papageorgiou
- Clinic of Orthodontics and Pediatric Dentistry, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (D.K.); (S.N.P.)
| | - Theodore Eliades
- Clinic of Orthodontics and Pediatric Dentistry, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (D.K.); (S.N.P.)
| |
Collapse
|
43
|
Merzoug-Larabi M, Youssef I, Bui AT, Legay C, Loiodice S, Lognon S, Babajko S, Ricort JM. Protein Kinase D1 (PKD1) Is a New Functional Non-Genomic Target of Bisphenol A in Breast Cancer Cells. Front Pharmacol 2020; 10:1683. [PMID: 32082170 PMCID: PMC7006487 DOI: 10.3389/fphar.2019.01683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 12/24/2019] [Indexed: 01/01/2023] Open
Abstract
Exposure to bisphenol A (BPA), one of the most widespread endocrine disruptors present in our environment, has been associated with the recent increased prevalence and severity of several diseases such as diabetes, obesity, autism, reproductive and neurological defects, oral diseases, and cancers such as breast tumors. BPA is suspected to act through genomic and non-genomic pathways. However, its precise molecular mechanisms are still largely unknown. Our goal was to identify and characterize a new molecular target of BPA in breast cancer cells in order to better understand how this compound may affect breast tumor growth and development. By using in vitro (MCF-7, T47D, Hs578t, and MDA-MB231 cell lines) and in vivo models, we demonstrated that PKD1 is a functional non-genomic target of BPA. PKD1 specifically mediates BPA-induced cell proliferation, clonogenicity, and anchorage-independent growth of breast tumor cells. Additionally, low-doses of BPA (≤10- 8 M) induced the phosphorylation of PKD1, a key signature of its activation state. Moreover, PKD1 overexpression increased the growth of BPA-exposed breast tumor xenografts in vivo in athymic female Swiss nude (Foxn1nu/nu ) mice. These findings further our understanding of the molecular mechanisms of BPA. By defining PKD1 as a functional target of BPA in breast cancer cell proliferation and tumor development, they provide new insights into the pathogenesis related to the exposure to BPA and other endocrine disruptors acting similarly.
Collapse
Affiliation(s)
- Messaouda Merzoug-Larabi
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Ilige Youssef
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Ai Thu Bui
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, Paris, France
| | - Christine Legay
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Sophia Loiodice
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, Paris, France
| | - Sophie Lognon
- École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Sylvie Babajko
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, Paris, France
| | - Jean-Marc Ricort
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| |
Collapse
|
44
|
Leonel ECR, Campos SGP, Guerra LHA, Bedolo CM, Vilamaior PSL, Calmon MF, Rahal P, Amorim CA, Taboga SR. Impact of perinatal bisphenol A and 17β estradiol exposure: Comparing hormone receptor response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109918. [PMID: 31753310 DOI: 10.1016/j.ecoenv.2019.109918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
Hormonal regulation controls mammary gland (MG) development. Therefore some hormone-related factors can disrupt the early phases of MGs development, making the gland more susceptible to long term modifications in its response to circulating hormones. Endocrine disruptors, such as bisphenol A (BPA), are able to cause alterations in hormone receptor expression, leading to changes in the cell proliferation index, which may expose the tissue to neoplastic alterations. Thus, we evaluated the variations in hormone receptor expression in the MG of 6-month old Mongolian gerbils exposed to BPA and 17β estradiol during the perinatal period. Receptors for estrogen alpha (ERα), beta (ERβ), progesterone (PGR), prolactin (PRL-R), and co-localization of connexin 43 (Cx43) and ERα in gerbils were analyzed, and serum concentrations of estradiol and progesterone were assessed. No alterations in body, liver, and ovary-uterus complex weights were observed. However, there was an increase in epithelial ERα expression in the 17β estradiol (E2) group and in PGR in the BPA group. Although immunohistochemistry did not show alterations in ERβ expression, western blotting revealed a decrease in this protein in the BPA group. PRL-R was more present in epithelial cells in the vehicle control (VC), E2, and BPA groups in comparison to the intact control group. Cx43 was more frequent in E2 and BPA groups, suggesting a protective response from the gland against possible malignancy. Serum concentration of estradiol reduced in VC, E2, and BPA groups, confirming that alterations also impacts steroid levels. Consequently, perinatal exposure to BPA and the reference endogenous estrogen, 17β estradiol, are able to increase the tendency of endocrine disruption in MG in a long term manner, since repercussions are observed even 6 months after exposure.
Collapse
Affiliation(s)
- Ellen Cristina Rivas Leonel
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, 15054-000, São José do Rio Preto, São Paulo, Brazil
| | - Silvana Gisele Pegorin Campos
- Federal University of São João del Rei (UFSJ), Campus Centro Oeste Dona Lindu, Avenida Sebastião Gonçalves Coelho, 400, Bairro Chanadour, 35501-296, Divinópolis, Minas Gerais, Brazil
| | - Luiz Henrique Alves Guerra
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, 15054-000, São José do Rio Preto, São Paulo, Brazil
| | - Carolina Marques Bedolo
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, 15054-000, São José do Rio Preto, São Paulo, Brazil
| | - Patrícia Simone Leite Vilamaior
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, 15054-000, São José do Rio Preto, São Paulo, Brazil
| | - Marilia Freitas Calmon
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, 15054-000, São José do Rio Preto, São Paulo, Brazil
| | - Paula Rahal
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, 15054-000, São José do Rio Preto, São Paulo, Brazil
| | - Christiani Andrade Amorim
- Laboratory of Gynecology, Institute of Experimental and Clinique Research, Université Catholique de Louvain (UCL), Avenue Mounier 52, Bte B1.52.02, 1200, Brussels, Belgium
| | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, 15054-000, São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
45
|
Leonel ECR, Campos SGP, Bedolo CMB, Guerra LHA, Vilamaior PSL, Calmon MF, Rahal P, Amorim CA, Taboga SR. Perinatal exposure to bisphenol A impacts in the mammary gland morphology of adult Mongolian gerbils. Exp Mol Pathol 2020; 113:104374. [PMID: 31917966 DOI: 10.1016/j.yexmp.2020.104374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/07/2019] [Accepted: 01/04/2020] [Indexed: 12/31/2022]
Abstract
The endocrine disruptive effects caused by bisphenol A (BPA) are well known. Despite this, to date, evaluation of its long term effects is limited, meaning that there is still much to be unveiled in terms of alterations caused by perinatal exposure to BPA. Our aim was to determine if perinatal exposure to two different doses of BPA causes long term morphological and molecular alteration effects in the mammary gland (MG). We evaluated MG from Mongolian gerbil offspring exposed perinatally (during gestation and lactation) to 50 or 5000 μg/kg/day BPA. At 90 days of age the animals were subjected to a single dose of N-nitroso-N-methylurea in order to mimic a carcinogenic environment. At 6 months of age, animals in estrous were euthanized for morphological evaluation of the MGs. The MG architecture presented considerable changes in terms of detached epithelial cells, inflammation, glandular hyperplasia, and collagen fiber deposition. Furthermore, a higher index of epithelial cell proliferation was detected in comparison to the intact control group. In addition, we verified a higher molecular expression of EZH2 in the vehicle treated group, indicating that corn oil applied alone can alter the expression of this epigenetic biomarker. In conclusion, BPA perinatal exposure promotes significant changes in glandular cytoarchitecture and increases glandular epithelium proliferation rate, leading to the retention of stem-like properties. This event could compromise the fate and differentiation potential of mammary epithelium.
Collapse
Affiliation(s)
- Ellen Cristina Rivas Leonel
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Silvana Gisele Pegorin Campos
- Federal University of São João del Rei, Campus Centro Oeste Dona Lindu, Avenida Sebastião Gonçalves Coelho, 400, Bairro Chanadour, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Carolina Marques Baraldi Bedolo
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Luiz Henrique Alves Guerra
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Patrícia Simone Leite Vilamaior
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Marilia Freitas Calmon
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Paula Rahal
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Christiani Andrade Amorim
- Laboratory of Gynecology, Institute of Experimental and Clinique Research, Université Catholique de Louvain (UCL), Avenue Mounier 52, bte B1.52.02, 1200 Brussels, Belgium
| | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
46
|
El-Maghrabey M, El-Shaheny R, Belal F, Kishikawa N, Kuroda N. Green Sensors for Environmental Contaminants. NANOTECHNOLOGY IN THE LIFE SCIENCES 2020. [DOI: 10.1007/978-3-030-45116-5_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Varuzza MB, Zapaterini JR, Colombelli KT, Barquilha CN, Justulin LA, Muñoz-de-Toro M, Kass L, Barbisan LF. Impact of gestational low protein diet and postnatal bisphenol A exposure on chemically induced mammary carcinogenesis in female offspring rats. ENVIRONMENTAL TOXICOLOGY 2019; 34:1263-1272. [PMID: 31287222 DOI: 10.1002/tox.22827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/11/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
This study evaluated the effect of gestational low protein diet (LPD) and/or postnatal bisphenol A (BPA) exposure on mammary gland development and carcinogenesis in female offspring. Pregnant Sprague-Dawley rats were fed a normal protein diet (NPD, 17% protein) or LPD (6% protein). At weaning, female offspring were distributed in four groups (NPD, LPD, NPD + BPA, and LPD + BPA) and received vehicle or BPA in drinking water (0.1%), during postnatal day (PND) 21 to 51. On PND 51, some female offspring were euthanized or received a single dose of 7,12-dimethylbenzoanthracene (DMBA, 30 mg/kg, i.g.) and were euthanized on PND 250. On PND 51, neither gestational LPD nor postnatal BPA exposure, individually or in combination, significantly altered the development of mammary gland tree, mean number of terminal structures or estrogen receptor beta (ER-β), proliferating cell nuclear antigen (PCNA) or caspase-3 protein expression in the mammary tissue. A significant reduction in mammary epithelial area (%) was observed in both LPD groups and a significant increase in ER-α protein expression was detected only in LPD group. In LPD + BPA group was observed a significant increase in both fat pad area (%) and in mean number of mammary epithelial cells positive for progesterone receptor (PR). On PND 250, the groups that received BPA presented lower latency and higher tumor incidence and tumor multiplicity and LPD + BPA group more aggressive tumors. These findings suggest that postnatal BPA exposure associated with gestational LPD is able to induce morphological changes in the mammary gland and increase susceptibility to mammary carcinogenesis.
Collapse
Affiliation(s)
- Muriele B Varuzza
- Department of Pathology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- Department of Morphology, UNESP-Universidade Estadual Paulista, Botucatu Biosciences Institute, Botucatu, São Paulo, Brazil
| | - Joyce R Zapaterini
- Department of Morphology, UNESP-Universidade Estadual Paulista, Botucatu Biosciences Institute, Botucatu, São Paulo, Brazil
| | - Ketlin T Colombelli
- Department of Morphology, UNESP-Universidade Estadual Paulista, Botucatu Biosciences Institute, Botucatu, São Paulo, Brazil
| | - Caroline N Barquilha
- Department of Morphology, UNESP-Universidade Estadual Paulista, Botucatu Biosciences Institute, Botucatu, São Paulo, Brazil
| | - Luis A Justulin
- Department of Morphology, UNESP-Universidade Estadual Paulista, Botucatu Biosciences Institute, Botucatu, São Paulo, Brazil
| | - Monica Muñoz-de-Toro
- Human Pathology Department, School of Biochemistry and Biological Sciences, UNL-Universidad Nacional del Litoral, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Santa Fe, Argentina
| | - Laura Kass
- Human Pathology Department, School of Biochemistry and Biological Sciences, UNL-Universidad Nacional del Litoral, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Santa Fe, Argentina
| | - Luis F Barbisan
- Department of Morphology, UNESP-Universidade Estadual Paulista, Botucatu Biosciences Institute, Botucatu, São Paulo, Brazil
| |
Collapse
|
48
|
Lloyd V, Morse M, Purakal B, Parker J, Benard P, Crone M, Pfiffner S, Szmyd M, Dinda S. Hormone-Like Effects of Bisphenol A on p53 and Estrogen Receptor Alpha in Breast Cancer Cells. Biores Open Access 2019; 8:169-184. [PMID: 31681507 PMCID: PMC6823605 DOI: 10.1089/biores.2018.0048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bisphenol A (BPA) is a polymerizing agent commonly found in plastics that has been linked to xenoestrogenic activity. In this study, we analyzed the estrogen-like effects of BPA on the expression of estrogen receptor (ER)α and p53 with hormonal and antihormonal treatments in T-47D and MCF-7 cells. Cells were cultured in medium containing 5% charcoal-stripped fetal bovine serum for 6 days to deplete any endogenous steroids or effectors. The cells were then treated for 24 h with 600 nM BPA, which was determined to be the optimal value by a concentration study of BPA from 1 nM to 2 μM. Extracted cellular proteins were quantified and subjected to sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE)/Western blot analysis. The cell proliferation assays were quantified upon exposure to BPA. Laser confocal microscopy was performed to determine the cytolocalization of p53 and ERα upon treatment with BPA. Western blot analysis revealed that BPA caused an increase in the cellular protein p53 in a concentration-dependent manner. While treatment with BPA did not affect the cytolocalization of p53, an increase in cell proliferation was observed. Our studies provide interesting leads to delineate the possible mechanistic relationship among BPA, ER, and tumor suppressor proteins in breast cancer cells.
Collapse
Affiliation(s)
- Victoria Lloyd
- Department of Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Center of Biomedical Research, Oakland University, Rochester, Michigan
| | - Mia Morse
- Department of Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Center of Biomedical Research, Oakland University, Rochester, Michigan
| | - Betsy Purakal
- Department of Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Center of Biomedical Research, Oakland University, Rochester, Michigan
| | - Jordan Parker
- Department of Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Center of Biomedical Research, Oakland University, Rochester, Michigan
| | - Paige Benard
- Department of Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Center of Biomedical Research, Oakland University, Rochester, Michigan
| | - Michael Crone
- Department of Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Center of Biomedical Research, Oakland University, Rochester, Michigan
| | - Samantha Pfiffner
- Department of Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Center of Biomedical Research, Oakland University, Rochester, Michigan
| | - Monica Szmyd
- Department of Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Center of Biomedical Research, Oakland University, Rochester, Michigan
| | - Sumi Dinda
- Department of Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Center of Biomedical Research, Oakland University, Rochester, Michigan
| |
Collapse
|
49
|
Kim S, Gwon D, Kim JA, Choi H, Jang CY. Bisphenol A disrupts mitotic progression via disturbing spindle attachment to kinetochore and centriole duplication in cancer cell lines. Toxicol In Vitro 2019; 59:115-125. [DOI: 10.1016/j.tiv.2019.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 10/27/2022]
|
50
|
Dallio M, Diano N, Masarone M, Gravina AG, Patanè V, Romeo M, Di Sarno R, Errico S, Nicolucci C, Abenavoli L, Scarpellini E, Boccuto L, Persico M, Loguercio C, Federico A. Chemical Effect of Bisphenol A on Non-Alcoholic Fatty Liver Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173134. [PMID: 31466361 PMCID: PMC6747307 DOI: 10.3390/ijerph16173134] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered a predominant chronic liver disease worldwide and a component of metabolic syndrome. Due to its relationship with multiple organs, it is extremely complex to precisely define its pathogenesis as well as to set appropriate therapeutic and preventive strategies. Endocrine disruptors (EDCs) in general, and bisphenol A (BPA) in particular, are a heterogeneous group of substances, largely distributed in daily use items, able to interfere with the normal signaling of several hormones that seem to be related to type 2 diabetes mellitus (T2DM), obesity, and other metabolic disorders. It is reasonable to hypothesize a BPA involvement in the pathogenesis and evolution of NAFLD. However, its mechanisms of action as well as its burden in the vicious circle that connects obesity, T2DM, metabolic syndrome, and NAFLD still remain to be completely defined. In this review we analyzed the scientific evidence on this promising research area, in order to provide an overview of the harmful effects linked to the exposure to EDCs as well as to frame the role that BPA would have in all phases of NAFLD evolution.
Collapse
Affiliation(s)
- Marcello Dallio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy.
| | - Nadia Diano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Mario Masarone
- Department of Medicine and Surgery, University of Salerno, via Salvador Allende, 84081 Salerno, Italy
| | - Antonietta Gerarda Gravina
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Vittorio Patanè
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Mario Romeo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Rosa Di Sarno
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Sonia Errico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Carla Nicolucci
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, University "Magna Graecia", Viale Europa-Germaneto, 88110 Catanzaro, Italy
| | - Emidio Scarpellini
- Division of Gastroenterology, Department of Internal Medicine, TARGID, University Hospital Gasthuisberg, 3000 Leuven, Belgium
| | - Luigi Boccuto
- Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Marcello Persico
- Department of Medicine and Surgery, University of Salerno, via Salvador Allende, 84081 Salerno, Italy
| | - Carmelina Loguercio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| |
Collapse
|